

AN OVERVIEW OF APL2

Document Number GG24-1627-0

September, 1985

International Systems Center
Poughkeepsie,N.Y. 12602,USA

This overview of APL2 is intended to provide a useful insight into
the capabilities of APL2. The enhancements to VS APL and the links
with SQL and ISPF are praesented. The installation under TSO and the
migration from VS APL are briefly discussed. The aim is to give to
people with some modest V5 APL knowledge an understanding of new
APL2 features.

ESSYS LSYS VMSYS 118 pages

ii

FIRST EDITION (SEPTEMBER 1985)

This edition applies to Release 1 of APL2, Program Product 5668-899, and
to all subsequent releases until otherwise indicated in new editions or
Technical Newsletters.

Referencas in this publication to IBM products, programs, or services do
not imply that IBM intends to make these available in all countries in which
IBM operates. Any reference to an IBM program product in this document is
not intended to state or imply that only IBM's program product may be used.
Any functionally equivalent program may be used instead.

The information contained in this document has not been submitted to any
formal IBM testing and is distributed on an ™as is™ basis WITHOUT ANY WAR-
RANTY EITHER EXPRESS OR IMPLIED. The use of this information or the im—
plementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been revieuwed
by IBM for accuracy in a specific situation, there is no guarantee that the
same or similar results will be obtained elsewhere. Customers attempting
to adapt these techniques to their own environments do so at their own risk.

Parformance data contained in this document was determined in a controlled
environment; thereforae, the results that may be obtained in other opera-
tional environments may vary significantly. Users of this document should
verify tha applicability of data to their own environments,

Publications are not stocked at the address given belqui Raquests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication.
If the form has been removed, comments may be addraessed to IBM Corporation,
International Systems Center, Dept. H52, Bldg. 930, P. 0. Box 390,
Poughkeepsie, New York U.5.A. 12602. IBM may use or distribute whataver
information you supply in any way it believes appropriate without incurring
any obligation to you.

¢ Copyright International Business Machines Corporation 1985

AN OVERVIEW OF APL2

REFAC

The aim of the document is to provide an overview of APL2., It is intended
to complement the existing APL manuals rather than replace them. This
document is intended to provide a useful insight into the capabilities
of APL2 and to assist Systems Engineers in answering queries about it.

The first section gives some background to the ideas behind APL2 and an
indication of its power and usefulness.

The next section presents the APL2 language with an emphasis on the en-
hancements to V5 APL. This section introduces the new concepts and ex-
plains their uses. It gives the reader a flavor of the power and
flexibility of the language together with an understanding of the prin-
ciples. A modest familiarity with the V5 APL language is assumed. This
section does not cover all features of the language, is not intended to
replace the language reference manual, and is not a course in APL2 pro-
gramming.

APL2 has opened the APL environment, providing links between APL and SQL
and between APL and ISPF.

The section on SQL assumes no knowledge of SQL or relational databases.
It provides an insight into the enormous potential that exists as APL
functions can operate on tables from a relational database and as the SQL
language is available to the APL user.

Communication between ISPF and APL2 is now possible. Each can access the
same data. How to do this and what can be achieved are discussed. This
section is more meaningful to the reader with some experience in ISPF.

The Shared Variable Processor has been redesigned. In the next section,
the new facilities of the APL2 SVP are reviewed and main features of its
design are discussed.

The next sections cover installation and migration (including a real ex—
ample). They are intended as useful overvieuws of the process and take the
form of observations, experiences, and recommendations. They are not in-
tended as complete guides nor as replacements of the appropriate manuals.

The document concludes with a brief discussion of the performance of APL2.

Preface iii

Related publications are:
1. The APL2 Library
° APL2 General information, GH20-9214
° An Introduction to APL2, S5H20-9229
° APL2 Programming: Language Reference, SH20-9227
° APL2 Programming: Guide, SH20-9216
° APL2 Programming: System services Reference, SH20-9218
° APL2 Programming: Using Structured Query Language (SQL) 5H20-9217
° APL2 Messages and Codes, SH20-9%220
e APL2 Installation and Customization under CMS, SH20-9221
° APL2 Installation and Customization under TS0, SH20-9222
o APL2 Migration guide, SH20-9215
° APL2 Diagnosis guide, $Y26—-3931
° APL2 Diagnosis reference, 5Y26-3932
° APL2 Reference Summary SX26-~3737
° APL2 Reference Card $X26-3738

2. Structured Query Language(S5QL) Publications

]

SQL/Data System General Information, GH24-5012
° SQlL/Data System Concepts and Facilities, GH24-5013
° S5QlL/Data System Application Programming, SH24-5018
° SQLs/Data System Terminal User's reference, SH24-5017
° SQL/Data System Messages and Codes, S5H24-5019
3. IBM DATABASE2 (DB2) Publications
° IBM DATABASE2 General Information, GC26-4073
° IBM DATABASE2 Introduction to 5QL, GC26-4082
° IBM DATABASE2 Application Programming for TSO users, $C26-4081

° IBM DATABASEZ2 Refaerence summary, S5X26-3740

iv AN OVERVIEW OF APL2

° IBM DATABASE2 Reference, S5C26-4078
° IBM DATABASE2 Messages and Codes, 5C26-4113
4. ISPF Publications
° ISPF /PDF Reference, 5C34-2139
° ISPF /PDF Installation and customization, 5C34-2143

° ISPF Dialogue Management Services, 5C34-2137

Preface v

vi AN OVERVIEW OF APL2

[ABLE OF CONTENTS

BACKGROUND c 4 e e e s s s s e e e ee e e s e e 1
Restrictions Lifted e o » 2 ® 8 8 © ®w o % » & 8 ®w 6 e v = & ® 1
Design Criteria e s o s o 8 s o 8 s e 8 8 @ 8 s @ ®v e = s s @ 1

2

1

o e
« - .
“WN=o

Data Structure e s & s s 8 5 s = 8 8 = w e s s e s ow e s = e
2.0 APL2 LANGUAGE e & e o 4 s 8 8 a » = » s s s 8 8 ® ® 8w s o » 3
2.1 APLZ2 Arrays “ o o = ®» s 4 ® e s = ®w ® 8 = ® ® w = ® = & = » ® %
2.2 APL2 New Functions e +» @ s 5 s » s s e = 8 e a s e s e w » . 7
2.2.1 Depth e e o o 8 8 o e ® s s s 8 = s s e 8 e e e e e e . 8
2.2.2 Match e e o o a e o ® s s s o s s s 8 s s s s s e s s e = 8
2.2.3 Enclose e & & o s 8 5 o 8 8 w s 8 e s s ® s s w e s & u = 9
2.2.% Enclose with Axis e B |
2.2.5 Disclose e » e e 8 @ s = & w w e s s ® s » e s s s s & « 13
2.2.6 Disclose with Axis e 4 s e s = s s s e s s s s e s = s = 1%
2.2.7 Pick e e o o e 4 = 2 e o w ® v e o s 8 s o s = s s o = & 16
2.2.8 Selective Specification e o 8 o & s o 8 ® e o a s « « « o 17
2.2.9 First e
2.2.10 Find e 4 s % s = s s w s s s s e e e e s = = = o 2 o « o 20
2.2.11 Enlist e = e s 8 = s = s s s ® e = s s s v s w.w s » e 21
2.3 APL2 New Operators e ® e 2 ® e« o % 8 e & e s s e a o e s = = 22
2.3.1 Each e e s o = e s s e = 8 s 8 8 8 = s s s e e s s s 4 o 2%
2.3.2 Defined QOperators e e o 4w o s o o = s = s e s s = s o « o 2B
2.3.3 N-uwise Reduce e o 4 o o o o ® o o s s s s s e s = s =« = o 2B
2.3.4 Replicate e o o & 8 ® o s s 8 8 8 s s s 6 o s e = s = « . 30
2.3.5 Scan - 3 |
2.3.6 Outer Product « e e 2 s s o ® 8 ® @8 @ o s s = = o s = a o 32
2.3.7 Inner Product e o & « o s o e @ s e s v s o o e & s o « & 33
2.4 Complex Numbers e s s & ® = s a o e ® o 8 s e = e o o e » o « 35
2.5 Error Handling e e o e a = s e e s e o s v s = s 2 s e e « o 36
2.6 APLZ2 Editors “ e o o s s s e s s s s s e s e 8 = s s e o = « &0

3.0 APL2 AND RELATIONAL DATA BASES. e & o s & = s s s s s = s s « 3
3.1 MWhat is a Relational Data Base ? e e o @ o o o s s 4 e o o o 43
3.1. Structure of Tables. « e % e 8 s s 8 o s 8 s s 8 e = o « G4
3.1. Operations on Tables. c e e = & w 8 = = e & 4w e e s « o & G5
3J.1. Structured Query Language (SQL) e o s s 4 e o o v o e o+ 46
3.1, Data Types. e o o o 2 s = ® s 8 ® © e e 8 s w e o = s s+ & 49
3.1. Views and Indexes. e o o s o o e o 8 o e s s u s e s o« « 69
3.2 Operating System in SQL/DS e« o a o s s s e s s s e e« & « &« « 5O
3.2. Environment in SQL/DS e s & o s o s & » s s s e o s « » « 50
3 Preparing Access to 5QL/DS « e a = ® s s s e = s = s « & 52

.2.1 What the SQL/DS Data Base Administrator Must Do e o « D2
.2.2 MWhat the Individual User Needs - 4
erating System in DB2 e % o % 8 « % o e & 8 o s a e a s « o« b3
Environment in MVS. c o e 4 4 s = s e 8 s e = w a s = o o 53
Preparing Access to DB2 e e e s s s s s o s s s a « e s « DH&
.2.1 MHWhat the DB2 Data Base Administrator Must Do e« « » « 55
.2.2 What the Individual User Needs e + o s+ o a s« o & s« » 55
w to Use the SQL Workspace. e o o o s o 2 s s o o =« a2 = « « b5
An Easy Way to Communicate with a Relational Data Base. . b6

.
WWUWMNDRN
.

[Z NV RV

«
WU u

s e O«

ho oY .
O WUWMNFT NMMDNET VRGN =

(¥}
.
[T
.
E-3
.

Tabla of Contents vii

3.4
3
3
3.5

3.5
3.5
3.5

Lo PP
. a e s

.

+ H
U

.
(CIRE IS

capP P PSP PPPUNERO
.

L)
.

[G RE IR |
.
P UWUN = O

o O
. s .

TN 2O

.1
.1
.1

1

(-}
.

NN

N N A N NN
* s e o » &
oM pUWUNRO

(v-BNo B]
« e @
L I
NMNINON

WO N -~
.

[+

viii

.2 Functions in the workspace SQL
.4.2.1 Structurae of result data.

.%.2.2 Other S5QL Functions. . .
Miscellaneous e« + e e« v 8 = & & =
Functions
Functions
Functions

i
.1
.2

3

Invoking GDDM. o

USING ISPF WITH APL2 UNDER 7SO .

Establishing an ISPF-APL2 environment

Installation and Initiation « o .
Using ISPF Services from APL2 o .

Using ISPF and APL2 to Create Dialogs
.1 Using APL2 Defined Functions as Dialog Functions .

ossible Application Areas e s
.1
2
.3 APL2 as a Prototyping Tool .
Conclusion “ e e o s s e = s o @

APL2 SHARED VARIABLE PROCESSOR .
Introduction e o o & e o o @ & »
APL2 SVP Characteristics « e o @
APL2 SVP Implementations in VM/CMS,
APL2 SVP Diagnostic Facilities. .
Conclusions e o a o 8 8 s 8 & e &

APL2 INSTALLATION UNDER TSO .« e .
Preparation for the Installation of

.l Selection of Access Methods to be Used by

APL2

.2 Naming Convention for SAM Libraries
.3 Other IBM Products which Influence APL2
.4 APL2 Installation Options for TSO

otes on APL2 Installation Steps
.1 SMP Considerations « o o v »
.2 Loading APL2 Public Workspaces

MIGRATION e ¢ 2 o & v e e 8 u s =
Why Migration is Necessary « o
Overview of Process e e e e = s
Datail of Process “ s s e
Example e s & ® s e e = e = o @
Publications » s s e + e = e & =
Concluding Remarks e s s s e o =

PERFORMANCE e e e o e o o o s o =
Questions a User Might Ask. « o .
Timing e s s o 8 e 8 s s o e o

.1 Method e ® s e & e s s » s .
.2 Results e s & o v 8 e v e & @
J Conclusions s &« o o w & v v @

Summary e s 8 s e s s ® 8w o s =

AN OVERVIEW OF APL2

which Deal with the Tables of
which Deal with a Table

Using the PDF Editor for APL2 Functions
Using Subroutines Written in Other Programming Languages

Catalog.

2 Including APL2 Dialogs in Normal ISPF Dialogs . s .

« & 8 e o o e

MVS/ XA -

APL2 . .

Installation

60
66
65
66
67
68
68

71
71
71
72
73
74
7%
76
76
76
77
78

79
79
79
81
82
83

85
85
85
86
86
87
89
89
89

91
91
92
93
95
97
97

99

99
100
lo0
100
101
102

A
A. SQLSYSTEM .
A.2 SQLTAB .« .
A.3 SQLCOLNAME

A.4 SQLDISP . .
A.5 REPORT -
A.6 SQLICU -

APPENDIX B. SAMPLE
APPENDIX C. SAMPLE

P

APPENDIX D. SAMPLE
D.1 CLEANUP -
D.2 PROCESS . .
D.3 RETRACT .
D.4 SERVER -
D.5 SHARE .« e e

INDEX « s e e .

PPENDIX A. LIST OF SOME
1

PANEL

AND

FUNCTIONS

CLIST

. e
LI}
. .
- e
. ®
e ®

FOR

INITIATING ISPF-APL2 . .

APL2 FUNCTION TO USE CMS EDITOR e - v e e s

GLOBAL SVP SERVER

Table of Contents

103
103
103
103
104
104
104

107
109
111
111
111
111
112
113

115

ix

X AN OVERVIEW OF APL2

IST OF IL IONS

Figure 1. Example of Table Named WINE, e e o s o s 2 ® s o s s « 45
Figure 2. Example of Table Named ORDERS. e o o » s o s = s o s o 6
Figure 3. Summary of SQL Commands. e e o & s s o @ s e« a » a2 = « B
Figure 4. Types of Data in Relational Tables. e e s s s o s+ s o « 49
Figure 5. Single or Multiple Access to Data Bases. e « &« « « &« « 51
Figure 6. APL2 in an MVS Environment « = v « a s 2 s = = a o =« « 53
Figure 7. Process and bind of a DB2 program e » o o s s o a = s « D54
Figure 8. Statements in SQL and the Access Operations e v o o o o 61
Figure 9. Using Panel Display from an APL2 Function. - s s « o« o 13
Figure 10. Invoke APL2 with Automatic Function Execution e o « o & 15
Figure 11. Using an APL2 Function as a Dialog Function « o o e« o o 15
Figure 12. Executing the ISPF/PDF Editor from APL2 « w v o o » s o 16

Figure 13. Executing a Fortran Program from APL2 e o o s s s & & o 17
Figure 14. Default AP2TIOPT Values e o = s s o s o s s+ s+ = s s s+ . 88
Figure 15. PDF Menu Altered to Include APL2 e e s e e w e e e . 107
Figure 16. APL2 CLIST Executed from PDF Menu e s s e e o o & & @ 108
Figure 17. APL2 Function to Call Xedit e s s s e s e w s e s owe 109

List of Illustrations xi

xii AN OVERVIEW OF APL2

1.0 BACKGROUND

APL is an extremely powerful language that

° Handles arrays as easily as scalars

° Uses operators to create families of related functions

o Has simple rules of syntax
APL2 is an extension of APL. APL2 removes many of the restrictions of

APL, generalizes many of the fundamental concepts, and extends or com-
pletes many functions and operators.

1 RESTRICTIONS LIFTED

VS APL has the restriction that numbers and characters cannot appear in
the same array. APL2 relaxes that restriction. An array in APL2 may be
a collection of numbers and characters.

VS APL is restricted as items of an array are limited to single numbers
or single characters., APLZ2 allows any item of any array to be any other
array. Such arrays are known as nested arrays.

Removing these restrictions adds the requirement for new functions. That
is, we need functions that allow us to enter nested arrays at a terminal,
allow us to enquire about the arrays structure, and rules of syntax to
accommodate the new arrays.

1,2 DESIGN CRITERIA

APL2 was designed with the four main criteria of:

COMPATIBILITY a measure of the extent to which a proposal imposes a change
- discussed further under Migration.

FORMALITY the extent to which a proposal follows rules,
SIMPLICITY a rule without any exceptions is preferable to one with

exceptions.

Background 1

USABILITY a measure of the ecase with which the notation can be un-
derstood and applied.

1.3 DATA STRUCTURE

Programs are less reliant on data structure under APL2 than under VS APL.
The structure relates to the values of, and the relationships betueen,
the data.

Actual data is often not rectangular. Not everything has the same length
name, not all products comprise the same number of subassemblies, and so
on.

APL2 retains the useful properties of rectangular arrays but allows non-
rectangular arrays to be represented easily in nested arrays. Nested ar~
rays can be used just as easily as VS APL arrays. Users and programmers
are not burdened with managing the data structure. More operations are
controlled by the data and the need for explicit controls on these oper-
ations is removed. This makes programs less complex, easier to write,
easier to use, and more flexible.

The structure of the data is handled by the language. The same primitive
functions that work on simpla arrays and on scalars work on naested arrays.
The primitive functions also handle any necessary looping,

Nested arrays and the APL2 functions developed to handle the nestad arrays
allow the user to concentrate on solving the problem rather than on the
array structure. It is often unnecessary to convert data from one data
form to another data form to display data or to do arithmetic with the
data. APL2 removes many of these concerns from the user.

2 AN OVERVIEW OF APL2

PL2 ¢]

The APL2 language is an enhanced version of APL, featuring:

o New data structures and types

° New functions and operators

° Enhancements to existing functions and operators

The enhancements make APL2 a very powerful and productive language. An
ovarview of some of tha more important enhancements is given in this

chapter. Refar to the APL2 Language Manual (SH20-9227) for a more
comprehensive discussion of the features.

APL2 LANGUAGE 3

2,1 APL2 ARRAYS

An array is an ordered rectangular collection of elements. In APL2 ar-
rays, these elements may be numeric or character in the same array. Fur-
ther, they may be simple scalars (that is, single characters or single
numbers) or they may be other arrays.

A SIMPLE UNMIXED array is one containing either scalar character elements,
or scalar numeric elements.Examples of simple unmixed arrays are:

S1 €124 916
52 € 15
53 € TAY TBY (¢

S € 3 4 p "ABCDEFGHIJKLMN®

Simple unmixed arrays were the only primitive arrays in V5 APL.

A SIMPLE MIXED array is one containing both numeric and character scalar
elements, such as:

SM1 €« YA®* 'YB' 'C' 1 2 3

SM2 € "APL2',37 21

A NESTED array is an array that contains at least one non-scalar element.
Examples of nested arrays are:

Nl € 'A'" (22 p %) 5

TBAL €« 3 5 p 15 7100

"FINAL REPORT" TBAL A avoid catenation
FINAL REPORT 87 25 54 46 75
91 31 30 7 57
44 16 85 83 41

Each item of a nested array is treated as one element of the array. For
example:

4 AN OVERVIEW OF APL2

Veb3I 1l (22p1r4) (33 p 9

v
6 310 12 123
3 4 %5 6
789
pV
5
Fe33pl
(1 18F) € (1 1pl1)(2 2 pP14)(4 & p116)
F
1 0 0
0 12 0
3 4
0 o 1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
e F
3 3

Nested and mixed arrays provide an easy way to create reports as reports
can simply be the display of one or more APL2 arrays. There is often no
need to write functions or worry about formatting the layout. An example
of how a report is produced is:

A€0,60612 0.8382 65.99 0.060615 0.67222 0.8962% 59.5 0,06722
A€A,0.69225 0.923 57.78 0.06923 0.71595 0.9546 55.87 0.0716
TAB1€'H2" "EXPONENTIAL®

TAB1
H2 0.60612
EXPONENTIAL 0.67222
ERLANG-2 8.69225
CONSTANT 0.71595
PTAB1
¢ 5

0.8382

65.99

0.89629 59.5

0.923
0.9546

57.78
55 .87

"ERLANG—-2" *CONSTANT',4 4pA

0.060615
0.06722
0.06923
0.0716

APL2 LANGUAGE 5

The DISPLAY function, available in workspace DISPLAY in LIB 1, is useful
in showing the structure of an array. Hence, the use of the DISPLAY
function is a valuable aid in understanding how APL2 treats nested arrays.

Nested data is shown in boxes and the directions of the array are shown
by arrows on the boxes, as can be seen in the illustration below:

JCOPY 1 DISPLAY DISPLAY

DISPLAY 4.5 72.4 (2 2p14) (195 7 32)

DISPLAY (*APLY 2) (2 3 p 1 6)

Fm—— bt -
R et . !
L1l ==, 21 $1 2 31 |
I 1 1 APL i | 14 5 6 | 1
I l | . L] l B At o o s o e e o A l
| Ter—mmmmmmne— ' I
T € o o e o e o e ittt o e e e e e o e s e L}
DISPLAY TAB1
R S e e e e e e e e e e e T e e e e e o S e e -
L i
IH21 0.60615 0.8382 65.99 0.0606151

IEXPONENTIAL} 0.67222 0.89629 59.5 0.6722

M e e e e oen e e m— e e ma
—_
m
o
~
>
z
(e
i
N
—_

0.69225 0.923 57.78 0.06923
| O ——]
o P ——— .
ICONSTANT 0.71595 0.9546 55.87 0.0716
| [—
€ e e o o e e e et o) S " o R St T T e e e B (S T

6 AN OVERVIEW OF APL2

2.2 APL2 NEW FUNCTIONS

New functions were added to APL2 to deal with NESTED ARRAYS. A list of
the new functions is given below. The syntax for each function will be
explained in the next section., together with some brief examples.

DEPTH =R
DISCLOSE > R
DISCLOSE WITH AXIS o2[I] R
ENCLOSE < R
ENCLOSE WITH AXIS c[Il R
FIRST *+ R
MATCH L ER
PICK L >R
ENLIST € R
FIND L ¢R
CIRCLE LoR

In addition, many functions have been extended or enhanced.
The functions, with examples to clarify their applications, are given in

the following sections. For details or definitions, refer to the APL
Programming: Language Reference (SH20-9227).

APL2 LANGUAGE 7

2.2,1 DEPTH

DEPTH (= R) analyses the degree of nesting in an array. Scalars have
depth 0, simple arrays have depth 1, other arrays have depth of 1 plus
the depth of the deepest nested item within the array. Hence all VS APL
arrays had depth of 0 or 1.

The DEPTH symbol is formed by using the backspace character which can be
displayed by the)PBS system command.

= 2.84
0
E IAI
0
= YAPL2T
1
= YART" 'ALAN®' "MFB' *RENE'
2

B€('ART* "ALAN" "MFB' "RENE") 476 85 74 "APL2"

When using the DISPLAY function, the depth of an array is the number
of nested boxes containing the innermost item. For array B, above:

DISPLAY B
| -, o, |
11 ==, ===, =, ==, | 6476 B5 74 |APL2] |
I 1 IARTI IALANI IMFB! IRENEI | Tt |
' I P ! Fmmicn ! mmew ! T | '
| Ye—- - -1t |
'e——— -]
2.2.2 MATCH
MATCH (L = R) compares two items or arrays. If both arguments are

identical in structure and data (that is, they "match'), a "1" is re-
turned. If they do not match, a ™0™ is returned. Examples:

8 AN OVERVIEW OF APL2

YAPL2" = TAPL1T A different data

0

YAPL1" 'APL2Y = "APL1APL2" A different structure
0

vY o= L0 A different structure
0 A and data

IAI lPl ILI l2l E IAPLZI
1

2.3 NCLOSE

The enclose and disclose functions simplify the handling of nested arrays.
Enclose enables us to treat an array as a single jitem without concern as
to its structure or data. Disclose works the other way and enables us to
gaet to the actual data. MWe can think of enclose as putting data into
parcels so that it is easy to handle, and disclose as opening that parcel
when we want to look at or to use what is inside.

ENCLOSE (<R) creates a scélar from its argument.

V € "APL* (2 3 p 16) (10 20 30 40)

DISPLAY V
| ==, (Fmmmm, e .
I IAPLI 1 2 31 110 20 30 401 |
| "===* 14 5 6] Tw———m—————e "y
! a [
0]

APL2 LANGUAGE 9

cV
APL 123 10 20 30 40
4 5 6

DISPLAY <V
I e e e e .
bl 3= e e .
I L JIAPLE ¢1 2 31 110 20 30 401 | |
Il === 16 5 6] "werm————n—— v
P fovm——t 1
I Yegmm——mm e '
¥ € o o oo ot o e e e e s o e e £ o e o e B L

We see that when using ENCLOSE, the depth is increased, and the rank is
lowered.

eV ecV pccV
3

epV ppcV ppccV
1 0 0

=V =cy SccV
2 3 4

ENCLOSE enables a vector of characters to be treated as a single scalar.
This is very useful in application development. It is easy to find the
position of a sat of characters in a table, or to add a name to a table,
if the items are enclosed and each name is treated as one itenm.

10 AN OVERVIEW OF APL2

TAB € ("ART' TALAN' *RENE" "MFB')

TAB 1 < "ALAN"

[ol TABB NEWNAME

[1] ACHECK IF NEWNAME IN TAB
[2] aAIF NOT, APPEND IT TO TAB
[31] >((<NEWNAME) ¢ TAB)/0
[4] TAB€TAB, cNEWNAME

TAB A display the table
ART ALAN RENE MFB

pTAB

4
TABB "MICHEL® A execution of the function
TAB fA display the table

ART ALAN RENE MFB MICHEL

pTAB

4 ENCLOSE WIT

ENCLOSE WITH AXIS (<[I]IR) is used to restructure the data in a table
or report. The data of R is restructured into a new array of increased
depth and reduced rank. The axes Meliminated™ in order to reduce the rank
are specified by I. Examples:

APL2 LANGUAGE 11

TABLE e TABLE
H2 4 11
EXPONENTIAL
ERLANG-2
CONSTANT
ppPTABLE Z TABLE
2 1
cl2] TABLE
H2 EXPONENTIAL ERLANG-2 CONSTANT
p <[2] TABLE pp <[2] TABLE
% 1
£ <f2] TABLE
2
<[1] TABLE
HEEC 2XRO PLN OAS NNT EGA N-N T2T7 I A L
e <[1] TABLE ep <[1] TABLE
11 1
= c[1] TABLE
2
DISPLAY <[2] TABLE
I .9- --------- . u-)- ————————— . --)-' --------- . u-)- ————————— -
I 1H2 | 1EXPONENTIAL! J1ERLANG-2 I I CONSTANT |
l] \]]]] | [——
le ————— > i 7 Tt 222 U S Y s P S e S (D D A e D P U S e S SR A G S P O P o B S o e Y S B S e
» TABLE
H2 EXPONENTIALERLANG-2 CONSTANT
p» TABLE
44

12

AN OVERVIEW OF APL2

P €3 64 pl2

cl2]1P
1234 56 78 9 10 11 12

pcl21P
cl1llpP
159 2 6 10 3 711 % 8 12

pc[1]1P

2,2,5 DISCLOSE

DISCLOSE (oR) is the inverse of ENCLOSE, used to ™get at™ tha data in
nested arrays.

DISCLOSE restructures the data of R into an array of raduced depth and
increased rank. The new dimensions that are added to increase the rank
of R are placed last.

All items are padded on the right to match the largest dimension.

For example:

D € "H2' YEXPONENTIAL" "ERLANG-2* YCONSTANT®

oD
H2
EXPONENTIAL
ERLANG-2
CONSTANT
eD e>D
% % 11 A new dimension is placed last
=D =sD
1
ppD pp2D
1 2

APL2 LANGUAGE 13

Me(2 2p 0)(2 2p14)(2 2p9)

M oM
00 12 99 00
00 3 4 99 00
12
3 4
99
99
oM eoM
3 322
PPM ppoM
1 3
=M EoM
2 1

Disclosa has no effect on simple scalars. Thus,
5 <£==> 55

TKY ¢==> oYK

CLOS TH AXIS

DISCLOSE WITH AXIS (o[IJR) is used to place new dimensions in different
positions. The value of I defines the axes of the result for the re-
structuring of R.

The shapae of tha result is determined by the order in which the axes are
listed in I.

All items are padded on the right to match the largest dimension.

14 AN OVERVIEW OF APL2

Lou

CROIX

25

LC
OR
uo
II
SX

52

NN =

IS

10
12
14

Q €« "LOUIS" 'CROIX

PQ

n
o

o>[21Q

pol(21Q

ep2[2]Q

sl11e

pol11Q

peo[11Q

rpQ

A equivalent to 5§

A new dimension placed last

=s[21Q

A new dimension now placed first

V2 € (1 2 3 4> (10 12 14)

of11v2

=Ex[1]Q
1

sf21v2
1 2 3 4
10 12 14 o0

Disclose with axis

can be applied to arrays of names to modify the

presentation of reports. The following example illustrates how this can
be done.

APL2

LANGUAGE

15

TAB¢ YMFB' 'ART'

>TAB
MFB
ART
ALAN
MCF
XYz
RST
>[1]1TAB
MAAMXR
FRLCYS
BTAFZT
N
(oTAB), ® 5 6 p130
MFB 1 7 13 19 25
ART 2 8 14 20 26
ALAN 3 9 15 21 27

MCF & 10 16 22 28
XYz 5 11 17 23 29
RST 6 12 18 24 30

(>011TAB), [
M A A M X R
F R L ¢ Y S
B T A F Z2 1
N

1 2 3 4 5 6
7 8 910 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

TMCF* "XYZ' '"RST®

e TAB

p > TAB

1] ¢ '.§1]5 6p130

2.1 PIC

PICK

(L >R) selects a single item at any depth from an array R. The

item is reached along the "path™ given by L .

L can be a scalar or vector of depth £ 2. It can be an integer or empty.

For example:

16 AN OVERVIEW OF APL2

V € "APL' ((3 2 p "ABCDEF') 2)

2oV
AB 2
ch
EF
21 (31)>V
E

2.2.8 SELECTIVE SPECIFICATION

With nested arrays, index specification is not sufficient to allow editing
of any item at depth greater than 1. SELECTIVE SPECIFICATION assigns
values to items selected from an array. A selection function F applied
to an array R selects items in R and assigns to those items the values
contained in an array A, as shown belouw:

(FR) € A

(L F R) € A

Some primitive function may be used to create the selection condition.

PICK is particularly useful, as it allows the selection of an item from
an array. Examples:

APL2 LANGUAGE 17

(1av) € *APL2"

v pV
APL2 AB 2 2
CcD
EF

(2 25V) « 10 20 30

V
APL2 AB 10 20 30
)]
EF
Me3I 3 pr9

(l1l18M) €0

S o
o N
o N WX

J€3 747786953710

((0>J)7J) € c"NEGATIVE®

J
3 NEGATIVE 7 NEGATIVE 6 9 5 3 NEGATIVE

pJ
9 A shape is unaltered as <'NEGATIVE' is a scalar
P €« *ABCDE"
(24P) € 1 2
P eP
1 2 CDE 5

V e« "APL1Y 1 2 3

(14V) €& < "APL2T

v
APL2 1 2 3

18 AN OVERVIEW OF APL2

2 9 _FIRST

FIRST (4R) returns the first item of its argument. Thus:

+ "APL2®

If an array of names is juxtaposed to a matrix of results, the first item
of the resulting array is the matrix of names. This matrix of names also
has a first item. For example:

NM2€(4 5p"ROW1 ROWIZ2ROWZ2 ROW3 *)
RSLT€(4 6 p 2471000)

TAB2 € NM2 RSLT

4+ TAB2 M TAB2
ROW1 R
ROW12
ROW2
ROW3

p?TAB2 pttTAB2
4 5

In order to determine the result of applying the function FIRST to an
empty array, we must first define the type and the prototype of an array:

° The type of an array is the array in which each numeric item has been
replaced by a ™0™ and each character item has been replaced by a
"phlank™,

° The prototype of an array is the type of the first element of the
array. The prototype is used as a fill item when padding is needed,

as shown with DISCLOSE in the example below.

Hence, the result of applying the function FIRST to an empty array is the
prototype of the array.

APL2 LANGUAGE 19

Me (22 prd) (33 p 10 + 19)

M
12 11 12 13
34 14 15 16
17 18 19

oM A PROTOTYPE is 0

O N
o LN

11 14 17
12 15 18
13 16 19

» =M
12034000GO0 11 12 13 14 15 16 17 18 19

2.2,10 FIND

FIND (L ¢ R) returns a boolean array of the same shape as R.

An item of the result is 1 if the pattern given by L begins in the
corresponding position of R, 0 otherwise. Example:

Ue33Ipl0oo0ll11001

=
- o
= oo C

22p1101) ¢ U

o
—

(
0
0
v
E € "INDIVISIBLE®

YIS ¢ E
6 0 0 0 0 1t 0 0 0 0 O

20 AN OVERVIEW OF APL2

2.2,11 ENLIST

ENLIST (€R) returns a simple vector, comprising each simple scalar in
the argument.

The function ENLIST is needed as the function RAVEL, applied to a nested
array, returns a nested vector and not a simple vector. The exampla below
illustrates that point.

S € "H2' "EXPONENTIAL'" TERLANG—-2' "CONSTANT®

PS
%
DISPLAY S
R ST - S — S
1 1H21 TEXPONENTIAL! I1ERLANG—-21 ICONSTANTI |
] Pom? Ve | S [| N (S —— LI
l€ ———
»S P 'S
H2 EXPONENTIAL ERLANG-2 CONSTANT 4
DISPLAY ,S
o P e e e e e e e e e e e e e e i e -
I, omme -. . - A .
I 1H21 IEXPONENTIALI IERLANG-2! [CONSTANTI |
j T==t Ve [] P LI |
¥ e o 1]
€S P €5
H2EXPONENTIALERLANG~2CONSTANT 29
DISPLAY €S
[

IHZEXPONENTIALERLANG-2CONSTANT |

L) — . 24 e s s e e e g i 0 et s e

The ENLIST function allows you to know if a particular character or se-
quence of characters is contained in a nested array.

APL2 LANGUAGE 21

V € "APL2' (2 3 p 16) (10 20 30 40)

eV
3

LT e V
0

eV

APL2 1 2 3 45 6 10 20 30 40

reV
14

LY €e V

2.3 APL2 NEW OPERATORS

New functions called Derived Functions can be created by applying opera-
tors to existing functions.

APL2 allows the usar to defina operators in addition to the operators tha
language provides. Thus, APL2 has an unlimited set of operators, whereas
VS APL has a limited set of operators.

All operators, whether provided by APL or user definad, can ba applied
to any function to produce newly defined functions.

Operators in VS APL:

REDUCE F/ R
F# R
F/7{I1 R
SCAN F\ R
F~ R
F\[I] R
EXPAND LO>x R
LON\LI] R
OUTER PRODUCT L «.FR
INNER PRODUCT L F.G R

22 AN OVERVIEW OF APL2

APL2 provides one completely new primitive operator and enhanced VS APL
operators.

The new operator is:

EACH F"R
L F*R
The enhanced VS APL operators are:
N-WISE REDUCE N F7s/ R
REPLICATE 10 7 R

All existing VS APL operators are extended in that they can be applied
to user defined functions as well as to primitive functions.

All of the operators,

new and enhanced, are discussed in the following
sections.

APL2 LANGUAGE 23

2.3.1_ EACH

EACH (*) can be monadic or dyadic.
The monadic form of EACH (F* R), applies the function F to each item
of the array R. The result has the same shape as the argument. That is,
R being a vector of 3 arrays A, B, and C, if

Z <==> F" R
then

F* ABC <==> (F A(F B)(F ©C)

Examples:

1 g

1 12 123 1234

e\ %
4
T e (2 12)(3 14)(C1 20)3CY 5)
’.. T +/.. T
2 3 1 1 14 17 21 6
(1 = 2°TH/T

1 20 1 5

OeVe'APLT (2 3pr6) (2 4p"ABCDEFGH')
APL 123 ABCD

4 5 6 EFGH

p.! v P.b Pl. V
3 23 2 4 1 2 2

, nv P , oov
APL 123456 ABCDEFGH 3

eV P €V
APL 1 2 3 464 5 6 ABCDEFGH 17

EACH can be applied to any function, primitive or user written.
The expression below shows EACH applied to the primitive [OCR:

2 1 p [CR™ T*FN1' 'FN2"

2% AN OVERVIEW OF APL2

whera FN1l, FN2 are functions. The canonical representations of each
function are displayed one after thae other.

The example below illustrates the application of EACH to a usar written
function.

[0] ZeRANK R
[1] ZetppR

V € TAPL2Y (2 2 p 14) (10 20 30)

RANK ** V RANK V
1 2 1 1

The dyadic form of EACH (L F* R) applies the function F to corre-
sponding pairs of arrays from L and R.Examples of the use of the dyadic
form of EACH are:

TLe€1l23%4
T2 € 10 12 14 16

T1 ," T2 p Tl ,” T2
110 2 12 3 14 4% 16 4

T1.T2 PTerz
123410 12 14 16 8

1717119 T1," T2
10 2 3 16

3 2 "4 5
464 55

Z « 54" 0p0 0 O

pZ PrZ
0 5

3 p* YABCD' TXY! 3 o "ABCD' 'XY*
ABC XYX ABCD XY ABCD

The last example illustrates the mechanism of scalar extension. When one
argument of a dyadic function is a scalar and the other argument is an
array, the scalar argument is extended to an array with the shapa of the
non—scalar argument. The function is applied to its arguments after this
extension has occurred.

When the dyadic form of the EACH operator is used with the CATENATE
function as shown below:

APL2 LANGUAGE 25

Q € "LOUIS* *CROIX*

Z € 'ST, * ,"Q
LENGTH ERROR
Z €5ST. ,"Q ?
A A

a length error occurs. Scalar extension is a way to obtain a correct re-
sult. As the right argument is a vector, the left argument has to behave
like a scalar. This is achieved by enclosing the left argument, as shoun
below:

Q € "LOUIS" "CROIXT

Z € (c'ST. "),"Q

Z

$T. LOUIS ST. CROIX

Other axamples of the use of dyadic EACH are:

(2 3) p* 'ABC' 2 3 p "ABC'
AAA BBB cceC ABC
AAA BBB cCcC ABC

ML €33 p 107100
M2 €3 3 p 107100

M1 M2
87 24 5% 49 17 95
46 75 91 72 46 32
31 30 7 84 58 86
B M1 M2

0.01206 ~0.00793 0.01021 0.02878 0.05547 ~0.05243
~0.01366 0.00582 0.02971 T0.04802 T0.05161 0.07225
0.00517 0.01020 ~0.02964 0.00427 T0.01937 0.01611

e B M1 M2

Be31p8710

(cB) B M1 M2
0.14291 0.094228 A these are the solutions to 2 sets
0.22852 ~0.02294% A of 3 simultaneous equations with
0.18365 0.039714% A 3 unknowns.

26 AN OVERVIEW OF APL2

EACH is equivalent to the DO loop in other programming languages.

In most
cases, loops in APL2 can be eliminated by using EACH.

Li: Z€Z,cF 4V
V € 14V
>(0#pV)/L1

This loop can be replaced by:

Z e F"V

APL2 LANGUAGE 27

2.3,2 DEFINED OPERATORS

The user can define operators in the same way as he definaes functions.
In the following example, the derived function (F SEE) displays the ar-
guments of F before applying F to its arguments.

[o0] Z €L (F SEE) R

[1] ~ASEE THE ARGS&RESULTS AS F EXECUTES
[2] >(0=CNC "L")/MON

[3] ZeL F R

[4] OezZ "' L f'f* R

[51 20

[6]1] MON: ZeF R

[71 ez 'ef* R

1+2 3+ ¢4

1 + SEE 2 3 + SEE 4
6 7 € 2 3 f 4
7 B €1 f 67

-/ 12 2 5
15

-/ SEE 12 2 5

15 ef 12 2 5
15

+/ SEE 2 3 4 x SEE 4 5 6
81524 € 23 4 f 456

47 €f 8 15 24
47

3.3 N- E REDUC

N-WISE REDUCE (N F/R), is an extension to the operator REDUCE. F

is applied to the right argument, taking N items at a time. If the left
argument, N, is negative, the items of R are reversed before the re—
duction. Examples:

28 AN OVERVIEW OF APL2

R€123456
& +/ R
10 14 18

S€(15) (37 (B9

2 +/S
4 12 11 16

2 -/1357911
2 2 2 2 2

5 +/ R
15 20
p 2 +/5
2
T2 ~/2%.10

2 48 16 32 64 128 256 512

I+t is possible to indicate the axis, or axes, along which the reduction

will take place. (N F/[I] R)

Me4d4 & p 116

2 +/M

3 5 7

11 13 15

19 21 23

27 29 31
2 +/011 M

6 8 10 12
14 16 18 20
22 24 26 28

3 +/M

6 9
18 21
30 33
42 45

Any APL2 function can be used as the left argument

For example:

to the slash operator.

2 »/R
12 23 3 4 4 5 56

T2 %1 2345

2 9 64 625

(1,2#/B)/B€2 3 3 3 58 9 9 12
2 3 5 8 9 12

A unique
A when B

»/R

elements in B
sorted and 25pB

APL2 LANGUAGE 29

2.3.4 REPLICATE

SLASH (LO/ R) operator now accepts any numeric vector as its left op~
erand. If an item of LO has the value n (positive), the corresponding
jtem of R is repeated n times in the result. If an itemof L is
negative, n zeroes or blanks are inserted, according to the type of R.
The number of non~negative items in L must be equal to the number of items
in R.

REPLICATE also accepts an axes specification.

Examples:

12 3 4/"ABCD"
ABBCCCDDDD

127137278910
8 99010 10 10 0 0

(15)715
1223334444655 5575

Me2 246 p 16
M

1 2 3 4

5 6 7 8

9 10 11 12
13 14 15 16

171171 /701IM 2 71 1/7021 M

1 2 3 % 1 2 3 4

5 6 7 8 1 2 3 4

0 0 0 0

0 0 0 0 5 6 7 8
0 0] 0

9 10 11 12

9 10 11 12 9 10 11 12

13 14 15 16 0 0 0 0

13 14 15 16

0 ¢ 0 0
0 0 0 0

271127 (22 p16)(3 3p"ABC")(1 2 3)

12 12 00 ABC 123 123 A Prototype of
34 34 006 ABC A first matrix is
ABC A used as fill element

30 AN OVERVIEW OF APL2

2.3.5 SCAN

SCAN (LO \ R) has been extended similarly to SLASH. The SCAN
in APL2 accepts any function as its left operand.

operator

Examplas:
xN\N12345 vwWo00110
1 2 6 24 120 0 0 1 1 1
+\ (1 2) (3 4)(5 6) »\ YAB' 'CD' °'EF"
1 2 4 6 9 12 AB ABCD ABCDEF
N1 2 3 4 p\N123%
1 12 123 1234 4
>,\123 4%
1 0 0 o
1 2 0 ¢
1 2 3 0
1 2 3 4
*\3 4 pr112

1 2 6 24%
5 30 210 1680

'\ & prl2 P)\ 3 & prl2
1 12 123 1234 3 4
5 56 56 7 5678
9 910 910 11 9 10 11 12

DISPLAY ,\[11 3 4 p 12 E L\[11 3 6 p 112

2

v 1 2 3 4% I
I .*-- - .*--- - .é—-- . .é—-- L] I
I 11 5l 12 6! 13 71 14 8I |
I P rmeman ¥ | Jpeapeeny | | Jp ey | | " | |
I ." - .g— L] .—= L] '9. ------ - '
I 11 5 91 2 6 1001 13 7 111 14 8 121 1
L ¥ — ! tyreme——— 1 Taem————— ! Ypeee——— v
l‘ 1]

APL2 LANGUAGE 31

3,6 OUTER PRODUCT

OUTER PRODUCT (Z ¢« L o RO R) is used to construct tables. It applies
the function RO between pairs of items, one from L and one from R,
in all combinations.

RO may be any function, either primitive or user defined.

Examples:
(14) o.x 14 (14) .5 14
1 2 3 4 1 1 1 1
2 4 6 8 0 1 1 1
3 6 9 12 0 0 1 1
¢ 8 12 16 o 0 0 1
76 B85 o., 7 26 & p76 85 o., 7 26 &
76 7 76 26 76 & 2 3
857 8526 85 ¢4
vle v o, 10 20 30 vle ver 0 10 20 30
110 120 4 30 LENGTH ERROR
¢ 10 ¢ 20 ¢ 30 vle ver 19 20 30
FaY A

v Z€L POWER R
[1] Ze L X R ©

(+5) o ,POWER 15

1 1 1 1 1
2 4 8 16 32
3 9 27 81 243
4 16 64 256 1024
5 25 125 625 3125
1324 o.o Ve'APL2" (5p16)(10 20 30 40) "ABCDEF!
Al1l0A
L3 30C
P220B
2 440D

32 AN OVERVIEW OF APL2

2,3,7 INNER PRODUCT

INNER PRODUCT (Z « L LO.RO R) combines subarravs along 7ha a6l aXiw
of L with subarrays along the first axis of R by applying an RU cular
product. Then an LO reduction is applied to each item of trat resull,

The +.x inner product is the same function as the matrix product used
in matrix algebra.

For simple vectors: +/V x C <==> V +.x C

INNER PRODUCT is extended to allow LO and RO to be arnv foun - a0, ofther
primitive or user defined.

Examples:

Ve (1 2)(2 3)(3 4)(4 5)
ce4q 5 6 2

+/ V¥V x C Vv +.x ¢
40 57 40 57

T u

(G I 0
N PN

U W=
L]

e
N PN -
. 8
[F SN BT A
W\ W=
L]
NN

N PN
L]
S P

(= I - ¥y o
oo PN
=
OO OO
oo oo

[= — B - Y~]
[~ BN = I ~ N -]
o o
= -0 O

APLY LAandLrws 33

Me3I 3 p 97100

M
87 25 54
6 75 91
31 30 7

M+.xM
10393 5670 7351
10273 9505 9946
4294 3235 4453

(L+.¢e R) is useful for counting the number or elements of an array that
ara also elements of another array, or to determine whether a name is in
a table.For example,

K A e K is 3 8
SATURDAY
8715785
AUG. 15

K +.¢ "0123456789"
0 5 2

R A e R is 3 4
GOOD
WELL
BAD

R A.= TWELL®
0 1 o

v Z¢ L PLUS R v Z€l TIMES R
[11] Z¢e L + R v (11 Ze L x R v

(2 2p14) PLUS.TIMES 2 3 pl5
45 45 45
105 105 105

3 ¢ PLUS . TIMES 3 4
25

3% AN OVERVIEW OF APL2

2.4 COMPLEX NUMBERS

Complex numbers can be used in APL2 just like real numbers: assigned to
variables, used as arguments to functions, and so on.

The availability of complex numbers greatly increases and facilitates the
use of APL2 in the engineering and scientific area. In many fields, such
as electrical engineering, electromagnetism, nuclear physics, hydraulics,
and acoustics, behavior is described with complex numbers.

COMPLEX numbers can be entered in rectangular or polar form. For the
CIRCLE function (L o0 R), the value of L has been extended to range from
T12 to 12. The extended values provide the real part, imaginary part,
magnitude, and phase of a complex number.

The conjugate of a complex number is obtained by using (+C), the con-
jugate primitive function.

APL2 LANGUAGE 35

C € 3J2

c
3J2

90C¢C A real part of C
3

10 0C A magnitude of C
3.605551274

11 o0¢C A imaginary part of C
2

12 o C A phase of C
0.5880026035

~10 o C A complex conjugate of C
3J72

+ C A complex conjugate of C
3072

The solution of equations sometimes raesults in complex numbers.

Polynomial equations can be solved by using the POLYZ
function from workspace MATHFNS in public library no. 1

POLYZ 1 1 1 A sol. of (X%¥2) + X + 1 =0
0.5J0.86602540 T0.5J70.86602540

11 oPOLYZ 1 11 A imaginary part of the
0.86602540 ~0.86602540 A sol. of (X¥2) + X+ 1 =0

2.5 ERROR HANDLING

APL2 provides several new facilities to assist with problem determination
and correction. Errors are now indicated by 2 carets, one to show how
far the execution of the statement had progressed, and one to show the
likely point of the error.

The state indicator now includes errors made in immediate execution as

well as those made in functions. The)SIS command displays the state—
ment in error as well as the function and line.

36 AN OVERVIEW OF APL2

The)RESET command clears the status indicator. It clears all exe-
cutions suspendaed due to error. In VS APL, a right arrow had to be entered
for each error entry, clearing them one by one.

SIS A status indicator Wwith statements
¥ 13 246+2 3 4% A most recent interruption
A A A two carets to indicate the error
¥ 540
AA
TIMES[1] ZelLxR A error indication with the statement
AA
¥ 12 TIMES 1 2 3
A A
JRESET A reset the status indicator
)SIS

After an error has occurred, the [OL and DR system variables contain the
left and right arguments of the function. They are especially useful for
tha programmer during debugging functions with shared variables. Left
and right arguments of suspended functions can be modified and execution
can then be resumed from the point of interruption in the statement by
entaring =210 . For example, suppose the user defined function has been
incorrectly called,as follows:

34 PLUS 3 4 5 A using user defined function

LENGTH ERROR
PLUSL1] 2Zel+R

AA
oL
J 4
R
345
OL «12 3 A correct error
210 A resume function execution
4 6 8

EXECUTE ALTERNATE (L [JEA R) attaempts to execute the expression in the
right argument. If there is an error, [JEA executes its left argument.

APL2 LANGUAGE 37

Thus OEA provides a way to retain program control after an error. If an
application is likely to produce a specific error that can be anticipated,
together with a correction, OEA is ideal.

Programmers are often advised that their programs should do extensive
error checking. End users must not be thrown into APL with confusing
error messages. However, it is not feasible to search for all possible
errors. Some errors are unpredictable.

Often a function will make extensive checks to ensure that the argument
being supplied to a function will be acceptable to that function. For
example, the function checks that data being fed to a multiplication is
numeric or that a matrix being fed to an inverse is not singular. The
function spends much of its time just checking to ensure that it will
work. It would be nice to just try it and back off if it fails. Using
OEA allows the programmer to have APL do the testing.

The function to be executed is entered as the right argument to [OEA.

If the data is not acceptable and the function fails, OEA passes control
to the left argument. This could then perform appropriate remedial
action, such as asking the user to reenter the data. Program control has
thereby been maintained and the complicated testing has been done by APL.

However, JEA will pass control to the left argument if the right argument
fails for any reason. This could be a WS FULL condition. The left ar—
gument has to determine what error caused the right argument to fail.

The error determination can be done using the two system variables [OET
and [EM which contain the error type and error message, respectively,
after each error.

The 0OEA system function should be considered as a mean of retaining
program control.

The system function OES, event simulation, allows the user to act just
as the system does when an error occurs.

An example of the use of these error handling variables and functions is
given below. A function PLUS is defined. The first statement uses [JEA
to keep program control when the evaluation of L+R fails. The third
statement checks the error type with OET.

° If there is a length error, statements 5 to 13 allow the user to
correct it,

° In all other cases, the fourth statement simulates the occurrence of

the event specified by OET. The function now behaves as if there was
no [OEA.

38 AN OVERVIEW OF APL2

[ol
[11
[21
[31]
[4]
(51
[61
[71
[81
[9]
[iol
[111
(121
[131]
[14]

4 6

oPLUS [] ¢
v
Z€L PLUS R
LO:">L1" [JEA 'ZeL+R?
>0
L1:>(JET £ 5 3)/ERR1
OEs OET

L3:Mele"WHICH ARGUMENT DO YOU WANT TO REDEFINE, RIGHT OR LEFT?(R L)'

S('RL"e1(pW) M) 7LG, L5
L3
L4:"REDEFINE RIGHT ARGUMENT?
Red
>L0
L5:"REDEFINE LEFT ARGUMENT®
Led
2L0
ERR1:>L3,0p[J¢" % ¥ ARGUMENTS OF DIFFERENT LENGTH % % '
v 1984-11-06 9.00.02 (GMT-5)

123 PLUS 3 45
8

23 PLUS 2 3 4

% % ARGUMENTS OF DIFFERENT LENGTH X X
WHICH ARGUMENT DO YOU WANT TO REDEFINE, RIGHT OR LEFT ? (R L) R
REDEFINE RIGHT ARGUMENT

O:

4 6

23

23 PLUS 2 3 4

¥ % ARGUMENTS OF DIFFERENT LENGTH %
WHICH ARGUMENT DO YOU WANT TO REDEFINE, RIGHT OR LEFT ? (R L) L
REDEFINE LEFT ARGUMENT

0O:
123
357
DET and [OEM together with [JES allow the user to receive more meaningful

error messages. The programmer now has great control over APL's
dling of errors and can tailor error handling to each individual appli~

cation.

For example,

APL2 LANGUAGE

han-

39

3 4 TIMES 2 3 4 A execution of user function

LENGTH ERROR

TIMES[1] 2ZeLxR
A A

0EM
LENGTH ERROR

TIMES[1] ZeLxR
A A

OET

Using the NATIONAL LANGUAGE facility of APL2, all system commands and
system messages are displayed in the language assigned to thae [ONLT €
Ixxxxxxx® system variable., APL2 has already dafined 9 different national
languages.

2.6 AP EDITORS

APL2 provides two editors for entering and editing defined functions and
operators. The JEDITOR command is used to query and selact the editor.
The two editors are:

1. EDITOR 1: This is a line editor similar to the VS/APL line editor.
One significant improvement is the ability to delete multiplae lines
with a single command.

2. EDITOR 2: This is a fullscreen editor requiring GDDM releasa 3. Most
of the commands are the same as those usad for the line editor. Ed-
itor 2 has additional commands that allow you to locate occurrences
of character strings, make global changes, and copy lines within a
function or from another function. Tha fullscreen editor can also
be used to edit simple character vectors or matrices.

The fullscreen edjitor is different from the CMS editors, the ISPF/PDF
editor, or the fullscreen editor previously available with the VS7APL
Fullscreen Support field developed program. The diffarances are:

° There is no specific command line on the screen. Commands are entered
between brackets at the start of any line on the scraen.

° There is no 'insert' or "add' command. If new lines are entered
starting in column 1, overtyping existing lines, they are inserted
before the first line overtyped. Tha lina editor method of inserting
lines can also be used.

40 AN OVERVIEW OF APL2

° APL symbols are used for commands.

To users of other fullscreen editors, the APL2 fullscreen editor might
appear strange at first., However, it does have the advantage of being

similar to the line editor, it is a powerful editor, and it is easy to

learn to use its full capabilities.

If the systems editors are preferred over the new APL2 editor, functions
can easily be developed which allow use of other editors for APL2 func-
tions. The systems editors however do not offer an APL execution command
[2]. ™Using the PDF Editor for APL2 Functions™ on page 76 and ™Appendix
C. Sample APL2 Function to Use CMS Editor™ on page 109 show how the
ISPF/PDF editor or the CMS editor can be used from APL2. These methods
do require that an "edit' function be in the workspace and that the object
to be edited be entered in quotes.

APL2 LANGUAGE 41

42 AN OVERVIEW OF APL2

(] 2_AN E IONAL DATA BASES

This chapter deals with the connection between APL2 and the relational
data basaes SQL/DS and DB2. APL is no longer confined to its own environ-
ment. APL2 has a new auxiliary processor, AP127, which allows communi-
cation with a relational data base either in VM/SP or in MVS. AP127 is
shipped with the distribution tape. SQL commands can be processed directly
from APL2 and the result returned as an APL2 array which can then be op-
erated on by APL2 functions. APL2 has become a very convenient language
to deal with relational data bases.

The concept of nested arrays and the concept a relational data bases
evolved independently. Even so, tables from relational data base map
nicely into the new concept of nested arrays which was introduced in APL2.
Thae connection between APL2 and relational data bases allows APL2 to ex—
ploit the facilities of the data base products in dealing with collections
of data.

This chapter provides an introduction to APL2 with SQL/DS or DB2 for the
system engineer. The subjects covered are:

° An overview of relational data bases

° Organization of APL2 and SQL/DS in VM/SP

° Organization of APL2 and DB2 in MVS

° Working with a relational data base in APL2
° Examples of APL2 using DB2 or SQL/DS

° Conclusion

W ELATION ATA BASE ?

Two relational data base management systems are available :

° DB/2, which runs under MVS

° SQL/DS which runs in VM/SP, VSE, or 55X.

The two data base management systems have a number of common
characteristics.They are handled by the Structured Query Language (SQL).
Both systems allow a user to access shared data for on—-line, interactive,
and batch systems.

The two data basa management systems simplify the task of handling data.

The language SQL provides facilities for querying data and manipulating

APL2 and relational data basas. 43

data. Data overations which can be complex in APL2 can frequently be done
more easily with the S5QL language.

SQL/DS and DR2 poth provide a catalog which manages all the information
that they can handle, The catalog contains information about data, stor-
age, programs, and authorizations. It is often managed by a Data Base
Administratnr who grants the authorizations.

S L/DS and NMR2 have comprehensive and integrated recovery schemes with
d.sk logging, automatic recovery on restart, and utilities. Data is pro-
tected from three types of failure: system, media, and application pro-
gram. Kith APLZ, there is protection against failure of APLZ or of the
auxiliary processor,

Utilities are shipped with 5QL/DS and DB2 to help process large amounts
of data with batch jobs. The utilities are the DBS utility for S5QL/DS,
invoked by the procedure SQLDBSU, and the DBS utilities option of DB2I
(DB2 interactive) for DB2. ’

DB2 and S5QL/D5 hoth use the relational model of data. A RELATION in the
relational data model can be thought of as a simple two-dimensional table
having a svecific number of columns and some unordered rows. We will
consider, in terms of the tables:

o Tha strunture ¢f the tablaes
Tt

he oporaltions we may perform on them

o The commands which permit us to execute these operations

© Tha dala fvpes to specify
° Ditforent views of the data
3.1, _SIRUCTIURY OF TABLES,

A table s fdentifioed by a table name. Each column relates to a given
characteristic, contains data of the same kind, and has a name. Each row
relataes %o 2 srneciftic object,contains data of different kinds, and has
no name. A row s zimilar to a record in a conventional data set. An
exampla of 3 *able is shown in Figure 1 on page 45

44 M DVERVIEW OF APL2

B~

BIN YEAR TYPE STORLOC COST COLOR

Cll 1971 RIOJA IMPORT DEPARTMENT .94 R
Cl2 1971 RIOGJA WINE CLUB SHOW CASE 3.9¢ R
F16 1983 ROSE WINDOW - -
Gl12 1974 MERLOT BASEMENT 8.94 R
I10 1979 BARDOLINO ANNEX 2.25 R
K10 1981 CHABLIS ON ORDER 3.94 W
B10 1973 CHAMBERTIN COUNTER 10.94 R
Bl1l 1966 BORDEAUX SPECIALITY CORNER 8.9¢ R
B12 1974 BORDEAUX SPECIALITY CORNER 10.94 R
K11 1981 RIESLING SHELF 6.25 W
I11 1979 VAPOLICELLA ANNEX 2.25 R

Figure 1. Example of Table Named WINE.

This array has six columns and some rows and represents a relation in the
relational data model. The intersection of one row and one column is the
smallest unit which can be handled. It is called a value in the termi-
nology of DB/72 and a field in the terminology of SQL/DS. When a value
(field) is missing, it has a NULL value

Rows have no inherent order. If the data is to be retrieved in a spacific
order, the user must specify that order.

There are two things to notice about the array in Figure 1. The array

is an ordinary matrix of eleven rows and six columns. In addition, the
array looks suspiciously like an APL2 array.

3.1.2 OPERATIONS ON TABLES,

A data base system allows a variety of operations to be performed. Basic
operations on tables arae:

° Creating or dropping (deleting) tables

° Retrieving data, whole tables, rows or parts of rous
° Updating, inserting, or deleting data

° Copying data from one table into another

0 Performing table utility operations, such as bulk data loading, data
reorganization, and printing

An operation unique to the relational data model is called JOINING. This
opeaeration causes the data base system to merge data from different tables.

APL2 and relational data bases. %45

Figure 2 presents a table named ORDERS. This table contains the quantities
of each wine ordered by customers.

CUST BI QUANTITY

ALAN Cll
ALAN c12
MANUEL 612
MICHEL B10
MICHEL Bll

= NDWL PN

Figure 2. Example of Table Named ORDERS.

The syntax of the SQL command that joins the table ORDERS in Figure 2 with
the table WINE in figure 1l is:

SELECT CUST,BIN,TYPE,COST,QUANTITY,QUANTITY*COST

FROM ORDERS,WINE
WHERE BI = BIN

The result of the joining of the tables is:

ALAN C11 RIOJA 4.94 3 14.82
ALAN Cl12 RIOJA 3.9 & 15.76
MANUEL G12 MERLOT 8.94 5 44.7

MICHEL B19 CHAMBERTIN 10.94 2 21.88
MICHEL Bl11 BORDEAUX 8.94 1 8.94%

For each order, the type, the cost, the quantity, and the price are
listed.

Joining table as above shows some of the power that the relational data
base systems offer. A single statement can merge two tables and can per-
form an operation between two columns. The query specifies what the user
wishes to see, which tables contain the desired data, a search condition
and the required operation between two columns.

3.1.3 STRUCTURED QUFRY LANGUAGE (SQL)

SQL is a high—-level language for handling data. With SQL you specify what
you want, not how to get it. You do not have to know how or where data
is stored. Most programming and data languages process data one record
at a time. To use them vou code a sequence of instructions explaining

46 AN OVERVIEW OF APL2

how to get the data, what to look for, and what to do with it. With Qi
you do not have to specify all this information; you select all the data
yvou want with a single statement.

SQL commands consist of command verbs, one or more optional clauses,
language keywords, and parameter operands. SQL commands can be entered
at the terminal, contained in programs, and now used in APLZ2 with tho
auxiliary processor. In APL2, the data is received directly into an ar—
ray. APL2 functions operate on data all at once without the need of
loops. The APL2 language and the SQL language fit together nicely.

The most commonly used SQL commands are shown in Figure 3 on page 48 and
are grouped into five types.

APL2 and relational data bases. 47

48

Query Command :

SELECT

Retrieves data from one or more tables

Data Manipulation Commands @

INSERT

UPDATE

DELETE

Places a new row in a table

Changes data fields in one or more rous

Removes one or more rows from a table

Data Definition

Commands :

CREATE

ALTER

ACQUIRE

DROP

Dafines new tables, views,
dbspaces for SQL/DS,

indexes, synonyms,
tablespaces for DB2

Changes the description of tables.,
tablespaces in DB2, dbspaces in SQL/DS

Acquires a dbspace in which tables and indexes
can be created (S5QL/DS only)
an index, or a table

Erases a tablespace, a view,

Authorization Commands :

GRANT
REVOKE

Control access to data and privileges on the
data base system

Control commands

COMMIT Permit explicit control of the disposition of a
ROLLBACK unit of work
LOCK TABLE Lock a table or a tablespace in DB2

Figure 3. Summary of 5SQL Commands.

AN OVERVIEW OF APL2

3,1.4 DATA TYPES,

When working with a relational data base system, the user has to be aware
of the data type of the columns. Figure 4 is a summary of the different
data types. When the data is fetched, basic operations such as addition,
multiplication, or averaging can be applied on columns.

DATA TYPE Descriptions

DECIMAL (m,n) Decimal data, where m is the total number of digits
and n the number of decimal digits

INTEGER Large positive or negative number (4 bytes)
SMALLINT The same as INTEGER but less than 32,767 (2 bytes)
FLOAT Floating point number : from 5.4E-79 to 7.2E+75
CHAR(n) Fixed length character string up to 255 bytes
VARCHAR(n) Varying character string up to 255 bytes

LONG VARCHAR Varying character string up to 32,767 bytes

Figure 4. Types of Data in Relational Tables.

When data of DECIMAL, INTEGER, SMALLINT or FLOAT is fetched, the resulting
APL2 variable is numeric.

. 3.1.5 VIEWS AND INDEXES,

A VIEW is a logical table that is derived from one or more tables, VIEW
DEFINITIONS can be stored in a relational data base system.

Views look like stored tables and can be used as if they were tables.
However, some operations are restricted.

Views are used to simplify data retrieval commands or to limit user ac-

cess. An example of how to create a view WINE2 which is a subset of the
table WINE is:

APL2 and relational data bases. 49

CREATE VIEW WINE2 AS
SELECT YEAR,TYPE,COST,COLOR FROM WINE WHERE COLOR ='R"

SQL/DS and DB2 are able to handle large amounts of data (up to 64 billion
bytes for DB2). To improve the performance of retrieving data from the
data base, INDEXES can be created on columns. They greatly improve the
performance of a retrieval. An example of how to build an index on the
table WINE for a specific column YEAR is:

CREATE UNIQUE INDEX IWINE
ON WINE (YEAR ASC)

3.2 OPERATING SYSTEM IN SQL/DS

To use SQL/DS data bases,you should know about the environment and ensure
that the access to SQL/DS has been prepared.

3,2.,1 ENVIRONMENT TN SQL/DS

A SQL/DS data machine is a VM/SP virtual machine that owns the minidisks
where the data bases are stored and handles the data base. A data base
machine is active for only one data base at a time. SQL/DS is initiated
by an SQL procedure SQLSTART EXEC and terminated by an operator command
SQLEND. The different modes of operation that are available are:

1. Single User Mode.

In single user mode, 5QL/DS, its preprocessors, and application pro-
grams run in a single VM/SP virtual machine.

2. Multiple User Modea.
In multiple user mode, one or more users or applications concurrently
access the same database. For this mode of operation, SQL/DS runs in
a VM/SP virtual machine while one or more APL2 users, or batch users,
or interactive users operate in other virtual machines.

3. Multiple Data Base Operation.

In multiple data base operation, several SQL/DS data base machines
run in multiple user mode under the same VM/SP.

These modes of operation are illustrated in Figure 5 on page 51

50 AN OVERVIEW OF APL2

End—user B SQLINIT C

Machines
Data
Base A SQLSTART SQLDBA
Machines SQLEND
L
"""""" 1
1
Data DB1 DB2 DB3
Bases
Example 1 Example 2

Figure 5. Single or Multiple Access to Data Bases.

Once a data base machine has been activated in multiple user mode, many
users canh access the SQL/DS data base simultaneously in batch mode, or
dynamically, or with APL2. For this type of operation, users normally
must have:

a propar SQL/DS authorization

a VM/SP IUCV path to the data base machine

read access to the SQL/DS production disk

executed the SQLINIT exec to establish the current data base asso-
ciation.

¢ o o o

In example 1 of Figure 5, an SQLSTART exec has activated SQL/DS data base
A in single user mode (A is the data base machine for the data base DBl)
APL2 must be started in this machine if access to the data base DBl is
required.

In example 2 of Figure 5, SQLSTART EXEC has activated the SQL/DS data base
machine SQLDBA in multiple user mode (SQLDBA is the data base machine
for data base DB2). User virtual machines B and C used the SQLINIT EXEC
to select DB2 as their SQL/DS data base. They can then start APL2 in their
machine and pass the appropriate functions.

APL2 and relational data bases. 51

Starting the data base machine in a multiple users mode is usually done
by the data base administrator or by a procedure.

The auxiliary processor AP127 is like any application program and can

operate in different modes in VM/SP. In all modes, access to the SQL/DS
production minidisk is required.

3.2.2_ PREPARING ACCESS TO S5QL/DS

To ensure that APL2 and SQL/DS can communicate with each other, with
SQL/DS5, you have to preprocess the source AP2V1271 ASMSQL must be pre-
processed. An entry in the table SYSACCESS of S5QL/DS will be created to
control the access of APL2. The distribution tape contains the source
and the text of the auxiliary processor.

3.2.2.1 WHAT THE SQL/DS DATA BASE ADMINISTRATOR MUST DO

° Preprocess the source AP2V1271 ASMSQL. For example:

SQLPREP ASM PP(NOPU,NOPR,PREP=AP2V1271,
USER=SQLDBA/SQLDBAPW) IN(AP2V1271)

SQLDBA is the name of the machine which handles the data base and
SQLDBAPW is the password.

° Authorize users to run the program AP2V1271. In order to give this
authorization, the command

GRANT RUN ON AP2V1271 TO PUBLIC;

must be passed to ISQL, the interactive way to use 5QL/DS. For this
case, any APL2 end user may use SQL/DS.

3.2.2.2 WHAT THE INDIVIDUAL USER NEEDS

Authority to use the program AP2V1271 and CONNECT authority to the
data base.

°

Authority to use a DBSPACE in which to create tables.

-]

Link and access the 5QL/DS production disk.

o

Run SQLINIT exec to create the access module ARISRMBT on his disk.,
An example of SQLINIT which makes the link with SQLDBA is:

52 AN OVERVIEW OF APL2

SQLINIT DBNAME(SQLDBA)

° Start APL2 and try some SQL commands with the functions in the work-
space SQL, shipped with the distribution tape.

3,3 OPERATING SYSTEM IN DB2

In an MVS environment, DB2 operates as a formal subsystem of MVS, Ap-
plications that access DB2 resources can run in batch, TS0, IMS, or CICS
environments. Let us consider how APL2 can access DB2 and what has to be
done to prepare this access.

3.3 VIRONMENT IN MVS

APL2 can access DB2 in the TS0 environment as any program runs in TS0 with
DB2. Figure 6 gives an overview of APL2 in an MVS environment. Notice
that APL2 with AP127 can reach all the data handled by DB2.

MVS/SP or MVS/XA
 —
¢ IMS
TS0 CICS
BATCH
DB2
APL2 + 4+ 2
} L
{

Figure 6. APL2 in an MVS Environment

The auxiliary processor AP127 is an assembler program containing embedded
SQL statements as does any other DB2 program. Four steps must be per-
formed before it can be run:

APL2 and relational data bases. 53

° Precompilation: check SQL syntax, produce a modified source program,
and produce a database request module (DBRM) which is an intermediate
form of an S5SQL statement.

o Compilation: translate the modified source program.

° Bind: process the DBRM to produce an application plan, the executable
code representing one or more SQL statements.

° Link—-edit: produce the final object module.

Binding is the activity that converts the DBRM, a set of syntactically
correct SQL statements, into a set of executable instructions to DB2.
If all the S5QL statements are correct and if the binder is authorized to
access the data, DB2 builds an application plan that contains information
about the program and the data the program uses. Figure 7 illustrates this
process.

DB2 source Pre
Program > > Compiler L.E.
Compiler
¥ ¥
1 1
DBRM >+ BIND > Application Load Module
Plan

Figure 7. Process and bind of a DB2 program

3.3.2 PREPARING ACCESS TO DB2

The load module AP2T127 of AP127 is a member of the linklib of APL2. The
DBRM of this program is stored in APL2.SYMBLIB with the name AP2TDBRM.
The level of the DBRM module must be checked with the level of the
AP2T127 load module.

54 AN OVERVIEW OF APL2

3.3.2.1 WHAT THE DB2 DATA BASE ADMINISTRATOR MUST DO

° Bind the APL2 application (AP127) to DB2

° Grant any AP127 user RUN authority to DB2 through the APL2 appli-
cation plan

Tha sample job stream AP2JBIND can be processed after customization ac-
cording to the installation. The default APL2 application plan is
APL2PLAN. This name can be changed. If the name is changed, it is neces-
sary to specify the name of the plan during the invocation of AP127 when
APL2 is started.

The two previous operations can be done with DB2I, which is an interactive
way to work with DB2.

3.3.2.2 WHAT THE INDIVIDUAL USER NEEDS

° Authority to use the auxiliary processor AP127
° Authority to use a TABLESPACE in which a table can be created

° Start APL2 and try some queries with the functions in the workspace
S5QL, shipped with the distribution tape.

3.4 HOW TO USE THE SQL WORKSPACE,

An APL2 user can work with a relational data base by personally managing
the shared variables. However, it is easier to use the workspace SQL which
is shipped with the program product. The use of this workspace greatly
facilitates access to the data bases. The rules to access DB2 or SQL/DS
are very similar. Any differences will be noted.

Check with the Data Base Administrator about the rules of the data base
and to ensure that you have the appropriate authorizations to do what you
want to do. This checking is to be done prior to working with DB2 or
SQL/DS. For our work, we askad for a dbspace TEST because we want a space
to create tables in an SQL/DS data base. If we were working with DB2 we
would have asked for a tablespace in a data base.

In this chapter we will demonstrate:

° How to communicate with DB2 or SQL/DS

APL2 and relational data bases. 55

° The functions in the workspace SQL

° The structure of the result data

4,1 AN EASY WAY C UNICATE WITH IONAL DATA BASE

This section contains examples of some basic operations using the work-
space SQL.

The APL2 function SQL is used to create, insert, and query a sample table.
The SQL command is passed as the right argument to the SQL function and
the auxiliary processor returns a vector of three items:

o The first item is a five-element return code vector
° The second item is the result data array
° The third item is a request stack vector

For example, to create a table WINE in the dbspace TEST, an SQL command
CREATE must be executed. CREATE specifies the characteristics of the
desired table. To execute CREATE, a variable CWINE in an APL2 character
matrix or vector, containing tha CREATE command of the SQL language, is
created. (In DB2 there is no DBSPACE. You must specify the name of the
database and the tablespace. For instance: 1IN DBTEST.TSTEST)

Each column type must be defined. If a value is required, NOT NULL must
be added.

The SQL command CREATE is processed from APL2 by passing the variable
CWINE as the right argument of the function SQlL:

SQL CWINE
00000

AP127 returns a five—-element code vector, the first result item returned
by SQL. All zeros shouws a successful completion.

Similarly, if the appropriate SQL command is put into a character matrix
INSERTTAB, a row can be inserted in the table, as shown below.

56 AN OVERVIEW OF APL2

CWINE

CREATE TABLE WINE
(BIN CHAR(3) NOT NULL,
YEAR SMALLINT ’
TYPE VARCHAR(12) NOT NULL,
STORLOC VARCHAR(20) ’
CoST DECIMAL(6,2) ’
COLOR CHAR(1))
IN TEST

This operation inserts just one row in the table WINE. With APL2, rows
can also be inserted in bulk. We will be discuss in the next section.

The function COMMIT makes all changes to the data base since the last
successful shared offer or since the last COMMIT operation permanent. It
is necessary to commit modifications if they are to be available to other

end~users,
Suppose that many rows have been inserted in the data base. The data base
can be queried by!
ReSQL "SELECT % FROM WINE®
(WINE is a table given in Figure 1 on page %5)

R is a three-element result. The second element is called a relation in
the language of SQL. For the example, the second item of R is:

C11 1971 RIOJA IMPORT DEPARTMENT %.9¢ R
Cl2 1971 RIOJA WINE CLUB SHOW CASE 3.9 R
F16 1983 ROSE WINDOW

G12 1974 MERLOT BASEMENT 8.94 R
I10 1979 BARDOLINO ANNEX 2.25 R
K16 1981 CHABLIS ON ORDER 3.9 W
B10 1973 CHAMBERTIN COUNTER 10.94 R
B11l 1966 BORDEAUX SPECIALITY CORNER 8.94 R
Bl2 1974 BORDEAUX SPECIALITY CORNER 10.9¢ R
K11 1981 RIESLING SHELF 6.25 W
I11 1979 VAPOLICELLA ANNEX 2.25 R

The result returned by the function SQL is always a three—item vector.
The second or third item can be empty. We will now consider two examples,
looking at them in greater detail.

APL2 and relational data bases. 57

INSERTTAB

INSERT INTO WINE
¢ BIN » YEAR , TYPE » STORLOC)
VALUES (*F16"'" , 1983 , *ROSE" ., 'WINDOW')

SQL INSERTTAB
00000

COMMIT
00000

Re SQL "SELECT BIN , TYPE , COST FROM WINE WHERE COST <= 4°

DISPLAY R
o P e e e e e S .
I A e WP s e . 0. |
10000 0l ¥ 3=, 3=, I I
| Tomm—————— * I IC121 IRIOJAI 3.9¢ 1 "% |
I I Pan ¥ Vmmm o L] ‘ l
| I o=, - . | i
l I 11101 IBARDOLINOI 2.25 | I
I l T ! Vi ——— ¥ | I
| I == . I l
| I 1K101 ICHABLISI 3.94 | |
i I - t—————— ' I |
| I 2= . ! |
i { II111 IVAPOLICELLAL 2.25 | |
| | Vwme? Vomma e cam—— L | |
I f e e e ' I
le ———]
Where:

° The first item is a five—element return code vector

° The second item is the result data array. If no result data is re-
quired or if none is obtained, this item is empty. There will be no
result data array if an error occurs that prevents the process from
completing.

° The third item is a request stack vector, containing incomplete re-
quests. This item is an empty vector if all requested operations have

completed.

The next example shows a query with an error, so the second item is empty
and the stack is filled by the requested operations.

58 AN OVERVIEW OF APL2

R€ SQL *SELECT BIN , TYPE , COST FROM WINE WHERE COST £ 4°

DISPLAY R

| oA . Ommmm, 2 e e e e e .
I 110 0 2 71041 1 .0, | & L= mmmm e e e e e .
I L T T T R B B T e S
| I *=* I 1 | IPREPI IAPL21 4SELECT BIN,TYPE,COSTI 1| I
| Tgm===% | | T-=-=% T———_t |FROM WINE L1
[Pl IWHERE COST < 6 (R
| 1o Ve e T
! I ve- —————— v
[I . [
! L mmmy === Lo, | |
I I 1 10PENI IAPL2I 101 | i
I I ' T ¥ P ¥ YV I I
| I re- ~r !
| | A e . |
| L |
| I 1 IFETCHI 1APL21 | |
l b v— LEEELE |
l P ' i
[| odmmmm e . |
! Il e e | |
| I I ICLOSEI I1APL2} | !
| |1 te—eme Vot |
I I ve ' !
l Ve e e ——
T

n
I
1
1
|

The return code vector is not equal to zero so there is an error. The 1
indicates that an error exists. The 2 indicates that the error was de-
tected in either DB2 or in SQL/DS. The 104 is the return code of the data
base system and is, in fact, a syntax error. The error is £ . This
function does not conform to the syntax of an SQL command. <= is used to
define less than.

In this case the second item is an empty vector and the third jtem is
the stack vector which contains the sequence of functions which should
be processed. The error can be corrected directly in APL2 by editing the

stack. Processing can then be continued by the function RESUME which is
provided in the workspace SQL.

Authorization is required to access a table belonging to another user.

The name of tha creator must be specified before the name of the table.

For example, to list the main catalog in the 5QL/DS data base system:
SQL "SELECT TNAME,CREATOR,DBSPACENAME FROM SYSTEM.SYSCATALOG®

SYSTEM is the name of the creator of the table SYSCATALOG.

SQL *SELECT % FROM SYSTEM.SYSCATALOG WHERE CREATOR="'MICHEL'" '

APL2 and relational data bases. 59

This query will give all the information for all tables created by MICHEL.

3.4.2 FUNCTIONS IN THE WORKSPACE SQL

"’L2 can easily communicate with 2 data base system such as DB2 or SQL/DS
as the SQL function does the necessary work. The SQL function handles the
shared variables and the communication with AP127. However, it is neces-
sary to know the functions in the 5QL workspace in order to develop ap-
plications or to manage AP127 in an efficient manner,

An overview of the SQL workspace is presented in Figure 8 on page 61. In

addition, Figure 8 contains the functions in the SQL workspace, organized
into five types.

There are two different ways to communicate with the auxiliary processor:
o Immediately, using a single request (EXEC,PREP,FETCH...)
o With the SQL function which builds the statements
For example, consider the following query:
SELECT TYPE,COST
FROM WINE
WHERE TYPE LIKE 'BX%"

The function SQL builds a stack of four functions which will be processed.
Each function shares data with the auxiliary processor.

60 AN OVERVIEW OF APL2

Statement Basic Auxiliary functions
Statement in SQL functions in
Type language in W.5. SQL workspace SQL.
PREP "S1' SEL1
OPEN 'S1® VALUES
Query SELECT
FETCH ®S1°*
CLOSE 'S1°"
Data DELETE
- EXEC INSERTAB
Manipula-
tion INSERT
SQL
UPDATE —= PREP "52" IWINE
CALL *S2' VALUES
CREATE
Data
ALTER
Definition| DROP
EXEC
ACQUIRE
LOCK TABLE
Authori- GRANT
zation
REVOKE
COMMIT COMMIT
Control
ROLLBACK ROLLBACK
Figure 8. Statements in SQL and the Access Operations

APL2 and relational data basas.

61

DISPLAY oS5TACK

D e o o —

P s e o Pm—— P e e o e e e W O e e o o I

¥ . .
I IPREPI 1APL21 JSELECT TYPE, COST |
{ Y=—===% f———-t |FROM WINE |
1 IWHERE TYPE LIKE "BX%'l
|

| A== (¥, 8.
I I0PENI 1APL21 {01
|

I ===

1

I

1

1

l

]

IFETCHI 1APL2I

.9_——_ - -

B P

ICLOSEI [APL2I

|
I
|
!
]
|
Y TR PN T P | |
I
l
]
I
I
| J—— [P [

e—- - -— o o S 2 S S0 B o e e (e o e 0 P L

When the stack is processed, the following operations are done:

° PREP gives the name APL2 to a prepared statement, passes the query
and prepares the dynamic SQL statement for the data base system.

° OPEN opens the prepared statement and passes a vector of
values(value~list). In the example, the value-list is empty,as the
value has been passed with the PREP statement

° FETCH returns the shared data which is the result table. The number
of rows returned can be controlled by the function SETOPT or by a
right parameter in the FETCH function.

o CLOSE closes the OPEN statement.

The SQL function builds a stack of auxiliary functions like PREP, OPEN,
FETCH, CLOSE, and is convenient to use. However, in an application it
might be better to use the auxiliary functions directly rather than using
the SQL function as each step can then be processed and checked.

The SQL language used by AP127 is slightly extended so that 5QL statements
can contain references to APL2 arrays. It is a powerful implementation
as the APL2 user no longer has to work on a row by row basis.

An SQL statement can refer directly to an APL2 array. When referring to
an APL2 array, the SQL statement can specify a column in the array by
specifying the column number prefixed by a colon.

It is easy to pass values in an array. For example, consider an array

called CHAMPAGNE and a variable INSERT containing an 5QL statement. A
display of INSERT and CHAMPAGNE is:

62 AN OVERVIEW OF APL2

DISPLAY INSERT CHAMPAGNE

o P e e e e e e e e o e e e e e e e e e o e
I ettt ettt e T T e e e e e .
I VINSERT INTO WINE R T S P . 1

| I(BIN , YEAR , TYPE , COST)I | 1J121 1977 IDON PERIGNON! 13.95 1

I IVALUES(:1,:2,:3,:4%) by v=—t Vo ! I
| ¥ e e e Y, I .

1 I 1J131 1978 IMOET ET CHANDONI 11.2 |

I ' S e B T o e e e e o e e e e e e e] I

| | il I . |

| I 1J14] 1981 IPOMMERY! 10.5 1
| | | J——y | W o e e e v '

| le ___________________________________]
Ie ——————————————————————————— e o S O T S S e S S e o 0 AR e e e e T g S S S e S G s e S G B

Issuing the SQL function
S5QL INSERT CHAMPAGNE
raesults in

DISPLAY SSTACK

-9— —————————————————— - -
L e e et . !
| IPREPI [APL21 JINSERT INTO WINE | i
| ¥=—==% t-———T |(BIN , YEAR , TYPE , COST)I !
i IVALUES(:1,:2,:3,:4) | |
i B e e e e e e St e e et e o o P s v |
[===, o, e e e e .
I ICALLI IAPL2I1 | .-, B i . i !
| Y====F ¥=——=® | |J12] 1977 IDON PERIGNONI 13.95 | J
|] V=—=t L e L L] i |
I T e e ' 1
I o e, e e e .
I ICALLI 1APL2] | .o, et . U
| ¥====¥ ¥———=t | |J131 1978 IMOET ET CHANDON! 11.2 | |
I I f T e e e e o s e et e e e et e L} I |
| F e e e e e e '
S T ittt ety . l
I ICALLI {APL2I | .»>——. N it . J I
| t=—==t ¥o——=v | [J141 1981 IPOMMERY! 10.5 | I
| | V===t frmm————— ' I I
I B ' !
T 2 e o i e s e s e e e e P e e o i S e By A PR e S i e S Gt S8 A . S e e e B B D O o St S S S A S o L]

(L3
|
|
I
|

In the processing of the SQL function,the two variables are passed to SQL
as a right argument and the SQL function generates as many CALL functions
as there are rows of the variable CHAMPAGNE in the stack. The indexes
(:1,:2,:3,:%4) point towards the columns of the matrix CHAMPAGNE which
contain the list of values.

This example points out a very important characteristic: The APL2 user
inserted three rows at one time, rather than doing it row by row. Thus,

APL2 and relational data bases. 63

in APL2 several rows can be inserted in a table with a bulk type of in-
sertion.

Here are some more examples.
SQL *DELETE FROM WINE BIN=:1' LIST1

SQL "UPDATE WINE SET YEAR=:2 COST=:3 WHERE BIN=:1' LIST2

LIST1 LIST2
I+- ----- - .g -
L B L S e l
I 1C121 1 1 IC111 1972 4.55 |
I T e § I l Vmemen ¥ I
R S I . I
I 1F161 1 I 16121 1975 7.43 |
l e ¥ l l Vmwnow ¥ l
I ==, 1 | oo, I
I 16121 1 I IF161 1984 3.66 |
' e ¥ l l Ve ¥ l
Ie ______ ’ le 1

J.4.2.1 STRUCTURE OF RESULT DATA.

When a FETCH is processed, AP127 returns the result table in one of the
two data structures:

° A matrix of variable length itaems

° A vector of simple matrices

The control of the data structure can be specified by two parameters,
MATRIX or VECTOR, either in the SETOPT parameter list or in the FETCH
request. If SELECT is the variable containing the query

° and MATRIX was specified

| The result is in an array in which each NULL element of tha table
gives the empty vector

| Each item has its exact length (even for data type VARCHAR)
° and VECTOR was specified

I There is no diffarence between 0 and the NULL value for numeric
- data or blank and the NULL value for character data

1 AP127 pads character items to the length of the longest item

64 AN OVERVIEW OF APL2

| If LENGTH is also specified, there is one more item which provides
the length of each data.

Example:

SELYEAR
SELECT YEAR,TYPE,COST, COLOR
FROM WINE
WHERE YEAR BETWEEN 1980 AND 1983

SETOPT "MATRIX® SETOPT *VECTOR®" 'LENGTH'
00000 6 00600

DISPLAY 2oR€SQL SELYEAR DISPLAY 2oR€SQL SELYEAR
P e e e e e e e e B el e T e
+ I, .. N R S i T PR ettt .
I 1983 IROSEI 101 I 11 1 419831 $ROSE) I v 1 41 4 0 01
| Vet 't Y= | I 119811 I1CHABLIS | 13.941 Wl 11 7 1 11
| e Fm———m . 2. 11 119811 IRIESLINGI 16.251 Wl 11 8 1 11
I 1981 ICHABLISI 3.94 IWI 1 | "~ve—=? Fommemee Pfveeet Tl Ty !
I ¥ o e e e e e L] tet | l€ ___
| I ——— - A
I 1981 IRIESLINGI 6.25 1Wi |
l T ot o s e s e v] L I
le e o o o e e e et e e s e Al A S S8 v

3J.4.2.2 OTHER SQL FUNCTIONS.

The workspace SQL provides other functions. A list of the functions con-
tains:

o

MESSAGE ~ explain the return code

° SHOW - display the error message, the result, and the stack
° GETOPT -~ query the current values of the options

° COMMIT - record any modifications in the data base

° ROLLBACK - back out all changes made in the data base since the last
successful COMMIT

° RESUME - resume the stack, for instance, when the result table re-
turned by APl127 is larger than the limit given by SETOPT

° SETOPT - control the number of rows that can be accessed at each
FETCH

Examples of the use of SETOPT and RESUME:

APL2 and relational data basas, 65

SETOPT 4
6 0000

R €« SQL *SELECT YEAR,TYPE,COST FROM WINE ORDER BY COST®

DISPLAY R
--)— __ .
I = o W e NN - - |
10010019 f I . I N ittt ettt < b
| tommm e * I 1979 IVAPOLICELLAIL 2.25 1 1 1 A====, 3=—=_ | | |
1 I P ' 1 1 1 IFETCHI 1APL21 | 1 1
1 1 e P . 1] v L S
I I 1979 IBARDOLINOI 2.25 1 1 e L
! | Voo ' IS ——- < L
I 1 o= . L I B Tt i B B
! I 1981 1CHABLIS! 3.94 1 1 1 ICLOSEI IAPL21 1 1 |
! I P m——— ' O e L T
i 1 R S bl Tem—mmmmmmm o L
i I 1971 IRIOJAI 3.94 | t"e—mmmmmmmmmmm s '
1 | P ' I 1
I b ik tdersti ' I
B € = o o e et s e e o e e e e i S S et e) e S e S S 7 e e e . e e v

The function SETOPT controls the maximum number of rows returned by each
FETCH function. If SELECT returns more than % rows, it is necessary to
process the stack using the function RESUME.

MESSAGE 1-R
FETCH INCOMPLETE: RESULT TABLE MAY CONTAIN MORE ROWS

RESUME 3-=R
00000 1971 RIGJA 4.9
1981 RIESLING 6.25
1974 MERLOT 8.94
1966 BORDEAUX 8.94

It is necessary to RESUME until the third element of the return code
vector is equal to 0.

3,5 MISCELLANEOUS

The workspace SQL is shipped with APL2 and contains useful functions.

To these functions can be added user written functions. Some examples are
given in the appendix. They should be useful, and also provide ideas for
more functions. Inh this section we consider the functions in S5QL/DS. The
functions work similarly in DB2.

66 AN OVERVIEW OF APL2

3.5.,1 FUNCTIONS WHICH DEAL WITH THE TABLES OF THE CATALOG,

It is useful for the user to know the system tables,

names of the columns of a specific table, or a quick view of a table.

his own tables,

the

The results of some functions that are helpful are given in this section.

SQLSYSTEM - a function which gives the names of all tables in the catalog.
Useful information can be retrieved for each table.

° SYSACCESS gives the name of the programs,
work with SQL/DS

For instance:

such as AP127, which can

° SYSUSERAUTH gives information about the users who are authorized to
work with SQL/DS

SQLSYSTEM

TNAME

SYSACCESS
SYSCATALOG
SYSCOLAUTH
SYSCOLUMNS
SYSDBSPACES
SYSDROP
SYSINDEXES
SYSPROGAUTH
SYSSYNONYMS
SYSTABAUTH
SYSUSAGE
SYSUSERAUTH
SYSVIEWS

SQLTAB - gives details of a user's own tables.

CREATOR

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

(for

TABLETYPE NCOLS

18

14
12

16

15

AANADOADAAAANANANA

BN W N

SQL/DS)

REMARKS

COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

DBSPACENO DBSPACENAME

SQLTAB
TNAME CREATOR TABLETYPE NCOLS REMARKS DBSPACENO
CUSTOMERS PR465ERG R 4 10
ORDERS?2 PR465ERG R 4 10
ORDERS3 PR465ERG R 3 10
STOCKS PR465ERG R 5 10
WINE PR465ERG R 6 10

SYS0001
SYS00601
5Y50001
SYS50001
SYS0001
$YS0001
SYS0001
SYS0001
$YS0001
SYS0001
$YS0001
S$YS0001
SYS0001

Ll I R S R S e T L

DBSPACENAME

TEST
TEST
TEST
TEST
TEST

SQLCOLNAME - gives the specifications of the columns of a table.

SQLCOLNAME

COLNO CNAME

1 BIN
2 YEAR
3 TYPE

TWINE®

COLTYPE LENGTH

CHAR 3
SMALLINT
VARCHAR 12

APL2 and relational data basas.

67

4 STORLOC VARCHAR 20
5 COST DECIMAL (7, 2)
6 COLOR CHAR 1
SQLDISP - gives a view of a table
SQLDISP YORDERS?'

CUST BIN QUANTITY

ALAN Cl1i 3
ALAN Cl2 4
MANUEL G12 5
MICHEL B1¢ 2
MICHEL B11l 1
Fi S WHICH DEA IT TAB

A great deal of work with tables consists of producing reports with break
points or with cross results. Two functions, REPORT and ACROSS, are
examples of how APL2 can facilitate this.

In the following example, we ask for an average on column 5 for each type
of wine before 1980.

*3 AVG 5" REPORT S5QL "SELECT ¥ FROM WINE WHERE YEAR < 1980"

BIN YEAR TYPE STORLOC COST COLOR

Cl1l 1971 RIOJA IMPORT DEPARTEMENT .94 R

Cl2z 1971 RIGJA WINE CLUB SHOW CASE 3.94 R
RESULT 4.4%

Gl2 1974 MERLOT BASEMENT 8.9¢ R
RESULT B.94

B10 1973 CHAMBERTIN COUNTER 10.94 R
RESULT 10.94

B1l1 1966 BORDEAUX SPECIALITY CORNER 8.94 R

Bl2 1974 BORDEAUX SPECIALITY CORNER 10.94 R
RESULT 9.94

3,5.3 _FUN oN VOKING GDD

When working with a relational data base, it can be useful to produce some
graphics from the results. An example of the use of SQLICU, which calls
the ICU utility of GDDM/PGF, is presented. SQLICU takes the result of
an SQL query as its right argument and the column numbers as the left

argument.

68 AN OVERVIEW OF APL2

QICU
SELECT TYPE,AVG(COST)
FROM WINE
WHERE COST IS NOT NULL
GROUP BY TYPE

*1 2' SQLICU SQLX QICU

Many different graphics can be obtained from ICU, such as linear diagranm,
bar chart, pie chart and even tower chart.

APL2 and relational data bases. 69

70 AN OVERVIEW OF APL2

4,0 USING ISPF WITH APL2 UNDER TSO

ISPF 2.1.2 permits the use of APL2 for the development of dialog func-

tions. Appendix G of ISPF Dialog Management Services (5C34-2137) de-
scribes this capability.

This chapter introduces the interaction between APL2 and ISPF. Notes on
the installation requirements, and lists of ways in which APL2 and ISPF
interaction improve application development are also presented.

4,1 ESTABLISHING AN ISPF-APL2 FNVIRONMENT

The basis for communication between APL2 and ISPF lies in the ability of
both products to access the same variables. ISPF can use the APL2 work-
space variables as its dialog function pool. This means that APL2 vari-
ables can be referenced in dialog panels, and values altered by the panels
can subsequently be accessed by APL2 functions. There are, however, two
raestrictions on APL2 variables which are used by ISPF:

1. The names of the variables must be acceptable to ISPF. Valid names
must not be more than eight characters long and must not contain
special APL2 characters.

2. The values of the variables must be simple character strings. APL2
general data types are not allouwed.

An ISPF-APL2 environment must be created to allow this communication to
take place. The environment is created by invoking APL2 as an ISPF com-
mand with the special new parameter LANG(APL). The APL2 command can be
used with ISPSTART, directly from an ISPF menu, or in a CLIST which is
part of an ISPF dialog. An advantage of using a CLIST is that datasets
required by APL2 need only be allocated immediately before they are used.

See MAppendix B. Sample Panel and Clist for Initiating ISPF-APL2™ on page
107 for an example of how to initiate an ISPF-APL2 environment using a
CLIST from the PDF primary menu.

4.2 INSTALLATION AND INITIATION

The auxiliary processor (AP) used by APL2 to access ISPF is called
ISPAPAUX. This AP is distributed as part of the ISPF product in the
ISPPLIB dataset. Depending on the options chosan at installation time,
ISPAPAUX may also be in LINKLIB or LPALIB. The AP should be explicitly
requested in the APL2 invocation command by including ISPAPAUX in the
APNAMES parameter. There are two points to note:

Using ISPF with APL2 under TSO 71

1. Specifying APNAMES(ISPAPAUX) overrides the defaults. To add the ISPF
AP to the defaults, code the following parameter:

APNAMES (AP2X104,AP2T127 (PLANCAPL2PLAN) SSID(DSN)),ISPAPAUX)
2. APL2 will look for the ISPAPAUX in the following datasets:

° The APL2 LOADLIB specified in the invocation command or allocated
prior to the command being issued

° The ISPF task library allocated to ISPLLIB

o The normal MVS search sequence: STEPLIB;LPALIB;LINKLIB

The ISPAPAUX AP is knouwn to APL2 as AP317. Although it is possible to
communicate directly with AP317 by sharing a variable, an ISPEXEC function
is distributed with ISPF to simplify use of ISPF.

The workspace containing the ISPEXEC function is distributed in transfer
form in member ISPFWS of the ISPALIB dataset. During ISPF installation,
this workspace should be saved in an APL2 public library to simplify ac—
cess by all users.

The steps taken to save the APL2 workspace are:
1. Invoke APLZ.

2. Enter)IN "ISP.V2RIM2.ISPALIBC(ISPFWS)" to convert to an active APL2
workspace.

3. Enter)SAVE 1 ISPFWS to save the workspace in public library 1 with
the name ISPFWS. See "Loading APLZ Public Workspaces™ on page 89 for
further information about saving workspaces in public libraries.

4.3 USING TSPF _SERVICES FROM APL2

When APL2 has been invoked in an ISPF-APL2 environment, you request ISPF
dialog services using the ISPEXEC function. The right argument is a
vector of characters representing the parameters to be passed to the di-
alog service, as in the example shown below. The format of the vector is
the same as that for dialog service statements for command languages
(CLIST and EXEC)., The ISPF return code for the selected service is re-
turned by ISPEXEC and should be stored for analysis.

RC€ISPEXEC "SELECT PANEL(MENU1)®

The default action taken by ISPF for any error with a return code of 12
or higher is to terminate the function. In the ISPF-APL2 environment,
this means that APL2 is terminated and control is returned to the PDF
primary menu. You can use the ISPF CONTROL command, as shown below, to
ensure that all errors are returned to the APL2 function.

72 AN OVERVIEW OF APL2

RC«ISPEXEC 'CONTROL ERRORS RETURN'

When the variable names used in the APL2 function arae valid ISPF namas,
the valuas of the variables can ba set or refarenced in either APL2 or a
dialog service. Figure 9 shows how APL2 can use an ISPF panel to request
input from a tarminal usar and display raesults.

ISPF Panael : DATA

JATTR DEFAULT(%+¢)

JBODY

% Using an ISPF Panel for APL2 data entry
Entar five numbars: ¢A ¢B ¢C ¢D ¢E +

Tha Sum is:%&SUM +

+ 4+ ++ o+

APL2 Function

[0] ISPFVAR;RC SUM A B C D E

[1] SUMeAcBeCeDeE€*D"

[2] A DISPLAY ISPF PANEL

[3]1 L1:RC€ISPEXEC *DISPLAY PANEL(DATA)®

[41 A SUM THE NUMBERS LETTING APL2 DETECT INVALID INPUT
[5]1 SUMe®***INVALID INPUT''* [JEA "3+/2A B C D E'

(61 =(RC=0)/L1 A LOOP IF NOT YEND' OR ANY ERROR

Figure 9. Using Panael Display from an APL2 Function.

4.4 USING ISPF AND APL2 TO CREATE DIALOGS

In addition to being able to usa ISPF servicaes from APL2, two additional
features ara provided to simplify the developmant of dialogs. Tha features
arat

1. An APL2 function can be used as a dialog function.
2. An ISPF-APL2 environment can ba created and used to exaecute APL2

functions without thae terminal user being awara that APL2 has baen
invokad.

Using ISPF with APL2 undar TSO 73

4 1 USING APL2 DEFINED FUNCTIONS AS DIALOG FUNCTIONS

In an ISPF-APL2 environment, an APL2 function in the active workspace can
be used as a dialog function from a selection panel, other dialog func-
tions, or application command tables. You request execution of an APL2
function by using the same instruction as for other dialog functions.
However, you must include the LANG(APL) parameter. For example:

SELECT CMD(APLFUNC parameters) LANG(APL)

For dialog functions written as CLISTs or in other high level languages,
ISPF creates a separate function pool for each new function. ISPF does
not create a separate function pool with APL2 functions. An APL2 function
selaected from ISPF is executed (£ in APLZ2 terms) in the APL2 workspace.
This applies to dialogs running under APL2 and to use of the split screen
ISPF capability. There is, therefore, only one active workspace, used
as the function pool for all APL2 functions in the ISPF-APL2 environment.
Thus, any variables created or altered by an APL2 function will not be
reset or deleted prior to subsequent functions.

f.4,2 INCLUDING APL2 DIALOGS TN NORMAL ISPF DIALOGS

Users of dialogs do not usually wish to see unnecessary APL2 screens or
messages. The error handling features of APL2 make it possible to protect
users from meaningless error messages. The usual APL2 initiation messages
can be hidden from the user with the following features:

1. The INPUT invocation parameter on the APL2 command provides a simple
method of specifying APL2 commands or functions to be executed after
APL2 has started. Multiple commands may be entered. Each command
is enclosed in quotation marks and separated from the next command
by blanks or commas.

2. The QUIET invocation parameter prevents APL2 from displaying any
output until APL2 prompts for input. If you are using the saession
manager, the QUIET parameter does not suppress the display of the
initial session manager screen.

3. The PROFILE invocation parameter without a profile name - PROFILE()
-, stops a profile from being loaded and suppresses the display of
the session manager screen. The display of the session manager could
also be suppressed by specifying the PROFILE parameter with the name
of a profile coded with DISPLAY OFF.

Figures 10 and 11 on page 73 illustrate the above techniques. The APL2
invocation would probably be from a CLIST to allow any special APL2 al-
locations to be done. If the TSO procedure or ISPF CLIST does all the
allocations, the APL2 invocation could be directly from a menu panel.

74 AN OVERVIEW OF APL2

APL2 Invocation Command (in CLIST or ISPF menu)

ISPEXEC SELECT CMD(APLZ2 -
AP(ISPAPAUX) INPUTC -
"JLOAD AVRUWSPC' -
YISPEXEC "*SELECT PANEL(MENU1)"®*' -
YJOFF") -
QUIET PROFILEC) -
) LANG(APL)

Figure 10. Invoke APL2 with Automatic Function Execution

Selection Panel (MENUL)

JATTR DEFAULT (%+¢)
JBODY
% Selact APL2 Function as a Dialog Function

NN N

SELECTION ===>¢ZCMD +
%1+ Select APL2 Average Function

Enter five numbers: ¢A ¢B ¢C ¢D ¢E +

Result is......... %&RESULT

kot

PROC
&ZSEL=TRANS (TRUNC(&ZCMD,".")
1,"CMD(AVERAGE) LANGC(APL)"
¥,"7%)
JEND

APL2 Function <AVERAGE>

[0] AVERAGE;RESULT A B CDE
[1] a SINCE SELECTION PANEL USES SHARED POOL,

{21 mA WE MUST USE VARIABLE SERVICES TO GET VALUES OF VARIABLES

[3] RCe€ISPEXEC *VGET (A B C D E) SHARED®
[4] RESULT€"""INVALID INPUT''' [JEA '3+/2"A B C D E'
[5] RC€ISPEXEC "VPUT RESULT SHARED®'

Figure 11. Using an APL2 Function as a Dialog Function

Using ISPF with APL2 under TSO

75

%,> POSSIBLE APPLICATION AREAS

APL can no longar be considared as existing in a world of its own!

Using ISPF and APL2, it is now possiblae to develop applications using the
tools most appropriate to any particular task. APL2 can use tha function
provided by ISPF, or any tool supported by ISPF (including PDF). Simi-
larly APL2 functions can be incorporated into dialogs developed using
CLISTs or othaer programming languages. This flexibility opens the doors
to a host of different possibilities. A few of these possibilitias ara
mentioned in this section.

EP D 0 T S

Figure 12 shows how the functions available in workspace TSO in public
library 2 can be used with the ISPEXEC function to pass a function to the
PDF editor. Tha PUTFILE and GETFILE functions produce several messages
while doing the allocations, so this example is unlikely to be used in a
production environment. The method is, neverthelass, sound and can be
enhanced to meet user requirements.

fol EDIT FUNC;X

[11] X<{OCR FUNC

[21 A RESHAPE <X> BECAUSE <PUTFILE> NEEDS FIXED 80 CHAR RECS
{31 (((14pX),80)4X) PUTFILE "APL2.APLTEMP(OLD KEEP®

[41 ISPEXEC YEDIT DATASET(APL2.APLTEMP)!

[51] DOFX GETFILE 'APL2.APLTEMP®

Figure 12. Executing the ISPF/PDF Editor from APL2

4.9.2 USING SUBROUTINES WRITTEN IN QTHER PROGRAMMING LANGUAGES

It is now possible to exaecuta program subroutines from APL2 using the ISPF
interface. Figure 13 on page 77 shows how a very simpla Fortran program
can be exaecuted from APL2. Soma special code is required to accaess tha
ISPF shared variable pool. The code can be put into the subroutine it~
self, or a special front-end could be written. Becausa ISPF variables
have to ba in character format, the maintenanca of praecision between APL2
and a sciantific subroutina could limit the effactivenass of this tach-
niqua.

76 AN OVERVIEW OF APL2

Sample Fortran Program CHANGE

c CHANGE THE ORDER OF A CHARACTER STRING PASSED
c IN THE ISPF SHARED VARIABLE POOL

INTEGER¥%%4 ISPLNK,LASTRC

CHARACTERX%B A,B

c DEFINE VARIABLE AS BEING IN THE FUNCTION POOL
LASTRC = ISPLNK ("VDEFINE','A ',A,'CHAR',8)
c GET THE SHARED POOL VALUE
LASTRC = ISPLNK ("VGET',*A ")
B(5:8) = A(l:4)
B(l:4) = A(5:8)
A =B
c RETURN NEW VALUE TO SHARED POOL
LASTRC = ISPLNK ('VPUT','A ')
STOP
END

Using the Fortran Program CHANGE from APL2

A€T 1111XXXX*
ISPEXEC *VPUT (A)? A PUT VALUE IN SHARED POOL

ISPEXEC "SELECT PGM(CHANGE)* m CALL SUBROUTINE

0

ISPEXEC *VGET (A)° A GET NEW VALUE FORM SHARED POOL
0

A A SHOW CHARACTERS CHANGED
XXXX1111

Figure 13. Executing a Fortran Program from APL2

5,3 PL2 AS A PROTOTYPING TOOL

You can develop applications extremely quickly with APL2. As a proto-
typing tool, this is likely to far outweigh other possible criticisms of
APL2. Using the ISPF-APL2 interface, you can develop dialogs in APL2 and,
subsequently, convert them to other programming languages without the end
user being aware of the conversion. The use of ISPF facilities for screen
interactions, error messages, and help screens further enhances APL2
productivity and simplifies later conversion.

If you are developing ISPF dialogs, vyou should also consider the use of
APL2 to produce working applications in the minimum time possible.

Using ISPF with APL2 under TSO 77

4.6 CONCLUSION

ISPF was developed as a powerful product for the development of interac-
tive dialog applications. The support of APL2 by ISPF means that APL2
can be used in the areas where it is most beneficial.

APL2 is no longer in a world of its own. It is now an important component
of an integrated set of productivity tools.

78 AN OVERVIEW OF APL2

The Shared Variabla Procaessor has baen redesigned and rewritten in APL2
to provide significant new function, performance, serviceability, and
extansibility. In both the CMS and TSO environments it provides for
sharing of variables betweaen APL users and between single user and
multi-user auxiliary processors. In addition to allowing for a new APL2
auxiliary procaessor interface and data format, it also provides compat-
ibla interfacas for VSAPL and APLSV auxiliary processors.

The new facilities of the APL2 Shared Variable Processor are reviewed and
a number of tha salient features of its design are discussed.

2.1 _INTRODUCTION

Since tha Sharad Variable Processor (S5VP) was first defined by Lathwell
in 1973 and implemented in APLSV, it has been widely misunderstood and
has been implemented with substantially different definitions in various
APL systems. This has lead to difficulties in migrating APL applications
or auxiliary processors (APs) from one APL implementation to anothear.
Further, because of the various misconceptions and incompatible imple-
mentations, it has been difficult to extend the underlying formal model
and the raesulting facilitias in tha APL language.

With APL2, an attempt has been mada to formalize the SVP model and to
rationalize its implementation as a separate system component. As a re-
sult, it has been possible to extand tha SVP facilities and, at the same
timae, to provida compatible interfaces for APs writtaen for APLSV and
VSAPL.

2.2 APL2 OSVP CHARACTERISTICS

In APL2, the Sharad Variablae Processor is implementad as a separate com—
ponent of tha system, formally interfacing with the rast of tha system
through the Executor. In cartain environments, it is initiated and con-
trollad independently of APL, and can be used as a general communication
machanism batween indapendent, asynchronous processas.

Earliar SVP implementations have been entirely passive with ragard to the
format of data passing through shared memory. Typically, tha data format
has baen definaed by thae APL interpreter to ba identical to that stored
internally in an APL workspace. MWhile this approach was simple and af~
ficient, it created problems in migrating from ona APL implamentation to
another, and rastricted modifications or extensions to the data formats
usad within the workspaca. Further, this approach required any AP com-

APL2 Sharad Variablae Processor 79

municating with APL to be cognizant of the internal APL data formats and
to map to and from them.

To overcome these problems and to accommodate the new data structures
introduced with APL2, a new data format, the Common Data Representation
(CDR), was introduced. This format is independent of the APL2 internal
data format used in the workspace and is, therefore, less sensitive to
change in that area. It also accommodates a superset of those data types
used by APL2. In particular, most 370 data types, including packed and
zoned decimal and various floating point formats, are acceptable. This
means that APs written for the CDR format may be freed of many of the data
conversion requirements which were previously necessary. The APL2 in-
terpreter, in its interface to the S5VP, accepts and produces data in CDR
format and handles the necessary mapping and conversion to and from the
internal format used within the workspace.

As the SVP provides compatible interfaces for APLSV and VSAPL APs, it must
accept their data formats in addition to the new CDR format. It does
this, and maps between the three formats to allow processors using dis-
similar protocols to communicate with each other. For auxiliary
processors which operate with the APLSV or VSAPL protocols, a new SVP call
has been added to allow them to receive data in the new CDR format.
Through the use of this call and with appropriate modifications, APLSV
and VSAPL APs can be upgraded to accept the new APL2 data types such as
complex numbers, and data structures such as nested arrays. - A new return
coda has also been added for those APs for situations where data cannot
be represented in the APLSV or VSAPL format.

In addition to the new CDR data format, the APL2 SVP also provides im—
proved interface protocol and signalling rules for the APL2 interpreter
and new auxiliary processors. These facilities provide a more consistent
interface with extended function and better performance. As with data
formats, the APL2 SVP also accepts the APLSV and VSAPL interface proto-
cols and signalling rules.

The APL2 SVP that operates in the VM/CMS, MVS, and MVS/XA environments,
allows for communication between processors in different address spaces
or virtual machines as well as between processors in the same address
space or virtual machine. As a result, the sharing of variables between
APL2 users is supported as are multi-user auxiliary processors. Two new
facilities, 0O5VS and OSVE have been added to the APL language to allow
implementation of multi-user auxiliary processors written in APL. An
example of a simple multi—user server has been included in Appendix D.

The ability to communicate between asynchronous processes in different
address spaces or virtual machines represents an important advance. APL2
is the first general purpose programming language to offer these facili-
ties in the VM/CMS or MVS/TSO environments. As auxiliary processors can
be written in languages other than APL and as these auxiliary processors
can communicate with each other, APL2 SVP also extends its facilities to
processors written in other languages.

Finally, in implementing APL2 SVP, an attempt has been made to improve
parformanca and to provide significant diagnostic facilities to debug

80 AN OVERVIEW OF APL2

problems in the SVP or in processors interfacing with it. More detailed
information on this subject is presented later in this section.

5.3 APL2 SVP IMPLEMENTATIONS IN VM/CMS, MVS AND MVS/XA

In each of its working environments, APL2 SVP consists of executable code
and a work area called shared memory. Shared memory is used to contain
tables and work areas for the SVP and to temporarily hold the values of
shared variables as they pass between processors. At any given time, SVP,
which operates as a subroutine of its caller, works with a single shared
memory. One shared memory is allocated for each active APL user. This
area is referred to as the user's "local™ shared memory. To support
sharing of variables betweaen APL users (and multi-user APs), an additional
area called "global™ shared memory can be allocated on a system wide ba-
sis. Theoretically, many global shared memories can be allocated and used
for communication between groups of APL users. No one APL user, however,
can use more than a single global shared memory.

The local shared memory is located in the APL user's address space or
virtual machine .It is used for communicating between the APL user and
AP's located in the same address space or virtual machine. MWhen dealing
with this shared memory, the SVP holds no system locks. The APL executor
provides synchronization to resolve contention between tasks attempting
to access local shared memory. In the MVS/XA environment, local shared
memory may be located above the line.

Global shared memory is an optional facility. To include it, it must be
specified in the APL2 installation procedure and then initialized. It is
initialized by starting a system task in MVS or a separate virtual machine
in VM. Global shared memory is allocated in CSA in the MVS and MVS/XA
environments and in a writeable, discontiguous, shared segment in UM,
Therefore, it is available to all APL2 users in the system. Users contend
for use of global shared memory, which is synchronized by the CMS lock
in MVS and by a lock implemented in the SVP in VM.

The multi-level shared memory structure was chosen over the single global
shared memory approach used by APLSV and VSPC to provide compatible sup—
port for VSAPL local APs, to simplify the design of local APs, and to
provide optimal performance.

The APL user need not be aware of the multi~level shared memory structure.
Tha SVP switches back and forth between global and local shared memory
as nhecessary and in a fashion transparent to the APL user., Offers to
specific procaessors are first attempted in local shared memory. If the
specified processor is not signed on in the local shared memory, the offer
is extended to global shared memory. General offers are always extended
to global shared memory. Queries are performed against both shared mem-
ories, and all other operations are directed to the appropriate shared
memory.

APL2 Shared Variable Processor 81

Tha APL usar is identifiad to tha global SVP by an account number which
may ba spacifiaed at APL2 initialization with tha ID parametar. This ac-
count number may ba assigned, verified, acceptad, or changed by instal-
lation exits. Tha account number becomes the first element of [JAI and
is used in SVP communication as the user's privatae library number. If the
APL usaer doas not wish to usa the global SVP ,he does not spacify an ac-
count number. Tha account numbar then defaults to 1001, as in VSAPL.

Procassors written to tha APLSV or VSAPL SVP protocols may choosae to sign
on to eithar local or global shared memory, but not both. Interfaca
routines which facilitate this procass are provided for local VSAPL APs
and for global VSAPL APs in MVS only. APs that sign on globally in the
MVS environmant must ba MVS authorized programs. Processors writtan to
tha APL2 SVP protocol may sign on to local or global shared memory or,
as the interprataer does, to both simultaneously.

2.4 APL2 OVP DIAGNOSTIC FACGILITIES.

APL2 SVP providas cartain tracing facilities and a consistency checking
option which can be halpful in diagnosing problems in SVP or in auxiliary
procassors.

Two typaes of tracaes are availabla. Tha first, which is availabla in
VM/CMS as waell as MVS/TSO, provides a log on the user's terminal of SVP
calls, signals, and arrors. This terminal tracing is requested by spaec-
ifying TRACE(1) at APL2 invocation or on the)JCHECK SYSTEM command; it
can bae tarminated by issuing a JCHECK SYSTEM TRACE(-1) command.

Thae sacond typa of SVP trace, uwhich is provided for the global SVP in MVS
only, uses an in memory wrap around traca table to trace SVP calls, re-
turns, signals, and aerrors. It also provides the ability to patch trace
calls into virtually any location in the SVP. The trace table is allo-
catad by tha systam task which is run to initialize the global SVP.
Tracing can be activatad by modifying that task with tha parametars
TRACE,ON and tarminated with TRACE,OFF. The trace table can ba dumpad
to a SNAP data set by modifying the task with a SNAP paramater.

Tha SVP providas a consistancy chacking option which chacks the format
and consistancy of shared memory at the complation of avery call. This
facility is enabled for local shared memory by specifying the SYSDEBUG(2)
option at APL2 invocation, or on the)CHECK SYSTEM command. MWhaen con-
sistency checking is enablad and tha SVP encounters a problem in shared
mamory, it causas an 0Cl program check in the CSECT AP2XCSS with a code
in ragistaer one that indicates the type of error found.

Datailad information on tha tracing facilities, trace formats, and con-

sistancy chacking arror codas can ba found in tha APL2 Diagnosis Rafarenca
manual.

82 AN OVERVIEW OF APL2

5.5 CONCLUSIONS

The APL2 Shared Variable Processor represents a significant improvement
over SVPs implemented as part of previous IBM APL systems. It offers a
new function, compatibility for APLSV and VSAPL APs, better performance.
and improved diagnostic facilitiaes.

APL2 Shared Varijable Processor 83

84 AN OVERVIEW OF APL2

The installation manual for APL2 straesses the naeed for thorough prepara-
tion prior to installing the product. The actual installation followus
the normal SMP route: load installation jobs; allocate datasets; and
RECEIVE/APPLY/Z/ACCEPT the product. Preparation is required because of the
naad to dacida on certain systems options, and options related to end usaer
raquirements.

Thae installation manual and program directory are the primary installa-
tion references. This saction serves only to stress tha minimum prepa-
ration raquirements, and to expand on the installation steps where
appropriate.

6,1 PREPARATION FOR THE INSTALLATION OF APL2

Tha need for praparation stems from tha following considerationst

1. You must decide whether APL2 libraries and filas will be supported
by SAM or VSAM.

2. If SAM is to be used for these files, you must dacida on a naming
convention acceptable to APL2.

3. APL2 interfaces with many other IBM program products. You must know
which of thase ara installed and how thay will bae used by tha APL2
system.

4. APL2 itself has certain optional capabilities which are not essential
to basic operation, but might well be required in your installation.

5. You must decide on dafault invocation options and on appropriatae au-
thority lavels for accaess to APL2 libraries and files.

6. Soma of the above decisions affect the APL2 Systam Options. You will
probably hava to change thase options. Changing options is baest dona
by receiving an SMP usarmod prior to the SMP APPLY step of tha APL2
installation.

$.1.1 OSELECTION OF ACCESS METHODS TO BE USED BY APL2

APL2 public, project, and private libraries can be sequential or VSAM
datasats. You must daecida on which mathod will ba used in your instal-
lation baefore attampting to install APL2 as this decision affacts saveral
of the installation jobs.

APL2 INSTALLATION UNDER TSO 85

The APL2 Installation and Customization manual (SH20-9222) describes the
relative merits of the two access methods. However, if the APL2 naming
conventions are acceptable in your installation, the use of the sequential
access method for workspaces appears to offer more advantages. This is
particularly true if HSM or RACF are being used in your installation.

File libraries must be VSAM clusters. A private file library is used to
store APL2 data files and to save the session manager log. The auxiliary
processor, AP121, is used to read and write APL2 variables stored in an
APL2 data file. Although simple APL2 applications are unlikely to use
AP121, the ability to save the session manager log is of value to all APL2
users. If a private file library will be needaed, a separate V5AM cluster
must be defined for each user and allocated to the user before APL2 ini-
tiation.

6.,1,2 NAMING CONVENTION FOR SAM LIBRARIES

The following are examples of the default file names for the various APL2
libraries:

PRIVATE = 'USER1.V.PRIVATE'
PROJECT = "USER1.V0002000.PROJECT"
PUBLIC = 'APL2.V00000C01.PUBLIC'

Within the APL2 naming structure some flexibility is available. The de-
fault character strings "APL2' and "V' can be changed to suit your in-
stallation. Although the character "W' is not very descriptive, it does
allow for maximum freedom for project library numbers and is unlikely to
be used as the middle qualifier for other dataset names. If "APL2' is
used instead of "W', any dataset created by a user with APL2 as the middle
qualifier appears to be an APL2 workspace.

If the basic naming structure cannot be accommodated in your installation,

the User Exit must be modified to implement a standard which is accepta-
ble.

6.,1.3 OTHER IBM PRODUCTS WHICH INFLUENCE APL2 INSTALLATION

The use of any of the following products in your installation will have
some bearing on the APL2 installation process:

1. GDDM: This product is required in order to use the APL2 Session Man-
ager. GDDM provides APL2 users with powerful graphics capability
using either the GPAPHPAK or the GDDM Auxiliary Processors. The use
of the Session Manager influences the choice of access method (see
"Salection of Access Methods to be Used by APL2"™ on page 85) and in—

86 AN OVERVIEW OF APL2

vocation options. The use of GRAPHPAK requires special character sets
(sea Stap 16 of the installation procedurea).

2. DB2: If APL2 users will access DB2, Step 1l of the installation pro-
cedure must be run to define the APL2 Auxiliary Processor AP127 to
DB2. AP127 must be included in the APL2 invocation options.

J. 3800 and DCF: Special APL2 character sets for the 3800 are distributed
with APL2.

[4 APL2 INSTALLATION OPTION OR TS0

The default installation options have been chosen to be as general as
possible. However, you will probably have to make minor changes for your
installation. In particular, the following options are likely to need
tailoring:

° DASD volumes which will be used to allocate datasets created by APL2
users

° Users with the authority to save workspaces in public libraries
° Default invocation options. In particular, options related to other
installed products and to the amount of storage to be allocated to

users.

o Descriptive data about the system which can be retrieved by any APL2
user.

The Installation Options are specified in member AP2TIOPT. This member
is in one of the following datasets during APLZ2 installation:

° JLG1110.F3 After Receive
° SYS1.SMPSTS After Apply
° SYS1.AP2S0URC After Accept

AP2TIOPT has all the Installation Options, and contains the following
logical parts:

1. Systems Options - relate mainly to dataset naming rules and are
specified using the AP2TIOPT macro.

2. Default and Override Invocation Parameters - specified as constants
using the DC operation code of the Assembler Language. Since default
parameters can be set in the CLIST used to initiate APL2, changes to
this part of the Installation Options are only essential if you wish
to alter the overrida values.

3. Authorized Library Ranges - specified using the USERL macro. Tha

default table does not grant authority for any user to write to the
public libraries. However, the supplied User Exit Routine grants

APL2 INSTALLATION UNDER TSO 87

write accass to users having TSO OPERATOR status, irraespactiva of tha
values in this table. If you ara installing APL2 and do not have
OPERATOR status you must change this table to allow you to sava tha
APL2 public libraries.

4. Systam Information - declared as Assaembler constants. An APL2 user
can accass this information with a system command. Although this
information will only be critical if APL2 functions have depandanciaes
on other installed products, you should keep the information as ac-
curate as possible.

Tha only one of the above sections which requiraes further explanation is
the Systaems Options.

The AP2TIOPT macro definition has default valuas specified for all pos-
sible paramaters. Most, but not all, of the parameters ara also specifiad
whan the macro is used in thae sampla AP2TIOPT. For example, tha sample
AP2TIOPT does not show which auxiliary processors are loaded with APL2
(parametaer RESAPS). To clarify the actual defaults in affect, Figurae 14
shows all parameters defined by the macro and thair default valuas.

APLID=V,

ATASKS=,

BLKSIZE=4240,

CSVPID=CSVP,

DEFAULT=(DEFAULTA, DEFAULTZ),

LIBKEEP=YES,

LIBQLFR=APL2,

LIBSER=,

LIBUNIT=,

OPTUSER=AP2TIUSR,

OVERRIDE=(OVERRIDA,OVERRIDZ),

PREFIX=TOP,

PUBQLFR=APL2,

QNLT=ENGLISH,

QTZDEC=0,

QTZINT=-7,

RESAPS=(AP2T100,AP2T101,AP2T102,AP2T111,AP2T123,AP2T210,
AP2X120,AP2X121,AP2X126),

DSECT=NO

IIITT IO I

2

Tha first column indicatas tha source of the default value -
Valua is default provided by tha macro.
I = Value in AP2TIOPT ovarrides macro default.

= Ovarride value is the sama as the macro default.

e -
]

Figure 14, Default AP2TIOPT Values

88 AN OVERVIEW OF APL2

6 NOTES ON STAL

The following notes refer to, and are intended to supplement, the in-
stallation steps described in Chapter 3 of APL2 INSTALLATION AND
CUSTOMIZATION UNDER _TSO (SH20-9222)

SMP_CONSIDERATIONS

STEPS 3 and 4: The sample jobs assume that a new SMP environment will
ba used for APL2. This is satisfactory if the installation is purely for
testing purposes. If you will be applying PUT maintenance to the APL2
system in the future, you should consider updating your current SMP en-
vironment and PROCLIB members rather than using the sample jobs as dis-
tributed.

In this case, step 3 should not be run and only the DEFINE USERCAT part
of step & should be run. The DD statements for the APL2 target and dis-
tribution should be added to the appropriate SMP PROC or defined to SMP/E
if the dynamic allocation feature is being used.

6,2.2 LOADING APL2 PUBLIC WORKSPACES

STEP 15: Since this step loads the APL2 public libraries, APL2 must know
whether the public libraries are to be accessed using VSAM or SAM. The

CLIST tailored in Step 14 should, therefore, be used to invoke APL2. VSAM
clusters are used for the public libraries if files Wl and W2 have been

allocated before the APL2 command is issued.

You must also be authorized to write to these libraries. ' Refer to the

heading Authorized Library Ranges in ®APL2 Installation Options for TSOW
on page 87

APL2 INSTALLATION UNDER TSO 89

90 AN OVERVIEW OF APL2

Tha tarm "migration' is used to dascriba the procaess by which applications
running under VS APL are Tconvertaed' to run under APL2. Migration in-
cludaes the transfar of files from ona environment to the othar, making
changas to code, testing, debugging, and bringing the application into
production.

Tha ovarall messaga is that migration is easy, the literature is good,
and aids are available. Houwaver, thera are many potential "problams' which
should be checked.

In this chapter, wa will:

1. Explain why migration is necessary

2. Prasent an overview of the process

3. Explain its different steps

4. Illustrate it with an exampla

5. List availabla publications

6. Formulata concluding remarks

1.1 WHY MIGRATION IS NECESOARY

APL2 is a new language. One criterion used in its davelopmant was com~-
patibility with VS APL. Howaver some of thae features of APL2 do not pro-
vida complete compatibility with VS APL. That is, an application written
to run under VS APL may neaed somae modifications baforae it can run under
APL2.

Thaere are four possible types of incompatibility:

1. An error in VS APL produces an answar in APL2

2. An answer in VS APL is a different answar in APL2

3. An answer bacomes an arror

4, An error is a different error

The consequences of thase incompatibilitias are respectively:

l. This is not sarious. It is tha natural way by which languages devalop.
It would ba a problem only if an application's logic was dependent

Migration 91

on an error. This is unlikely as VS APL has no facility for retaining
program control after an error.

This is very serious. It was allowed in a small number of cases, and
only when there was a very strong reason for doing so. An example is
the indexing of a constant numeric vector which, in APL2, requires
parentheses as bracket binding has to be stronger than vector binding.
The JMCOPY command will, in many cases, insert the required paren-
theses.

This is not as serious as it seems as APL2 makes it easy to locate
the exact point of an error and its cause.

This is not a problem for reasons similar to 1. Note, howaver, that
it will be an important issue when considering further development
of APL2 as the logic may depend on a particular error, especially as
program control can be maintained after an error.

Migration consists of searching for incompatibilities and *fixing®' them
in order to preserve the logic of the application.

Offending pieces of code are identified by:

1,2

Searching for known problems
Using the programmer's knowledge of the application

Testing of the program producing incorrect results

OVERVIEW OF PROCESS

Planning - decide what will be migrated and when
Make soma changes to applications in VS APL
Transfer applications from VS APL to APL2
Identify possible problem areas

Fix them

Test the application thoroughly

Repeat stages %,5,6 until the application operates properly

Migration is then complete and the application can be put into production.

92

AN OVERVIEW OF APLZ2

3.

T PROCESS

In order to decide whether APL2 should completely replace VS APL or
APL2 and VS APL should run concurrently, CPU availability, expected
life of applications, and interdependence of applications and their
data should be considered. In other words, it is not necessary to
migrate all existing applications.

Plan for migration by reading the literature and attempt to anticipate
areas likaely to need attention.

APL2 training is necessary.

APL2 uses EBCDIC rather than z-codes (the interchange code unique to
APL).

This means that JAV is different. The)MCOPY command (see 3) makes
allowance for this difference. That is, JMCOPY ensures that the
character vector "JULIE' remains "JULIE®' in APL2 despite the differ-
ent OAV. There are two possible situations where the "MCOPY command
is not sufficient to overcome the differences in [JAV. The two situ-
ations are:

a. The entry in OAV in VS APL has no corresponding entry in AV in
APL2.)J)MCOPY would fail as an attempt is being made to use an
illegal character. Illegal characters have to be identified
within VS APL.

The TRANSFER workspace (supplied with APL2 in public library 2)
contains a function BADCHARS. This must be put into the VS APL
workspace to be migrated. This can be done using the Session
Manager. The instruction BADCHARS [ONL 3 will examine all func-
tions in the workspace for illegal characters. If any illegal
characters are found, they must be altered before migration can
proceead.

b. The logic of the application depends on a character's position
in OAV In this case, the functions CHARIND and INDCHAR in the
TRANSFER workspace must be used (instead of)MCOPY) to transfer
the concerned character data to APL2. The use of these functions
is explained on pages 7 and 8 of the Migration Guide.

The transfer from VS APL to APL2 can now take place.

In APL2 enter:

JCLEAR
JMCOPY [libnol wshame

)SAVE [libnol wsname

Migration 93

94

The contents of the specified VS5 APL workspace will be copied into a
saved workspace under APL2. As the V5 APL workspace remains intact,
the same name may be used, if desired.

The VS APL workspaces to be transferred must reside on the same CMS
or MVUS system as APL2. If not, the VS APL workspaces must first be
brought into the same system as APL2. The appropriate installation
reference manual gives details on how to do this.

JMCOPY ensures that the correct DAV is used and makes a number of
other adjustments to functions and variables. These will often be
sufficient to allow use of the workspace in APL2. If the workspace
in APL2 still does not operate properly, additional fixes are re—
quired.

Once the application has been transferred, an iterative process of
testing and debugging begins. This often will be relatively simple
as APL2 has been designed with compatibility in mind.

APL2 comes supplied with a workspace TRANSFER, (in public library 2),
which has helpful functions and advice. Two useful functions are
FLAG_ and FIX_. FLAG_ searches functions in the workspace (in-
cluding those from TRANSFER if you are not careful) for given char-
acter strings. FIX_ replaces the given character strings by others,
supplied by the user.

The variable FLAGMUSAPL_ in the workspace TRANSFER provides a list
of strings that are known to be likely areas of concern (for example
ONC is included because under certain circumstances it can return

di fferent answers under VS5 APL and APL2).

After possible problem areas have been identified, each possible
problem should be examinad closely to determine if it is indeed a
problem.

Pages 26~32 of the Migration Guide are helpful here as they contain
explanations of the circumstances under which differing results will
occur.

FLAG_ identifies pieces of code that may produce a different result.
It does not necessarily follow that a different result will be
produced. The logic of each particular application must be examined
in conjunction with the literature to determine if there is any cir-
cumstance under which an incorrect result would arise in that appli-
cation.

Having datermined that code needs to be amended, the function FIX_
may be used. The right argument of FIX_ specifies the functions to
be edited. The left argument of FIX_ is a vector. Each item of the
vector specifies two character strings. For each item, FIX_ replaces
all occurrences of the first string, by the second string, in all the
functions specified. Thus, it should be usaed with caution. The use
of FIX_ should be reserved for *fixing® widespread problems occurring
saveral times in a workspace.

AN OVERVIEW OF APL2

Remember that FIX_ and FLAG_ are tools and not panaceas.

Even though an application appears to work, it may not be fully mi~-
grated. All paths through the code and all possible arguments to the
functions should be checked. It is the extreme cases (for example,
when an array is empty) that most likely cause the problems.

Also, flagging an item does not mean it must be changed. Flagging
merely states that you are using a piece of code that, under some
circumstances, could produce a different result. Your use of the piece
of code may be unaltered.

The process of identification, testing and fixing continues until the
application behaves exactly as it should under all possible circum-

stances.

At this point migration is complete and the application may be put
into production under APL2 and discontinued under VS APL.

7.4 EXAMPLE

This example illustrates the mechanics of migrating a workspace from VS
APL to APLZ2.

There is no such thing as a typical migration as, by nature, it is the
unusual and unlikely events that cause the problems.

This example was chosen because it is likely to be reasonably familiar
to most people and does actually require some function editing (many ap-

plications do not).

Ignore for a moment the fact that it is unlikaly that a lesson in using
VS APL would be migrated to APL2 (or is it?).

1. In VS APL, load LESSON3

Spend a few moments familiarizing vourself with the application if
necessary.

2. A copy of the function BADCHARS from workspace 2 TRANSFER in APL2 is
needad in our workspace. Invoke APL2 with the Session Manager on.

3. Display BADCHARS.

4. Return to VS APL, load LESSON3.
Define the function BADCHARS by
° Entering function definition mode

° Scrolling back through the Session Managar log

Migration 95

10.

11.

12,

96

° Entering each line of BADCHARS by altering one character {(for
example, blank to blank)

There is a bug in BADCHARS which prevents it from examining the first
function in the list given by ONL 3

The required fix is:
insert line [1.5]1 Ie1
edit existing line [2] (JI10€0
Save the workspace with a new name.

Type BADCHARS ONL 3 .This will examine all functions in the workspace
for illegal characters.

There should not be any.
Check that all functions have been inspected by using }FNS
Return to APL2.
Enter the following commands:
JCLEAR
JMCOPY wsid
JSAVE wsid

If any error messages result, use pages 12-13 of the Migration Guide
to investigate.

Bring in a copy of the TRANSFER workspace by entering)PCOPY 2
TRANSFER

Display and read DESCRIBE.

Enter FLAGMVSAPL_ FLAG_ ALL_.

Use pages 253-254 of APL Programming: An Introduction to APL2
(SH20-9229) to decidea on vour ouwn right arguments to FLAG_, and try

them,

Use Chapter 3 of the Migration Guide together with the Language Manual
to establish the significance, if any, of all items flagged.

Make any necessary code changes.
Test the migrated workspace by typing:

JSAVE wsid

AN OVERVIEW OF APL2

JLOAD wsid
You should get a DOMAIN ERROR

13. Use pages 27,38 and 39 of the Migration Guide to identify the cause
of the problenm.

14, Edit the offending piece of code.
15. Save and load the workspace again.
16. Test the workspacae.

17. Easy, is it not?

7.5 PUBLICATIONS

APL2 Migration Guide, SH20~-9215, is the primary source for all information
and guidance on migration. It is advisable to study the TRANSFER work-
space itself before using the workspace.

APL2 Programming: Language Reference, SH20-9227

APL2 Installation and Customization under CMS, SH20-9221

APL2 Installation and Customization under TS0, SH20-9222

7.6 CONCLUDING REMARKS

The experiences of customers involved in the Early Support Program uwere
similar to what we expected. That is, that JMCOPY is easy to use and
successful in most cases. Further, that the literature is good, but that
"hbadly written™ APL can cause problems.

Migration of the vast majority of applications will be relatively easy.

Features of VS5 APL that are incompatible with APL2 are either taken care
of by JMCOPY or are rather "perverse®, that is, unlikely to arise in an
actual application. Pieces of code that will fail are the sort of thing
that relied on the *internals' of APL rather than the language itself.
For example, some ADI functions relied on the fact that in VS APL a pen-
dent function cannot be expunged. This is not the case in APL2.

Beware of the "clever' programmer who does things in a non—-standard man=-
ner.

Remember that compatibility with VS APL was one of the criteria by which
all possible features of APL2 were evaluated by the designers.

Migration 97

Remamber, too, that the options to not migrate, or to rewrite applications
to take advantage of the enhanced features of APL2, are always present.

98 AN OVERVIEW OF APL2

PERFORMANC

The objective of the designers of APL2 was to produce a powerful, pro-—
ductive language which would provide a rich set of tools for problem
solving.

The criteria against which APL2 is measured are compatibility, formality.,
simplicity, and usability. (For a more complete discussion of these
criteria see "Dasign Criteria™ on page 1)

APL2 was not explicitly designed with CPU performance in mind. However,
once APL2 itself had been designed, each primitive function was written
in Assembler code by experienced systems programmers. Most of the prim—
itives have been optimized for many special cases and some APL *idioms®
have been coded directly. That is, APL2 will "recognize®' an idiom and
process it with code dedicated to that idiom. For example pp is recog-
nized as rank and does not use the code for p tuwice.

APL2 derives its powerful performance from its ability to handle arrays
as easily as scalars.

STIONS A US GHT AS
There are, perhaps, two valid questions on performance that a user might
ask:
1. If I simply migrate an existing VS APL application to APL2 (that is,
I make no use of the APL2 language enhancements), how will the per—

formance compare?,

daevelop a new application in APL2, will it perform better than

2. if1l
if I had developed it in VS APL?

f
f
The answer to the first question is "probably similar™.

The answer to the second question is Mprobably better with APL2™.
It is difficult to commit to anything much more precise than this,

However a number of simple tests have been carried out.

The results are summarized below.

Performance 99

8.2 TIMING

Functions were timed in both V5 APL and APL2 by using OAIL2] - which keeps
a cumulative record of CPU time used in an APL session. The method used,
the results obtained, and the conclusions to keep in mind are praesented
below.

8.2.1 METHOD

Care must be taken to make valid use of [JAI[2], to ensure that what is
being timed is what was intended to be timed.

Accessing and displaying [JAI[2] will use CPU time and, hence, alter its
own value.

Putting a trace or a stop on a function in order to time individual
statements will greatly increase the CPU time since the trace or stop uses
CPU time.

Functions that display values run much slower than functions that only
assign values to variables. That is, time to display can be a very sig-

nificant proportion of total time and can lead to misleading comparisons.

Timing of very fast functions or primitives can lead to unreliable results
as OAIL2] is not sensitive enough to record low values accurately.

Care must also be taken when OAI{2] ™goes round the clock™ and is reset
to zero while the function being timed is running.

A function was written which, basically, accesses JAI[2] immediately
prior to, and immediately subsequent to, executing the character string
supplied by the right argument. This is repeated a number of times and
average, minimum, and maximum data are calculated.

Each function was timed frequently so that the data displayed stability.

Any outlying values were investigated.

8.,2.,2 RESULTS

As prinmitive functions run very fast, meaningful results can only be ob-
tained when using reasonably large arrays.

Two random arrays of size 50x50 and two of size 200x200 were generated
in VS APL. Fourteen simple operations such as addition, subtraction, ro-
tation, comparison, selection, and catenation were timed on both sizes.
The arrays werae then transferred to an APL2 workspace by the)JMCOPY com—~

100 AN OVERVIEW OF APL2

mand and the same operations were timed again. APL2 was faster (typically
by 25%-30% for the 50x50s and by 35%-40% for the 200x200s) in eleven of
the operations. APL2 immeasurably outperformed VS APL in performing ¢
and V5 APL outperformed APL2 with ¢ and catenate.

To use smaller arrays, more complex functions were tested. Some performed
better in APL2 and others were fastaer in VS APL. In particular, a function
which generated arrays and then did various sorts and conversions per-
formed better in VS APL (up to 40X improvement) on arrays of all sizes
up to 50x50. With larger arrays APL2 again outperformed VS APL with the
margin increasing as the amount of data increased.

In attempting to analyse which types of function were better in each, the
most significant factor seemed to be that functions with many loops and
G0 TOs™ (that is, written Fortran style) were better in VS APL.

The function SORTALF (available in workspace UTILITY in public library
1) was timed. It performed better in VS APL on all arrays of size less
than 100x100. SORTALF does an alphabetic sort on character arrays. It is
a function which is present in one form or another in numerous real world
applications. APL2 has overcome the necessity of using functions like
SORTALF. The GRADE functions (4,%) have been greatly enhanced and alpha-
betic sorting is now a primitive function. This means that performance
is improved enormously. GRADE was used to do the same sorts as SORTALF.
The improvements in performance ranged from about 25% with small arrays
to over 30004 with large arrays.

8.2.3 CONCLUSIONS

The facts that emerge are:

° No major difference between VS APL and APL2 in a majority of situ-
ations. Most real world applications will comprise a variety of
functions some of which wWwill run faster in APLZ2 and some slower in
APL2.

° APL2 performs significantly better than VS APL in handling large ar-
rays.

o The extensions of APL2 permit applications to be written in less lines
of code.

° The extensions to the primitive functions reduce the need for user—

written functions. This has very significant implications for per-
formance.

Performance 101

3 MARY

The major conclusion is that users generally need have no worries about
parformance when migrating to APL2.

The message to the user is that APL is not so much about CPU productivity
as it is about end-user productivity and in reducing application devel-
opment time. APL2 improves upon VS APL in these areas,

The daesign of APL2 has made it even more suited to rapid prototyping and
development of applications. There is now an even wider range of powerful
primitive functions that perform well. These primitives can be combined
in very few lines of code to produce applications that are shorter than
their equivalents in other languages and, more importantly, take laess tima
to code. As APL is interactive, each line of code can be tested as it
ijs written. This, combined with the extensive new features for handling
errors, makes debugging, maintenance, and development easier, more accu-
rate, and quicker. In addition, the lifting of restrictions on data types
makes representation of data structures more logical and more natural,
which can reduce time spent on analysis and program design.

The poor performance of Fortran style functions should not be a major
problem. Hopefully, there are few such functions. Such functions either
should have been written correctly originally or are trying to do some-
thing for which APL is not appropriate. APL has always suffered from
programmers who have learned a ™traditional™ language first and then not
changed their ways of thinking. It is almost as if APL2 is exacting
vengeance on such people!

APL is not genaerally used for huge applications running numerous times
paer day. It is used most frequently in a personal computing environment
where the time to develop an application is of prime importance. Many
such applications may only be run once or tuwice.

APL"s strength lies in the speed at which applications can be developed.
This should not be construed as implying that APL's performance is poor.
Far from it, its ability to handle arrays and its variety of primitives
see to that.

What we are saying is that performance is not, or should not be, a major
consideration because the APL environment is one in which quick, effective
applications can be prototyped and developed swiftly.

Those are precisely APL'"s strangths.

102 AN OVERVIEW OF APL2

APPENDIX A, LIST OF SOME SQL FUNCTIONS

A,1 SQLSYSTEM

USQLSYSTEMIOlw
[ol SQLSYSTEM; S;MAT;D
[11 S€'SELECT TNAME, CREATOR, TABLETYPE,NCOLS,REMARKS, DBSPACENO, DBSPACENAME?®
[21 MAT€255QL S,* FROM SYSTEM.SYSCATALOG WHERE CREATOR="*SYSTEM"!!
£31 OrPlle256
4] OES(~2=127 OSVO "DAT")/*DATA NOT OFFERED®
[51] DeDAT_ *DESCRIBE' *APL2®
t61 2(0£pZ€MESSAGE2D)/0
[71 De"1 0425D
[8] (D,[11" *),[1IMAT
A.2 SQLTAB

vSQLTABIOlw
[ol SQLTAB;S
[1] S€'SELECT TNAME, CREATOR,TABLETYPE,NCOLS,REMARKS, DBSPACENO, DBSPACENAME?
[2] MATe255QL S,' FROM SYSTEM.SYSCATALOG WHERE CREATOR=USER'
[31 OPWe256
4] OES(~2=127 OSVO *DAT")/'"DATA NOT OFFERED®
[51 DeDAT_ 'DESCRIBE® °'APL2"
f61 3(0#pZ<MESSAGE2D)/0
[71 De"1 042D
{81l (D,[11" *),[1IMAT

A.3 SQLCOLNAME

[ol
[11
[21]
[31

[0l
[1]
[2]
£31
[4]
[51
[6]

vSQLCOLNAMELOlw
SQLCOLNAME A;S1;S52
S1€*SELECT COLNO,CNAME, COLTYPE, LENGTH *
$2€¢*FROM SYSTEM.SYSCOLUMNS WHERE TNAME="'"',A,""" ORDER BY COLNO"
TITLE SQL S1,S52

OTITLEIOlY
Z€TITLE MAT;D;0O0PW
AADD COLUMN NAMES AND DESCRIPTOR TO R
A MAT IS A MATRIX RESULT FOR CURSOR 'APL2
OPWe256
OES (~2=127 OSVO *DAT")/'DAT NOT OFFERED®
DeDAT_ '"DESCRIBE' 'APL2"
2(0£pZ€MESSAGE2D)/0

Appendix A. List of some SQL functions 103

{71 De™1 04D€2>D
[81 Z«(D,L[11" '),[112-MAT

A.4__SQLDISP

©SQLDISPIOlv
[o] SQLDISP S1
[11 TITLE SQL *SELECT % FROM *,Sl1

A.5 REPORT

VREPORTIOlw
[o] Z€A REPORT R;V;C;MAT;B1;0P;BB;ZZ;CO;XX;RES; I;RE;N
[1] Re€2oR
[21 R€RISORTSEQ4(F,[10IRL[; 214A1);]
[31 CeVo EVec[2],[101R[; 212A1]
[41 BB€1+¢2</1,¢Ble+/[1ICxMATEVN((pV), (pV))pl, (pV)p0
[51 OP€((cAL3 4 51)="(*MAX' "MIN® *"SUMY TAVG'))/'IL++"
[61 I€c(1(1 T1))I[BB]
[71 2Z€I/[11R
[81 COeRL;2714A1
[9] XXec[11Cx(COo ,x(pCO)pl)
[101] XX€FGX"" XX
[11] RES€(B1=1)/XX
[121 RE€#$0P,'/** RES'
[13]1 #(AL3 & 5]="AVG")/' RE€RE+p"RES '
[141 Ne(,20=14"0p"RI[1; 1)/ (114eR)
[151] ((I="1)7011ZZ[;N])ecr D
[161 ((I="1)7[1122[;+712A1)€RE
[171] (CI="1)/111ZZ0[; 211A1)€c'RESULT"
[18] OES(~2=127 OSVO *DAT')/*DAT NOT OFFERED®
[191 Ze((T1 04(2>DAT_ "DESCRIBE' 'APL2")),[11* "),[1]zZ

vFeX[Ole
ol Z€FGX V
[11] 2€(V£0)/V

A.6__SQLICU

vsSQLIcUlOle
[o] A SQLICU R;CHRCTL;CTL; DATCTL;HEADING; KEYS; LABELS;X; Y;[JIOCHART ;[J10
[11 aR IS THE RESULT TABLE OF A SQL QUERY.A SPECIFIES WHICH
[2] ACOLUMNS OF THE RESULT ARRAY ARE PLOTTED BY SQLICU.
[31 0I0«1
[4]} KEYS€,™1 042-DAT_ "DESCRIBE'Y 'APL2!

104 AN OVERVIEW OF APLZ

[51
[61
[71
{ 8]
[91
[101
[111]
(121
[131
[141]
[151
[161
[17]
(181
(191
(201
{211
[221]
[231
[24]
[25]
[261
[271
(281
[291
[301
[31]
[32]
[331
[34]
[351
(361
[371

[381
[39]
[401]

[o]
[11
[2]
(31
[4]
L5]
[6]

KEYS€KEYS[A€¢A]

KEYS€((T/p"KEYS)LG)4 KEYS

OSVR *DAT®
010€1
ReRL[;A]

Y&¢0 14R
Xe, v 1rpY
LABELS<R[;1]

LABELS«(, (I /p"LABELS))" LABELS

HEADING€"AVERAGE PRICE FOR THE WINE BY TYPE"
2(2#1MR€126 [OSVO 2 3p*CTLDAT')/0

CHRTCTL€76p" * A INIT CHART CTL TO BLANKS

CHRTCTLI 41e4 10 0O A LEVEL 0

CHRTCTLL4+14]e4 10 2 n DISPLAY 1

CHRTCTLEB+14]¢4 I0 0 A HELP 0

CHRTCTLL12+14]e4 I0 0 A ISOLATE ©

CHRTCTLL17 e %" A FORMNAME "x*

CHRTCTLI257e" %" fa DATANAME Yx?!

CHRTCTLI32+141¢¢ 10 0 A PAIRING 0

CHRTCTLI[36+14]1¢4 I0 l4pY n NUMBER OF DATA GROUP
CHRTCTLL40+14]e4 IO 14pY n NUMBER OF ELEMENT BY DATA GROUP
CHRTCTLIG4+141€¢4¢ 10 4 A LENGTH OF EACH STRING 1IN KEYS
CHRTCTLL[48+141<4 I0>(11p”LABELS) A LENGTH OF EACH STRING IN LABELS
CHRTCTL[52+141¢4 IOPHEADING ~n HEADINGL 7

CHRTCTLLS57 e %" A PRINTNAME

LABELS€¢LABELS

A PRTDEP 0 PRTWID 80 PRTCOPY 2
CHRTCTLI[64+112]€,4 IO O 80 2
DATACTL€0p0 A NO DATACTL DATA
KEYS¢€ 14+KEYS
DATE€CHRTCTL,KEYS, LABELS,HEADING
Y&, Y

CTL€ 10, (pCHRTCTL), (pDATACTL), DATACTL, (pX),X, (pY), Y, (pPKEYS), (pLABELS), (p

HEADING)

DAT€CHRTCTL,KEYS, LABELS,HEADING
R&CTL

[OSVR T'DAT?®

vSQLX[Olw

Z2€SQLX SQL_STMT:;ZZ;0010

Qigel

ZZ¢SQL SQL_STMT

E«1>2ZZ

2(0V _#4Z22)7"MESSAGE E’

2¢2222

[ES(2#ppZ)/"RESULT TABLE EMPTY!

Appendix A.

List of some S5QL functions

105

106 AN OVERVIEW OF APL2

APPENDIX B, SAMPLE PANEL AND CLIST FOR INITIATING ISPF-APL2

+

JINIT

LHELP = ISR000

ISPF/PDF PRIMARY OPTION MENU

%

ZOPTION ===>_ZCMD

% +USERID - &ZUSER
% 0 +ISPF PARMS -~ Specify terminal and user parameters +TIME - &ZTIME
% 1 +BROWSE - Display source data or output listings +TERMINAL - &ZTERM
% 2 +EDIT = Create or change source data +PF KEYS -~ &ZKEYS
% 3 +UTILITIES - Perform utility functions

% %4 +FOREGROUND - Invoke language processors in foreground

% 5 +BATCH = Submit job for language processing

% 6 +COMMAND = Enter TSO command or CLIST

% 7 +DIALOG TEST - Perform dialog testing

% 8 +LM UTILITIES- Perform library management utility functions

% C +CHANGES = Display summary of changes for this release

% T +TUTORIAL - Display information about ISPF/PDF

% A +APL2 - Execute APL2 with default options

% X +EXIT ~ Terminate ISPF using log and list defaults

%

Enter%ZEND+command to terminate ISPF.

03

&ZPRIM = YES /% ALWAYS A PRIMARY OPTION MENU */
&ZHTOP = ISR00003 /% TUTORIAL TABLE OF CONTENTS */
&ZHINDEX = ISR91000 % TUTORIAL INDEX - 1ST PAGE x/

VPUT (ZHTOP,ZHINDEX) PROFILE

JPRCC

&ZSEL = TRANS(TRUNC (&ZCMD,'.")

&ZTRAIL = .TRA

JEND

Figure 15, PDF

0, "PANEL (ISPOPTA)"

1,*"PGM(ISRBRO)> PARMCISRBROOL1)*
2,"PGM(ISREDIT) PARM(P,ISREDMO1)®
3,"PANEL(ISRUTIL)"

%, "PANEL (ISRFPA)"

5,"PGM(ISRJB1) PARM(CISRJPA) NOCHECK®
6, "PGM(ISRPTC)?*

7,"PGM(ISRYXDR) NOCHECK"

8, "PANEL (ISRLPRIM)"
C,"PGM(ISPTUTOR) PARM(ISR00005)*
T,"PGM(ISPTUTOR) PARM(CISRO00000)*"
A,"CMD(%APL2)"

T
l'l

X, VEXIT®
¥,'7')
IL

Menu Altered to Include APL2

Appendix B. Sample Panel and Clist for Initiating ISPF-APL2 107

PROC 0
CONTROL MAIN NOFLUSH NOPROMPT NOMSG NOLIST NOCONLIST
ALLOC FILE(FO0) SHR DA('"&SYSUID.TSOUSER.FILES"')
/% ALLOCATE THE SYMBOL SET LIBRARIES,
ALLOC FICADMSYMBL) DA(*APL2.SYMBLIB") SHR
/% ALLOCATE THE FILECLOADLIB), IF NEEDED AND IF NOT SPECIFIED IN
/% THE LOADLIB INVOCATION PARAMETER.
ALLOC FILECLOADLIB) SHR DAC(+
*ISP.V2R1M2.ISPLOADY)

7% ALLOCATE THE FILECAPLDUMP).
ALLOC FILECAPLDUMP) SYSOUT(T)
/% SPECIFY INVOCATION PARAMETER VALUES IN THE APL2 COMMAND
/% DEPENDING UPON THE DEFAULT INVOCATION PARAMETERS IN THE SYSTEM
/% OPTIONS MODULE, AP2TIOPT.
ISPEXEC SELECT CMD(-
APL2 AP(ISPAPAUX) FREE(100K) CODE(32791) SM(OFF) -

INPUT(")LOAD 1 ISPFKWS') -

) LANG(APL)

/¥ FREE COPY WORKFILES.
FREE FI(F0)
/% FREE SYMBOL SET LIBRARY(S).
FREE FI(ADMSYMBL)
/% FREE SPECIAL LOAD LIBRARY(S).
FREE FICLOADLIB)
/% FREE APL2 DUMP DATA SET.
FREE FI(APLDUMP)

Figure 16. APL2 CLIST Executed from PDF Menu

»/

1. 74

*x/

¥/

»/

*x/
t 74

¥/

x/

x/

»*/

108 AN OVERVIEW OF APL2

APPENDIX C, SAMPLE APL2 FUNCTION TO USE CMS EDITOR

YEDITERIOlw

[0] EDITER FONC;TEMP;RC; CMS;I0; CTLDR; DATD; I;NC;REC;NCC
{11 n

[2] a EDIT AN APL FUNCTION WITH XEDIT
[3] n

[41 a DO NOT FORGET THE FOLLOWING LINES IN AN EXEC PROCEDURE
I 5] na APLEDIT EXEC

[6] a &CONTROL OFF

[7] a &STACK LRECL a

[81 A &STACK VER 1 a

[9] A &STACK TRUNC a

[10] A &S5TACK ZONE 1 a

[11] A X script APLEDIT A (WIDTH a

[12] ~n

[13] [O10€1

141 CMS€'CMST

[151] RC€100 OSVO *CMST

[161] CMS€'ERASE '",FONC,* APLEDIT"

[171 DATD€FONC," APLEDIT A (FIX U 192¢
(18] CTLD€FONC,* APLEDIT A (CTL®

(191 RC€110 OSVO 2 4e"CTLDDATD®

[201] RCel+pTEMPECR FONC

{211

[22] L3I:2(RC<I«I+1)/L4

[231] DATReTEMPII;]

[24] 2L3

{251 L4:RCEIEX 2 4p"CTLDDATD'

[26] CMS€'EXEC APLEDIT ",FONC," 255°¢
[271 DATD€FONC,* APLEDIT A (192 FIX*
[281] CTLDE¢FONC," APLEDIT A (CTL?

(291 RCe110 OSVO 2 4p*DATDCTLD?

[30] RCe 1+1424DATD

[31] TEMP€(RC,NCCepTEMP) pTEMP€DATD

[321]

[33] LB8:>(RC<I«I+1)2L9

(341 >(NCC2NCe€pRECEDATD)AL10

[35] TEMP€(RC,NCCENC)2TEMP

[36]1 L10:TEMPILI; 1JeNCCAREC

[371 2.8

{381 L9:0FX TEMP

[39] A OPTION LIGNE SUIVANTE ERASE DU FICHIER EDITE
[40] A CMS€"ERASE ',FONC,* APLEDIT A"
[41] CMS€'ERASE '",FONC,' APLEDIT AT
Figure 17. APL2 Function to Call Xedit

Appendix C. Sample APL2 Function to Use CMS Editor 109

110 AN OVERVIEW OF APL2

ENDI SA B

The following APL functions implement a simple server which will accept offers
from one or more APL users via the global SVP. The various functions can be ex-
panded as noted to include the processing logic for a specific application.

It should be noted that the server does not set access control when a variable
is shared. This must be done by the user offering the variable or tha saerver will
not be signalled on refarences or spaecifications of the shared variabla.

D.1 CLEANUP
wCLEANUP[Olv

[ol CLEANUP

[1] A FUNCTION TO HANDLE HOUSEKEEPING AND/OR STATISTICS.

{21 n

[3] a This function is called at the completion of each wait interval,
[4] ~n

[51] (64JTS)*— ACTIVE SHARES:'(2p’A* [ONL 2)"OFFER SEQUENCE NO:' OFFNO

D.2 PROCESS

vPROCESS[Olw

fol PROCESS VAR;VALUE

[1] n~ PROCESS A NAMED SHARED VARIABLE

[21 n

[31 A This function can be extended to handle the unique processing
[4] A requirements of a specific application. Minimally, it must
[5] A specify the variable named by the argument, causing its stata
[61 A to change.

[71 ~n

(81 VALUE€£VAR A get the shared variable value

[91] *VAR, "€[ITS" A specify the shared variable

[10] VAR VALUE

D.3 RETRACT
VRETRACTIOlw

fol RETRACT VAR
{11 a RETRACT AND EXPUNGE A NAMED SHARED VARIABLE

Appendix D. Sampla global SVP sarvar 111

[21

[3] A This function can be extended to handle the uniques requirements
[4] A of a specific application. Minimally, it must expunge the named
[5] A variable.
[61 ~n
£71 20pJEX VAR
D.4 SERVER

VSERVERIOlv
[o] SERVER INTERVAL;OFFNO;PROCS;RETRACTS;SETS;VARS
[1] a GENERAL PURPOSE SERVER FOR APL AUXILIARY PROCESSORS
21 n
[31 A This function acts as a dispatcher for an auxiliary processor
[4] @A written in APL. It waits for shared variable events, reciprocates
[5] A offers made to it, calls a function to process work when the partner
[6] A specifies a shared variable and retracts variables when the degree
[7] A of coupling drops below 2,
(8] ~n
[9] A The functions SHARE, PROCESS and RETRACT are called as required to
[10] A handle shared variable events. These functions may be extended
[11] Aa to handle the unique requirements of a specific application.
[12]1
[13] A This function takes an argument INTERVAL which specified a maximum
[14] A wait time. Each time this interval expires, the function CLEANUP
[15] A is called. This function may also be extended to handle the unique
[16] A requirements of a specific application.
[17) m
[18] A The semi—-global variable OFFNO is an offer number used to attempt
[19] A to ensure a unique shared variable name.
[20]1 n
(211 -SETSVE, p0SVE,[JSVE<OFFNO€0 A clear prior events
[22] RESET: CLEANUP A called at end of interval
[23] SETSVE:OOSVE€INTERVAL A preparae to wait
[24]1 RUN:>(0£pPROCS€ISVQ+10)/0FFER A check for offers
[25] -(v/SETS€(OSVS VARS€'a' [ONL 2)A.=0 1 0 1)/SET A check state
[26]1 =(v/RETRACTS€2#[05V0 VARS)/EXPUNGE A check for retraction
[271 -=(0=(OSVE)YRUN RESET A wait for an event
[28]1 n
[29] OFFER:SHARE'PROCS A couple any offers
[30]1 -RUN
[31]1 m
[32]1 SET:PROCESS*<IJIO+11SETSAVARS A process specified variables
[33]1 -=RUN
[34] n
{351 EXPUNGE:RETRACT* <[(JI0+1IRETRACTS#VARS A retract as necessary
[36]1 -RUN

112

AN OVERVIEW OF APL2

D.5_ _SHARE

vSHARE[Olv

[ol SHARE PROC;MY_NAMES;HIS_NAMES

[11] A SHARES VARAIBLES WITH A SPECIFIED PROCESSOR

[2) =~

[3] A Variable names offered by the specified processor
[4] A are prefixed with a, the processor id and _

(51 A and then suffixed with _ and OFFNO to create

[6] A unique names which are then used to share.

[71 n

{81 HIS_NAMES€{]JSvVvQ PROC

[9] MY_NAMES€(2[2]1(+pHIS_NAMES)pc*a', (FPROC), *_"),HIS_NAMES

[10] MY_NAMES€MY_NAMES,"_*,'000000000"3%, [0I0+.5]0OFFNO++2pMY_NAMES
[11]1 =upFROC {ISYO MY_NAMES,"' ',HIS_NAMES

[12] OFFNO€OFFNO++pMY_NAMES A update offer sequence number

Appendix D, Sample global SVP server 113

114 AN OVERVIEW OF APL2

JEDITOR 1 40
JEDITOR 2 40
JMCOPY 92, 93, 94
JRESET 36

)SIS 36

OAI 82
Oav 93
OEA 37
OEM 38
OEs 38
OET 38
oL 37
ONLT 490
OrR 37

access
DB2 54-55, 87
SQL/DS 52-53
account number 82
AP
See auxiliary processor
APL2
installation under TS0 85-89
libraries 85
shared variable processor 79-83
system options 85
AP127 43, 60, 69
AP2TIOPT 87
AP317 72
array
nested ¢
prototype of an 19
simple mixed %
simple unmixed 4%
type of an 19
asynchronous processas
communication 80

INDEX

authorization 59

auxiliary processor
ISPF 71-78
multiple user 80
SQL 43-69

BADCHARS 93
bulk insertion 62-64

CALL 63
CDR
See Common Data Representation
CHARIND 93
CLOSE 62
COMMIT 57, 65
Common Data Representation 80
complex numbers 35
CREATE 56

data base
administrator 52, 55
multiple data base operation 56
data types 49
DB2
access 54-55, 87
environment 53-54
DELETE 64
DEPTH 8
DISCLOSE 13, 19
DISCLOSE WITH AXIS 14~16
DISPLAY 6, 8

Index 115

EACH 24-27
aditor
JEDITOR 1 40
JEDITOR 2 40
systems 41
ENCLOSE 9-11, 26
ENCLOSE WITH AXIS 11
ENLIST 21
environment
ISPF-APL2 71
SQL/DS 50-52
error handling 36-40
event
massage 38
simulation 38
type 38
exacute alternate 37

FETCH 62

FIND 20

FIRST 19

FIX_ 94

FLAG_ 94

FLAGMVSAPL_ 94

functions
in SQL workspace
new APL2 7-22
other SQL 65

GDDM 40, 86
GETOPT 65

INDCHAR 93
INDEX 50
INNER PRODUCT 33

116 AN OVERVIEW OF APLZ2

~-13

60

INSERT 56, 63
insertion
bulk 62-64%
of a row 56
installation
APL2 under TS50 85-89
ISPAPAUX 71
ISPEXEC 72
ISPF
APL2 environment 71
auxiliary processor 71-78
ISPFWS 72

LENGTH (parameter of SETOPT) 65
libraries

APL2 85

SAM libraries naming convention
loading APL2 public workspaces 89

MATCH 8
MATRIX (parameter of SETOPT) 64
MESSAGE 65
migration 91-98
mode
multiple user 50
single user 50
multiple
data base operation 50
user APs 80
user mode 50

N~-WISE REDUCE 28
naming convention for SAM
libraries 86
national language 40
new
APL2 functions 7-22
APL2 operators 22-3%
null value 45

86

OPEN 62
operating system
in DB2 53-55
in SQL/DS 50-53

operation

multiple data base 590
operators

definad 28

aenhanced 28-34

new 24-27

OUTER PRODUCT 32

PICK 16

PREP 62, 63

prototype of an array 19
prototyping tool 77

relational

data bases 43-69

data model 4%, 45
REPLICATE 30
report creation 5
request stack vector 56, 58, 59, 63
result

data array 56, 58, 64
RESUME 65, 66
return code vector 56, 58, 59
ROLLBACK 65
row

insertion 56

SAM

files 85

libraries naming convention 86
SCAN 31

SELECT
ISPF sarvice 74
SQL command 57
salective specification 17
saession manager 93
SETOPT 65
shared memory
global 81
local 81
Shared Variable Procassor
Sea SVP
shared variables 80
SHOW 65
single usar moda 50
SMP considerations 89
SQL
auxiliary procassor 43
commands 47
function 56
language 46

rasult 56
workspace 55-69
SQL/DS

access 52-53
environment 50-52
stack vector
See requast stack vaector
structure
of result data 6%
of tables 44§
Structured Query Language
Sea SQL
SVP
characteristics 79-81
diagnostic facilities 82
implementations in VM and
MVS 81-82
sharaed variable processor
system
APL2 system options B85
editor 41

79-83

table
column 44
create 56
join 45
logical 49
operations 45
query 57

Index

117

row 4%

structure 44
TRANSFER workspace 93, 94
TS50

APL2 installation under 85-89

UPDATE 64
user
multiple user APs 80
multiple user mode 50
single user mode 50
using
APL2 functions as dialog
functions 74
ISPF and APL2 to create dialogs 73
ISPF Sarvices from APL2 72
PDF Editor for APL2 Functions 76

118 AN OVERVIEW OF APL2

subroutines written in other lan-
guages 76

VECTOR (parameter of SETOPT) 64
VIEW 49
VS5AM files 85

workspace
DISPLAY 6
ISPFWS 72
SQL 55-69
TRANSFER 93, 94

READER'S
COMMENT

AN OVERVIEW OF APL2

6624-1627

You may use this form to communicate your comments about this publication, its
organization, or subject matter, with the understanding that IBM may use or dis-
tribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

Your comments will be sent to the author's department for whatever raview and
action, if any, is deemed appropriate. Comments may be written in your own lan-
guage; use of English is not required.

Note: Copies of IBM publications are not stocked at the location to which this
form is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to vour IBM representative or the IBM branch
office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Lagibility

If you wish a reply, give your nama, company, mailing addrass and datat

What is your occupation ?

FORM

Reader's Comment Form

Fold and tape

Fold and tape

Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 40 ARMONK. N Y

<|'|

POSTAGE WILL BE PAID BY ADDRESSEE:

iIBM International Systems Center
Department H52, Building 930
P.O. Box 390

Poughkeepsie, New York 12602
U.S.A.

Please Do Not Staple

Foid and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

- e = — e —— e~ —— —— — — — aut7 Buojy plO4 40 IR — -

http:�����������������������������������.����������.���������������.�����

READER'S
COMMENT

AN OVERVIEW OF APL2

GG24-1627

You may use this form to communicate your comments about this publication, its
organization, or subject matter, with the understanding that IBM may use or dis-
tribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

Your comments will be sent to the author®s department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own lan—
guage; use of English is not required.

Note: Copies of IBM publications are not stocked at the location to which this
form is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to vour IBM representative or the IBM branch
office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address and date:

What is your occupation ? === === m e e e e e e

FORM

Reader's Comment Form

Fold and tape

Fold and tape

Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM International Systems Center
Department H52, Building 930
P.O. Box 390

Poughkeepsie, New York 12602
U.S.A.

Please Do Not Staple

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

http:�.�..�.�.�.��.�..�...�.....��.......�.....�.��.���.......�

READER'S
COMMENT
FORM
AN OVERVIEW OF APL2

6G24-1627

You may use this form to communicate your comments about this publication, its
organization, or subject matter, with the understanding that IBM may use or dis-
tribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your ouwn lan-
guage; use of English is not required.

Note: Copies of IBM publications are not stocked at the location to which this
form is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or the IBM branch
office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address and date:

What is your occupation 7 ~-- —— - -

Reader's Comment Form

Fold and tape

Fold and tape

Piease Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM International Systems Center
Department H52, Building 930
P.O. Box 390

Poughkeepsie, New York 12602
U.S.A.

Please Do Not Staple

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

———m— e — - ——~ ——— aun Buofy plo4 101Ny —-

