
, .71'i> 

. .'.",::'iff~~~~~tlf~;;W:iy~:~.~t{/;~f;;. 
CONSI'O'ERATIO:NS IN THE DESIGN OF A COMPIL.,..··.fOR APl,

·~;;:~}~;j."' ...i;;. by Harry J. Saal 

March 1978 



March 1978
 

TR 03.045
 

CONSIDERATIONS IN THE DESIGN OF A COMPILER FOR APL 

by 

Harry J. Saal 

International Business Machines Corporation
 

Gene%al P~oducts Division
 

Santa Teresa Labo~atory
 

San Jose, Cali£o~nia 



ABSTRACT 

Existing implementations of the APL language a~e generally 
zefe~red to as "interpretive." APL use~s rely on system 
behavio~ of an interpzetive natu~e, such as "desk calculatoz 
mode" debugging, and modern interp~ete~s retain that 
exte~nal view even though inte%nal interpreteI o~ganization 

is highly optimized. Increased use of APL has led to many 
requests fo~ an APL cornpile~. 

This papez fi~st p~esents a selected anno~ated bibliography 
of eight pape~s which address the question of the efficient 
execution of APL p~og~ams. Based on the ~esults of these 
studies, the pxoblem of efficiently executing APL 
expressions seems to be well unde~stood. 

The second half of the pape~ p~esents a number of 
environment ~elated questions which must be resolved if one 
were to design a compiler for APL. Almost all of these 
issues involve potential tradeoffs of performance fo~ othe~ 

desirable attributes of an APL system. 

ii 



CONSIDERATIONS IN THE DESIGN OF A COMPILER FOR APL 

by 

Ha~ry J. Saal 

OVERVIEW 

Although APL systems have been available for over ten years, 
almost all implementations sha~e a fai~ly uniform approach 
to the execution of the APL language, that of interpreting. 
If one studies the internal details of existing sys~ems, one 
sees that this does not necessa~ily imply that APL sys~ems 

interp~et APL p~og~arns in thei~ sou~ce form, nor that there 
are not some £ai~ly high powered techniques used to speed up 
execution within the framewo~k of inte~p~eting. 

Fzorn the ve~y first APL implementa~ions within IBM, sou~ce 

statements have been scanned and pa~tially analyzed du~ing 

function czeation oz editing, p~oducing a compact inte~nal 

fo~m which is converted to external fozrn for display 
pu~poses. Studies of compile~ pe~formance fo~ other 
languages have shown that this stage, lexical analysis, 
often dominates the total time Lequi~ed for compilation 
(assuming no elabozate global optimization or fancy code 
gene~ation is later performed). In VSAPL for example, the 
statemen~ A~12345 in a function executes about ten times 
faste~ than the statement ~'A~12345'. 

Some of the moze interesting techniques beyond 
straightforwa~d inte~preting of tokenized source found in 
va~ious inte~pzete~s f~om IBM or other manufacturers 
include: pa~sing and retaining of the parsed internal form 
as long as it is valid; on-the-fly gene~ation of machine 
code; copy optimization and usage of arithmetic p~ogression 

vecto~s; and inc~ernen~al compilation with loop me~ging 

(discussed later)., 

Techniques such as those desc~ibed above provide fo~ quite 
efficient implementation of APL. These implementations 
compare very favorably to existing small, fast compilers for 
conventional languages such as FORTRAN. Notwithstanding the 
above, the growth in usage of APL, particula~ly fo~ large 
production applications, ~esults in continued concern with 
the perfo~rnance of APL systems, of which CPU time is one 
factoz. This has led to considerable inte~est in the 
production of a compiler for APL. 

This paper is ozganized in thxee sections. The second part 



is an annotated bibliog~aphy of what I conside~ to be 
seminal pape~s ~elating to the techniques likely to be 
useful in any compile~ for APL. I will mention only a few of 
many azticles devoted to the subject, and suggest that the 
interested ~eader locate the othe~s by following the 
references in the pape~s listed here~ The papers discussed 
in the following section show a steadily increasing 
understanding of techniques sui~able for p~oviding higher 
pe~fo~mance execution of ve~y high level languages, such as 
APL, without necessa~ily imposing costs that are 
pl:ohibitive. 

The thi~d section is devoted to enumerating some of the 
tzadeoffs and considerations involved in defining what is 
meant by an "APL compiler." It appears difficult to finesse 
many of the issues ~aised the~ein so that no tradeoffs are 
involved, and "eve:ryone is happy." 

APL systems a~e expected to provide much more than just the 
APL Language itself. A p~ocessor fo~ a conventional 
language like FORTRAN or COBOL relies on host system 
components fo~ all services. In cont~ast, APL 
implementations pzovide not only the execution vehicle foz 
the APL notation, but a consistent editor, a debugging 
system, lib~a~y storage scheme and access to external files. 
This attitude towards the APL environment probably accounts 
in lazge measuze foz the resemblance among implementation 
technologies fzom many different computer manufacturers. 

ANNOTATED BIBLIOGRAPHY 

The papers discussed are pzesented in app~oximate histo~ical 

sequence. Diffezences between the date of development, 
publication as ~epol:ts ve~sus publication in a journal, 
etc., make exact sequencing somewhat difficult. The~e has 
been a significant amount of re-invention as well. This may 
be due in pazt to the lack of suitable bibliographic sources 
for this material. 

Let me reiterate that these pape~s a~e not the only ~elevant 

ones. This is due in part to my own lack of app~eciation of 
the significance of some, and in part to the lack of space 
in this paper. Consider this a set of pointers ox milestones 
along the path towa~ds a compiler for APL. 

1.	 An APL Machine
 
Philip Abrams
 
SLAC Repo~t No 114
 
Stanford Linear Accele~ato~ Center
 
Stanford Unive~sitYI stanford, Califo~nia
 

Febl:ual:Y 1970
 

2 



Although his inte~est is in machine organization, Abrams 
introduces two techniques useful in efficient evaluation of 
APL expressions. He shows that a class of APL primitives, 
"select operations", can be viewed as t:z:ansfo:rmations on 
add~essing descriptors accessing mate~ialized APL objects, 
without explicit evaluation. Thus one can "beat" operations 
by manipulating descriptors instead of generating temporary 
:results. Abrams uses the term "dz:agging" in his scheme to 
mean deferring application of a class of non-select 
functions, so as to provide loop rne~ging when actual 
evaluation is ultimately required. 

Ab~ams demonstrates the mathematical correctness of his 
transfozmations, and evaluates the performance of his 
machine oxganization on seve~al examples, compared with the 
so-called "naive" inte:rpretation methods. Abrams was the 
first to raise the issue of the suppression of side effects 
due to optimizations, e.g., must one receive a DOHAIN ERROR 
during the evaluation of 1t2 2~1 O? 

2. Efficient Evaluation of Array Subsc~ipts of Arrays 
A. Hassitt and L. E. Lyon
 
IBM Journal of Research and Development
 
January 1972, pp. 45-57
 

Hassitt and Lyon treat the problem of optimizing the 
evaluation of array subscripting in APL where the subscripts 
take a va~iety of forms. They present algorithms to simplify 
the addressing patterns involved in o~de~ to minimize the 
number of loops and loop variables required. They show how 
the select operations of Ab~arns can be transformed into 
cases of subsc~ipting, and thei~ techniques then are 
applied. They also extend the class of select ope~ations to 
include comp~ession and expansion, omitted by Abrams. 

The techniques described were applied in the implementation 
of ~PL/CMS and the late~ VSAPL system, both in software and 
mic~ocoded assist versions. 

Hassitt and Lyon I:ema:rk that "ravel and some cases of 
zeshape can be considered as selection operations but it is 
usually not profitable to do this." We will :retu:r:n to this 
point in the discussion of the pape~ by Guibas and Wyatt. 

3. APt in PL/I 
M. T. Compton
 
RC 4481
 
IBM Yorktown Heights Research Center
 
Yorktown Heigh~s, New York
 
August 1973
 

Compton desc%ibes a preprocessor fo~ APL-like extensions to 
PL/I. Objects a~e restricted in shape and type through 
standa%d declaration statements, and error checking is 

3
 



essentially igno~ed. Compton treats transpose, reverse, 
compress, expand, take and drop as forms of select 
ope~ations, in that they do not produce explicit code, but 
control the order and number of loops over element 
generato~s. The output of the translato~ is executable PL/I 
code, but no timing compaxisons are presented with 
inte~p~etive APL execution. 

Compton's interpretation of the zules of APL is rather 
imprecise, leading to all kinds of interesting extensions, 
e.g., AA.~B, A+./B, A+.lB, vector - matrix conforrnability, 
etc. 

4.	 Does APL Really Need Run-time Checking? 
Alan M. Bauer and Harry J. Saal 
Software-Pzactice and Experience 
Vol. 4, 129-138 (1974) 

The authors show that eighty percent of the checking 
perfoz:med by "naive" APL inteJ:pz:etezs could be validated 
statically. The sample was 39 APL programs, containing about 
1500 references to APL primitive functions. 

The APL statements were parsed manually, and 
pseudo-interpzeted to analyze attribute information. The 
lack of precise infozmation about flow of control in 
programs containing branches limits the accu~acy of analysis 
possible. Static validation can eliminate any need to check 
for possible DOHAIN and VALUE erzozs in almost ninety 
percent of the cases, whereas INDEX checking can almost 
never be removed (although p~esent in very low fJ:equency). 

The autho~s conclude from the success of static analysis 
that the addition of declazations to APL is not a 
prez:equisite foz compilation. 

5.	 steps towa~d an APL Compiler 
Alan J. Perlis 
Yale Unive:rsity 
Computer Science Research Report 24 
Januaz:y 1974 

Perlis addresses the question of efficient execution of APL 
expressions, but like Abzams questions the need for 
tzanslation to conventional machine organizations. Pe~lis' 

s c h e me tl:eats APL objects as "streams" of values produced by 
a ·'gene:r:atol:. " A sequence of generatoz:s is called a 
"laddez:", a coroutine that is controlled by accessing 
descriptors similar in flavor to Abrams'. Rather than 
maintaining an access polynomial for addressing succesive 
elements of an ar~ay in ~avel order, Pe~lis uses a scheme by 
which the "next" element index is gene:r:ated. This 
introduces additional genezality into the accessing scheme. 
Perlis presents ~ules by which select ope~ations (extended 

4
 



as in Hassitt and Lyon) can be transformed into ladder 
manipulations .. 

Pe~lis describes the overall flow of a compiler based on 
ladde~s .. Only APL exp~essions which are rank inva~iant are 
compiled to ladder code. They are translated on their first 
occurrence during execution, and code is gene~ated to check 
rank changes on all later execu~ions. If the Ianks change, 
the compiled code is invalidated, and will be interpreted on 
later executions. 

The fozthcorning thesis by Terrence Miller (Yale University, 
1978) gives more detail on the translation pzocess, 
considering both conventional high level languages and a 
"ladder machine" as targets. The process is essentially a 
bottom-up method similar to the "dragging" descr:ibed by 
Ab:rams. 

6.	 Type Determination for Very High Level Languages
 
Aaron M. Tenenbaum
 
Cou~ant Computer Science Report 3
 
Courant Institute of Mathematical Sciences
 
New York University, N. Y.
 
October 1974
 

Tenenbaum's work is based on problems associated with the 
translation of p~ograms w~itten in SETL, a very high level 
language based on set theory. Like APL, SETL is declaration 
f~ee, and identifiers may refeI ~o objects of va~ying data 
type and size. This work can be viewed as an extension of 
the investigation of Bauer and Saal beyond shape analysis. 

SETL datatypes are treated as a finite lattice rather than 
completely nested (since SETL objects can contain other 
objects to any depth). This leads to little loss of 
information in p~actical cases. Global flow analysis is 
performed on the p~ograms, and datatype info~mation is then 
propagated stazting with constants and using the propeIties 
of the 5ETL p~imitives. 

Six prog~ams we~e analyzed, containing 403 primitive 
functions. The analyzer correctly determined the datatype 
resulting f~om the primitive in 77 percent of the cases. 

7.	 A Dynamic Incremental Compiler for an Interpretive 
Language
 

Eric \1 .. Van Dyke
 
Hewlett-Packard Journal
 
Volume 28, No. 11, 17-23 (July 1977)
 

This tzanslato~ for APL is very heavily based on the work of 
Abrams. It compiles incrementally, generating code for a 
statement when it is first encounte~ed during execution. A 
class of further optimizations of subscript expressions 

5
 



similaz to those described in Hassitt and Lyon is 
incorporated. 

The code p~oduced is always preceded by "signature" code, 
which validates the assumptions made during the translation 
phase. Initial tz:anslation of an expression produces "hard" 
codep in which the actual sizes of objects (e.g. the length 
of a vector) are compiled into the code. On later 
executions, if the code "breaks", i.e. does not pass the 
signature tests, "soft" code is generated which is somewhat 
slower and less dense, but more likely to su~vive further 
executions. The compile~ accumulates information in a 
bottom-up fashion simila~ to Abrams' dragging. 

The actual code produced is not HP/3000 machine code due to 
the addressing limitations that would be imposed on the size 
of an APL wo~kspace. Instead, the code is fo~ a 
pseudo-machine which is suppo~ted by special microcode that 
does viztual storage management. Once the appropriate data 
is pzesent, conventional HP/3000 code executes any data 
manipulations or calculations required. Sou~ce APL 
statements are maintained in an internal rep~esentation 

which can be translated back to eKteInal form for editing or 
recompilation, as well as in theiI compiled form. 

8.	 Compilation and Delayed Evaluation in APL
 
Leo J. Guibas and Douglas K. Wyatt
 
Fifth Annual ACM Symposium on
 

Pxinciples of P~ogramming Languages
 
Tucson, Ariz ..
 
January 1978
 

Guibas and Wyatt eKtend the work begun by Abrams and Pe~lis 

and describe seve~al extensions and improvements in 
translation efficiency. In pa~~icula~, they show how to 
compute "steppers" (simila:r to Perlis' ladde:rs) by pa:r:sing 
an expression, pe~forming initial ~ank and shape analysis, 
and then p~opagating info~mation in a top-down fashion. 

The concept of a "confo:rming reshape" is introduced, where a 
~eshape of an array essentially p~eserves the shape of the 
"last" axes, and me:rely adds "leading" axes. This mechanism 
not only handles scalar extension, but mo~e significantly 
provides the means to deal with inner and outez p~oducts, 

which must recycle oveI their arguments seve~al times during 
evaluation. 

Merging of adjacent coo:rdinates is pezformed using 
essentially the same techniques described by Hassitt and 
Lyon. A means of saving partial :results, called "slicing," 
is int~oduced, whezeby intezmediate xesults that must be 
genezated because they cannot be deferred can be saved fo~ 

reuse in ou~er loops. 

6 



The authoz5 state that the "code genezated is well suited 
fo~ execution by a rninicompute~" although no examples a~e 

shown. The ove~head ~emaining due to residual signature 
checking for datatypes and shape analysis is not evaluated 
in the paper. 

SOME DESIGN ISSUES FOR AN APt COMPILER 

The view of APL as a system rather than as a language raises 
a numbe~ of issues fo~ the design of an APL compiler. This 
section is an overview of some of the questions which arise 
in the conside~ation of any compiler for APL. Ce~tain issues 
seem to ~equire a tradeoff to be made, whereas others relate 
to the goals which motivate the construction of a compiler. 

1. Language compatibility 

APL contains a number of features which require either 
interpretation O~ dynamic compilation du~ing execution. 
These features ~elate to the name space of APL objects, 
~ather than being strictly value o~iented. Fo~ example, 
full treatment of O-input,DFX, !, etc., cannot be done 
during a static compilation. One can consider alternatives 
which restrict O~ eliminate this type of featuze, or still 
p~ovide it but at the cost of potential performance 
deg~adation O~ additional sto~age requirements. 

Another p~oblem arises from the dynamic interpretation of 
the syntax of APL statements. It is well known that APL 
statements cannot be parsed statically due to dynamic 
localization effects. Even worse,due to the potential 
effects of featu~es such as DEX O~ OFX, one cannot fully 
pazse an APL statement prior to executing it. The syntax of 
a statement after execution may be different f~om what it 
was'prior to execution! 

Another issue is that mentioned in the Ieview of Abrams' 
wo~k, namely the supp~ession of certain e~ro~ indications 
due to optimizations. Must all expressions be executed as 
literally as conventional inte~prete~s have historically 
done? 

2. Localization of erIOXS 

APL use~s cuzrently a~e given a fai~ly good indication of 
where an erro~ occurred duzing execution. A compiler which 
perfo~med any ~ea~%angement of code sequencing (moving 
constant expressions out of "loops" £01: example) could 
indicate where an erzor was encountered, but the rules fo~ 

determining what had O~ had not been executed prior to the 
detection of the er~o~ might be ve~y different. In cases 
whe~e checking of conformability was factored out of complex 

7 



expressions (as in the work of Guibas and Wyatt described 
previously), one might receive a LENGTH ERROR for a 
p~imitive function prior to evaluating the entire right hand 
subexpression (which might produce a DOMAIN ERROR if 
executed). 

Cu~rent APL systems assume that once an error has been 
detected the terminal users will use the featu~es of APL to 
determine exactly what went wrong. To pe~mit arbit~ary 

expressions to be ente~ed and evaluated one needs some form 
of interpzeter or dynamic compiler. Alternatively, one could 
provide a source level dump facility, or a facility which 
converts a workspace to a form which could be interpreted by 
cUl:l:ent systems. 

3. High level optimizations 

Some xather elegant optimizations are feasible in the APL 
environment which are not very applicable to lower level 
languages. Among them are the recognition of idiomatic usage 
of APL. For example, pp could be ~ecognized as a single 
operation which gives the same result as the successive 
executions of the individual primitives, but didn't actually 
create an intermediate result. Certain cases of recursive 
function calls can be transformed into itel:ative execution, 
becoming both faste~ and less space consuming. User defined 
functions (IF is a classic example) could be integrated 
inline in the calling sequence, rather than actually 
invoking a function call and return. 

These optimizations are conceivable in the context of APL 
due to its compact nature. However, they would requi~e 

additonal compilation time, and make the corzelation of the 
translated code with the source code difficult. 

4. Decla:rations 

As described in the discussion of Baue~ and Saal's paper, 
adding declarations en masse to APL seems unnecessary. 
Howevez, a compile~ might find certain pieces of information 
ve~y valuable in producing better code. For example, knowing 
which functions are "external" and which are just called 
from within as 5ubfunctions make it feasible to do global 
flow analysis within an APL wo~kspace. (Even so there appear 
to be numerous problems.) Knowing which variables are 
eventually shazed during executions and Which a~e not also 
pe~mits optimized treatment of non-sha~ed variables, which 
are the bulk of the refe~ences. 

8
 



5. Scope of compilation 

A compiler could "look" at various units of text in 
gathezing information and performing optimizations. These 
could be at the level of individual statements, functions, 
or workspaces. The la~ger the scope of the compilation, the 
more optimizations are feasible, but at the expense of 
longer compile time. One possible approach is to permit 
users to select among a va~iety of optimization levels, as 
in FORTRAN H. 

A compile~ might be able to p~oduce bette~ code in various 
cases if it could interact with a use~ when it could not 
dete~mine ce%tain facts. 

Certain of the techniques discussed in the second section 
will pzoduce especially good code fo~ a certain type of APL 
program (i.e. novice, scalar code versus advanced p~oduction 

code). This complicates choosing a ~epresentative sample of 
code by which to evaluate a compile~. 

A c omp a Le z could produce "object" code that can be saved, 
but with the attendant risk of not having the sou~ce and 
object always ag~ee. Undoubtedly some users would like to 
be able to "patch" the object code and imp:rove it beyond the 
abilities of the compiler. Should the:re be a "link-editor" 
for const~ucting modules f~orn va~ious sub-compilations? How 
important is the ability to link to precompiled subroutines 
from othez languages, such as FORTRAN? 

6. Space-time tradeoffs 

There aze a large number of fai~ly dramatic space-time 
tradeof£s to consider fo~ an APL compiler. For instance, how 
impoztant is the time <real or CPU) taken for compilaticn? 
Is the absolute maximum performance afte~ compilation the 
sole c~iterion? What about the size of the compiled code? 

Code compiled directly to machine language level is likely 
to be huge when compared to current APL internal tokenized 
form. Alte~natively, one could translate to some more 
compact intermediate form which is interpretable at high 
speed, possibly with a microcode assist available. 

How large a run-time package should there be? Certain cases 
of APL p~imitive functions which occu~ with low frequency 
(say 0.1%) may have some supez optimizations (say 100 times 
faster than the nozmal case). How important a:re including 
these cases (there are lots of them!)? 

Dealing with model dependent tradeoffs is quite complex. 
Ceztain constzucts aze superior on some 370 models, whereas 
they a~e infexioz on othe~ models. Should the emphasis be on 
the fastest or slowest models? 

9 



One way to resolve some tradeoffs is to rely on frequency 
information. An APL compiler might collect execution 
f~equency information dynamically, O~ use information 
provided by the use~, O~ £~om automatic static analysis. 
Collecting this information adds some costs on its own. 

SUMMARY 

I have t~ied to ~eview some of the important papers ~elating 

to techniques useful in compiling APL p~og~ams~ There has 
been considerable progress in understanding how to deal with 
many of the data manipulation primitives of APL, without 
actually pezforming data movement. 

One could produce a compiler for almost the entire APL 
language, for programs which are "correct" and don't ~equire 

inte~active debugging. On the othez hand, it appears that 
subtle issues ~elating to the enti~e APL envi~onment a~e yet 
to be understood. 

Replacing today's interp~etive APL systems by a compile~ is 
unlikely to be a universally beneficial step. We have 
p~esented a list of some of the issues which seem to require 
a t~adeoff in the design, and we hope that APL usezs 
conside~ the relative impo~tance and costs of the 
alte~natives. 

10 




