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The Yorktown  APL  Translator (YAT)  permits 
functions  written  in  APL  to be compiled  using  an 
existing  compiler  for  part  of  the  process. It also 
creates  tables  that allow  the  APL2 Release  2 
interpreter  to  call  the  compiled  code.  The  code 
can  also be called from a  Fortran  main  routine. 
This  paper  outlines  the  history of  APL 
compilation,  the  motivation  for  producing  YAT, 
the  design  choices  that  were  made,  and  the 
manner  of implementation.  Sample  APL 
functions  and  their  translations are shown,  and 
the  time  required  to  interpret  these  functions is 
compared  with  the  time  required  to  execute  the 
compiled  code.  Possible  further work is 
discussed. 

Introduction 
We  undertook  the work  described  here to investigate the 
extent  to which compilation  could accelerate the execution 
of  APL  applications (vis-&vis current interpreters). Our first 
step, now successfully completed, was to design and build  a 
prototype  translator  that produces  source  code  for the VS 
Fortran  compiler. We are now embarking  on  extended 
studies  of  its performance  and of the effects of various 
modifications to  it, e.g., idiom recognition. The  translator 
itself, being  written in APL, will be  one of our test 
applications. 

Throughout  this  paper,  the words  “translate,” 
“translation,”  and so on refer to  translation  from APL to 
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Fortran or another high-level language. The words 
“compile,” “compilation,” etc. refer variously, as the  context 
makes  clear, to  the  transformation of Fortran or another 
high-level language into Assembler, the direct transformation 
of APL  into Assembler, or the  entire process of translating 
APL  to  Fortran, say, and  then  transforming  the  Fortran  into 
Assembler. 

This  paper discusses our  translator design and  the reasons 
we chose it,  the way in which we expect the  translator  to  be 
used, the code it produces, computational accelerations that 
we have  measured, and  further accelerations that we believe 
are possible. 

The following section summarizes  the characteristics  of 
the  APL language and  the reasons for believing that a 
compiler  would be a  valuable supplement  to  APL 
interpreters.  Next, we outline  the history of previous efforts 
to compile  APL. In  the section Design of the translator we 
discuss the overall form of our  translator  and how we 
decided upon it. Details  of our translation methods  and 
results and of how the  translator is used, some  sample 
translations, and  some accelerations we have  measured are 
to be found beginning  with the section Some details of 
translation. 

Motivation 
The  fundamental  unit of data  in APL is the  array, a 
rectangular structure of essentially unlimited  rank  containing 
numeric or character scalar values. Most  APL interpreters 
provide three or four storage types  for numeric data- 
Boolean, integral, real, and (possibly) complex-but 
conversions are performed  as necessary, and  the storage  type 
of a numeric  array is visible to a programmer only 
indirectly, by the  amount of storage that  the  array occupies. 
No explicit statement  binds an array  permanently  to a 
particular rank, shape, or type. The  same  name  may  be 
given, for  example, to a vector and  then  to a  matrix  which 
has no necessary relationship to  that vector. 
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APL  has a large  collection of primitive (built-in) 
functions, mathematical, relational, and structural. Each 
function accepts as arguments any arrays that are 
meaningful for it, not just scalars; the APL  processor handles 
any indexing that is implicit in the definition of the function. 
There are also primitive operators, which  have  higher 
precedence than functions. Operators take functions (and 
arrays) as operands and produce functions such as Inner 
Product, Outer Product, and Reduce  with  Axis. The 
functions produced by operators are called “derived” 
functions. The arguments of a derived function are 
sometimes loosely  said to be the arguments of the operator 
by which it is produced. 

a primitive function or a primitive operator, and we 
sometimes say “primitive operation” for emphasis. 

APL  has  relatively few syntactical rules. There is,  for 
instance, no hierarchy of primitive functions: The order of 
function execution is determined only by position, 
parentheses, and brackets. Contributing to APL‘s simplicity 
(from the programmer’s point of  view) are the systematic 
provision for empty arguments in function definitions and 
the extension of scalars and other unit arrays to conform to 
non-unit arguments where appropriate: The same statement 
form  is  used to add two matrices and to add a scalar to a 
matrix; indeed, the very same statement may be executed 
sometimes with  two matrices as arguments and  at other 
times with a matrix and a scalar as arguments. 

a rich assortment of primitive functions, simple rules, and 
automatic handling of what  would  be exceptions in many 
other languages has made APL a language in which  it  is 
comparatively easy to write programs for a substantial range 
of applications. 

Implicit indexing of arrays, inclusion of “exceptional” 
cases, and  the presence of a wide  variety  of operations often 
allow the specification of a large amount of computation by 
a very  small amount of program text. In such a situation, 
interpretive execution of programs can be quite efficient: 
Most of the execution time is spent in actual data 
manipulation and very little in interpreting the program text. 

There are other situations, however, in which the 
interpretive overhead looms much larger:  where the arrays 
are small or sparse or where there are many cases to be 
considered, necessitating  explicit branching and handling of 
scalar elements of the arrays. Furthermore, the freedom to 
change not only the value and shape but also the type of an 
array requires the interpreter to check the characteristics of 
the arguments of each primitive operation each time it is 
executed, and this overhead can be significant for small 
arrays. (Some of this checking  could be done when a 
programmer finishes editing a defined function, but much of 
it must be done~at run time, and in practice interpreters 
almost always do it at run time.) 

In this paper, we use the term “operation” to mean either 

Having arrays as fundamental data types, no declarations, 

Consequently, APL is not used  for some applications to 
which it seems  otherwise well suited, because its execution 
speed  is too slow for them. Indeed, sometimes APL is not 
used  because the potential user  does not know  whether or 
not its speed  would  be adequate, and he  believes that if the 
application were programmed in  APL and turned out to run 
too slowly, then it  would  have to be reprogrammed in 
another language. 

These considerations made the desirability of an APL 
compiler clear  long  ago; there are, however,  good  reasons 
why there is only one commercially available  APL compiler 
[I]. On the one hand, the pressure  for a compiler was 
reduced by  several factors, among them the aptness of the 
language for efficient translation, the excellent quality of the 
translators that were written  for it, and the fact that the early 
APL systems were essentially stand-alone systems and were 
well tuned for APL. On the other hand, the freedom that 
APL  gives the programmer-including  explicit and implicit 
reuse of names, dynamic establishment of defined functions, 
and the execution of variable character vectors as APL 
code-has seemed to make the job of compiling APL quite 
difficult  indeed. 

History of APL compilation 
The  difficulties inherent in compiling APL and especially the 
existence of noncompilable expressions in the language  have 
led to the construction of  APL  language  processors that 
cover the spectrum from pure interpreters to pure compilers 
(the latter applying restrictions to the statements that are 
acceptable for compilation). Hence it is  often  difficult to 
decide  whether to call a given  processor an interpreter or a 
compiler. 

The  Burroughs  APL-700  system could perhaps be called 
the first  APL compiler, because it was the first interpreter to 
keep  parse trees during execution and regenerate them only 
when necessary.  Hewlett-Packard’s  APL-3000 [2, 31, 
however,  is  usually credited with  being the first  APL 
compiler. This remarkable implementation went much 
further in run-time binding than did APL-700: It compiled 
code at run time based on the current storage  types and 
ranks and even  shapes of variables. Unfortunately, the 
performance of this system  did not meet expectations, in 
part because it was not possible to dynamically create and 
run HP-3000 machine code, and therefore the target of the 
compiler was a relatively  high-level intermediate language. 
Miller’s  design [4, 51 goes beyond  APL-3000,  using type 
inference to support code generation over a span of more 
than one APL statement and to reduce the number of checks 
required to validate the dynamically  generated  code on each 
occasion  when  it  might  be  reused. Guibas and Wyatt  [6], 
followed  by Budd [7] and Treat and Budd [8], have 
continued to refine  these  code generation methods. 

All these compilers generate code at  run time, based 
largely on dynamic information, and aim for code that is 
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quite specific to the instance. Clearly, it can be costly to 
regenerate the compiled code for a statement when, on  a 
subsequent execution, the code previously compiled for  it  is 
discovered to be no longer  valid. More extensive inferring of 
type [9, 101 can reduce the frequency with  which such 
situations occur, as can the generation of code that is more 
general than is immediately required; typically  these 
methods generate code that is  specific  for storage type, but 
not rank or shape. Another disadvantage of run-time code 
generation is that run-time static analysis is  necessarily 
limited in scope, usually to a single statement or at most a 
few neighboring statements, whereas a thorough analysis of 
APL applications should not only encompass all of each 
procedure (defined function) but also  be interprocedural. 
Although at run  time information may be available that 
cannot be deduced during static analysis but that could have 
a substantial positive effect on the generated code, such as 
whether or not a particular instance of Take is an overtake, 
the very  fact that it cannot be known statically implies that it 
may  vary from one execution to the next and thereby cause 
excessive code regeneration. 

The code generation schemes in these compilers are all 
based on the work  of  P. Abrams [ 1 I]. Abrams suggested  two 
fundamental code improvements (“optimizations”) for  APL 
code. The first,  which he called beating, refers to a method of 
generating code for sequences of  APL selection operations as 
if the sequences themselves were individual selection 
primitive operations. The second, called  drag-along,  involves 
practices now commonly known as loop jamming (or loop 
merging) and lazy evaluation. (Lazy, or demand-driven, 
evaluation computes values  when they are needed insofar as 
possible, rather than when their computation appears in the 
program, so that if a selection operation picks elements from 
a computed temporary variable, only the selected elements 
of that variable will be computed.) 

There is a second line of inquiry into APL compilation, 
based on the translation of  APL to other high-level  languages 
[ 12- 151.  All these studies are based on  the one-for-one 
replacement of  APL primitives with code in the target 
language, and none use  type inference as an aid to code 
generation. Even so, they all demonstrate the  important fact 
that even the most straightforward approaches to APL 
compilation can yield dramatic improvements in many 
cases. 

The only commercial APL compiler available today is 
offered  by STSC, Inc. [ 11. This compiler generates code for a 
restricted set  of  cases  of the APL primitives, and 
concentrates on improving scalar code. For example, at the 
time Weigang’s paper appeared, code for Take was generated 
only in the case of vector right arguments. Finely tuned code 
for I+ I + 1 for scalar I and + L A  B E L  is generated. The 
code is produced at compile time, not at run time, and is 
permanently merged  with code to be interpreted. Code 
improvements are avoided which  might produce run-time 
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error reports differing from those that would be  given  were 
the code interpreted. This compiler performs code 
improvement on  the scalar code it  generates,  as opposed to 
transforming the APL source before code generation, and 
consequently the improvements it makes resemble more 
those of compilers for other languages, and  are less  like those 
based on Abrams’  work. A compiler that is similar in spirit 
to  the  one at STSC  has  been built at Cornel1 [ 161, but we do 
not know whether or not it  has been developed to the point 
where it is in production use. 

Our compiler differs from each of its predecessors by 
virtue of at least one of these characteristics: The defined 
function is the unit of compilation; thorough static 
interprocedural analysis  is camed out; code improvement is 
done at the source level (as well as on  the generated code, 
and in addition to the code improvements made by the 
Fortran compiler); all  cases are compiled for each 
compilable primitive operation; intermediate code in a high- 
level  language is available  for the programmer’s inspection; 
machine code is generated; and applications may consist of a 
mixture of compiled functions and interpreted functions. 

The three things that we  believe most distinguish our 
compiler are  that we require variables to be of known fixed 
rank; we do a thorough analysis of the shapes of variables 
(including in the analysis the shapes and upper and lower 
bounds on shapes that  the programmer has put in 
declaratory comments); and we  use this shape information 
to tailor the generated code to many special  cases. 

There is a series  of  excellent papers discussing various 
aspects of  APL compilation [ 17-20].  Wai-Mee Ching 
introduced us to type inference schemes, and his  own  work 
on APL compilation is  based on  a definition of compilable 
APL that is similar to ours. He has  worked on  the problem 
of generating code for  parallel machines [2 11, and is 
currently working on an APL compiler that generates 
System/370 code directly [22]. 

Design of the  translator 
Writing a compiler to translate APL to Assembler  would 
have  been a very substantial job for us, and much of the 
effort  would  have duplicated work that has already gone into 
other compilers. So, to make our task  feasible and to allow 
us to concentrate on  the problems unique to APL, we 
decided to translate APL to a high-level  language already 
having a compiler. We chose Fortran (in many ways the 
lowest  of the high) as the target language (or first target 
language), since it  has compilers that produce efficient code 
and therefore can provide a reasonable test  of the viability  of 
our approach. 

Since we wrote our translator in APL and we translate 
APL to a language  for  which compilers are generally 
available, the entire compilation process  is portable to a wide 
range of systems, from large mainframes to personal 
computers. In fact, we have already run compiled programs 
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on  the IBM 3090 system, making use  of the Vector  Facility, 
as well as on  the IBM 308X  systems that were our original 
targets. 

We soon saw that  the use  of a high-level intermediate 
language could be beneficial not only to us,  by reducing the 
amount of  work  we had to do,  but also to some users  of the 
compiler. All that was  needed  was to make the intermediate 
code as readable as possible and leave it exposed to the user, 
rather  than make one seamless  package  of our translator and 
the  Fortran compiler. The translated code need never be 
looked at,  but a programmer who is familiar with Fortran 
can examine it and perhaps change it or-much  better- 
induce changes by changing the original APL code. 

To make the translated code as readable as possible we 
eliminate some needless labels and CONTINUE statements, 
consolidate some sequential GO TO statements, evaluate 
some arithmetic expressions involving constants, and so on, 
in spite of the fact that these changes will make no difference 
in the compiled code, and we indent the bodies of DO loops 
and block  IFs. To make correlating the original and 
translated code easy, we include Fortran statement numbers 
(ISNs) in the sequence field  of the Fortran code, marked to 
indicate where translation of a set  of  APL simple expressions 
begins and ends, and provide an APL  listing. (A block  of 
several Fortran statements may collectively translate each of 
several  APL simple expressions.) A sample listing is shown 
in the section Examples of code generation. Such a listing 
displays the original APL statements, each followed by the 
expressions into which it has been analyzed. Each  expression 
is tagged  by ISNs, to show  where its translation can be 
found. 

Having decided to make use  of an existing compiler, we 
next had to consider how  we wanted to restrict the APL 
code that we would translate, in order to ensure significant 
acceleration of execution. Only when the rank and type of 
each variable are fixed and known can real opportunities for 
performance improvement be found and burdensome run- 
time  computations be avoided. Therefore, our primary 
requirement was that these attributes be constant and be 
available to  the compiler. A localized name can be reused 
for a variable of a different rank or type; we just treat such 
reuse as if a different name had  been  used.  If,  however, such 
reuse were to occur for a global name or if a given instance 
of any name were to refer at various times to arrays of 
various ranks and types, or even just to an array of unknown 
rank or type, there would be little hope of producing 
Assembler code for the statement in which  it appeared 
whose execution would  have much advantage over 
interpretation of that statement. 

expressions that  cannot really  be compiled, such as 
Evaluated (Quad)  Input and Execute  with an argument 
whose  value  is unknown. We did not want applications for 
which the compiler could be  used to be restricted to a subset 

We also had to consider how to handle those APL 

of the APL  language, so we had to accept the existence  of 
applications for  which some code would be compiled and 
some would continue to be interpreted. We  saw two 
principal ways  of  allowing  for interpretation. 

We could package a rudimentary interpreter with the 
compiled code and maintain, during execution, the tables 
that would  allow interpretation of statements that could not 
be compiled. Incorporating an interpreter in our run-time 
support, however,  would be too large a job for a small group 
and is  unnecessary  for a prototype. 

The alternative we chose  was to use the VSAPL or APL2 
interpreter for code that must be interpreted and to call the 
compiled code from it. This choice involved little work for 
us  because we  were fortunate enough to have available both 
an experimental auxiliary processor that allows  VSAPL to 
call programs written in Fortran, PL/I, or Assembler 
(produced at the IBM Heidelberg  Scientific Center) and an 
interface in the APL2 program product (Release 2) [23] to 
Fortran, Assembler, and REXX. 

We chose the defined function as the  unit of compilation: 
A function must be compiled in its entirety, together with  all 
the functions it  calls, or not compiled at all. Furthermore, 
the functions to be compiled would, like  locked functions, 
not be susceptible to suspension. 

There were three major reasons for this choice: 

Allowing interpreted and compiled code to be interspersed 
in a defined function precludes global flow analysis and 
certain code improvements. 
Frequent crossing  of the interface between compiled and 
interpreted code creates unwanted overhead. 
The separation between interpreted and compiled code 
occurs at points that  are meaningful to  the programmer, 
and each translated procedure corresponds to one of his 
functions. 

What constructions would we interpret rather than 
compile? That is,  what constructions would render a 
function containing them unacceptable to our translator? In 
addition to expressions that  are essentially not amenable to 
compilation, there are expressions that severely inhibit the 
analysis of a function containing them, such as a branch to a 
computed value that could be the number of any line in the 
function, and we wanted to place them outside the pale  also. 

In formulating the rules for the subset  of  APL we would 
compile, we  were guided by  six main considerations: 

Whether an expression can be executed with minimal 

Whether its execution can actually be accelerated by 

Whether its presence  would  severely degrade analysis and 

Whether it commonly appears in  APL applications. 

run-time support. 

compilation. 

code improvement. 
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Whether it involves really bad programming practices 
(which we see no need to  support), e.g., branches to 
absolute line numbers other than 0 and I .  

0 What rules  will  be  easy to learn and remember. 

In keeping  with these considerations, we have imposed 
several requirements for a function to be accepted by our 
translator. The principal ones are  the following: 

0 There must be no need  for run-time syntax analysis; 
hence, the argument of any Execute must have known 
values and there must be no Quad Input, dynamic 
establishment of function definitions, or the like. 
To facilitate analysis, all branch targets must be  labels, 
zero, one, or empty (fall-through), and they must be  visible 
and manipulated in certain ways; i.e., branch statements 
must be of certain forms. Most  of the commonly used 
branch expressions satisfy this requirement. 
The storage type and rank of  each variable in the function 
must be known. (Knowledge  of the shape, or at least 
bounds  on  the dimensions, is helpful, but not essential.) 
Usually  when these attributes are given  for a relatively few 
variables in a function they can be inferred for the 
remaining variables and expressions. 

by constants or variables (of known value), then  the index 
origin must be known also. 
Scalar extensions must be deducible or explicitly indicated. 

Distinguished axes must be known. If they are indicated 

Note that we compile all  VSAPL operations except system 
functions and functions that involve the execution of code 
that is not visible to  the compiler. We do not yet,  however, 
handle recursion, shared variables, or the new  APL2 
constructs. The restriction on recursion could be  lifted by 
retargeting the compiler to  another compilable high-level 
language. 

The section How the translator is used tells  how the 
programmer may  explicitly  give the translator information 
that  it  cannot infer. 

Clearly, the increased speed  offered  by our compiler is not 
free. In order to take advantage of  it the programmer must 
understand the requirements of the compiler, be or become 
familiar with the application he wants to compile, determine 
what functions should be replaced by compiled versions, 
think carefully about  the array attributes to be used, and 
make any required modifications. 

If an APL compiler such as ours becomes generally 
available, programmers will presumably keep its 
requirements in mind when creating applications which 
might someday be compiled. In particular, they should 
isolate the computationally intensive parts of the application 
in defined functions that conform to the requirements of the 
compiler; include, in comments, all nonderivable 
information about types and ranks and, if feasible, shapes or 

upper and lower bounds for shapes; and, if significant 
attributes are unknown, instrument  the application to 
accumulate data regarding them. 

Some details of translation 
The two main steps of translation are analysis and code 
generation. 

generation but  that does not appear explicitly in APL 
programs, such as ranks and storage  types of arrays, 
parameters for dimension statements, and expressions for 
shape computations. In addition, code improvements that 
would  generally be missed by Fortran compilers are 
performed, such as eliminating common APL  expressions 
and statically evaluating expressions of the type that often 
appear as  left arguments to Take and Reshape. 

APL code, and we  go to considerable trouble to  do so, 
although the programmer may sometimes be asked to help 
(see How the translator is used). Indexing betrays rank, 
Boolean and arithmetic functions give type information, 
explicit constants often appear in dimensions and may imply 
nonemptiness, and relations between the shapes of  variables 
are often deducible (our restriction on scalar extension is 
intended not only to simplify the generated code but also to 
allow a more thorough analysis). For example, clues such as 
W+( 2 + p V ) + V  or Y+( pX)pV are used to minimize the 
information required of the user and  to simplify the code 
that is generated. (The first clue tells us that pV is less than 
pW and that no check  need be made to see whether W is 
empty, the second that pX and pY are equal.) 

APL expressions to be executed, in the order in which they 
appear (or are implied) in the APL function. Frequently, we 
combine operations in the generated code, to avoid 
executing similar nests of DOs several times, or to avoid the 
allocation of storage  for more than one element of the 
temporary result of an expression that, if operations are 
combined, can have  each  of its elements used immediately. 
Because the generated code often depends upon the ranks, 
shapes, and storage types of the variables involved, it  is a 
somewhat ticklish  business to determine whether it  is 
possible or advantageous to combine the translations of a set 
of operations. 

Three goals  of the prototype translation process  itself are 
clarity of the methods of translation, ease of modification of 
the translator, and ease  of retargeting to other languages 
having compilers. For code generation, we have found it 
convenient to use an archetype (an object similar to a 
macro) for  each  APL primitive operation. The archetypes 
clearly display the translation, they can be edited like any 
other program, and their further translation can depend 
upon the target language, although of course they must 
contain some text specific to the currently intended target 

Analysis provides information that is required for code 

Usually the attributes of variables can be inferred from the 

The analysis produces, among other things, a list  of simple 
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language. The language of the archetypes contains rank- 
independent abbreviations for frequently occumng text, 
such as DO nests and branches based on whether an array is 
empty. There is syntax for selecting portions of archetypes, 
since a large part of the accelerations we have achieved 
comes from using code tailored to the special  cases 
uncovered by our analysis of the functions being compiled. 

We assume that applications that are being compiled will 
have  been developed and debugged  using interpretive 
execution. We do not provide such facilities as tracing and 
suspending of execution, and we make no general provisions 
for handling unanticipated errors that occur when the 
compiled code is executed. One source of acceleration is the 
elimination of most domain checking: It is the programmer’s 
responsibility to incorporate checks wherever  necessary in a 
function that is to be compiled. This requirement, we might 
observe,  is only what  is expected of  fully interpreted code 
that is to be in general use, where the users must be 
protected from APL error messages. 

We do provide for run-time checks for bounds on array 
shapes and for equality of array shapes (absence of scalar 
extension); these checks are incorporated or omitted from 
the generated Fortran text at the programmer’s option. 

The  organization of compiled  applications 
APL applications are arranged in workspaces,  which are 
collections of functions and data, and this arrangement 
persists after compilation, with the difference that some of 
the functions that  are compiled are (automatically) replaced 
by functions that refer to Fortran subroutines. Each 
replacement APL function has the same name and syntax as 
the  one  it replaces, but consists primarily of a call to a 
Fortran subroutine through a suitable interface provided by 
the host  APL system, such as the name association 
mechanism in APL2  [23]. From a user’s viewpoint, there is 
no difference  between the way an ordinary APL application 
is used  with pure interpretation and the way it would be 
used after compilation. On the  other  hand,  it is not 
necessary to maintain a workspace arrangement after 
compilation (and thereby dependency on an APL  host 
system) if all functions in an application have been compiled 
and appropriate Fortran main programs are written to call 
them. 

A set  of functions may be compiled piecemeal: It is not 
necessary to compile simultaneously all the functions in a 
workspace that  are eventually to be compiled. Whenever a 
function name is  explicitly presented to the compiler, 
however,  with  specific types and ranks for its arguments, that 
function and all functions it calls are compiled (except for 
called functions that have been compiled previously and not 
altered since). A directory is maintained that contains APL 
function names, associated Fortran subroutine names, and 
descriptions of parameter lists; it is  used to avoid 
recompilation whenever possible. This information is  also 588 
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used to construct whatever is needed by the interface 
through which the compiled Fortran subroutines are called. 
In addition, the directory contains the text for run-time error 
messages. Its name is based on a three-character sequence 
that is given at the  time of translation, unless the default 
sequence YAT  is to be used. The chosen sequence is also 
used as a prefix  for the names of the Fortran subroutines 
produced during a compilation, and is therefore similar in 
function to a workspace name. 

another function, and not because its name has  been  given 
explicitly to the translator, that function will not necessarily 
be replaced in the workspace.  APL applications often 
contain functions whose parameters can meaningfully vary 
in rank and storage  type. These functions serve as additional 
primitive operations, and the translator treats them in much 
the same way as it treats true primitive operations. All APL 
operations apply to arrays of various ranks and types; a 
requirement for compilation is that  the parameters of every 
operation at every distinct codepoint must be  of  fixed rank 
and type. This same principle is applied to called functions; 
the parameters of a called function may  be  of  different type 
and rank for different calls at different codepoints, but  not at 
the same call. Whenever such a function occurs in a 
compilation, it is compiled separately for the different cases, 
and therefore could not be  replaced by a call to a single 
Fortran subroutine. 

The separate compilation of  APL functions under a 
variety  of type and rank circumstances presents real 
opportunities for specializing the resulting code in the 
various cases. For example, it is not uncommon in these 
functions that  the parameters are regularized in rank early 
on, so that  the principal computation applies to objects of 
fixed rank. An example of an expression that regularizes 
rank is 

X + ( - 2 4 l   1 , p A ) p A  

If A is a scalar, then X is a one-by-one matrix; if A is an 
N-element vector, then X is a one-by-N matrix, and if A is a 
matrix, then X is identical to A .  By statically “evaluating” 
the expression 

2 4 1   1 , p A  

When a function is compiled because it is called by 

- 

the translator is able to recognize  these  different  cases, 
generate simple code for that statement, and, in the first two 
cases, generate specialized code whenever the shape of X is 
involved. 

How the  translator  is  used 
In the simplest possible  case, the programmer loads the 
translator, copies the functions to be compiled, and gives the 
names of the entry points-the functions that are called by 
users  of the workspace. The functions whose names are 
given are compiled, together with any functions they call. 
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The programmer copies into his workspace the file 
containing both the newly created versions of his functions 
and  the interface data for the Fortran routines. The 
application runs faster than the old one, but otherwise acts 
just  the same, in the absence of erroneous data for  which the 
programmer has failed to put checks in the APL that was 
compiled. 

from APL, the programmer can call them from a Fortran 
main routine. 

Other steps may be  necessary or desirable, however. 
The application may contain forbidden expressions. Then, 

Furthermore, instead of running  the compiled functions 

for each function containing such an expression, the 
programmer must either change the function or not include 
in the argument to  the translator its name or  the  name of 
any function calling it. To help him find  illicit material, the 
translator has a checking facility,  which produces a report 
listing the expressions that cannot be compiled but whose 
inclusion is implied by the given  set  of entry points. If he is 
unfamiliar with the application programs or their execution, 
he can determine in which functions most of the execution 
time is spent using a timing tool such as [24], perhaps 
together with a workspace analysis tool such as [25]. He can 
then analyze the cost (if any) of  modifying the offending 
functions to allow them  to be compiled and the expected 
benefits from doing so. We believe that in most applications 
a relatively few functions consume most of the  CPU time, 
and  no more than those few functions would  need to be 
modified. 

The application may contain variables  whose attributes 
(e.g., domains) cannot be inferred from the APL code. To 
allow the programmer to keep these attributes with the 
function to which they pertain, and not in some separate 
table that gives  rise to logistical or documentation problems, 
and to avoid introducing any new syntax into APL-both 
for the sake  of avoidance itself and so that  the language  for 
the interpreter and  the language  for the compiler remain 
identical-we  allow declaratory comments. They begin 
A D C L  A ,  contain keywords such as S H A P E  and 
DOMA I N ,  keywords  referring to upper and lower bounds 
for dimensions along various axes, and so on,  and may  use 
expressions that refer to other variables in the function or to 
global variables present in the workspace at  the time of 
compilation. 

We emphasize again that we make every  effort to 
determine attributes from the APL code, and  thus  to 
minimize and perhaps eliminate the need for the 
programmer to insert declaratory comments. 

The programmer can examine the translated code and 
perhaps make changes in it. He can, for example, specify 
that the storage type for a given variable is two-byte integer 
rather than four-byte. He can perhaps make changes to 
increase execution speed; if feasible, the better way for  him 
to do this is to revise his APL functions to induce the 
changes he wants. 
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Examples of code generation 
To give some idea  of the code we generate, we discuss a few 
instances. 

A rather complicated APL primitive function in terms of 
code generation is Take, which is so frequently used that  the 
code for  it must be quite efficient. Its right argument can be 
any array. Its left argument is a vector of integers, one for 
each dimension of the right argument. The rank of the result 
is the same as that of the right argument, and its shape is the 
absolute value  of the left argument. Each element of the left 
argument indicates how many of the corresponding 
subarrays of the right  argument-rows, columns, or 
whatever-are to appear in the result, and its sign indicates 
where they are to come from; e.g., 5 indicates the first  five 
subarrays and -5 the last five subarrays. If the absolute value 
of an element exceeds the  number of subarrays along the 
corresponding axis, then fill elements (zeros or blanks) are 
inserted in the result to make up the deficit. If the element is 
positive, the fill elements follow the selected subarrays; 
otherwise they precede them. 

to be positive, fill is known to be unneeded, and the result 
can be  given the same Fortran name as the right argument. 
For this case we need  only  set the shape of the result; no 
other code is required. (For  an array of  variable shape, we 
distinguish between its current shape and its maximum 
shape as determined by the maximum value  of  each  of its 
dimensions, which determines the storage area allotted to it 
and is presented to Fortran simply as its dimension.) Thus 
X+ 5 .f X produces, when the length of X is known to be 5 
or greater, only 

The simplest  case occurs when the left argument is known 

J1X = 5 

where J1  X is the length of JX, the Fortran variable 
corresponding to X. (Our standard means of obtaining a 
Fortran name for a variable is to prefix its APL name with a 
J, V, A, or E, depending upon whether its storage type is 
integral, real, character, or Boolean. The shape variables  for 
a variable  whose  APL name is NAME are called J1 NAME, 
J2NAME, etc. Names of implicit subscripts begin  with I.)  

run time  the fill to be inserted along each  axis (perhaps 
none), at which end of the axis that fill is to go, where the 
elements from the right argument are to be  placed in the 
result, and from what part of the right argument they are to 
come. If the right argument to Take is a singleton array, then 
the result can be constructed by creating it completely with 
fill elements and then placing the single element of the right 
argument in the appropriate position. If  fill is to be added 
along  several axes of a non-singleton array, on  the other 
hand, then several DO nests are required to insert the fill 
efficiently. 

similar simplifications in certain cases. A+A , B yields, 

In the extreme case  for Take, it is necessary to compute at 

Although Catenation is not so complicated as Take, it has 
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under suitable conditions, only 

DO 240 I1 = 1,JlB 
240  JA(JlA+Il) = JB(I1) 

J1A = J1A + J1B 

where the DO loop appends the elements of B to those of A 
and the following line sets J1 A to the new length of A. 
Currently, a variable  whose  length  may  possibly  vary  is  kept 
left-adjusted in the storage allotted to it, and a pointer 
indicates the end of the variable, as shown in the example. 
We intend also to maintain a pointer indicating the 
beginning of the variable in its allotted storage and to place 
the variable  wherever  it  seems  best  in that storage, so that 
A f B  , A can likewise  be handled without moving any of the 
original elements of A .  

As an example of our use  of the same DO nest for several 
APL operations, consider the code generated  for the 
sequence 

A+B+C-D 

M+NtP 

where M and A are known to be two-dimensional arrays of 
the same shape. The loops for Subtract and Add can be 
combined and their computations merged in one statement 
because the temporary C - D is  used in the addition and 
nowhere else and need  never  be stored. The division  can  also 
be included in this same nest  because of the similarity of 
shapes.  (Since we handle only certain errors, the question of 
preserving order so as to get the right error message-or 
indeed, in the case  of redundant computation, any error 
message-does not even  arise.) From these considerations 
we get,  say, 

DO 150  12=1,100 
DO 150 I1 = 1,JlA 

JA(11,12) = JB(11,12) + (JC(11,12) - JD(11,12)) 
150 VM(I1,12) = VN(I1,12)/VP(11,12) 

Redundant parentheses are often retained in Fortran 
expressions, in order both to make them correct when  read 
with either Fortran’s or APL‘s order of execution in mind, 
thus avoiding any confusion, and-where the two orders 
yield the same result-to omit nontrivial calculations, 
involving the hierarchy of Fortran operations, that would 
enable at most a trifling improvement in our output. 

When it is  possible and there are no countervailing 
considerations, loops are put in  the order just shown, so as 
to run through contiguous storage locations, thereby 
minimizing cache  faults,  translation-lookaside-buffer  misses, 
and page  faults, and also to ensure that the benefits of 
interleaved  storage are obtained. To be sure, the amount of 
overhead for testing and resetting subscripts can be 
minimized for a DO nest  by putting the loops in order of 
increasing number of traversals.  When we tested the effect  of 
various nesting orders on execution time for the IBM 308X 
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and IBM 3090 (scalar hardware), however,  storage contiguity 
was almost always the dominant factor; in the cases  where it 
was not, the 308X was  slightly faster  for the order based on 
number of traversals, but the 3090 was faster, by a larger 
margin, for the order based on contiguity. 

The balance  shifts  when we consider not just reordering 
but removing  DOs. We ran some tests in which  we unrolled 
short loops that were  traversed  only  two or three times. The 
overhead that was thus avoided more than offset any 
resulting disruptions in storage  contiguity: For both the 
308X and the scalar 3090, execution was accelerated  even 
when the loop that was unrolled was the outermost one. 
During our postprocessing,  therefore, this code: 

DO 350 13 = 1,2 
DO 350 12 = 1,J2A 

DO 350 I1 = 1,2 
350 JA(I1,12,13) = JB(11,12,13) * JC(11,12,13) 

would  be changed to this: 

DO 350 12 = 1,J2A 
JA(l ,l2,1) = JB(1,12,1) * JC(1 ,l2,1) 
JA(2,12,1) = JB(2,12,1) * JC(2,12,1) 
JA(1,12,2) = JB(1,12,2) * JC(1,12,2) 

350 JA(2,12,2) = JB(2,12,2) * JC(2,12,2) 

Our aim is to produce code that will generally give the 
best  results. A programmer may find, for some section of his 
program, that our nesting order or unrolling is suboptimal 
for execution on a particular target computer, say, or as 
input to a particular vectorizing compiler. If that section  is 
critically important, he can edit the Fortran program to 
obtain the code that he has found to be  faster. 

In the previous example, merging  code  for operations 
saved loop overhead and storage  space. It can also  save 
computation. Consider the setting of a Boolean  variable to 
indicate whether a vector X is equal to one of the rows  of a 
matrix-e.g., whether a name appears in a list: 
Z f V / Y A . =X. Both the Or  and the And offer the 
opportunity for quitting early, but nevertheless the entire 
inner product would  have to be  formed  if the code 
generating it were not merged  with the code for Reduce. (In 
fact, Inner Product itself  is handled by merging  code for 
“Midproduct” into code  for  Reduce. We define Midproduct 
as a derived function that applies the right operand of Inner 
Product to its arguments, producing an array whose rank is 
one less than the sum of the ranks of the arguments; Inner 
Product is then completed by reducing this array using the 
left operand. Midproduct might  someday  be made available 
directly to users of the compiler.)  Merging Inner Product 
into Reduce  exploits  “lazy evaluation” (cf. the section 
History ofAPL compilation) to the utmost in the generated 
Fortran code: 
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DO 1020 I1 = 1,JlY 
DO 1000 12= 1,JlX 

IF (.NOT.(AY(I1,12).EQ.AX(12))) THEN 
F26 = .FALSE. 
GO TO 1010 

END  IF 
1000 CONTINUE 

1010 IF  (F26)  THEN 
F26 = .TRUE. 

EZ = .TRUE. 
GO TO 1030 

END  IF 
1020 CONTINUE 

E2 = .FALSE. 
1030 CONTINUE 

A similar example is provided by this APL fragment, 
which produces the index of the row  of L I S T  in which 
W 0 R D appears: 

ADCLR  CHARACTER  DOMAIN L I S T ,  WORD 
R D C L R ~ O O O  18 S H A P E   L I S T  
ADCLR 2 SHAPELBS WORD 
R D C L A  l a  S H A P E U B S  W O R D  
OIO+l 
I+(LIST'C;I~WORD~A.=WORD)I~ 

A lower bound (SHA  PEL BS)  for the shape of WORD is 
given in order to avoid additional code for a special  case. 
The index origin is  explicitly  given to simplify the code, 
since the index I is dependent upon  it. For simplicity, 
WORD is presumed to include a final delimiter if necessary. 
The declaratory comments and specification of the index 
origin are included to make this example complete in itself; 
in a larger context the information in some or all  of these 
statements might be derivable and those ones might not 
appear. This fragment is translated to 

DO 1020 I1 = 1,5000 
DO 1000 12 = 1,JlWORD 

IF (.NOT.(ALIST(Il ,I2).EQ.AWORD(12))) THfN 
F37 = .FALSE. 
GO TO 1010 

END  IF 
1000 CONTINUE 

F37 = .TRUE. 
1010 IF (F37) GO TO 1030 
1020 CONTINUE 
1030 J I = I l  

Since all operations have  been  merged, not only may 
execution end early for both the Inner Product and the 
Dyadic Iota, but also the Monadic Iota and the use  of its 
result to index L I S T  appear to vanish-they have no 
computational cost. Notice that, although L I S T  is 
arranged optimally for the APL storage order, in Fortran the 
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Z*Y F X 

[ I I  ~ D C L R  INTEGER nornAI# Y , X  

C 2 1  ~ D C L R  3 5 S H A P E  Y 

C31 RDCLR 3 5 3 5 S H A P E  X 

C U I  Z C ( Y * P )  O . + Y * 2  

[ i l  Z + Z + x X  

The Fortran translation of the APL function shown in Figure 1. 

performance of this code would  be improved if the words 
were  placed in the columns of L I S T  rather than in the 
rows (and the arguments of the Inner Product 
correspondingly altered). 

trivial) function. Its Fortran translation is shown in Figure 2 
and the corresponding listing in Figure 3. 

Several points about this example are worth noting. 
Fortran statement numbers 4 and 5 in Figure 2 set up 
JYATOE and JYATOM, the variables that are used  for run- 
time error handling; there are no reportable error conditions 
in this function. The square of JY, although it is embedded 
in the outer product in the original APL, in Figure 1, is 

Figure 1 shows an example of an entire (small, rather 
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A F L  line  number,  then  the  oriqinal R P G  statement 

4 

t Fortran I S N S ;   A P L  statement  translated  there 

4 4  

4 +  

( i i )  JYATOEiYD+O 

( 5 )  J Y A T O M S G t O  

C O I  Z+Y  F X 

C11 a D C L a   I N T E G E R   D O M A I N   Y , X  

C 2 1  a D C L n   3  5 S H A P E   Y  

[31 n D C L a   3  5 3 5 S H A P E  X 

( 6 - 9 )  YAZIOL2 : 

[ S I  Z*Z+xX 

(10-21) V Z + ( V Z 9 ~ . + V 2 9 ) + L 3 3 + x J X  

( 2 2 )  J 1 Z + 3  

( 2 3 )  J 2 Z t 5  

(2U) JSZt3 

( 2 5 )  J4Z+5 

(26) Y A T O L O  : 

:, The  listing  produced  with  the Fortran  translation  shown  in  Figure 2. 

Table 1 Comparison of timings for defined and primitive 
Grade functions. 

Size  Ratio of IBM 308X execution times 

Interpreted1 Compiled/Primitive 
Compiled 

10 
1 0 0  

lo00 

124 
148 2.8 
151 1.8 

- 

Table 2 Comparison of timings for defined and primitive 
Matrix Divide functions. 

Size  Ratio of IBM 308X execution times 

Interpreted1 CompiledlPrimitive 
Compiled 

5 s  7.6 5 .O 
10,lO 6.5 2.7 
20,20 3.9 2.1 
40,40 2.5 1.9 

592 
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calculated separately in the Fortran because its elements are 
used repeatedly in the  outer product. In the listing,  Figure 3, 
APL statement 5 appears before statement 4’s expressions 
have been completely shown, because the Outer Product in 4 
is  merged  with the operations of statement 5, and therefore 
the expression  labeled ( 10 - 2 1 ) applies to both 
statements. Were  Signum JX implemented in Fortran as a 
single statement (in addition to the DO nest in which it 
appears), the expression that defines  Signum JX would 
appear right in the statement that sets the elements of VZ. 
Since in fact it requires several statements, a variable must 
be set;  however, those statements can appear in the DO nest 
for the final addition and need set only a scalar, since this 
value is not used  except in the addition. ISNs 22 through 25 
set the shape variables of the result. 

Sample  execution  times for compiled  and 
interpreted  code 
It is interesting not only to compare the speed  of interpreting 
some APL code with the speed  of executing a compiled 
version  of it, but also to compare the speed for the compiled 
version  with that for a finely tuned Assembler  version. 
Therefore, APL primitive functions, for  which one can time 
the (Assembler) interpreter code, make good  test  cases  when 
defined  APL functions that model them are available.  Of 
course, the comparisons are not likely to be in any sense 
exact; the APL models may diverge from the algorithms the 
interpreter employs, and techniques may be  used in the 
Assembler coding which are not available in APL or which 
would  be avoided there because they would  be  obscure. 
Nonetheless, the comparisons are useful,  giving some notion 
of the accelerations one can expect  for various kinds of  APL 
programs and of  possible bounds  on such improvements. 

We have two such examples. They are of  special interest 
because they represent extremes of APL coding. 

The first example is an APL defined function [26] in 
which  essentially  only scalars appear as arguments to 
operations, except  for the Index function. It produces the 
same result as APL‘s primitive ordering function, which is 
called “Grade” and sometimes miscalled “Sort” although it 
yields a permutation vector and leaves its argument 
unchanged. The comparisons to be made, then, are between 
this low-level  defined function as interpreted and as 
compiled, and between the compiled version and a simple 
call to the interpreter, via a single statement of the form 
Z+4 R, almost all of whose time will be spent in the Grade 
code. In  the defined function, interpretive overhead looms 
large, as can be  seen in Table 1. The Assembler  routine-the 
code for the primitive Grade function in VSAPL-runs 
somewhat faster than the compiled code, however, as seen in 
the right-hand column. (Grade was too fast to time 
meaningfully  for a vector  of length 10.) 

Grade is  124 to 15 1 times faster than  the model  as 
In summary, our compiled version  of an APL model for 
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A F L  line  number,  then  the  oriqinal R P G  statement 

4 

t Fortran I S N S ;   A P L  statement  translated  there 

4 4  

4 +  

( i i )  JYATOEiYD+O 

( 5 )  J Y A T O M S G t O  

C O I  Z+Y  F X 

C11 a D C L a   I N T E G E R   D O M A I N   Y , X  

C 2 1  a D C L n   3  5 S H A P E   Y  

[31 n D C L a   3  5 3 5 S H A P E  X 

( 6 - 9 )  YAZIOL2 : 

[ S I  Z*Z+xX 

(10-21) V Z + ( V Z 9 ~ . + V 2 9 ) + L 3 3 + x J X  

( 2 2 )  J 1 Z + 3  

( 2 3 )  J 2 Z t 5  

(2U) JSZt3 

( 2 5 )  J4Z+5 

(26) Y A T O L O  : 

:, The  listing  produced  with  the Fortran  translation  shown  in  Figure 2. 

Table 1 Comparison of timings for defined and primitive 
Grade functions. 

Size  Ratio of IBM 308X execution times 

Interpreted1 Compiled/Primitive 
Compiled 
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1 0 0  
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124 
148 2.8 
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- 
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calculated separately in the Fortran because its elements are 
used repeatedly in the  outer product. In the listing,  Figure 3, 
APL statement 5 appears before statement 4’s expressions 
have been completely shown, because the Outer Product in 4 
is  merged  with the operations of statement 5, and therefore 
the expression  labeled ( 10 - 2 1 ) applies to both 
statements. Were  Signum JX implemented in Fortran as a 
single statement (in addition to the DO nest in which it 
appears), the expression that defines  Signum JX would 
appear right in the statement that sets the elements of VZ. 
Since in fact it requires several statements, a variable must 
be set;  however, those statements can appear in the DO nest 
for the final addition and need set only a scalar, since this 
value is not used  except in the addition. ISNs 22 through 25 
set the shape variables of the result. 

Sample  execution  times for compiled  and 
interpreted  code 
It is interesting not only to compare the speed  of interpreting 
some APL code with the speed  of executing a compiled 
version  of it, but also to compare the speed for the compiled 
version  with that for a finely tuned Assembler  version. 
Therefore, APL primitive functions, for  which one can time 
the (Assembler) interpreter code, make good  test  cases  when 
defined  APL functions that model them are available.  Of 
course, the comparisons are not likely to be in any sense 
exact; the APL models may diverge from the algorithms the 
interpreter employs, and techniques may be  used in the 
Assembler coding which are not available in APL or which 
would  be avoided there because they would  be  obscure. 
Nonetheless, the comparisons are useful,  giving some notion 
of the accelerations one can expect  for various kinds of  APL 
programs and of  possible bounds  on such improvements. 

We have two such examples. They are of  special interest 
because they represent extremes of APL coding. 

The first example is an APL defined function [26] in 
which  essentially  only scalars appear as arguments to 
operations, except  for the Index function. It produces the 
same result as APL‘s primitive ordering function, which is 
called “Grade” and sometimes miscalled “Sort” although it 
yields a permutation vector and leaves its argument 
unchanged. The comparisons to be made, then, are between 
this low-level  defined function as interpreted and as 
compiled, and between the compiled version and a simple 
call to the interpreter, via a single statement of the form 
Z+4 R, almost all of whose time will be spent in the Grade 
code. In  the defined function, interpretive overhead looms 
large, as can be  seen in Table 1. The Assembler  routine-the 
code for the primitive Grade function in VSAPL-runs 
somewhat faster than the compiled code, however, as seen in 
the right-hand column. (Grade was too fast to time 
meaningfully  for a vector  of length 10.) 

Grade is  124 to 15 1 times faster than  the model  as 
In summary, our compiled version  of an APL model for 
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interpreted, depending on the length of the vector  whose 
grading  vector  is to be computed, while the actual primitive 
in APL is about twice as fast as our version. 

The other example is a defined function that describes the 
VSAPL routine for the matrix-division primitive function 
[27]. In this defined function, many operations have array 
arguments. Here, the interpreter’s efficient inner loops show 
to advantage; with a reduction in relative interpretive 
overhead as the arguments grow, the advantage of the 
compiler is  less  for  larger arguments, as can be  seen  from 
Table 2. 

These two examples are reasonably  typical of our 
experience. We  have compiled and timed a number of other 
APL programs and found that they ran from 2 to 250 times 
faster after compilation. 

that it  is well worthwhile to compile APL through an 
intermediate language. We look  forward to studying the 
performance of many programs compiled  from APL and 
using the results to improve our translations. 

We  believe that the results  for  these  examples demonstrate 
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