

AH OVERVIEW OF APL2

Document Humber GG24-1627-0

September, 1985

International Systems Center
Poughkeeps;e,H.Y. 12602,USA

This overview of APL2 ;5 intended to provide a useful insight into
the capabilities of APL2. The enhancements to VS APL and the links
with 5QL and ISPF are presented. The installation under T50 and the
migration from VS APL are briefly dtscussed. The aim ;s to give to
people with some modest US APL knowledge an understanding of new
APL2 features.

ESSYS LSYS VMSYS 118 pages

FIRST EDITION (SEPTEMBER 1985)

This edition applies to Release 1 of APl2, Program Product 5668-899, and
to all subsequent releases until otherwise indicated in new editions or
Technical Hawsletters.

RQferences ;n th;s publication to IBM products, programs, or services do
not imply that IBM intends to make these available ;n all countr;es in which
IBM operates. Any reference to an IBM program product in th;s document ;s
not intended to state or imply that only IBM's program product may be used.
Any funct;onally squ;valent program may be used instead.

The information contained ;n this document has not been submitted to any
formal IBM testing and is distributed on an "as is· basis WITHOUT ANY WAR­
RANTY EITHER EXPRESS OR IMPLIED. The use of th;s ;nformat;on or the ;m­
plementation of any of these techniques ;s a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a spec;fic s;tuat;on, there ;s no guarantee that the
same or similar results will be obtained elsewhera. Customers attempting
to adapt these techniques to their own environments do so at their own r;sk.

Performance data conta;ned ;n this document was determined in a controlled
environment; therefore, the results that may be obtained ;n other opera­
tional environments may vary s;gnificantly. Users of this document should
ver;fy the app!;cab;lity of data to their own environments.

Publications are not stocked at the address given belQW.
f

Requests for IBM
publications should bQ made to your IBM representative or to the IBM branch
officQ serving your locality.

A form for reader's comments ;5 prov;ded at the back of this publication.
If the form has been removed, comments may be addressed to IBM Corporation,
International Systems Center, Dept. H52, Bldg. 930, P. O. Box 390,
Poughkeepsie, New York U.S.A. 12602. IBM may use or distribute whatever
information you supply ;n any way it believes appropriate without incurring
any obligat;on to YOu.

c Copyright Internat;onal Business Machtnes Corporation 1985

;; AN OVERVIEW OF APL2

PREFACE

The aim of the document is to provide an overview of APl2. It is intended
to complement the existing APl manuals rather than replace them. This
document is intended to provide a useful insight into the capabilities
of APL2 and to assist Systems Engineers ;n answering queries about it.

The first section gives some background to the ideas behind APL2 and an
indication of its power and usefulness.

The next section presents the APL2 language with an emphasis on the en­
hancements to VS APL. This section introduces the new concepts and ex­
plains their uses. It gives the reader a flavor of the power and
flexibility of the language together with an understanding of the prin­
ciples. A modest familiarity with the VS APL language ;s assumed. This
section does not cover all featu~es of the language, is not intended to
replace the language reference manual, and ;s not a course in APL2 pro­
gramming.

APl2 has opened the APL environment, providing !;nks between APL and SQL
and between APl and ISPF.

The section on SQL assumes no knowledge of SQL or rel.tional databases.
It provides an insight into the enormous potential that exists as APL
functions can operate on tables from a relational database and as the SQL
language is available to the APL user.

Communicat;on between ISPF and APl2 ;s now possible. Each can access the
same data. How to do this and what can be achieved are discussed. This
section is more meaningful to the reader with some experience in ISPF.

The Shared Variable Processor has been redesigned. In the next section,
the new fac;lities of the APL2 SUP are reviewed and main features of its
design are discussed.

The next sections cover ;nstallat;on and m;gration (;ncluding a real ex­
amp) e).. rhey are ; ntended as useful overv i ews of the process and take the
form of observations, experiences, and ~ecommendations. They are not ;n­
tended as complete gui des nor as replacements of the appropriate manuals.

The document concludes wi th a br-I ef di scussion of the performance of APL2.

Preface i ; ;

Related publ;cat;ons are:

1. The APL2 library

o APL2 General informat;on, GH20-9214

o An Introduct;on to APl2, SH20-9229

o APL2 Programming: Language ReferencQ; 5H20-9227

o APL2 Programming: Gu;de, SH20-9216

o APl2 Programming: System services Reference, SH20-9218

o APl2 Programm;ng: Using Structured Que~y Language (SQL) SH20-9217

o APL2 Messages and Codes, SH20-9220

o APl2 Installation and Customization under eMS, SH20-9221

o APL2 Installation and Custom;zat;on under lSO, SH20-9222

o APL2 Migration guide, SH20-9215

o APL2 Diagnosis guidQ, SY26-3931

o APL2 Diagnos;s reference, SY26-3932

o APl2 Reference Summary SX26-3737

o APL2 Reference Card SX26-3738

2. Structured Query Language(SQL) Publicat;ons

o SQL/Data System General Informat;on, GH24-5012

o SQl/Data System Concepts and Facil;ties, GH24-5013

o SQL/Data System Application Programming, SH24-5018

o SQL/Data System Term;nal User's reference, SH24-5017

o SQl/Data System Messages and Codes, SH24-5019

3. IBM DATABASE2 (D82) Publicat;ons

o IBM DATABASE2 General Information, GC26-4073

o IBM DATABASE2 Introduction to SQl, GC26-4082

o IBM DATABASE2 App!;cat;on Programming for TSO users, SC26-4081

o IBM DATABASE2 Reference summary, SX26-3740

;v AN OVERVIEW OF APL2

o IBM DATABASE2 Reference, SC26-4078

o IBM DATABASE2 Messages and CodQs, SC26-4113

4. ISPF Publ;cat;ons

o ISPF /PDF Reference, SC34-2139

o ISPF /PDF Installation and customization, SC34-2143

o ISPF D;alogue Management Services, SC34-2137

Preface v

vt AN OVERVIEW OF APL2

TABLE OF CONTENTS

1.0 BACKGROUND 1

1 .. 1 Restrictions Lifted 1

1.2 Design Criteria 1

1.3 Data Structure 2

2.0 APL2 LANGUAGE :5
2.1 APL2 Arrays 4­
2.2 APL2 New Functions 7

2.2.1 Depth 8

2.2.2 Match 8

2.2.3 Enclose 9

2.2.4 Enclose with Axis 11

2.2.5 Disclose 13

2.2.6 Disclose with Ax;s 14

2.2.7 Pick 16

2.2.8 Select;ve Specification 17

2.2.9 First 19

2.2.10 Find 20

2.2.11 Enlist 21

2.3 APL2 Hew Operators 22

2.3.1 Each 24

2.3.2 Def;ned Operators 28

2.3.3 H-wlse Reduce 28

2.3.4 Replicate 30

2.3.5 Scan 31

2.3.6 Outer Product 32

2.3.7 Inner Product 33

2u4 Complex Humbers 35

2.5 Error Handling 36

2.6 APL2 Editors 40

3.0 APL2 AND RELATIONAL DATA BASES. 43

3.1 What;s a Relational Data Base? 43

3.1.1 Structure of Tables. 44

3.1.2 Operations on Tables. 45

3.1.3 Structured Query Language (SQL) 46

3.1.4 Data Types. 49

3.1.5 Views and Indexes. 49

3.2 Operating System ;n SQL/DS 50

3.2.1 Environment in SQL/DS 50

3.2.2 Preparing Access to SQL/DS 52

3.2.2.1 What the SQl/DS Data Base Admin;strator Must Do 52

3.2.2.2 What the Individual User Heeds 52

3.3 Operat;ng System in DB2 53

3.3.1 Env;ronment in MVS. 53

3.3.2 Prepar;ng Access to DB2 54

3.3.2.1 What the DB2 Data Base Administrator Must Do 55

3.3.2.2 What the Ind;v;dual User Heeds 55

3.4 How to Use the SQL Workspace. 55

3.4.1 An Easy Way to Communicate with a Relat;onal Data Base. 56

TablQ of Contents

3.4.2 Functions in the workspace SQl 60
3.4.2.1 Structure of result data. 64
3.4.2.2 Other SQl functions. • ••• 65

3.5 Miscellaneous • • • • • • ••• 66
3.5.1 Functions which Deal with the Tables of the Catalog. 67
3.5.2 functions which Deal with a Table •••• 68
3.5.3 Functions Invoking GDDM. 68

4.0 USING ISPF WITH APl2 UNDER 150 71
4.1 Establ;shing an ISPF-APL2 environment 71
4.2 Installation and In;t;at;on •••• 71
4.3 Using ISPF Services from APL2 72
4.4 Using ISPF and APL2 to Create Dialogs 73

4.4.1 Us;ng APL2 Defined Functions as Dialog Functions •••• 74
4.4.2 Including APL2 Dialogs ;n Normal ISPF D;alogs •••• 74

4.5 Possible Application Areas ••••••••••••••••• 76
4.5.1 Using the PDF Editor for APL2 Functions •••• 76
4.5.2 Using Subroutines Written in Other Programming Languages 76
4.5.3 APl2 as a Prototyping Tool ••••• 77

4.6

5.0
5.1
5.2
5.3
5.4
5.5

6.0
6.1

Conclusion •••••••••• 76

APL2 SHARED VARIABLE PROCESSOR 79
Introduction •••••• 79
APL2 SVP Characte~istlcs 79
APl2 SVP Implementations in VM/CMS, MVS and MVS/XA 81
APL2 SVP Diagnostic Facilities. 82
Conclusions 83

APl2 INSTALLATION UNDER TSO 85
P~eparat;on for the Installation of APl2 85

6.1.1 Selection of Access Methods to be Used by APL2 85
6.1.2 Naming Convention for SAM Libraries 86
6.1.3 Other IBM Products wh;ch Influence APL2 Installat;on 86
6.1.4 APl2 Installation Opt;ons for 150 87

6.2 Hotes on APl2 Installation Steps 89
6.2.1 SMP Considerations •••• 89
6.2.2 Loading APL2 Public Workspaces 89

7.0 MIGRATIOH •••••• 91
7.1 Why Migration ;s Necessary 91
7.2 Overview of Process •••• 92
7.3 Detail of Process 93
7.4­ Example •••• 95
7.5 Publications 97
7.6 Concluding Remarks 97

8.0 PERFORMANCE 99
8.1 Questions a User Might Ask. 99
8.2 Timing 100

8.2.1 Method 100
8.2.2 Results 100
8.2.3 Conclusions •••• 101

6.3 Summary ••••• 102

vi;; AN OVERVIEW OF APL2

APPENDIX A. LIST OF SOME SQL FUNCTIONS •••••
A.l SQLSYSTEM ••••••••••• • •••••••••••
A.2 SQLTAB • • • • • •••••
A.3 SQlCOLHAME • • • • • •••••••••
A.4 SQlDISP •••• • ••••••••••••••
A.5 REPORT ••••••••••••••••••••••••••
A.6 SQLICU ••••••••••

APPENDIX B. SAMPLE PANEL AND ellST FOR INITIATING ISPF-APL2

APPENDIX C. SAMPLE APl2 FUNCTION TO USE eMS EDITOR

APPENDIX D. SAMPLE GLOBAL SVP SERVER •••••••
0.1 CLEANUP • • • • • • • • • • • • •••
0.2 PROCESS ••••••••
D.3 RETRACT • • • • • •••••••••••
0.4 SERVER • • • • • ••••••••
0.5 SHARE • • • • • • • • •••

INDEX

103

103

103

103

104

104

104

107

109

111

111

111

111

112

113

115

Table of ContQnts ;x

x AN OVERVIEW OF APL2

LIST OF ILLUSTRATIONS

Figure 1. Example of Table Hamed WINE. 45· · · · · · Figure 2. Example of Table Hamed ORDERS. 46· · · · Figure 3. Summary of SQL Commands. 48. · · · · · · · · · · Figure 4. Types of Data in Relational Tables. 49· · · ·
Figure 5. Single or Multiple Access to Data Bases. 51· · · · · Figure 6. APL2 ;n an MVS Environment 53· · · · · · ·
Figur-e 7. Process and bind of a DB2 program 54· · · · · · · · Figure 8. Statements in SQL and the Access Operations 61
F;gur-e 9. Us; ng Panel Display fr-om an APL2 Function. 73· · · · Figur-e 10. Invoke APl2 with Automatic Function Execution 75
Figure 11. Using an APL2 Function as a Dialog Function 75· · · · · · Figure 12. Executing the ISPF/PDF Editor from APL2 76· · · · · · · · Figure 13. Executing a For-tran Program from APL2 77· · · · · · Figure 14. Default AP2TIOPT Values 88. . · · · · · · · · · · · · · · Figure 15. PDF Menu Altered to Include APL2 107· · · · · · · · Figure 16. APL2 CLIST Executed from PDF Menu 108
F; gure 17. APL2 Function to Call Xed;t 109· · · · · · · ·

l;st of Illustrat;ons xi

x;; AN OVERVIEW OF APl2

1.0 BACKGROUND

APL ;s an extremely powerful language that

o Handles arrays as eas;ly as scalars

o Uses operators to create families of related functions

o Has simple rules of syntax

APL2 ;s an extens;on of APL. APL2 removes many of the restrictions of
APL, generalizes many of the fundamental concepts, and extends or com­
pletes many functions and operators.

1.1 RESTRICTIONS LIFTED

VS APL has the restriction that numbers and characters cannot appear in
the same array. APL2 relaxes that restr;ction. An array ;n APL2 may be
a collection of numbers and characters.

VS APL is restricted as items of an array are limited to single numbers
or 5;ngle characters. APL2 allows any item of any array to be any other
array. Such arrays are known as nested arrays.

Removing these restrictions adds the requirement for new functions. That
is, we need functions that allow us to enter nested arrays at a term;nal,
allow us to enqu;re about the arrays structu~Q, and rules of syntax to
accommodate the new arrays.

1.2 DESIGN CRITERIA

APL2 was designed with the four main criteria of:

COMPATIBILITY	 a measure of the extent to which a proposal imposes a change
- discussed further under Migration.

FORMALITY	 the extent to which a proposal follows rules.

SIMPLICITY	 a rule without any exceptions 15 preferable to one w;th
exceptions.

Background	 1

USABILITY a measure of the ease with wh;ch the notation can be un­
derstood and applied.

1.3 DATA STRUCTURE

Programs are less reliant on data structure under APL2 than under VS APl_
The structure relates to the values of, and the relationships between,
the data.

Actual data is oftQn not rQctangular. Not everything has the same length
name, not all products comprise tha same number of subassembllQs, and so
on.

APL2 retains the useful propert;es of rectangular arrays but allows non­
rectangular arrays to be represented easily in nested arrays. Nested ar­
rays can be used just as easily as VS APL arrays. Users and programmers
are not burdened with managing the data structure. More operations are
controlled by the data and the need for explicit controls on these op~r­
at;ons is removed. This makes prog~ams less complex, easier to w~ite,

eas;er to use, and more flexible.

The structure of the data ;5 handled by the language. The sam~ primit;ve
funct;ons that work on simple arrays and on scalars work on nested arrays.
The pr;m;t;ve functions also handle any necessary loop;ng.

Nested arrays and the APL2 f~nct;ons developed to handle thQ nested arrays
allow the USQr to concentrate on solving the problem rather than on th~

array structure. It 15 oftQn unnecessary to convert data from onp data
form to another data form to d;sp!ay data O~ to do arithmetic w;th the
data. APL2 removes many of these concerns from the user.

2 AN OVERVIEW OF APL2

2.0 APL2 LANGUAGE

The APL2 language ;s an enhanced version of APL, featur;ng l

o Hew data structures and types

o Hew functions and operators

o Enhancements to existing functions and operators

The enhancements make APL2 a very powerful and producttve language. An
ovsrv;ew of some of the more important enhancements ;s given ;n this
chapter. Refer to the APL2 language Manual (SH20-9227) for a more
comprehensive d;scuss;on of the features.

APl2 LANGUAGE

2.1 APL2 ARRAYS

An array ;5 an ordered rectangular collection of elements. In APl2 ar­
rays, these elements may be numer;c or character in the same array. Fur­
ther, they may be s;mple scalars (that ;5, single characters or slngle
numbers) or they may be other arrays.

A SIMPLE UNMIXED array; 5 one corrta i n i ng e; ther scalar character elements,
or scalar numeric elements.Examples of s;mple unmixed arrays are:

51 +0 1 2 4 9 16

52 €- \5

53 €- 'A' 'B' 'e'

S4 ~ 3 4 p 'ABCDEFGHIJKLMN'

Simple unmixed arrays were the only pr;mit;ve arrays in VS APl.

A SIMPLE MIXED array ;5 one conta;n;ng both numer;c and character scalar
elements, such as:

SMI ~ IA• 18' Ie' 1 2 3

5M2 ~ 'APL2',37 21

A NESTED array ;s an array that contains at least one non-scalar element.
Examples of nested arrays are:

HI ~ 'A' (2	 2 p 1.4) 5

TBAL ~ 3 5 p 15 1100

'FINAL REPORT' TBAL A avoid catenation
FINAL REPORT	 87 25 54 46 75

91 31 30 7 57
44 16 85 83 41

Each item of a nested array ;s trQatad as one element of the array. For
examples

AN OVERVIEW OF APl2 4

V E- 6 :5 10 (2 2 p \4) (3 3 p ~9)

V
6 3 10 1 2 1 2 :5

:5 4 4 5 6
7 8 9

pV
5

F .. 3 3 p 0

(1 l~F) • (1 Ipl)(2 2 Pl4)(4 4 Pl16)

F
1 0 0
0 1 2 0

3 4
0 0 1 2 :5 4

5 6 7 8
9 10 11 12

13 14 15 16

p F
3 3

Nested and mixed arrays p~ov;dQ an easy way to create reports as reports
can s;mp!y be the d;splay of one or more APL2 arrays. There;5 often no
nQed to wr;te funct;ons or worry about formatt;ng the layout. An examp!Q
of how a report ;5 produced ;5:

A~O.60612 0.8382 65.99 0.060615 0.67222 0.89629 59.5 0.06722
A~A,O.69225 0.923 57.78 0.06923 0.71595 0.9546 55.67 0.0716
TABl~'H2' 'EXPONENTIAL' 'ERLAHG-2' 'COHSTANT',4 4pA

TAB!

H2 0.60612 0.8382 65.99 0.060615
EXPONENTIAL 0.67222 0.89629 59.5 0.06722
ERlAHG-2 0.69225 0.923 57.78 0.06923
CONSTANT 0.71595 0.9546 55.87 0.0716

pTABI
4 5

APl2 LANGUAGE 5

The DISPLAY funct;on, available in workspacQ DISPLAY in LIB 1, is useful
;n showing the structure of an array. Hence, the use of the DISPLAY
function ;s a valuable aid i n understanding how APL2 treats nested arrays.

Nested data is shown in boxes and the directions of the array are shown
by arrows on the boxes, as can be seen in the illustration beiowl

)COpy 1 DISPLAY DISPLAY

DISPLAY 4.5 -2.4 (2 2pl4) (195 7 32)

.~--~--~---~--~-~------~~~~---~------.
.~-----. .~--------.
~ 1 2 I I 195 7 32 I
1:3 4 I I I
'N-----' ,~----~----,

,~-----------------------------~------,

DISPLAY ('APl' 2) (2 :3 p \ 6)

.~-------------------------------- .
.~---------- .~-------~
I .+----. 2 ~ 1 2 :5 I
I I APl I 14561
I 1-----' I N

- - - - ,

'€-----------,
- - - ­

.€--------------------------- __~ I

DISPLAY TAB!

.~-------~~-----~----~-~----~-~-------~-------.
~ .~. I

IH2f 0.60615 0.8382 65.99 0.0606151
' __ I I

.~---------- I
I EXPONENTIALJ 0.67222 0.89629 59.5 0.6122 I
,-----------, I

.~------. I
JERLANG-21
1 -_.

0.69225 0.923 57.78 0.06923 II

.~------. I
ICOHSTAHTJ 0.71595 0.9546 55.67 0.0716 I
,--------, I

€--------------------------------------­ I

6 AN OVERVIEW OF APL2

2.2 APL2 NEW FUNCTIONS

New functions were added to APL2 to deal with NESTED ARRAYS. A list of
the new funct;ons ;5 g;ven below. The syntax for each function w;ll be
explained ;n the next section, together with some brief examples.

DEPTH - R

DISCLOSE ::> R

DISCLOSE WITH AXIS ::>[1] R

ENCLOSE c R

ENCLOSE WITH AXIS c[I] R

FIRST l' R

MATCH l R-
PICK l :> R

ENLIST ~ R

FIND l ~ R

CIRCLE L o R

In addit;on, many functions have been extended or enhanced.

The functions, with examples to clarify their applications, are given ;n
the following sections. For details or definitions, refer to the APl
Programming: Language Reference (SH20-9227 >.

APL2 LANGUAGE 7

2.2.1 DEPTH

DEPTH (- R) analyses the degree of nest;ng ;n an array. Scalars have
depth 0, s;mp!e arrays have depth 1, other arrays have depth of 1 plus
the depth of the deepest nested item w;th;n the array. Hence all VS APL
arrays had depth of 0 or 1.

The DEPTH symbol ;s formed by using the backspace character which can be
displayed by the)PBS system command,

- 2.84
0

- 'A'
0

- 'APl2'
1

'ART' 'A LAN' 'MFB' 'REHE'
2

B~('ART' 'ALAN' 'MFB' 'REHE') 476 85 74 'APL2'

B

When using the DISPLAY funct;on, the depth of an array ;s the number
of nested boxes conta;n;ng the innermost ;tem. for array B, above:

DISPLAY B

.~----------------------------~------------------- .
•-+--- •.~--------~---~------------.

I .~- •• -+---, .+-- ••+---. 147685 74 IAPL21
I .ARTI IALAHI IMFBI IRENEI I 1 '

I ' --- , I ---- I , --- • , ---- I I

'€--------------------------,
'E---,

2.2.2 MATCH

MATCH (L - R) compares two ;tems or arrays. If both arguments are
;dentical ;n structure and data (that is, they 'match'), a n1" is re­
turned. If they do not match, a no· 1S returned. Examples:

8 AN OVERVIEW OF APL2

'APL2' - 'APLI' A different data
0

0
'APLI' 'APL2' - 'APlIAPl2' A different structure

0

, , - '\0 A

A

d;ffer-ent
and data

structure

1
'A' 'pi Il' '2' - 'APL2'

2.2.3 ENCLOSE

The enclose! and disclose functions simplify the handling of nested arrays.
Enclose enables us to treat an array as a single ;tem w;thout concern as
to its structure or data. D;sclose works the other way and enables us to
get to the actual data. We can think of enclose as putting data into
parcels 50 that it; 5 easy to handle, and di sclose as o pen i ns that parcel
when we want to look at or to use what ;s inside.

ENCLOSE (cR) creates a scalar from its argument.

v ~ 'APL' (2 3 p \6) CI0 20 30 40)

DISPLAY V
.~--------------------------- . .~- ..~---..~---------.

•APLI ~1 2 31 110 20 30 401

1--_' 14 5 61 'N----------,

'N----'

,~---------------------------_.

APL2 LANGUAGE 9

c V
APl 123 10 20 30 40

456

DISPLAY cV

.-+--. .~----. .~_ ..._------.
IAPll ~1 2 31 110 20 30 401
, --- , 14 5 6 I I N---------- ,

'N----.
,~----------------------------,

,~-------------------------------_.

We see that when us;ng ENCLOSE, the depth is increased, and the rank is
lowered.

3
p V pcV pccV

1
ppV

0
ppcV

0
ppccV

2
- V 5cV

4
:ccV

ENCLOSE enables a vector of characters to be treated as a s;ngle scalar.
This ;s very useful ;n appllcat;on development. It ;s easy to find the
pos;t;on of a set of characters in a table, or to add a name to a table,
if the items are enclosed and each name ;s treated as one item.

10 AN OVERVIEW OF APl2

TAB ~ ('ART' 'ALAN' 'REHE' 'MFB')

2
TAB ~ c 'ALAH'

[0]
[1]
[2]
[3]
[4]

TABB NEWHAME
ACHECK IF HEWHA
AIF HOT, APPEND
~«(cHEWHAME) €
TAB~TAB,cNEWHA

ME
IT
TA
ME

IN
TO TAB

B)/O

TAB

ART
TAB

ALAN RENE MFB
A display the table

4
pTAB

TABB 'MICHEL' A execut;on of the function

TAB A display the table
ART ALAN RENE MFB MICHEL

pTAB
5

2.2.4 ENCLOSE WITH AXIS

ENCLOSE WITH AXIS (c[I]R);s used to restructure the data in a tablQ
or report. The data of R ;s restructured ;nto a new array of ;ncreased
depth and reduced rank. The axes ftel;minatedft in ord~r to reduce the rank
are specif;ed by I. Examples:

APL2 LANGUAGE 11

TABLE p TABLE
H2 4 11
EXPONENTIAL
ERlANG-2
CONSTANT

ppTABLE - TABLE
2 1

<:[2] TABLE
H2 EXPONENTIAL ERLAHG-2 CONSTANT

p c:[2] TABLE pp c[2] TABLE
1

- c[2] TABLE
2

<:[1] TABLE
HEEC 2XRO PLH OAS HHT EGA N-N T2T I A L

p c[l] TABLE pp c[l] TABLE
11 1

- c[l] TABLE
2

DISPLAY c[2] TABLE
.~---~-----~---------------------------~-----------------.
I .~--------- ••~---------••+---------- ..~---------. I
I IH2 I IEXPONENTIAL I IERLAHG-2 I ICONSTANT I I
' €I -_II,-----------1 ,-----------1 ,-----------, ,-----------1

, TABLE
H2 EXPOHEHTIALERLAHG-2 CONSTANT

p,TABLE
44

12 AN OVERVIEW OF APL2

P Eo- 3 4 p \12

c[2]P
123 4 5 6 7 8 9 10 11 12

pc[2lP
3

c[l]P
159 2 6 10 :5 7 11 4 8 12

pc[l]P
4

2,2.5 DISCLOSE

DISCLOSE (~R) ;s the ;nverse of EHCLOSE, used to Rget atR the data ;n
nested arrays.

DISCLOSE ~estructu~es the data of R into an a~ray of reduced depth and
increased rank. The new dimensions that are added to increase the rank
of R are placed last.

All items are padded on the right to match the largest dimens;on.

For example:

D ~ 'H2' 'EXPONENTIAL' 'ERLAHG-2' 'CONSTANT'

~D

H2
EXPONENTIAL
ERlAHG-2
CONSTANT

4
pD

4 11
p~D

A new dimens;on ;s placed last

5D
1

5::)D

ppD pp:>D

1 2

APL2 LANGUAGE 13

M"(2 2p 0)(2 2p\4)(2 2p9)

M ~

0 0 1 2 9 9 0 0
0 0 3 4 9 9 0 0

1 2
3 4

9 9
9 9

p~

322

ppM pp:>M

1 3

EM 5~

2 1

D; sclose has no effect on s;mple scala~s. Thus,

5 <==> ::::>5

<==> ::::>'K'• K'

2.2.6 DISCLOSE WITH AXIS

DISCLOSE WITH AXIS (::::>[I]R) is used to place new d; mens; ons ; n di fferent
positions. The value of I defines the axes of the result for the re­
structuring of R.

ThQ shap8 of the result ;5 detsrm;ned by the order ;n wh;ch the axes are
1; stead ; n I.

All items are padded on the r;ght to match the largest dlmansion.

14 AN OVERVIEW OF APL2

Q <IE- 'LOUIS' 'CROIX'

pQ ppQ

2 1

=Q
2

::>[2]Q A equivalent to ::>Q
LOUIS
CROIX

p::)[2]Q
2 5 A new dimension placed last

pp::)[2]Q ::;)[2]Q

2 1

~[l]Q

LC
OR
UO
II
SX

p=>[l]Q
5 2 A new d;menslon now placed f;rst

pp::)[llQ :::>[l]Q

2 1

V2 ~ (1 2 3 4) (10 12 14)

;:)[1]V2 :>[2]V2

1 10 1 2 :1 4
2 12 10 12 14 0
3 14
4 0

Disclose with ax;s can be applied to arrays of names to modify the
presentation of reports. The following example illustrates how th;s can
be done.

APL2 LANGUAGE 15

TAB~ 'MFB' 'ART' 'ALAN' 'MCF' 'XYZ' 'RST'

~TAB p TAB
MFB 6
ART
ALAN
MCF p :> TAB
XYZ 6 4
RST

:;,[l]TAB

MAAMXR
FRlCYS
BTAFZT

H

(::>TAB), lQ 5 6 p\30
MFB 1 7 13 19 25
ART 2 8 14 20 26
ALAN 3 9 15 21 27
MCF 4 10 16 22 28
XYZ 5 11 17 23 29
RST 6 12 18 24 30

(:>[l]TAB),[l] I • , [1] 5 6Pl30
M A A M X R
F R l C y 5
B T A F Z T

H

1 2 :5 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

2.2.7 PICK

PICK (L ~ R) selects a single ;tem at any dQpth from an array R. The
;tem ;5 reached along the ftpathW given by L

l can be a scala ... or vQctor of depth ;S; 2. It can be an ; nteger 0 ... Qmptv.
For example:

16 AN OVERVIEW OF APL2

V 4E­ 'APl' ((3 2 p 'ABCDEF') 2)

2 ::) V
AI 2
CD
EF

2 1 (3 1) ~ V
E

2.2.6 SELECTIVE SPECIFICATION

With nested arrays, index specification ;s not suff;c;ent to allow editing
of any item at depth greater than 1. SELECTIVE SPECIFICATION assigns
values to items selected from an array. A selection function F applied
to an array R selects items ;n R and assigns to those items the values
contained ;n an array A, as shown below:

F R) E- A

(L F R) foo A

Some primitive function may be used to create the selection condition.

PICK 1S particularly useful, as it allows the selection of an item from
an array. Examples:

APL2 LANGUAGE 17

(l=>V) Eo­ 'APl2'

APL2
V

AB
CD
EF

2 2
pV

(2 2:>V) ~ 10 20 30

APL2
V

AD
CD
EF

10 20 30

M ~ 3 3 Pl9

(1 1 tQM) E­ O

0
4
7

2
0
8

M
:5
6
0

CCO>J)/J) ~ c'HEGATIVE'

J
3 NEGATIVE 7 NEGATIVE 6 9 5 3 NEGATIVE

pJ
9 A shape;s unaltered as c'NEGATIVE' ;s a scalar

P Eo- 'ABCDE'

(21-P) Eo- 1 2
P pP

1 2 CDE 5

V +- 'APlI' 1 2 3

(l1tV) Eo- c 'APl2'

V
APL2 1 2 3

18 AN OVERVIEW OF APl2

2.2.9 FIRST

FIRST (~R) ~eturns the f;rst item of its argumentv Thusl

~ 'APL2'

A

If an array of names 15 juxtaposed to a matrix of ~esults, the first item
of the resulting ar~ay ;s the matrix of names. This matrix of names also
has a first item. For example:

HM2~(4 5p'ROWl ROW12ROW2 ROW3 .)
RSLT.C4 6 p 2411000)

TAB2 ~ HM2 RSLT

~ TAB2 ~~TAB2

ROWl R
ROW12
ROW2
ROW3

p~TA82	 p~~TAB2

4 5

In order to determine the result of applying the function FIRST to an
empty array, we must first define the type and the prototype of an array:

o	 The type of an array is the array in which each nume~;c item has been
replaced by a ·0· and each character item has been replaced by a
"blank".

o	 The prototype of an array ;s the type of the first element of the
array. The prototype ;s used as a fill item when padding ;5 needed,
as shown with DISCLOSE ;n the example below.

Hence, the result of applying the function FIRST to an empty array is the
prototype of the array.

APL2 LANGUAGE 19

M ~ (2 2 pt4) (3 3 p 10 + \9)

1
:3

2
4

M
11 12
14 15
17 18

13
16
19

1
3
0

2
4
0

JM
0
0
0

A PROTOTYPE ;5 0

11 14 17
12 15 18
13 16 19

,~M

1 2 0 3 4 0 0 0 0 11 12 13 14 15 16 17 18 19

2.2.10 FIND

FIND (L £ R) ~etu~ns a boolean array of the same shape as R.

An ;tem of the result;s 1 ;f the pattern g;ven by L begins in ths

corresponding posit;on of R, o otherw;se. Example:

u ~ 3 3 p 1 0 0 1 1 1 001

U
1 0 0
1 1 1
0 0 1

(2 2 p 1 1 01) ~ U
0 0 0
0 1 0
0 0 0

E ~ 'INDIVISIBLE'

'IS' ~ E
0 0 0 0 0 1 0 0 0 0 0

20 AN OVERVIEW OF APL2

2.2.11 ENLIST

ENLIST (~R) returns a s;mp!e vector, comprising each simple scalar ;n
the argument.

The function ENLIST ;s needed as the function RAVEL, applied to a nested
array, returns a nested vector and not a slmple vector. The example below
illustrates that point.

5 ~ 'H2' 'EXPONENTIAL' 'ERLAHG-2' 'CONSTANT'

4
pS

DISPLAY S
.~--~---------~----~----------------------.
I .~ ••~---------••~------••~------. I
I IH21 IEXPOHEHTIALI IERLAHG-21 ICOHSTANT I I
I .-_. , 1 1--------, .--------, I

.~--_.

H2
,s

EXPONENTIAL ERLAHG-2 CONSTANT 4
p ,s

DISPLAY,S
.+--~--------------------~------~----------.
I .~ ••~---------••~------••~------. I
I IH21 IEXPOHEHTIAL I IERLAHG-21 ICONSTANT I I
I 1-_' .-----------1 I------~-I 1--------1 I
'€---,

ES
H2EXPOHEHTIALERLAHG-2COHSTAHT 29

p €S

DISPLAY ~s

.~---------------------------.
IH2EXPOHEHTIALERLAHG-2COHSTAHTI
1 ----------------------_.

The ENLIST function allows YOU to know if a particular character or se­
quence of characters ;s contained ;n a nested array.

'x· € S

o

'x' £ € S

APL2 LANGUAGE

1

21

v ~ 'APL2' (2 3 p ~6) (10 20 30 40)

pV
3

ILl C V
o

E.V

APL2 1 2 3 4 5 6 10 20 30 40

14

ILl c(V
1

2.3 APL2 HEW OPERATORS

Hew functions called Der;ved Functions can be created by apply;ng opera­
tors to existing funct;ons.

APL2 allows the user to def;ne operators in add;t;on to the operators the
language provides. Thus, APL2 has an unlimited set of operators, whQreas
VS APL has a lfmited set of operators.

All operators, whether provided by APL or user defined, can be applted
to any function to producQ newly defined functions.

Operators ;n VS APLr

REDUCE F/ R
F,-t R
F/[I] R

SCAN F'R
~R

F'[I] R

EXPAND LO~ R
LO'[I] R

OUTER PRODUCT L o.F R

INNER PRODUCT L F.G R

22 AN OVERVIEW OF APL2

APL2 provides one completely new p~imitlve ope~ator and enhanced VS APL
operators.

The new operator is:

EACH F .. R
L F·· R

The enhanced VS APL ope~ators are:

H-WISE REDUCE H F/ R

REPLICATE LO / R

All exist;ng VS APL operators are extended in that they can be applied
to use~ defined funct;ons as well as to primitive functions.

All of the operators, new and enhanced, are discussed in the following
sections.

APL2 LANGUAGE 23

2.3.1 EACH

EACH (••) can be monadi c or dyad; c.

The monadt c form of EACH (F·· R), app!;es the funct;on F to each ;tQm
of the array R. The result has the same shape as the argument. That ;5,
R be;ng a vector of 3 arrays A, B, and C, if

Z <==> F·· R

then

<==> (F A)(F B)(F C)

Examples:

.. \4\

1 1 2 1 2 3 1 2 3 4

.. \4p \

4

T (- (2 12)(3 14)(1 20)(1 5)

1-•• T +/U T
2 3 1 1 14 17 21 6

(1 = ~··T)/T

1 20 1 5

[]+-VE-'APL' (2 3p\6) (2 4p'ABCDEFGH')
APL 12:5 ABeD

456 EFGH

p
.. v

p p v
3 2 3 2 4 1 2 2

,··v p, ··V
APL 1 2 345 6 ABCDEFGH

€v P EV
APL 1 2 3 4 5 6 ABCDEFGH 17

EACH can be applied to any function, pr;m;tive or user written.

The expression below shows EACH app!;ed to the pr;m;t;ve OCR:

2 1 p OCR·· , fN I' • FH2 I

24 AN OVERVIEW OF APL2

where FHl, FH2 are functions. The canonical representations of each
function are displayed one after the other.

The example below ;llustrates the application of EACH to a usar written
function.

[0]
[1]

Z+RANK R
ZE-itppR

v + 'APL2 1 (2 2 p ,4) (10 20 30)

RANK •• V

121 1
RANK V

The dyadic form of EACH (L F·· R) applies the function F to corre­
sponding pairs of arrays from land R.Examples of the use of the dyadic
form of EACH are:

Tl
12

+0

~

12:5 4
10 12 14 16

1 10
Tl

2

..,
12

12
3 14 4 16

p T1 , •• 12

Tl ,
12:5 4 10

T2
12 14 16 8

p 11 , 12

10 2

1 -1 -1
:5 16

1 ~•• Tl •• 12,

it 4 4
:5 2

5 5

..
p 4 5

0

Z ~

pZ
5~·· GpO 0 0

5
ptZ

ABC

:5 p•• IABCDI
XYX

'XY'
ABeD

3 p

XY
'ABCD'
ABeD

'XY'

The last example illustrates the mechanism of scalar extension. When one
argument of a dyadic function 15 a scalar and the other argument is an
array, the scalar argument ;5 extended to an array with the shape of the
non-scalar argument. The function ;s applied to its arguments after this
extension has occurred.

When the dyadic form of the EACH operator is used w;th the CATENATE
function as shown below:

APL2 LANGUAGE 25

Q • 'LOUIS' 'CROIX'

Z +­ • ST. I , ••Q

LENGTH ERROR
Z E­ ST. , ••Q

1\ 1\

a length error occurs. Scalar extension ;5 a way to obtain a correct re­
sult. As the right argument ;s a vector, the left argument has to behave
like a scalar. This ;s achieved by enclosing the left argument, as shown
below:

Q .. 'LOUIS' 'CROIX'

Z Eo- (c' ST. '), ••Q

Z

ST. LOUIS ST. CROIX

Other examples of the use of dyad;c EACH are:

(c:2 3) p •• 'ABC' 2 3 p I ABC'
AAA BBB eec ABC
AAA BBB eec ABC

Ml .. :5 :5 p 101100
M2 ~ 3 3 p 101100

Ml M2
87 24 54 49 17 95
46 75 91 72 46 32
31 30 7 84 58 86

lB·· Ml M2
0.01206 -0.00793 0.01021 0.02878 0.05547 -0.05243

-0.01366 0.00582 0.02971 -0.04802 -0.05161 0.07225
0.00517 0.01020 -0.02964 0.00427 -0.01937 0.01411

p I!I•• Ml M2

B Eo- 3 1 p 8 7 10

(c:B) fH'e Ml M2
0.14291 0.094228 A these are the solutions to 2 sets
0.22652 -0.02294 A of 3 s;multaneous equat;ons with
0.18365 0.039714 A 3 unknowns.

26 AN OVERVIEW OF APL2

2

EACH ;s equivalent to the DO loop ;n other programm;ng languages. In most
cases, loops in APL2 can be el;m;nated by us;ng EACH.

t1: Z+-Z,cF tV
V €- l~V

~(O;fpV)/l1

Th;s loop can bQ replaced by:

APL2 LANGUAGE 27

2.3.2 DEFINED OPERATORS

The user can define operators ;n the same way as he defines funct;ons.
In the follow;ng example, the der;ved funct;on (F SEE) displays the ar­
guments of F before applying F to its arguments.

[0] Z €- L CF SEE) R
[1] ASEE THE ARGS&RESULTS AS F EXECUTES
[2] ~(O=DHC 'L')/MON
[3] Z+-L F R
[4] D+-Z '~I l If' R
[5] ~O

[6] MON: Z+-f R
[7] [JE-Z '+of' R

1 + 2 3 + 4­
7 8

1 + SEE 23+ SEE 4

6 7 4- 2 :5 f 4­
7 e (- 1 f 6 7

7 8

-/ 12 2 5

15

-/ SEE 12 2 5

15 (-1 12 2 5

15

+/ SEE 2 :5 4- x SEE 4 5 6

8 15 24 ~ 2 :5 ti- f 456

47 E-f 8 15 24

47

2.3.3 "-WISE REDUCE

H-WISE REDUCE (H F/R), ;5 an Qxtension to the operator REDUCE. F
is applied to the right argument, taking H ;tems at a time. If the left
argument, H, ;s negative, the items of R are reversed before the re­
duction. Examples:

28 AN OVERVIEW OF APL2

10

R +­ 1 2 :5
4 +/ R

14­ 18

4 5 6

15
5

20
+/ R

S E­ (1 5) (3 7) (8 9)

4 12
2 +/5

11 16 2
p 2 +/5

2 2
-2 -/1 :5

2 2 2
5 7 9 11

2 4
-2 -/2*,10

8 16 32 64 128 256 512

It ;g possible to indicate the axis, or axes, along which the reduct;on
w;ll take place. (H F/[I] R

M +- 4­ 4 p \16

:5
11
19
27

2 +/M
5 7

13 15
21 23
29 31

6
18
30
42

3
9

21
33
45

+/M

6
14
22

2 +/[1] M
8 10 12

16 18 20
24­ 26 28

Any APL2 funct;on can be used as the left argument to the slash operator.
For example:

1 2
2 ,/R

2 3 3 4 4 5 5 6 5
p 2 ,/R

2
-2 */1 2 345, 64 625

2 3
Cl,2'#/B)/BE-2
5 8 9 12

3 :5 :5 5 8 9 9 12 A

A

un i que elements in B
when B sorted and 2SpB

APL2 LANGUAGE 29

2.3,4 REPLICATE

SLASH (lO/ R) operato~ now accepts any numer;c vector as ;ts left op­
erand. If an item of LO has the value n (pos;t;ve), the correspond;ng
item of R ;5 repeated n times;n the result. If an ;tem of l is
negative, n zeroes or blanks are ;nserted, according to the type of R.
The number of non-negative ;tems;n L must be equal to the number of items
in R.

REPLICATE also accQPts an axes spec;f;cation.

Examples:

12:5 4/'ABCD'
ABBCCCDDDD

1 2 -1 3 -2/ 8 9 10
8 9 9 0 10 10 10 0 0

(\5)/\5

1 2 2 3 334 444 5 5 5 5 5

M +- 2 2 4 p \16
M

1 2 :5 4
5 6 7 8

9 10 11 12
13 14 15 16

1 -1 1 -1 / [l]M 2 -1 1/[2] M
1 2 :5 4 1 2 3 4
5 6 7 8 1 2 :5 it

0 0 0 0
0 0 0 0 5 6 7 8
0 0 0 0

9 10 11 12
9 10 11 12 9 10 11 12

13 14 15 16 0 0 0 0
13 14 15 16

0 0 0 0
0 0 0 0

2 -1 1 2 / (2 2 p\4)(3 3p'ABC')(1 2 3)

1 2 1 2 o 0 ABC 1 2 :3 123 A Prototype of
3 4 3 4 o 0 ABC A first matrix ;5

ABC A used as fill element

30 AN OVERVIEW OF APL2

2.3.5 SCAN

SCAN (LO , R) has been extended s;m;!arly to SLASH. The SCAN operator

;n APL2 accepts any funct;on as tts left operand.

Examples.

x, 1 2 3 4 5
1 2 6 24 120

+' (1 2) (3 4)(5 6) " lAB' I CD' • EFI
1 2 4 6 9 12 AB ABeD ABCDEF

,'1 2 3 4 p " 1 2 :5 it
1 1 2 123 1 2 :5 it

:) ,'1 2 3 it
100 0
120 0
12:5 0
123 it

.'3 4 p\12
1 2 6 24
.5 30 210 1680
, 90 990 11880

,'3 4 p\12 p " 3 4 p\12
112 12:5 12:5 4 3
55656 7 5 6 7 8
9 9 10 9 10 11 9 10 11 12

DISPLAY ,'[1]:5 4 p \12 ,'[1] 3 4 p \12
2

...-~~-------------------------~-------------------.., ,

1 2 3 4
I-­. ...--­. .-to---.---.
I 11 51 12 61 13 71 14 81

1,., 1
I Itv--_'
I .+------. .~------. ..-------. .~------.
I 11 5 91 12 6 101 13 7 111 14 8 1211l1li- ­

1,.,------1 1
I 1,.,-------1 1,.,-------,
·c-- I

APL2 LANGUAGE 31

2,3,6 OUTER PRODUCT

OUTER PRODUCT (Z ~ L o,RO R) ;s used to construct tables, It app!;es
the function RO between pa;rs of items, one from l and one from R,
;n all combfnat;ons,

Examplesl

(\4) o,X ~4 (\4) o,~ \4
1 2 :5 4 1 1 1 1
2 it 6 8 0 1 1 1
3 6 9 12 0 0 1 1
4 6 12 16 0 0 0 1

76 85 0" 7 26 4 p76 85 o ., 7 26 it
76 7 76 26 76 4 2 3
85 7 85 26 85 4

,~,,i, 0., 10 20 30 ' J.., I~' ,.. 10 20 30
.l 10 .l 20 .l 30 l EHGTH ERROR

• J... ..t 10 ~ 20 t 30 '¢' , 10 20 30
1\ 1\

Q ZE-l POWER R
[1] z~ L * R Q

(\5) o,POWER \5
1 1 1 1 1
2 4 8 16 32
3 9 27 81 243
4 16 64 256 1024
5 25 125 625 3125

1 3 2 4 o,~ VE-'APL2' (5P16)(lO 20 30 40) 'ABCDEF'
A 1 10 A
L :5 30 C
P 2 20 B
2 4 40 D

32 AN OVERVIEW OF APL2

2.3.7 INNER PRODUCT

INNER PRODUCT (Z 'E- l LO.RD R) combines subar-r-evs (1101)9 tiU :.~~:f::;l n}{l ~~"f

of L with subarrays along the first axis of R by a~plY1~,)";; ii{t RU 04Jt'tH"

product. Then an LO reduction ;s applied to each item of 'tl·ict"t :-~Q5U.:t ..

The +.X inner product is the same function as thp; w(",tr'l)(,l'''odu;>t. used

in matrix algebra.

For s;mple vectors: +/v x C <==> v +.x C

INNER PRODUCT is extended to allow LO and RO to b~! ar.v ~ l,.d),,' , ");','-J' o:i t:h~·:.·~~

primitive or user defined.

Examples:

V Eo-

C ~

(1
4

2) (2

5 6

3) (3

2
4) (4 5)

40
+/

57
V x C

40

v +.X
57

C

1
3
5

2
4
6

T
0.1
0.3

U
0.2
o<9 {t

1.1
3.1
5.1

T ,.+ U
2.3 1.2
4.3 3.2
6.3 5.2

2.4
4.4
6.4

1
3
0
0

2
4
0
0

Ml
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

Ml
0
0
1
1

1\.= Ml
0

0
1
1

M E- :5 :5 p 91100

M
87 25 54
46 75 91
31 30 7

M +.)(M
10393 5670 7351
10273 9505 9946

4294 3235 4453

(L +.€ R) ; 5 useful for counti ng the number or elements of an array that
are also elements of another array, or to determine whether a name is in
a table. For example,

K A p K 1S :5 8
SATURDAY
8/15/85
AUG. 15

K +.€ '0123456789'
0 5 2

R A P R ;s 3 it
GOOD
WELL
BAD

R 1\.= 'WELL'
0 1 0

[1]

V ZE­ L PLUS R
Z+­ L + R '\1 [1]

V Z+-L TIMES R
Z+ L x R V

45
105

(2 2Pl4)

45 45
105 105

PLUS. TIMES 2 :5 p15

25
:5 4 PLUS • TIMES 3 it

34 AH OVERVIEW OF APL2

2.4 COMPLEX NUMBERS

Complex numbe~s can be used in APl2 just like ~eal numbers: assigned to
variables, used as a~guments to functions, and so on.

The availability of complex numbe~s g~eatly inc~easQs and facilitates the
use of APL2 in the eng;nee~;ng and scientific area. In many fields, such
as electrical engineering, electromagnetism, nuclear physics, hydraulics,
and acoustics, behavior is described with complex numbers.

COMPLEX numbers can be entered in rectangular or polar form. For the
CIRCLE function (LoR), the value of L has been extended to range from
-12 to 12. The extended values provide the real part, imaginary part,
magnitude, and phase of a complex number.

The conjugate of a complex number is obtained by using (+C), the con­
jugate primitive function.

APL2 LANGUAGE 35

C Eo- :5J2

C
3J2

9 0 C A r-eal par-t of C

:5

10 0 C A magnitude of C

3.605551274

11 0 C A i mag; nar-y part of C

2

12 0 C A phase of C

0.5680026035

-10 0 C A complex conjugate of C

3J-2

+ C A complex conjugate of C

3J-2

The solution of equat;ons sometimes r-esults in complex number-sa

Polynomial equations can be solved by us;ng the POLYZ
function fr-om workspace MATHFHS in public library no. 1

POLYZ 1 1 1 A sol. of (XM2) + X + 1 = 0
O.5JO.86602540 -O.5J-O.86602540

11 0 POLYZ 1 1 1 A imaginary part of the
0.86602540 -0.86602540 A sol. of (XM2) + X + 1 = 0

2.5 ERROR HANDLING

APL2 provides several new facilities to assist with problem determination
and correction. Errors are now indicated by 2 carets, one to show how
far the execution of the statement had progressed, and one to show the
likely pojnt of the error.

The state indicator now includes errors made ;n immediate execution as
well as those made ;n functions. The)SIS command d;splays the state­
ment ;n error as well as the function and Itne.

36 AN OVERVIEW OF APL2

The)RESET command clears the status indicator. It clea~s all exe­
cutions susP9nded due to error. In VS APL, a r; ght arrow had to be entered
for each error entry, clearing them one by one.

)5IS	 A status indicator wfth statements

IE 1 3 2 4+2 3 4	 A most recent interrupt;on
A two carets to indicate the error"" IE 5+0

1\/\

TIMES[l] Z·LxR	 A er,.,or indication with the statement
1\ 1\

M 1 2 TIMES 123
1\ 1\

)RESET	 A reset the status ;nd;cator
)515

After an error has occurred, the Dl and DR system varfables contain the
left and right arguments of the function. They are especially useful for
the programmer during debugging functions wfth shared variables. left
and right arguments of suspended functions can be modified and execut;on
can then be resumed from the point of interruption ;n the statement by
entering ~\O • For example, suppose the use~ defined funct;on has been
;ncorrectly called,as follows:

3 4 PLUS 3 4 5 A us;ng user defined function

LEN GTH ERRO R
PLUS[l] Z+L+R

1\ 1\

3 4
DL

345
DR

DL 4­ 123 A co~rect error

468
+'\0 A resume funct;on execution

EXECUTE ALTERNATE (L DEA R) attempts to eXQcuta the expression ;n the
r;ght argument. If there ;5 an error, DEA executes ;ts left argument.

APl2 LANGUAGE 37

Thus DEA p~ovides a way to ~etain p~ogram control after an error. If an
application is likely to produce a specific error that can be anticipated,
together with a correction, OEA is ideal.

Programmers are often advised that their programs should do extensivQ
error checking. End users must not be thrown into APL with confusing
error messages. However, it ;s not feasible to search for all possible
errors. Some errors are unpredictable.

Often a function will make extensive checks to en5u~e that the argument
being supplied to a function will be acceptable to that function. For
example, the function checks that data being fed to a multiplication ;s
numeric or that a matrix being fed to an inverse ;s not singular. The
function spends much of its time just checking to ensure that it will
wo~k. It would be nice to just try it and back off ;f it fails. Using
DEA allows the programmer to have APl do the testing.

The function to be executed ;s entered as the right argument to DEA.
If the data ;s not acceptable and the function fails, OEA passes control
to the left argument. This could then perform appropriate ~emed;al

action, such as asking the user to reenter the data. Program control has
thereby been maintained and the complicated testing has been done by APL.

However,OEA will pass control to the left argument ;f the right argument
fa;ls for any reason. This could be a WS FULL condition. The left ar­
gument has to determ;ne what error caused the right argument to fail.

The er~or determination can be done using the two system variables DET
and OEM which contain the error type and error message, respectively,
after each error.

The OEA system function should be considered as a mean of retaining
program control.

The system function DES, event s;mulat;on, allows the user to act just
as the system does when an error occurs.

An example of the use of these erro~ handling var;ables and functions ;s
given below. A function PLUS is defined. The first statement uses OEA
to keep program control when the evaluation of L+R fails. The third
statement checks the error type with DET.

o	 If there is a length e~ror, statements 5 to 13 allow the user to
correct it.

o	 In all other cases, the fourth statement simulates the occurrence of
the event specif;ed by OET. The function now behaves as if there was
no DEA.

38 AN OVERVIEW OF APL2

QPLUS [0] Q

[0] Z+-l PLUS R
[1] LO:'~Ll' OEA 'Z~L+R'

[2] ~o

[3] ll:~(OET = 5 3)/ERRl
[4J DES DET
[5]	 l3:~~~'WHICH ARGUMENT DO YOU WANT TO REDEFINE, RIGHT OR LEFT?eR L)'
[6] ~('RL'~1~(pW)~)/L4,L5

[7] ~L3

[8] L4:'REDEFIHE RIGHT ARGUMEHT'
[9] REo{]
[10] ~LO

[11] L5:'REDEFINE LEFT ARGUMENT'
[12] lEo{]
[13] ~LO

[14]	 ERRl:~L3,OAD+' M * ARGUMENTS OF DIFFERENT LENGTH * * •
Q 1984-11-06 9.00.02 CGMT-5)

1 2:5 PLUS 3 4 5
it 6 8

2:5 PLUS 2 3 4

M M ARGUMENTS OF DIFFERENT LENGTH * *
WHICH ARGUMENT DO YOU WANT TO REDEFINE, RIGHT OR LEFT! (R L) R
REDEFINE RIGHT ARGUMENT
0:

2 3
4 6

2:5 PLUS 2:5 4

* M ARGUMENTS OF DIFFERENT LENGTH M *
WHICH ARGUMENT DO YOU WANT TO REDEFINE, RIGHT OR LEFT? (R L) L
REDEFINE LEFT ARGUMENT
0=

12:5
:5 5 7

OET and OEM together w;th DES allow the user- to receive more mean;ngful
error messages. The programmer now has great control over APL's han­
dl;ng of Qrrors and can ta;lor err-or handling to each ;nd;v;dual appl; ­
cat;on. For Qxample,

APL2 LANGUAGE 39

3 4	 TIMES 2 3 4 A execution of user funct;on

LENGTH ERROR
TIMES[l] Z~LxR

~ A

OEM
LENGTH ERROR
TIMES[l] Z~LxR

A ~

DET
5 3

Us;ng the NATIONAL LANGUAGE fac;l;ty of APL2, all system commands and
system messages are displayed in the language assigned to the OHLT.
'xxxxxxx' system variable. APL2 has already defined 9 different national
languages.

2.6 APb? EDITORS

APb2 provides two ed;tors for entering and editing defined functions and
operators. The)EDITOR command;s used to query and select the editor.
The two editors area

1.	 EDITOR 1: This is a line editor similar to the VS/APL line editor.
One significant improvement is the ability to delete multip!a lines
with a s;ngle command.

2.	 EDITOR 2: This ;5 a ful1sc~een editor requiring GDDM release 3. Most
of the commands are the same as those used for the line editor. Ed­
itor 2 has additional commands that allow YOU to locate occurrences
of character strings, make global changes, and COpy lines within a
function or from another function. The fullscreen editor can also
be used to edit simple character vQctors or matrices.

The fullscreen editor is different from the eMS editors, the ISPF/PDF
editor, or the fullscreen editor previously ava;lable w;th the VS/APL
Fullscreen Support field developed program. The differences area

o	 There;s no specific command line on the screen. Commands are entered
between brackets at the start of any line on the screen.

o	 There;s no 'insert' or 'add' command. If new lines are entered
starting in column 1, overtyp;ng existing lines, they are inserted
before the first line overtyped. The line editor method of inserting
lines can also be used.

40 AN OVERVIEW OF APL2

o APL symbols are used for commands.

To users of other fullscreen editors, the APL2 fullscreen editor might
appear strange at first. However, it does have the advantage of being
similar to the l,ne editor, it ;s a powerful editor, and it ;5 easy to
learn to use its full capabilities.

If the systems editors are preferred over the new APL2 editor, funct;ons
can easily be developed wh;ch allow use of other editors for APL2 func­
tions. The systems editors however do not offer an APL execution command
[~]. ·Using the PDF Editor for APL2 Functions· on page 76 and "Appendix
C. Sample APL2 Function to Use eMS Editor- on page 109 show how the
ISPF/PDF editor or the eMS editor can be used from APL2. These methods
do require that an 'edit' function be ;n the workspace and that the object
to be edited be entered in quotes.

APL2 LANGUAGE 41

42 AH OVERVIEW OF APL2

3.0 APl2 AND RELATIONAL DATA BASES.

This chapter deals with the connection between APL2 and the relat;onal
data bases SQL/OS and 082. APL ;s no longer confined to its own env;ron­
mente APL2 has a new auxiliary processor, AP127, which allows commun;­
cation with a relational data base either;n VM/SP or ;n MVS. AP127 ;5
shipped with the distribution tape. SQL commands can be processed d;rectly
from APL2 and the result returned as an APL2 array wh;ch can then be op­
Qrated on by APl2 functions. APl2 has become a very convenient language
to deal with relational data bases.

The concept of nested arrays and the concept a relational data bases
evolved independently. Even so, tables from relational data base map
n;cely into the new concept of nested arrays which was introduced in APL2.
The connection between APL2 and ~elational data bases allows APL2 to ex­
plott the facilities of the data base products ;n dealing with collections
of data.

This chapter provides an introduction to APL2 with SQL/DS or DB2 for the
system engineer. The subjects covered are:

o An overview of relational data bases

o O~gan;zation of APL2 and SQL/OS in VM/SP

o Organization of APL2 and 082 ;n MVS

o Working with a relational data base in APl2

o Examples of APL2 using 082 or SQL/DS

o Conclusion

3.1 WHAT IS A RELATIONAL DATA BASE?

Two relattonal data base management systems are available:

o D8/2, which runs under MVS

o SQL/DS which runs in VM/SP, VSE, or SSX.

The two data base management systems have a number of common
characteristics.They are handled by the Structured Query Language CSQl).
Both systems allow a use~ to access shared data for on-line, interactive,
and batch systems.

The two data base management systems simplify the task of handling data.
The language SQl provides facilities for querying data and manipulating

APL2 and relat;onal data basas. 43

data. Datd ol')erat: 1ons loJhi ch can be complex; n APl2 can frequently be done
more ea 5 ; 1Y lAd th t:h(] 5Q L language.

•2SQL/DS anrl D~? hoth provide a catalog which manages all the information
that they C~n handle. The catalog conta~n5 information about data, stor­
age, prOgr~~5, and authorizations. It is often managed by a Data Base
Adm i n i s t r a t o r- (oJho grar1ts the authorizations.

5 L/DS and ~B2 have comprehensive and integrated recovery schemes with
d.sk log9~ngp automatic recovery on restart, and utilit;es. Data ;s pro­
tr::cted frc"m t.hre~ types of failure: system, mad i a , and application pro­
grc:m. With r-,PL~~.1 there is protection against failure of APl2 or of the
aUK i Li a r v pro C 0 5, 50 t' or

Utilities a~e shipped with SQL/DS and DB2 to help process large amounts
of data !...dth batch jobs. The u t i Li t i a s are the DBS utility for SQl/DS,
~nvoked by the procedure SQLDB5U, and the DBS utilitjes option of DB2I
(D82 interactive) for DB2.

DB2 and SQL/DS both lise the relational model of data .. A RELATION ;n the
relational data model can be thought of as a simple two-dimensional table
havi ng a 5p~:cl +1 c number of columns and some unordered rows. We wi 11
con n i de r • in tt?rrn~, of the tables:

o The op~~¥"at 1tH",~ we may perform on them

o Th(~ \:oftPTtar,ds t"<lhi ch permi t us to execute these operat ions

o Di fft:Jren~ vi eW5 of the data

A table 1~) ; dent1 t~·l (?d by a table name. Each column relates to a g;ven

characteristicl contains data of the same k~nd, and has a name. Each row
relates to a sn~cific object,contains data of different kinds, and has
no naMe ... 4~ ---'0i"o; ,.: 5 < i mi lar to a record in a conventional data set. An
example nf a t2b]~ is shown in Figure 1 on page 45

BIN YEAR TYPE STORlOC	 COST COLOR

CII 1971 RIOJA IMPORT DEPARTMENT 4.94 R

C12 1971 RIOJA WINE CLUB SHOW CASE 3.94 R

F16 1983 ROSE WINDOW

G12 1974 MERlOT BASEMENT 8.94 R

II0 1979 BARDOLIHO ANNEX 2.25 R

KI0 1981 CHABLIS ON ORDER 3.94 W

BID 1973 CHAMBERlIN COUNTER 10.94 R

811 1966 BORDEAUX SPECIALITY CORNER 8.94 R

812 1974 BORDEAUX SPECIALITY CORNER 10.94 R

Kl1 1981 RIESLING SHELF 6.25 W

111 1979 VAPOLICELLA ANNEX 2.25 R

F;gura 1. Example of Table Named WINE.

This array has six columns and some rows and represents a relation in the
relational data model. The intersection of one row and one column is the
smallest unit which can be handled. It is called a value in the termi­
nology of 08/2 and a field ;n the terminology of SQl/DS. When a value
(field) ;s missing, it has a HULL value

Rows have no inherent order. If the data ;s to be retrieved in a specific
order, the user must specify that orde~.

There are two things to notice about the array in Figure 1. The array
;s an ordinary matrix of eleven rows and six columns. In addition, the
array looks suspiciously like an APL2 array.

3.1.2 OPERATIONS ON TABLES.

A data base system allows a variety of operations to be performed. Basic
operations on tables are:

o	 Creating or dropping (deleting) tables

o	 Retriev;ng data, whole tables, rows or parts of rows

o	 Updating, inserting, or deleting data

o	 Copying data from one table into another

o	 Performing table utility operations, such as bulk data loading, data
reorganization, and printing

An operation unique to the relational data model is called JOINING. This
operation causes the data base system to merge data from different tables.

APL2 and relational data bases. 45

F; gure 2 presents a table named ORDERS. Th; s tabla contai ns the quant; t; CIS

of each w;ne ordered by customers.

CUST 81 QUANTITY

ALAN Cil 3
ALAN el2 4­
MANUEL G12 5
MICHEL 810 2
MICHEL 811 1

Figure 2. Example of Table Hamed ORDERS.

The syntax of the SQL command that jot ns the table ORDERS; n F; gure 2 w; th
the table WINE ;n f;gure 1 ;s:

SELECT CUST,BIH,TYPE,COST,QUAHTITY,QUANTITY*COST
FROM ORDERS,WINE
WHERE BI =BIN

The result of the jo;n;ng of the tables ;5:

ALAN ell RIOJA 4.94­ 3 14.62
ALAN C12 RIOJA 3.94 4 15.76
MANUEL G12 MERLOT 8.94 5 44.7
MICHEL 810 CHAMBERlIN 10.94 2 21.88
MICHEL Bl1 BORDEAUX 8.94 1 8.94

For each order, the type, the cost, the quant;ty, and the pr;cQ are
listed.

Joining table as above shows some of the power that the relat;onal data
base systems offer. A single statement can merge two tables and can per­
form an operation between two columns. The quer-y spec; fi es what the user­
w;shes to see, which tables conta;n the des;red data, a search cond;t,on
and the required operation between two columns.

3.1.3 STRUCTURED QUERY LANGUAGE (SQL)

SQl ;s a high-level language for handling data. With SQL YOU specify what
YOU want, not how to get it. You do not have to know how or where data
;s stored. Most programm;ng and data languages process data one record
at a time. To use them YOU code a sequence of instructions explaining

46 AN OVERVIEW OF APL2

how to get the data, what to look fora, and what to do with it. Wl"th S(~t

you do not have to specify all th;s ;nformat;oni you select all tho data
YOU want with a single statement.

SQl commands consist of command verbs, one or more optional clau~es,

language keywords, and parameter operands. SQl commands can be Qntered
at the terminal, contained in programs, and now used in APl2 with the
aux i Li ar-v processor. In APl2, the data is received directly into an Hr'''­

ray. APl2 functions operate on data all at once without the need of
loops. The APl2 language and the SQl language fit together nicelYa

The most commonly used SQl commands are shown in Figure 3 on pago 48 and
are grouped into five types.

APL2 and relational data bases. 47

Query Command

SELECT Retrieves data from one or more tables

Data Manipulation Commands

INSERT Places a new row in a table

UPDATE Changes data fields in one or more rows

DELETE Removes one or more rows from a table

Data Definition Commands

CREATE Defines new tables, views, indexes, synonyms,
dbspaces for SQl/DS, tablespaces for DB2

ALTER Changes the description of tables,
tablespaces in D82, dbspaces ;n SQL/DS

ACQUIRE Acquires a dbspace in which tables and
can be created CSQl/DS only)

indexQs

DROP Erases a tablespace, a view, an index, or a table

Authorization Commands

GRAHT Control access to data and pr;v;leges on the
REVOKE data base system

Control commands :

COMMIT Permit explicit control of the disposition of a
ROLLBACK unit of work

LOCK TABLE lock a table or a tablespace in D82

f;gure 3. Summary of 5QL Commands.

48 AN OVERVIEW OF APl2

3.1.4 DATA TYPES.

When work;ng w;th a relat;onal data base system, the user has to be aware
of the data type of the columns. Figure 4 is a summary of the d;fferent
data types. When the data ;s fetched, basic operations such as add;tion,
multiplication, or averaging can be applied on columns.

-.

DATA TYPE

DECIMAL (m,n) Decimal data, where m ;5 the total number of digits I

and n the number of decimal digits

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I

INTEGER

SMALLINT

FLOAT

CHARCn)

VARCHAR(n)

LONG VARCHAR

Large positive or negative number (4 bytes)

The same as INTEGER but less than 32,767 (2 bytes)

Floating point number: from 5.4E-79 to 7.2E+75

Fixed length character str;ng up to 255 bytes

Varying character string up to 255 bytes

Vary;ng character string up to 32,767 bytes

Figure 4. Types of Data ,n Relat;onal Tables.

When data of DECIMAL, INTEGER, SMALLIHT or FLOAT is fetched, the resulting
APL2 variable is numeric.

~3.1.5 VIEWS AND INDEXES.

A VIEW is a logical table that is derived from one or more tables. VIEW
DEFINITIONS can be stored in a relational data base system.

V;ews look like stored tables and can be used as if they were tables.
However, some operations are restricted.

Views are used to simplify data retrieval commands or to limit user ac­
cess. An example of how to create a view WIHE2 which ;5 a subset of the
table WIHE is:

APl2 and relational data bases. 49

CREATE VIEW WIHE2 AS

SELECT VEAR,TVPE,COST,COLOR FROM WINE WHERE COLOR ='R'

SQL/DS and DB2 are able to handle large amounts of data (up to 64 billion
bytes for DB2). To improve the performance of retr;ev;ng data from the
data base, INDEXES can be created on columns. They greatly improve the
performance of a retrieval. An example of how to bu;ld an index on the
table WINE for a specific column YEAR is:

CREATE UNIQUE INDEX IWINE

ON WINE (YEAR ASC)

3,2 OPERATING SYSTEM IN SQL/DS

To use SQl/DS data bases,you should know about the environment and ensure
that the access to SQL/DS has been prepared.

3.2.1 ENVIRONMENT IN SQl/DS

A SQL/DS data machine ;s a VM/SP virtual machine that owns the minidisks
where the data bases are stored and handles the data base. A data basQ
machine 1S act;ve for only one data base at a time. SQL/DS is initiated
by an SQL procedure SQLSTART EXEC and terminated by an operator command
SQlEND. The different modes of operation that are available are:

I. Single User Mode.

In single user mode, SQL/DS, its preprocessors, and application pro­
grams run in a single VM/SP virtual machine.

2. Multiple User Mode.

In multiple user mode, one or more users or applications concurrently
access the same database. For this mode of operation, SQl/DS runs in
a VM/SP virtual machine wh;!e one or more APL2 users, or batch users,
or ;nteract;ve users operate in othe~ virtual machines.

3. Multiple Data Base Operation.

In multiple data base operation, several SQL/DS data base machines
run ;n multiple user mode under the same VM/SP.

These modes of operation are illustrated in Figure 5 on page 51

50 AN OVERVIEW OF APL2

End-user
Machlnes U

I
I

SQlINIT C

Data
Bases

Data
Base
Mach;nes

A

I
I
I

rI
I DB! I
I I
I I

SQLSTART
SQLEND

SQLDBA

IIL

I

rII D82 I
I I
I I

1
I
I

I

I
I I

L:J

,

Example 1 Example 2

Figure 5. Single or Mult;ple Access to Data Bases.

Once a data basQ machine has been activated ;n multiple user mode, many
users can access the SQL/DS data base simultaneously in batch mode, or
dynamically, or with APL2. For this type of operation, users normally
must have:

o a proper SQl/DS author;zation
o a VM/SP IUCV path to the data base machine
o read access to the SQL/DS production disk
o	 executed the SQLINIT exec to establish the current data base asso­

ciation.

In example 1 of Figure 5, an SQLSTART exec has activated SQl/DS data base
A;n single user mode CA ;s the data base machine for the data base OBI)
APl2 must be started ;n this machine ;f access to the data base DBI ;s
required.

In example 2 of Figure 5, SQLSTART EXEC has activated the SQl/DS data base
machine SQlDBA;n multiple user mode (SQLDBA ;5 the data base machine
for data base DB2). User virtual machines Band C used the SQlINIT EXEC
to select DB2 as the;r SQl/DS data base. They can then start APl2 ;n their
machine and pass the appropriate functions.

APL2 and relational data bases. 51

Sta~t;ng the data base machine ;n a multiple users mode ;s usually done
by the data base administrator or by a procedure.

The auxiliary processor AP127 ;5 like any application program and can
operate in different modes ;n VM/SP. In all modes# access to the SQL/DS
production m;nid;sk is required.

3.2.2 PREPARING ACCESS TO SQl/DS

To ensure that APl2 and SQL/DS can communicate with each other, with
SQL/DS# you have to preprocess the source AP2V127I ASMSQL must be pre­
processed. An entry in the table SYSACCESS of SQL/DS will be created to
control the access of APL2. The distribution tape contains the source
and the text of the auxiliary processor.

3.2.2.1 WHAT THE SQl/DS DATA BASE ADMINISTRATOR MUST DO

o	 Preprocess the source AP2V127I ASMSQL. For example:

SQLPREP ASM PPCHOPU,HOPR,PREP=AP2V127I,

USER=SQlDBA/SQLDBAPW) IHCAP2V127I)

SQLDBA is the name of the machine wh;ch handles the data base and
SQLDBAPW is the password.

o	 Authorize users to run the program AP2V127I. In order to give this
authorization, the command

GRAHT RUN ON AP2V1271 TO PUBLIC;

must be passed to ISQL, the interactive way to use SQL/DS. For this
case, any APL2 end user may use SQl/DS.

3.2.2.2 WHAT THE INDIVIDUAL USER NEEDS

o	 Authority to use the program AP2V1271 and CONNECT authority to the
data base.

o	 Authority to use a DBSPACE in which to create tables.

o	 L;nk and access the SQL/DS production disk.

o	 Run SQLIHIT exec to create the access module ARISRMBT on his disk.
An example of SQlINIT which makes the link with SQLDBA is:

52 AN OVERVIEW OF APl2

SQLIHIT DBHAMECSQLDBA)

o Start APL2 and try some SQl commands w;th the funct;ons ;n the work­
space SQL, sh;pped with the distr;bution tape.

3.3 OPERATING SYSTEM IN DB2

In an MVS environment, DB2 operates as a formal subsystem of MVS. Ap­
plications that access DB2 resources can run in batch, TSO, IMS, or CICS
environments. Let us consider how APL2 can access DB2 and what has to be
done to prepare this access.

3.3.1	 ENVIRONMENT IN MVS,

APL2 can access DB2 ;n the TSO environment as any program runs in TSO with
DB2. Figure 6 gives an overview of APl2 in an MVS environment. Notice
that APL2 with AP127 can reach all the data handled by DB2.

MVS/SP or MVS/XA

I I
I I
I I I
I ~ I IMS

T50	 I I I I eIeS
I I I I BATCH

I I I D82 I I
I I I I I

I I I IJ

APl2~ i ~
I

I

I

I
I
 I

I I
Figure	 6. APl2 in an MVS Environment

The auxiliary processor AP127 ;s an assembler p~ogram containing embedded
SQL statements as does any othe~ DB2 program. Four steps must be pe~­
formed before ;t can be run:

APl2 and relational data bases. 53

o	 P~ecompilat1on: check SQL syntax, p~oduce a mod;fied source prog~am,

and produce a databasQ ~equest module CDBRM) which ls an lntermed;ate
form of an SQL statement.

o	 Comp;lation: translate the mod;f;ed source program.

o	 Bind: process the D8RM to produce an application plan, the QxecutablQ
code representing one or more SQL statements.

o	 link-edit: produce the final object module.

Binding is the activity that converts the DBRM, a set of syntactically
correct SQl statements, into a set of executable instructions to D82.
If all the SQL statements are correct and if the binder ;s authorized to
access the data, DB2 builds an application plan that contains information
about the program and the data the program uses. F; gure 7 ; llustrates th; 5

process.

I I
r I 1 I
I DB2 source I Pre I I I I
I Program f--+I 1......---)~llcomPiIQrH l.E. I
J I ICompilerl I
l- -----1 I I I I r I
~ I II	 I

I
I	 I
I	 I
I	 I
~	 ~
I	 I

I

DBRM BIND
PlanH

I
----1 ,

I

Figure 7. Process and bind of a DB2 program

3,3.2 PREPARING ACCESS TO DB2

The load module AP2T127 of AP127 ; 5 a member of the I; nkl; b of APl2. The
D8RM of this program 15 stored in APl2.SYMBLIB with the name AP2TDBRM.
The level of the D8RM module must be checked with the level of the
AP2T127 load module.

54 AN OVERVIEW OF APL2

3.3.2.1 WHAT THE DB2 DATA BASE ADMINISTRATOR MUST DO

o	 Bind the APl2 application (AP127) to DB2

o	 Grant any AP127 user RUN authority to DB2 through the APl2 appli ­
cation plan

The sample job stream AP2JBIND can be processed after customization ac­
cording to the installation. The default APl2 application plan is
APL2PLAH. This name can be changed. If the name is changed, ;t is neces­
sary to specify the name of the plan during the invocation of AP127 when
APL2 ;s started.

The two previous operations can be done with DB2I, which is an interactive
way to work with DB2.

3.3.2.2 WHAT THE INDIVIDUAL USER HEEDS

o	 Authority to use the auxiliary processor AP127

o	 Authority to use a TABLESPACE in which a table can be created

o	 Start APL2 and try some queries with the functions in the workspace
SQL, shipped with the distribution tape.

3.4 HOW TO USE THE SQL WORKSPACE.

An APL2 user can work wlth a relat;onal data base by personally manag;ng
the shared var;ables. However, ;t ;s eas;er to use the workspace SQl which
;s sh;pped with the program product. The use of th;s workspace greatly
fac;litates access to the data bases. The rules to access DB2 or SQL/DS
are very s;m;!ar. Any differences will be noted.

Check wtth the Data Base Administrator about the rules of the data base
and to ensure that YOU have the appropriate authorizations to do what you
want to do. Th;s checking ;s to be done prior to working with DB2 or
SQL/DS. For our work, we askQd for a dbspace TEST because we want a space
to create tables ;n an SQL/DS data base. If we were working with DB2 we
would have asked for a tablespace ;n a data base.

In th;s chapter we will demonstrate:

o	 How to communicate with DB2 or SQL/DS

APL2 and relat;onal data bases. 55

o The functions in the workspace SQL

o The structure of the result data

3.4.1 AN EASY WAY TO COMMUNICATE WITH A RELATIONAL DATA BASE.

This section contains examples of some basic operations using the work­
space SQL.

The APL2 function SQL ;s used to create, insert, and query a sample tablQ.
The SQL command ;s passed as the right argument to the SQl function and
the aux,l,ary processor returns a vector of three items:

o The first item ;s a five-element return code vector

o The second item ;s the result data array

o The third item is a request stack vector

For example, to create a table WINE in the dbspace TEST, an SQL command
CREATE must be executed. CREATE specifies the characteristics of the
desired table. To execute CREATE, a variable CWINE in an APL2 character
matrix or vector, containing the CREATE command of the SQL language, is
created. (In DB2 there ;s no D8SPACE. You must specify the name of the
database and the tablespace. For instance: IN DBTEST.TSTEST)

Each column type must be defined. If a value is required, HOT HUll must
be added.

The SQL command CREATE is processed from APl2 by passing the variable
CWINE as the right argument of the funct;on SQll

SQL CWINE
o 0 0 0 0

AP127 returns a five-element code vector, the first result item returned
by SQL. All zeros shows a successful completion.

Similarly, if the appropriate SQL command ;s put into a character matrix
IHSERTTAB, a row can be inserted ;n the table, as shown below.

56 AN OVERVIEW OF APL2

CWINE

CREATE TABLE WINE
(BIN CHAR(3) HOT NULL,

YEAR SMALLIHT

TYPE VARCHAR(12) HOT HULL,

STORlOC VARCHAR(20)
COST DECIMAlC6,2)
COLOR CHAR(!))

IN TEST

This operation inserts just one row in the table WINE. With APL2, rows
can also be inserted;n bulk. We will be discuss ;n the next section.

The function COMMIT makes all changes to the data base since the last
su~cessful shared offer or since the last COMMIT operation permanent. It
;s necessary to commit modifications if they are to be available to other
end-users.

Suppose that many rows have been 1nserted ; n the data base. The data base
can be queried by:

RE-SQl 'SELECT * FROM WINE'

(WINE ;s a table given in Figure 1 on page 45)

R ;s a three-element result. The second element ;s called a relation 1n
the language of SQL. For the example, the second ; tem of R ; 5:

ell 1971 RIOJA IMPORT DEPARTMENT 4.94 R
e12 1971 RIOJA WINE CLUB SHOW CASE 3.94 R
F16 1983 ROSE WINDOW
G12 1974 MERLOT BASEMENT 8.94 R
II0 1979 BARDOlINO ANNEX 2.25 R
KI0 1981 CHABLIS ON ORDER 3.94 W
BI0 1973 CHAMBERTIH COUNTER 10.94 R
Bl1 1966 BORDEAUX SPECIALITY CORNER 8.94 R
812 1974 BORDEAUX SPECIALITY CORNER 10.94 R
Kl1 1981 RIESLING SHELF 6.25 W
III 1979 VAPOlICELLA ANNEX 2.25 R

The result returned by the function SQL is always a three-;tem vector.
The second O~ third item can be empty. We will now consider two examples,
look;ng at them in greate~ data;l.

APL2 and relational data bases. 57

IHSERTTAB

INSERT	 INTO WINE

(BIN , YEAR , TYPE , STORlOC)

VALUES	 ('F16 1 , 1983 , 'ROSE' I 'WINDOW')

SQl	 INSERTTAB
o 0	 000

COMMIT

00000

R~ SQL 'SELECT BIN I TYPE, COST FROM WINE WHERE COST <= 4'
DISPLAY R

+--­
.-+--------. .-+------------------------- .e .
10 0 0	 0 01 ~ .~- . .~---. I I
1"' 1 IC121 IRIOJAI 3.94 I_I

' ___ I ,-----,
~-­..	 . .-31--------­

11101 IBARDOLINOI 2.25
' ___ I 1 ______---,

.~-. .~----- .
IKIOI ICHABLIS) 3.94
1 ___ 1 ,-------,
.~-. .~---------­

11111 IVAPOLICELLAI 2.25
' ___ I ,-----____--1

~------------------------­

~------------------------~-------------------­

Where:

o	 The first item is a five-element return code vector

o	 The sQcond item ;5 the result data array. If no result data ;s re­
quired or if none is obtained, this item ;s empty. There w;11 be no
result data array if an error occurs that prevents the process from
completing.

o	 The third ;tem is a request stack vector, conta;n;ng incomplete re­
quests. This item is an empty vector if all requested operations have
completed.

The next example shows a que~y with an error, so the second ;tem ;s empty
and the stack is f;lled by the requested operations.

58 AN OVERVIEW OF APL2

R~ SQL 'SELECT BIN t TYPE t COST FROM WINE WHERE COST ~ 4'
DISPLAY R

~--­

.~----------. e­ - - -. . .~--------~~~--~----~---~~---~~--~-~---~--.

11 0 0 2 -1041 I.e. I ~ .~--~-----~-~~--------~------------~--.
IN-----------I I I I I .~---..~--..~------------------­

I I-I
I~

I
I

IPREPI
1----1

IAPL21
1----'

~SELECT BIN,TYPE,COSTI
I fROM WINE I
IWHERE COST S 6)
,-------------­ 1

I~ ------------------------- ­ I

.~-----------------.
I .~---. .-+---. .e. I
I lOP EH I I Ar L2 I I 0 I I
J 1----'
I€

1----1 1,.,1 I
I

.~-----------~~-­

I .0+----. .~--. I
I IFETCHI IAPL21 I
I 1-----1 J1----1

'€---------------,

.~-------------~.
I .~---. .~--. I
I ICLOSE) IAPL2J I
I 1-----1 1----1 I
,~--------- I

~--­

~---­

The return code vector ;5 not equal to zero so there 15 an error. The 1
indicates that an error exists. The 2 indicates that the error was de­
tected ; n e; ther DB2 or ; n SQL/DS. The -104 ; s the return code of the data
base system and is, in fact, a syntax error. The error ;s ~ • This
funct;on does not conform to the syntax of an SQL command. <= ;s used to
define less than.

In this case the second item ;5 an empty vector and the third item is
the stack vector which contains the sequence of functions which should
be processed. The error can be corrected directly in APL2 by edit;ng the
stack. Processing can then be continued by the function RESUME which ;s
prov;ded in the workspace SQL.

Authorization is required to access a table belonging to anothe~ user.
The name of the creato~ must be specified before the name of the table.
For example, to list the main catalog ;n the SQl/DS data base system:

SQL 'SELECT THAME,CREATOR,DBSPACEHAME FROM SYSTEM.SYSCATAlOG'

SYSTEM ;s the name of the creator of the table SYSCATALOG.

SQL 'SELECT * FROM SYSTEM.SYSCATALOG WHERE CREATOR="MICHEL"

APL2 and relational data bases. 59

Th! 5 query w; 11 give all the information for all tables created by MICHEL.

3.4.2 FUNCTIONS IN THE WORKSPACE SQl

r'> .'l2 can east Iy communi cate wi th a data base system such as DB2 or SQll'DS
as the SQL function does the necessary work. The SQl function handles the
shared variables and the communication with AP127. However, it ;s neces­
sary to know the functions in the SQl workspace in order to develop ap­
plications or to manage AP127 in an efficient manner.

An overview of the SQL workspace ;s presented in Figure 6 on page 61. In
addition, Figure 8 contains the functions in the SQl workspace, organized
into five types.

There are two different ways to commun;cate with the auxiliary processor:

o Immediately, using a single request CEXEC,PREP,FETCH •••)

o With the SQL function wh;ch builds the statements

For example, consider the following query:

SELECT TYPE, COST
FROM WINE

WHERE TYPE LIKE '8%'

The f'unc t i on SQL bu i Ids a stack of four functions whi ch w; 11 be processed.
Each function shares data with the auxiliary p~ocessor.

60 AN OVERVIEW OF APl2

I

I

statement
, Type

I Query

Statement I Bas;c
;n SQl I functions
language I ;n W.S. SQL

I

SELECT

I
I Data DELETE

I
IManipula-

INSERTJ tion
SQLI

UPDATE - PREP '52' IWINE

I CALL '52' VALUES

I
I

I
I CREATE
I Data

ALTER

I
IDefinition DROP

EXEC
ACQUIRE

I

ILOCK TABLEI
Authori- GRAHT I

zat;on I

I REVOKE I
I I

I
I COMMIT I

I
COMMIT

Control I

ROLLBACK ROLLBACK

I

Figure 8. Statements;n SQl and the Access Operations

APL2 and relat;onal data bases. 61

DISPLAY ~STACK

.~-------------------------------------

~ .~--. .~--- ..~------------------.

IPREPI IAPL21 ~SELECT TYPE,COST I

1 1 1----' I FROM WINE I

IWHERE TYPE LIKE '8%'1
,-------------------_.

.+---. •+--- • • 6 •
IOPENI IAPL21 101

1 ____ ' ,----, 'N'

.~----. .+--- .

IFETCHI IAPL21

' ____ 1,-----,

.+---- . .+---.

ICLOSEI IAPL21

',-----, ____ 1

€-------------------------------------­
When the stack ;s processed, the follow;ng ope~ations a~e done:

o	 PREP g;ves the name APL2 to a prepared statement, passes the query
and prepares the dynam;c SQL statement for the data base system.

o	 OPEN opens the prepared statement and passes a vector of
valuesevalue-list). In the example, the value-list ;5 empty,as the
value has been passed with the PREP statement

o	 FETCH returns the shared data wh;ch ;s the result table. The number
of rows returned can be controlled by the function SETOPT or by a
right parameter ;n the FETCH function.

o	 CLOSE closes the OPEN statement.

The SQL function builds a stack of auxiliary functions like PREP, OPEN,
FETCH, CLOSE, and is convenient to use. However, ;n an app!;cat;on ;t
might be better to use the auxiliary functions directly rather than using
the SQL function as each step can then be p~ocessed and checked.

The SQl language used by AP127 ;5 slightly extended so that SQL statements
can contain references to APL2 arrays. It ;s a powerful implementation
as the APl2 user no longer has to work on a row by row bas;s.

An SQL statement can refer directly to an APl2 array. When referr;ng to
an APL2 array, the SQL statement can specify a column ;n the array by
specifying the column number prefixed by a colon.

It ;s easy to pass values ;n an array. For example, consider an array
called CHAMPAGNE and a variable INSERT conta;n;ng an SQL statement. A
d;splay of INSERT and CHAMPAGNE ;5:

62 AH OVERVIEW OF APL2

DISPLAY INSERT CHAMPAGNE

~--­

.+-------------------------. .~~-------~~~----------~------------ .
~INSERT INTO WINE I ~ • 0031>-- • .~---------- .
I(BIN ,	 COST)I 1977 1 PERIGHONIYEAR, TYPE, I IJ121 lOON____________ 1 13.95

1_--1IVAlUES (: 1, : 2, : 3, : 4) I I
1 -------------- 1 I .~--. .~-------------.

I IJ131 1978 IMOET ET CHANDON I 11.2

1 ___ ' I	 ,---------------,

I .~-. .~-----.

I IJ141 1981 IPOMMERYI 10.5

1 ___ 1 ,-__ - ___ 1

I
I~ _____------------------------______ I

€---­
Issu;ng the SQL funct;on

SQL INSERT CHAMPAGNE

,-.esults ;n

DISPLAY ::>STACK
.~--­

~	 .~-- ..~---..~-----------------------­
IPREPI IAPl21 ~INSERT INTO WINE I

,----, ,----, I (BIN, YEAR, TYPE, COST) I

IVAlUES(:1,:2,:3,:4) I
1 -------------- 1

.~--..~--..~------~~-~-~-~~-~-----~-~----~-.

I CAlli I APl21 1.-+--. ...-----------. I

1----1 .----, I IJ121 1977 lOON PERIGNOHI 13.95 I

I '---I 1------------1 I

I~ --------------------------_ •

.~-- ..~--..~---------------------------------.

ICALll IAPl21 I .~--. .~--------------. I

1----1 1----1 I IJ131 1978 IMOET ET CHANDONI 11.2 I

I	 1---1 ,---------------1 I
I~ ----------------------------_ •

.~--..~--..~-------------------------.

ICAlll IAPL21 I .~-. .~-----. I

1----1 ,----, I IJ141 1981 IPOMMERYI 10.5 I

I I1 1 1-------.
I~ ---------------------,

,---­
In the processing of the SQL funct;on,the two variables are passed to SQL
as a right argument and the SQL function gQnerates as many CALL functions
as there a,-.e rows of the variable CHAMPAGNE ;n the stack. The indexes
(:1,:2,:3,:4) point towa,-.ds the columns of the matrix CHAMPAGNE which
contain the list of values.

This example points out a very important cha,-.acter;st;c: The APl2 user
inserted th,-.ee rows at one t;me, rather than doing it row by row. Thus,

APL2 and relat;onal data basQs. 63

in APl2 several rows can be inserted in a table with a bulk type of fn­
sert;on.

Here are some more examples.

SQl 'DELETE FROM WINE BIN=:1' LIST1

SQl 'UPDATE WINE SET YEAR=:2 COST=:3 WHERE BIN=:1' LIST2

LIST1 LIST2
.~-----. .+---------------- .
~	 .~-. ~ .~- .
I	 JCl21 I ICIII 1972 4.55

' ___ I	 ' ___ I
I I

I .~-. I .~- .

I IF161 I IG121 1975 7.43

1 ___ 1	 1 ___ ,
I	 I
I	 .~-. I .~-.
I	 IG121 I IF161 1984 3.66

1 ___ ' 1 ___ ' f	 f
'E------, 'E---------------- 1

3.4.2.1 STRUCTURE OF RESULT DATA.

When a FETCH 1S processed, AP127 returns the result table ;n one of the
two data structures'

o A matr;x of variable length items

o A vector of simple matrices

The control of the data structure can be specified by two parameters,
MATRIX or VECTOR, either ;n the SETOPT parameter list or in the FETCH
request. If SELECT is the variable conta;n;ng the query

o and	 MATRIX was spec;f,ed

The result ;5 ;n an a~ray ;n which each HULL element of the table

gives the empty vecto~

Each item has ;ts exact length (even for data type VARCHAR)

o	 and VECTOR was 5pec;f;ed

The~e ;s no d;fference between 0 and the HULL valuQ for numeric
,	 data o~ blank and the NULL valuQ for character data

AP127 pads character items to the length of the longest ;tem

64 AN OVERVIEW OF APL2

If LENGTH is also specified, there is one more ;tem which provides
the lQngth of each data.

Examples

SELYEAR
SELECT YEAR,TYPE,COST,COLOR

FROM WINE

WHERE YEAR BETWEEN 1980 AND 1983

SETOPT 'MATRIX'	 SETOPT 'VECTOR' 'LENGTH'
o 0	 0 0 0 o 0 000

DISPLAY 2~R~SQl SElYEAR DISPLAY 2~R~SQL SELYEAR
.+-------~~----------------- . .~-~~-~---~----------~----~-------~-~---~.
~ ...---. •9. .9. .~--. .~------. • -J---- • • -+ • .-+------ .

I 1983 IROSEI 101 J I ~19831 ~ROSE I .J..O 1 .J.. I ~1 4 0 01

I ,----, 119811 ICHA8LIS 1 13.941 IWI 11 7 1 11

I .+------. .~. 119811 IRIESLINGI 16.251 IWI 11 8 1 11

1 ______--,IN-__ I '_1I 1981 ICHABLISI 3.94 IWJ	 '1'1--- 1 'N------I• <£ ...	 ~~ f
I_II 1-------,
.~.I .~------.

I 1981 IRIESLIHGI 6.25 IWI

I 1--------1 1_'

1(--------------- 1

3.4.2.2 OTHER SQL FUNCTIONS.

The workspace SQl provides other functions. A list of the functions con­
tains:

o	 MESSAGE - Qxplain the return code

o	 SHOW - display the error message, the result, and the stack

o	 GETOPT - query the cur~ent values of the options

o	 COMMIT record any mod;fications in the data base

o	 ROLLBACK back out all changes made in the data base since the last
successful COMMIT

o	 RESUME - resume the stack, for instance, when the result table re­
turned by AP127 ;s larger than the limit given by SETOPT

o	 SETOPT - control the number of rows that can be accessed at each
FETCH

Examples of the use of SETOPT and RESUME:

APL2 and relattonal data basas. 65

SETOPT 4
o 0 000

R ~ SQl 'SELECT YEAR,TYPE,COST FROM WINE ORDER BY COST'
DISPLAY R

~--
.~~-_.._---.

.~----------------------- .~-------------------
10 0 1 0 01 ~ ~
.~---------. .~-------------- .
,""'--------1 1979 IVAPOlICELlAI 2.25 I I .~---. .~--- . I

1 ______-----,
I I I FETCH I IAPL21 I

1 _____ ' 1 ____ 1

I I I
1979 IBARDOLINOI 2.25 f 'E--------------- 1

.~--------.

1 _________ 1

I .+-----------~---.

.~-----. I I .~---. .~-- . I
1981 ICHABLISI 3.94 J I ICLOSEI IAPL21 I

1 _______ 1 1 _____ '
I I ,----, I

.~--- . I '£---------------,
1971 •IRIOJAI _____ 1 3.94 '€------------------­

€-----------------------­
€--­

The function SETOPT controls the maximum number of rows returned by each
FETCH function. If SELECT returns more than 4 rows, it is necessary to
process the stack using the funct;on RESUME.

MESSAGE l~R

FETCH INCOMPLETE: RESULT TABLE MAY CONTAIN MORE ROWS

RESUME 3:;)R
o 0 0 0 0 1971 RIOJA 4.94

1981 RIESLING 6.25

1974 MERLOT 8.94

1966 BORDEAUX 8.94

It ;s neCQssary to RESUME until the third element of the return code
vector is equal to O.

3.5 MISCELLANEOUS

The workspace SQL is sh;pped with APL2 and contains useful funct;ons.

To these functions can be added user written functions. Some examples are
given in the appendix. They should be useful, and also provide ideas for
more functions. In this section we cons;der the functions ;n SQL/DS. The
funct;ons work similarly in DB2.

66 AN OVERVIEW OF APl2

3.5.1 FUNCTIONS WHICH DEAL WITH THE TABLES OF THE CATALOG,

It ;s useful for the user to know the system tables, his own tables, the
names of the columns of a specific table, or a quick view of a table.
The results of some functions that are helpful are given in this section.

SQLSYSTEM - a function which g;ves the names of all tables in the catalog.
Useful ;nformation can be retrieved for each table. For instance:

o	 SYSACCESS gives the name of the programs, such as AP127, which can
work with SQL/DS

o	 SYSUSERAUTH gives information about the users who are authorized to
work with SQL/DS

SQLSYSTEM (for SQL/DS)

THAME CREATOR TABlETYPE HeOlS REMARKS DBSPACENO DBSPACEHAME

SYSACCESS SYSTEM R 9 COMMENT 1 SYSOOOI
SYSCATALOG SYSTEM R 18 COMMENT 1 SYSOOOI
SYSCOlAUTH SYSTEM R 6 COMMENT 1 SYSOOOI
SYSCOLUMHS SYSTEM R 14 COMMENT 1 SYSOOO1
SYSDBSPACES SYSTEM R 12 COMMENT 1 SYSOOOI
SYSDROP SYSTEM R :3 COMMENT 1 SYSOOOI
SYSINDEXES SYSTEM R 16 COMMENT 1 SYSOOOI
SYSPROGAUTH SYSTEM R 6 COMMENT 1 SYSOOOI
SYSSYNONYMS SYSTEM R 4 COMMENT 1 SYSOOOl
SYSTABAUTH SYSTEM R 15 COMMENT 1 SYSOOOI
SYSUSAGE SYSTEM R 7 COMMENT 1 SYSOOOI
SYSUSERAUTH SYSTEM R 6 COr1MENT 1 SYSOOOI
SYSVIEWS SYSTEM R 4 COMMENT 1 SYSOOOI

SQLTAB - gives data; 15 of a user's own tables.

SQlTAB
THAME CREATOR TABLETYPE HCOlS REMARKS DBSPACEHO DBSPACEHAME

CUSTOMERS PR465ERG R 4 10 TEST
ORDERS2 PR465ERG R 4 10 TEST
ORDERS3 PR465ERG R 3 10 TEST
STOCKS PR465ERG R 5 10 TEST
WINE PR465ERG R 6 10 TEST

SQLCOlNAME - gives the specifications of the columns of a table.

SQLCOLHAME 'WINE'

COlHO CHAME COL TYPE LENGTH

1 BIN CHAR 3
2 YEAR SMALLIHT
:5 TYPE VARCHAR 12

APl2 and relational data basQs. 67

4 STORlOC VARCHAR 20

5 COST DECIMAL (7, 2)

6 COLOR CHAR 1

SQlDISP - g;ves a v;ew of a table

SQLDISP 'ORDERS'

CUST BIN QUANTITY

ALAN Cll 3

ALAN C12 it

MANUEL G12 5

MICHEL B10 2

MICHEL 811 1

3.5.2 FUNCTIONS WHICH DEAL WITH A TABLE

A great deal of work w;th tables cons;sts of produc;ng reports w;th break
pOlnts or w;th cross results. Two funct;ons, REPORT and ACROSS, are
examples of how APL2 can fac;l;tate th;s.

In the follow;ng example, we ask for an average on column 5 for each type
of w;ne before 1980.

'3 AVG 5' REPORT SQL • SELECT M FROM WINE WHERE YEAR < 1980'

BIN YEAR TYPE STORLOC COST COLOR

Cll 1971 RIOJA IMPORT DEPARTEMENT 4.94 R

C12 1971 RIOJA WINE CLUB SHOW CASE 3.94 R

RESULT 4.44

G12 1974 f'lERLOT BASEMENT 8.94 R

RESULT 8.94

BI0 1973 CHAMBERTIN COUNTER 10.94 R

RESULT 10.94

Bl1 1966 BORDEAUX SPECIALITY CORNER 8.94 R

812 1974- BORDEAUX SPECIALITY CORNER 10.94 R

RESULT 9.94

3.5.3 FUNCTIONS INVOKING GDDM.

When work;ng w;th a relational data base, it can be USQful to produce some
graph;cs from the results. An example of the use of SQlICU, which calls
the leU util,ty of GDDM/PGF, ;s presented. SQLICU takes the result of
an SQL query as ;ts right argument and the column numbers as the left
argument.

66 AN OVERVIEW OF APL2

QICU

SELECT TYPE,AVGCCOST)

FROM WINE

WHERE COST IS HOT NULL

GROUP BY TYPE ..

'1 2 1 SQLICU SQLX QICU

Many diffe~Qnt graph;cs can be obtained from leU, such as l;near diagram,
bar chart, pie chart and even tower chart.

APL2 and relat;onal data bases. 69

70 AN OVERVIEW OF APL2

4.0 USING ISPF WITH APL2 UNDER T50

ISPF 2.1.2 pe~mit5 the use of APL2 fo~ the development of dialog func­
tions. Append;x G of ISPF Dialog Management Se~vjces (SC34-2137) de­
scribes this capability.

This chapter int~oduces the interaction between APL2 and ISPF. Hotes on
the installation requirements, and l;sts of ways in which APL2 and ISPF
interaction improve application development are also presentedu

4.1 ESTABLISHING AN ISPF-APl2 ENVIRONMENT

The basis for communication between APL2 and ISPF lies in the ability of
both products to access the same variables. ISPF can use the APL2 work­
space variables as its dialog function pool. This means that APl2 vari ­
ables can be referenced ;n dialog panels, and values altered by the panels
can subsequently be accessed by APl2 functions. There are, however, two
restrictions on APl2 variables which are used by ISPF:

1.	 The names of the variables must be acceptable to ISPF. Valid names
must not be more than eight characters long and must not contain
special APl2 characters.

2.	 The values of the variables must be simple character strings. APl2
general data types are not allowed.

An ISPF-APL2 environment must be created to allow th;s communication to
take place. The environment is created by invoking APl2 as an ISPF com­
mand with the special new parameter LAHGCAPL). The APl2 command can be
used with ISPSTART, directly from an ISPF menu, or in a CLIST which ;s
part of an ISPF dialog. An advantage of us;ng a CLIST ;s that datasets
required by APl2 need only be allocated immediately before they are used.

See ftAppendlx B. Sample Panel and Clist for Initiating ISPF-APL2n on page
107 for an example of how to ;nit;ate an ISPF-APl2 environment us;ng a
ClIST from the PDF primary menu.

4.2 INSTALLATION AND INITIATION

The auxiliary processor CAP) used by APL2 to access ISPF ;s called
ISPAPAUX. This AP ;5 distributed as part of the ISPF product ;n the
ISPPLIB dataset. Depend;ng on the options chosen at installation time,
ISPAPAUX may also be ;n LIHKLIB O~ LPALIB. The AP should be explicitly
requested in the APl2 invocation command by includ;ng ISPAPAUX in the
APHAMES parameter. There are two points to note:

Using ISPF with APL2 under ISO 71

1.	 Specifying APHAMES(ISPAPAUX) overrides the defaults. To add the ISPF
AP to the defaults, code the following parameter:

APHAMESCAP2XI04,AP2T127(PlAN(APL2PLAH) SSIOCDSN »,ISPAPAUX)

2.	 APL2 will look for the ISPAPAUX in the follow;ng datasetsl

o	 The APl2 lOADlIB specified ;n the invocation command or allocated
prior to the command being issued

o	 The ISPF task library allocated to ISPLLIB
o	 The normal MVS search sequence: STEPLI8;LPALIBiLIHKlIB

The ISPAPAUX AP is known to APl2 as AP317. Although it ;s poss;ble to
communicate directly with AP317 by sharing a variable, an ISPEXEC function
is distributed with ISPF to simplify use of ISPF.

The workspace containing the ISPEXEC function ;s distr;buted ;n transfer
form in member ISPFWS of the ISPALIB dataset. During ISPF installation,
this workspace should be saved ;n an APL2 public library to simplify ac­
cess by all users.

The	 steps taken to save the APl2 workspace are:

1.	 Invoke APl2.

2.	 Enter)IN 'ISP.V2RIM2.ISPALIBCISPFWS)' to convert to an active APL2
workspace.

3.	 Enter)SAVE 1 ISPFWS to save the workspace in public library 1 with
the name ISPFWS. See ftLoading APL2 Public Workspacesft on page 89 for
further information about saving workspaces in public libraries.

4.3 USING ISPF SERVICES FROM APL2

When APl2 has been invoked in an ISPF-APL2 env;~onment, you request ISPF
dialog services using the ISPEXEC funct;on. The right argument ;s a
vector of characters representing the parameters to be passed to the di­
alog service, as in the example shown below. The format of the vector 15
the same as that for dialog serv;ce statements for command languages
celIST and EXEC). The ISPF return code for the selected service ;5 re­
turned by ISPEXEC and should be stored for analysis.

RC~ISPEXEC 'SELECT PANElCMENUl)'

The default act;on taken by ISPF for any error with a return code of 12
or h;gher ;s to term;nate the function. In the ISPf-APL2 environment,
th;s means that APl2 ;s terminated and control is returned to the PDF
primary menu. You can use the ISPF CONTROL command, as shown below, to
ensure that all errors are returned to the APL2 function.

72 AN OVERVIEW OF APL2

RC.ISPEXEC 'CONTROL ERRORS RETURN'

When the variable names used ;n the APL2 funct;on are valid ISPF names,
the valuQs of the var;ables can bQ set or referenced ;n e;ther APL2 or a
dialog serv;ce. Figure 9 shows how APL2 can USQ an ISPF panel to request
'nput from a terminal user and d;splay results.

ISPF Panel I DATA

)ATTR DEFAULTCX++)
)BODY
X Using an ISPF Panel for APL2 data entry
+
+ EntQr five numbersl tA tB tc tD ~E +
+
+ The Sum is ••••••• :~&SUM	 +
+

APL2 Function

[0] ISPFVAR;RC SUM ABC D E
[1] SUM.A~B.C.D~E.'O'

[2] A DISPLAY ISPF PANEL
[3] LIIRC.ISPEXEC 'DISPLAY PAHELCDATA)'
[4] A SUM THE NUMBERS LETTING APL2 DETECT INVALID INPUT
[5] SUM.···INVALID INPUT'" DEA '~+/.··A BCD E'
[6] .CRC=O)/Ll A LOOP IF NOT 'END' OR ANY ERROR

Ffgura 9. Usfng Panel Display from an APL2 Function.

4.4 USING ISPE AND APL2 TO CREATE DIALOGS

In addtt10n to be;ng able to use ISPF serv;cQs 1rom APL2, two add;t;onal
features arca prov;ded to s;mpl;fy thea dQvelopment 01 d;alogs. ThCl features
are'

1.	 An APL2 funct;on can be u5Qd as a dialog funct;on.

2.	 An ISPF-APL2 env;ronment can be created and used to eXQcute APL2
funct;ons w;thout the term;nal user be;ng aware that APL2 has been
invoked.

Us;ng ISPF with APL2 under 150 73

4.4.1 USING APL2 DEFINED FUNCTIONS AS DIALOG FUNCTIONS

In an ISPF-APL2 env;ronment, an APL2 function ;n the active workspace can
be used as a dialog function from a select;on panel, other dialog func­
tions, or app!;cation command tables. You request execut;on of an APL2
function by using the same instruction as for other dialog functions.
However, you must include the LAHGCAPL) parameter. For example:

SELECT CMDCAPLFUHC parameters) LAHGCAPL)

For dialog functions written as CLISTs or in other high level languages,
ISPF creates a separate function pool for each new function. ISPF does
not create a separate function pool with APL2 functions. An APl2 function
selected from ISPF ;s executed (~ in APL2 terms) in the APL2 workspace.
This applies to dialogs running under APL2 and to use of the split screen
ISPF capability. There is, therefore, only one active workspace, used
as the function pool for all APl2 functions in the ISPF-APL2 environment.
Thus, any variables created or altered by an APL2 function will not be
reset or deleted prior to subsequent functions.

4.4.2 INCLUDING APl2 DIALOGS IN NORMAL ISPF DIALOGS

Users of d;alo9s do not usually wish to see unnecessary APL2 screens or
messages. The error handling features of APL2 make it possible to protect
users from meaningless error messages. The usual APL2 initiation messages
can be hidden from the user with the following features:

1.	 The INPUT invocation parameter on the APL2 command provides a simple
method of specifying APL2 commands or functions to be executed after
APl2 has started. Mult;ple commands may be entered. Each command
is enclosed in quotation marks and separated from the next command
by blanks or commas.

2.	 The QUIET invocation parameter prevents APL2 from displaying any
output until APL2 prompts for input. If you are using the session
manager, the QUIET parameter does not suppress the display of the
initial session manager screen.

3.	 The PROFILE invocation parameter without a profile name - PROfILEC)
-, stops a profile from being loaded and suppresses the display of
the session manager screen. The display of the sess;on manager could
also be suppressed by specifying the PROFILE parameter with the name
of a profile coded with DISPLAY OFF.

Figures 10 and lIon page 73 illustrate the above techniques. The APL2
invocation would probably be from a ClIST to allow any special APl2 al ­
locations to be done. If the 150 procedure or ISPF ellST does all the
allocations, the APL2 invocation could be directly from a menu panel.

74 AN OVERVIEW OF APL2

APL2 Invocation Command C;n ClIST O~ ISPF menu)

ISPEXEC SELECT CMDCAPL2 ­
APCISPAPAUX) INPUTC ­

')LOAD AVRWSPC' ­
'ISPEXEC "SElECT PANElCMEHUl)'" ­
,)0 FF') ­

QUIET PROFILEC) ­
lANGCAPL)

F;gure 10. Invoke APL2 w;th Automat;c Funct;on Execution

Select;on Panel (MENU1)

)ATTR DEFAUlT(%+¢)
)BODY
~ Select APl2 Function as a Dialog Function
x
%SELECTION ===>~ZCMD +
+ %1+ Select APL2 Average Function
+
+ Enter f;ve numbers: ¢A ~B *C ~D ¢E +
+
+ Result is ••••••••• :X&RESULT +
+
)PROC

&ZSEl=TRAHSCTRUNCC&ZCMD,'.')
1,'CMDCAVERAGE) LAHGCAPL)'
*,,? ')

)EHD

APl2 Function <AVERAGE>

[0]
[1]
[2]
[3]
[4]
[5]

AVERAGEiRESUlT ABC D E
A SINCE SELECTION PANEL USES SHARED POOL,
A WE MUST USE VARIABLE SERVICES TO GET
RC~ISPEXEC 'VGET (A BCD E) SHARED'
RESULTE-"'INVALID INPUT'" DEA ·~+/*··A

RC~ISPEXEC 'VPUT RESULT SHARED'

VALUES

BCD E'

OF VARIABLES

Figure 11. Using an APL2 Function as a Dialog Function

Us;ng ISPF w;th APL2 under TSO 75

4.5 POSSIBLE APPLICATION AREAS

APL can no longer be considered 85 Qx;st;ng ;n a world of tts own!

Using ISPF and APL2, ;t 1. now possible to develop applications using the
tools most appropriate to any particular task. APL2 can use the function
prov;ded by ISPF, or any tool supported by ISPF (;ncluding PDF). S;mi­
larly APL2 functions can be incorporated into dialogs developed using
elISTs or other programming languages. Th;s flexibility opens the doors
to a host of different possibilities. A few of these possibilities are
ment;onQd ;n this sQct;on.

4.5.1 USING THE PDF EDlrOR FOR APL2 FUNCTIONS

Figure 12 shows how the functions available in workspace ISO 1n public
library 2 can be used with the ISPEXEC function to pass a function to the
PDF editor. Tha PUTFILE and GETFILE functions produce several mQssages
while do;ng the allocat;ons, so this example ;s unlikely to be used ;n a
product;on environment. The method ;5, nevertheless, sound and can be
enhanced to meet user requ;rements.

[0] EDIT FUHC;X
[1] X~CR FUHC
[2] A RESHAPE <X> BECAUSE <PUTFILE> HEEDS FIXED 60 CHAR REeS
[3] ((ltpX),60)tX) PUTFILE 'APL2.APLTEMP(OLD KEEP'
[4] ISPEXEC 'EDIT DATASETCAPL2.APLTEMP)'
[5J OFX GETFILE 'APL2.APLTEMP'

F;gurQ 12. Execut;ng the ISPF/PDF Ed'tor from APL2

4.5.2 USING SUBROUTINES WRITTEN IN OTHER PROGRAMMING LANGUAGES

It ;s now p05s;ble to execute program subrouttnes from APL2 ustng the ISPF
'nterface. F'gure 13 on page 77 shows how a very stmple Fortran program
can bQ executed from APl2. Some special code is requ;red to access the
ISPF shared var'able pool. The code can be put 'nto the subroutine it­
self, or a special front-end could be written. Because ISPF var;ables
have to be ;n character format, the ma;ntenancQ of prec;s;on between APL2
and a scient;f;c Bubrout;ne could l;m;t the effact;ven855 of th;s tech­
n;quQ.

76 AN OVERVIEW OF APL2

Sample Fortran Program CHANGE

C	 CHANGE THE ORDER OF A CHARACTER STRING PASSED
C	 IN THE ISPF SHARED VARIABLE POOL

IHTEGER*4 ISPLHK,lASTRC
CHARACTER*8 A,B

C	 DEFINE VARIABLE AS BEING IN THE FUNCTION POOL
lASTRC = ISPLHK ('VDEFIHE','A ',A,'CHAR',8)

C	 GET THE SHARED POOL VALUE
LASTRC = ISPLHK C'VGET','A I)

8(5:8) =ACl:4)
8C1:4) = AC5:8)
A = 8

C	 RETURN HEW VALUE TO SHARED POOL
LASTRC = ISPLHK C'VPUT','A .)

STOP

END

Us;ng	 the Fortran Program CHANGE from APL2

A~'1111XXXX'

ISPEXEC 'VPUT (A)' A PUT VALUE IN SHARED POOL
o

ISPEXEC 'SELECT PGMCCHAHGE)' A CAll SUBROUTINE
o

ISPEXEC 'VGET CA). A GET HEW VALUE FORM SHARED POOL
o

A A SHOW CHARACTERS CHANGED
XXXXl111

F;gu~e 13. Execut;ng a Fortran Program from APL2

4.5.3 APL2 AS A PROTOTYPIHG TOOL

You can develop appl;cat;ons extremely qu;ckly with APL2. As a proto­
typ;ng tool, this ;s !;kely to far outwe;gh other poss;ble crit;c;sms of
APL2. Using the ISPF-APL2 interface, you can develop d;aloQs ;n APl2 and,
subsequently, convert them to other programming languages without the end
user being aware of the conversion. The use of ISPF facilities for screen
;nteractions, error messagGS, and help screens further enhances APl2
productivity and s;mp!;f;es later convers;on.

If YOU are developing ISPF d;alogs, YOU should also consider the use of
APL2 to produce working applications in the minimum time possible.

Using ISPF with APL2 under T50 77

4.6 CONCLUSION

ISPF was developed as a powerful product for the development of ;nterac­
t;ve dialog appl;cat;ons. The support of APL2 by ISPF means that APL2
can be used ;n the areas where it ;5 most benef;c;al.

APL2 ;s no longer ;n a world of its own. It;s now an important component
of an integrated set of productivity tools.

78 AN OVERVIEW OF APL2

5.0 APL2 SHARED VARIABLE PROCESSOR

The Shared Vartable Processor has been redQs;gned and rewr,tten ;n APL2
to prov'de s;gntficant new funct;on, performance, serv;ceabtltty, and
extensibility. In both the eMS and T50 environments ;t prov;des for
shartng of vartables betwQQn APL users and batween single user and
mult'-user auxiliary processors. In addtt;on to allowing for a new APL2
auxiliary prOCQssor tnterface and data format, tt also provides compat­
ible 'nterfac8. for VSAPL and APLSV auxtl;ary processors.

The new facilities of the APL2 Shared Variable ProcQssor are revtewed and
a number of thQ salient features of its design are d;scu5sed.

5.1 INTRODUCTION

Since the Shared Variable Processor (SVP) was first defined by Lathwell
;n 1973 and tmplemented ;n APLSV, it has been widely m;sunderstood and
has been tmplemented with substantially different definitions in various
APL systems. This has lead to difficulties 'n migrating APL applications
or aux;!'ary processors CAPs) from one APL implementation to another.
Further, because of the various misconceptions and incompatible ;mple­
mentations, it has been difficult to extend the underlytng formal model
and the resulttng fac;lities in the APL language.

With APL2, an attQmpt has been made to formalize the SVP model and to
rational'ze its implementation as a separate system component. As a re­
sult, it has been possible to extend thQ SVP facilities and, at the same
ttme, to provtde compatible interfaCQs for APs written for APLSV and
VSAPL.

5.2 APL2 syP CHARACTERISTICS

In APL2, the Shared Variable ProcQssor is implemented a5 a separate com­
ponent of the system, formally ;nterfac;ng w;th the rest of tha system
through the Executor. In carta;n Qnv;ronmQnts, it f5 ;nftt.ted and con­
trolled 'ndependently of APL, and can be used as a general commun;cat'on
mechanism between 'ndependent, asynchronous prOCQSSQS.

Earl'er SVP tmplemQntattons have been entirely pass;vQ wtth regard to the
format of data passing through shared memory. Typ'cally, the data format
has baQn defined by the APL ;ntQrpretsr to be 'dent;cal to that stored
internally fn an APL workspace. Whfle th's approach was stmple and 8f­
ffc;ent, it craated problems ;n mfgrat;ng from one APL 'mp!ementat;on to
another, and restrfcted modifications or extensions to the data formats
used within the workspace. Further, this approach required any AP com­

APL2 Shared Variable Processor 79

muntcattng wtth APL to be cogntzant of the internal APl data formats and
to map to and f~om them.

To overcome these problems and to accommodate the new data structures
introduced with APL2, a new data format, the Common Data Representatton
(CDR), was introduced. This format ;s independent of the APL2 internal
data format used ;n the workspace and ;5, the~efore, less sensitive to
change ;n that area. It also accommodates a superset of those data types
used by APL2. In particular, most 370 data types, including packed and
zoned decimal and various floating point formats, are acceptable. This
means that APs written fo~ the CDR format may be freed of many of the data
conversion requirements which were previously necessary. The APL2 in­
terpreter, in its interface to the SVP, accepts and produces data in CDR
format and handles the necessary mapping and conversion to ~nd from the
internal format used with;n the workspace.

As the SVP provides compatible interfaces for APLSV and VSAPL APs, it must
accept their data formats in addition to the new CDR format. It does
this, and maps between the three formats to allow processors using dis­
similar protocols to communicate with each other. For auxiliary
processors which operate with the APLSV or VSAPL protocols, a new SVP call
has been added to allow them to receive data in the new CDR format.
Through the use of this call and with appropriate modifications, APLSV
and VSAPL APs can be upgraded to accept the new APL2 data types such as
complex numbers, and data structures such as nested arrays. ~ A new return
code has also been added for those APs for situations where data cannot
be represented in the APLSV or VSAPL format.

In addition to the new CDR data format, the APL2 SVP also provides im­
proved interface protocol and signalling rules for the APL2 interpreter
and new auxiliary processors. These faci!;ties provide a more consistent
interface with extended function and better performance. As with data
formats, the APL2 SVP also accepts the APLSV and VSAPL interface proto­
cols and 5;gna11;ng rules.

The APL2 SVP that operates in the VM/CMS, MVS, and MVS/XA environments,
allows for communication between processors in different a~dress spaces
or v;rtual machines as well as between processors in the same address
space or virtual machine. As a result, the sharing of variables between
APL2 users ;s supported as are multi-user auxiliary processors. Two new
facilities, DSVS and DSVE have been added to the APL language to allow
implementation of multi-user auxiliary processors written ;n APL. An
example of a simple multi-user server has been included ;n Appendix D.

The ability to communicate between asynchronous processes ;n different
address spaces or virtual machines represents an important advance. APL2
;s the first general purpose programming language to offer these facili­
ties in the VM/CMS or MVS/TSO environments. As auxiliary processors can
be written in languages other than APL and as these auxiliary processors
can communicate with each other, APL2 SVP also extends its facilities to
processo~s written ;n othe~ languages.

F;nally, ;n ;mplement;ng APL2 5VP, an attempt has been made to improve
performance and to provide s;gnificant diagnostic faci!;t;es to debug

8D AN OVERVIEW OF APL2

problems in the SVP or ;n processors interfacing with it. More detailed
information on this subject is presented later in this section.

5.3 APL2 SVP IMPLEMENTATIONS IN VM/CMS, MVS AND MVS/XA

In each of its working environments, APL2 SVP consists of executable code
and a work area called shared memory. Shared memory ;s used to contain
tables and work areas for the SVP and to temporarily hold the values of
shared variables as they pass between processors. At any given time, 5VP,
which operates as a subroutine of its caller, works with a single shared
memory. One shared memory ;s allocated for each active APL user. This
area is referred to as the user's "local" shared memory. To support
shar;ng of variables between APL users (and multi-user APs), an additional
area called "global" shared memory can be allocated on a system wide ba­
sis. Theoretically, many global shared memories can be allocated and used
for communication between groups of APL users. No one APL user, however,
can use more than a single global shared memory.

The local shared memory is located in the APL user's address space or
virtual machine .It ;s used for communicating between the APL user and
AP's located in the same address space or virtual machine. When dealing
with this shared memory, the SVP holds no system locks. The APl executor
provides synchron;zation to resolve contention between tasks attempting
to access local shared memory. In the MVS/XA environment, local shared
memory may be located above the line.

Global shared memory ;s an optional facility. To include it, it must be
specified ;n the APL2 installation procedure and then initialized. It is
initialized by starting a system task in MVS or a separate virtual machine
;n VM. Global shared memory ;s allocated in CSA in the MVS and MVS/XA
environments and in a writeable, discontiguous, shared segment ;n VM.
Therefore, it is available to all APL2 users in the system. Users contend
for use of global shared memory, which ;s synchronized by the eMS lock
in MVS and by a lock implemented ;n the SVP in VM.

The mult;-level shared memory structure was chosen over the single global
shared memory approach used by APLSV and VSPC to provide compatible sup­
port for VSAPL local APs, to simplify the design of local APs, and to
prov;de optimal performance.

The APL user need not be aware of the multi-level shared memory structure.
The SVP switches back and forth between global and local shared memory
as necessary and ;n a fashion transparent to the APL user. Offers to
specific processors are first attempted in local shared memory. If the
specified processor ;s not signed on ;n the local shared memory, the offer
;s extended to global shared memory. General offers are always extended
to global shared memory. Queries are performed against both shared mem­
ories, and all other operations are directed to the appropriate shared
memory.

APl2 Shared Variable Processor 61

The APL user t. ;dent;fted to the global SVP by an account number wh;ch
may be spec;f;ed at APL2 tn;t;al;zat;on with the ID parameter. Th;. ac­
count number may be ••s;gned, ver;f;ed, accepted, or changed by ;nstal­
lat;on Qxits. The account number becomes the f'rst element of ~I and
;5 used in SVP communtcatton as the user's private library number. If the
APL user does not wish to use the global SVP ,he does not SPQc;fy an ac­
count number. The account number then defaults to 1001, as ;n VSAPL.

Processors wrttten to the ArLSV or VSAPL SVP protocols may choose to sign
on to etther local or global shared memory, but not both. Interface
routtnes which facilitate thts process are provided for local VSAPL APs
and for global VSAPL APs ;n MVS only. APs that sign on globally ;n the
MVS environment must be MVS author'zed programs. Processors wr;tten to
the APL2 SVP protocol may stgn on to local or global shared memory or,
as thQ tnterpreter dOQs, to both s;multaneously.

5.4 APL2 SVP pIAGNOSTIC FACILITIES.

APL2 SUP prov'des carta;n tracing facilities and a cons;stency checking
option which can be helpful ;n diagnosing problQms In SVP or ;n auxiliary
processors.

Two types of traces are avaflable. ThQ first, whfch ;5 avaflable tn
VM/CMS as well as MVS/TSO, provides a log on the uSGr's terminal 01 SVP
calls, s'gnals, and errors. Th;s terminal tracing '5 requested by SPQC­
'fytng TRACECl) at APL2 'nvocat;on or on thQ)CHECK SYSTEM command; it
can b. tQrmtnatad by .ssu;ng a)CHECK SYSTEM TRACE(-l) command.

The second type of SVP trace, which ;5 provtded for the global SVP ;n MVS
only, us.s an in m.mory wrap around trace table to trace SVP calls, re­
turns, s'gnals, and errors. It also providQs the ability to patch tracQ
calls tnto virtually any locatton ;n the SVP. The trace table ;s allo­
cated by the system task which ;s run to initIalize the global SVP.
Trac;ng can be activated by modifying that task with the parameters
TRACE,OH and terminated with TRACE,OFF. The tr8CQ table can be dumped
to • SNAP data ••t by modtfy;ng the task with a SNAP parameter.

The 5VP provide. a conststency checktng optton whtch checks the format
and consistency of shared memory at the compl.tton of every call. Thts
facility t5 enabled for local shared memory by spec;fy;ng the SYSDEBUG(2)
option at APL2 invocation, or on the)CHECK SYSTEM command. When con­
st.tency checking t5 enabled and the SVP encounters a problem ;n shared
memory, tt caus•• an aCl program check in the CSECT AP2XCSS w.th • coda
tn register one that tndicates the tYPQ of error found.

Detatled information on the tracing fac;ltt;es, trace formats, and con­
.t.tency checktng error cod•• can be found tn the APL2 D;agnosts Reference
manual.

82 AN OVERVIEW OF APL2

5.5 CONCLUSIONS

The APL2 Shared Variable Processor represents a sign;f;cant ;mprovement
over SUPs implemented as part of prev;ous IBM APL systems. It offers a
new function, compatib;l;ty for APlSV and VSAPL APs, better performance,
and improved d;agnost;c fac;!;t;es.

APl2 Shared Var;able Processor 83

84 AN OVERVIEW OF APL2

6.0 APL2 INSTALLATION UNDER ISO

The 'nstallation manual for APL2 straSSQ5 the nQed for thorough prepara­
tton pr;or to ;nstall;ng the product. The actual installation follows
the normal SMP routel load installation jobs; allocate datasets; and
RECEIVE/APPLY/ACCEPT the product. Preparat;on;s required because of the
nead to decide on carta;n systems options, and options related to end user
requ'rements.

The tnstallation manual and program directory are the pr'mary installa­
tion references. This sect;on serves only to stress the minimum prepa­
ration r8qu;rements, and to expand on the installation steps where
appropriate.

6.1 PREPARATION FOR THE INSTALLATION OF APL2

The	 need for prGParatfon stems from the following considerations.

1.	 You must decidQ whether APL2 libraries and files will be supported
by SAM or V5AM.

2.	 If SAM ;s to be used for these files, you must dac;dQ on a naming
convention acceptable to APL2.

3.	 APL2 ;nterfaCQ5 with many other IBM program products. You must know
which of these arQ installed and how they will be used by thQ APL2
system.

4.	 APL2 ttself has certain optional capabilities which are not essential
to basic operat'on, but m;ght well be required ;n your installation.

5.	 You must decide on default invocation options and on appropriate au­
thor;ty levels for access to APL2 l;brar;es and files.

6.	 Some of the abovs dQc;s;ons affect the APL2 System Options. You will
probably have to change these options. Changing options is best done
by receiving an SMP u5ermod prior to the SMP APPLY step of the APL2
installatton.

6.1.1 SELECTION OF ACCESS METHODS TO BE USED By APL2

APL2 public, project, and pr;vate l.brar;es can be sequential or VSAM
datasets. You must dec;de on which method wtll bQ used ;n your ;nstal ­
lattan before .ttempt;ng to install APL2 as this dec;s;on affects saveral
of the ;nstallat;on jobs.

APL2 INSTALLATION UNDER 1S0 85

The APl2 Installat;on and Custom;zat;on manual (SH20-9222) descr;ba$ the
relative merits of the two access methods. Howeve~, ;f the APL2 nam;ng
convent;ons a~e acceptable ;n YOu~ installation, the use of the sequential
access method for workspaces appears to offer more advantages. Th;s is
particularly true if HSM or RACF are being used ;n your installation.

File l;brar;es must be VSAM clusters. A private file library ;s used to
store APL2 data files and to save the sess;on manager log. The aux;liary
processor, AP121, is used to read and write APl2 var;ables stored ;n an
APL2 data file. Although simple APL2 app!;cations are unlikely to use
AP121, the abi!;ty to save the session manager log 15 of value to all APL2
users. If a private file library will be needed, a separate VSAM cluster
must be def;ned for each user and allocated to the user before APL2 ini­
tiat;on.

6,1.2 NAMING CONVENTION FOR SAM LIBRARIES

The follow;n; are examples of the default file names for the various APl2
libraries:

PRIVATE = 'USERl.V.PRIVATE'
PROJECT = 'USERl.V0002000.PROJECT'
PUBLIC = 'APL2.VOOOOOOl.PUBLIC'

Within the APL2 naming structure some flexib;l;ty ;5 available. The de­
fault character strings 'APL2' and 'V' can be changed to su;t your ;n­
stallat;on. Although the character 'V' ;s not very descriptive, it does
allow for max;mum freedom for project library numbers and ;s unlikely to
be used as the middle qualifier for other dataset names. If 'APl2' ;5
used ;nstead of 'V', any dataset created by a user with APl2 as the middle
qualifier appears to be an APL2 workspace.

If the bas;c naming structurQ cannot be accommodated ;n your installation,
the User Exit must be modified to implement a standard wh;ch is accepta­
ble.

6.1.3 OTHER IBM PRODUCTS WHICH INFLUENCE APl2 INSTALLATION

The use of any of the following products in your installation w;!l have
some bearing on the APL2 installat;on process'

I.	 GDDM: This product ;5 requ;red ;n order to use the APL2 Sess;on Man­
ager. GDDM provides APL2 users w;th powerful graphics capabil;ty
using either the GPAPHPAK or the GDDM Aux;liary Processors. The use
of the Session Manager influences the choice of access method (see
"Selection of Access Methods to be Used by APl2n on page 85) and in­

86 AN OVERVIEW OF APL2

vocation options. The use of GRAPHPAK requires special character sets
(sea Step 16 of the installation procedure).

2.	 DB2: If APL2 users will access DB2, step 11 of the installation pro­
cedure must be run to define the APL2 Auxiliary Processor AP127 to
DB2. AP127 must be included in the APL2 ;nvocation options.

3.	 3800 and DeFt Special APL2 character sets for the 3800 are distributQd
with APL2.

6.1.4 APl2 INSTALLATION OPTIONS FOR T50

The default installation options have been chosen to be as general as
possible. However, YOU will probably have to make minor changes for your
installation. In particular, the following options are likely to need
tailoring:

o	 DASD volumes whlch will be used to allocate datasets created by APL2
users

o	 Users with the authority to save workspaces ;n public libraries

o	 Default invocation options. In particular, options related to other
installed products and to the amount of storage to be allocated to
users.

o	 Descriptive data about the system which can be retrieved by any APL2
user.

The Installation Options are specif;ed in member AP2TIOPT. This member
;s 1n one of the following datasets during APL2 installation:

o	 JLGI110.F3 After Receive
o	 SYSl.SMPSTS After Apply
o	 SYSl.AP2S0URC After Accept

AP2TIOPT has all the Installation Options, and contains the following
logical parts:

1.	 Systems Options - relate mainly to dataset nam;ng rules and are
specified using the AP2TIOPT macro.

2.	 Default and Override Invocation Parameters - specified as constants
using the DC operation code of the Assembler Language. Since default
parameters can be set ;n the ellST used to ;nit;ate APL2, changes to
this part of the Installation Opt;ons are only essential if you w;sh
to alter the overr;de values.

3.	 Authorized Library Ranges - specified using the USERL macro. The
default table does not grant authority for any user to write to the
public libraries. However, the supplied User Exit Routine grants

APL2 INSTALLATION UNDER TSO 87

write access to users havlng 150 OPERATOR status, irrespective of the
values in this table. If you are tnstalltng APL2 and do not have
OPERATOR status YOU must change this table to allow YOU to save the
APL2 public !ibrar;Qs.

4.	 System Information - declared as Assembler constants. An APL2 UBar
can access th;s information w;th a system command. Although this
information will only be crtt;cal 1f APL2 functions have dependencies
on other fnstalled products, you should keep the ;nformat;on 8. ac­
curate as pos5;ble.

The only one of thQ above sect;ons wh;ch rQqu;rGs further Qxplanatton t.
the Systems Opt;ons.

The AP2TIOPT macro definition has default values 5P8c;f;ed for all pos­
sible parameters. Most, but not all, of the parameters are a150 spectftad
when the macro ;s used ;n the sample AP2TIOPT. For example, the sample
AP2TIOPT does not show wh;ch aux;!;ary prOCQssors are loaded w,th APL2
(parameter RESAPS). To clarify the actual defaults ;n effect, F'gure 14
shows all parameters defined by the macro and the;r default value••

B APLID=V,
M ATASKS=,
B BLKSIZE=4240,
8 CSVPID=CSVP,
I DEFAULT=(DEFAULTA,DEFAULTZ),
B LIBKEEP=YES,
B LIBQLFR=APL2,
B LIBSER=,
B LIBUHIT=,
M OPTUSER=AP2TIUSR,

I OVERRIDE=(OVERRIDA,OVERRIDZ),

M PREFIX=TOP,

B PUBQLFR=APL2,
B QHLT=EHGLISH,
M QTZDEC=O,
M QTZIHT=-7,
M RESAPS=(AP2TIOO,AP2Tl01,AP2Tl02,AP2Tl11,AP2T123,AP2T210,

AP2X120,AP2X121,AP2X126),
M DSECT=NO

The ftrst column ;nd;catQ5 tha source of the dQfault value ­
M=Value is default provided by the macro.
I =ValuQ ;n AP2TIOPT overr;des macro default.
B =Ovarr;dQ valuQ ;5 the same as the macro dQ1ault.

Figura 14. Default AP2TIOPT Values

88 AN OVERVIEW OF APL2

6.2 HOTES ON APL? INSTALLATION STEPS

The following notes refer to, and are intended to supplement, the in­
stallation steps described in Chapter 3 of APl? INSTALLATION AND
CUSTOMIZATIOH UNDER TSO (SH20-9222)

6.2.1 SMP CONSIDERATIONS

STEPS 3 and 4: The sample jobs assume that a new SMP environment will
be used for APL2. Th;s;s satisfactory if the installation ;s purely for
testing purposes. If you will be applying PUT maintenance to the APL2
system in the futu~e, you should consider updating your current SMP en­
vironment and PROClIB members rather than using the sample jobs as dis­
tr;buted.

In this case, step 3 should not be run and only the DEFINE USERCAT part
of step 4 should be run. The DD statements for the APL2 target and d;s­
tribut;on should be added to the appropriate SMP PROC or defined to SMP/E
if the dynamic allocation feature ;s being used.

6.2.2 LOADING APl2 PUBLIC WORKSPACES

STEP 15: Since this step loads the APl2 public libraries, APL2 must know
whether the public libraries are to be accessed using VSAM or SAM. The
ClIST tailored in step 14 should, therefore, be used to invoke APL2. VSAM
clusters are used for the public libraries if files WI and W2 have been
allocated before the APL2 command is issued.

You must also be authorizQd to write to these libraries •. Refer to tha
heading Authorized library Ranges in nAPL2 Installation Options for TSO·
on page 87

APL2 INSTALLATION UNDER 150 89

90 AN OVERVIEW OF APL2

7.0 MIGRATION

The term 'migration' ;5 used to describe the process by which appltcat'ons
runn;ng under VS APL are 'converted' to run under APL2. M;grat;on in­
cludes the transfer of fIles from one environment to the other, making
changes to code, testing, debugging, and brfng;ng the appl;catfon into
production.

The overall message ;5 that migration is easy, the literature ;5 good,
and aids are available. However, there are many potential 'problems' which
should be checked.

In this chapter, we w;ll'

2.	 Present an overview of the process

4.	 Illustrate it w'th an example

5.	 List avatlable publicatfons

6.	 Formulate concluding remarks

7.1 WHY MIGRATION IS NECESSARY

APL2 ;5 a new language. One criterion used ;n it. development was com­
patibtlity with VS APL. However some of the features of APL2 do not pro­
vtde complete compatibility with VS APL. That is, an applicat'on written
to run under VS APL may nead soma modificattons before ,t can run under
APL2.

There are four possible types of 'ncompatibiltty.

1.	 An error in US APL produces an answar in APL2

2.	 An answar ;n VS APL 'S a dtfferent answer in APL2

3.	 An answer becomes an error

4.	 An error t5 a dtfferent error

The	 consequences of these ;ncompat;bt11t;Q& are respectivelya

1.	 Thts;5 not serious. It ;5 the natural way by which languages davelop.
It would be a problem only if an applicatton's logic was dependant

Migration 91

on an error. This 15 unlikely as VS APL has no facility for reta;ning
program control after an error.

2.	 This is very serious. It was allowed in a small number of cases, and
only when there was a very strong reason for doing so. An example ;5
the indexing of a constant numeric vector which, 'n APL2, requires
parentheses as bracket binding has to be stronger than vector b;nd;ng.
The)MCOPY command will, ;n many cases, insert the required paren­
thesQs.

3.	 This is not as serious as it seems as APL2 makes it easy to locate
the exact po;nt of an error and its cause.

4.	 This;s not a problem for reasons sim;!ar to 1. Hote, however, that
it will be an lmportant issue when consider;ng further development
of APL2 as the logic may depend on a particular error, especially as
program control can be maintained afte~ an error.

Migration consists of search;ng for incompatibilities and 'fixing' them
in order to preserve the logic of the appl;cat;on.

Offending pieces of code are identified by:

o	 Searching for known problems

o	 Using the programmer's knowledge of the application

o	 Testing of the program producing incorrect results

7.2 OVERVIEW OF PROCESS

1.	 Planning - decide what will be migrated and when

2.	 Make some changes to applications in VS APL

3.	 Transfer applications from VS APL to APL2

4.	 Identify possible problem areas

5.	 Fix them

6.	 Test the application thoroughly

7.	 Repeat stages 4,5,6 until the application operates properly

Migration ;s then complete and the application can be put into production.

92 AN OVERVIEW OF APL2

7.3 DETAIL OF PROCESS

1.	 In orde~ to decide whethe~ APL2 should completely replace VS APL or
APL2 and VS APL should run concurrently, CPU availabil;ty, expected
life of appl,cat;ons, and interdependence of applications and their
data should be considered. In other words, it is not necessary to
m;grate all existing applications.

Plan for migration by reading the literature and attempt to anticipate
areas likely to need attent;on.

APL2 training ;s necessary.

2.	 APL2 uses EBCDIC rather than z-codes (the interchange code unique to
APL).

Th;s means that ~V is d;fferent. The lMCOPY command (see 3) makes
allowance for this difference. That is,)MCOPY ensures that the
character vector 'JULIE' remains 'JULIE' in APL2 despite the differ­
ent	 ~V. There are two possible situations where the "MCOPY command
;s not suffic;ent to overcome the d;ffe~ences in ~V. The two situ­
ations are:

a.	 The Qnt~y ;n ~V in VS APL has no corresponding entry 1n DAV in
APl2.)MCOPY would fail as an attempt is being made to use an
illegal character. Illegal characters have to be identified
within VS APL.

The TRANSFER workspace (suppl;ed with APL2 in publ;c library 2)
contains a function BADCHARS. This must be put into the VS APl
workspace to be migrated. This can be done using the Session
Manager. The instruction BADCHARS OHl 3 will examine all func­
tions in the workspace for illegal characters. If any illegal
characters are found, they must be altered before migration can
proceed.

b.	 The logic of the application depends on a character's position
in ~U In this case, the functions CHARIND and IHDCHAR in the
TRANSFER workspace must be used (instead of)MCOPY) to transfer
the concerned character data to APl2. The use of these functions
;5 explained on pages 7 and 8 of the Migrat;on Guide.

3.	 The transfer from US APL to APl2 can now take place.

In APL2 enter:

)CLEAR

)MCOPY [libno] wsname

)SAVE [l;bno] wsname

M;gration 93

The contents of the specified VS APL workspace will be cop;ed fnto a
saved workspace under APL2. As the VS APL workspace rema;ns ;ntact,
the same name may be used, ;f des;red.

The VS APL workspaces to be transferred must res;de on the same eMS
or MVS system as APL2. If not, the VS APl workspaces must f;rst be
brought into the same system as APL2. The appropr;ate ;nstallation
reference manual g;ves details on how to do th;s.

)MCOPY ensures that the correct ~V is used and makes a number of
other adjustments to funct;ons and var;ables. These w;ll often be
sufflc;ent to allow use of the workspace ;n APl2. If the workspace
;n APL2 still dOQ5 not operate properly, add;t,onal f;xQS are re­
quired.

4.	 Once the application has been transferred, an ;terat;ve process of
testing and debugg;ng begins. Th;s often w;ll be relatively simple
as APl2 has been designed with compatibi!;ty in mind.

APL2 comes supplied with a workspace TRANSFER, (in publ;c library 2),
which has helpful functions and adv;ce. Two useful functions are
FLAG_ and FIX_. FlAG_ searches funct;ons in the workspace (;n­
clud;ng those from TRANSFER if YOU are not careful) for given char­
acter st~ings. FIX_ replaces the g;ven character strings by others,
supplied by the user.

The variable FLAGMVSAPL_ in the workspace TRANSFER provides a list
of strings that are known to be likely areas of concern (for example
ONe ;s included because under certain circumstances it can return
different answers under VS APL and APL2).

After possible problem areas have been ident;fied, each possible
p~oblem should be exam;ned closely to determine if ;t ;5 ;ndeed a
problem.

Pages 26-32 of the M;grat;on Gu;de are helpful here as they contain
explanat;ons of the circumstances unde~ wh;ch differ;ng results w;11
occur.

FLAG_ ident;f;es p;eces of code that may produce a d;fferent result.
It does not necessarily follow that a different result w;ll be
produced. The logic of each part;cular application must be examined
in conjunct;on with the literature to determine if there ;s any cir ­
cumstance under wh;ch an incorrect result would arise in that app!;­
cation.

Having determined that code needs to be amended, the function FIX_
may	 be used. The r;ght argument of FIX_ specifies the functions to
be ed;ted. The left argument of FIX_ ;s a vector. Each item of the
vector spec;f;es two character str;ngs. For each item, FIX_ replaces
all	 occurrences of the f;rst str;ng, by the second str;ng, ;n all the
functions spec;f;ed. Thus, it should be used with caut;on. The use
of FIX_ should be reserved for 'f;xing' w;despread problems occurring
several t;mes ;n a workspace.

94 AN OVERVIEW OF APL2

Remember that FIX_ and FLAG_ are tools and not panaceas.

Even though an application appears to work, it may not be fully mi­
grated. All paths through the code and all possible arguments to the
functions should be checked. It;s the extreme cases (for example,
when an array ;5 empty) that most likely cause the problems.

Also, flagging an item does not mean it must be changed. Flagging
merely states that you are using a piece of code that, under some
c;~cumstances, could produce a different result. Your use of the piece
of code may be unaltered.

The process of identification, testing and fixing continues until the
application behaves exactly as it should under all possible circum­
stances.

At this point migration 15 complete and the application may be put
into production under APL2 and discontinued under US APL.

7.4 EXAMPLE

This example illustrates the mechanics of m;grating a workspace from VS
APL to APL2.

There is no such thing as a typical migration as, by nature, it is the
unusual and unlikely events that cause the problQms.

This example was chosen because it ;s likely to be reasonably familiar
to most people and does actually require some function editing (many ap­
plications do not).

Ignore for a moment the fact that it ;s unlikely that a lesson ;n using
VS APL would be migrated to APL2 (or ;s itt>.

1.	 In VS APL, load LESSON3

Spend a few moments familiarizing yourself with the application if
necessary.

2.	 A copy of the function BADCHARS from workspace 2 TRANSFER in APL2 ;s
needed in our workspace. Invoke APl2 with the Session Manager on.

3.	 Display BADCHARS.

4.	 Return to VS APl, load LESSOH3.

Define the function BADCHARS by

o	 Entering function definition mode

o	 Scrolling back through the Sess;on Manag8r log

o	 Entering each line of BADCHARS by altering one character (for
example, blank to blank)

There ;s a bug in BADCHARS which prevents it from examining the firsl
function in the list given by ONl 3

The	 required fix is:

edit existing line [2] OIO~O

Save the workspace with a new name.

5.	 Type BADCHARS DHL 3 .This will examine all functions ;0 the workspace
for illegal characters.

There should not be any.

Check that all functions have been inspected by using)FH5

6.	 Return to APl2.

7.	 Enter the following commands:

lClEAR

)SAVE wsid

If any error messages result, use pages 12-13 of the M;gration Gu;de
to investigate.

Br;ng ;n a COpy of the TRANSFER workspace by ent~r;ng)PCOpy 2
TRANSFER

8.	 D;splay and read DESCRIBE.

9.	 Enter FLAGMVSAPl_ FLAG_ ALL_.

Use pages 253-254 of APL Programming: An Introduction to APl2
(SH20-9229) to decide on your own right arguments to FlAG_, and try
them.

10.	 Use Chapter 3 of the M19ration GUlde together with the Language Manual
to establlsh the sign;f;cance, if any, of all items flagged.

11.	 Make any necessary code changes.

12.	 Test the migrated workspace by typing:

AN OVERVIEW OF APL2 96

)lOAD wSld

You should get a DOMAIN ERROR

13.	 Use pages 27,38 and 39 of the Migration Guide to identify the cause
of the problem.

14.	 Edit the offending piece of code.

15.	 Save and load the workspace again.

16.	 Test the workspace.

17.	 Easy, 1S it not?

7.5 PUBLICATIONS

APl2 Migration Guide, SH20-9215, is the primary source for all information
and guidance on migration. It;s advisable to study the TRANSFER work­
space itself before using the wo~k5pace.

APL2 Programming: Language Reference, SH20-9227

APL2 Installation and Custom;zation under eMS, SH20-9221

APL2 Installation and Customization under TSO, SH20-9222

7.6 CONCLUDING REMARKS

The experiences of customers involved ;n the Early Support Program were
similar to what we expected. That is, that)MCOPY is easy to use and
successful in most cases. Further, that the literature is good, but that
"badly written" APL can cause problems.

Migration of the vast majority of applications will be relatively easy.

Features of VS APL that are incompatible with APL2 are either taken care
of by)MCOPY or are rather Iperve~se', that ;5, unlikely to arise in an
actual application. Pieces of code that will fail are the sort of thing
that relied on the 'internals' of APL rather than the language itself.
For example, some ADI functions relied on the fact that in VS APl a pen­
dent function cannot be expunged. This ;5 not the case in APl2.

Beware of the 'clever' programmer who does things in a non-standard man­
ner.

Remember that compatibility with VS APL was one of the criteria by which
all possible features of APL2 were evaluated by the designers.

M;gration 97

Remembe~, too, that the options to not mig~ate, or to rewr;te applications
to take advantage of the enhanced features of APL2, are always present.

98 AH OVERVIEW OF APL2

8.0 PERFORMANCE

The objective of the designers of APL2 was to produce a powerful, pro­
ductive language which would provide a rich set of tools for problem
solving.

The criteria against which APL2 is measured are compatibility, formality,
simplicity, and usability. (For a more complete discuss;on of these
criteria see -Design CriteriaW on page 1)

APL2 was not explicitly designed with CPU performance in mind. However,
once APL2 ;tself had been designed, each pr'm;t;ve funct;on was wr;tten
;n Assembler code by experienced systems programmers. Most of the pr;m­
it;ves have been optimized for many special cases and some APL 'idioms'
have been coded directly. That ;5, APl2 will 'recognize' an idiom and
process it with code dedicated to that idiom. For example pp ;s recog­
n;zed as rank and does not use the code for p twice.

APL2 derives its powerful performance from its ability to handle arrays
as easily as scalars.

8.1 QUESTIONS A USER MIGHT ASK.

There are, perhaps, two valid questions on performance that a use~ might
ask:

1.	 If I simply mig~ate an existing VS APL application to APL2 (that is,
I make no use of the APL2 language enhancements), how will the per­
formance compare!,

2.	 if I develop a new application ;n APL2, will it perform better than
if I had developed it ;n VS APL?

The	 answer to the first question ;s ·probably similar·.

The	 answer to the second question ;s wprobably better with APl2w•

It ;s difficult to commit to anything much more precise than this.

However a number of simple tests have been carried out.

The	 results are summarized below.

Performance 99

8.2 TIMING

Functions we~e timed ;n both VS APl and APL2 by using ~I[2] - wh;ch keeps
a cumulative record of CPU t;me used ;n an APL session. The method used,
the results obtained, and the conclus;ons to keep ;n mind ·are presented
below.

8.2.1 METHOD

Care must be taken to make valid use of ~I[2], to ensure that what ;s
being timed ;s what was ;ntended to be timed.

Accessing and displaying ~I[2] will use CPU time and, hence, alter its
own value.

Putting a trace or a stop on a function ;n order to t;me ;nd;vidual
statements will greatly increase the CPU t;me since the trace or stop uses
CPU time.

Functions that display values run much slower than functions that only
assign values to variables. That is, time to display can be a very s;g­
nificant proportion of total time and can lead to m;sleadtng compar;sons.

Tim;ng of very fast functions or primitives can lead to unreliable results
as DAI[2] 15 not sensit;ve enough to record low values accurately.

Care must also be taken when ~I[2] "goes round the clock- and is reset
to zero wh;le the function being timed ;5 running.

A function was written which, basically, accesses ~I[2] ;mmediately
prior to, and immediately subsequent to, executing the character string
supplied by the right argument. Th;s ;s repeated a number of t;mes and
average, minimum, and maximum data are calculated.

Each function was timed frequently so that the data d;splayed stabil;ty.

Any outlying values were investigated.

8.2.2 RESULTS

As primitive functions run very fast, mean;ngfu! results can only be ob­
tained when using reasonably large arrays.

Two random arrays of size 50x50 and two of size 200x200 were gene~ated

in VS APL. Fourteen simple operations such as addition, subtraction, ro­
tation, comparison, selection, and catenation were timed on both sizes.
The arrays were then transferred to an APL2 workspace by the)MCOPY com­

100 AN OVERVIEW OF APL2

mand and the same operations were timed aga;n. APl2 was faster (typically
by 25~-30~ for the 50x50s and by 35X-40~ for the 200x200s) ;n eleven of
the operations. APL2 immeasurably outperformed VS APl in performing ~

and VS APL outperformed APL2 with ~ and catenate.

To use smaller arrays, more complex functions were tested. Some performed
better ;n APL2 and others were faster in VS APL. In particular, a function
which generated arrays and then did various sorts and conversions per­
formed better ;n VS APL (up to 40% improvement> on arrays of all sizes
up to 50x50. With larger arrays APL2 again outperformed VS APL with the
margin ;ncreas;ng as the amount of data increased.

In attempting to analyse which types of function were better ;n each, the
most significant factor seemed to be that functions with many loops and
-GO TOsft (that ;5, written Fortran style) were better in VS APL.

The function SORTALF (available in workspace UTILITY ;n public !;brary
1) was timed. It performed better ;n VS APL on all arrays of size less
than lOOxlOO. SORTALF does an alphabetic sort on character arrays. It ;5
a function which ;s present in one form or another in numerous real world
applications. APl2 has overcome the necessity of using functions like
SORTALF. The GRADE functions (4,') have been greatly enhanced and alpha­
betic sort;ng is now a primitive function. This means that performance
;s ;mproved enormously. GRADE was used to do the same sorts as SORTAlF.
The improvements in performance ranged from about 25% with small arrays
to over 3000% with large arrays.

8.2.3 CONCLUSIONS

The	 facts that emerge are:

o	 Ho major difference between VS APL and APl2 in a majority of situ­
at;ons. Most real world applications will comprise a variety of
functions some of which w;ll run faster ;n APl2 and some slower ;n
APL2.

o	 APL2 performs s;gn;ficantly better than VS APL in handling large ar­
rays.

o	 The extensions of APL2 permit appl;cat;ons to be written ;n less lines
of code.

o	 The extens;ons to the primitive functions reduce the need for user­
wr;tten funct;ons. Th;s has very significant impl;cations for per­
formance.

Performance 101

8.3 SUMMARY

The major conclusion ;s that users generally need have no worriQs about
performance when migrating to APL2.

The message to the user is that APL ;s not so much about CPU productivity
as it ;5 about end-user productivity and ;n reducing application devel­
opment time. APL2 improves upon VS APL ;n these areas.

The design of APL2 has made it even more suited to rapid prototyping and
development of applications. There;s now an even wider range of powerful
primitive functions that perform well. These primitives can be combined
in very few lines of code to produce applications that are shorter than
their equivalents in other languages and, more importantly, take less t;ma
to code. As APL ;s interactive, each l,ne of code can be tested as it
;s written. This, combined with thQ extensive new features for handl;ng
errors, makes debugg;ng, maintenance, and development easier, more accu­
rate, and qu;cker. In addition, the lifting of restrictions on data types
makes representation of data structures more logical and more natural,
which can reduce time spent on analysis and program design.

The poor performance of Fortran style functions should not be a major
problem. Hopefully, there are few such functions. Such functions either
should have been written correctly originally or are trying to do some­
thing for which APL ;s not appropriate. APL has always suffered from
programmers who have learned a -traditional- language first and then not
changed their ways of thinking. It ;s almost as if APL2 ;5 exact;ng
vengeance on such people!

APL ;s not generally used for huge appl;cat;ons runn;ng numerous ttmes
per day. It ts used most frequently ;n a personal computing env;ronment
where the time to develop an application ;s of prime ;mpo~tance. Many
such applications may only be run once or twice.

APL's strength 1;e5 ;n the speed at which app!;cat;ons can be developed.
This should not be construed as implying that APL's performance ;s poor.
Far from it, ;ts ability to handle arrays and its variety of pr;mittvss
see to that.

What we are saytng ;5 that performance ;5 not, or should not be, a major
consideration because the APL env;ronment ;5 one ;n which quick, effective
applications can be prototyped and developed sw;ftly.

Those are precisely APL's strengths.

102 AN OVERVIEW OF APL2

APPENDIX A. LIST OF SOME SQL FUNCTIONS

A.1 SQLSYSTEM

vSQLSYSTEM[D]Q
[0] SQlSYSTEMiS;MAT;D
[1] S~'SELECT THAME,CREATOR,TABLETYPE,HCOLS,REMARKS,DBSPACEHO,DBSPACENAMEl
[2] MAT~2~SQl 5,- FROM SYSTEM.SYSCATALOG WHERE CREATOR="SYSTEM'"
[3] DP~JE-256

[4] OES(N2=127 DSVO 'DAT')/'DATA HOT OFFERED'
[5] DE-DAT_ 'DESCRIBE' 'APL2'
[6] ~(O~pZ~ESSAGE~D)/O

[7] D+--1 O"'2~D

[8] (0,[1]' '),[l]MAT

8.2 SQLTAB

vSQLTA8[O]v
[0] SQlTAB;S
[1] S~'SELECT THAME,CREATOR,TA8LETYPE,HCOLS,REMARKS,DBSPACEHO,DBSPACENAMEl
[2] MAT~2~5QL S,' FROM SYSTEM.SYSCATALOG WHERE
[3] DPW"256
[4] DES(N2=127 DSVO 'DAT')/'OAJA HOT OFFERED'
[5] D"DAT_ 'DESCRIBE' 'APl2'
[6] ~(O#pZ~ESSAGEtD)/O

[7] D"-1 O~2::>D

[8] CD,[1]' '),[l]MAT

8.3 SQLCOLHAME

vSQLCOLHAME[D]Q
[0] SQLCOLHAME A;51;52
[1] Sl+-'SELECT COLHO,CHAME,COLTYPE,LENGTH '

CREATOR=USER'

[2] S2~'FROM SYSTEM.SYSCOLUMNS WHERE THAME="',A,'" ORDER BY COLNO'
[3] TITLE 5QL 51,52

vTITlE[O]Q
[0] Z~TITLE MAT;D;OPW
[1] AADD COLUMN HAMES AND DESCRIPTOR TO R
[2] A MAT IS A MATRIX RESULT FOR CURSOR 'APL2
[3] DPWE-256
[4] DES(N2=127 OSVO 'DAT')/'DAT HOT OFFERED'
[5] D~DAT_ 'DESCRIBE' 'APL2'
[6] ~(O~pZ~ESSAGE~D)/O

Append;x A. LIst of some SQL functtons 103

[7] D~-1 O~D~2~D

[8] Z~(D,[l]' '),[1]2JMAT

A,4 SQlDISP

QSQLDISP[D]v
[0] SQlDISP 51
[1] TITLE SQL 'SELECT * FROM ',51

A.5 REPORT

QREPORT[D]Q'
[0] Z~A REPORT RiVjC;MAT;BljOP;BB;ZZ;CO;XX;RES;I;RE;H
[1] RE-2=>R
[2] RE-R[SORTSEQ~(~,[\O]R[;*ltA]);]

[3] CE-Vo.=V~c[2],[\O]R[j~ltA]

[4] BBE-l+~2S/1,~Bl~/[1]CxMAT~V'«pV),(pV»pl,(pV)pO

[5] OP~«cA[3 4 S])="('MAX' 'MIN' 'SUM' 'AVG'))/'rl++'
[6] IE-€(lCl -1»[B8]
[7] ZZE-!/[l]R
[8] CO~R[i~-ltA]

[9] XX~c[l]Cx(COo.x(pCO)pl)

[10] XX~FGX"XX

[Ill RESE-(Bl=!)/XX
[12] RE~f:OP, '/" RES'
[13] :t (A[3 4 5]::' AVG') / • REE-R E+p "RES '
[14] HE-(,::tO=lt"Op"R[l;])/(\l~pR)

[15] (CI=-!)/[l]ZZ[iH])E-c\O
[16] «I=-l)/[l]ZZ[;~-l~A])E-RE

[17] «!=-1)/[1]ZZ[j*ltA])E-c'RE5ULT'
[18] OES(N2=127 DSVO 'DATI)/'DAT NOT OFFERED'
[19] Z~«-l O~(2~DAT_ 'DESCRIBE' 'APL2'»,[1]'

vFGX[O]v
[0] Z~FGX V
[1] ZEo-(V*O)/V

A.6 SQlICU

vSQLICU[O]v

'),[l]ZZ

[0] A SQLICU R;CHRCTLiCTl;DATCTLiHEADINGiKEYSiLABElSjX;YjOIOCHARTiO10
[1] AR IS THE RESULT TABLE OF A SQL QUERY.A SPECIFIES WHICH
[2] ACOlUMNS OF THE RESULT ARRAY ARE PLOTTED BY SQlICU.
[3] OIOE-!
[4] KEYS~,-l O~2~DAT_ 'DESCRIBE' 'APl2'

104 AN OVERVIEW OF APL2

[5] KEYS~KEYS[A~~A]

[6.1 KEYS~(r/p··KEYS)l(t)l'··KEYS

[7] DSVR 'OAT'
[8] OIOEo-!
[9] R~R[;A]

[10] y~O l~R

[11] X+-,\l1'pY
[12] lABEL5~R[;1]

[13] lABELS+-(, cr /p··lABElS))1'u LABELS

[14] HEADING~'AVERAGE PRICE FOR THE WINE
[15] ~(2~11'R~126 DSVO 2 3p'CTLDAT')/O
[16] CHRTCTL~76p" A
[17] CHRTCTL[\4]~4 10 0 A

[18] CHRTCTl[4+,4]~4 10 2 A

[19] CHRTCTl[8+\4]~4 10 0 A

[20] CHRTCTl[12+\4].4 10 0 A

[21] CHRTCTL[17]tE-'*'
[22] CHRTCTL[25]~'*'

[23] CHRTCTl[32+t4]tE-4 10 0

INIT CHART
LEVEL 0
DISPLAY 1
HELP 0
ISOLATE 0

BY TYPE'

eTl TO BLANKS

A FORMNAME 'M'
A DATANAME '*'
A PAIRING 0

[24] CHRTCTl[36+\4]~4 10 l~pY A HUMBER OF DATA GROUP
[25] CHRTCTL[40+\4]~4 10 l~pY A HUMBER OF ELEMENT BY
[26] CHRTCTl[44+\4]~4 10 4 A LENGTH OF EACH STRING
[27] CHRTCTl[48+,4].4 IO~(l~p~LABElS) A LENGTH OF EACH
[28] CHRTCTl[52+\4]~4 IOpHEADIHG A HEADIHGl 7
[29] CHRTCTl[57]~'*'	 A PRIHTNAME
[30] lABElS~fLABELS

[31]	 A PRTDEP 0 PRTWID 80 PRTCOPY 2
[32] CHRTCTl[64+\12]~,4 10 0 80 2
[33] DATACTl~OpO A NO DATACTL DATA
[34] KEYS~El~KEYS

[35] DAT~CHRTCTl,KEYS,LA8ElS,HEADING

[36] Y~,Y

DATA GROUP
IN KEYS

STRING IN LABELS

[37]	 CTl~-10,(pCHRTCTL),(pDATACTL),DATACTL,(pX),X,(PY)'Y'(pKEYS),(pLABElS),(p

HEADING)
[38] DAT~CHRTCTl,KEYS,LABElS,HEADIHG

[39] REo-eTL
[40] DSVR 'OAT'

QSQLX[D]Q
[0]	 Z~SQlX SQl_STMT;ZZiOIO
[1]	 DIOE-!
[2]	 ZZ~SQL SQL_STMT
[3]	 f+-l:')ZZ
[4]	 ~(ov.#~ZZ)/'MESSAGE E'
[5 J	 Zf-2~ZZ

[6]	 OES(2~ppZ)/'RESUlT TABLE EMPTY'

Append;x A. L;st of some SQL functions 105

106 AN OVERVIEW OF APL2

APPENDIX B, SAMPLE PANEL AND ClIST FOR INITIATING ISPF-APL2

%----------------------- ISPF/PDF PRIMARY OPTIOH MENU ----------------------- ­
%OPTIOH ===>_lCMD +
% +USERID - &ZUSER
% 0 +ISPF PARMS - Specify terminal and user parameters +TIME - &ZTIME
% 1 +BROWSE - Display source data or output !;stlngs +TERMIHAL - &ZTERM
% 2 +EDIT - Create or change source data +PF KEYS - &ZKEYS
% 3 +UTIlITIES - Perform ut;lity functions
X 4 +FOREGROUND - Invoke language processors in foreground
X 5 +BATCH - Submit job for language processing
% 6 +COMMAND - Enter ISO command or elIST
% 7 +DIALOG TEST - Perform dialog test;ng
% 8 +LM UTILITIES- Perform I1brary management utility functions
% C +CHANGES - Display summary of changes for this release
% T +TUTORIAl - Display ;nformat;on about ISPF/PDF
X A +APl2 - Execute APl2 with default options
% X +EXIT - Terminate ISPF using log and list defaults

+Enter~EHD+command to terminate ISPF."
)INIT

.HELP = ISR00003
&ZPRIM = YES /M ALWAYS A PRIMARY OPTIOH MENU M/

&ZHTOP = ISR00003 /* TUTORIAL TABLE OF CONTENTS */

&ZHIHDEX = ISR91000 /M ~UTORIAL INDEX - 1ST PAGE */

VPUT (ZHTOP,ZHIHDEX) PROFILE

)PROC
&ZSEL = TRANS(TRUHC (&lCMD,',')

O,'PAHElCISPOPTA)'

1,'PGMCISRBRO) PARMCISRBR001)'

2,'PGMCISREDIT) PARMCP,ISREDM01)'

3,'PANEl(ISRUTIl)'

4,'PAHElCISRFPA)'

5,'PGMCISRJB1) PARMCISRJPA) HOCHECK'

6, 'PGMCISRPTC)'

7,'PGMCISRYXDR) HOCHECK'

8,'PAHEL(ISRLPRIM)'

C,'PGMCISPTUTOR) PARMCISR00005)'

T,'PGMCISPTUTOR) PARMCISROOOOO)'

A,'CMDC);APL2)'
. ',' .
X,'EXIT'
M,'?')

&ZTRAIL = ,TRAIL
)END

Figure 15. PDF Menu Altered to Include APL2

Appendix B. Sample Panel and Cl;st for Infttat;ng ISPF-APl2 107

PROC 0
CONTROL MAIN HOFLUSH HOPROMPT NOMSG HOLIST NoeOHLIST
ALLoe FILECFO) SHR DAC'&SYSUID.TSOUSER.FILES')
/M ALLOCATE THE SYMBOL SET LIBRARIES. M/

ALLoe FICADMSYMBL) DAC'APl2.SYMBLIB') SHR
/H
/*

ALLOCATE THE FILECLOADLIB), IF NEEDED AND
THE LOADLIB INVOCATION PARAMETER.

IF HOT SPECIFIED IN M/
M/

ALloe FILECLOADLIB) SHR DAC +
'ISP.V2RIM2.ISPlOAD')

/M ALLOCATE THE FILECAPLDUMP). M/

AllOC FIlECAPlDUMP) SYSOUTCT)
/M SPECIFY IHVOCATION PARAMETER VALUES IN THE APL2 COMMAND M/

/* DEPENDING UPON THE DEFAULT INVOCATION PARAMETERS IN THE SYSTEM M/

/* OPTIONS MODULE, AP2TIOPT. M/
ISPEXEC SELECT CMD(-
APl2 APCISPAPAUX) FREE(!OOK) CODE(32791) SMCOFF) ­

IHPUTC')LOAD 1 ISPFWS') -
) LAHGCAPL)

/M FREE COPY WORKFILES. M/

FREE FICFO)
/M FREE SYMBOL SET LIBRARYCS). M/

FREE FICADMSYMBL)
/* FREE SPECIAL LOAD LIBRARYCS). M/

FREE FICLOADLIB)
/* FREE APL2 DUMP DATA SET. M/

FREE FICAPLDUMP)

F;gure 16. APL2 ellST Executed from PDF Menu

108 AN OVERVIEW OF APL2

APPENDIX C. SAMPLE APl2 FUNCTION TO USE eMS EDITOR

vEDITER[D]v
[0] EDITER FOHC;TEMP;RC;CMS;DIO;CTL~;DATQ;I;HC;REC;NCC

[1] A
[2] A EDIT AN APl FUNCTION WITH XEDIr
[3] A

[4] A DO HOT FORGET THE FOLLOWING LINES IN AN EXEC PROCEDURE
[5] A APLEDIT EXEC
[6] A ICONTROL OFF
[7] A ISTACK LRECL a
[8] A &STACK VER 1 a
[9] A &STACK TRUHC a
[10] A &STACK ZONE 1 a
[11] A X script APLEDIT A (WIDTH a
[12] A
[13] DIO~l

[14] CMS~'CMS'

[15] RC~100 DSVO 'eMS'
[16] CMS~'ERASE ',FONC,' APlEDIT'
[17] DAT~~FOHC,' APLEDIT A (FIX U 192'
[18] CTLQ~FOHC,' APlEDIT A (eTl'
[19] RC~110 DSVO 2 4p'CTL~DATD'

[20] RC~l~pTEMP~CR FONe
[21] I~O

[22] L31~(RC<I~I+l)/L4

[23] DATQ~TEMP[I;]

[24] ~L3

[25] L4:RC~EX 2 4p'CTLgDATn'
[26] CMS~'EXEC APlEDIT ',FOHe,' 255'
[27] DATD~FOHC,' APLEDIT A (192 FIX'
[28] CTL~~FOHC,' APlEDIT A (ell'
[29] RC~110 OSVO 2 4p'DATQCTLn'
[30] RC~-1+1t2~DAT~

[31] TEMP~(RC,HCC~pTEMP)pTEMP~DAT~

[32] I~l

[33] L8t~(RC<I.I+l)~L9

[34] +(HCC~HC.pREC~DATQ)~L10

[35] TEMP+(RC,HCC+HC)~TEMP

[36] LI0:TEMP[I;]~HCC~REC

[37] ~L6

[36] L9:0FX TEMP
[39] A OPTIOH LIGNE SUIVAHTE ERASE DU FICHIER EDITE
[40] A CMS.'ERASE ',FONC,' APLEDIT A'
[41] CMS.'ERASE ',FONC,' APlEDIT A'

F;gure 17. APL2 Funct;on to Call Xed;t

Append;x C. Sample APL2 Function to Use eMS Editor 109

110 AN OVERVIEW OF APL2

APPENDIX De SAMPLE GLOBAL syr SERVER

The following APl functions implement 8 simple server which will accept offers
from one or more APL users v;a the global SVP. The various functions can be ex­
panded as noted to include the processing logic for a specific application.

It should be noted that the server does not set access control when a var;abl.
;s shared. This must be done by the user offering the variable or the server will
not be signalled on references or spQcif;cat;ons of the shared var;abla.

Del CLEANUP

QClEAHUP[D]v

[0]
[1]
[2]
[3]
[4]
[5]

CLEANUP
A FUNCTION TO HANDLE HOUSEKEEPING AND/OR STATISTICS.
A
A This function ;s called at the completion of each watt interval.
A

(6~S)'- ACTIVE SHARES:'(~p'~' DHL 2)'OFFER SEQUENCE HOI' OFFHO

Ps2 PROCESS

vPROCESS[O]v

[0] PROCESS VAR;VALUE
[1] A PROCESS A HAMED SHARED VARIABLE
[2] A
[3] A Th;s function can be extended to handle the unique processing
[4] A requirements of a specific applicat;on. Minimally, it must
[5] A specify the variable named by the argument, causing its state
[6] A to change.
[7] A

[8] VALUE~*VAR A get the shared variable value
[9] *VAR,'+CrrS' A spec;fy the shared var;able
[10] VAR VALUE

0.3 RETRACT

vRETRACT[D]Q

[0] RETRACT VAR
[1] A RETRACT AND EXPUNGE A HAMED SHARED VARIABLE

Append;x D. SamplQ global SVP server 111

[2] A

[3] A This function can be extended to handle the unlques requirements
[4] A of a specific application. M;nlmally, it must expunge the named
[5] A variable.
[6] A

[7] ~OP[]EX VAR

D.4 SERVER

vSERVER[O]v

[0] SERVER IHTERVALiOFFHOiPROCSiRETRACTSiSETSiVARS
[1] A GENERAL PURPOSE SERVER FOR APL AUXILIARY PROCESSORS
[2] A

[3] A This function acts as a dispatcher for an aux;liary processor
[4] A written in APl. It waits for shared variable events, reciprocates
[5] A offers made to it, calls a function to process work when the partner
[6] A speciflQs a shared variable and retracts variables when the degree
[7] A of coupling drops below 2.
[8] A

[9] A The functions SHARE, PROCESS and RETRACT arQ called as requirQd to
[10] A handle shared variable events. These functions may be extended
[11] A to handle the unlQue requirements of a specific application.
[12] A

[13] A This function takes an argument INTERVAL which specified a maximum
[14] A wait time. Each time this interval expires, the function CLEANUP
[15] A ;5 called. This function may also be extended to handle the unique
[16] A requirements of a specific application.
[17] A

[18] A The semi-global variable OFFHO is an offer number used to attempt
[19] A to ensure a unique shared variable name.
[20] A
[21] ~SETSVE,pDSVE,DSVE~FFHO~O

[22] RESET: CLEANUP
[23] SETSVE:OSVE~IHTERVAL

[24] RUH:~(O~pPROCS~SVQ\O)/OFFER

[25] ~(v/SETS~(DSVS VARS~'~' DHL 2)~.=O

[26] ~(v/RETRACTS~2~SVO VARS)/EXPUHGE
[27] ~(O=05VE)~RUH RESET
[28] A

[29] OFFER:SHARE··PROCS
[30] ~RUH

[31] A

[32] SET:PROCESS··c[OIO+l lSETSrVARS
[33] ~RUN

[34] A

A clear prior events
A called at end of interval
A prepare to wait
A check for offers

1 0 !)/SET A check state
A check for retraction
A wait for an event

A couple any offers

A process speci f; ed va ... 1abl es

[35] EXPUNGE: RETRACT··c[OIO+l]RETRACTSrVARS A retract as necessary
[36] ~RUN

112 AH OVERVIEW OF APL2

0.5 SHARE

vSHARE[O]v

[0] SHARE PROCiMY_HAME5iHIS_HAMES
[1] A SHARES VARAIBlES WITH A SPECIFIED PROCESSOR
[2] A
[3] A Va~;ablQ names offered by the specif;ed processor
[4] A are prefixed with ~, the processor id and _
[5] A and then suffixed with _ and OFFNO to create
[6] A unique names which are then used to share.
[7] A
[8] HIS_HAMES~SVQ PROC
[9] MY_HAME5~(~[2](~pHIS_HAMES)pc'~',(~PROC),'_'),HIS_HAMES

[10] MY_HAMES~MY_HAMES,·_','OOOOOOOOO·.,[DIO+.5]OFFNO+\~pMY_NAMES

[11] ~upfROC DSVO MY_NAMES,' ',HIS_NAMES
[12] OFFHO~FFHO+~pMY_NAMES A update offer sequence number

Appendix D. Sample global SVP server 113

114 AH OVERVIEW OF APL2

)EDITOR 1 40 authorization 59
)EDITOR 2 40 auxiliary processor
)MCOPY 92, 93, 94 ISPF 71-78
)RESET 36 mult;p!Q user 80
)5IS 36 SQL 43-69

DAI 82
DAV 93
DEA 37
OEM 38
DES 38
DET 38
OL 37
OHLT 40
OR 37

access
DB2 54-55, 87
SQLI'DS 52-53

account number 82
AP

See aux;l;a~y processor
APL2

installation under TSO 85-89
libraries 85
shared variable processor 79-83
system options 85

AP127 43, 60, 69
AP2TIOPT 87
AP317 72
array

nested 4
prototype of an 19
s;mp!e mixed 4
simple unmixed 4
type of an 19

asynchronous processes
communication 80

BADCHARS 93
bulk insertion 62-64

CAll 63
CDR

See Common Data Representatton
CHARIHD 93
CLOSE 62
COMMIT 57, 65
Common Data Representation 80
complex numbers 35
CREATE 56

r-1

I D I

L-J

data base
administrator 52, 55
multiple data base operation 50

data types 49
DB2

access 54-55, 87
env;ronment 53-54

DELETE 64
DEPTH 8
DISCLOSE 13, 19
DISCLOSE WITH AXIS 14-16
DISPLAY 6, 8

Index 115

EACH 24-27

editor

)EDITOR 1 40

)EDITOR 2 40

systems 41

ENCLOSE 9-11, 26

ENCLOSE WITH AXIS 11-13

ENLIST 21

env;ronment

ISPF-APL2 71

SQl/DS 50-52

error handling 36-40

event

message 38

simulatton 38

type 38

ex.cute alternate 37

FETCH 62

FIND 20

FIRST 19

FIX_ 94

FLAG_ 94

FLAGMVSAPL_ 9it

functions

;n SQL workspace 60

new APL2 7-22

other SQL 65

GDDM 40, 86

GETOPT 65

IHDCHAR 93

INDEX 50

INNER PRODUCT 33

116 AN OVERVIEW OF APL2

INSERT 56, 63

insertion

bulk 62-64

of a row 56

;nstallat;on
APl2 under 150 85-89

ISPAPAUX 71

ISPEXEC 72

ISPF

APL2 environment 71

auxiliary processor 71-78

ISPFWS 72

LENGTH (parameter of SETOPT) 65

libraries

APL2 85

SAM !ibrar;es naming convention 86

loading APl2 public workspaces 89

MATCH 8

MATRIX (parameter of SETOPT) 64

MESSAGE 65

migration 91-98

mode

multiple user 50

single user 50

mult;ple

data base operatton 50

user APs 60

user mode 50

H-WISE REDUCE 28

naming conventton for SAM

!;brar;es 86

nat;onal languagQ 40

new

APL2 functions 7-22

APL2 operators 22-34

null valuQ 45

OPEN 62

operating system

in DB2 53-55

in SQll'DS 50-53

operation

multiple data base 50

operators

def;ned 28

enhanced 28-34­

new 24-27

OUTER PRODUCT 32

PICK 16

PREP 62, 63

prototype of an array 19

prototyp,ng tool 77

r-1
I R I
1-----1

relational

data bases 43-69

data model 44, 45

REPLICATE 30

report creation 5

request stack vector 56, 58, 59, 63

result

data array 56, 58, 64

RESUME 65, 66

return code vector 56, 58, 59

ROLLBACK 65

row

;nsertion 56

SAM
files 85

libraries naming convention 86

SCAN 31

SELECT
ISPF serv;ce 74

SQL command 57

selective specificatton 17

session manager 93

SETOPT 65

shared memory

global 81

local 81

Shared Variable Procassor
See SVP

shared variables 80

SHOW 65

single user mode 50

SMP considerations 89

SQL

auxtliary prOCQssor 43

commands 47

function 56

language 46

result 56

workspace 55-69

SQL/DS

accClSS 52-53

environment 50-52

stack vector
See rQquQst stack vector

structure

of result data 64

of tables 44

Structured Query Language
See SQL

SVP
character;stics 79-81

d;agnost;c fac;!;ties 82

;mplementat;ons ;n VM and

MVS 81-82

shared var;abla processor 79-83

system

APL2 system opt;ons 85

ad; tor 41

table

column 44

cl'"'eate 56

join 45

log; cal 49

operations 45

query 57

Index 117

row 44­
structurQ 44

TRANSFER wo~k5pace 93, 94

TSO

APL2 installation under 85-89

UPDATE 64

user

multiple user APs 80

mult;ple user mode 50

single user mode 50

using
APL2 functions as dialog
funct;ons 74

ISPF and APL2 to create d;alogs 73

ISPF Serv;ces from APL2 72

PDF Editor for APL2 Funct;ons 76

subroutines written in other lan­

guages 76

VECTOR (parameter of SETOPT) 64

VIEW 49

VSAM files 85

workspace

DISPLAY 6

ISPFWS 72

SQL 55-69

TRANSFER 93, 94

118 AN OVERVIEW OF APL2

READER'S
COMMENT
~~

AN OVERVIEW OF APL2

GG24-1627

You may use this form to communicate your comments about this publtc_t;on* tt.
organization, or subject matter, w;th the understanding that IBM may use or d;s­
tribute whatever information YOU supply ;n any way it believes appropriate without
incurring any obl;gat;on to yOU.

Your comments will be sent to the author's department for whatever review and
action, if any, ;s deemed appropriate. Comments may be written in your own lan­
guage; use of English is not required.

Hote: Copies of IBM publications are not stocked at the locatton to whtch tht.
form ;s addressed. Please d;rect any requests for copies of publ;cat;on5* or for
assistance in using your IBM system, to your IBM representative or the IBM branch
office serv;ng your locality.

Possible top;cs for comments area

Clarity Accuracy Completeness Organ;zat;on Cod;ng Retr;eval Leg;bfl;ty

If you w;sh a reply, g;ve your name, company, ma;l;ng addrQ5S and datel

What ;5 your occupation ? --­

----- - ---- --- --- ---- - - --------

Reader's Comment Form
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,
I

Fold and tape Please Do Not Staple I
I

••• , •••••••••••••••••••••••••••••••••••.••••••••••.•••••••••••••••.••••• , •••••••••••••••••••••••••••••••••• , ••••••••••••••• 1

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 40 ARMONK. NY

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM International Systems Center
Department H52, Building 930
P.O. Box 390
Poughkeepsie, New York 12602
U.S.A.

I

I

1

I
I
I
I
I

I
I

1

I
1

1

1

I

.. ··11

Fold and tape Please Do Not Staple

-~--®

~ ----_. ­

http:�����������������������������������.����������.���������������.�����

READER'S
COMMENT

FORM
AN OVERVIEW OF APl2

GG24-1627

You may use this form to communicate your comments about this publication, its
organization, or subject matter, with the understanding that IBM may use or dis­
tribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

Your comments will be sent to the author's department for whatever rev~ew and
action, if any, is deemed appropriate. Comments may be written in your own lan­
guage; use of English is not required.

Hote: Copies of IBM publications are not stocked at the location to which this
form is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or the IBM branch
office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, ma;!;ng address and date:

What is your occupation ? --­

----- - ------ - - --------

o
S.
g

" i
•!
c

Reader's Comment Form i
I
I
I
I
I
I
I
I
I

Fold and tape Please Do Not Staple Fold and tape

..•.•..•.•.•.••.•..•...•.....••.......•.....•.••.•••.......•.................... ~•.......••..........................•..I

NO POSTAGE

NECESSARY

IF MAILED

INTHE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM International Systems Center
Department H52, Building 930
P.O. Box 390
Poughkeepsie, New York 12602
U.S.A.

I
I
I
1

I
I
I
I
I
I
I

I
1
I..,

Fold and tape Please Do Not Staple Fold and tape

_-..- -(!)

~---. --­_--.._, ­

http:�.�..�.�.�.��.�..�...�.....��.......�.....�.��.���.......�

READER'S
COMMENT

FORM
AN OVERVIEW OF APL2

GG24-1627

You may use th;s form to communicate your comments about this publication, its
organization, or subject matter, with the understanding that IBM may use or dis­
tribute whatever ;nformat;on YOU supply ;n any way it believes appropriate without
incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own lan­
guage; usa of English ;s not required.

Hote: Cop;es of IBM publicat;ons are not stocked at the location to which this
form is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or the IBM branch
office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organ;zat;on Coding Retrieval Legibility

If you w;sh a reply, give your name, company, mailing address and date:

What is your occupat;on ? --­

o
5.
~

i
J
e

Reader's Comment Form i
I
I
I
I
I
I
J
I
I
t
I
I
I
I
I
I

,I
Fold and tape Please Do Not Staple Fold and tape

I
I
I

..,., .. , .. I

NO POSTAGE

NECESSARY

IF MAILED

INTHE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK. N.V

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM International Systems Center
Department H52, Building 930
P.O. Box 390
Poughkeepsie, New York 12602
U.S.A.

I
I
I
I
I

...,I

I

Fold and tape Please Do Not Staple Fold and tape I
I
I
I
I
I
I
I
I
I
I
I
I
I

-~--®---­- - --­- ~--- -.. --­- - - --­----­-----, -
I

