
Migrat ing Applications to APL2 by Michael T. Wheatley

October 1984 T R 03.266

October 1984
TR 03.266

MIGRATING APPLICATIONS TO APL2

by

M. T. Wheatley

International Business Machines Corporation

General Products Division

Santa Teresa Laboratory

San Jose, California

Migrating Applications to APL2

Michael T. Wheatley, APL Language Development, IBM Santa Teresa Laboratory, 555 Bailey
Ave., P.O. Box 50020, San Jose, Ca., USA 95150.

Abstract

Recent announcement of APL2 as IBM's strategic APL offering has highlighted the need to migrate
existing information center applications to an APL2 base. Issues involved in such a migration are
discussed and the changes required to migrate two sample applications are shown.

Introduction

APL2 is an advanced implementation of APL which provides significant language and system
extensions over previous IBM APL implementations. It is designed to be generally upward
compatible from VSAPL and it has been our experience that most VSAPL applications can be
migrated to APL2 with little or no change.

Some concern, nonetheless, has been expressed by a number of VSAPL users with regard to
potential problems involved in migrating large and complex applications, such as those characterized
by the information center products. In an attempt to quantify problems in this area, migration of
two key information center products - ADRS-II and APLDI-II (VM/CMS versions) was
undertaken and has been documented in this paper. These t\VO products were chosen because of
their complexity and because of their wide acceptance in the marketplace. It should be pointed out,
however, that Info Centerv' l , which will operate under APL2, has been announced as a replacement
for these two products.

Migration of the two products described here was undertaken by a competent APL programmer
without any extensive experience with either of the products and without any detailed or special
knowledge of their internal operation. The source material used included only the products
themselves and their supporting documentation. Testing of the migrated code involved verifying the
examples in the ADRS-II and APLDI-II Student Texts [1] and in the APLDI-II Program
Description/Operations manual [2]. Subsequent casual use of the migrated applications by a
number of users has uncovered no additional problems.

1

Less than one half day's effort was required to migrate each of the products to APL2 and to
accomplish the described testing and verification! Furthermore, the changes were made in a fashion
which allows the resulting code to run under either VSAPL or APL2.

The information contained in this document has not been submitted to any formal m~1 test and is
presented on an "as is" basis without any warranty either expressed or implied. The use of this
information is a customer responsibility and depends on the customer's ability to evaluate and
integrate it into the customer's operational environment.

Migration Aids

The primary migration aid provided with APL2 is the new) MCOPY command which allows an
APL2 user to copy a VSAPL workspace. In addition to supporting all the things a normal) COpy
command does, the) MCOPY command also:

translates character data to APL2/EBCDIC encoding;

inserts parentheses around indexed constant numeric vectors;

copies the following system variables:

OLX, GIO f DRL, OCT and OPP

assigns function time stamps as required;

deletes local names that match either argument of a function;

replaces groups with character matrices containing the group name and the name of objects in
the group.

In addition to the) MCOPY command, a workspace, 2 TRANSFER, is provided which contains
a number of tools to aid migration. Chief among these is a function called F LAC which allows
the user to search for arbitrary character strings in defined functions.

2

ADRS-II Migration

The ADRS-II product is shipped with a VSAPL workspace called ADRSFULL which contains all
of the functions and data for the VM/CMS version of the product. This workspace was used as the
base for the migration which is described in the following steps:

APL2 was invoked (in a 4 megabyte VM/CMS virtual machine) and the VSAPL workspace
ADRSFULL was copied with the command:

)MCOPY ADRSFULL

Since it was suspected that ADRS-II might have dependencies on the VSAPL DAV, uses of that

system variable were isolated. by using the FLAG_ function from the APL2 workspace 2

TRANSFER:

}PCOpy 2 TRANSFER (CPFLAG_)
OPW+350

(c'OAV ') FLAG ONL 3

It was determined that the following functions referenced OAV:

CONPCMS CLOBS BROWSE
ECI II CLEAR
PI VNAME CONVERT
~E Z.CI

The functions f..I and II involve legitimate use of DA V for floating point and integer

conversion. OA V as used in the other functions, however. is dependent upon the VSAPL

ordering of characters.

VSAPL Release 4.0 was then invoked and the ADRSFULL workspace was loaded. After

determining that the name ~A V was not used in the workspace, a new variable was created

with the statement:

~AV+DAV

Then all references to OAV in the functions listed above, except those in functions f.I and II,
were changed to f!AV.

Later in the process of testing under APL2 it was discovered that lines 13 and 14 of the

function KEY2 contain indexed constant numeric vectors without parentheses, The

parentheses are not inserted by) MCOPY in this case because the numeric vectors are part of

executed strings. The function was changed as follows: follows:

[13] ~ (I!I [1] =2) / gI [1] +- (2 g) [L K [L I [2] - 3 2 1] /\ .. = I A II D I]I I • •

[14] ~(gI[1J=2)/'~I[lJ+-(2 10)[~KI~I[2J-2 1]A.=' IOR I
IJI

3

It was also discovered in later testing that function ELAT dynamically creates APL statements
in which a numeric left argument is positioned without an intervening blank between it an the
function. While this is overlooked in VSAPL, it will cause an error in APL2. This problem was
corrected by modifying the function E.LAT at lines 4 and 6 as shown:

[4-] ~ - 3 ... , I M I ,l!.N , ((1 +P l!.N) , 7) pi-+- ap 0 11 '
[6J ~-2+,IMl,b.C,I+',IOl,1 1,(~I!W),«(1tpgW),6)plpl1.1 ~ I

Finally, the workspace was saved and the installation was completed by executing the function
ADRSSET. Execution of this function creates the ADRS2 workspace and the associated
function file. Note that because AP 124 is not supported in the APL2 environment, AP 126
must be chosen in the installation process if full screen processing is to be supported.

APL2 was then invoked again and the two workspaces were copied and saved with the

commands:

)MCOPY ADRS2

)SAVE ADRS2

) CLEAR

)MCOPY ADRSFULL

)SAVE ADRSFULL

Because certain functions with a dependence on the VSAPL DAV were changed on the ADRS-II
function file, the ~A V variable must be created in any previously saved ADRS-II workspaces, This
can be done under VSAPL ans shown:

}LOAD MYWS
~AV+-OAV
)SAVE

so that those workspaces will continue to work correctly in the VSAPL environment.

These workspaces can be migrated to APL2 using the following procedure under APL2:

}CLEAR
} MCOPY /,fYWS
)COpy ADRS2 CONPGMS QLOBS CLEAR CONVERT
)SAVE MYWS ­

APLDI-II Migration,

APLDI-II consists of 5 VSAPL workspaces,

APLDI DIAUX DIAUX126 DIUPDATE DICREATE

and a function file APLDIFUN FILE. There is no single workspace which contains all of the
functions from the function file and which could be used as a source for) MCOPY. The first step of
the migration outlined below, therefore, involves creation of a workspace containing all of these
functions.

4

VSAPL Release 4.0 was invoked in a 4 megabyte VM/CMS machine and the following
statements entered to retrieve all of the functions from the function file:

) LOAD DIAUX

LIST+-LIST

COpy kI~T.

Since it was suspected that certain APLDI-II functions might have a dependence upon the
VSAPL DAV, after determining that the name was not used elsewhere in any APLDI-II
workspace, the variable ~A V was created with the statement:

~AV+OAV

It was discovered in later testing that APLDI-II determines the internal data type for APL
objects through the use of OWA in the function DT. The following lines were added to that
function to cause it to work correctly in both VSAPL and APL2:

[3.5] +(3=ONC 10AF 1 } / k 2
[8] A
[9] A APL2 VERSION OF FUNCTION
[10] k2:X+128pX
[11] R+{1+4 OAT 'X I } T1 2 8
[12] ~«R~1)VO~1+0pX}/O
[13] A FORCE BYTE INTEGERS TO FULLWORDS
[14] R+4

and the resulting workspace was saved under the name DIAUXFUL. Note the use of ONe
lOAF' to determine whether the user is funning under VSAPL or APL2.

The revised DT function and the new ~A V variable were copied to the workspaces APLVI
and DIAUX where they are also required.

By }MCOPY'ing DIAUXFUL and the other APLDI-II workspaces to APL2 and funning the
FLAG_function Irorn Z THANSFER against them, it was determined that the functions
SORT (in workspaces DIAUX and DIAUXFUL) and QFUNCT (only in workspace
DIAUXFUL contain dependencies on the VSAPL ordering of characters in OA V. All
occurrences of OA V in these functions were changed in the VSAPL workspaces to ~A v.

In subsequent testing it was determined that the following functions create executed expressions
containing indexed constant numeric vectors without parentheses:

in workspaces: APLDI, DIAUXFUL, DIUPDATE
in workspace: DIAUXFUL
in workspace: DIAUXFIL

Parentheses were inserted as shown:

5

FF~[24] ~(O~pQFW)/'QFW~(~+(pPH)rrDEF[Ji2]x
(012.512122)[DEP[Ji O]J),DEF[Ji 5]'

QQQER[24] SE~~OpSE~+'R~{~1+1=+fR)/R~(f1,(pR)Tf1+',
{.1tpT),')pRnR+~1\R+(1+11tpR)+.xRn',
(O;t I , P PY) / ' R+ (, , (.Y) , ') [R] n '

QAX§[10] SE~+OpSEg+IR+',I- '[POJ,Y,'-R[2i]+(',
(.CMO),')[R[1i]]+(365 xR[Oi])+(O=4IR[Oi])A
2«R+{3p100)T,R)[1iJn'

Certain APLDI-II functions depend upon the fact that in VSAPL, a pendant function cannot be
expunged. In APL2, this is not the case and the following changes must be made in workspace
DIAUXFUL:

VSUB[2.5] EXFUN+ 1 'V

VSUSDET[.5] EXFUN+' 'V

~SUBDET3[.5J EXFUN+' tv

VDISUM[.5] EXFUN+' 'V

VTAGN[.5] EXFUN+' 'V

VU~QAf~[1.5J EXFUN+' 'V

These modifications do not affect operation under VSAPL, but correct the problem when
operating under APL2.

After the changes indicated above were made, the resulting VSAPL workspaces were saved.

A new function file was created by first renaming the old one using the C~1S command:

RENAME APLDIFUN FILE A = OLDFILE =

and then entering the following statements under VSAPL:

)LOAD DIAUXFUL

INITIAL

200
APLDIPUN FILE

SAVE kI.§'f

Then, as per the APLDI-II installation instructions. the system was customized by entering the
following statements under YSAPL:

)LOAD APLDI
)COpy DIAUX126 DISPCRP

)SAVE FADI

Note that it is not possible to use AP 124 with APL2 since that AP is not supported in the
APL2 environments. AP126 is used instead.

Finally, the resulting VSAPL workspaces,

6

APLDI, DIAUX, DIAUX126, DIUPDATE,

DICREATE, DIAUXFUL and FADI

were }Me0 P ;l'ed to APL2 and saved there under the same names. This step completes the

migration process.

Because changes were made to certain functions on the APLDI-II function file, the following
change must be made to any APLDI workspaces previously saved under VSAPL:

)LOAD MYWS

)COPY APLDI ~AV DT FF~

) SAVE

The resulting workspaces should run correctly under VSAPL and may be) MCOPY'ed to APL2
where they should also run correctly if no changes to user written functions are required.

Conclusions

Migration of these two large applications to APL2 proved to be surprisingly simple.. After
converting OA V dependencies, it was found that the simplest method for isolating problems
involved) MCOPY'ing the application and testing it in the APL2 environment. As problems were
encountered they were fixed and testing proceeded.

The FLAG_function in the 2 TRANSFER workspace also proved to be a valuable tool. When a
problem was encountered during testing, F LAC_was used to search for other occurrences of
similar problems.

Changes to the code were made in such a way that the resulting application would run under either
VSAPL or APL2. This approach is useful for a number of reasons:

It allows substantial additional testing of the resulting code against production applications

before actually migrating those applications to APL2.

User modified ADRS-II and APLDI... II workspaces, previously saved under VSAPL should

continue to run correctly with the new function file.. These workspaces could then be migrated

in a orderly fashion to APL2.

Should problems occur in early use of APL2, the applications could be run under VSAPL until

those problems were corrected.

No attempt was made to use the new facilities in APL2. Thus, no substantial education is

required to accomplish the migration. Further, when and if it was decided to change the

applications to capitalize upon new APL2 facilities, stable underlying code will reduce potential

problems in the process.

7

It was felt that access to a competent APL programmer to assist in the debugging process
contributed greatly to the rapid success achieved. This programmer need not be an APL wizard.
but should be experienced with VSAPL and should be familiar with the incompatibilities between
VSAPL and APL2 as outlined in the APL2 Migration Guide [3] .

No great understanding of the application or its internal design was needed to accomplish the
migration. Some familiarity with the function file design of APLDI-II (as described in the APLDI-II
Systems Guide [4]) proved useful. Much more important. however. was access to a set of test
cases (sample problems) which tested substantial portions of the code.

Finally. it should be pointed out that the two applications described in this paper are substantially
larger and more complex than typical user written APL applications. Migration of less complex user
written applications may be considerably simpler, with many requiring no changes at all.

References

1.	 A Departmental Reporting System II Student Text,
IBM Corporation, 1980, SC20-1893-0.

APL Data Interface II Student Text,

IBM Corporation, 1981, SC20-1891-1

2.	 APL Data Interface-II Program Description/Operations
Manual, I3~ Corporation, 1981, SH20-6147

3.	 APL2 Migration Guide,
I3~ Corporation, 1984, S~20-9215

4.	 APL Data Interface-II Systems Guide
IBM Corporation, 1980, LY20-9007-0

8

APL2 Migration Aids

)MCOPY
- translates character data

- inserts parentheses for indexed
numeric vector constants

- copies OLX, DID, ORL, OCT, OPP

- assigns function time stamps

- deletes local names which duplicate
argument names

- replaces groups with lists

2 TRANSFER FLAG

- used to search for arbitrary
character strings:

'DAV' 'OWA' FLAG_ DNL 3

9

ADRS-II Migration

1.	 Under AP12:

)MCOPY ADRSFUll
)PCOPY	 2 TRANSFER (GPFlAG_)
[JPW+350

(c'DAV') FlAG_ DNl 3

2.	 In ADRSFULL under VSAPL, change
all occurances of DAV to lJ.AV in:

CONPGMS GLOBS BROWSE
ECI ~NAME CLEAR
GE	 ZCI CONVERT

3.	 In ADRSFULL under VSAPL, modify
functions KEY2 and ElAT as shown:

KEY2[13]	 ~(LI[lJ=2)/'LI[lJ~(2 9)[LK[LI[2J-3 2 1]
1\ • =, , AND' ,] ,

KEY2[14]	 ~(LI[1]=2)/'LI[lJ+(2 lO)[LK[LI[2]-2 1]
1\ • =, 'OR' ,] '

ELAT[4] ~-3~, 'M' ,LN,«ltpLN),7)p'~OpO ~ ,

ELAT[6] .!.-2~,'M',LC,''''','O',' ',(l"LW),«ltpLW),6)
p'p"" ~ ,

10

ADRS-II Migration

4. Under VSAPL:

l\AV+DAV

)SAVE ADRSFULL

ADRSSET

5. Under APL2:

)MCOPY ADRSFULL

)SAVE ADRSFULL

)CLEAR

)MCOPY ADRS2

)SAVE ADRS2

6. Under VSAPL:

)LOAD MYWS
)COpy ADRS2 ~AV CONPGMS GLOBS
)COpy ADRS2 CLEAR CONVERT
)SAVE

APLDI- II Migration

Under VSAPL:

1.)LOAD DIAUX
LISI-+-LIST
COpy LISI
L\AV+-DAV

2.	 Change all occurances of DA V to
L\AV in SORT, QFUNCT

3.	 Modify function DT :

[3.5J ~(3=ONC 'DAF')/L2
[8]	 ~

[9]	 ~ APL2 VERSION OF FUNCTION
[10] L2:X~128pX

[11J R~(1~4 OAT 'X')+128
[12J ~«(Rxl)vOxltOpX)/O

[13J ~ FORCE BYTE INTEGERS TO FULLWORDS
[14J R+-4

1 2

APLDI- II Migration

4. Modify functions FF~, COllER, OAYS:

FF~[24]	 ~(O=pQFW)/tDFW~(W+(pPH)rrDEF[J;2]x

(0 1 2.5 1 2 1 2 2)[OEF[J;OJ]),DEF[J;5J'

CQQEH[24J	 SEB~OpSEE~'R+(Il+1=+fR)/R~(Il,(pR)+Il+',

(TltpT),')pRnR+Il\R~(l+lltpR)+.xRn',

(Ox"ppY)/'R+(',(TY), ')[R]n'

D8Y5[10J	 SEB~OpSEE~'R~', ,- '[PO],Y, '-R[2;]+('
(TCMO),')[R[1;]]+(365 x R[O;])+(O=4 fRCO;])
~2«R~(3pl00)TJR)[1;Jn'

5. Modify functions:

~SUB[2.5J EXFUN~"V

VSUBQEI[.5J EXFUN~' 'v
V5UfiQEI3[.5J EXFUN~"~

~QlSUM[.5J EXFUN~I'~

VI8G~[.5J EXFUN~"~

VUEQ8IE[1.5J EXFUN~1'~

1 3

APLDI-II Migration

6.)SAVE DIAUXFUL

)LOAD APLDI
)COpy DIAUXFUL 8AV DT FF~

)SAVE

)LOAD DIAUX
)COPY DIAUXFUL 8AV DT SORT
)SAVE

)LOAD DIUPDATE
)COPY DIAUXFUL FF~

)SAVE

1 4

APLDI- II Migration

7. Under eMS, rename the existing
APLDI-II function file:

RENAME APLDIFUN FILE A = OLDFILE -

8. Under VSAPL:

)LOAD DIAUXFUL
INITIAL
200
APLDIFUN FILE
SAVE LISI
)LOAD APLDI
)COpy DIAUX126
)SAVE FAD!

DISPGRP

1 5

APLDI-II Migration

9.	 Under APL2,)MCOPY workspaces
APLDI, FADI, DIAUX, DIAUX126,
DIUPDATE, DICREATE, DIAUXFUL
and) SAVE under the same names.

10. Modify	 user APLDI-II workspaces:

)LOAD MYWS
)COPY APLDI ~AV DT FF~

)SAVE

1 6

Conclusions

- Use)MCOPY to convert WS's to APL2

- Use FLAG_ to locate DAV dependencies

- Create bilingual code
APL2 exploitation later

- Isolate other changes by testing

- APL programmer required

- Read APL2 Migration Guide

1 7

