
- --------- -- --------
_--.--~--- -. --
-~-'

APL2 and Vector Facility

Experiences in

Image Processing

August 2nd, 1989

~.:_-1~f- .~.,~ ,

.-# . ,

f\ . u. Schauer

IBM We" ssenschaftliches Zentrum Heidelberg (WZH)
Tiergartenstr. 15

6900 Heidelberg 1

Dr. H.P. Meinzer

Deutsches Krebsforschungszentrum (DKFZ)
Abt. Medizinische und Biologische Informatik

Im Neuenheimer Feld 280
6900 Heidelberg 1

APL2 and Vector Facility

Experiences in Image Processing

Under a study contract with IBM: the German Cancer Research Center at Heidelberg (DKFZ) has
thoroughly inveatigatcd thc vcctorisation opportunities of their broad spectrum of APL-based appli
cation programs. including measures to achieve additional performance gains.

Wc will present mcasurements on the speedup obtained by the vector feature (VF) on DKFZ's IBM
3090-150 and also report on further improvements through special coding techniques for some of the
compute intensive kernels in their applications. Dramatic gains could be achieved by rccoding small
parts of the application in FORTRAN or even Assembler.

An asleslment of APL for the applicution spectrum at DKFZ is given 118 a summary, pointing out the
importance of finding and isolating the right primitives for a range of applications.

General suggestions for efficient APL coding under the presence of VF are also given as a conclusion.
This includes experiences gained from investigating applications of different fields, as e.g. finance and
insurance.

The German Cancer Research Center

To defeat cancer has become one of the most urgent problems of human society. All disciplines of
science are challenged to cooperate in a research program towards this ultimate goal.

The DKFZ (Deutsches Krcbsforchungszcntrum) was founded in 1964 on initiative of the surgeon Prof.
Dr. K.H. Bauer. It is a national research institution sponsored by the central and state government
(Bundesregicrung und Landesregierung Baden-Wiirttemherg). Since 1976 thc DKFZ combincs cight
institutes with a total of currently 37 scientific departments.

Research of the DKFZ is oriented towards understanding how and why cancer develops in order to
workout provcn concepts for diagnosis and therapeutics. Four focal points evolved from this endeavor:

• Tumor biology

• Mechanisms in control of cancer

• Factors causing cancer and preventive measures

• Means for diagnosis and therapeutics

The DKFZ works closely together with thc nearby clinics of the university Heidelberg (c.g. tumor
center HeidelbergfMannheim) and with pcacticioner physicians and specialists outsrde. Tt has its own
administration and central services (library, spect roscopy.Taborutorv, data processing, etc)..Ahout one
third of its 1400 employees are scientists.

The department for medical and biological informatics. headed by Prof. Dr. O.C. Kohler owns a hroaJ
spectrum of APL based application programs. developed over a pcriod of more than 13 years. One
major application is the rcconstruetion of 3-D picture scqucnces from Jigitized parullcl recordings.
taken by computcr tomography (CT) or magnetic resonance (MR) machinery. The general objective is
to better support medical diagnosis and therapy via imaging techniques by providing physicians with
better visualisation. Thc constructed 3-D pictures enahle physicians to sec detail~ which have been left
undetected before.

I

Study Contract IBM - DKFZ
During 1988, under a study contract, the department for Medical and Biological Informatics (MBI) of
the DKFZ worked jointly together with the nearby IBM Scientific Center Heidelberg (WZH). The
objective was to evaluate the performance gain of its APL applications, particularly those for 3-0
image construction, when they are run on DKFZ's IBM 3090-150 with Vector Facility (VF). Devel
opment of measures to improve the performance gain was also part of the study contract.

It was the goal to develop some methodology allowing to take full advantage of VF without much
reprogramming (minimum effort for maximum gain). The following representative set of compute
intensive programs, focussing on 3-D image reconstruction., was selected for detailed investigations:

1. Image processing exploiting methode of artificial intelligence (AI)

• Topological map

• APLPROLOG

2. Image processing baaed on morphological operations

• Erosion (erasure)

• Dilation (enhancement)

• Faltung (convolution)

• Calcification (mammography)

• 3-D visualisation

3. Simulation of the growth of crypta (no image processing)

3-D Visualisation in Medicine
CT and MR recordings contain immense amounts of detail, difficult to interpret even for specialists in
the field. 3-D visualisation is a means to enhance pertinent information and present it in a form, which
is easy to comprehend since it conforms to the spectator's visual experience. Parts of the represented
objects may be removed with proper segmentation algorithms. The physician can thus perceive details
of the interior of his patient by means of computer visualisation. One set of recordings can be used
repeatedly for a variety of investigations. This allows for improved diagnosis and therapeutics.

Realistic 3-0 representation of volume elements with different transparency is a complex computa
tional task, exceeding a simple geometrical transformation. It is perfumed by calculating the distrib
ution of light and shadow caused by the investigated volume elements (voxels) under assumed sources
of light. This is illustrated by the following ~eL of pictures ,which can only give a vague impression of
the actual representation in color and motion on the screen).

APL2 and Vector Facility ExperienceH in Image Processing 2

APL2 and Vector Facility Experience. in Image Preeesslag 3

Methodology
The application base had been largely developed under VS APL. The migration to APL2 presented no
serious problems. except for performance of take and drop operations when they were applied to the
fint axis of three dimensional arrays. Alternative coding for take and drop operations was necessary
to circumvent this performance bottleneck.

The APL2 applicatione were then vector-ready with expectedly high performance gains (up to 50%).
Hot spot analysis by means of the TIME function was very helpful for further optimisation, which was
done by a sequence of maximally three steps.

1.	 Investigate better alternatives for time critical lines of code.

2.	 Consider also algorithmic replacements by using external functions available in libraries, partic
ularly from the Engineering and Scientific Subroutine Library (ESSL).

3.	 Identify important application specific basic operations. Coding those basic operations in
FORTRAN or ASSEMBLER may significantly improve exploitation of VF.

Results oJ" the Study
ESSL routines compared to equivalent APL functions often showed a performance gain by an order of
magnitude. The following summary shows that this expectation was also met for applications which
could not be speeded up via ESSL.

The following variationa of the test environment APL2 Release 3 were used in the summary below:

1.	 Code as is without VF (this is the 100% basis)

2.	 Code as is with VF on (APL2 is vector-ready!)

3.	 Code with optimized critical lines and VF on (optimisation step 1)

4.	 Code further optimized by algorithmic replacements. e.g. using ESSL subroutines and VF on
(optimisation step 2)

5.	 Code finally optimized by developing specialised basic operations in FORTRAN or ASSEMBLER
and VF on (optimisation step 3)

Summary of Results

Teat variation- 1 2 3 " 5
-~ -~ ~ ~

Topological Map 100% 91% 60% 35% 12%

Faltung 100% 50% 50% - 5%

APLPROLOG 100% 100% 89% - -

Erosion 100% 66%

Dilation 1,10% 66%

Calcification 100% 750/ 48%

3-D Visualisation 100% 75% 49%

Simulation model 100% 86%

Empty boxes indicate that a final conclusion has not been reached. Additional improvements are still
conceivable but may need significant changes to the algorithmic approach.

APL2 and Yeetor Facility Experienees in lmage Proc~88ing 4

Optimisation step 3 as applied to Topological Map and Faltung will be further discussed below. Botb
these applications are very compute intensive and of critical importance in many composed applica
tions.

APLPROLOG has heen developed exploiting ideas from J.Brown, EiEusebi, J.Cook. L.H.Groner:
Algorithms for Artificial Intelligence in APL2, IBM TR 03.281. Since it basically uses string manipu
lations on nested arrays there was no performance gain by turning VF on. However, the hot spot
analysis lead to some improvements by changing time critical lines of code.

Erosion and Dilation are both vector-ready with a performance gain of one third. Further significant
improvements by optimisation step 3 are conceivable.

The calcification (mammography) and 3-D visualisation can gain a lot under optimisation step 1. This
is representative for many other compute intensive applications and also the performance gain of 50%
is quite normal.

The simulation of growth of crypta needs further elaboration. Additional significant performance gains
are not obvious from the TIME-logs.

Topological Map
One function TOPOMIN was responsible for more than 90% of the time spent lD the application
Topological Map.

v
[0] R~A TOPOMIN B ;C;D ;I;Y III NON-BUFFERED VERSION IMPROVED
[1] R~(2.I~t<PpB)pO.1 III UNDER OPTIMISATION STEP ONE.
[2] C+-+/A*2 III THIS HAS BEEN SEPARATED FROM THE LOOP:
[3] L :R[;I]~(Y1.D) .D~ L+Y~ I (C+++B [;IJ *2)-2 xA+. xB t.r:
[4] +(0<I~I-1)/L

v

A significant performance gain was achieved by moving calculations out of the innermost loop.
Exploitation of ESSL also helped a lot. But even then a high potential for improvement was left over,
which could be activated by recoding in FORTRAN (avoiding much of the data movement going on
under APL).

APL2 and Vector Facility Experiences in Image Processing 5

SUBROUTINE TOPOMIN(L,M,N,A,B,H,R)

C Optimized Version (U.Schauer 9/14/88).

C Utilises ESSL-Programm IDAMIN.

C Note that FORTRAN stores columnwise, APL rowwise.

CHis an auxiliary storage of APL-Dimension 2,M.

C A is assumed transposed compared to the APL function.

C

REAL*8 H(M,2),A(M,L),B(N,L) ,R(N,2),C,TI,T2,T3
DATA C/-0.5/
DO 15 1=I,M

TI = 0
DOIOJ=I,L

10 TI = TI + A(I,J) * A(I,J)
15 H(I,I) = TI

DO 25 I=I,N
T2 = 0
DO 20 J=I,L

20 T2 = T2 + C * B(I,J) * B(I,J)
25 R(I,I) = T2

DO 40 K=I,N
DO 35 I=I,M

T3 = C * H(I,I) + R(K,I)
DO 30 J=I,L

30 T3 = T3 + A(I,J) * B(K,J)
35 H(I,2) = T3

II = IDAMIN(M,H(I,2),I)
R(K,I) = II

40 R(K,2) = 2 * DABS(H(II,2»
END

Before using the FORTRAN subroutine one has to provide a vector-ready compiled version and also
to describe the formal interface by an entry in the pertinent names file. say NAMES, with the following
tags

:NICK.TOPOMIN_ :MEMB.TOPOMIN :LINK.FORTRAN :INIT.FORTRAN

:RARG. (GO 1 7) (14 0) (14 0) (14 0) (>E8 2 * *) (>E8 2 * *)

:RARG.(>E82 * *) (>E8 2 * *)

The function can than be used under APL by building the name association first and then providing the
necessary parameters before .;';;:"i1ally Cialhu6 the FORTRAN written TOPOMIN. Remember that A
has been assumed transposed and that the result is delivered in R.

3 'NAMES' DNA 'TOPOMIN_'
(L M)"pA
N..t<ppB
H"(2.M)p.l
R.. (2.N)p.l
TOPOMIN_ L M N 'A' 'B' 'E' 'R'

Faltung
Faltung (a moving local averaging operator) often applied for filtering of data is one of the most heavily
used operations in image processing. Therefore it was already coded in VS APL close to perfection
timewise. It performed extremely well when VF was turned on. Nevertheless. with some basic under
standing of the VF principles of operations it was obvious that there was much room for further

6 APL2 and Vector Facility Experiences in Image Procelllling

improvement. However, neither APL nor FORTRAN were suitable languages to achieve the furtber
performance gain by a factor of 10. One really has to code the innermost processing loop in
ASSEMBLER. The performance gain is the product of several factors. A factor of three immediately
results from better utilisation ofVF.operations (multiply add can be used without load and store). The
remaining gain is by reduced data movement and improved locality of the changed algorithm (less
cache misses).

The challenge of performance optimisation is, not to miss similar opportunities. Key is a basic under
standing of the VF operations and the APL interpretcr. A side effect of ASSEMBLER recoding is also
worth mentioning. It allows complete control over mixed data representations (e.g. Single and Double
precision) and thus can lead to savings in storage requirements. Therefore the ASSEMBLER program
i8 not only superior in performance timewise it also is much superior storagewise allowing in place
operation.

v
[0] Z+M PALTUNG A;I;J;K;R;OIO
[1] fIl OPTIMIZED PALTUNG.
[2] OTO+o
[3] I+«t~pA),1)+.x-1+r.5xpM

[4] J+-I-,«t~R+pA)XltpM)o.+1-1tpM

[5] Z+(pA+,A)pO
[6] ~(O=K+tpM+(I+O~M)/M+,¢eM)/LO

[7] J+I/J
[8] L:Z+Z+M[K]xJ[K+K-1]~A

[9] ~(O<K)/L

[10] LO:Z+RpZ
V

Vector-Ready Coding Under APL2 Release 3
The following advices cannot provide as much insight as extensive own experimentation. However,
they address some of the basic principles which may cnable significant improvements.

•	 Prefer recognized idioms

•	 Avoid unnecessary operations, particularly concatenation, negation, etc.

•	 Think parallel! Prefer array operations to loops whenever possible.

•	 Optimize arithmetical expressions! Prefer multiplication and addition to division and subtraction
whenever possible.

•	 Avoid parenthesis levels and indexing in vector expressions to enable chaining.

•	 Avoid unnecessary repeated calculations. Move common expressions out of innermost calculation
kernels.

•	 Avoid unnecessaryiata mo,..ement! Prefer indexing to take/drop operations and oncatenation.

•	 Prefer data type real, when it helps to avoid c version (e.g. by adding 0.).

•	 Prefer rowwise access to binary data; columnwise access is rather inefficient.

•	 Prefer integer data type, when binary arrays require columnwise access (e.g. by adding 0).

•	 Avoid unnecessary nesting! Prefer homogcneous data arrays whenever possible.

•	 Check carefully, whether rowwise or columnwise storage is prefcrable.

•	 Use library programe e.g. from ESSL instead of compute intensive APL code.

APL2 and Vector Facility Experiences in Image Processing 7

• Prefer vectorised library programs instead of non-vectorising APL programs and operators (e.g.
DGEF/DGES from ESSL instead of "domino" matrix division, ""til").

• Develop application specific primitives in FORTRAN or ASSEMBLER, when it significantly
improves performance. Don't forget to specify the "'VECTOR'" option during the FORTRAN
compilation.

Summary

Using ESSL-subroutines or developing application specific primitives in FORTRAN or ASSEMBLER
may create the highest performance gain for vector-ready applications. Therefore the identification of
adequate primitives should never be missed in the performance optimisation process.

Such optimized APL applications may then come close to the performance obtained by complete
rewriting in FORTRAN. The need for APL-compilation in total is drastically reduced at a marginal
increase of programming effort.

lJ APL2 and Vector Facifjty Experiences in Image Proeessing

---- - -- ---

_-...-
-- -_-..--- -. --
-~------_ ..

APL89 Conference. August 1989

