

then A 1is true for all instances,. This 1is the basis of
learning.

Inference - the process of arriving at new facts from
the given facts.

Inference Engine - a program which performs inferences
and adds or deletes them from the set of statements
believed to be true. (also called a gatekeeper)

Instance - a single unambiguous value or occurrence of
something that could have many values or occurrences. 2
is an instance of an even number, A term having no

variables (a ground term) is its only instance. Given a
term with wvariables, substituting something for a
variable gives a new instance

ISA - a token representing that one object 1is an
instance of a class of objects. For example Sten is a
man.

Knowledge base - the data base for logic programs

Knowledge Engineering - building a set of rules that
represents the knowledge and skill of a human expert.

Lambda notation - a way of defining a function without
giving it a name.

LISP - A 1list processing programming language (LISP =
LISt Processing)

List structure - In LISP - a list of 1lists which may
contain self-references (circularities)

Literal - an atom (positive literal) or a negated atom
(negative literal)

Modus Ponens - a rule of inference - if A implies B and
A is true, then B is true (i.e 1if Bv(~A) and A, then
infer B.

Most general unifier - A substitution leaving the most
variables unbound (1.e. it subsumes every other
unifier). It has the property that it i1s wunigque except
for naming variations.

Nil - The unique LISP construction that is both an atom
and a (empty) list.

Non-procedural - a program 1is non-procedural if the
order of its statements is not relevant. Logic

statements in their purest form are non-procedural.

52

Occurs check - In wunification, this check prevents a
substitution for a variable by an expression containing
that wvariable. (i.e., an attempt to substitute £(X) for
¥X.) PROLOG often leaves this check out and so can get
incorrect results.

Open knowledge bhase - one that doesn't contain
everything that is *true. Therefore, 1f something is not
in the database, you cannot conclude that it is false.

Predicate - a function that returns true or false. A
predicate states a relation among objects.

Predicate Calculus - a system for computing on
propositions that contain wvariables. 1f variables
represent objects only, then the system 1is first order
predicate calculus. If wvariables represent objects and
predicates, then the system 1is second order predicate
calculus,

Program clause - a Horn clause - one with one or =zero
positive predicate.

PROLOG - a logic programming language (FVROLCG =
"PROgrammation en Logique™) for solving problems
involving objects and relationships retween objects. It
is a resolution based theorem prover using Horn clauses.
FROLOG works backwards from desired conclusions to kncun
facts by eaottempting to resolve the l=2ftmost predicate
with a depth first search.

Proposition - A statement that evaluates to true or
false and contains no logic variables.

Propositional logic - a system for computing on
propositions.

Referential ambiguity - a situation where more than one
interpretation of a phrase is possible. For example, who
is he in "He 1s a good student".

Resolution - a general rule of inference. If one clause
contains a negated literal and the other contains the
same literal not negated, then you may infer the clause
which is the disjunction of the other terms. If AvBvCvD
and (~A)VEVF, then you may infer BvCVvDVEVF,

Rule - statement that is true under some conditions (as
opposed to a fact that is unconditionally true).

S-expression - 1in LISP - a 1list of 1lists with no
circularities.

93

Search - an organized method for guessing a good path to
a conclusion,

Skolemization - the process of eliminating universal and
existential quantifiers from a formula.

Subsume - formula P subsumes formula @ if a substitution
for variables in P produces .

Term - argument of a predicate -- a constant, a
variable, or an application of an n-ary function to n
terms.

Theorems - facts deduced from the given initial facts
(the axiloms)

Token - a unique phrase or encoding whose structure is
not considered relevant.

True - anything except nil in LISP, 1 in APL.

Unification - +the process of finding the wvalues of
variables that make two expressions look the same. Also
called finding a common instance.

Unifier - a substitution that makes two expressions look
the same.

Unit Clause - one non-negated predicate and no negated
predicates (Pe<),

Universal 1instantiation - a rule of inference - if
something is true of everything, then it is true for any
particular thing.

Universal quantifier - something is true for all values
of a variable.

Variable - a token which replaces universal quantifiers.
Instead of writing 'for all (x), (x<3)' write 'X<3°'
where X is a loglc variable.

Variant formulas - P and ¢ are variants 1if each can be
produced from the other by some substitution.

Word sense ambiguity - situation of a word having more
than one meaning.

94

Appendix 3: A Summary of First Order Predicate Calculus

Predicate calculus 1is a notation useful in expressing
propositions, calculating the +truth of propositions, and
inferring new propositions from the known ones.

The following summary is meant to be independent of the syntax
used to write the notation.

There are two aspects to the notation:
- The objects being talked about

- Mappings between the objects

The objects of the language are:

- constants - a particular number or a particular
character string.

- variables - names which represent sets of possible
constant values.

- computed - an object resulting from a computation (see
functions below).
The above set of objects are called terms.
In addition, the language contains two distinguished objects
called "true" and "false',. These are merely two
distinguishable objects not related to actual truth or falsity
except by the intention of the writer.

The mappings are:

- Functions - mappings of terms to a term

- Predicates - mappings of terms to true or false

- Formulas - predicates and combinations of predicates and
formulas

The applications and combinations are:

- Atomic formula - a predicate applied to the proper
number of terms

- Formula - an atomic formula or the result of any of the
following combinations of formulas. If F and G are

- 95 -

formulas and x 1is a variable, then the following are
formulas:

-~ Implication: "If F then G" - this is true if F 1is
true or G is false

- Conjunction: "F and G" - this is true if both F and
G are true

- Disjunction: "F or G" - this is true if either F or
G is true or both are true

- Negation: "not F" - This 1s true if F is false

- Existential quantification: "exists (x) F" - This is

true 1f there 1s an x that makes F true

- Universal quantification: "For all (x) F" - This is
true if F is true for every possible value of x

Predicate Calculus is not concerned with the actual truth of
propositions, only the relationships between them. The actual
truth of the input formulas is unimportant in the application
of the formal rules. If a false conclusion is reached, it can
only be because one of the input assumptions is wrong.

96

Appendix 4: Tautologies

A tautology is a statement of the form P v (~P), Thus, the
characteristic of a tautology 1s that one term appears in both
the non-negated list and the negated 1list. Such statements
are not wrong (in fact they are trivially true) but, rather,
are not useful in making any new inferences.

Here is an AFPL expression that checks a clause for a tautology
V.€/Z

The reduction puts the v.e between the positive and the

negative clause parts. If any predicate in one appears in the

other, the member ship will give a 1 and so the v/ part of the
inner product will give a 1.

97

Appendix 5: The DPY Function

The DPY function is 1like the DISPLAY function distributed as
part of the APL2 program product except it labels the top edge
of boxes with the shape of the array.

V D+«S DPY A3QIO:;R3;CsHLsHC3sHTsHB3;VL3;VBsVsWiN;:B
£11] A A NODIFIED DISPLAY FUNCTION
[21] an NORMNAL CALL IS MNONADIC. DYADIC CALL USED ONLY IN
[3] A RECURSION TO SPECIFY DISPLAY RANK, SHAPE, AND DEPTH.
[4] 010<«0
(5] 2 (O=ONC 'S')/'S<pd"®
[6] R<4p,S
[7] C(_l..lllll
£8] HL<«"'-"
[9] HC<«HL,'©+>"' ,HL,"'~+¢"'
[10] HT<«HCL[(O<R)IX1+0<4+714,8]
[11] W<,0="40pc(1lpA)+4A
[12]3 HB<«HC[3+3L(V/HW)+(A/0O 1eN)+3x1<ppS]
[13] VLi<']|"* A VERTICAL LINE.
L14] VB<VL,'04? A VERTICAL BORDFER.
[15] V<«VBL(1<RI)x1+0<"1471¢,85]
{161 2(0cpAl)/ 'A<« (1[pA)pct+A? A SHOW PROTOTYPE OF ENPTIES.
(171 =+(1<=4)/GEN
[18] =+(2<ppA)/D3
[19] D3 A a SIMPLE ARRAYS.
[20] WHeltpDs (7241 1,pD)pD
[21] Ne 1+1¥pD
[2Z2Z] +(0=ppA)/SS
[23] D<«(CL11,V((WN-1)pVL),C[2]),((HT 3Np(&,S),NpHL),[0lD,[O]HB,NpHL),
CLOJ,(WpVL),C[3]
[24] =0
(25] SS:HB<«((QO ' ')=40pcAh)/* -!
[261] D<«(B,B, ((W-1)pB),B),((((pHT)pB),NpB),[O]lD,[0]HB,NpoB),B, (WpB) ,B<«"
[27] =0
[28] GEN:D«3SDPY" A A ENCLOSED ...
[29] N<Dv.z' '
£301] D« (Nv~10N) £D
[31] D«(V#~* 'eD)/D
[32] D<«((1,pS)pS)YDPY D
{33] =+(22p,S)¥D3E,OQO
[34] D3:D<«0 7140 1434 n MULT-DIMENSIONAL ...
[35] WeltpD
[36]1 N« 1+14pD
[37] D<«(CL11,V,((W-1)pVL),CL2]),((HT,NoHL),[01D,L[0OJHB,NpoHL),C[O],
(WpVL),C[3]
[38] D3F:N« 2+p,S
[39] V<«C[Np1],[0]VBL1+40<72¥,S8],L[0]J(((73+4pD),N)pVL),[O0]JC[Np2]
[40] D<V,D
v

PSEUDO RANK.

UR, UL, LL, AND LR CORNERS.
HORIZONTAL LINE.

HORIZONTAL BORDERS.

> D®» D2

Appendix 6: Test Cases

In the following:
variables ~ X Y 2
predicates - pgr s t
functions - £ g h
constants - a b c

** Unification Tests

These examples show unification of two predicates and the
resulting common predicate 1f one exists along with the
substitutions for variables that lead to the unification. If
the predicates don't unify, the reason is given:

1. a. pX,£(X),Y)
b. pla,Z,g(2))
c. pla,f(a),gtf(a))
with substitutions Xea

z2<f(a)
Yeg(£f(al)
2. a. p(a,X,X)
b. p(a,¥Y,£f(Y))
failure -- substitution X«Y

but then ¥ and £(Y) don't unify
because of the "occurs'" check.

3. a. p(f(X),g(a,Y)),g(a,Y))
b. p(f(X,2),2)
c, plg(X,glta,¥Y)),gla,Y))
with substitutions X<«a

4, a. p(fa),g(X))
b, p(Y,Y)
c. failure -- substitute Ye«f(a)

but then g(X) and f(a) don't unify.

99

5. a. p(a,X,h(g(Z)))
b. p(Z,h(Y),h(Y)) =
c. ptah(g(a)),h(g(a)))
with substitutionsZea
Yeg(a)
X<h(g(a))

** Resolution Tests

These examples do resolution of two clauses. In general, it is
possible to infer more than one resolvant. In these cases,
several resolvants are shown along with the unification that
permitted them.

1. a. pvgvryVv (~s)
b, (~p) v g v (~t)
c. gV ryvi(~s) vgyVv (~t)
c. from matching p

d. g VvVrv (~s) v (~t)
d. from removing redundant term

2. a. (~p(a)) v r
b. p(X) v p(a) v q
c. pta) vr vaag
c. from unifying on first p in b

d. p(X) v r vag
d. from from unifying on second p in b

d. contains c¢. as a sub-case

e. rvgqgyvere
e. from from a. and c¢. or from a. and d.

£f. r vg
f. from removing redundant term

100

a. pta) v p(b) v g
b, (~p(X)) v r(X)

¢, p(b) v g v r(a)
c, from unifying on first p in a

d. p(a) v g v r(b)
d, from unifying on second p in a

a. p(f(X)) v p(¥Y) v g
b, (~p(£f(Z))) v r

c., p(¥YJ vgyvrer
c. from unifying on first p in a

d. p(f£(X)) vgvVvr
d. from from unifying on second p in a
c¢. contains d. as a sub-case

e. gvVvery
e. from unifying on both p of a.
e. also from b, and c. or b. and d.
after removing redundant r.

a., p(a)
b, (~p(X)) v p(£(X))

c. plf(al))
c. from unifying on first p in b

d. p(£(£f(a)))
d. from unifying c. with b.

e. p(f(f(f(al)))
e, from unifying d. with b.
and this continues forever

a. pvgyVverer
b, (~p) v (~q)
c. g Vv r v (~q)
¢. by unifying on p
c. is a tautology
because g v (~gq) 1is always true

101

7. a. p(X,f(a)) v p(X,£f(Y)) v g(¥Y)
b, (~p(Z,f(a)) v (~gl(2))
c. P(X,£(Y)) v (~g(X) v g(Y)
c. from unifying on first p in a
d. p(X,f(a)) v (~g(X)) v gta)
d. from from unifying on second p in a
e. (~g(X)) v g(a)
e. from from unifying on both p of a,.
e. also from b. and c¢c. or b. and d.
f. p(X,f(a)) v p(X,£f(Y)) v (~p(Y),£f(al)

f. from unifying on g

*%x Example Logic Program

1. input clauses:
p(a,b)
p(C’b)
p(X,Y)

a.
b.
c.
d.

p(X,Y)

p(Y,Z)

4 4 4 4

denial of goal:
e, « pla,c)
proof:

f. « p(a,yY) p(¥,c)

by resolving e.

<« p(b,c)
by resolving a.

gn

h. < p(C’b)

by resolving g.
i. empty clause
by resolving h.

This program has the property that any depth first search that
uses the 1input clauses in any fixed order will fail to find a

solution.

and c.

and first clause of

and d

and b.

- 102 -

f.

