

- Factbase - what is currently known (as opposed to the
database used to represent it).

Facts statements assumed to be true without
conditions. Because anything infers something that is
true, a fact is often represented as an implication with
empty antecedent.

- False - nil or () ill LISP, 0 in APL.

- Forward chaining - malting an inference at the tiln~ an
assertion is made. Gi ven facts, ma ke inferences unt.f l,
the desired conclusion is reached.

- Frame a single data structure that include all of the
information of Ln t e r e s t; for a particular conc ep t , A
frame usually holds information about a general case
wi th a specific case represented as exceptions to tIle
general case.

Gatekeeper a program which performs inferences and
adds or deletes them from the set of statements believed
to be true (also called an inference engine).

- Goal - A clause which is to be proven. A proof often
proceeds by denying the result and pr~v1ng a
contradiction. The denial of a positive goal is a
negative goal and is therefore a Horn clause wi th oL10

positive term at all.

- Ground clause - a clause with no variables

- Herbrand base - all possible applications of predicates
with terms from the Herbrand universe.

- Herbrand universe - set of all ground terms which can be
constructed out of functions and a given set of
constants. Gi yen a set of c ons t an t s and some functions,
the Herbrand universe represents everything that can be
talked about.

Horn clause A clause that c orrt a Lns at most one
conclusion. A conclusion is often proved by postulating
i ts negative and p r o v Lrrq a contradiction. The modi f i ed
s t a t emerrt; is phrased as the "or" of tIle negations of the

tIlea s s umpt Lons • or' ed wi th conclusion. Thus, a Horn
clause h a s at most one non-negated term.

Lmp Ld c a t Lo n - I f A t.h eri B. A is called the arrt c ederrt.,e

and B is called the c ori s e q u e n't., Equivalent to B or (not
A). /

Induction - an illegal but useful rule of inference. If
A is true for every instance of A that we know about,

91

then A is true for all instances. This 1s the basis of
learning.

- Inference - the process of arriving at new facts from
the given facts.

Inference Engine - a program which performs inferences
and adds or deletes them from the set of statements
believed to be true. (also called a gatekeeper)

Instance a single unambiguous value or occurrence of
something that could have many values or occurrences. 2
is an instance of an even number. A term h avLnq no
variables (a ground term) 1s its only instance. Given a
term with variables, substituting something for a
variable gives a new instance

ISA a t.o keri representing that one object is an
instance of a class of objects. For example sten is a
man.

- Knowledge base - the data base for logic programs

Knowledge Engineering bUilding a set of rules that
represents the knowledge and skill of a human expert.

- Lambda notation - a way of defining a function wi thout
giving it a name.

LISP - A list processing programming language (LISP =
LISt Processing)

List struc·ture - In LISP - a list of lists whLch may
contain self-references (circularities)

Li teral an atom (po s L tive 11teral) or a negated atom
(negative literal)

- Modus Ponens - a rule of inference - if A implies Band
A is true, then B is true (i.e if Bv tA) arid A, then
infer B.

- Most general unifier - A substi tut.ion Lea v Lrrq t.he mo s t;
variables uribourid t L , e. it subsumes every other
unifier). It has the property that it is unique except
for naming variations.

- Nil - The unique LISP construction that is both an atom
and a (empty) list.

Non-procedural a program is non-procedural if the
order of its s t a t emen t s is not relevant. Logic
statements in their purest form are non-procedural.

92

- Occurs check - In unification, this check p r everrt s a
s ubs t L t.u t Lo n for a v a r Lab l.e by an expression c orrta i n Lrvj

that variable. (i.e., an attempt to substitute f(X) for
X.) PROLOG often leaves this c h ec lc out and so call get
incorrect results.

Open knowledge base one t.h a t; doesn't c orrt a Ln
e ve r nq a is trtle. e r e o r e , s omo qy t.h t t.h t; 'I'h f if t h Ln is not,
in the database, you c a nno t; c o nc Lude t.ha t; it is false.

- Predicate - a functioJ1 tllat returns true or false. A
predicate states a relation amonq obj e c t s ,

Predicate Calculus a s y s t em for computing 011

proposi tions t.h a t; c o n t a t n variables. If variables
represent obj ects only, tllen tIle s y s t em is first order
predicate c a Lcu l.u s , If variables r cpr e s en t. objects and
p r e d Lc a t e s , t h en t.h e system is secanel order predicate
calculus.

- Program clause - aI-lorn clau.se one with one or zero
positive predicate.

PROLOG a logic programming language (PROLOG =
"pnOgrammation en Logique") for solving p r o b Lems
involVing objects and relationships between obj~cts. It
is a resolution based theorem prover using Horn clauses.
FROLOG wo r k s b a c kwa rds f r orn des i r e(l c o n c L us Lon s to].(11(', ..111

facts by 2t.tem.ptillg "to r e s o L ve tile] :~ftmost predicate
with a depth first search.

Pr-opo s ttLon A s t.a t emeri t; that evaluates to true or
false and contains no logic variables.

Proposi tio11al logic a s y s t.em for c oruput.Lriq all
proposi t.Lon s ,

- Referential ambI qu I ty - a 51 t.ua t.Lori wh e r e lllore t.h a n 011e

Lrrt.e r pr-e t.a t Lo n of a phr a s e is possible. For e x amp Le , vzho
is he in HI-Ie is a good student".

Resolution - a general rule of inference. If one clause
c o n t.a I n s a negated literal and t.h o o t.h c r o o nt.a Ln s t110
sa m e n o nega ted, u .i.n er t.h e c 1 u s1 t teral t; tl'lell y o In a y f a C

wh I ch is t.h e d I s j unc t Lo n of t.h e otb.er terlus. If AvJ-3vCvD
arid (NA) v Ev F". t.he n you ma y Ln f er BvCvDvEvF.

- Rule - statement that is true under s om e c orrd Lt.Lo n s (as
opposed to a fact t.h a t; is u nc o n d t t.Lo n a L'l.y true).

S-expression in LISP a list of lists with no
circulari-ties.

93

- Search - an organized method for guessing a good path to
a conclusion.

- Skolemlzation - the process of eliminating universal and
existential quantifiers from a formula.

- Subsume - formula P subsumes formula Q if a substitution
for variables in P produces Q.

Term argument of a predicate a constant, a
variable, or an application of an n-ary function to n
terms.

- Theorems facts deduced from the giyen ini tial facts
(the axioms)

Token a unique ph r a s e or encoding whose structure is
not considered relevant.

- True - anything except nil in LISP, 1 in APL.

Unification the process of finding tlle values of
variables that make two expressions Loo k t.h e s ame , Also
called finding a common instance.

- Unifier - a substitution that makes two expressions look
the same.

- Uni t Clause - one non-negated predicate and no negated
predicates (P+).

Universal instantiation a rule of Ln f e r-enc e if
s om e t.hLnq is true of everything, the!l 1 t is true for any
particular thing.

- Universal quantifier - something is true for all values
of a variable.

- Variable - a to]ren which replaces unLver s a L quan t t.f i e r s ,
Instead of writing 'for all (x i , (x<3)' write 'X<3'
where X is a logic variable.

- Variallt f o r mu La s - P and Q are variants if each call be
produced from the other by some substitution.

- Word sense ambiguity situation of a wo r d h a v i.rrq mo r e
than one meaning.

94

Appendix 3: A Summary of First Order Predicate Calculus

Predicate calculus is a notation useful in expressing
propositions, calculating the truth of propositions. and
inferring new propositions from the known ones.

The following summary is meant to be independent of the syntax
used to write the notation.

There are two aspects to the notation:

- The objects being talked about

- Mappings between the objects

The objects of the language are:

- constants - a particular number or a particular

character string.

- variables - names which represent sets of possible

constant values.

- computed - an object resulting from a computation (see
functions below).

The above set of objects are called terms.

In addition. the language contains two distinguished objects
called "true" and "false". These are merely two
distinguishable objects not related to actual truth or falsity
except by the intention of the writer.

The mappings are:

- Functions - mappings of terms to a term

- Predicates - mappings of terms to true or false

- Formulas - predicates and combinations of predicates and
formulas

The applications and combinations are:

- Atomic formula - a predicate applied to the proper

number of terms

- Formula - an atomic formula or the result of any of the
following combinations of formulas. If F and G are

- 95

formulas and x is a variable, then the f o Ll.o wd n q are
formulas:

Implication: "If F then G" - t.hLs is true if F is
true or G is false

- Conjunction: "F and Gil - this is true 1f both F and
G are true

- Disjunction: "F or G" - this 1s true if either F or
G is true or both are true

- Negation: "not F" - This is true if F is false

- Existential quantification: "exists (x) F" - This is
true if there is an x that makes F true

- Universal quantification: "For all t x) F" - This is
true if F is true for every possible value of x

Predicate Calculus 1s not concerned wi th the actual truth of
proposi ttons, only the relationships between them. The actual
truth of the input formulas is unimportant in the application
of the formal rules. If a false conclusion is reached, it can
only be because one of the input assumptions is wrong.

96

Appendix 4: Tautologies

A tautology 1s a statement of the fornl P v (~P). Thus ~ the
characteristic of a tautology is that one term appears in both
the non-negated list and the negated list. SUCll s t a t emerrt s
are not wrong (in fact t.hey are tr i vially true) but, rather ~

are not useful in ma k f nq a ny new inferences.

Here is an APL expression that checks a clause for a tautology

v.E/Z

The reduction puts the V.E between the positive and the
negative clause parts. If any predicate in one appears in the
other~ the member ship will give a 1 and so the vi part of the
inner product will give a 1.

97

Appendix 5: The DPY Function

The DPY function is like the DISPLAY function distributed as
part of the APL2 program product except it labels the top edge
of boxes with the shape of the array.

V D+S DPY A;OIO;R;C;HL;HC;HT;HB;VL;VB;V;W;NjB
[1J A A MODIFIED DISPLAY FUNCTION
[2] A NORMAL CALL IS MONADIC. DYADIC CALL USED ONLY IN
[3J A RECURSION TO SPECIFY DISPLAY RANK, SHAPE, AND DEPTH.
[4] DIO+O
[5] ~(O=DNC 'S')/'S~pA'

[6] R+tp,S A PSEUDO RANK.
[7] C~' •• ' • • , • A UR, UL, EL, AND LR CORNERS.
[8J HL+'-' R HORIZONTAL LINE.
[9J HC+HL,te+',HL,'~+E' A HORIZONTAL BORDERS.
[10] HT+HC[(O<R)x1+0<t-1t,S]
[11J W+,O::"tOpc(1rpA)tA
[12J HB+HC[3+3Lev/W)+(A/O 1€W)+3x1<ppSJ
[13] VL+' I' A VERTICAL LINE.
[14] VB~VL,'~~' A VERTICAL BORDER.
[15J V+VB[(1<R)x1+0<-1t-1~,SJ

[16J ~(O€pA)/'A+(1rpA)pctA' A SHOW PROTOTYPE OF EMPTIES.
[17J ~(1<=A)/GEN

[18] +(2<ppA)/D3
[19J D+~A A SIMPLE ARRAYS.
[20J W+1tpD+e-2t1 1,pD)pD
[21J N+-1+1~pD

[22J +(O=ppA)/SS
[23J D+(C[1J,V,(W-1)pVL),C[2]),«HT,Np(~,S),NpHL),[O]D,[O]HB,NpHL),

ceoJ, (WpVL) ,C[3J
[24J +0

[25J SS:HB~«O ' ')=tOpc:A)/' -'

[26J D+(B,B,«W-1)pB),B),««pHT)pB),NpB),[O]D,[OJHB,NpB),B,(WpB),B+'

[27J -+0
[28J GEN:D+~DPY··A A ENCLOSED •••
[29 J N+Dv • ;t t I

[30J D+eNv~1~N)fD

[31J D~(vf~' f~D)/D

[32J D+«1,pS)pS)DPY D
[33J +(2~p,S)~D3E,O

[34J D3:D+O -1~O 1~~cA A MULT-DIMENSIONAL ••.
[35J 1-1+1 tpD
[36J N+-1+1.J..pD
[37J D+(C[1],V,(W-1)pVL),C[2]),«HT,NpHL),[OJD,[OJHB,NpHL) , C[O] ,
(WpVL),C[3]
[38J D3E:N+-2+p,S
[39J V+C[Np1J,[OJVB[1+0<-2~,SJ,[OJ«(-3+tpD),N)pVL),[O]C[Np2 J

[40J D+-V,D
V

- 98

Appendix 6: Test Cases

In the following:

variables - X y Z
predicates - p q r s t

functions - f g h

constants - abc

** Unification Tests

These examples show unification of two predicates and the
resul tiIlg common predicate if one exists along wi tho t.h.e
s ubs t t tutions for variables that lead to t.he unification. If
the predicates don't unify, the reason is given:

1. a. p(X,f(X),Y)
b. p(a,Z,g(Z»

c. p(a,f(a),g(f(a»
with	 substitutions X+a

Z+fCa)

Y+g(f(a»

2. a. p(a,X,X)
b. p t a s Ys f t Y)

failure -- sU.bsti tution X+Y

but then Y and fey) don't unify

because of the "occurs" check.

3. a. pCf(X),gCa,Y»,g(a,Y»
b. p(f(X,Z),Z)

c.	 p(g(X,g(a,Y»,g(a,Y»)

with substitutions X+a

~. a. pCf(a),geX»
b. p(Y,Y)

c.	 failure -- substitute ¥+f(a)

but then g(X) and f(a) don't unify.

99

5.	 a. p(a,X,h(g(Z»)
b. p(Z,}1(Y) ,}l(Y»

c.	 p(a,h(g<a»,h(g(a»)

with substitutionsZ+a

Y-4'g(a)
X-E-hCg(a»

** Resolution Tests

These examples do resolution of two clauses. In gerleral, it is
possible to infer mo r-e than one resolvant. In these cases,
several resolvants are shown along wi th tIle unification t.ha t;
permitted them.

1.	 a. p v q v r v (~s)

b. (~p) v q v (~t)

c. q	 y r v (~s) v q v (~t)

c. from matching p

d. q	 v r Y (~s) v (~t)

d. from removing redundant term

2 •	 a . ("'p (a » v r
b. p(X) v pea) v q

c. pea) v r v q
c. from un I f y Lnq on first p in b

d. p<X) v r v q
d. f r otn from un I f y Lriq on. s e c ond p in b
d. contains c. as a sub-case

e. r	 v q v r
e. from f r o m a. and c. or f r orn a. a n d d.

f. r	 v g
f. from removing redundant term

100

3. a. pea) v pCb) v q
b. (rvp(X) V reX)

............ --~~ -111111111111'-

c. pCb) v q v rea)
c. from unifying on first p in a

d. pea) v q v reb)
d. from unifyi.ng on second p in a

4. a. p(f(X» v p(Y) v q
b • (""'p (f (Z) » v r

c. p t Y) v q v r
c. from unifying on first p in a

d. p(f(X» v q v r
d. from from unifying on s e c o nd p in a
c. contains d. as a sub-case

e. q v r
e. from unifying on both p of a.
e. also from b. and c. or b. and d.

after removing redundant r.

5. a.
b.

pea)
(f"Jpex» v p(r cx i

c. p t f t a)
c. from unifying on first p in b

d. p(f(f(a»)
d. from unifying c. with b.

e. p(f(f(f(a»»
e. front uri I f y Lnq d. wi th b.

and this continues forever

6. a. p v q v r
b • (I'Vp) V (""q)

c. q v r v (rvq)

c. by unifying on p
c. is a tautology

because q v (lVq) is always true

101

7. a. pCX,fCa» v peX,fCY» v qCY)
b.	 (~p(Z,f(a» v (Nq(Z»

c.	 p(X,fCY» v (~q(X) v q(Y)
c.	 from unifying on first p in a

d.	 p(X,f(a» v (~q(X» v q(a)
d. from from unifying on second p in a

e • (~q (X» v q (a)

e.	 from from unifying on both p of a.
e.	 also from b. and c. or b. and d.

f.	 peX,f(a» v p(X,f(Y» v (~p(y),f(a»

f.	 from unifying on q

**	 Example Logic Program

1.	 input clauses:

a.	 pea,b) +

b.	 p t c s b) +
c.	 p(X,Z) + p(X,¥) pC¥,Z)
d. p(X,Y) + pC¥,X)

denial of goal:

e. + p(a,e)

proof:

f.	 + pCa,¥) pC¥,c)

by resolving e. and c.

g p Cb s c)

by resolving a. and first clause of f.

h.	 + p Cc s b)

by resolving g. and d

1.	 empty clause

by resolving h. and b.

This program has the property that any depth first search that
uses the input clauses in any fixed order will fail to find a
solution.

- 102

