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IBM COl~FIDENTIAL 

The design of a high performance APL system is presentee 
a10ng with an evaluation of the performance iwproveMent 
measured on a partial implementation. The syste~ contains a 
co~piler which translates APL into the instructions of c. 
virtual APL machine. Numerous special techniques suitable 
for optimized interpretation of this v i r t.ua I mach i.ne 
entirely in software on a System 370 are described. The 
overhead for executing APL programs has been reduced by a 
factor ranging between 5 and 10 when compared to 
cciverrt i one I interpretive systems. One realistic example is 
an31yzed in depth; there the compiled version runs 6 to 8 
ti~es faster than APLSV (Version 1.2) . 

IBM CONFIDENTIAL: This document contains information of a 
proprietary nature. All information contained herein shall 
be kept in confidence. None of this information shall be 
divulged to persons other than IBM employees authorized by 
the nature of their duties to receive such information or 
individuals or organizations authorized by the General 
Products Division in accordance with existing policy 
regarding the release of company information. 
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8ClFTWARE.. ~ 111GB PERFOR1'1P.I'JCE APL I~lTERPFETER 

by 

Ea.r r y J. Saal and Zvi v'leiss 

IJ'-TTRC1DlJCTION 

The rajor goal of this work was an attempt to provide, 
withi~ the framework of a purely software system, high 
~erformance execution for programs written in APL. A more 
extensive report on this project is available from [1J. 

The developers of the APL Assist [2J, available on the 
Systen 370 Models 135, 138, 145 and 148 have utilized the 
ability to add a large amount of microcode to the existing 
370 instruction set to provide substantial speedup for many 
APL programs. This is done within the framework of an 
interpretive APL system, and (essentially) full 
compatibility with existing APL code is maintained. It 
appears very difficult to see how the microcode techniques 
used in the APL Assist can be extended to the high end of 
the 370 line. The same difficulty, perhaps even more 
seriously, applies to future systems where performance is 
even higher. Consequently, we have not assumed any' special 
hardware (or microcode) beyond the standard System 370 
instruction set. Later on, we will return to this point and 
make some concrete suggestions for achieving further 
substantial performance improvements but which would require 
only relatively minor additions to the standard instruction 
set. 

PREVIOUS WORK 

Although the subject of translating APL programs has 
received considerable attention in the past f little concrete 
success has been reported. Several investigations have 
centered around the embedding of APL within other high level 
languages, either via some automatic preprocessing [3J, or 
by providing a library of subroutines which mimic the APL 
primitives [4,5=. Others concentrate on a more direct 
translation; in the case of [6J to ALGOL (the "machine 
language H of the B6700) I in [7J to System 7 Assembler code, 
and in [8J to UC.5 microcode. 

1 



IBM CONFIDENTIAL
 

Unfortunately, all the syste~s Mentioned above treat 
languages which are very far from APL ~s we know it. In 
general they demand explicit ceclarations fer all 
identifiers (or else implicit ones by restricting certain 
primitives such as dyadic rho to literal constants for left 
hend arquments), don't pe rrn i t. varying data types (or lengths 
or ranks), modify the APL scope rules for variables, and 
donlt do error checking as defined in APL. Each systero 
suffers froID different combinations of v~riants from this 
list (and nany others), and none even begin to appro2ch the 
objective of simply taking an existing workspace and 
corrpiling it. 

DESIG:i OF TI!F TJi~RGET LEVEL FOR PoLPL CO~1PILATION 

We can get some feeling for the potential size of machine 
code that would result from direct translation of APL by 
considering other high level languages in relation to APL. 
One of the findinqs of the statistical studies on APL 
programs [9,10,11J- was the great disparity in size 
(approximately 10 to 1) between typical FOF.TR_,2\.~T and API. 
programs. More specific comparisons between alternate 
language versions of the same algorithm also bear this out. 
Moreover, the APL code has higher semantic complexity since, 
in general, it handles a wider range of possible argument 
types or shapes than the corresponding FORTPAN version, in 
addition to performing consistency and error checkipg, 
dynamic space management, etc., which are implicit in APL. 

We may conclude that if one could translate APL directly to 
machine code for System 370, the expansion factor would be 
tre~endous. This in turn would introduce its own 
complexities due to base register addressing limitations on 
System 370. Combined with the problem of identifyinS loops 
and side effects of APLls dynamic seoping rules and system 
variables, it becomes difficult to apply even simple 
oFti~izations such as constant propagation. Without strict 
bindings of internal representation one can It, for exa~ple, 

do allocation of variables to registers across loops. Thus 
the nature of the code generated by such a hypothetical 
compiler would be large, highly stylized, and unoptimized. 

A natural solution to the size problem is to use a large 
run-time support system. One advantage is that these library 
routines themselves are highly optimized and remove the 
burden of optimization and storage from the compiler and 
from the compiled code. Since the generality and power of a 
typical APL primitive is on the average considerably higher 
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than that of FORTRAN or PL/I, we would expect such a system 
to execute almost always in the run-time library, with only 
srna Ll, in--line bridges between subroutine calls. ~lhile this 
~ay be an acceptable solution, there are still two further 
nroblems which arise in an attempt at direct compilation. 

First, if the run-time system checks for errors of lenqth, 
index, etc., as it should, one would like to nrovide 2n 

error nessage facility which localizes errors as much a~ 

possible. This should be sireilar to current interpretive 
systems, and not at the level of hexadecimal duwps. In our 
experience, it is quite difficult to map run~ti~e errors 
back to source after FORTRAN E has reorderec and optiFized a 
program. This further motivates SOF'e internal coo.€=: 
representation which is far closer to APL than ortimized 
Syste~ 370 machine code. 

~he second difficulty arises from the qre~t difference 
between integer and floating point resources and 
instructions on Systero 370. Since we can't be sure if an 
object, even if scalar, is fixed or floating, and since 
so~ething as simple as plus may on occasion cause a 
(legiti~ate) fixed point overflow, the compiled code woule 
have to be in several alternate forms. The run··tine s y s t.err 
would have to intercept any interrupts and be able to 
continue cOMputing in an alternate representation. This 
again inhibits optimizations and increases object code size. 

Considering these difficulties, the most natural desiqn is 
in fact an interpreter! We can then ask what is the role of 
a co~piler for APL? There are indeed MRny aspects c£ API: 
execution that need to be left to run-time. Nonetheless: 
there still remain a large variety of translations and 
optiMizations (such as syntax analysis) that need not be 
done repeatedly at run-time. 

~~e therefore chose an intermediate level of representation 
as the compiler target language, sufficiently far from APL 
as to permit useful opti~izations where possible, and fer 
enough from the host System. 370 as to require some f o rrr. of 
interpretive support, i.e., a hierarchical system. Thi~ 

representation is the target machine for the APL co~piler, 

and must be supported on a given host (in our case Syste~ 

370). We need not be very concerned with the layout and 
encodings of the intermediate machine language until we 
choose a particular host for implementation. (For example, 
on 370 each field is a 32 bit word for convenience; in a 
microprogrammed environment one would ~ack fields much 
better than that.) 
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Generally virtual machine instructions are N+l address 
instructions, i.e., the dyadic function RESULT+ARG1 OF ARG2 
is represented by a three address instruction of the forrr 
(Ci,ARG1~ARG2,RESULT). Monadic and dyadic priwitive 
functions are represented by two and t.h r e e add.r e s s 
instructions respectively. The general cases of indexing, 
subscripting, and mixed output are represented by vari?ble 
length instructions that hold the addresses of all the 
a r c umerrt s • 

This form of machine language is quite close 'to APL source, 
and thus can be translated back to source form along with 
precise error localization when required. It resembles the 
intermediate code generated by many optinizins compilers: 
hove ve r since we do not have sufficiently ti0ht b i.nd i no s on 
the data objects we cannot generate actual machine code fr00 
this representation. 

RR~TRICTIONS ON APL 

The restrictions imposed on APL in the ad~ptive syster 
de s Lcn presented here deal wi.t.h the "static appeerance " of 
user programs in a workspace which is to be translated as a 
unit. By "static appea r anoe " we mean that source s t a t.er.en t.s 
statically convey all the required syntactic information to 
ca~ry on with the different phases of the translation, thus 
r u Li.nc out or we.aken i.nq the following features of p.PI! " 

1. ?X is not supported at all. 

L.	 ~EX is limited to apply only to variables. 

3.	 ~~o editing of user defined functions is supported unless 
immediately followed by a total retranslation of the 
workspace. 

4.	 ~ is weakened so that the character string argument can 
he statically parsed. In its modified version, execute is 
not a very useful primitive function and ~ay be 
considered to be not supported. It is, however, still 
useful for converting numeric character vectors to 
nuneric v21ues, or for simple shared variable referencing 
(in which case the set of possible references must b~ 

known at compile time). 

5.	 ~ input does not execute arbitrary APL expressions since 
these expressions are unknown at translRtion time. We 
restrict the input to be simple data, but which is 
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supplied via an interface to a renote ter~inal with 2n 

APL interpreter as a front end. 

6. 111 statements must be uniquely parsible by the compiler 

The user ~ay supply the translator with a list of names of 
all variables that are shared. (More precisely, they nay 
become shared during execution at some point.) In hanclins 
~on-shared variables the translator and the host machine can 
ta.ke SOI0.e aho r tvc u t s and thus gain e f f Lc i.ency compared to 
the handling of shared variables. If the user does not wish 
to supply the list of shared variable names then all 
variables in the workspace can be assumed to be sharen. 

(E-unit) 

FETCH arguments 

ALLOC space for result 

DO operation 

FREE temporary args 

STORE result 

Update PC 

Figure 1. Phases of I-cycles 
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0ur software interpreter achieves speed through very 
extensive special case handling, wherein the decision 
Drocess for determining which case applies is both cOGolex 
and not nece s s a r i Ly very s yrnme t.r i.ca I or consisten.t. ". The 
cases are chosen because they are heavily used and may 
constitute sone irregular set. 

We assume that programs are well debugged using an 
interpretive iMplementation before being compiled. Thus 
rather than providing for rapid error traceback, or 
accoModation to other rare events, we take the position that 
execution should be as rapid as possible, leaving just 
enough of a trail to "pick up the pieces If wherieve.r 
necessary, even if it is somewhat expensive or cJu~sy to ce 
so. 

Fiaure 1 shows the processing phases that every virtual 
machine instruction undergoes. Each routine FETCHes its 
operands, using information in the descriptor. This ~ay 

involve special processing for shared or system variables 
which must be gotten from outside the workspace or from the 
system. Once the operands have been located, and any 
consistency requirements verified, storage can be allocated 
for the result. This is done again using descriptor 
information, to distinguish free space variables fr0~ t~e 

two temporary stacks. 

After computing the result of the function, the space 
occupied by any temporary arguments ~ust be reterpec. This 
must be done in reverse stack or4er (defined by the cowpiler 
allocation scheme). The last step is STOREing the result. 
This causes any necessary post processing to t.ake place, 
such as transmission to the shared variable processor r or 
the user's terminal. For system variables the result is 
examined for validity and marked accordingly. If valid, 
system variables are then norMalized in their int~rnal 

representation so that any later implicit uses by execution 
routines do not have to worry about possible data type 
conversions. 

nnce we have recognized certain properties of operands, we 
may then eliminate numerous extraneous tests and operations. 
For example, we need not perform rank and length checking, 
loop setup, and computation of the a~ount of space needed 
for the result, if we are adding two integer scalars. On the 
other end of the spectrum, we would like to have the system 
execute the tightest possible inner loops when computing en 
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La r o e (lata agc;regat.es. 'V;e also w i s h to utilize the k i.nds of 
machine level optimizations that an assemblY prograr~er 
would use, such as treating 32 bits at a time (in a word) or 
even 2048 at a time using 8S instructions. 

The decision to provide a particular sllccase of a aeneral 
?~~IJ function rests on two points: 1) the f r eouency wi tho 
wh i ch t.ha t; case is u s ed , and 2) the ability to co 
significant optimizations relative to other subcases. In 
nractice, we have been unable to use the first of these 
guidelines due to lack of sufficient data. Thus the second 
has been the more significant factor. 

This tend.ency is also p r omo t.ed by use of r-ac r o s in ·the 
actual generation of code. Once a general fra~ewrrk h2S h~en 

established it is s i.mp Ly convenient to use it, a t; the 
possible expense of wasted space in the host interpreter for 
rare cases. For example, the scalar dyadic primitives fall 
n a t.ur a l Ly into 4 subcases, name Ly scalar~· scalar, scalar "TO 

nonscclar, nonscalar- scalar, and nonscalar ncnscalar. In 
addition, for the arithmetics there are integer and real 
ve r s i ons . Consequently we have 8 subcases for eec11 of -', -, 
x , f, L, etc .. For relationals, there are even more. For 
boolean relationals we provide separate code for each of the 
six relationals, which is then repeated 4 ti~es according to 
rank as mentioned above, i.e. 24 subcases. All the integer 
and real relationals are performed by an acditional 8 
subcases (each of which covers all the six relationals, i.e. 
=, ~, >,~, <, ~ without further adaptation). Hence th~re 

are in all 32 separate routines which cover all the 
relationals. 

Undoubtedly certain of these cases are rarely used. On the 
other hand, the code for handling booleans is so greatly 
optimized (treating up to 2048 bits in a group using the 
minimum number of instructions) that the payoff is immense, 
thus the "expected value H of one of these subcases is the 
product of a very small probability times a very large 
number; this is notoriously difficult to estimate! 

CODE ADAPTATION 

In order to improve either the scalar domain or large 
aggregate domain we need to reduce the overhead of 
recognizing and decoding into the appropriate subcases. For 
scalar codes we wish to suppress redundant testing as much 
as possible since this can easily become the dominant cost. 
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~.je adopted the following approach, wh i ch we call "code 
adaptation". The virtual machine instructions known to the 
compiler are not, as a rule, the nanes of computational 
routines, but refer to the appropriate decoding scheme for 
that operation. Once the particular applicable subcase is 
recognized, its address is substituted in the operation code 
field of the virtual instruction, prior to executina the 
routine. A.s a result, on subsequent executions of- the 
instruction, the same special case will be selected, without 
the decoding overhead. Since a decode miqht not rerrain valid 
indefinitely, we must incorporate in each special case its 
preconditions, i.e., the requirements on its operands for it 
to be applicable. This preliminary checking is done every 
time the operands are fetched, ensuring the consistency (and 
correctness) of the computation. 

Every routine accesses its operands via information in the 
data descriptor. When fetching operands, a BALR link is made 
to the FETCH routine, providing a base register for the 
fetch routine, and a return pointer in R14. Immediately 
following the BALR appears the particular type of operand 
expected by the calling routine. This information indicates: 

1) a specific expected rank (i.e., either scalar or 
vector or matrix etc.) 

or 2) not a specific rank (only not scalar actu211y is 
used in the existing code)--

or 3) don't care about rank 

and 

4) the expected type (bit, integer, real or char2cter) 
or 5) don't care about type. 

Two further fields are specified, namely the addresses of 
exception handlers for cases where the rank or type requests 
cannot be satisfied. (A rank problem takes precedence over a 
type problem if both occur.) 

FETCH validates the actual operands against the require~ents 

of the calling routine. In the case of type exceptions, it 
performs certain conversions automatically. An empty object 
is always typeless, that is to say, although its actual 
internal representation may indicate one of the four 
possible types, it is acceptable as any other type. 
Secondly, type conversions upwards are perforned 
automatically, from 1) bit to integer, 2) bit to real or 3) 
integer to real. The converted forms are created on a 
special internal stack, and a pointer to this area is 
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returned. The calling routines are totally unaware of tbi~ 
autonatic conversion (although it is detectable in the r2re 
case that this is necessary). This special stack is cleare~ 
on exit froM each computational routine prior to enter~' ,r 

the next opcode. 

The two address fields for exception handling intro~~ce 
further f lexibili ty and transparency in the s y s t ern . In s or e 
cases these fields point back to the general decoder of t.h . .: 
subcase f other times to the code that indicates R,P..c.JK BPpr'F, 
etc.. In addi tion there exists a handler called FO'R.CE wh j ~~.:l·: 
attempts to convert data representations downw?rd, i.c~, 

from real to integer, etc .. Any routine which must have ~ 
particular internal type (such as integer subscripts =nr 
indexing) uses FORCE as its type exception handler. FC~-'0I, 

wi Ll either succeed in doing the appropriate conver s i on . ~,-,,,1. 

(as with FETCH) simply return transparently to the subc ~~ 

that called it, or else result in a DOMAIN ERROR. (Thers i~ 

another form of FORCE which also attenpts to COD"'iTr .-0t

downward but returns with an error flag rather than caus-r" 
DO~1l\Ir-l ERROR. 'I'h i.s version is used, for e.xamp Le r in f e t c h i.rc. 
an axis indicator far dyadic CO~La, which may legally be 
either integer or non-integer. The special cases that handle 
catenation (not lamination) expect to get an integer axis, 
which might happen to be in real representation internally, 
as in the case A,rO.5~O.5JB. On the other hand, they cannot 
cause a DOMAIi'J ERROR should the result not be integer or 
integerizable.) 

ALLoe has many possible actions, depending on the nature of 
the object in question. For temporaries, space must be f0U~d 

on t.he appropriate stack (or in the descript.or en t r y ) , Nar ~'l,l 

variables require that previous freespace storage (if a:~,~7) 

be returned to the system and new space allocated. (r'ur 
sy t.ern f ac t; t t empt s to the are stora.ge ra.t~~!".l-s Ln a reuse s 

than returning and reallocating.) Furthermore, in so~e ca~es 

data values in free space may be shared between seve-~l 

different data descriptors, in which case a reference count 
mechanism is invoked in ALLoe. Finally, based on the outc0~e 

of the above actions, the various modifier bits mayor ITAV 

not require alteration~ 

Similar (although less complex) choices exist for STOPE and 
FREE. Rather than describing them in depth, we rnention Lvo 
responsibilities of STORE. Firstly, shared va.riables are 
forwarded to the Shared Variable Processor at STORF·-ti~-··.e, 

once their computation has been completed. Secondly, in t.he 
case of (assignable) system variables, STORE will cause an 
appropriate validation routine to be entered. Each 
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validation routine checks that the syste~ variable meets the 
restrictions of the language (for implicit use), and if so, 
normalizes the internal representation (i.e., [Ie will be 
s t ored as integer, OCT as a f Loa t i.nq point "fuz z " , etc.) arid 
sets a validity bit on. Otherwise the bit is set off, and 
the value is untouched, but is still access2ble explicitly . 
.~.ll execution routines which Lrip Li c i. t.Ly use s y s t.er variables 
si~ply check the validity bit; if it is on, thEn they can 
access the value without going through the entire FFTCH 
mechanism each time. 
accessable directly 
Lo ca.. 1ization of theP1. is 
code generator.) 

(To 
via 

al

insure that 
the desr

ways treatec 

syste~ variables 
iptor t2ble, 
as a_ "push II by 

2re 
any 
the 

IPTERNAL OBJECT TYPES 

.~ll addressable objects (including temporaries) are given an 
entry in a descriptor table. Each entry occupies a total of 
56 bytes, for reasons we soon outline. Objects fall into 
sev~ral categories that require differing treat~ent. The 
lci nds of ohjects are: 

1) non-shared identifier 
2) shared identifier 
3) system variable 
4) left teMporary 
5) right temporary. 

Several modifiers may apply in addition: 

1) long or short data 
2) unitialized variable 
3) localizable system variable (or not) 
4) validity bit for localizable system variable 
5) internal system variable name 
6) internal shared variable name. 

It is clear that if we were to compactly encode the several 
possible attributes and modifiers of each descriptor table 
entry into a few bits, we would have to go through a fairly 
complex software decode procedure for every FETCH, ALLOe, 
fTORE, and FREE. The scheme adopted in order to avoid this 
expense resembles the code adaptation described above. 

Figure 2 shows the layout of a descr iptor table entry. V.le 
allocate a full word to each of the four fields FETCH, 
.~LLOC, STORE, and FREE. These fields hold the address of the 
appropriate routine which carries out the required action. 
Thus the execution routines siwply load this Rddress into a 

10
 



IBM COr.JFIDENTIAL 

register and BALR directly to the correct handler with no 
decode overhead. (In fact, we have a kind of 2*24 bit 
dc code r ufree-of-ch.arge l ' in the 370 har'dwe r e l ) 

For example, the code generator initializes the FETCE field 
for an identifier so that it points to a routine vh i ch 
produces the VALUE ERROR ~essage. When a variable receives a 
value, this field is changed to a true FETCH routine 
address. 8i~ilarly for a system variable the STOPE ~i~ld 

points directly to the appropriate validation routine for 
this syste~ variable. The FREE routine for tempor2ries 
points to the routine that lowers either the left or ri~ht 
hand stack as the case may be, and otherwise points tr a 
2R 14 instruction. 

LINK 

VALID system var 

FETCH 

STORE 

ALLOC 

FREE 

PSX 

DESCP pointer 

Sufficient space for 
any scalar or up to 
a two element integer 
vector 

Figure 2. Descriptor table entry 
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fppendix A presents the instruction trace of the entire 
interpretation for addition of two inteqer scalars. In the 
example we follow the shortest path through the code, i.e., 
we assume no type conversions are necessary, no overflows 
occur, etc .. The instructions shown are co~plete; i.e., if 
we were to execute several routines in sequencer the BNE? at 
the end of one branches to the LM of the next. 

Measuring (by tiQing or estimating) the scalar addition 
routine shows that it is 5 to 10 times faster than the 
comnarable routines in VS APL or APLSV. There are two points 
we can make here. To begin with, it is hard to envison a 
further reduction by a factor of 2 in the number of 
instructions without using direct compilation (or microcode 
support, as will be discussed later). Also it is cle2r why 
the addition of further overhead (such as space manage~ent 

for small objects) can seriously iwpact the current 
performance. 

Before proceeding to discuss a comparison based on a 
?ractical workspace, we would like to present the flavor of 
the performance differences we measured. for rr large II 
aggregates. In principle, all these ratios should be near 
one, and they demonstrate how far one can go by optimizing 
the inner loops. Table 1 shows the ratio of times neasured 
on a 370/168 between APLSV (Version 1.2) and our host when 
the number of elements was riorr- tr i vial. (The exac t, nunber of 
elements was selected based on observing the behavior of the 
ratio as we increased the size of the objects.) 

Table 1. Comparison 
a0g r ec;ates 

Expression 

of 370 host to 

Approximate 
Performance 

APLSV 

ratio 

(Vl.2) for large 

lIs 
la+Ta 
Ra+F.a 
IVpBa 
IVpCa 
I\7p Ia 
BVEBv 
RVERv 
Bv::;Bv 
BVABv 

1 
10 

5 
500 

5 
5 

200 
3 

1000 
10 

Key:	 Is-integer scalar, la-integer array, Ra-real array, 
Iv-integer vector, Ba-boolean array, Ca-character 
array, Bv-boolean vector, Rv-real vector. 
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3ecause rf the limited nature of our irrplenentation of the 
370 host, it WC=lS not possible to evaluate our sy s t.er- c-r 2.. 

large sample of ltPL wo r k s pace s or testcases. Fortun2~telv, 
there was a particular workspace which was compilable as i~r 
and represented an example of an application that is 
convenient but expensive to run in API:. The rrogram was 
written by one of the authors (E.J.S.) and is a sipulation 
of a 32 multiprocessor system designed by Flynn; et al ~13 • 
One function (SIMULATE) actually describes the ~achine~ the 
remaining functions constitute a general package for 
time-driven simulations. The package was intended as an 
example of how quickly and easily one ca.n cons t.r'uc t a 
simulator in APL, and was used in a course on Co~puter 

Architecture. The flexibility of the package was readily 
shown, but the Flynn machine simulation is quite costly to 
run. The saMple used takes about 70.7 seconds of 370/168 CPTT 
t.Lme using l\PLS,l Version 1.2. 

The co~piled version of SIMULATE was run on 37n/168 and toOY 
11.2 seconds of CPU time. The ratio of APLSV (Vl.2) tine to 
the compiled version is 6.3; this is a reduction of 84% of 
the original CPU time. 

11:.. GPSS-V version roughly equivalent to the function srr°':l'I,?\Tr' 
was done by an experienced GPSS programmer. The GP~S 

solution took 3 . 6 seconds while the cornpiled .APIJ version 
took 11. 2 seconds. The APL version was Lmnten s e Ly easier to 
develop, modify and debug, and we believe that these two 
-~~lr:\.es are reasonably close, considering the d i.f f e r oricc s in 
algorithm, programmers, etc .. Certainly the ratio of 70.7 to 
3.6 seconds (i.e. about 20 to 1) is a most unfavor~ble 

statistic for APL advocates; a factor of 3 is ~uch more 
attractive. 

FUTURE DEVELOPMENT 

As has been mentioned, our host implenent?tion is 
.i.ricompLe t e , to the point that it is ex t r erue Ly unlikely t.ha t; 
any given workspace is currently executable. So~e of the 
omissions present no further problems other than sinr1y 
coding, e~g., the monadic scalar functions, grace up and 
arade down, format, etc .. The most s i.qn i f Lc e.nt; ca.tesory of 
omi.s s i.ons are the API, operators: reduction, SCB.n r inner and 
outer products. The primary issue here is which cases (of 
which primitives) are worth including in fully optimized 
form. -Producing the code for a particular one is 
straightforward once the decision has been made. The 
remaining question is how to treat all the unoptimized 
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22S(~S, for instance, of inner products, where many hundreds 
of cases exist, but are rarely, if ever, used. Here we 
e~·:~ect to revert to a generali zed execution scheme, as is 
(lone Ln t.rad.i. tional A-PL interpreters. 

~nother possible extension to our work is substantial 
further optiMization by the compiler phase. There are 
technical problems due to uncertainties about control flow 
in the static APL programs but, assuming we can overcome 
then, the possibilities for a far better compiler are 
exciting. We also assume that the compiler is permitted to 
reorder code where it is safe, i.e., only error situations 
maJ.:" have different behavior from the f o rma L specification of 
APL. We foresee incorporating constant propagation, carom.on 
subexpression elimination and dead variable analysis as some 
of ~he reasonable optimizations to use. (In fact, so~e of 
the Abrams-like redundant computation elimination [12 -, could 
be ~erformed at the source level.) 

'-Ie strongly reconunend procedure integration (i. e. in-line 
~ubstitution of the procedure body) as advisable. For 
example incorporating the function IF of workspace SI~~ULA.TF 

in-line yields a substantial gain in performance. This was 
done manually, and the compiled version took 9.0 seconds to 
execute, a saving of 20% over the version without procedure 
integration. This faster version is 7.9 times faster than 
A.PIJSV (Vl.2) executing the original workspa.ce. 

Our last suggestion is that the compiler recognize and 
translate larger expressions (which the common subexpression 
eliDinator looks for in any case), such as pp~ lP~ ltp~ 
I+~~1, etc., as primitives of the interMediate target 
machine. We feel that a small number of special cases would 
cover the popular si tuations and provid.e still further 
optimization. This technique could also capture (at compile 
tire) expressions where the loop merging techniques of 
Pd:\~~aM.S c ou Ld be used wi thout run-time overhead. 

The last avenue of further development we suggest concerns 
Ficrocoded (or hardwired) support for our system. In an 
attempt to understand performance and find any candidates 
for special optimization, we ran the host interpreter under 
a ,software) sampling monitor which produces a profile of 
the interpreter execution. No subcase took more than 1% of 
the total execution time. The only peakinq that was 
sianificant was in the cornmon handlers, FETCH, ALLOC, etc .. 
I~ total these utilized somewhat over 20% of the CPU time, 
and this does not include the overhead for calling and 
setting up the relevant registers before entry. Perhaps 
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there is further optimization possible on the 370 code, but 
it is surely small. The amount of effort required to 
implement these few routines in microcode is quite small, 
and they are easily cast as 370 machine level instructions. 

For example, in the trace of Appendix A we see that the 
first 32 instructions (of 45 in all) can be replaced by 6 
instructions (FETCH, LOAD, FETCH, LOAD, LOAD ADDRESS, AIJLOC) 
which would operate at essentially machine cycle time plus 
several memory fetches. This form of special support is 
certainly more feasible across the line than the inclusion 
of a very large package such as the APL Assist. 

SUMMARY 

We have presented a description of a translator and high 
performance software interpreter for the APL language. The 
work described was a feasibility study for an APL compiler. 
It focussed largely on the questions of expected perfo~a.nce 

within the framework of as complete an APL language 
implementation as possible and with no special machine 
support. The resulting design seems directly adaptable to 
future new versions of the APL language. There has been no 
study made of the system aspects of integrating this system 
with existing interpretive systems, nor on the efficiency of 
the compiler phase itself. 

The system is capable of supporting alreost the full 
language, with the exception of those parts which the~selves 

dynamically modify or construct programs. The systere does 
not require the user to add declarations or otherwise 
rewrite his workspace. 

The system has been partially implemented in order to 
estimate its performance. The implementation did not utilize 
any microsupport or postulate any special instructions 
beyond the standard 370 set; thus it can be utilized on the 
fastest of the present machine line. The relative 
improvement compared to existing interpreters varies from 
one test case to another, and aMong different existing 
iwplementations. The major observed savings wpre: 5 to 10 
times lower overhead for simple operations and varying 
performance improvements (from 1 to 1000 times faster) when 
dealing with large data aggregates. 

The compiler has been written in APL, and it produces a 
simple form of machine code for a virtual APL machine. By 
relaxing somewhat the legal system behavior for erroneous 

15 



IBM CONFIDENTIAL
 

situations it appears possible to add a wealth o~ 

optimizations analagous to those used in compilers such as 
the PL/I optimizer, etc~. The compiler performs some 
optimizations based on information provided by the user at 
compile time. The primary information sought from the user 
are the names of variables which are shared with other 
rrocessors, such as TSIO. 

The run-time system is a high performance software 
interpreter which achieves substantial performance gains 
using adaptive techniques, both at the level of the 
intermediate code, and in the manipulation of the descriptor 
table entries. These techniques, as well as other features, 
are applicable in part to existing APL interpreters. 

The present version of the run-time interpreter necd~ 

substantial further coding for its completion. There appear 
to be no major new technical problems in doing so. We have 
described several techniques by which still further 
increased performance could be achieved. We believe tha.t the 
addition of a few new instructions which perform basic 
operations for the run-time interpreter will substantially 
i~prove performance. The modifications we envisage seem 
im~lementable even on the highest performance processors 
since the function of these instructions is not more complex 
than other existing 370 instructions. 
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APPENDIX A: 

Instruction trace for PLUSISS 
(scalar+scalar+scalar; integer) 

from previous 
BNER-------..ol~~LM 3 regs 

L
 
LR
 
BALR
 
L 
L
 
LR
 
BALR
 
B ...... 

fetch------------l.. 

L 

LA 

L 
LR 
BALR al1oc
MVC 8 chars 
LR 
AR 
ST 
LM 2 regs LA 
L BR 
LR 

storeBALl..J1R~--~~:.::.:===========~.. BR 
LR ..... 

LA 
eLI 
BNER----~•• to next routine 

~c 

BH 
L 
LTR 
BNE 
ST 
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