by Harry J. Saal

il Report

“.General Products Division,

Santa Teresa Laboratory,

San Jose, California



Maxrch 1978

TR 03.045

CONSIDERATIONS IN THE DESIGN OF A COMPILER FOR APL

by

Harry J. Saal

International Business Machines Corporation
Genexral Products Division
Santa Texresa lLaboratory

San Jose, California



ABSTRACT

Existing implementations of the APL language are gdgenerally
referred to as "interpretive." APL users rely on system
behavior of an interpretive nature, such as "desk calculator

mode"” debugging, and modexrn interpreters retain that
external view even though internal interpreter oxrganization
is highly optimized. Increased use of APL has led to many

requests for an APL compiler.

This papex first presents a selected annotated bibliography
of eight papers which address the question of the efficient
execution of APL programs. Based on the results of these
studies, the problem of efficiently executing APL
expressions seems to be well undexrstood.

The second half of the ©paperx presents a number of
environment related questions which must be resolved if one
were to design a compilex for APL. Almost all of these
issues involve potential tradeoffs of performance for other
desirable attributes of an APL system.

ii



CONSIDERATIONS IN THE DESIGN OF A COMPILER FOR APL

by

Harry J. Saal

OVERVIEW

Although APL systems have been available for over ten years,
almost all implementations share a fairly uniform approach
to the execution of the APL language, that of interpreting.
If one studies the internal details of existing systems, one
sees that this does not necessarily imply +that APL systems
interpret APL programs in their source form, nor that thexe
are not some fairly high powered technigques used to speed up
execution within the framewoxK of intexpreting.

From the very first APL implementations within IBM, source
statements have been scanned and partially analyzed during
function creation or editing, producing a c¢ompact intexrnal
form which is converted to external form for display
pPUIposes. Studies of compilexr performance for other
languages have shown that +this stage, lexical analysis,
often dominates the total time required foxr compilation
(assuming no elaborate global optimization or fancy code
genexration is latexr performed). In VSAPL for example, the
statement 4«12345 in a function executes about ten times
fastexr than the statement 2'4«12345°.

Some of the more interesting techniques beyond
straightforward interpreting of tokenized sourxrce found in
various interpreters from IBM or other manufacturers
include: parsing and retaining of the parsed intexrnal fozrm
as long as it is valid; on-the-fly generation of machine
code; copy optimization and usage of arithmetic progression
vectors; and incremental compilation with loop merxrging
(discussed latgr).

Techniques such as those described above provide for quite
efficient implementation of APL. These implementations
compare very favorably to existing small, fast compilers for
conventional languages such as FORTRAN. Notwithstanding the
above, the growth in usage of BRPL, particularly <for large
rroduction applications, results in continued c¢oncern with
the performance of APL systems, of which CPU time is one
factor. This has led to <c¢onsiderable interest in the
production of a compilexr for APL.

This paper is organized in three sections. The second part



is an annotated bibliography of what I considex to be
seminal papers relating to the techniques likely to be
useful in any compilexr for APL. I will mention only a few of
many articles devoted to the subject, and suggest that the

interested reader locate the others by <following the
references in the papers listed hezxe. The papers discussed
in the following section show a steadily 1increasing

understanding of +techniques suitable for providing higher
performance execution of very high level languages, such as
APL, without necessarily imposing costs that are
prohibitive.

The third section is devoted to enumerating some of ‘the
tradeoffs and c¢onsiderations involved in defining what is
meant by an "APL compilexr." It appears difficult to finesse
many of the 1issues raised therein so that no tradeoffs are
involved, and "everyone is happy."

APL systems are expected to provide much more than just the

APL Language itseltf. A processoxr for a conventional
language like FORTRAN oxr COBOL zrxelies on host system
components for all services. In contrast, APL
implementations provide not only the execution vehicle forx
the APL notation, but a consistent editor, a debugging

system, library storage scheme and access to external files.
This attitude towards the APL environment probably accounts
in large measure for the resemblance among implementation
technologies from many different computer manufacturers.

ANNOTATED BIBLIOGRAPHY

The papers discussed are presented in approximate historical
sequence. Differences betuween the date of development,
publication as reports vexrsus publication in a 3Jjournal,
etc., make exact sequencing somewhat difficult. There has
been a significant amount of re-invention as well. This may
be due in part to the lack of suitable bibliographic sources
for this material.

Let me reiterate that these papers are not the only relevant
ones. This is due in part to my own lacKk of appreciation of
the significance of some, and in part to the lack of space
in this paper. Consider this a set of pointers or milestones
along the path towards a compiler for APL.

1. An APL Machine
Philip Abrams
SLAC Repoxt No 114
Stanford Linear Acceleratoxr Center
Stanford University, Stanford, Califoxnia
February 1970



Although his interest is in machine oxganization, Abrams
introduces two techniques useful in efficient evaluation of
LPL expressions. He shows that a c¢lass of APL primitives,
"select operations", can be viewed as transformations on
addressing descriptoxrs accessing materialized APL objects,

without explicit evaluation. Thus one can "bheat" operations
by manipulating descriptors instead of generxating temporary
results. Abrams uses the term "dragging"” in his scheme to
mean deferring application of a «c¢lass cf non-select

functions, so as to provide loop merging when actual
evaluation is ultimately required.

Abrams demonstrates +the mathematical correctness of his

transformations, and evaluates the performance of his
machine organization on several examples, compared with the
so—-called '"naive" interpretation methods. Abrams was the

first to raise the issue of the suppression of side effects
due to optimizations, e.g., must one receive a DOMAIN ERROR
during the evaluation of 112 2+1 07

2. Efficient Evaluation of Array Subscripts of Arrays
A. Hassitt and L. E. Lyon
IBM Journal of Research and Development
January 1972, pp. u45-57

Hassitt and Lyon treat +the problem of optimizing the
evaluation of array subscripting in APL where the subscripts
take a variety of forms. They present algorithms to simplify
the addressing patterns involved in oxder to minimize the
number of loops and loop variables required. They show houw
the select operations of Abrams c¢can be transformed into
cases of subscripting, and theirx technigques then are
applied. They also extend the class of select operations to
include compression and expansion, omitted by Abrams.

The techniques described were applied in the implementation
of APL/CMS and the later VSAPL system, both in software and
microcoded assist versions.

Hassitt and Lyon remark that "ravel and some cases of
reshape can be c¢onsidered as selection operations but it is
usually not profitable to do this.™ We will return to this

point in the discussion of the paper by Guibas and Wyatt.

3. APL in PL/I
M. T. Compton
RC 4481
IBM Yorktown Heights Research Center
Yorktown Heigh+*s, New York
Rugust 1973

Compton describes a preprocessor foxr APL-1like extensions to
PL/I. Objects are restricted in shape and type through
standard declaration statements, and error checking is



essentially ignored. Compton treats transpose, reverse,
compress, expand, take and drop as forms of select
operations, in that they do not produce explicit code, but
control the order and number of loops over element
genexators. The output of the translator is executable PL/T
code, but no timing comparisons are presented with
interpretive APL execution.

Compton's interpretation of +the rules of APL 1is 1zrather
imprecise, leading to all kinds of interesting extensions,
e.g., An.€B, A+ ./B, A+ .1B, vector - matrix conformability,
etc.

4. Does APL Really Need Run—-time Checking?
Rlan M. Bauer and Harry J. Saal
Softuare-Practice and Experience
Vol. 4, 129-138 (1974)

The authors show that eighty percent of +the c¢hecking
performed by "naive” APL interpreters could be validated
statically. The sample was 39 APL programs, containing about
1500 references to APL primitive functions.

The APL statements were parsed manually, and
pseudo-intexrpreted +to analyze attribute information. The
lack of precise information about flow of control in
programs containing branches limits the accuracy of analysis
possible. Static validation can eliminate any need to check
for possible DOMAIN and VALUE erxrxrors in almost ninety
perxcent of the cases, whereas I[INDEX <c¢hetking can almost
never be removed (although present in very low frequency).

The authors conclude from the success of static analysis
that +the addition of declarations to APL is not a
prerequisite for compilation.

5. Steps toward an APL Compiler
Alan J. Perlis
Yale Univexrsity
Computer Science Research Report 24
January 1974

Perlis addresses the question of efficient execution of ARPL
expressions, but l1ike Abrams gquestions the need for
translation to conventional machine organizations. Pexrlis'
scheme treats APL objects as "streams" of values produced by
a "generator." 4 sequence of generators is called a
"ladder"™, a coroutine that is controlled by accessing
descriptors similar in flavor to Abrams'. Rathexr than
maintaining an access polynomial for addressing succesive
elements of an arrxay in ravel ordex, Perlis uses a scheme by
which the "next" element index 1is generated. This
introduces additional generality into the accessing scheme.
Perlis presents rules by which select operations (extended



as 1n Hassitt and Lyon) can be transformed into laddex
manipulations.

Perlis describes the overall flow of a compiler based on
ladders. Only APL expressions which are rank invariant azre
compiled to ladder c¢ode. They are translated on their first
occurrence during execution, and code is generated to check
rank changes on all later executions. If +the ranks change,
the compiled c¢ode is invalidated, and will be intexpreted on
later executions.

The forthcoming thesis by Terxrrence Miller (Yale University,
1978) gives more detail on the translation process,
considering both conventional high level languages and a
"laddexr machine" as tarxrgets. The process is essentially a
bottom-up method similar +to the "dragging” described by
Abrams.

6. Type Determination for Very High Level Languages
Rarxron M. Tenenbaum
Courant Computer Science Report 3
Courant Institute of Mathematical Sciences
New YorK University, N. Y.
Octobexr 1974

Tenenbaum's woxrK 1is based on problems associated with the
translation of programs written in SETL, a very high level
language based on set theory. Like APL, SETL is declaration
free, and identifiexrs may refer to objects of varying data
type and size. This work can be vieuwed as an extension of
the investigation of Bauer and Saal beyond shape analysis.

SETL datatypes are treated as a finite lattice rather than
completely nested (since SETL objects <c¢an contain other
objects to any depth). This leads to little loss of
information in practical cases. Global flow analysis is
performed on the programs, and datatype infoxrmation is then
propagated starting with constants and using the properties
of the SETL primitives.

Six programs were analyzed, containing 403 primitive
functions. The analyzer correctly determined the datatype
resulting from the primitive in 77 percent of the cases.

7. A Dynamic Incremental Compilexr for an Interpretive
Language
Eric J. Van Dyke
Hewlett-Packard Journal
Volume 28, No. 11, 17-23 (July 1977)

This translator for APL is very heavily based on the work of
Abrams. It compiles incrementally, generating c¢ode for a
statement when it is first encountered durxring execution. A
class of further optimizations of subscript expressions



similaxr to those described in Hassitt and Lyon 1is
incorporated.

The code produced is always preceded by "signature" code,
which validates the assumptions made during the translation
phase. Initial translation of an expression produces "hard"
code, in which the actual sizes of objects (e.g. the length
of a vector) are compiled into the code. On laterx
executions, if the code "breaks", i.e. does not pass the
signature tests, "soft" code is generated which is somewhat
slower and 1less dense, but more likely to suxvive further
executions. The <c¢ompiler accumulates information in a
bottom-up fashion similar to Abrams' dragging.

The actual code produced is not HP/3000 machine code due to
the addressing limitations that would be imposed on the size
of an APL uworKkspace. Instead, the code 1is for a
pseudo-machine which is supported by special microcode that
does virtual storage management. Once the appropriate data
is present, conventional HP/3000 code executes any data
manipulations or calculations required. Source APL
statements are maintained in an internal representation
which can be translated back to external form for editing or
recompilation, as well as in their compiled form.

8. Compilation and Delayed Evaluation in APL
Leo J. Guibas and Douglas K. Wyatt
Fifth Annual ACM Symposium on
Principles of Programming Languages
Tucson, Ariz.
January 1978

Guibas and Wyatt extend the work begun by Abrams and Perlis

and describe several extensions and improvements in
translation efficiency. In particulaxr, they show how to
compute "steppers"” (similaxr to Perlis' laddexrs) by parsing

an expression, performing initial rank and shape analysis,
and then propagating information in a top-down fashion.

The concept of a "conforming reshape" is introduced, where a
reshape of an array essentially preserves the shape of the
"last" axes, and merely adds "leading”™ axes. This mechanism
not only handles scalar extension, but more significantly
provides the means to deal with inner and outer products,
which must recycle over their arguments several times during
evaluation.

Merging of adjacent coordinates is performed using
essentially the same techniques described by Hassitt and
Lyon. A means of saving partial results, called "slicing,"
is introduced, whereby intermediate results that must be
generated because they cannot be deferred can be saved for
reuse in outer loops.



The authors state that the "code generated is well suited
for execution by a minicomputexr" although no examples are
shoun. The overhead zxemaining due to residual signature
checking for datatypes and shape analysis is not evaluated
in the paper.

SOME DESTIGN ISSUES FOR AN APL COMPILER

The view of APL as a system rather than as a language raises
a number of issues for the design of an APL compiler. This
section is an ovexrview of some of the questions which arise
in the considexation of any conmpiler for APL. Certain issues
seem to require a tradeoff to be made, whereas others relate
to the goals which motivate the construction of a compiler.

1. Language compatibility

APL c¢ontains a numbex of features which require either
interpretation oxr dynamic compilation during execution.
These features relate to the name space of APL objects,
rather than being strictly value oriented. For example,
full treatment of [J-input, [FX, ¢, etec., cannot be done
during a static compilation. One can c¢onsider alternatives
which restrict or eliminate this type of feature, or still
provide it but at the cost of potential performance
degradation or additional storage requirements.

Another problem arises from the dynamic interpretation of
the syntax of APL statements. It is well known that APL
statements <c¢annot be rarsed statically due to dynamic

localization effects. Even worse,due to the potential
effects of features such as JEX or [FX, one cannot fully
parse an APL statement prior to executing it. The syntax of

a statement after execution may be different from what it
was prior to execution!

Anothexr issue 1s that mentioned in the review of Abrams'
work, namely the suppression of certain error indications
due to optimizations. Must all expressions be executed as
literally as c¢onventional interpreters have historically
done?

2. Localization of errxors

APL users currently are given a fairly good indication of

where an error occurred during execution. A compiler which
performed any rearrangement of c¢ode sequencing (moving
constant expressions out of "loops” for example) could

indicate where an error was encountered, but the rules for
determining what had or had not been executed prior to the
detection of the error might be very different. In cases
where checking of conformability was factored out of complex



expressions (as in the work of Guibas and MWyatt described
previously), one might zreceive a LENGTH ERROR for a
primitive function prior to evaluating the entire xright hand
subexpression (which might produce a DOMAIN ERROR if
executed).

Current APL systems assume that once an error has been
detected the terminal usexs will use the features of APL to
determine exactly what went wrong. To permit arbitrary
expressions to be entered and evaluated one needs some form
of intexpreter or dynamic compiler. Alternatively, one could
provide a source level dump facility, or a facility which
converts a worKspace to a form which could be interpreted by
current systems.

3. High level optimizations

Some rather elegant optimizations are feasible in the APL
environment which are not very applicable to lower level
languages. Among them are the recognition of idiomatic usage
of APL. For example, pp could be recognized as a single
operation which gives the same result as the successive
executions of the individual primitives, but didn’'t actually
create an intermediate result. Cexrtain cases of recursive
function calls can be transformed into iterative execution,
becoming both fastex and less space consuming. Usexr defined
functions (IF is a classic example) could be integrated
inline 1in the <c¢alling sequence, ratherxr than actually
invoKking a function c¢all and return.

These optimizations are conceivable in the context of APL
due to its compact nature. However, they would zrequire
additonal compilation time, and make the corxrrelation of the
translated code with the source code difficult.

4. Declarations

As described in the discussion of Bauer and Saal's paper,
adding declarations en masse to APL seems unnecessary.
Houwever, a compiler might find cexrtain pieces of information
very valuable in producing better code. For example, Knowing
which functions are "external” and which are Just called
from within as subfunctions make it feasible to do global
flow analysis within an APL worKspace. (Even so there appeax
to be numerous problems.) Knowing which wvariables are
eventually shared during executions and which are not also
permits optimized +treatment of non-shared variables, which
are the bulk of the references.



5. Scope of compilation

AR compiler <could "look™ at wvarious units of text in
gathexring information and performing optimizations. These
could be at the level of individual statements, functions,
or worKspaces. The largexr the scope of the compilation, the
more optimizations are feasible, but at the expense of
longexr compile time. One pessible approach is to permit
users to select among a variety of optimization levels, as
in FORTRAN H.

A compiler might be able to produce better code in various
cases i1if it could interact with a user when it c¢ould not
detexrmine cexrtain facts.

Certain of +the technigques discussed in the second section
will produce especially good code for a certain type of APL
program (i.e. novice, scalar code versus advanced production
code). This complicates choosing a representative sample of
code by which to evaluate a compilerx.

A compiler could produce “object™ code that can be saved,
but with the attendant risk of not having the source and
object always agree. Undoubtedly some users would like to
be able to "patch" the object code and improve it beyond the
abilities of the compiler. Should there be a "link-editor"
foxr constructing modules from various sub-compilations? How
important is the ability to link to precompiled subroutines
from other languages, such as FORTRAN?

6. Space-time tradeoffs

There are a large number of £airly dramatic space-time
tradeoffs to considexr for an APL compiler. For instance, hou
important is the +time (real oxr CPU) taken for compilaticn?
Is the absolute maximum performance after compilation the
sole criterion? What about the size of the compiled code?

Code compiled directly +to machine language level is likely
to be huge when compared to currxrent APL internal tokenized
form. Altexrnatively, one c¢ould translate to some more
compact intermediate form which is intexpretable at high
speed, possibly with a microcode assist available.

How large a run—-time package should there be? Certain cases
of APL primitive functions which occur with low frequency
(say 0.1%) may have some super optimizations (say 100 times
faster than the normal case). How important are including
these cases (thexre are lots of them!)?

Dealing with model dependent tradeoffs is quite complex.
Certain constructs are superior on some 370 models, whereas
they are inferior on other models. Should the emphasis be on
the fastest or slowest models?



One way to resolve some tradeoffs is to rely on frequency

information,. An APL compiler might collect execution
frequency information dynamically, or use information
provided by the user, or from automatic static analysis.

Collecting this information adds some costs on its ouwn.

SUMMARY

I have tried to review some of the important papers relating
to techniques useful in compiling APL programs. There has
been considerable progress in understanding how to deal with
many of the data wmanipulation primitives of APL, without
actually performing data movement.

One <c¢ould produce a <compiler for almost the entire APL
language, for programs which are "correct"™ and don't require
interxractive debugging. On the othexr hand, it appears that
subtle issues relating to the entire APL environment are yet
to be understood.

Replacing today's interpretive APL systems by a compiler is
unlikely +to be a universally beneficial step. We have
presented a list of some of the issues which seem to require
a tradeoff in the design, and we hope that APL wusers
consider the zrelative importance and costs of the
alternatives.

10






