Santa Teresa
Laboratory
San Jose, CA

Graphics Application Using Complex by James A. Brown
Numbers in APL2 Harlan Crowder

March 1985 TR 03.265

March 1985
TR 03.265

Graphics Applications using Complex Numbers in APL2

by
James A. Brown
Harlan Crowder

International Business Machines Corporation
General Products Division
Santa Teresa Laboratory
San Jose, California

ABSTRACT

This report explains and demonstrates the use of complex numbers in APL2 for
two-dimenstonal graphics applications. We discuss the APL2 concepts of data and data
types, complex numbers, arrays, and operations on arrays. We show how complex
numbers and arrays of complex numbers can be used for two dimensional computer
graphics. Finally, we demonstrate these graphical concepts and techniques, using
examples from elementary fractal geometry.

The graphic images for this report were created using the Graphical
Data Displav Manager running under APL2. Text and graphics were
integrated using the Document Composition Facility. The report was
produced on th: -»\ 4250 printer

Introduction

Techniques for using graphics in computer applications
is currently a popular topic among sofiware designers
and users. APL has traditionally been a good graphics
programming tool because graphics data structures are
easily created and manipulated using APL arrays and
functions, and because APL has provided good interfaces
to existing graphics services. In IBM’s new APL2{1]. the
domain of numeric data has been expanded to include
complex numbers. This development. in conjunction
with the APL? interface to the Graphical Data Display
Manager (GDDM)([2]. has implications for APL graphics
applications. The purpose of this report is to explore
and demonstrate how complex numbers can be used for
two-dimensional graphics applications

First. we discuss the APL2 concepts of data and data
types, complex numbers, arrays, and operations on
arravs. Then we show how complex numbers and arrays
of complex numbers can be used for two dimensional
computer graphics. Finally. we demonstrate these
graphical concepts and techniques. using examples from
elementary fractal geometry.

APL2 data and operations

In this section. we describe how APL: represents data,
and. in particular. how complex numbers are used and
exhibited. We look at some of the operations that
manipulate compiex numbers, and develop the concept
of general operations on arrays.

APL2 data

APL? has two kindz of data -- numbers and characters -
from which arrays are structured. The elements of
character data are the APL2 character set. for example.
'4A' and '¢ . Previous implementations of APL limited
numeric data to boolean (C and 1). integers (e.g., 7).
and reals te.g.. 3.14159). APL? has extended the
domain of numeric data to include complex numbers.
The complex domain is a superset of previous APL
numeric data. there are complex number
representations for boolean, integer and real numbers.

Real numbers can be thought of as being composed of
two parts - an integer part and a fractional part. These
parts are connected by a decimal point (.). Complex
numbers may also be thought of as being composed of
two parts -- a real part and an imaginary part. These
parts are connected by the letter 'J' with the real part
on the left and the imaginary part on the right. For
example. the complex number 3J4 has real part equal 3
and imaginary part equal 4. Real numbers can be
interpreted as complex numbers with imaginary part
equal zero. ““hus, 5.3 18 5.3J0.

In APL2. a complex number can be specified as xJy,
where x is the real part and y is the imaginary part.
Complex numbers can also be specified using the
magnitude-phase forms mDp (for phase in degrees) or
mKEp (for phase in radians). The relationships between
these representations is illustrated in Figure 1.

mDp
xlJy
m
y
0 L L
x

Figure 1: Complex number representations.

The same number can be represented as xJv or mIp. In
the </ form. x and » are displacements along the real
(horizontal) and 1maginary (vertical) axes. respectively.
In the I form. m is the distance of the complex point
from the origin and p is the angular displacement, in
degrees. from the horizontal.

In APL2. complex numbers are alwavs displayed using
the J form notation. For example.

LJ3
LJ 32
5D036.869897
LJ3
SRC.6u435011
43

Operations on complex numbers
Al] the usual arithmetic operations in APL? are defined

on complex numbers. We will be concerned here
primarily with addition and multiplication

Multiplication of complex numbers

Multiplication of complex numbers is best understood
using the I form. If R and S are complex numbers. then
their distance from the origins |F and {S.
respectively. Their angular relationship to the real axis
(phase) is 120K and 1208 radians. respectively The
product £xS has a magnitude, which is the product of
the magnitudes (|F)x(|S5). and phase. the sum of the
phases +/120R S. For example.

_ sD3C x 2DeC
578.66025

FMTFD 5D3C x 2DSC

Here FMTPD is a function from the APL2 distributed
workspace 1 MATHFNS which displavs complex
numbers in the D form.

Addition of complex numbers

Additicn of comp] :x numbers is best understood when
using the o form. If 7 and £ are complex scalars. then
the sum F+S has real part equal to the sum of the real
parts of R and S (+/90F &) and imaginary part equal
to the sum of the imaginary parts of 5 and £

(+/110R 8). For example,

4J343J5
7J8

Operations on arrays

An array is a collection of numbers and characters
Most APL operations apply to a whole collection all at
once This permits us to control the sequencing of
operat;ons by arranging the structure of the the data
rather than the structure of the program. In this paper.
we wil]l onlv use the APL scalar functions addition.
subtraction. and multiplication All the examples here
work the same wayv for anv of these functions.

If we write a list of numbers (a vector) on each side of a
scalar function. the operation is applied independently
between pairs of corresponding items. one from each
side. For example.

12 2+ 10 2¢C
means

(1+1C) (z+20) (z+3C)
and results in
21 22 33

[\
[ea)

If we write a vector on one side but a single number on
the other side. the scalar is paired with each item of the
vector. For example.

i+ 20 20 3C
means

(242C) (1+20) (2+30)
and results 1n

2021 3z

Any item of an arrav ma) 1tself be an array Such an
arrav ic callea a nested arrey Here 1z an exampile with
a vector that contains other vectors as 1tems

SoLox (A IT Dy AT oze 27
means

(z2>20 20 27 (zx28 28 27
and results in
2. 2C 3¢ 3C Zz 3-

APL has 8 wav to maxe anyv arrav into a scalar bv using
the function enclose {<). In the following example. the
array €20 20 ZC s ascalar and so s paired with
each item of the vector left argument

iz
means

(1x2C

and results in
10 2C 3C 20 sl 60 30 6C ¢°

NY
IR
o
I
—
—_~
N)
x
P
8]
N
I
(]
o
-
~
w
x
PN
(9]
N
oy
8
')

There is another important wayv to applyv functions.
Outer product (¢.F) applies the funcuion F 1o pairs of
data one from each side in all combinations.

10 20 o= 2 2 3
¢ 8 7
1¢ 18 17

“All combinations” in a problem means “outer product”
in APL. Outer product applies to both primitive and
user-defined functions in APL2.

)

Complex numbers for two-dimensional graphics

In this section, we describe how points in the plane can —
be represented as complex scalars. how polygonal
objects can be represented as simple complex vectors.
and how collections of objects can be represented as
nested complex arravs. We also show the geometrical
effects of multiplication. addition. and subtraction of
complex arravs

, . 1 1415
y + 8 + -
4 "3 "2 "1 0 1 3

Figure 2: Points on the real number line.

Graphical data representation using complex numbers

Real numbers are a special case of complex numbers:

reals have imaginary part equal zero. For example. ; ; : 7 7 : : i
2.5.1. and 3.1415 are real numbers; they can be 5 ‘g2’

represented spatially as points on the real number hine. 0J2- g : : prenem s L4

as shown in Figure 2. 5-2‘,:1 : : :

Similarly, complex numbers can be represented as i : : i :
points in the complex plane. The real part of a complex 0J0 ; . i . : . 44
number determines its location along the real or : . : ; :
horizontal axis, and the imaginary part determines its
location along the imaginary or vertical axis. For : ; ;
example, the numbers 3J2. &4, 0J 2, 3J 1,and 2J1 5 i i ; 0J~2
car: be represented as illustrated in Figure 3. ! : ‘ ‘ :

A common operation in computer graphics is to :
4 -2 0 2 4

represent two-dimensional polygonal objects as ordered
lists of points in the plane. For example, the equilateral

triangle TR is defined as .
Figure 3: Points in the complex plane.

TRI <= 0J2 72.732J 1 2.732J 1 02

Since the first and last points are the same. connecting
the points results in a closed figure in the complex
plane as shown in Figure 4 e e e et e e

Similarly. the list ARAOh 1s defined as a vector of
length 7: e b prenenee 4o
ARROW «» 0J.28 .50.25 .5 1J.5 .5J% IS SO SO S R
.5J.75 0J.75 0J.25 o / \
The result of drawing £F70k in the complex plane is ' : : ’
shown 1n Figure 5.

Figure 4: Points of an equilateral triangle in the complex
plane.

This idea can be extended by allowing collections of
polvgons to be represented by nested hists of hists. For
example, the depth-2 st NEST iz defined as

T« "4J2 "4J71 T1J1 Twd2
S « 1J1 4J2 4J 2 1d 2 J1
NEST « T S

Drawing and shading the two items of NEST give the
illustration in Figure 6.

We can define a recursive APL2 function DRAW that
interprets simple arrays as collections of points
describing polygonal objects. and nested arrays as
collections of such objects. DRAW has the following
definition:

(0] DRAW A

[1] -+(2<=z4)/L1
[2] MOVE 144+,4
(3] JOIN 144
[s] =0 .
[5) Li: DRAW A

Line [1] tests the structure of the argument 4, if 4 is
nested. then a transfer of contro] is made to the
recursive call at line [5]. Line [2] causes a move
(without drawing) of the graphics pen to the coordinates
given by the first scalar in the symple vector & Line
£3] joins points given by the remaining elements of 4
with a series of straight lines. starting at the current
point. The number of line segments is 1+4¢,£Z Line

[4] exits the current level of call to DRAK Line [51
performs the recursive call; if 4 is nested. then DRAR is
applied to each item of A.

The definitions of the generic subfunctions MCVE and
JOIN are appropriate to the graphics management
subsystem used by ZRAW.

Note that this representation and use of complex arrays
for two-dimensional polygonal objects lends itself 1o
edge-representation as well as to point-representation
Edge-representation simply requires an extra leve! of
nesting. For example, in point-representation. the unit
square 1s

01 1J1 0J1 0.
The corresponding object in edge-representation is
(0 1)(1 1J1)(1J1 0J1)(0J1 0).

Applving DRAW to these two objects gives the same
graphical result.

Figure 5: Points of an arrow in the complex plane.

Figure 6: A nested array as a collection of objects.

http:��.___.�......�
http:��..��..�
http:c..�.�����.,.����.�

Complex multiplication

We previously gave a mathematical description of
complex multiplication. here is the geometric
interpretation If & is a point in the complex plane.
then the product of & and a complex number in the
degree-form mlp gives a result that has distance from
the origin of & altered by a factor m. and has been
rotated through p degrees with respect to the origin

For example, if A is 2J1. then 1D90xA has the same
magnitude as A but has been rotated 90 degrees
anticlockwise with respect to the origin. The product
2D180x4 1s twice as far from the origin as 4 and has
been rotated 180 degrees with respect to 0. The product
.57 12Cx4 1s half the distance from the origin as 4
and has been rotar. ¢ 120 degrees clockwise around the
origin. These examples are i}lustrated in Figure 7.

What has been described here for muitiplication of
scalars carrnies over to other instances of APi. scalar
multiplication. For example, 1D90xARR0W is drawn
and shaded in Fagure &

Similarly. nested collections of objects can be created
and transformed using scalar muluplication. For
exampie, the result of

1 1790 1Di8C 1D270 x cARRCOW

is drawn and shaded in Figure 9. (Recal] that the

enclose function makes ARXZ0W a scalar. which is then
paired with each of the 4 numbers on the left.)

All points that define TRZ have the same magnitude, as
do all points that result from

1D3C 1D8C 1[0 > <TrRI

1

The collection of objects resulting from this expression
ar+ drawn in Figure 10.

11D90xA_
] 5DT120%A |,
2D 180xA ;

Figure 7: Geometric effects of complex multiplication.

Figure 8: Rotation of points by complex multiplication.

Figure 9: Replication and rotation of arrow points.

http:���������-.��������

Complex addition

You have seen that addition on complex numbers
requires only adding the rea) and imaginary parts. In
graphics terms. complex addition gives translation of
points in the complex plane.

For example. if 4 is 271, then A+4 is 4J2. 4=51s

T3J1, ~Ais 2 1 A-IJ2is 10 1.and A+0J 3is
2J 2. These examples are shown in Figure 11.

Scalar addition of simple arravs representing polygonal
objects corresponds to translation of these objects in
the plane. For example. the ARROW array can be
translated by the expression

ARROW+™ 1 2
This expression is drawn and shaded in Figure 12.
In a similar way. objects can be translated and
replicated by addition of nested arravs. For example.
the expression

0 71 71J71 0J71 + © ARROW
is drawn and shaded in Figure 13.

The scalar function C¢ is useful for creating and
manipulating complex numbers in APL2. CJ has the
following definition and use:

[0) Z«R CJ I
[1) Z«R+0J1xT

3CJ 5
3J5

ECJ 123
SJ1 5JZ 5¢3

2J21 2J3 2JE zJ7
L2 43 405 w7
6J1 6J3 65 €7

The result of CJ/ is an arrav of complex numbers. the
rea) parts of which are composed of the left argument
and the imaginary parts of which are composed of the

right argument, following the rules for scalar functions.

Figure 10: Replication and rotation of triangle points.

A+A

Figure 11: Geometric effects of complex addition.

Figure 12: Translation of points by complex addition.

The function CJ can be used in the context of complex
addition to fill the complex plane with replications of
the ARROW object. The expression

((T14110)c.05 “1+16) + © ARROW - 5J3 T s

is drawn and shaded in Figure 14. We subtract 5J3 to
move to the bottom left corner. We then add to the

scalar arrow at that spot, complex integers : : ; ; | ;
corresponding to the other grid points on our complex ; : ; : . : .
plane. (The grid lines are elided 1n this picture.) ‘ ; : : : : ;

Complex multiplication and addition can be combined to
simultaneously translate, rotate, and replicate objects
in the plane. For example, the following sequence
involves all three operations:

Figure 13: Replicatior and translation of arrow points.

A « 1 1D30 iDel
B « 1 1D30C 1D180 1D270
B x cA x ¢ ARROW + 1,66J .5

The result of the final expression is drawn and shaded
in Figure 15.

ARROW is first translated, replicated, and rotated in the
first quadrant, and then this intermediate result is
replicated and rotated into the other three quadrants.

Figure 14: Multiple replication of arrow points.

Figure 15: Translation, rotation, and translation of arrow
points.

Examples from elementary fractal geometry

Fractal geometry is a relatively new mathematical
discipline concerned with characterizing the
irregularity and fragmentation we encounter when
attempting to give a geometrical description to natural
objects. In the Introduction to The Fractal Geometry of
Nature {3]. Mandelbrot gives the following motivation
for inventing a “geometry of nature’:

Why 1s geometry often described as “cold” and “dry””
One reasor: hies in 1ts inabihity to describe the shape of a
cloud. a mountain. a coastline. or a tree. Clouds are not
spheres. mountains are not cones. coasthnes are not
circles. and bark is not smooth. nor does lightning travel
in g straight line.

Many patterns of Nature are so irregular and
fragmented that. compared with ... standard geometry,
Nature exhibits not sumply a higher degree but an
altogether different level of complexity.

The existence of these patterns challenges us to study
those forms that (standard geometry) leaves aside as
being “formless.” to investigate the morphology of the
“amorphous " ...

Responding to this challenge. I conceived and
developed a new geometry of nature and implemented its
use in a number of diverse fields. It describes many of
the irregular and fragmented patterns around us. and

leads to full-fiedged theories. by identifving a family of
shapes I call fractals.
We will not pursue here the theory and application of
fractals and fractal geometry; a growing body of
literature addresses those topics. Rather. we want to
show some simple fractal constructions in order to
demonstrate the recursive computational facilities of
APL2.
Initiators and Generators
Fractal constructions are carried out in successive
stages. with refinements being applied at each stage of

the process. One begins with two shapes, an initiator
and a generator At each stage, the generator shape
replaces each instance of the initiator shape; the
resulting object is then operated on in a similar manner
at the next stage of construction.

A simple example of this technique is the construction
of a triadic Koch island: see {3). Chapter 6. This
construction begins with an equilateral triangle with
unit length sides as the initiator. The generator is
given by the following shape:

N\

Each line segment of this generator is length 1/3. A

single application of the generator to the initiator gives

a star hexagon, or Star of David. Subsequent Figure 16: Triadic Koch island sequence.
applications give the sequence of objects in Figure 16.

An APL2 Implementation

The objects in Figure 16 can each be represented as a
vector of points 1n the complex plane. The objects were
all computed using the APL expression

2 « N (G1 FRAC) IRI

TRI is a complex vector of length 4 that give the points
of an equilateral triangle. (1 is a function with the
following definition.

(0] Z<4 G1 B

[1] »

[2] » S

[3] =» /A

[4] m 4--F Te=B <== P — E
(5] =

[61 Z+(B-4)+3
[7] Z2+(A+0,2,(Zx(3»,5)Yx1D3C),(Zx2)),F

The arguments 4 and B of G1 are complex simple
scalars representing two points in the complex plane
The result Z of G1 is a complex simple vector of length
5 representing the points of the generator shape. For
example,

1614
12 2.5JC.866 3 &

The operator FRAC applies the generator function (G1)
to the initiator array (TRI). the number of operation
stages is given by the left array argument N. The
FRAC operator has the following definition.

{o0] Z«N(GEN FRAZ)INIT
(1Y Z<INIT

[2] +(N=0)/¢C

[3] 2«2 GEN/Z .
[u] Z«e(=(pZ)=1p2)+ Z
[5) Z«(N-21)(GEN FRAC)Z

At each stage of (possibly recursive) invocations of
FRAC, line [1] assigns the current initiator to the
result arrayv Z. Line [2] causes an exit if no more
stages of the construction are to be performed. Line
[3] performs a pairwise GEN-reduction of elements of
the current initiator For example.

2 Gi1/1 4w 7
12 2.5J0.866 3 L L & 5.5J0,86E 6 7
p 2 G1/1 4 7
2 .
e’ 2 G1/3 s 7
5%

Line [47 drops the last element of a}l but the last
subarray created in the reduction step, and then ENLISTs
the result. This step essentially excludes line segments
of length zero from the new graphical object. Finally.
line [5] recursively invokes FRAC to perform the next
step of the construction.

210 -

The FRAC operator is a paradigm for a family of related
fractal constructions; we can use other initiator arravs
and generator functions to obtain different graphical
sequences. For example. the expression

N (G2 FRAC) S@E
computes the sequence of quadric Koch island in Figure
17: see [3). Chapter 6. S@F is a complex vector of

length 5 representing points of the unit square. The
function G2 produces the following generator shape for

a unit line segment:

G2 has the following definition:

; Z+X G2 Y;ADG;S;BCEF

e

1. B--C

] . .

] & X—A D G--Y <=2 Xemom—ouuo Y
J0s ! :

1 . FE--F

i s

1 ADG-X+1 2 3xS<(¥Y=X)ie
] BCEF<ADG[21 2 2 3)+21 2 "1 “1x8§x1D90
(3 Z«X,(ADG,BCEF)[i & & 2 6 7 31,Y

Conclusion

We have introduced here the use of complex numbers in
APL? for simplifying and understanding some techniques
and operations in two-dimensional computer graphics.
In particular. we have demonstrated the use of complex
simple scalars for representing points in the plane.
complex simple vectors for representing polygonal
objects. and nested arrays for representing collections
of polvgonal objects. We have shown how graphical
objects represented by complex arrays can be scaled,
translated. and rotated using scalar arithmetic in APL2.
These techniques may be particularly useful in APL?
graphics applications that are primarily concerned with
representing and manipulating two-dimensional
graphics objects.

5
¥

Figure 17: Quadric Koch island sequence

211 -

Acknowledgment

The authors wish to thank Edward Eusebi. Alan
Graham. and Ray Trimble for their helpful suggestions
and comments on various topics of this report. Special
thanks also to Kacy Keene for her help on integrating
text and graphic images.

References

{1} APL2 Programming: Language Reference, IBM
Corporation. Form number SH20-9227 (1984)

[2] Graphical Data Display Manager Base
Programming Reference, IBM Corporation, Form
number SC33-0101 (1984)

[3) Mandelbrot, B.B., The Fractal Geometry of Nature
W.H. Freeman and Company (1982)

-12-

