APL2Z EXPLOITING DB2 by James A. Brown
AND SQL/DS Harlan Crowder

July 1985 TR 03.267

July 1985
TR 03.267

APL2:Exploiting DB2 and SQL/DS
by

James A. Brown
Harlan Crowder

International Businessgs Machines Corporation
General Products Division
Santa Teresa Laboratory
San Jose, California

ABSIRACT

This paper discusses an interactive connection between DB2
or SQL/DS and APL2. This connection allows exploitation of
the facilities of the database products without the need for
any preprocessors or compllers. APL2 is inherently array
oriented and so accesses and processes relational tables all
at once -- not row by row. This 1is particularly significant
in light of the fact that A4APL2 is not an application that
uses relational data Dbut rather a general purpose
programming language in which such applications may Dbe
written.

APL2: Exploiting DB2 and SQL/DS

by James A. Brown and Harlan Crowder

INTRODUCTION

APL has always had the ability to deal with collections of
numbers or collections of characters as single objects,
These collections are called arravs. APL functions operate
on entire collections of data all at once without the need
for writing loops. The APL operators provide simple control
structures for modifying the way functions apply to data.

IBM's recently announced APL2 Program Product introduces to
the APL language additional data structures which allow the
representation of non-rectangular collections of data.
These arrays are called "nested arrays”.

The concept of nested arrays and the concept of a relational
database evolved independently over the last decade. In
light of this, 1t 1s surprising that tables from the
relational database map so perfectly 1into nested arrays.
This paper will discuss four aspects of the connection
between the relational database products and the A4PL2
product ~- the APL2 data structures, how they can be used to
represent relational tables, accessing DB2 or SQL/DS from
APL2, and examples of how APL2 programs can exploit these
facilities.

The resulting combination of products is not in 1itself an
end user application but rather represents a powerful tool
for the application programmer.

4PL2 Data Structures

APL has always provided for storage, display, and
computation on simple collections of numbers and simple
collections of characters. Here are some examples of this
kind of data.

4

3
B .
OPEN THE POD-BAY DOOR, HAL
c

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

The value of A is the single number 3. The value of B is a
string of characters. Such a character string is called a
yvector, The value of C is a table of numbers having three
rows and five columns. Such a table is called a patrix,

By default, when you ask for the value of a variable (like
A, B, or C), you get <the values displayed in a neat
arrangeaent as shown. In general, however, you cannot tell
exactly what the structure is. A one row matrix may look
very much like a vector. For this reason, APL2 provides a
function (a program, i1f you will) called "DISPLAY". When
this function is applied to data 1t produces a picture that
shows the structure of the data.

Here 1is the "DISPLAY" function as applied to the <three
variables we saw before:

DISPLAY A

DISPLAY B

r |
!OPEN TRE PQD-BAY DOOR, HAL}

DISPLAY C
r* -1
+ 1 2 3 4 5j
| 6 7 8 9 101
111 12 13
1

14 15]
]

A single value, like A, has no structure and sc only the
value 1s shown. The vector of characters B, however, does
have some structure. It is a list of characters arranged in
some particular order. This structure is shown tky a box
around the data with an arrow on the top edge to show that
the Adata is arranged along one direction. The matrix C is
pictured with an arrow on the top edge and an arrow on the

-2~

left edge showing that the data 1is arranged along two
directions.

APL2 has added some new data structures. In APL2, we can
have an arrangement of data where at any spot 1in the
arrangement is a single number, a single character, or any
other data structure.

Here's one example of a new APL2 data structuret

ENP_DATA
Abe Adams 1234 10 19 42
Bob Blue 2431 11 17 53

Charles Curtis 3142 12 25 39

This 18 a matrix having three rows -- each representing an
employee, and three columns -- representing employee names,
id numbers, and birth dates. Such data is called a pested
ACTAY in APL2.

The fact that ¢this array has three rows seeas pretty
obvious. The fact that it has three columns is questionable
-= 1t really doesn't look like three columns. We can use
the "DISPLAY" function to show the structure of this array.

DISPLAY ENP_DATA
r]
| 1Abe Adams! 1234 |10 19 421 |
| b—— e |
| |Bob Blue| 2431 |11 17 53| |
| —— OSSN R
I - o~ |
| !Charles Curtisl| 3142 |12 25 39| |
l J Lﬁ'————l '
Le -l

The outer box has an arrow on the top edge and one the left
edge and so it is indeed a matrix. Each item in column 1 is
a box with one arrow on the top edge and so 1s a character
string. Each 1item in column 2 has no box and so is a single
number. Each item in column three has a box with an arrow
and is a numeric vector. (The ~ on the bottom edge means
numeric.)

Here's another example of a nested array. This time each
item in row one and column one is a character string and
every other item is a single number.

-3~

SALES_DATA
REGION/QTR 1@ 2@ 3@ 4Q
NORTHEAST 632 1256 959 1033
MID-STATES 719 548 1179 1180
SOUTHEAST 1435 884 1020 1331

There are two things to notice about this array. First it is
an ordinary 4 by & APL2 matrix. Second, it 1looks
suspiciously like a table from a relational database.

A relation is like a matrix. A column in a relation may be
made up of numbers or 1t may be made up of character
strings; an item of data can be missing; and columns have
names. Thus "“SALES_DATA" 1s an APL2 matrix that 1is a
representation of a relational table. A table could also be
represented other ways and in a moment we'll show another
representation. Here's the "DISPLAY" of the same array:

DISPLAY SALES_DATA

J

r 1 ™
!REGION/QTR! 51Ql {ZQ]

r-.—————-‘
INORTHEAST | 632 1256 959 1033
e

r 1 '
IMID-STATES! 719 548 1179 1180
1 |

rﬁ
| SOUTHEAST | 1435 884 1020 1331
——

e o ——— e - =

m
e e e o o —— b= o — —

This should, by now, be a familiar picture of an A4APL2
matrix.

Relational Tables

A relational table is a matrix where rows present data about
one entity, columns have one kind of data for each entity,
and columns have names. We have aslready shown that such a
table <c¢an Dbe represented as a nested array. The
representation we used before has the titles as the first
row of a matrix. This is one of many ways that a relational

Y-

table can be represented and is convenient if only a report
is required. If, on the other hand, a computation 1is
required, then that computation is normally done only on the
data in a column and not on the title. Therefore we will use
another representation of a relation where the titles are
stored separately from the data.

For our example, let's assume we have a company called
"Hacker's International”. We are going to use a set of
relational tables to keep track of the personnel and the
organization. The first table needed is an employee table
which we'll call the Hacker's International staff table and
give it the name "HISTAFF"™,

HISTAFF
ID NAME INT DEPT YEARS SALARY 101 INGRAM ND DO1 2 18000
102 XAHAN BA DO3 6 32000
103 GALVIN JE DO4 5 27000
104 BANKS JA DO4 15 35000
105 MULVEY JS DO4 3 21000
106 DEAN RA DO2 12 38000
107 CROW PJ D02 6 24000
108 ZATON FA DO3 18 40000
109 FARR JJ DO1 25 50000
110 HARVEY HP D04 23 45000
111 LANAR NJ D02 21 45000
112 NELSON AB D04 7 32000
113 ADAMS SA DO1 12 36000
114 JACKSON MA DO2 1 16000

This table, in APL2 terms, is a two item vector. The items
are the column headings and the data. The APL2 function,
pick (3), can be used to select one or the other of these
two items. Let's look at this data structure in detail.

First let's look at the first item ~-- the column titles.

1°9HISTAFF
ID NAME INT DEPT YEARS SALARY

p 12AISTAFF

p " 1oHISTAFF
2 4 3 4 5 6

The first expression selects the first of the two items from

HISTAFF. If we ask for its shape (p), it tells us that - - ~

there are six column titles. Each title 1s a character
vector, If we ask for the shape of each item (p"), 1t tells
-5

us that the first title is a two-element vector, the second
is a 4-element vector,

etc.

The second item is the data portion of the two 1tem vector.

101
102
103
104
105
106
107
108
109
110
111
112
113
114

2>HISTAFF
INGRAN MDD
KAHAN BA
GALVIN JE
BANKS JA
MULVEY JS
DEAN RA
CROWN PJ
EATON FA
FARR JJ
HARVEY HP
LANAR NJ
NELSON AB
ADAMS SA
JACKSON NA

DO1
DO3
DOo4
DO4
DO4
Do2
Do2
DO3
DO1
DO4
D02
DO4
Do1
Do2

WwWnuouoNn

18000
32000
27000
35000
21000
38000
24000
40000
50000
45000
45000
32000
36000
16000

This 1s a nested array with a structure that should 1look
familiar.

The two item vector can be turned intc something that looks
more like a report with the following expression:

ID
101
102
103
104
105
106
107
108
109
110
111
112
113
114

INT DEPT YEARS SALARY

4,0 1]/HISTAFF
NANE
INGRAM MDD DO1
KAHAN BA DO3
GALVIN JE DO&4
BANKS JA DO4
MULVEY JS DO4
DEAN RA DO2
CROW PJ DO2
EATON FA DO3
FARR JJ D01
HARVEY HP D04
LAMAR WJ D02
NELSON AB DO4
ADAMS SA DO1
JACKSON MA D02

2
6
S
15
3
12
6
18
25
23
21
7
12
1

18000
32000
27000
35000
21000
38000
24000
40000
50000
45000
45000
32000
36000
16000

All this expression does is catenate (,) the titles as a new
row on the data portion.

If a fancier report 1s wanted, you can write whatever ycu
want in APL. Here's an example of a slightly fancier report,

-6-

PRESFORM HISTAFF
ID NAME INT DEPT YEARS SALARY
101 INGRAM MD DO1 2 18000
102 KAHAN BA DO3 6 32000
103 GALVIN JE DO4 S 27000
104 BANKS JA DO4 15 35000
105 MULVEY JS DO4 3 21000
106 DEAN RA D02 12 38000
107 CROW PJ D02 6 24000
108 EATON FA DO3 18 40000
109 FARR JJ DO1 25 50000
110 HARVEY HP DO4 23 45000
111 LAMAR WJ DO2 21 45000
112 NELSON AB D04 7 32000
113 ADANS SA DO1 12 36000
114 JACKSON MA DO2 1 16000

The function "PRESFORM"™ (meaning PRESentation FORM) does
essentially what the previous expression does except that it
puts a little decoration between a title and the column it
heads. Here is the definition of the "PRESFORM'" function:

fo] Z+PRESFORM T

{11 ~w TABLE PRESENTATION FORMAT
[2] Z+3Z((p"Z«tT)p""'=")

{31 Z+Z,(1]2>T

Line 2 puts a vector of equal signs under each head, and
line 3 catenates this combination as two new rows on the
data table.

We'll take a 1locok at how APL2 communicates with DB2 or
SQL/DS by taking the "HISTAFF" table and storing it in the
database and then doing some selections on it.

Here's how to create the database:

HISTAFF_C
CREATE TABLE HISTAFF

(ID SMALLINT,
NANE VARCHAR(8),
INT CHAR(2),

DEPT CHAR(3),

YEARS SMALLINT,

SALARY INTEGER)
IN APLCLASS

SQLX HISTAFF_C

"RISTAFF_C"™ 1is just an APL2 matlrix of characters. It looks
like a SQL CREATE statement. The function "SQLX" 1is used to
pass this matrix to the database system. Since no error
report is generated, the database accepted the request and
created the database.

The function "SQLX"™ is listed at the end of this paper.

Now we have created the database but it contains no data.
Here's how to put data into the table:

HISTAFF_T
INSERT INTQO HISTAFF

(ID, NAME, INT, DEPT, YEARS, SALARY)
VALUES(31, 12, 33, 314, :5, :6)

SQLX HISTAFF_I (25HISTAFF)

Again "“HISTAFF_I" 1s 3Jjust an APL2 character matrix but,
again, 1t looks something like a SQL command. This time we
use the "SQLX" function to pass two things to the database:
the insert statement and the data portion of our relation.

If we look at the INSERT command, we'll see that this does
not look exactly like it would in other languages. This is
because APL2 always tries to deal with whole arrays at once
-- not single items or single rows. In other languages the
INSERT statement would have names of variables (called host
language variables) where we have :1, :2, etc,

This expression causes the entire table to be inserted into
the database in what appears to the user as one operation.

Now that we have created the database and stored some data
in it, that information 1is now available to other uses of
the database. They <can access 1t any way they want

(assuming they have permission to do so)., We can access it
using SQL SELECT statements as follows:

S
SELECT ID, NAME, YEARS, SALARY
FROM HISTAFF
WHERE YEARS < 6
AND SALARY > 15000

SQLX S
101 INGRAM 2 18000
103 GALVIN S 27000
105 MULVEY 3 21000
114 JACKSON 1 16000

Here "S" 1is a character matrix which represents a SQL SELECT
statement. Passing this to the database, with the "SQLX"
function, gives us back a sub-table as an answer. This
sub-table is just a nested matrix to APL2 and anything you
want to do with it you can do. Note that, like the INSERT
statement of the previous example, the entire array comes
back at once. There is no need to write a loop that causes
the table to fetched one row at a time, The concept of a
cursor (as used by other host languages) 1s virtually
unneeded in APL2. You make a selection request and you get
back the answer all at once, For selections that produce
very large tables there 1s an option that allows you to
specify some maximum number of rows to produce at one time
but, in many practical applications, this facility is not
reqguired.

Exploiting the database gvsiem

You've now seen much of the facilities of SQL demonstrated.
Basically, everything you might want to do to a relational
table or a set of relational tables, you can do
interactively from APL2. Of course much of what you've seen
could be done with any of several other products that
support the database products.

Next we'll look at some of the ways we can exploit the fact
that we have APL2 which, in addition to being a pocwerful

computing language, also interfaces to many other strategic
products.

Producing Charts

One thing you might want to do with relational data is
produce business charts. The Interactive Chart Utility
(ICU), a part of GDDM, provides a set of menus which aid in
the production and tailoring of charts. APL2 provides a way
to call ICU with chart data obtained from a relational
table.

The following SQL query obtains total salary by department,
then uses the function SQLICU, listed in the appendix, to
call the Interactive Chart Utility:

SUMSAL
SELECT SUM(SALARY), DEPT
FROM HISTAFF
GROUP BY DEPT

SDATA+SQLX SUMSAL
SDATA

D01 104000

D02 78000

D03 72000

DO4 128000

TITLE«'SALARY DISTRIBUTION'®
SQLICU TITLE SDATA

The columns of SDATA are used as the label and y-axis data
in the chart call. After SQLICU 1is 1invoked, we enter the
home panel of ICU, from which we can select various options,
such as the display of a pie chart. On GDDM release 4, by

specifying the thickness of the pie, we can produce a 3-D
display:

-10-

SALARY DISTRIBUTION

27% DoL
347 Do4

20% D02

197 B85

Producing Form Letters

For our next example let's look again at Hackers
International. We have already seen one table that the
company might use -- the employee table HISTAFF.

Here's two more tables that this company might keep.

DEPT DEPTNANE MGRID LOCATION
D01 Administration 109 Dallas
D02 Production . 106 Boston
D03 Research 108 Boulder
Do4 Marketing 104 New York

-1t~

The first table relates department numbers to department
names and we'll call it AIDEPT. The second relates manager
identification numbers with location names and we'll call it
HIMGR. Notice that these three tables have some columns 1in
common. For example, HISTAFF and HIDEPT have a department
name in common. We'll make use of this in a moment.

This defines the database for the company. Let's suppose
that the president, Joseph Blow, wants to send a form letter
to each employee of the company. How can he make use of the
database to do this?

Here's a sample of the letter he wants to send:

April 1, 1984
Froms Joseph Blow
CEO, Hackers International
Silicon Valley, Ca
To: SA ADANS
Administration Department
Dallas

Just a little note to tell you that
Hackers International grew another 4007
in 1984, Our success was really helped
along by your efforts in Dallas.

Xeep hacking!

Regards, JB

We need three things to get this job done:
- the right information from the database
- a prototype letter
- a file that can be processed to print the individual

letters

To begin with let's select the data that we need. lere's a
SELECT statement that will do the job:

J
SELECT NAME, INT, DEPTNAME, LOCATION
FROM HISTAFF, HIDEPT
WHERE HISTAFF .DEPT=HIDEPT .DEFPT
ORDER BY NAME

This SELECT statement gets the information we need for each
employee: his name and initials, his department name and his
-12-

location. This information in not all in one table so the
FROM clause mentions two tables: HISTAF" and HIDEPT. The
WHERE clause regquests that these two tables be combined c¢n
equal department names -- that is, the selection is a join.
Finally, it requests that the results be sorted in
alphabetical order by name. This sort could have been done
in APL2 after the selection but the data base will do it for
us.

Here's what we get out of this selection:

OeMAIL«SQLX J
MAIL
ADANS SA Administration Dallas

BANKS JA Narketing New York
CRON PJ Production Boston
DEAN RA Production Boston
EATON FA Research Boulder

FARR JJ Adminigtration Dallas
GALVIN JE Marketing New York
HARVEY HP Narketing New York
INGRAM ND Administration Dallas

JACKSON MA Production Boston
KAHAN BA Research Boulder
LAMAR WJ Production Boston
MULVEY JS Marketing New York
NELSON AB Marketing New York

Notice that, in ‘addition to making the selection, we stored
it in the variable "MAIL" (and then requested that the value
be printed). Now we have an ordinary AFPL2 array that we can
process as we wish,

The next piece of information that we need is a prototype
letter. Here it is:

-13-

.nf
.11 40
April 1, 1984
From: Joseph Blow
CEO, Hackers International
Silicon Valley, Ca
To: 6INT. ENAME
S§DEPTNAME. Department
§LOCATION
sk
Just a little note to tell you that
Hackers International grew another 400%
in 1984, Our success was really helped
along by your efforts in SLOCATION..
.8k3;Keep hacking!
.8k3;Regards, JB
.pa

This prototype letter i1is just an ordinary segquential file
stored on the host system. The details of the A4PL2 functions
used are in the Appendix but 1f you want to produce the

letters, here's what you enter and a few lines of what you
get: :

'.im letter' SETFILE MAILHEAD NAIL
.se NAME = 'ADAMS
.se INT = 'SA
.se DEPTNAME = 'Administration
.se LOCATION='Dallas
im letter
.Se NAME = 'BANKS
.se INT = 'JA
.se DEPINAME = 'Marketing
.se LOCATION='New York
im letter
.se NAME = *'CROWS
.se INT = 'PJ
.se DEPTIIAME = 'Production
.se LOCATION='Boston
+im letter

You may recognize this as a SCRIPT file suitakle for

processing by the Document Composition Facility. Thus APL2
has tied SQL to SCRIPT!

This SCRIPT file could now be processed to produce the set
of letters as required.

-14-

conclusion

APL2 has access to the relational database products and many
other products. We have shown examples of how APL2 can be
used to produce business charts using the Interactive Chart
Utility, and form letters by using the Document Composition
Facility.

In addition, because APL2 interfaces to ISPF, you could
build a full screen panel application to be used in the
building and updating of a database.

Thus APL2 has the ability to tie together all the products,
to which it interfaces, in a unified package.

References

SH20-9216 APL2 Programming: Guide

- SH20-9217 APL2 Programming: Using SQL

- SH20-9218 APL2 Programming: System Services Reference
- SH20-9227 APL2 Programming: Language Refaerence

- SH20-9229 An Introduction to APL2

- SC26-4081 DB2 Application Programming Guide

- GH24-5065 SQL/DS Concepts and Facilities for VM/SP

- SH24-5068 SQL/DS Application Programming for VM/SP

- SC33-0102 GDDM PGF Programming Reference

- SC33-0111 GDDM PGF Interactive Chart Utility User's
Guide

- SH35-0070 DCF SCRIPT/VS Language Reference

Acknowledgement

The authors wish to thank Ed Eusebi who produced the chart
example.

-15-

trpendix:
4772 Functions

SQIX 1s the cover function wused in the paper for
communication with the database system. It merely passes the
request to the IBM supplied cover function (in distributed
workspace SQL) and strips off the return c¢ode before
returning the result. This allows us to ignore error
conditions during the discussion of the SQL interface.

VZ+SQLX SQL_STMT

{1] a SQL cover function

(2] 2+SQL SQL_STMT a Pass request to IBM cover function
(3] +(Ov.242)/0 A Return everything if error

[4] Ze22Z A ELSE only return data

The SETFILE function takes a relational table and builds a
SCRIPT file. The right argument to the function is a
relation in the form used in the paper -- a two item vector
with column titles first and the data matrix second. The
left argument is the header line to be appended above the
information produced for each row of the table.

Line 2 turns each item of the relation into a character
string even if it was a number originally. (The example we
gave in the paper did not need this because we only selected
character columns.) Line 3 builds each ".se” line up to and
including the open gquote given before the value. Note that
the column names are used as the set symbol names. Line 4
attaches to these lines the variable data from each row of
the relation and then builds the simple matrix from it.

VZ«P SETFILE HD:D;H
(1] a Generate DCF set symbols
(2] Des"22HD ATurn each item into characters
[3] He(c'.se "), "(+HD), "' = *''?' aBuild line
4] Ze>{2],(((pD)pA), "D),<P AReturn simple character matrix

The following function 1is the one .used to call the
Interactive Chart Utility. The right argument 15 a two-item
vector; a character string which represents the title, and a
2-column SQL table. This function can be changed to use
X-axis data, multiple Y-axes, and keys. For an explanation
of the values used in the call, see the description of AF126
in APL2 Systems Services, and of ICU in GDDM PGF Frogramming
Reference,

SQLICU uses the IO function from the APL2 distributed
workspace 1 UTILITY, to convert integers to System 370
characters.

-16-

11

€21

£33

(a]

(sl

(61

(73

(8l

(9]

(10]
£11]
(12]
(13]
(14]
(18]
(161
171
183
£191]
£20]
£211]
(221
(23]
[24]
£2s]
[26]
[27]
28]
£29]
[30]

VZeSQLICU TLYS3LABELS;TITLE;;X:Y3CCTL3;DAT:CTL;QI0R

010«
n INVORE INTERACTIVE CHART

UTILITY

(TITLE LABELS Y)«(14TLY),c(1]22TLY

LZABELS*<([2])aLABELS A
X*,1pY [

m OFFER TO SHARE WITH AP126
‘DAT)/'AP126 SHARE ERROR'

OES(v/2%126 DSVO~"'CTL*
A BUILD CHART CONTROL...
CCTLe"'

CCTL+CCTL,4 I0 O
CCTL+CCTL,4 I0 1
CCTL<CCTL,4 IO 1
CCTL<CCTL,4 IO O
CCTL*CCTL,'* ‘
CCTL«CCTL,"'* '
CCTL<CCTL.4 I0 O
CCTL+CCTL, .4 10,1
CCTL+CCTL, 4 I0,-pX
CCTL+CCTL,4 I0 O
CCTL<CCTL, 4 IOp+LABELS
CCTL<CCTL, 4 IOpTITL
CCTL+CCTL," % '
CCTL+CCTL,4 I0 O
CCTL+CCTL,4 I0 80
CCTL*CCTL,4 I0 1 "

LABELS SAME LENGTH
DEFAULT X-AXIS

LEVEL 0=0LD LEVEL
DISPLAY 13HOME PANEL,2=CHART
HELP 1=DISPLAY PFREY INFO

ISOLATE 0=ALL FACILITIES
FORMNANE »=DEFAULT
DATANANE »=OTHER PARNS
BINDING O=TIED,=FREE
DATA GROUPS

ELENENTS - NITH LABELS

KEYL 0=NO KEYS
LABELL 0=NO LABELS
HEADINGL O=NO HEADING
PRTNANE #*2UNXNORNN
PRTDEP O=DEFAULT
PRTWNID O=DEFAULT
PRTCOPY OQ=DEFAULT

» SPEC CHART-CONTROL,XKEYS,LABELS,TITLE
DAT<CCTL,"'"',(€LABELS),TITLE

A SPEC NUNERIC INFORMATION

Re(pCCTL)»1 05 (psX)sXs(ps¥)s(,Y),0,(p€LABELS) ,oTITLE

CTL+~10,R L]

CALL ICU

-17-

