
A SOFTWARE HIGH PERFORMANCE APL INTERPRETER

by Harry J. Saal and Zvi Weiss

March 1977 IBM Confidential
TR 03.026

IB!·1 Confidentia.l
March 1977

TR 03.02f1

by

Harry J. Saal and Zvi Weiss*

*IBM Israel Scientific Center, Haifa, Israel

International Business r1achines Corporation

General Products Division

Santa Teresa Laboratory

San Jose, California

IBM COl~FIDENTIAL

The design of a high performance APL system is presentee
a10ng with an evaluation of the performance iwproveMent
measured on a partial implementation. The syste~ contains a
co~piler which translates APL into the instructions of c.
virtual APL machine. Numerous special techniques suitable
for optimized interpretation of this v i r t.ua I mach i.ne
entirely in software on a System 370 are described. The
overhead for executing APL programs has been reduced by a
factor ranging between 5 and 10 when compared to
cciverrt i one I interpretive systems. One realistic example is
an31yzed in depth; there the compiled version runs 6 to 8
ti~es faster than APLSV (Version 1.2) .

IBM CONFIDENTIAL: This document contains information of a
proprietary nature. All information contained herein shall
be kept in confidence. None of this information shall be
divulged to persons other than IBM employees authorized by
the nature of their duties to receive such information or
individuals or organizations authorized by the General
Products Division in accordance with existing policy
regarding the release of company information.

ii

IBM CONFIDENTIAL

8ClFTWARE.. ~ 111GB PERFOR1'1P.I'JCE APL I~lTERPFETER

by

Ea.r r y J. Saal and Zvi v'leiss

IJ'-TTRC1DlJCTION

The rajor goal of this work was an attempt to provide,
withi~ the framework of a purely software system, high
~erformance execution for programs written in APL. A more
extensive report on this project is available from [1J.

The developers of the APL Assist [2J, available on the
Systen 370 Models 135, 138, 145 and 148 have utilized the
ability to add a large amount of microcode to the existing
370 instruction set to provide substantial speedup for many
APL programs. This is done within the framework of an
interpretive APL system, and (essentially) full
compatibility with existing APL code is maintained. It
appears very difficult to see how the microcode techniques
used in the APL Assist can be extended to the high end of
the 370 line. The same difficulty, perhaps even more
seriously, applies to future systems where performance is
even higher. Consequently, we have not assumed any' special
hardware (or microcode) beyond the standard System 370
instruction set. Later on, we will return to this point and
make some concrete suggestions for achieving further
substantial performance improvements but which would require
only relatively minor additions to the standard instruction
set.

PREVIOUS WORK

Although the subject of translating APL programs has
received considerable attention in the past f little concrete
success has been reported. Several investigations have
centered around the embedding of APL within other high level
languages, either via some automatic preprocessing [3J, or
by providing a library of subroutines which mimic the APL
primitives [4,5=. Others concentrate on a more direct
translation; in the case of [6J to ALGOL (the "machine
language H of the B6700) I in [7J to System 7 Assembler code,
and in [8J to UC.5 microcode.

1

IBM CONFIDENTIAL

Unfortunately, all the syste~s Mentioned above treat
languages which are very far from APL ~s we know it. In
general they demand explicit ceclarations fer all
identifiers (or else implicit ones by restricting certain
primitives such as dyadic rho to literal constants for left
hend arquments), don't pe rrn i t. varying data types (or lengths
or ranks), modify the APL scope rules for variables, and
donlt do error checking as defined in APL. Each systero
suffers froID different combinations of v~riants from this
list (and nany others), and none even begin to appro2ch the
objective of simply taking an existing workspace and
corrpiling it.

DESIG:i OF TI!F TJi~RGET LEVEL FOR PoLPL CO~1PILATION

We can get some feeling for the potential size of machine
code that would result from direct translation of APL by
considering other high level languages in relation to APL.
One of the findinqs of the statistical studies on APL
programs [9,10,11J- was the great disparity in size
(approximately 10 to 1) between typical FOF.TR_,2\.~T and API.
programs. More specific comparisons between alternate
language versions of the same algorithm also bear this out.
Moreover, the APL code has higher semantic complexity since,
in general, it handles a wider range of possible argument
types or shapes than the corresponding FORTPAN version, in
addition to performing consistency and error checkipg,
dynamic space management, etc., which are implicit in APL.

We may conclude that if one could translate APL directly to
machine code for System 370, the expansion factor would be
tre~endous. This in turn would introduce its own
complexities due to base register addressing limitations on
System 370. Combined with the problem of identifyinS loops
and side effects of APLls dynamic seoping rules and system
variables, it becomes difficult to apply even simple
oFti~izations such as constant propagation. Without strict
bindings of internal representation one can It, for exa~ple,

do allocation of variables to registers across loops. Thus
the nature of the code generated by such a hypothetical
compiler would be large, highly stylized, and unoptimized.

A natural solution to the size problem is to use a large
run-time support system. One advantage is that these library
routines themselves are highly optimized and remove the
burden of optimization and storage from the compiler and
from the compiled code. Since the generality and power of a
typical APL primitive is on the average considerably higher

2

IB~1 CONFIDENTIAL

than that of FORTRAN or PL/I, we would expect such a system
to execute almost always in the run-time library, with only
srna Ll, in--line bridges between subroutine calls. ~lhile this
~ay be an acceptable solution, there are still two further
nroblems which arise in an attempt at direct compilation.

First, if the run-time system checks for errors of lenqth,
index, etc., as it should, one would like to nrovide 2n

error nessage facility which localizes errors as much a~

possible. This should be sireilar to current interpretive
systems, and not at the level of hexadecimal duwps. In our
experience, it is quite difficult to map run~ti~e errors
back to source after FORTRAN E has reorderec and optiFized a
program. This further motivates SOF'e internal coo.€=:
representation which is far closer to APL than ortimized
Syste~ 370 machine code.

~he second difficulty arises from the qre~t difference
between integer and floating point resources and
instructions on Systero 370. Since we can't be sure if an
object, even if scalar, is fixed or floating, and since
so~ething as simple as plus may on occasion cause a
(legiti~ate) fixed point overflow, the compiled code woule
have to be in several alternate forms. The run··tine s y s t.err
would have to intercept any interrupts and be able to
continue cOMputing in an alternate representation. This
again inhibits optimizations and increases object code size.

Considering these difficulties, the most natural desiqn is
in fact an interpreter! We can then ask what is the role of
a co~piler for APL? There are indeed MRny aspects c£ API:
execution that need to be left to run-time. Nonetheless:
there still remain a large variety of translations and
optiMizations (such as syntax analysis) that need not be
done repeatedly at run-time.

~~e therefore chose an intermediate level of representation
as the compiler target language, sufficiently far from APL
as to permit useful opti~izations where possible, and fer
enough from the host System. 370 as to require some f o rrr. of
interpretive support, i.e., a hierarchical system. Thi~

representation is the target machine for the APL co~piler,

and must be supported on a given host (in our case Syste~

370). We need not be very concerned with the layout and
encodings of the intermediate machine language until we
choose a particular host for implementation. (For example,
on 370 each field is a 32 bit word for convenience; in a
microprogrammed environment one would ~ack fields much
better than that.)

3

IBM CONFIDENTIAL

Generally virtual machine instructions are N+l address
instructions, i.e., the dyadic function RESULT+ARG1 OF ARG2
is represented by a three address instruction of the forrr
(Ci,ARG1~ARG2,RESULT). Monadic and dyadic priwitive
functions are represented by two and t.h r e e add.r e s s
instructions respectively. The general cases of indexing,
subscripting, and mixed output are represented by vari?ble
length instructions that hold the addresses of all the
a r c umerrt s •

This form of machine language is quite close 'to APL source,
and thus can be translated back to source form along with
precise error localization when required. It resembles the
intermediate code generated by many optinizins compilers:
hove ve r since we do not have sufficiently ti0ht b i.nd i no s on
the data objects we cannot generate actual machine code fr00
this representation.

RR~TRICTIONS ON APL

The restrictions imposed on APL in the ad~ptive syster
de s Lcn presented here deal wi.t.h the "static appeerance " of
user programs in a workspace which is to be translated as a
unit. By "static appea r anoe " we mean that source s t a t.er.en t.s
statically convey all the required syntactic information to
ca~ry on with the different phases of the translation, thus
r u Li.nc out or we.aken i.nq the following features of p.PI! "

1. ?X is not supported at all.

L.	 ~EX is limited to apply only to variables.

3.	 ~~o editing of user defined functions is supported unless
immediately followed by a total retranslation of the
workspace.

4.	 ~ is weakened so that the character string argument can
he statically parsed. In its modified version, execute is
not a very useful primitive function and ~ay be
considered to be not supported. It is, however, still
useful for converting numeric character vectors to
nuneric v21ues, or for simple shared variable referencing
(in which case the set of possible references must b~

known at compile time).

5.	 ~ input does not execute arbitrary APL expressions since
these expressions are unknown at translRtion time. We
restrict the input to be simple data, but which is

4

0

IBM CONFIDENTIAL

supplied via an interface to a renote ter~inal with 2n

APL interpreter as a front end.

6. 111 statements must be uniquely parsible by the compiler

The user ~ay supply the translator with a list of names of
all variables that are shared. (More precisely, they nay
become shared during execution at some point.) In hanclins
~on-shared variables the translator and the host machine can
ta.ke SOI0.e aho r tvc u t s and thus gain e f f Lc i.ency compared to
the handling of shared variables. If the user does not wish
to supply the list of shared variable names then all
variables in the workspace can be assumed to be sharen.

(E-unit)

FETCH arguments

ALLOC space for result

DO operation

FREE temporary args

STORE result

Update PC

Figure 1. Phases of I-cycles

5

IBM CONFIDENTIAL

0ur software interpreter achieves speed through very
extensive special case handling, wherein the decision
Drocess for determining which case applies is both cOGolex
and not nece s s a r i Ly very s yrnme t.r i.ca I or consisten.t. ". The
cases are chosen because they are heavily used and may
constitute sone irregular set.

We assume that programs are well debugged using an
interpretive iMplementation before being compiled. Thus
rather than providing for rapid error traceback, or
accoModation to other rare events, we take the position that
execution should be as rapid as possible, leaving just
enough of a trail to "pick up the pieces If wherieve.r
necessary, even if it is somewhat expensive or cJu~sy to ce
so.

Fiaure 1 shows the processing phases that every virtual
machine instruction undergoes. Each routine FETCHes its
operands, using information in the descriptor. This ~ay

involve special processing for shared or system variables
which must be gotten from outside the workspace or from the
system. Once the operands have been located, and any
consistency requirements verified, storage can be allocated
for the result. This is done again using descriptor
information, to distinguish free space variables fr0~ t~e

two temporary stacks.

After computing the result of the function, the space
occupied by any temporary arguments ~ust be reterpec. This
must be done in reverse stack or4er (defined by the cowpiler
allocation scheme). The last step is STOREing the result.
This causes any necessary post processing to t.ake place,
such as transmission to the shared variable processor r or
the user's terminal. For system variables the result is
examined for validity and marked accordingly. If valid,
system variables are then norMalized in their int~rnal

representation so that any later implicit uses by execution
routines do not have to worry about possible data type
conversions.

nnce we have recognized certain properties of operands, we
may then eliminate numerous extraneous tests and operations.
For example, we need not perform rank and length checking,
loop setup, and computation of the a~ount of space needed
for the result, if we are adding two integer scalars. On the
other end of the spectrum, we would like to have the system
execute the tightest possible inner loops when computing en

6

IBM CONFIDENTIAL

La r o e (lata agc;regat.es. 'V;e also w i s h to utilize the k i.nds of
machine level optimizations that an assemblY prograr~er
would use, such as treating 32 bits at a time (in a word) or
even 2048 at a time using 8S instructions.

The decision to provide a particular sllccase of a aeneral
?~~IJ function rests on two points: 1) the f r eouency wi tho
wh i ch t.ha t; case is u s ed , and 2) the ability to co
significant optimizations relative to other subcases. In
nractice, we have been unable to use the first of these
guidelines due to lack of sufficient data. Thus the second
has been the more significant factor.

This tend.ency is also p r omo t.ed by use of r-ac r o s in ·the
actual generation of code. Once a general fra~ewrrk h2S h~en

established it is s i.mp Ly convenient to use it, a t; the
possible expense of wasted space in the host interpreter for
rare cases. For example, the scalar dyadic primitives fall
n a t.ur a l Ly into 4 subcases, name Ly scalar~· scalar, scalar "TO

nonscclar, nonscalar- scalar, and nonscalar ncnscalar. In
addition, for the arithmetics there are integer and real
ve r s i ons . Consequently we have 8 subcases for eec11 of -', -,
x , f, L, etc .. For relationals, there are even more. For
boolean relationals we provide separate code for each of the
six relationals, which is then repeated 4 ti~es according to
rank as mentioned above, i.e. 24 subcases. All the integer
and real relationals are performed by an acditional 8
subcases (each of which covers all the six relationals, i.e.
=, ~, >,~, <, ~ without further adaptation). Hence th~re

are in all 32 separate routines which cover all the
relationals.

Undoubtedly certain of these cases are rarely used. On the
other hand, the code for handling booleans is so greatly
optimized (treating up to 2048 bits in a group using the
minimum number of instructions) that the payoff is immense,
thus the "expected value H of one of these subcases is the
product of a very small probability times a very large
number; this is notoriously difficult to estimate!

CODE ADAPTATION

In order to improve either the scalar domain or large
aggregate domain we need to reduce the overhead of
recognizing and decoding into the appropriate subcases. For
scalar codes we wish to suppress redundant testing as much
as possible since this can easily become the dominant cost.

7

IBM CONFIDENTIAL

~.je adopted the following approach, wh i ch we call "code
adaptation". The virtual machine instructions known to the
compiler are not, as a rule, the nanes of computational
routines, but refer to the appropriate decoding scheme for
that operation. Once the particular applicable subcase is
recognized, its address is substituted in the operation code
field of the virtual instruction, prior to executina the
routine. A.s a result, on subsequent executions of- the
instruction, the same special case will be selected, without
the decoding overhead. Since a decode miqht not rerrain valid
indefinitely, we must incorporate in each special case its
preconditions, i.e., the requirements on its operands for it
to be applicable. This preliminary checking is done every
time the operands are fetched, ensuring the consistency (and
correctness) of the computation.

Every routine accesses its operands via information in the
data descriptor. When fetching operands, a BALR link is made
to the FETCH routine, providing a base register for the
fetch routine, and a return pointer in R14. Immediately
following the BALR appears the particular type of operand
expected by the calling routine. This information indicates:

1) a specific expected rank (i.e., either scalar or
vector or matrix etc.)

or 2) not a specific rank (only not scalar actu211y is
used in the existing code)--

or 3) don't care about rank

and

4) the expected type (bit, integer, real or char2cter)
or 5) don't care about type.

Two further fields are specified, namely the addresses of
exception handlers for cases where the rank or type requests
cannot be satisfied. (A rank problem takes precedence over a
type problem if both occur.)

FETCH validates the actual operands against the require~ents

of the calling routine. In the case of type exceptions, it
performs certain conversions automatically. An empty object
is always typeless, that is to say, although its actual
internal representation may indicate one of the four
possible types, it is acceptable as any other type.
Secondly, type conversions upwards are perforned
automatically, from 1) bit to integer, 2) bit to real or 3)
integer to real. The converted forms are created on a
special internal stack, and a pointer to this area is

8

IBM CONFIDENTIAL

returned. The calling routines are totally unaware of tbi~
autonatic conversion (although it is detectable in the r2re
case that this is necessary). This special stack is cleare~
on exit froM each computational routine prior to enter~' ,r

the next opcode.

The two address fields for exception handling intro~~ce
further f lexibili ty and transparency in the s y s t ern . In s or e
cases these fields point back to the general decoder of t.h . .:
subcase f other times to the code that indicates R,P..c.JK BPpr'F,
etc.. In addi tion there exists a handler called FO'R.CE wh j ~~.:l·:
attempts to convert data representations downw?rd, i.c~,

from real to integer, etc .. Any routine which must have ~
particular internal type (such as integer subscripts =nr
indexing) uses FORCE as its type exception handler. FC~-'0I,

wi Ll either succeed in doing the appropriate conver s i on . ~,-,,,1.

(as with FETCH) simply return transparently to the subc ~~

that called it, or else result in a DOMAIN ERROR. (Thers i~

another form of FORCE which also attenpts to COD"'iTr .-0t

downward but returns with an error flag rather than caus-r"
DO~1l\Ir-l ERROR. 'I'h i.s version is used, for e.xamp Le r in f e t c h i.rc.
an axis indicator far dyadic CO~La, which may legally be
either integer or non-integer. The special cases that handle
catenation (not lamination) expect to get an integer axis,
which might happen to be in real representation internally,
as in the case A,rO.5~O.5JB. On the other hand, they cannot
cause a DOMAIi'J ERROR should the result not be integer or
integerizable.)

ALLoe has many possible actions, depending on the nature of
the object in question. For temporaries, space must be f0U~d

on t.he appropriate stack (or in the descript.or en t r y) , Nar ~'l,l

variables require that previous freespace storage (if a:~,~7)

be returned to the system and new space allocated. (r'ur
sy t.ern f ac t; t t empt s to the are stora.ge ra.t~~!".l-s Ln a reuse s

than returning and reallocating.) Furthermore, in so~e ca~es

data values in free space may be shared between seve-~l

different data descriptors, in which case a reference count
mechanism is invoked in ALLoe. Finally, based on the outc0~e

of the above actions, the various modifier bits mayor ITAV

not require alteration~

Similar (although less complex) choices exist for STOPE and
FREE. Rather than describing them in depth, we rnention Lvo
responsibilities of STORE. Firstly, shared va.riables are
forwarded to the Shared Variable Processor at STORF·-ti~-··.e,

once their computation has been completed. Secondly, in t.he
case of (assignable) system variables, STORE will cause an
appropriate validation routine to be entered. Each

9

IBM CONFIDENTIAL

validation routine checks that the syste~ variable meets the
restrictions of the language (for implicit use), and if so,
normalizes the internal representation (i.e., [Ie will be
s t ored as integer, OCT as a f Loa t i.nq point "fuz z " , etc.) arid
sets a validity bit on. Otherwise the bit is set off, and
the value is untouched, but is still access2ble explicitly .
.~.ll execution routines which Lrip Li c i. t.Ly use s y s t.er variables
si~ply check the validity bit; if it is on, thEn they can
access the value without going through the entire FFTCH
mechanism each time.
accessable directly
Lo ca.. 1ization of theP1. is
code generator.)

(To
via

al

insure that
the desr

ways treatec

syste~ variables
iptor t2ble,
as a_ "push II by

2re
any
the

IPTERNAL OBJECT TYPES

.~ll addressable objects (including temporaries) are given an
entry in a descriptor table. Each entry occupies a total of
56 bytes, for reasons we soon outline. Objects fall into
sev~ral categories that require differing treat~ent. The
lci nds of ohjects are:

1) non-shared identifier
2) shared identifier
3) system variable
4) left teMporary
5) right temporary.

Several modifiers may apply in addition:

1) long or short data
2) unitialized variable
3) localizable system variable (or not)
4) validity bit for localizable system variable
5) internal system variable name
6) internal shared variable name.

It is clear that if we were to compactly encode the several
possible attributes and modifiers of each descriptor table
entry into a few bits, we would have to go through a fairly
complex software decode procedure for every FETCH, ALLOe,
fTORE, and FREE. The scheme adopted in order to avoid this
expense resembles the code adaptation described above.

Figure 2 shows the layout of a descr iptor table entry. V.le
allocate a full word to each of the four fields FETCH,
.~LLOC, STORE, and FREE. These fields hold the address of the
appropriate routine which carries out the required action.
Thus the execution routines siwply load this Rddress into a

10

IBM COr.JFIDENTIAL

register and BALR directly to the correct handler with no
decode overhead. (In fact, we have a kind of 2*24 bit
dc code r ufree-of-ch.arge l ' in the 370 har'dwe r e l)

For example, the code generator initializes the FETCE field
for an identifier so that it points to a routine vh i ch
produces the VALUE ERROR ~essage. When a variable receives a
value, this field is changed to a true FETCH routine
address. 8i~ilarly for a system variable the STOPE ~i~ld

points directly to the appropriate validation routine for
this syste~ variable. The FREE routine for tempor2ries
points to the routine that lowers either the left or ri~ht
hand stack as the case may be, and otherwise points tr a
2R 14 instruction.

LINK

VALID system var

FETCH

STORE

ALLOC

FREE

PSX

DESCP pointer

Sufficient space for
any scalar or up to
a two element integer
vector

Figure 2. Descriptor table entry

11

IB1'-1 CONFIDENTIAL
PERFORlAAI'JCE

fppendix A presents the instruction trace of the entire
interpretation for addition of two inteqer scalars. In the
example we follow the shortest path through the code, i.e.,
we assume no type conversions are necessary, no overflows
occur, etc .. The instructions shown are co~plete; i.e., if
we were to execute several routines in sequencer the BNE? at
the end of one branches to the LM of the next.

Measuring (by tiQing or estimating) the scalar addition
routine shows that it is 5 to 10 times faster than the
comnarable routines in VS APL or APLSV. There are two points
we can make here. To begin with, it is hard to envison a
further reduction by a factor of 2 in the number of
instructions without using direct compilation (or microcode
support, as will be discussed later). Also it is cle2r why
the addition of further overhead (such as space manage~ent

for small objects) can seriously iwpact the current
performance.

Before proceeding to discuss a comparison based on a
?ractical workspace, we would like to present the flavor of
the performance differences we measured. for rr large II
aggregates. In principle, all these ratios should be near
one, and they demonstrate how far one can go by optimizing
the inner loops. Table 1 shows the ratio of times neasured
on a 370/168 between APLSV (Version 1.2) and our host when
the number of elements was riorr- tr i vial. (The exac t, nunber of
elements was selected based on observing the behavior of the
ratio as we increased the size of the objects.)

Table 1. Comparison
a0g r ec;ates

Expression

of 370 host to

Approximate
Performance

APLSV

ratio

(Vl.2) for large

lIs
la+Ta
Ra+F.a
IVpBa
IVpCa
I\7p Ia
BVEBv
RVERv
Bv::;Bv
BVABv

1
10

5
500

5
5

200
3

1000
10

Key:	 Is-integer scalar, la-integer array, Ra-real array,
Iv-integer vector, Ba-boolean array, Ca-character
array, Bv-boolean vector, Rv-real vector.

12

IBM CONFIDENTIAL

3ecause rf the limited nature of our irrplenentation of the
370 host, it WC=lS not possible to evaluate our sy s t.er- c-r 2..

large sample of ltPL wo r k s pace s or testcases. Fortun2~telv,
there was a particular workspace which was compilable as i~r
and represented an example of an application that is
convenient but expensive to run in API:. The rrogram was
written by one of the authors (E.J.S.) and is a sipulation
of a 32 multiprocessor system designed by Flynn; et al ~13 •
One function (SIMULATE) actually describes the ~achine~ the
remaining functions constitute a general package for
time-driven simulations. The package was intended as an
example of how quickly and easily one ca.n cons t.r'uc t a
simulator in APL, and was used in a course on Co~puter

Architecture. The flexibility of the package was readily
shown, but the Flynn machine simulation is quite costly to
run. The saMple used takes about 70.7 seconds of 370/168 CPTT
t.Lme using l\PLS,l Version 1.2.

The co~piled version of SIMULATE was run on 37n/168 and toOY
11.2 seconds of CPU time. The ratio of APLSV (Vl.2) tine to
the compiled version is 6.3; this is a reduction of 84% of
the original CPU time.

11:.. GPSS-V version roughly equivalent to the function srr°':l'I,?\Tr'
was done by an experienced GPSS programmer. The GP~S

solution took 3 . 6 seconds while the cornpiled .APIJ version
took 11. 2 seconds. The APL version was Lmnten s e Ly easier to
develop, modify and debug, and we believe that these two
-~~lr:\.es are reasonably close, considering the d i.f f e r oricc s in
algorithm, programmers, etc .. Certainly the ratio of 70.7 to
3.6 seconds (i.e. about 20 to 1) is a most unfavor~ble

statistic for APL advocates; a factor of 3 is ~uch more
attractive.

FUTURE DEVELOPMENT

As has been mentioned, our host implenent?tion is
.i.ricompLe t e , to the point that it is ex t r erue Ly unlikely t.ha t;
any given workspace is currently executable. So~e of the
omissions present no further problems other than sinr1y
coding, e~g., the monadic scalar functions, grace up and
arade down, format, etc .. The most s i.qn i f Lc e.nt; ca.tesory of
omi.s s i.ons are the API, operators: reduction, SCB.n r inner and
outer products. The primary issue here is which cases (of
which primitives) are worth including in fully optimized
form. -Producing the code for a particular one is
straightforward once the decision has been made. The
remaining question is how to treat all the unoptimized

13

IBM CONFIDENTIAL

22S(~S, for instance, of inner products, where many hundreds
of cases exist, but are rarely, if ever, used. Here we
e~·:~ect to revert to a generali zed execution scheme, as is
(lone Ln t.rad.i. tional A-PL interpreters.

~nother possible extension to our work is substantial
further optiMization by the compiler phase. There are
technical problems due to uncertainties about control flow
in the static APL programs but, assuming we can overcome
then, the possibilities for a far better compiler are
exciting. We also assume that the compiler is permitted to
reorder code where it is safe, i.e., only error situations
maJ.:" have different behavior from the f o rma L specification of
APL. We foresee incorporating constant propagation, carom.on
subexpression elimination and dead variable analysis as some
of ~he reasonable optimizations to use. (In fact, so~e of
the Abrams-like redundant computation elimination [12 -, could
be ~erformed at the source level.)

'-Ie strongly reconunend procedure integration (i. e. in-line
~ubstitution of the procedure body) as advisable. For
example incorporating the function IF of workspace SI~~ULA.TF

in-line yields a substantial gain in performance. This was
done manually, and the compiled version took 9.0 seconds to
execute, a saving of 20% over the version without procedure
integration. This faster version is 7.9 times faster than
A.PIJSV (Vl.2) executing the original workspa.ce.

Our last suggestion is that the compiler recognize and
translate larger expressions (which the common subexpression
eliDinator looks for in any case), such as pp~ lP~ ltp~
I+~~1, etc., as primitives of the interMediate target
machine. We feel that a small number of special cases would
cover the popular si tuations and provid.e still further
optimization. This technique could also capture (at compile
tire) expressions where the loop merging techniques of
Pd:\~~aM.S c ou Ld be used wi thout run-time overhead.

The last avenue of further development we suggest concerns
Ficrocoded (or hardwired) support for our system. In an
attempt to understand performance and find any candidates
for special optimization, we ran the host interpreter under
a ,software) sampling monitor which produces a profile of
the interpreter execution. No subcase took more than 1% of
the total execution time. The only peakinq that was
sianificant was in the cornmon handlers, FETCH, ALLOC, etc ..
I~ total these utilized somewhat over 20% of the CPU time,
and this does not include the overhead for calling and
setting up the relevant registers before entry. Perhaps

14

IBM CONFIDENTIAL

there is further optimization possible on the 370 code, but
it is surely small. The amount of effort required to
implement these few routines in microcode is quite small,
and they are easily cast as 370 machine level instructions.

For example, in the trace of Appendix A we see that the
first 32 instructions (of 45 in all) can be replaced by 6
instructions (FETCH, LOAD, FETCH, LOAD, LOAD ADDRESS, AIJLOC)
which would operate at essentially machine cycle time plus
several memory fetches. This form of special support is
certainly more feasible across the line than the inclusion
of a very large package such as the APL Assist.

SUMMARY

We have presented a description of a translator and high
performance software interpreter for the APL language. The
work described was a feasibility study for an APL compiler.
It focussed largely on the questions of expected perfo~a.nce

within the framework of as complete an APL language
implementation as possible and with no special machine
support. The resulting design seems directly adaptable to
future new versions of the APL language. There has been no
study made of the system aspects of integrating this system
with existing interpretive systems, nor on the efficiency of
the compiler phase itself.

The system is capable of supporting alreost the full
language, with the exception of those parts which the~selves

dynamically modify or construct programs. The systere does
not require the user to add declarations or otherwise
rewrite his workspace.

The system has been partially implemented in order to
estimate its performance. The implementation did not utilize
any microsupport or postulate any special instructions
beyond the standard 370 set; thus it can be utilized on the
fastest of the present machine line. The relative
improvement compared to existing interpreters varies from
one test case to another, and aMong different existing
iwplementations. The major observed savings wpre: 5 to 10
times lower overhead for simple operations and varying
performance improvements (from 1 to 1000 times faster) when
dealing with large data aggregates.

The compiler has been written in APL, and it produces a
simple form of machine code for a virtual APL machine. By
relaxing somewhat the legal system behavior for erroneous

15

IBM CONFIDENTIAL

situations it appears possible to add a wealth o~

optimizations analagous to those used in compilers such as
the PL/I optimizer, etc~. The compiler performs some
optimizations based on information provided by the user at
compile time. The primary information sought from the user
are the names of variables which are shared with other
rrocessors, such as TSIO.

The run-time system is a high performance software
interpreter which achieves substantial performance gains
using adaptive techniques, both at the level of the
intermediate code, and in the manipulation of the descriptor
table entries. These techniques, as well as other features,
are applicable in part to existing APL interpreters.

The present version of the run-time interpreter necd~

substantial further coding for its completion. There appear
to be no major new technical problems in doing so. We have
described several techniques by which still further
increased performance could be achieved. We believe tha.t the
addition of a few new instructions which perform basic
operations for the run-time interpreter will substantially
i~prove performance. The modifications we envisage seem
im~lementable even on the highest performance processors
since the function of these instructions is not more complex
than other existing 370 instructions.

16

IBM CONFIDENTIAL

P.EFERFI'1CES

1.	 Eaal, H. ~. and Weiss, Z. An APL compiler. IBM Israel

Scientific Center, 1976. (IBM Confidential)
 e

2.	 Ha s s i t t , r., and Lyon , L. E. The A.PI, Assist (RPQ-S00256).
IBM Dalo Alto ~cientific Center Report ZZ20-6428. Feb.
1975 (IBf1 internal use only) .

3.	 Compton, M. T. APL in PL/I. IBM Research Report RC4481,
IBM Corporation, Yorktown Heights, N. Y. AuS. 1973.

4.	 Moruzzi, V. L. APL/FORTRAN translations. IBM Research

Report RC3644, IBM Corporation, Yorktown Heights, Dec.

1971.

5.	 IIo, R. L. Routines for translating APL into PL/I a nd

PL/S II. IBM Poughkeepsie Laboratory TR 00.2442, May

1973 (IBM Confidential) .

6.	 Jenkins, M. A. Translating APL, An empirical study.

Prac. of APL 75, Assoc. of Camp. Mach., N. Y. 1975,

192-200.

7.	 Alfonseca, M. An APL-written APL-subset to Syste~/7-MSP

translator. APL Congress 1973, North Holland, .Amsterda~,

1973, 17-23.

8.	 Me Nabb, D. private communication, IBM Los Angeles

Scientific center, (IBM Confidential).

9.	 Bingham, H. W. Content analysis of APL defined
functions. Proc. of APL 75, Assoc. of Camp. ~1ach., ~1. Y.
1975, 60 ..··66.

10.	 Saal, H. J. and Weiss, Z. Some properties of ~PL

programs. Proc. of APL 75, Assoc. of Camp. Mach., N. Y.
1975, 292-297.

11.	 Saal, E. J. and Weiss, Z. An empirical study C:
C APL

programs. Int'l J. of Computer Languages, Vol. 2, No.3,
47-59, Pergamon Press, Great Britain, 1977.

12.	 Abrams, P. An APL nachine. Stanford Linear Accelerator
Center Report 114, Feb. 1970.

13.	 Flynn, M. J. t Podvin, A. and Shimizu, K. P multiple
instruction strea~ with shared resources. In Parallel
Systems, Technologies and Applications, eoitor L. C.
Hobbs, 251-258, Spartan Books, Washington, 1970.

17

IBM CONFIDENTIAL

APPENDIX A:

Instruction trace for PLUSISS
(scalar+scalar+scalar; integer)

from previous
BNER-------..ol~~LM 3 regs

L

LR

BALR

L
L

LR

BALR

B

fetch------------l..

L

LA

L
LR
BALR al1oc
MVC 8 chars
LR
AR
ST
LM 2 regs LA
L BR
LR

storeBALl..J1R~--~~:.::.:===========~.. BR
LR

LA
eLI
BNER----~•• to next routine

~c

BH
L
LTR
BNE
ST

18

