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ABSTRACT
 

This report explains and demonstrates the use of complex numbers in APl2 tor 
two-dimensional graphics applications. VVe discuss the APl2 concepts of data and data 
types, complex numbers, arrays. and operations on arrays. We show how complex 
numbers and arrays of complex numbers can be used for two dimensional computer 
graphics. Finally, we demonstrate these graphical concepts and techniques, using 
examples from elementary fractal geometry. 





The graphic images for this report were created using the Graphical 
Data DispJa\' Mana~er running under APL2. Text and grepiucs were 
integrated using the Document Composition FaciJit). The report was 
produced on tho:- .,} \1 4250 printer 
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Introduction 
Techniques for using graphics in computer apphcat ions 
is current ly a popular topic among software designers 
and users. APL has traditionally be en a good graphics 
programming tool because graphics data structures are 
easily created and manipulated using APL arrays and 
functions, and because APL has provided frood interfaces 
to existing graphics services. In IBM/~ new APL2[1]. the 
domain of numeric data has been expanded to include 
complex numbers. This development. in conjunction 
with the APL2 interface to the Graphical Data Display 
Manager (GDD:\f)[2]. has implications for APL graphics 
applications. The purpose of this report is to explore 
and demonstrate how complex numbers can be used for 
two-dimensional graphics applications 

FIrst. we discuss the APL2 concepts of data and data 
types, complex numbers, arrays, and operations on 
arrays. Then we show how complex numbers and arrays 
of complex numbers can be used for two dimensional 
computer gr aphics. Finally, we demonstrate these 
graphical concepts and techniques. using examples from 
eiernentary fractal geometry. 

APl2 data and operations 
In this sect icn. we describe how APL~ represents data, 
and. In particular. how complex numbers are used and 
exhibited. \\'e look at some of the oper-ations that 
manipulate complex numbers, and develop the concept 
of general operations on arrays. 

APl2 data 

APL2 has two kinds of data .- numbers and characters .. 
from which arravs are structured. The elements of 
character da ta ere the APL2 character set. for example. 
t I:. I and "c ". Previous implementations of APL limited 
nurnerrc data to boolean (0 and 1), integers (e.g., 7). 
and Teals te.g .. 3. 1415 g). APL2 has extended the 
dornam of numeric data to include complex numbers. 
Th« complex domain is a superset of previous APL 
numeric data. there are complex number 
representations for boolean, integer and real numbers. 

Real numbers can be thought of as being composed of 
two parts .. an integer part and a fractional part. These 
parts are connected by a decimal point ( .). Complex 
numbers may also be thought of as being composed of 
two parts -- a real part and an imaginary part. These 
parts are connected by the letter 'J' WIth the real part 
on the left and the imaginary part on the right. For 
example. the complex number 3J4 has real part equal 3 
and imaginary part equal 4. Real numbers can be 
interpreted as complex numbers with imaginary part 
equal zero. . ·~us, 5. 3 is 5. 3JO. 

In APL2. a complex number can be specified as %J~v, 
where x is the real part and)' is the imaginary part. 
Complex numbers can also be specified using the 
magnitude-phase forms mDp (for phase in degrees) or 
mhp (for phase in radians). The relationships between 
these representations is illustrated in Figure 1. 

mDp 
xJy 

y 

o--------....~ 

Figure 1: Complex number representations. 
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The same number can be represented as xJy or mlrp. In 
the ,.,T form. x and .' are displacements along the real 
(horizon tal) and imaginary (vern cal) axes. respect ive lv . 
In the [ form. m is the distance of the complex pomt 
from the origin and p is the angular displacement. in 
degrees. from the horizontal. 

In APL2. complex numbers are alwavs displayed using 
the J form notation. For example. 

I: T';(-,t. ..... 

4J3
 
5D36.869897
 

4J3
 
5RC.6435011
 

4c.73 

Operations on complex numbers 

All the usual arithmetic operations in APL2 are defined 
on complex numbers. We will be concerned here 
primarily with addition and mu ltrpl ication 

Multiplication of complex numbers 

Multiplication of complex numbers is best understood 
using the D form, If Rand 5 are complex numbers. then 
their distance from the origin is I Rand 1 S, 
respectively. Their angular relationship to the rea} aX1S 

(phase) is 120R and 1205 radians. respectively Th­
product Rx5 has a magnitude, which is the product of 
the magnitudes ( IR ) x ( 15). and phase. the sum of the 
phases + /120R S. For example. 

SD3C x 2DC::C 
s.rs . 66025 

FMTFD 5D3C x 2D9C 
:'GDJ.~C 

Here FMTPD is a function from the APL2 distributed 
workspace 1 MATHFNS which drsplays complex 
numbers in the D form. 

Addition of comp lex numbers 

Addition of compl .'X numbers is best understood when 
usmg tht: J form. If Rand E are complex scalars. then 
the sum R+S has real part equal to the sum of the real 
parts of Rand 5 (+ / gaR S) and imaginary part equal 
to the sum of the imaginary parts of Rand S 
(T /110R S). For example, 

J4J3-t3J5 
7J8 
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Operations on arrays 

..t\n array is a collect ion of numbers and characters 
Most APL operations applv to a whole collection all at 
once This permits U~ H) control the sequencing of 
operat ions by arranging the structure of the the data 
rather than the structure of the program, In this paper, 
we will onlv use the APL scalar functions addition. 
subtraction', and multiplication All the examples here 
work the same way for any of these functions. 

If we write a list of numbers (8 vector) on each side of a 
scalar function. the operation is applied independently 
between pairs of corresponding items. one from each 
side. For example. 

:1 2 2 -+ 1G 2C ... 1.. 

means 
(1+1C) (2+20) C2+3C) 

and results in 
:: 22 33 

If we write a vector on one side but a smg le number on 
the other side , the scalar is paired wrt h each item of the 
vector. For example. 

j. + :C 2C 30 
means: 

(:+1C> (1T:0) (~~2C) 

and results In 
:: 21 3::.. 

Anv item of an arrav mav itself be an array Suet an 
array is ca lleri a nested arrc» Her« 1~ an example wit n 
a vector that conra ms ot her vectors a- items 

( .. = ~ h --:: " _..... ..... '" ) 

me-ans 
(:~:C 2C 2:) (~x2S :E :-) 

and results ir. 
:: 2C 3C 3C 2: 3~ 

APL has a wav to make any arrav into a scalar bv us mg 
tht' funct ion enclose (c). In the following example. the 
array < ; ; L': ::: is a scalar and so 1~ pa ir ed wah 
each item of the vevt cr left argument 

: L 2 xc:: 2C ~C 

means 
(1 x : : 2: 3:)(2~:: 2: 2:)(3 x l C 2C 2~) 

and results in 
1: 2C 32 20 ~C 60 30 60 9; 

There is another important way to apply functions. 
Outer product (0 • F) appl res the function F to pairs of 
data one from each SIde In all cornbmations 

10 20 0.- : 2 3 
987 

1~ 18 17 

"All combinations" in 8 problem means "outer product" 
in APL. Outer product applies to both primitive and 
user-defined functions in APL::. 
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Complex numbers for two-dimensional graphics 
In this section, we de-scribe how points in the plane can 
be represented as complex scalars. how polygonal 
object- can be represented as simple complex vectors. 
and how collections of objects can be represented 8S 

nested complex arrays. V;e also show the geometrical 
effects of multiplication. addition. and subtraction of 
complex arrays 

Graphical data representation using complex numbers 

Real numbers are a special case of complex numbers: 
reals have imaginary part equal zero. For example. 
- 2 • 5. 1. and 3 . 1 Lt:' 5 are real numbers; thev can be 
represented spatially as points on the real number line. 
as shown in Figure 2. 

Similar-ly, complex numbers can be represented as 
points in the complex plane. The real part of a complex 
number determines. its location along the real or 
horizontal axis. and the imaginary part determines its 
location along the imaginary or vertical axis. For 
example, the numbers 3J2. 4, 0C/"-2. -3J-l, and 2J1 
car, be represented as illustrated in FIgure 3. 

A common operation in computer graphics is to 
represent two-dimensional polygonal objects as ordered 
lists of points in the plane. For example. the equilateral 
triangle TRI is defined as 

Since the first and last points are the same. connecting 
the points results in a c lased figure in the complex 
plane as shown in FIgure 4 

Similarlv, the list J...RRO;"'· is defined as a vector of 
length i 

AF..R:JW ......... 0e: • 2 5 . 5c,'" • 2 5 . 5 :1 J . 5 • 5 (..1 1
 
.5J.75 CJ.75 OJ.25
 

The result of drawing .tJtR~~· in the complex plane is 
shown m Figure 5. 

-2.5 1 3.1415
I .: I •o 2 3 4 " 

Figure 2: Points on the real number line. 

OJ2 !::::::.::~::::::::~::::::::I::::::::I:::::::: ···:::·:~:::··::::: ...:::::I~.~~:::::.::·.: 
::_._.__ ~,; i.......•:-:~~_I.:._._ . ~ ~ _ ---- -.~ --_. - ...
...-, ~ 

, • I 4 t 

OJO.....-,....,.-......----.....- .......- ......---...-..................
 

0.....J-_+2 ----.; --- ..f - ~.,.'-~ 
i, -- .. - ••~•••••4:\::.... t.:. ­ •••••••~~.~.~~:'

OJ- 2~··· .- ~ ~ ~ ~ _... . -i- ···'i .....•.•~ - -- .-- -._. - . 

~ ~ ~ 
, , 

- . - -.--~-- --~ ~ ~ 

o 2 .. 
Figure 3: Points in the complex plane. 

~, - ~ -~. ·----T ··..- ·.. ··.._ T·-~ ..-··· -.. --.-.------..-- -- -&-.& -~, -------- .. 

: ~-- i. -~-.---.--.+- _.......•... 1 ._+•• __•__•••• _•• ~
 

: --·-··-·-f--·-······~·····-····~·· - '"'--_ -+·········~-.- --.--, 

............ ~ + ~ ; .. - --. -- -. ~ .- .. ~ & ~ ..
 

,.........•..••••::..::..::.:_.:::::.:::::::J _ : ..-.-..- -.. ..:.. ------ ...:.. ---~ .:.. _. , ,
 

Figure 4: Points of an equilateral triangle in the complex 
plane. 



This idea can be extended by allowing col lect ions of 
polygons to be represented by neste-d hsts of lists. For 
example, the depth-S list NEST is defined as 

T ~ -4J2 -4J-l -lJ-1 -~J2 

S + lJl 4J: 4J-2 lJ-2 :Jl 
NES'I' + T S 

Drawing and shading the two items of NEST give the 
illustration in Figure 6. 

\\·e can define 8 recursive APL2 function DRJ....,/ that 
interprets simple arrays as collections of points 
describing polygonal objects. and nested arrays as 
collections of such objects. DRA~r has the follow..ing 
definition: 

[0] DRAW A
 
[lJ -+(l<.=A)/L1
 
[2J MOVE ltA~,A
 

[3J JOIN l ... A
 
[4J ~o
 

[5J L1: DRAW··A
 

Line [1] tests the structure of the argument A. if A is 
nested. then a transfer of control is made to the 
recursive call at line [5]. Line [2] causes a move 
(without drawing) of the graphics pen to the coordinates 
given by the first scalar in the simple vector A Line 
[3] joins points given by the remaining elements of A 
with a series of straight lines. starting at the current 
point. The number of line segments is - ~ +C ,J... Line 
[L, ] exits the current level of call to DR/"~' Line [5 J 
performs the recursive call: if A is nested. then DRA~' is 
applied to each item of A. 

The definitions of the generic subfuncr ions MOVE and 
JQIN are appropriate to the graphics management 
subsystem used by DRAT,/. 

Note that this representation and use of complex arr-ays 
for two-dimensional polygonal objects lends. itself to 
edge-representation as well 8S to point-representatron 
Edge-representation simply requires an extra leve1 of 
nesting. For example, in point-representation. the- unit 
square is 

o 1 lJl OJl O. 

The corresponding object in edge-representation is 

(0 1)(1 lJl)(lJl OJ1)(OJ1 0). 

Applying DRAW to these two objects gives the same 
graphical result. 

•••••• ·;""_·_-_·· -":'-_ • .. • 7 • ; • .. __ ·_·.
··_·······-T·····_···~·······_·T·········:·_······· 

_"""" ..c..•.•••••.,.••••.•..•+ "'- _.... . _._._.'.: _~ _.-+~:,~:;::' ••..••..•. ......•::' _ _ _ - - _-....•..,
••. _ __ .•......•. ••, ..

··········,_········T·······r·······..············· - . . 

;........•.; j_ --j.......... :::::::::~::::::::l:::::::;:::::::::;::::::::::j
j 
~ ·-t···- -.-.--t·· --..~ ~. ---.,- . 

Figure 5: Points of an ar-row in the complex plane. 

l: : l 

····················r········:·············_·······: 

.-.- -.--_.-.- _._ - ~ ; _..-.
 

~ _ ~- - - -~ .. - __ j --......... _._ ..l .._._._ l. ..~ __~_ _.._ __ _..:
 

Figure 6: A nested arra)' as a coliectioD o( objects. 

.. 5 .. 
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~ ~ ~ ~:- ·· -··7.. - .. ,. ..
Complex multiplication 

\\'e previous lv gave a mathematical description of : ID90XA 
I ~ _ -- _ ... ··········t ~ +••••••••••••••.complex multiphcatron. here i~ the geornetr ic 

interpretation If Q is a point in the complex plane, :A 
........ -_ -'" ...
then the product of Q and a complex number in the j-----··---+----·--r-----·~--·----·r-----

degree-form mEp gives a result that has distance from 
the origin of Q altered by a factor m, and has been 
rotated through p deg-rees wit h respect to the origin 

~ - ; - _ ~ - ..: -........ . _ ~ ~ - -~ ~
For example, if A is 2Jl. then lD90 xA has the same 
magnitude as A but has been rotated 90 degrees 
ant iclockwise with respect to the origin. The product ; ~------]--..------+.-------- ~_~~_I_l_~_~:~ ------. __l _. 
2D180 xA is twice as far from the origin as A 8T.!d has j !2Dl:80XA ' ! ~ 
been rotated 180 degrees with respect to O. The product 

~ __ i l & _ _. _ _ ~.. • •• to _. _.;.. __ ..:.. ~ ~. _ 

• 5D-12C)l(A .s half the distance from the origin as A 
r~_ 

and has been rota t ~ r. 120 degrees clockwise around the Figure 7: Geometric effects of complex multiplication,
origin. These examples are illustrated in Figure 7. 

What has been described here for multiplication of 
scalars carnes over to other instances of APL scalar 
multiplication. For example, lD9 0 xA.RRO~· is drawn 

: _ ~ __ _. _ •• r ~ - ~ ~.and shaded in Figure E-;, 

Similarly. nested coller tions of objects can be created 
•••••••••- ••• - ••.•• - •••..•• _ ••••••••• - .•••••••• 

and transformed using scalar mult ipl ica r ion. For 
example, the result of ;. ~r' ".+ + +...~ 

1 1[' 9: lD 18 C, :.J 2 70 x ct.RRC;·: 

is drawn and shaded in Figure 9. (Recall that the 
enclose funct ion makes ARRJ....' a scalar. which is then
 
paired with each of the 4 numbers on the- left) ~ ..········f··········~········· .~ ~..........
 

It. I IAll points that define TRJ have the same magnitude. as ~ ..........•. - ;.. _ ~ ~.......... 

do all points that resu lt from 

1 lD3C lD6C lD9G x eTR: 

_ _~ _ •• __ ._ _.~ _ _ ~. _ ••• r ~. 

~-"'.".'~""""'.~""""'.l"""""~""""'" 

. " ~ .~ ~ + 

. + + .....•...~ -+.••.•.•.• 

-. _ _ - . _ _ . 

Figure 8: Rotation of points by complex multiplication,The collection of objects resulting from this express ion 
ar-. drawn in Figure 10. 

, 
1 I 

- _._-­ - ~- .........•.....
 

... .. r ~ _ •• _ ~. ~ . ·············+·········t····_···.... ········ . 
...................... r _ ~ _ ~ _ ~ ~ ~ ..
r:.. -.----- .-;.---------•. -------.---.-----­

l.. __ : - .:.. __ ._ .: .i ~ ~ ~._ ..:.. . 

Figure 9: Replication and rotation of arrow points, 
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Complex addition 

You have seen that addition on complex numbers 
requires only adding the rea] and rmag mary parts. In 
graphics terms. complex addition gl\'€:- translation of 
points in the complex plane. 

For example. if h is 2e':1. then A+A is 4J2. A-S 1S 

- 3Jl, -A is - 2't."-1. A-::',,"2 is 1(.,"-1. and A+ O~...- 3 is 
2J- 2. These examples are shown in Figure] 1. 

Scalar addition of simple arrays representing polygonal 
objects corresponds to translation of these objects in 
the plane. For example. the ARROW array can be 
translated by the expression 

This expression is drawn and shaded in Figure 12. 

In a similar way. objects can be translated and 
replicated by addition of nested arrays. For example. 
the expression 

is drawn and shaded in Figure 13. 

The scalar function CJ is useful for creating and 
manipulating complex numbers in APL2. Gel has the 
following definition and use: 

[0] Z+R CJ 1 
[lJ Z+R+OJl xI 

3 CJ 5 
3J5 

5 co 1 2 3 
5J1 5J2 5,,"2 

2 4 6 c. c: ... 
- ... 5 7 

2J1 2J3 2J: Lt}" 7 
4 ,.~c.. _ 4J3 4c.."'5 4c..T 

.-, 

6J1 6d3 6t,15 6 ~-,c.. I 

The result of eel is an array of complex numbers. the 
rea] parts of which are composed of the left argument 
and the imaginary parts of which are composed of the 
right argument, follovving the rules for scalar functions. 

··-··-­ .. ·1··········~·········~· - - --­ .. ­ -. 
, , 

r··········~··········t····_··_-:- ~~I!Iw.,. - ..· ······-··_ - . 

~ : 
•.•.••.•••.t..••.•••••t··········t··········~·····--··. 

~- __ - .:.__ - '; __ ...
 

Figure 10: Replication and rotation of triangle points.
 

:-_.--~ ~"" - - ; _-~._----

;····-·····t·········~·········~·········t····_···· 

; ;A-5: 
: - •••••••• ~ •• _••••_- ••••••••• -"!" ••••••••• ~. _.......
 

~ _-_.; ~ ~~.~_ .._- . 
j ~ : 

;-- - ~ -..-. t·········· ~- ..- ~ . 

:A+A 
········-·r····-·····~··---·-····-··················~ 

iA . 
• •••••••• -.- •••••••••••••••••••.••••• _- ••••••••• _._.; 

:A-1J2 
_.. - - +.­ _-_._.~ __ .._.. 

. _­
;A+OJ-3 __ .__.. __ _ ..__ __. __ 

. 
. 

Figure 11: Geometric efTect& of complex addition. 

~ ~ ~..----- ;- ;- _-_ ;­

~..- _~. __.._..__ ~ _----.~ .. 

,, _.- ; .;.
.
..__ . 

, . 
r·······~-·(--·~----t--··· ..+_···· .... - ~--_ - _-_ _-- - ~-- _ ­

......._.._........ ._.._.. ...... ........_..-... r-- .......·
~r-·········l-··-···r······l······ ·l----·--·-· 
:. _ _-_ _~ _- __.:._--_..---.. ~-_._--_.
 

Figure 12: Translation of points by complex addition.
 



The function CJ can be used in the context of complex 
addition to fill the complex plane with replications of 
the Al?ROW object. The expression 

is drawn and shaded in Frgure 14. ~"e subtract 5J3 to 
move to the bottom left corner. v.,r e then add to the 
scalar arrow at that spot, complex integers 
corresponding to the other grid points on our complex 
plane. (The grid lines are elided In this picture.) 

Complex multiplication and addition can be combined to 
simultaneously translate. rotate. and replicate objects 
in the plane. For example. the following sequence 
involves all three operations: 

A 1 lD30 1D60
 
B 1 lD90 iD180 lD270
 
B x cA x cARROW + 1.66J-.5
 

The result of the final expression is drawn and shaded 
in Figure 15. 

ARRCW is first translated, replicated, and rotated in the 
first quadrant, and then this intermediate result is 
replicated and rotated into the other three quadrants. 

: __..:.- _~--- ..-; -: __.. . ;"' _..i -_ _ a. 

, , 
~ 

. 

:· -;--· r ,;. :
_

-.. 
......J:::::::::::::::::.::::: :..::.:.:•.••.. . , 

:---·······~··········T·········t·····+··· 

L--..-_. --~ L ; ;.... ...f ~:::; - ::~, . , , i [ 1 

. ,. 
~.- ._-. ····r--··-·· ···r, - i··-·-····i,·····--··· -..~ ~ l ..;. -- . 

: ~ : ~ I 

i. __ ~_ _.__ i~ ~ .1_ ;. ..:.. ~ _._.:.. _ 1 "". __.. 

Figure 13: Replication aDd traDslation orarrow points. 

Figure 14: Multiple replication of arrow points. 

~ -- ~- &. ~ _.-';_ - 1 ---- _4I- -:-_ .. ~ - .. - ~---_ - ~ .._ --..- -.. 

[··.:·:.·.1··.·::.•.1..::.:.'-:: ~fi·:··:·:'.·::.:···:i··::····.:: 

Figure ]5: Translation, rotation, and translation of azrow 
points. 



Examples from elementary fractal geometry 
Fractal geometry is a relatively new mathematical 
discipline concerned with characterrz ing the 
irregularity and fragmentation we encounter when 
attempting to give a geometrical dcscr iptron to natura] 
objects In the Introduction to The Fractal Geometry of 
Nature [3J. Mandelbrot gives the following motivation 
for invent ing 8 "geometry of nature": 

Whv 15 geometry often described as "cold" and "dry')" 
OnE' reason lies In Its inabihty to describe the shape of a 
cloud. a mountain, a coast line. or a tree. Clouds are not 
spheres. mounrams are not cones, coastlines are not 
circles. and bark is not smooth. nor does lightning travel 
In a st rarg ht lme. 

Many patterns of Nature are so irregular and 
fragmented that. compared with ,., standard geometry, 
~8tun) exhibits not simplv a higher degree but an 
altogether different level of complexitv. 

The existence of these patterns challenges us to study 
those forms that (standard geometry) leaves aside as 
being "{armless," to mvesngate the morphology of the 
"amorphous .. ,.. 

Responding to this challenge. I conceived and 
developed a new geometry of nature and implemented its 
use In a number of diverse fields. It describes manv of 
the Irregular and fragmented patterns around us. and 
leads to full-fledged theories, by identifymg a family of 
shapes I cal! fract-als, 

We will not pursue here the theory and application of 
fractals and fractal geometry; a growing body of 
literature addresses those topics. Rather. we want to 
show some simple fractal constructions in order to 
demonstrate the recursive computational facilities of 
APL2. 

Initiators and Generators 

Fractal constructions are carried out in successive 
stages, with refinements being applied at each stage of 
the process, One begins with t9.'O shapes, an initiator 
and a generator At each stage, the generator shape 
replaces eac h instance of the initiator shape; the 
resulting object is then operated on in a similar manner 
at the next stage of construction. 

A simple example of this technique is the construction 
of a triadic Koch island: see [3J. Chapter 6, This 
construction begins with an equilateral triangle with 
unit length sides as the initiator. The generator is 
given by the following shape: 

Each line segment of this generator is length 1/3, A 
single application of the generator to the initiator gives 
a star hexagon, or Star of David, Subsequent 
applications give the sequence of objects in Figure 16. 

Figure 16: Triadic Koch i.laud aequence. 



An APl21mpiementation 

The objects in FIgure 16 can each be represented as a 
vector of points In the complex plane. The objects w ere 
all computed using the APL expression 

Z + N ( Gl FRAC ) TRI 

TRI is 8 complex vector of length 4 that give the points 
of an equilateral triangle. Gl is 8 function with the 
following definition. 

[0] Z·A Gl B 
[lJ ~ 

[2J ~ s 
[3J A / \ 

[4J ~ A--R T--B <:= A----------B 
(5J ~ 
[61 Z+(B-A)i3 
[7J Z+(A+O,Z,(Zx(3*.S)xlD3C),(Z x2),P 

The arguments A and B of G1 BTe complex simple 
scalars representing two points in the complex plane 
The result Z of G1 is a complex simple vector of length 
5 representing the points of the generator shape. For 
example, 

1 Gl 4 
1 2 2.5JO.866 3 4 

The operator FRAC applies the generator function (G:) 
to the initiator array (TRI); the number of operatron 
stages is given by the left array argument N. The 
FRAC operator has the following definition. 

[oJ Z+NCGEN FRA~)INI~ 
[lJ Z+INIT 
(2J -+(N=O)lO 
(3J 2+2 GEN/Zr-: Z+E:(-(OZ)ZlpZ)+o·Z 
[5J Z+(N-1) (GEN FRAC)Z 

At each stage of (possibly recursive) invocations of 
FRAC, line [~- ] assigns the current initiator to t h­
result arrav Z. Line [2] causes 8 n exi t if no more 
stages of the construction are to be performed. Line 
[3] performs a pairwise GEN·reduction of elements of 
the current initiator For example. 

2 G1/1 4 7 
1 2 2.5JO.866 3 4 4 5 5.5JO.86E 6 7 

P 2 Gl/1 it 7 

o 2 Gl/~ ... 7 

Line (4 J drops the last element of all but the last 
subarray created in the reduction step, and then E!'\Lr~Ts 
the result. This step essentially excludes line segments 
of length zero from the new graphical object. Finally. 
line [5J recursively invokes FRAC to perform the next 
step of the construction. 
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The FRI:.C operator is a paradigm for a farni ly of related 
fractal constructions; we can use other initiator arravs 
and generator functions to obtain different graphical 
sequences. For example. the expression 

N (G2 FRAC) SQR 

computes the sequence of quadric Koch island in Figure 
17: see (3). Chapter 6. SQF is a complex vector of 
length 5 representing points of the unit square. The 
function G2 produces the following generator shape for 
a umt line segment: 

G2 has the following defrnition: 

[c= Z+X G2 Y;ADG;S;BCEF 
[1 i ~ 

[2~ ~ B--C 
[3J fJ I! 
[L.] A X--A D G--Y <:: X---------Y 
[5J ~ ! 
[6J ~ E--F 
[7J ~ 

[8J ADG-X+l 2 3xS+(J-X)f~ 

[~J BCEF+ADG[l 2 2 3J+: 1 -~ 1xSxlD90 
[:cJ Z+X,(ADG,BCEF)[1 4 : 2 6 7 3J,Y 

Conclusion 
\\Y e have introduced here the use of complex numbers in 
APL~ for simplifying and understanding some techniques 
and operations in two-dimensional computer graphics. 
In particular. we have demonstrated the use of complex 
simple scalars for representing points in the plane, 
complex simple vectors for representing polygonal 
objects. and nested arrays for representing collections 
of polygonal objects. We have shown ho....' graphical 
objects represented by complex arrays can be scaled, 
translated. and rotated using scalar arithmetic in APL2. 
These techniques may be particularly useful in APL~ 
graphics applications that are prrmarily concerned with 
representing and manipulating two-dimensional 
graphics objects. 

•
 

Figure 17: Quadric Koch island sequence 
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