
Santa Teresa
Laboratory
San Jose, CA

I •

THE PRINCIPLES OF APL2 B1 DR. JAMES A. BROWN

MARCH 19 8 4 TR 03.247

MARCH 1984
TR 03.247

THE PRINCIPLES OF APL2

BY

DR. JAMES A. BROWN

INTERNATIONAL BUSINESS MACHINES CORPORATION

GENERAL PRODUCTS DIVISION

SANTA TERESA LABORATORY

SAN JOSE, CALIFORNIA

ABSTRACT

This paper presents the rules governing the APL2 language and
the principles that motivated the design decisions.

iii

TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 THE OBJECTIVES OF APL2 2

2.1 APL1 2

2.2 APL2 ...•..... 2

3.0 CRITERIA 4

3.1.1 Compatibility 4

3.1.2 Formality 5

3.1.3 Simplicity 6

3.1.4 Usability 6

3.2 Design Decisions 6

4.0 METHOD ••••••••••• 8

4.1 The Constructive Approach 8

4.2 The Deductive Approach ... 8

4.3 Comparison of the Approaches 9

5 .0 THE OBJECTS OF APL2 •••••••••••• 1 0

5 .1 Arrays 1 0

5 .1 .1 The Concept of an Array 1 0

5 . 1 . 2 Controls on Arrays 11

5.1.3 Arrays in APL2 ••.••••.•••.••• 11

5.2 Functions 12

5.2.1 The Concept of a Function 12

5.2.2 Controls on Functions . . . 12

5.2.3 Functions in APL2 •••••••••••••• 12

5 • 3 Operators 1 3

5.3.1 The Concept of an Operator . . . 13

5.3.2 Controls on Operators 14

5.3.3 Operators in APL2 •••••••••••••• 14

6.0 NAMES •••.•••••••••••••••••• 16

6.1 Primitive Names . .. 16

6.1.1 Primitive Array Names 16

6.1.2 Primitive Operation Names 17

6.2 Constructed Names 18

6.2.1 User Names 18

6.2.2 Distinguished Names 19

6.3 Writing Names •••••••••••••••••• 19

6.4 Displaying Names 20

6.5 Global and Local Names 20

7 . 0 SYNTAX •••••••••••• • • • • • 22

7.1 Expressions without Parentheses 24

7.1.1 Vector Expressions•. 24

7.1.2 Array Expressions 24

7.1.3 Function Expressions . 26

7.1.4 Operator Expressions 30

7.1.5 Valueless Expressions 30

v

http:��.����.���.���

7.2 Expressions with Parentheses ... 30

7.2.1 Vector Expressions in Parentheses 31

7.2.2 Array Expressions in Parentheses 32

7.2.3 Function Expressions in Parentheses 33

7.2.4 Operator Expressions in Parentheses 33

7.2.5 Valueless Expressions in Parentheses 33

7.3 statements . 34

7.3.1 Immediate Execution Mode 34

7.3.2 Function Execution Mode 34

8.0 THE SUBSTITUTION PRINCIPLES . 35

8.1 Expression Substitution .•.... 35

8. 2 Syntactic Substitution .. . 38

8.3 The Significance of Substitution . 39

9 . 0 BFACKETS •••••••••••••••••••• 40

9 • 1 Indexing•.•..••..• 40

9.2 Axis Specification . .. 41

9 • 3 Binding strength 42

9.4 Evaluation Patterns for Axis Specifications 44

10.0 OTHER SPECIAL SYMBOLS Lf6
10.1 Assignment . 46

10.1.1 Assignment Syntax 46

10.1.2 Assignment Result 48

10.1.3 Assignment Semantics 49

10.2 Branch and Escape 50

10. 3 Jot . 50

11.0 FUNCTION PROPERTIES 51

11.1 Mathematical Properties 51

11.2 APL2 Function Properties 52

11.2.1 The Scalarwise Property 52

11.2.2 The Pervasive Property 54

11.2.3 The Leafwise Property 55

12.0 APPLICATION OF FUNCTIONS 57

1 2 • 1 Functions on items 57

12.2 Functions on 5ubarrays 58

12.3 Intrinsic Functions 58

13.0 RELATED FUNCTIONS . 60

13.1 Direct Execution of Functions 60

13.2 Indirect Execution of Functions 60

13.2.1 The Fill Functions . 60

13.2.2 The Identity Function . 61

14.0 FILL ITEMS 62

15.0 EMPTY ARRAYS 65

15.1 Empty Nested Arrays 65

15.1.1 The Constructive Approach to Empty Arrays 6S
15.1.2 The Deductive Approach to Empty Arrays 66

15.2 Empty Arrays and Fill Functions 69

• f~ \ j ~ 1 vi

15.3 Empty Arrays and Scalar Extension 71

1 5 . 3 . 1 Scalar Extension . 71

15.3.2 Outer Product . 73

15.4 Empty Arrays and the Identity Function 73

16.0 CONCLUSION 76

17.0 ACKNOWLEDGEMENTS 77

18.0 REFERENCES 78

19.0 APPENDIX 1: SUMMARY OF RULES AND DEFINITIONS 81

20.0 APPENDIX 2: DEFINED FUNCTIONS 85

21.0 APPENDIX 3: A BRIEF CHRONOLOGY OF APL DEVELOPMENT 88

vii

The Principles of APL2
by

Dr. James A. Brown

~ INTRODUCTION

IBM has many products which follow the IBM internal standard for
APL (VSAPL, APLSV, PC APL, 81 00 APL). This level of the APL
language is referred to as APL1 in this paper.

APL2 is based on this writer' 5 PhD Thesis [Br1], the array theory
of Trenchard More [Mo1] 1) and most of all on APL1. See Appendix 3
for a brief chronology of the development of APL2. APL2 removes
many of the restrictions of APL1. APL2 generalizes many of the
fundamental concepts of APL1 and extends or completes many
functions and operators.

Although this paper attempts to be formal in its approach, some
statements are made without proof when the details of the proof
would not add to understanding. While a presentation of
principles would be brief, this paper derives and discusses the
rules and principles. No attempt is made to present the new
language in its entirety. Familiarity with the concepts of APL2
is assumed. Those wishing a more complete description of APL2 may
refer to the APL2 publications library [1-11]. This is rather a
discussion of how APL2 was designed and what motivated the
choices that were made.

1

~ THE OBJECTIVES OF APL2

APL1 has proven itself to be an extremely powerful, usable
language. This is because it has arrays as data; has functions
which apply directly to arrays and produce arrays as results; has
operators which apply to functions in a uniform manner producing
families of related functions; and has syntax governed by a few
simple, easily understood rules.

Arrays are collections of numbers or collections of characters.
Arrays are rectangular in the sense that in a matrix, for
example, each row has the same number of columns.

Numbers are one-sorted in that all numbers are real numbers and a
user of the notation does not have to manage number
representations.

Array operations allow computations to be performed where the
data itself controls the limits of the operation. A summation
operation is controlled only by the data being summed. No loop is
explicitly written. You can do arithmetic on whole collections
of numbers in a single operation.

Operators provide a means for controlling the application of
functions to data. When you understand how an operator works when
applied to one function, you know how it applies to any function
in its domain. If you understand +/, then you can figure out -/
and 0/ even if you t ve never seen them.

The simple syntax of APL1 does not assign precedence to
functions. You do not need to remember which functions are
evaluated before which other functions. Only their position in an
expression determines when they are evaluated.

If we understand what is good about APL1 ~ we may proceed to
consider extensions which will enhance the good features. The
extensions range from the removal of somewhat arbitrary
restrictions to incorporation of pervasive changes.

In APL2 the APL1 restriction which forbids numbers and characters
in the same array is relaxed. An array may be a collection of
numbers and characters. Numbers are one-sorted in that all
numbers are taken from the complex number field. The term
nonreal number is reserved for numbers with a nonzero imaginary
part. Real numbers are the proper subset which have an imaginary
part of zero.

2

APL2 extends the array concept by permi tting any i tern of an array
to be any other array. Actual data is not always rectangular.
APL2 retains the useful properties of rectangular data yet lets
non-rectangular data be easily represented in nested arrays.
Nested arrays can be used wi th the same ease as APL 1 arrays.
Users are not burdened with the managing of the data structures.
More operations are controlled by the data and the need for
explicit controls on these computations is removed. The result
is a reduction in the complexi ty of programs.

Operators from APL1 are generalized so that they apply to all
dyadic functions even those defined by the user. One new
primi tive operator is defined and users may define their own
operators.

The syntax of APL2 is essentially unchanged from APL1.
Restrictions on the use of parentheses are removed so that one
simple rule governs the use of all parentheses. This provides
the ability to write expressions of operators and a convenient
way to write lists of arrays (especially nested vectors) as an
extension of constant vector notation.

In summary: the objective of APL2 is to produce a more powerful
and productive language; the challenge is to make it formally
correct and complete while providing a rich set of tools for
problem solving.

3

L....Q CRITERIA

There is no doubt that the set of possible extensions is
inter-related. It is not possible to study each extension in
isolation from the others. Yet there has to be some measure by
which we jUdge any change.

Four criteria against which any proposal for an extension may be
measured are:

o compatibility

o formality

o simplicity

o usability

3.1.1 COMPATIBILITY

Compatibility is the measure of the extent to which a proposal
imposes a change on something in APL1. There are four kinds of
changes to functions which might affect compatibili ty:

o errors become answers ~

o answers become different answers,

o answers become errors ~ and

o errors become different errors.

Many changes cause APL2 to give answers where APL1 produced an
error message. In general, these are not considered serious
compatibility issues and changes of this kind have been taking
place throughout the history of APL. However a system where every
expression gives an answer no matter what would be a difficult
one in which to develop an application.

Changes which cause answers different from those in APL1 are
serious compatibility issues and should be adopted only for very
strong reasons.

Changes which cause errors where APL1 gave answers appear serious
at first glance but are not because the error message and the
carets point precisely to the offending statement. These are
therefore easier to fix than the second case above where a
failure may not occur.

In some situations APL2 gives a different error message than
APL1. This does not affect compatibility because there was no

4

way under program control to determine which error occurred. It
does affect documentation and user practice. Since APL2 has
error handling' facilities, future changes in error messages
could affect compatibili ty.

Another factor that can influence the decision is the extent to
which a change can be automatically detected or even corrected.

A second form of compatibility has to do with the rules users
apply when using the notation. APL1 has many identities which
help people understand and remember how functions work. For
example the shape of the result of the indexing function may be
diff icul t to figure out wi thout the identi ty:

It is important to preserve useful identi ties whenever possible.

3,1,2 FORMALITY

Formality is the measure of the extent to which a proposal
follows rules. This is where consistency must be determined. A
formally incorrect proposal can never be considered. However
there may be many correct formalisms and the choice among them
must be guided by other principles.

Formal arguments are normally phrased in terms of identi ties. As
described in the previous section, APL1 has many identities and
jUdgement is required in choosing those which are to remain true
and those which will be violated. Very often the identities of
APL1 dictate which of several definitions for a primitive should
be chosen. Of course it is a matter of judgement which identi ties
are the important ones. In APL2 the shape identities from APL1
(au in indexing ~ outer product, etc.) are considered important.

Also formal correctness of the extended notation may be assured
by choosing easily understood -- universally true identities
describing the new function. For example, in APL2 the new
function disclose (~) is defined as a left inverse of enclose
(c:) :

The function disclose is also given a meaning when applied to
nonscalar arguments but even so the above identi ty remains
strictly and universally true.

5

3,1,3 SIMPLICITY

Simplicity is the measure of several things. Having few rules is
better than having many; having classes of objects with similar
properties is better than treating each object separately;
resul ts that are conformable wi th arguments are better than
results that are not; a rule without an exception is better than
one wi th an exception.

Again these are not independent considerations. It is clearly
good that the class of functions called the scalar functions all
operate the same way_ Saying all functions are ambi-valent lets
us then talk about all functions as a class. Yet operators are not
ambi -valent because the addi tional parentheses that would be
needed are not desirable.

The simplicity principle is sometimes called Occam's Razor -- if
two explanations describe some behavior then the simpler one is
probably correct. That is how renaissance astronomers concluded
that the Sun was the center of the solar system - the motion of
the planets was simpler to describe.

3.1.4 USABILITY

Usability is the measure of the ease with which the notation can
be understood and applied. Although important, it is the most
difficult criterion to measure or subject to an objective test.
This is probably the reason why companies have whole departments
devoted to usabili ty studies and human factors. In the end,
usabili ty is strongly influenced by formali ty and simplici ty.

Given that the other principles are followed, usability follows
from conscious decisions to make things easy to do. It can arise
from making the most common things people want to do easy to
express even when another formulation may be desirable for other
reasons. One proof of usabili ty is the abili ty to correctly
predict how an operation works in an unfamiliar situation -- the
law of least surprise. Usabili ty in APL2 most often follows from
the knowledge of a few simple rules -- again the application of
identities.

~ DESIGN DECISIONS

These principles are not independent properties. At first it is
tempting to try to order them by priority. Perhaps formality is
more important than compatibility; or usability is more
desirable than simplicity. If a given change falls only under
one of these headings, that may decide the question, For example
a prototype of APL2 returned 0 as the answer to 0+0. There are

6

good arguments why that answer is better, but 0 is not more
formally correct than 1. (Formally any number is correct - 0+0 is
not undefined, it's over-defined.) Only compatibility with APL1
dictated that we must return 1. More often the decision is a
trade off between several principles and in these cases human
judgement must be applied to determine the decision. This is why
language design is an art rather than a science and one reason why
reasonable people can come to different conclusions given the
same problem.

Common to all four criteria is the notion of an identity. APL2
must be compatible with useful identi ties in APL 1 ; identities are
the key to formality; identities make ideas simple to understand
and that makes them usable.

In the following sections an attempt will be made to identify how
these principles are applied in making the decisions embodied in
APL2.

7

~ METHOD

There are two very different approaches to extending APL which
were used in the design of APL2. The approaches were used for
different purposes and at different times in the design process.
The constructive approach assures us that the desired function is
available in the new language. The deductive approach assures us
that the new language is formally correct.

~ THE CONSTRUCTIVE APPROACH

In the constructive approach we start with what we have (APL1)
and make extensions -- at each point being sure we have not
introduced any formal inconsistency, anything difficult to use,
etc. We build new things from the old things.

~ THE DEDUCTIVE APPROACH

In the deductive approach we start with where we want to be and
make sure that the resulting notation is compatible, formally
correct, simple, and usable. We begin by adding things one at a
time, then look back and formalize what was produced. The rules
may be proposed when you start but are not validated until you
finish. The real rules are discovered after we know where we want
to be. The process is iterative -- extend, discover rules, adjust
the extensions to meet the rules ~ and repeat the process refining
the ideas and the notation at every step. When using this
approach, since it is a matter of judgement as much as with the
constructive approach, it is advisable to stay away from the
limiting cases where intuition may not serve well. Therefore we
stay away from arrays of rank a and 1 , from axes of length 0 and 1 ,
and therefore from arrays having 0 or 1 items. Rather we examine
extensions away from the limits t attempt to understand what is
true, write the identity that describes what is true, and then
approach the limi t formally. If the identi ty fails at the limi t t

either the identity is not universally true, we wrote the wrong
identity, or we discover some new property of the data or the
operations which make it true.

The section on empty arrays contains two examples of the
deductive approach. In the first we choose to believe the formal
equation and postulate data that makes the equation universally
true. In the second, the example is universally true but does not
do what is expected in the empty case. This time we reject the
equation in favor of another which is also universally true but
which does what is expected as well. The choice you make in any
given instance is, alas, a matter of judgement.

8

~ COMPARISON OF THE APPROACHES

Neither approach is more correct than the other and in cases
where the same conclusion is reached by either approach very
Ii ttle jUdgement need be employed. Which approach is chosen in a
particular instance depends on the impact of the proposed
extension.

When adding a single primi tive operation it is clearly most
important that it fi t wi th what exists. If the primitive is
isolated from other considerations such as syntax and new data
structures it may be considered in isolation. The only questions
are "Is it a good definition?", "Is it easy to use?", etc.

When adding a large extension that pervades a significant part of
the notation, you still begin with the constructive approach -
adding things carefully one at a time. After everything is in
place, however, the resulting notation should be compatible,
formal, simple, and usable. This involves writing down what you
believe to be true about the extended notation (keeping away from
the limits), then studying the limits making adjustments to rules
or extensions until you are satisfied that all the criteria are
satisfied.

In particular, extending the universe of data to nested arrays
must, by its very nature, affect every operation. Given nested
arrays, some new primitives must be viewed as part of the whole
and not as isolated extensions.

The following sections introduce APL2 objects. Starting with
general abstract notions, we apply controls to limit the set of
objects. Since we know what we want to achieve, we know what
controls to impose. Thus, when talking about functions in the
abstract, we make choices knowin~ that we want a linear infix
notation that can allow at most two arrays as arguments. It is
therefore no surprise when talking about syntax that we can
easily devise ways to wri te the functions we have included.

9

L..Q THE OBJECTS OF APL2

APL2 recognizes three classes of objects: arrays, functions, and
operators. In this section each object class is examined first
as an abstract notion and then as the subset actually permitted
in APL2.

L..1 ARRAYS

The arrays of APL2 are based on this writer's PhD dissertation
[Br1]and on the array theory of Trenchard More [Mo1 etc.] and
influenced by numerous other papers (see references). Array
theory is an attempt to give a scientific basis to the theory of
data and has been proven to be correct (i.e. consistent) if set
theory is correct.

Arrays are the objects least constrained by APL1. Evidence of
this is the existence of two very different nested array
implementations: one based on array theory and one based on other
principles. other possibilities also exist. One can conceive of
arrays wi th different numbers of i terns in each row (ragged
arrays) and these would not conflict with rectangular arrays
which would be a proper subset of them. Geoff Lowney t s PhD
dissertation [Lo1J, for example, is an interesting (although not
entirely compatible) possible direction for extension to arrays.

5.1.1 THE CONCEPT OF AN ARRAY

Arrays may be viewed in the abstract. An array is an ordered
collection of i terns. It is the analog of a set which is an
unordered collection of items. At this level of abstraction the
i terns can be anything at all and they can be ordered in any
conceivable manner.

The concept of ordered collections stands on its own and may be
considered and understood without a syntax to write collections
or operations to manipulate them. APL2 adds to this concept
controls which organize and define a subset of the set of all
possible arrays on which we define operations. It then defines a
syntax for expressing some arrays, operations to transform them
into other arrays, and rules for applying the operations.

10

5.1,2 CONTROLS ON ARRAYS

The first control on arrays is rectangularity, We include in our
universe of data only arrays where the number of items along any
axis is independent of the posi tion along the other axes (that is
the axes are orthogonal) .

The next control is to specify the nature of the items. We will
include in our universe of data only arrays whose items are
arrays.

While it is conceivable to have arrays in which the recursion
continues wi thout end, we know we want to express computations on
real data. We therefore stipulate as the next control the
condi tions for the termination of nesting [Mo8J. We declare that
a single number or character (that is a simple scalar) contains
itself as its only i tern. Thus arrays contain arrays as i terns and
recursion is effectively terminated by a simple scalar.

The next control on arrays is fini teness. The length of any of the
orthogonal axes of the rectangular arrays is finite. The number
of axes is finite and the depth of nesting is fin! te.

5.1.3 ARRAYS.IH APL2

The arrays of APL2 are finite rectangular arrays which contain
arrays as i terns. When the term array is used 9 it means this
subset of all possible arrays.

The arrays of APL2 are the same as the arrays of Array Theory and
in particular empty arrays have structure as defined by Array
Theory [Mo1 etc.].

An array one of whose i terns is other than a single number or
character (a simple scalar) is called a nested array. An array
containing only numbers or containing only characters is called a
homogeneous array. An array all of whose i terns are either single
numbers or single characters is called a simple array. The
arrays of APL1 are simple and homogeneous.

In some sense every array in APL2 is nested because it contains
other arrays. The term is reserved for those which contain at
least one i tern which is not a single number or character. Thus the
universe of arrays is partitioned into two subsets: simple
arrays and nested arrays.

1 1

h2. FUNCTIONS

The functions of APL2 are defined as in APL1. Although APL2 has
several new functions and old functions have been extended, the
defini tion of and controls on functions are not different and are
included here for completeness.

5.2.1 THE CONCEPT OF A FUNCTION

A function is a mapping from the members of its domain to the
members of its codomain. (The codomain is sometimes called the
range.) Both the domain and the codomain are sets (as opposed to
arrays) because there is no implied ordering. The mapping
represented by a function may be specified by a formula
(especially if the domain has an infinite number of members) or
by a table listing the codomain member corresponding to each
member of the domain.

APL2 adds to this concept controls which select the subset of
functions we wish to make representable.

5.2.2 CONTROLS ON FUNCTIONS

Since the data of APL2 is arrays, we want functions to operate on
arrays and produce arrays. An APL function may take ei ther one or
two arrays as arguments and produce one array as a result.
Therefore the first control we impose on functions is that the
largest domain is the set of all arrays together with the set of
all pairs of arrays. It is this choice of domain that makes all
functions ambivalent. Which is written in any instance is a
syntactic decision not a semantic one (see section on array
expressions).

The second control is that the largest codomain of functions is
the set of all arrays. When a function is evaluated, the array
from the codomain that is produced is called the explicit result
of the function.

Thus the functions of APL2 map arrays (monadic) or pairs of
arrays (dyadic) onto arrays.

5.2.3 FUNCTIONS IN APL2

While the arrays of APL2 match those of array theory ~ the
functions (and the symbols used to represent them) are taken from

12

APL1. Not all possible functions are made primitive but a way to
generate functions is provided (operators) as well as a way to
define functions.

Given the new data structures, the restrictions on the number of
arguments to functions are not severe. Al though APL allows
functions of at most two arguments and at most one result, nested
arrays give an easy way to package arrays into a vector. The
vector may be thought of as mul tiple arguments even though
syntactically i t is one argument.

The function universe of APL2 also includes functions which do
not produce a resul t. These are not functions in the strict sense
because they do not have a codomain. In a strict function this
could only be true if the domain were also empty. The only
primitive function which returns no result in some circumstances
is execute (~). User defined functions without results are also
permitted.

Notice that the description of functions does not include APL's
concept of niladic function (a function wi th no arguments) and in
general when we talk about "all functions" we do not mean the
niladic ones. Except for compatibili ty wi th APL1 terminology ~ we
would give these a different name. Syntactically they are
treated like arrays.

~ OPERATORS

Operators are one of the most powerful concepts in APL and will
probably provide the most interesting direction for future
extensions. APL1 has a very limi ted set of operators which can be
used only with specific functions. APL2 has an unlimited set of
operators.

5.3.1 THE CONCEPT OF AH OPERATOR

An operator is a mapping from a member of its domain to a member
of its codomain. This is exactly what was said about functions.

Operators differ from functions because the largest domain for
operators is larger than that for functions; the codomain is
different from that for functions; and operator binding to
operands is stronger than function binding to arguments.
Operators and functions as a group are referred to as operations.

13

5.3.2 CONTROLS ON OPERATORS

Operators in APL1 are defined as applying to functions giving new
functions as a resul t. In APL2, operators wi th array operands are
allowed so the first control on operators is that the largest
domain of operators is the union of arrays, functions, and pairs
of arrays and functions in any combination. Thus an operator may
take one array or one function as an operand (monadic); or two
arrays, two functions, or a function and an array as operands
(dyadic). It is the concept of an operator taking array operands
that permits using / as both reduction and replicate (compress).
In APL2 I is an operator. It is not possible in APL1 to tell if /
is a function or an operator. No expression of the form
array /array could give a different answer depending on the
interpretation of array/ as a monadic operator with an array
operand or array / array as a dyadic function.

The second control on operators is that the domain of any
particular operator contains either arrays and/or functions or
pairs of arrays and/or functions. It is this choice of domain
that prohibits operators from being ambi-valent. When an
operator is defined a semantic choice is made that determines the
number of operands allowed. Context does not influence the
decision. No operator is both monadic and dyadic.

The third control on operators is that the largest codomain is
the set of all functions. Therefore operators return functions as
their results and the functions so produced are called derived
functions. Operators that produce arrays may be correct but are
not included in APL2 •

5.3.3 OPERATORS IN APL2

Not all possible primitive operators are defined and no general
way to generate operators (derived operators) is provided. A
mechanism to define the derived functions of user operators is
provided.

The operators of APL2 match those of APL1 in concept but there are
several important generalizations and one new operator.

The operators of APL1 are extended in APL2 so they apply to all
dyadic functions -- primitive~ derived, and defined. The new
operator each (..) transforms the concept of iteration into one of
an array operation and applies to all functions -- monadic and
dyadic.

The controls put on operators are strict and examining
relaxations of the controls could lead to exciting new concepts.
For example ~ currently there is no capabili ty to deal wi th
collections of functions as there is wi th collections of data.

14

Note that nothing in the language precludes the inclusion of
other objects perhaps of higher binding power than operators but
none have been included.

15

~ NAMES

In the previous section we defined APL2 objects in the abstract.
In this section we discuss how the objects are identified in a
written notation.

A name is a string of one or more characters which is~ or may bet
associated wi th an APL2 object. Some names are always associated
with the same object, others may not be associated with objects
at all or may be associated with different objects at different
times.

Names are considered atomic, indivisible units of writing even
when they take more than one character to represent.

~ PRIMITIVE NAMES

Primitive names are those that are defined as part of the
definition of the language. They have fixed associations in that
a given primitive name is always associated with the same object.

6.1.1 PRIMITIVE ARRAY NAMES

APL2 arrays are collections of numbers and characters. The
primitive arrays (the ones given names) are single numbers and
single characters (that is simple scalars) .

Numeric scalars are wri tten using their decimal representations.
Complete rules for writing numbers may be found in [1J. Here are
examples of various styles of numbers.

245.5

is the name of a single numeric scalar. It is treated as an
indivisible unit despi te the fact that it occupies 5 print
positions.

Negative numbers are written as positive numbers prefixed with a
high bar.

Notice that, unlike conventional mathematics, the negative
attribute of a number (-) is distinguished from the subtraction
operation (-).

Numbers may be represented in scaled form by specifying an
integer power of ten scaling factor.

1 6

2.35E13

Complex numbers may be wri tten as a real and imaginary part
connected wi th a J

and in polar form with magnitude and angle expressed in degree~

or radians.

2D45
1 R1 • 71 6

While any rational number may be written 9 in an implementation
not all are associated wi th a scalar object. For example t

2E987654 is a legal name for a number but is not associated with
an object in most implementations because the number is not
representable.

A given numeric object may be associated with many names. For
example, the number ttfifteen" can be written:

15
1 5 .
15.0

1 • SE1

15JO

etc.

Character scalars are written by enclosing the graphic
associated with the character in single quotation marks.

tAt

This is a single character and is treated as an indivisible unit
despi te the fact that on input i t occupies three print posi tions.
The use of the quotes means it is always possible to distinguish
between a number which is represented by a single digit and the
character whose graphic is that digit.

2 cannot be confused with '2' in an expression

While the APL2 implementation allows for 2, 1 47 9483,647 different
characters, not all may be written as constants. See [1] for the
list of characters allowed in quotes.

6.1.2 PRIMITIVE OPERATION NAMES

Primitive operations are named by single symbols each of which
occupies one print posi tion.

There is a large set of primi tive functions using the symbols:
17

+ - x of- r L ? •*
0 V 1f <IE - A ¥ S

> ;t p ~ c:: ¢
= ~
~ 1- t t ~ 4 T £ .t ...
J. T

There are only a few primi tive operators using the symbols:

• / \ f ~ ..

Note that dot (.) is an ambiguous symbol used as a decimal point
in addition to its use as an operator. Which is intended in any
instance is clear from context.

~ CONSTRUCTED NAMES

constructed names are strings of one or more characters with the
following constraints:

Ini tial or only character is from the set

ABC • •• X.YZ~O

ABC, , ,XYZ6

and remaining characters (if any) are from the set

ABC • •• XYZ~-_

ABC, , ,XYZA
0123456789

6,2,1 USER NAMES

User names follow the above rules except that the initial
character may not be D. Any name constructed according to these
rules is valid (no length limitation) and none has any value
(i.e. none is associated with an object) until some action is
taken to specify the association. User names may be associated
wi th any class of APL2 object.

Arrays and user names are associated through use of the
specification arrow (~)t through parameter substitution caused
by invoking a defined operation ~ and as an implici t resul t of the
DTF function. A name which is associated wi th an array is called
a variable. Thus a variable is said to be array valued. It is
different from a constant array in that at different times it may
have a different array as value.

Functions and operators are associated wi th user names as an
implici t resul t of the DFX and DTF functions. Functions may also
be associated wi th user names through parameter subs t i tution in a

18

defined operator. Thus a user name may indicate the same function
as a primi tive function or even a derived function.

Facili ties outside the language can also provide the
associations (editors, system commands, etc.).

For historical reasons, the implementation gives special
propeties to names beginning with S~ and T~. These names shall
not be discussed in this paper.

6.2.2 DISTINGUISHED NAMES

Names which begin with the character 0 are reserved for fixed
uses in the language. Any distinguished name is valid but only a
few are associated wi th objects.

Distinguished names associated wi th arrays are called system
variables. System variables are associated wi th new values
through use of the specification arrow. They are shared
variables and provide communication with the system or
environment in which APL2 is executed. Shared variables are not
further discussed in this paper.

Distinguished names associated with functions are called system
functions. They provide an alternative to the use of symbols for
system related operations.

No distinguished names associated wi th operators are provided in
APL2.

~ WRITING NAMES

Primi tive operations are named by single symbols. When writing a
linear sequence of names, a primitive operation name need never
be separated from adjacent names. Thus the two names + and
wri tten next to each other

+

can never be confused wi th a single different operation. All
other names may require more than one symbol. When wri ting a
linear sequence of names, these names, if adjacent, must be
separated to avoid confusing the combination wi th a single
different name. Thus the two names 12 and 34, when written next to
each other, must be separated to avoid confusion with the name
1234. The separation character is a blank if no other nonblank
character falls between them. For example

12 34 blank needed for separation
12(34) blank not needed for separation

1 9

In later sections when substitution is discussed, removal of a
redundant parenthesis may imply the insertion of a blank to
prevent two names from becoming one new name. For example:

12(34)	 becomes 12 34

not 1234

~ DISPLAYING NAMES

When the character representation of expressions is produced
(because of an error or because of execution of OCR or DTF) • names
are always displayed as they were entered. This is different from
APL1 only in the case of constant array names. For example,
entering 2.5000 causes a display of the representation of the
value 2. 5 :

2.5000
2.5

However t if the same name is used in an expression containing an
error, the original name, not a representation of the value, is
displayed:

2.5000x
SYNTAX ERROR

2.5000x
A

The assumption is that a user chooses how he enters a number for
some reason and the representation should not be a1 tered. In the
above example he may know the value to five digi ts precision. As a
second example consider a defined function containing the
following expression:

DFN[3] PI~3.141592653589793238q6

Here, even if the particular implementation could not handle this
much precision the function could be transferred to some othert

implementation that could represent PI without loss of
precision.

~ GLOBAL AND LOCAL NAMES

The set of names that are defined outside the context of the
evaluation of defined operations are called global names. When a
defined operation is evaluated, names are defined that are
associated only with this evaluation. These names are called
local names. When the defined operation completes evaluation,
the values associated with local names are discarded and values
associated with the names prior to evaluating the defined

20

operation are restored. When a local and a global share the same
name t the global value is said to be shadowed by the local value.

The concept of local and global does not affect the definition of
any primitive operation. Evaluation of expressions is affected
only in that any reference to a name yields its most local value.
Therefore local names will not be considered further.

21

L.Q SYNTAX

This section and following sections show the derivation of the
definition of syntax for APL2. Appendix 1 includes a summary of
the rules.

The syntax of APL is simple, straightforward, and easy to learn.
This is so because of the great care exercised by the creators of
APL1. Similar care is required in making any extensions or
changes to syntax. With the exception of the removal of mixed
output, the syntax has been unchanged since the early days of the
language. Therefore extensions to syntax are probably the most
constrained by APL1. The resulting syntax must retain at least
the following properties:

o	 It is linear - we do not want to introduce anything that
cannot be written on a line (like superscripts, subscripts,
radical signs, and so forth) .

o	 Primi tive operations are represented by single symbols.

o	 It uses a function symbol for two (usually related) functions
- one monadic and one dyadic - that is primitive functions
are ambi-valent.

o	 No functional precedence all functions have equal
precedence and execute according to their posi tion in an
expression.

o	 Operators have higher binding power than functions.

The	 syntax of APL2 must be able to express:

o	 arrays,

o	 functions and their application to arguments, and

o	 operators and their application to operands.

The linear collection of special symbols and names (prim!tive and
constructed) used to write arrays, functions and their
application to arguments, and operators and their application to
operands, is called an expression,

The names and symbols used to write an expression are divided
into six syntax classes:

o	 array

o function

o	 monadic operator

22

0

o dyadic operator

o assignment arrow

o brackets

(Note that the object class operator is divided into two syntax
classes; brackets and their contents are treated as one class;
and ~ are treated like functions.) To these classes are added
parentheses - - the only punctuation symbols in an expression.

Evaluation of an expression may produce any of the three objects
or may produce no object at all and be correct (al though an
attempt to display or assign the result of an expression that
produces a function or operator generates an error) .

Expressions are classified by the object they produce:

o array expression: one that evaluates to an array

o function expression: one that evaluates to a function

o operator expression: one that evaluates to an operator.

o valueless expression: one that evaluates to no object.

With these thoughts in mind we examine how each kind of
expression may be wri tten. First only the simplest forms are
explored and in particular parentheses are not introduced until
later. Formation and evaluation of expressions are approached by
examining the binding strengths of the objects. The concept of
binding strength brings together in one measure all the concepts
of syntax -- order of execution, precedence of operators over
functions, building lists of arrays, etc.

Evaluation involves scanning the names (in a strictly right to
left order), determining binding strengths of objects next to
each other, and evaluating operations whenever they are
completely determined.

Thus the fundamental concept of syntax is that of adjacency or
juxtaposition and its use for the most important actions: forming
of vectors, applying functions to arguments, and applying
operators to operands.

In the following we examine binding strengths of various
combinations of objects. The objective is to arrive at a simple
linear hierarchy that is easy to use in practice to parse
expressions. Bindings are chosen so that useful expressions can
be written without parentheses. Parentheses are then introduced
as a way to delay certain bindings.

23

~ EXPRESSIONS WITHOUT PARENTHESES

First, we investigate how to wri te arrays, functions, and
operators and discover the bindings implied when symbols and
names of objects are placed next to each other.

7.1.1 VECTOR EXPRESSIONS

There is one rule for writing a simple vector: write the simple
scalars which are the items of the simple vector next to each
other wi th separating blanks as needed. Notice that, because the
rule involves a separation of items, the resulting vector must
have at least two i terns.

Here are three examples of simple constant vectors. The first is
all numeric, the second is a mixture of numbers and characters,
and the third is all character:

234

2 'B' 4

tA' 'E' te'

The last example is a different way of writing a simple character
vector than provided in APL 1 .

This is the first extension to syntax. It is a simplification.
There is now one rule for writing a vector: write the scalar
items separated by spaces. This may be generalized by saying
that when two arrays are written next to each other, a binding
exists between them. Thus if I and J are arrays, writing them
next to each other implies construction of a vector containing
them as items. In the following this is called vector binding.
Later a rewriting rule is presented that gives a compatible way
to wri te a character vector.

7.1.2 ARRAY EXPRESSIONS

Given that we can write some arrays we may now consider how we
wri te functions and apply them to arrays. The rule is the same as
in APL1: a function symbol may represent two functions - one
monadic (one argument or valence 1) and one dyadic (two arguments
or valence 2). A monadic function is wri tten wi th its single
argument on the right and a dyadic function is wri tten wi th
arguments on the left and the right (infix notation) .

monadic function +2
dyadic function 5+2

24

There is only one reasonable way to interpret these expressions.
It could be argued that if +2 is a monadic function that 5+2 is
the number 5 sitting to the left of a monadic function. This is
even easier to argue if instead of f we use a symbol which does
not have a dyadic definition. For example the symbol used for
enclose (c) has not been given a dyadic meaning. One could argue
that 2c::3 is really a 2 next to a monadic function. APL solves this
possible ambigui ty wi th the rule:

All functions are ambi-valent (both valences)
and the one evaluated in any instance is determined
only by context.

Thus functions in the abstract are ambi-valent but at evaluation
time (call time) the syntax uniquely determines which function is
intended. If you wri te a function symbol wi th an argument on each
side, you have wri tten a dyadic function. If it has a meaning 9 it
is evaluated and otherwise it is an error. In the case of c if
this should ever be given a dyadic meaning, it will not be
considered a change to the syntax of APL it is a change to the
semantics. This is why in APL2 attempting to execute such an
expression does not give SYNTAX ERROR. It gives VALENCE ERROR,
meaning that the function is not defined for the given number of
arguments.

In the same sense that arrays written next to each other have
vector binding, writing arrays next to functions have argument
binding. In the following this is called left argument binding
and right argument binding.

When an expression is written containing more than one function,
rules for determining which is to be evaluated first must be
given. In the expression:

2x3+4

which is done first - - the mul tiplication or t'1e addi tion?
Another way of phrasing this question is: "Which gets bound to
the 3? x or +?" This can be answered many ways all of which lead
to the same result (because we know what we want to reach). We
want all functions to be the same syntactically and we want
precedence to be positional with the rightmost function whose
arguments are available to be evaluated first. Here it is most
convenient to phrase the rule in terms of binding. We want 3 to be
the left argument of + not the right argument of x so that the
rightmost function is evaluated first. Therefore we declare that
left argument binding is stronger than right argument binding.

Binding strength (strongest on top)

left argument
right argument

Thus, the above expression means 3+4, then 2)(the result. This is
equivalent to the right-to-left rule:

25

In an unparenthesized expression without operators J

functions are evaluated right to left.

By this rule, the rightmost function is evaluated first with its
explicit result becoming the right argument of the next function ·
or the value of the expression if there is no next function.

The next question to answer is: Where does vector binding fit in

wi th argument binding. There are three choices: below right

argument binding, above left argument binding or between them.

Beginners in APL, not being told otherwise, often assume that

vector binding is lower than right argument binding so that in

the expression:

2x3 4+5 (extra spaces for emphasis)

times binds it right argument 3 and plus its left argument 4
getting two resul ts 6 and 9 and that then these are bound giving
the two item vector 6 9. There is absolutely nothing wrong with
this analysis except that APL chooses to put vector binding
higher than argument binding. Thus APL2 has the following
hierarchy

Binding strength

vector
left argument
right argument

In the above example 3 is bound to 4 first and then the pair is
bound to + as its left argument. It is this choice that gives APL2
its array processing capabilities. The fundamental data in APL2
is arrays. We therefore make i t easy to construct arrays and
apply functions to them.

7.1.3 FUNCTION EXPRESSIONS

Without operators the only function expression that can be
wri tten is one which contains only the name of a function. Thus:

x

is a syntactically correct function expression. It means we are
talking about the function itself as opposed to its application
to arguments. Therefore the above expression results in the
function "times". Al though it is an error to attempt to display
or assign this result, in the future even this could be allowed
and would not be an extension of syntax. Without these
extensions, function expressions are useful only in expressions
containing operators. The reason for allowing function
expressions becomes clear after parentheses are discussed.

26

Operators can be used to write other function expressions, in
which case the function result is called a derived function.

The syntax of operators is in many aspects the mirror image of the
syntax of functions. A monadic operator is wri tten wi th its
single operand on the left

+/ for / a monadic operator

A dyadic operator is wri tten wi th its operands on the left and the
right.

+.x for. a dyadic operator

Each of these evaluates to a derived function and so is a valid
function expression. As before the attempt to display the derived
function generates an error.

Operators differ from functions (even in mirror image) in that
they are not ambi-valent. A particular operator is either
monadic or dyadic but never both. This is why operators are
represented by two syntax classes.

APL1 only allows function expressions consisting of a single
operator applied to scalar functions. APL2 permits the operand
of an operator to be any function - - even the function which
results from the application of another operator (that is its
derived function). We therefore have to answer the question: "In
the following function expre5sion~ which operator is evaluated
first?"

+.x/

This could be an inner product between + and xl or it could be a
reduction by an inner product. The question is further
complicated by the possibili ty of array operands.

As with functions the answer can be approached by specifying the
binding strengths of operators to their operands. Unlike binding
of arguments to functions, APL1 gives no help with determining
what the binding of operands to operators should be. Ei ther
ranking of left operand binding versus right operand binding is
correct. since the operands are presented in the mirror image of
functions~ we choose binding strengths in the mirror image. Thus
we stipulate the following:

Binding strength

right operand
left operand

with the understanding that monadic operators have no binding
strength on the right at all. Therefore the conclusion is that in
the expression

+.x/

27

the right binding strength of . is stronger than the left binding
strength of / and the expression is a reduction by an inner
product.

The next question to be addressed is: "Where does operand binding
fi t wi th argument binding? tt The answer is entirely arbi trary but
is guided by APL1 and designed to make using operators as simple
as possible. In the expression

A+. xB

we do not want xB to be computed and so we say that right operand
binding is higher than left argument binding. (We also did not
allow functions to take operators as left arguments when controls
were imposed.) This gives:

Binding strength

right operand

left argument

right argument

Left operand binding could go in any of three places (since it is
below right operand binding) but since we are not trying to
express the sum of A with anything we make left operand binding
higher than right argument binding. Because no object is both a
function and an operator, the ordering of left argument and left
operand does not matter. Therefore the binding hierarchy for
functions and operators is defined as:

Binding strength

right operand

left operand

left argument

right argument

It is in this sense that operators have higher precedence than
functions; they have stronger bindings.

With the binding of operands placed in the hierarchY9 we can say
why it is not desirable for operators to be ambi-valent.

Suppose that operators were ambi-valent in a system wi th the same
binding hierarchy and consider the expression:

+/A+B

If operators were ambi-valent t then because right operand
binding is higher than left argument binding 9 / would get A as its
right operand and the derived function would apply to fE. The
monadic use of / (or any other monadic operator) would require
parentheses to limit the binding. This is not wrong but is not
compatible with APL1 and would make the use of operators more
difficult. The remedy is to stipulate that operators are not
ambi-valent and that I is strictly monadic. Of course, the

28

derived function from any operator is still a function and all
functions are ambi-valent. Therefore a strictly monadic operator
may produce both a monadic and a dyadic function. For example:

+/B
A+/B

are both syntactically correct and are respectively the monadic
and dyadic use of the derived function +/ •

The next question to be answered is: "Where in the binding
hierarchy does vector binding belong? At the moment we only know
that i t is above left argument binding. Therefore i t could go in
any of three positions:

Binding strength

~----

right operand
<if----

left operand
~----

left argument
right argument

Because / is an operator, compatibility with APL1 requires that
vector binding be higher than left operand binding. In the
expression

1 0 1 / A

we want the vector formed before the left operand of / is bound.
Therefore vector binding must be stronger than left operand
binding. This reduces the possibilities to:

Binding strength

~----
right operand

~----
left operand
left argument
right argument

Either of these posi tions is correct and both were tried
experimentally in the APL2 lUP (which did not allow array left
operands). The question is exemplified by the following
expression using a dyadic defined operator DOP because there is
no primi tive dyadic operator that takes an array right operand:

+ DOP A B

If vector binding is above right operand binding, this is a
function expression wi th A B as the right operand. If vector
binding is below right operand, this is an array expression which
applies the derived function + DOP A to argument B. This second

29

choice makes operators with array right operands easier to use
because otherwise parentheses are always needed. This is the
order chosen.

Therefore the binding hierarchy for functions 9 operators 9 and
vectors is:

Binding strength

right operand

vector

left operand

left argument

right argument

7.1.4 OPERATOR EXPRESSIONS

The only operator expressions are a single operator name or a
single operator name to the left of brackets. (Brackets are
discussed separately,)

7,1,5 VALUELESS EXPRESSIONS

User-defined functions that do not return explicit resul ts may be
wri tten. The only valueless expressions that can be written
involve such a user-defined function 9 the primitive function
execute (~) whose evaluation includes such a function, or an
empty expression such as

L1 : A EMPTY EXPRESSION

~ EXPRESSIONS WITH PARENTHESES

In APL1 parentheses are used only to group functions with their
arguments. In APL2 there is the need to express other groupings
(for example, grouping an operator with its operands). Rather
than use a new pair of grouping symbols, a new simplified
parentheses rule is adopted, This rule is:

Parentheses are used for grouping.

They may be used anywhere as long as they are properly paired and
what is inside the pair evaluates to an array, a function, or an
operator. An expression inside parentheses (or one which could
be put in parentheses without changing the evaluation of
anything) is called a subexpression.

30

Evaluating expressions wi th parentheses is only a matter of
evaluating what is inside the parentheses and then substituting
for the parenthesized expression the value it produce s .

Some parentheses that are correct can be removed from an
expression wi thout affecting the resul t of the expr-e s s Lon .
Correct parentheses that don t t delay any bindings are called
redundant parentheses. In par t Lcu Lar , parentheses surrounding a
name of an object (primitive or constructed) or a parenthesizeq
expression do not have the action of grouping and are always
redundant. Here are examples of parentheses redundant by this
rule:

2(+)3 Constant operation name

A +(.)x B Constant operation name

(A)+-3 constructed name

(2)+1 Constant array name

«2-3»+1 Parenthesized expression

Here is an example of parentheses that seem redundant by this
rule but are not:

(NDFN) niladic function without result

These parentheses are not correct because what is inside does not
evaluate to an array, a function, or an operator.

Redundant parentheses may be added to or removed from expressions
freely wi thout changing the value of the expressions.

Addi tional rules for when parentheses may be removed are given in
the following sections. The effect is to say that parentheses
which do not delay any bindings are redundant.

7.2,1 VECTOR EXPRESSIONS IN PARENTHESES

In expressions of arrays, parentheses that do not separate a
group from another part of the expression are redundant. Here are
some examples of redundant parentheses:

2 (3) 4 These do not group_
(2 3 4) These group but do not separate.

Notice that in each case what is inside the parentheses is a
correct APL2 expression.

Nonredundant uses of parentheses in vector expressions give a
facility for writing nested vectors. For example consider:

2 (3 4)

What is inside the parentheses is a valid APL2 expression and so
the parentheses are correct. Evaluating what is inside the

31

parentheses gives us an array (a two-i tern vector). Vector binding

tells us that writing 2 next to an array gives us a vector. Thus

parentheses may be used to write nested vectors. This is called

vector notation in APL2 and strand notation by others[Mo1 J. It is

seen as a consequence of the simplified parentheses rule. Vector

notation is an extension of the concept of a numeric vector

constant in the sense that numeric constants are covered by the

rules for vector notation.

Now that we have array expressions with parentheses we can state

the rewriting rule that permits the APL1 style of simple

character vectors. The rule is:

If a vector in parentheses is made up entirely
of single characters, it may be rewritten
with a single pair of enclosing quotes.

The parentheses must be part of the rule even though they appear
redundant. Thus in the following example even though 'B' re' is
made up entirely of singIe characters t the rewri ting rule may not
be applied.

'A' 'B' te' is not 'A' 'BC'

The following is a correct application of the rule:

('A' tB' te t) is rewritten ('ABC') Rewriting rule
('ABC') is rewritten 'ABC' Remove redundant parentheses

This gives a compact way of writing character vectors that is
compatible wi th APL1 •

7.2.2 ARRAY EXPRESSIONS IH PARENTHESES

Parentheses in any expression may be used to delay the binding of
arguments to functions. Therefore if it is desired to add 2 to 3
then divide the resul t by 4 we may delay the binding of divide to
i ts left argument by using parentheses:

(2+3)+4

and this causes 3 and + to be bound even though the left argument
binding of .. is stronger.

Parentheses in array expressions are redundant if they group the
right argument of a function or a vector left argument of a
function.

2x(3+4) Group right argument.

(2 3)x4 Group vector left argument.

32

7.2.3 FUNCTION EXPRESSIONS IN PARENTHESES

Parentheses in any expression may be used to delay the binding of
operands to operators. To express an outer product where the ·
function applied is an inner product ~ we wri te :

o • (+ • x)

This causes + to be bound to the dot on its right even though the

right operand binding of the other dot is stronger.

Parentheses in function expressions are redundant if they group
the left operand of an operator.

(+.x)/ Group left operand.

Parentheses around a function expression are redundant if the
left parenthesis does not separate two arrays.

A (+.x) E Group function expression,

However~ the following parentheses are not redundant because the
left parerrthe s Ls separates arrays.

A (E/) C Required parentheses

Note that (B/) evaluates to an ambi-valent function which, in
this case, is dyadic because it has two arguments A and C. This
results in a VALENCE ERROR because B/ has no dyadic meaning in
APL2.

7.2.4 OPERATOR EXPRESSIONS ZH PARENTHESES

It is not possible to wri te an operator expression that uses
non-required parentheses. Even in an operator expression
involving brackets ~ parentheses are redundant. (Brackets are
discussed separately,) Thus in any syntactically valid operator
expression, parentheses are redundant.

7.2.5 VALUELESS EXPRESSIONS IH PARENTHESES

A valueless expression may not be a subexpression (that is it may
not be within parentheses), Writing a valueless expression in
parentheses results in a VALUE ERROR.

33

~ STATEMENTS

An APL2 statement is made up of three parts each of which is
optional: a label followed by a colon; an expression; and a
comment. A defined operation may validly contain a statement
having none of the optional parts. The canonical representation
of such an operation will have a blank row. In immediate
execution mode (see below), a blank or empty line may be thought
of as an execution of an empty expression.

A label is a user name which~ if present~ must be followed by a
colon. The expression is any APL2 expression. A comment is a
string of characters whose first nonblank character is the lamp
symbol (PI).

The statement is the executable unit of work. Expressions
presented for evaluation as independent lines are said to be
executed in immediate execution mode. statements selected from a
defined operation for evaluation are said to be executed in
function execution mode. In addition implementations normally
have a defini tion mode where statements are collected into
defined operations for later execution. This will not be
considered further here.

7.3.1 IMMEDIATE EXECUTION MODE

In immediate execution mode labels and comments are ignored and
only the expression is evaluated.

7.3.2 FUNCTION EXECUTION MODE

In function execution mode, labels and comments are also ignored
at the time a statement is selected for evaluation. However. at
the time that a defined operation begins execution, each label
becomes a local name associated wi th a scalar whose value matches
the line number of the statement in which the label appears.

34

~ THE SUBSTITUTION PRINCIPLES

The notion of substitution is one of the most primitive notions
that people learn. In the abstract, the substitution rule says
that equals may be sUbstituted for equals. In practice this is
much too general to apply. If we substitute 4 for 2+2, we do have
equal values but not equal statements - one is a constant the
other is the application of a dyadic function. We must specify
what it is that we may substi tute and what remains the same after
we do it.

APL2 has two substitution rules. One preserves values
(expression substitution) and the other preserves syntax
(syntactic substi tution). The rules are intimately connected
wi th the parentheses rules. They involve the insertion of
redundant parentheses followed by the treatment of what is wi thin
the parentheses as an expression or value for which a substitute
may be supplied.

In this section ~ applications of the substi tution rules are
wri tten wi th equivalent expressions arranged vertically wi th the
reason for the rewri ting on the right.

~ EXPRESSION SUBSTITUTION

The rule of expression substitution covers replacing one
expression with another which, when evaluated, produces the same
object (array, function, or operator). In general, the syntax of
the expression will change -- there will be different numbers of
arrays, functions, and operators.

The Rule of Expression Substitution

In an expression, any subexpression may be
replaced by another expression that computes
the same value without changing the value of the
original expression.

For example:

may be written
expression substitution

The new expression has fewer functions but evaluates to the same
value as the original.

Because a single array is the limiting case of an array
expression the following corollary holds:

35

Corollary 1: Array Substitution

In an expression, any array in parentheses may
be replaced by another array or array expression
having the same value as the original array without
changing the value of the original expression.

Conversely,

In an expression, any array expression
in parentheses may be replaced by an array that
has the same value.

This means, for instance, that a constant may be replaced by a
variable having the same value. Here is an example of an array
being substi tuted for an array:

If A+-2 3 4

2 3 4,5 is written
(234),5 add redundant parentheses
(A) ,5 array substitution
A,5 remove redundant parentheses

Here are examples of expressions being substi tuted for arrays.

2+3 is written

(2)+3 add redundant parentheses

(4702)+3 array substitution

2+3 is written
2+(3) add redundant parentheses
2+(4-1) array substitution
2+4-1 remove redundant parentheses

Examples of the converse are obtained by reading the above
examples from bottom to top.

Because arrays contain arrays as items. the following corollary
holds:

36

Corollary 2: Item Substitution

In an expression~ any item of an array
enclosed in parentheses may be replaced
by another array or array expression having the
same value as the original item without changing
the value of the original expression.

Conversely,

in an expression, any array expression
that is an item of an array may be replaced by
the array having the same value without
changing the value of the original expression.

If A+-2 3 4

(2 3 4) (5 6) is written
(A) (5 6) item substitution
A (5 6) remove redundant parentheses

If B-+-'ABC'

B (5 6) is rewritten
(B)(5 6) redundant parentheses
('ABC t) (5 6) item substitution
'ABC' (5 6) remove redundant parentheses

234 is written
2 (3) 4 add redundant pclrentheses
2 (2+1) 4 array sUbstitution

Examples of the converse are obtained by reading the above
examples from bottom to top.

All the examples given are for array-valued objects because those
are the most useful cases. In general, there are no useful
alternate ways to write function expressions. If there were a
primitive APL2 function called summation, we could do
substitution between it and +/. If APL2 ever allows functional
specification as in

CARTESIAN~ 0.,/

Then we could give examples. The rule would not need to be changed
to cover this case.

37

~ SYNTACTIC SUBSTITUTION

The rule of syntactic sUbstitution covers substitutions that can
be made that do not a1 ter the syntax of an expression. There will
be the same number of arrays" functions t and operators before and
after the substitution. The parts of the expression not touched
never become different in meaning, binding strength, valence,
value, and so forth. No dyadic function will become monadic, nQ
vector will become shorter or longer. However the value of the
expression will generally be different.

The Rule of Syntactic Substitution

In an expression, any object in parentheses may
be replaced by an object of the same class
without changing the syntax of the statement.

(Recall that monadic and dyadic operators are different syntax
classes.)

Operator example:

2+,/A may be written
2+,(/)A add redundant parentheses
2+,(U)A syntactic substitution
2+, ··A remove redundant parentheses

and the syntax is unchanged. There is still one monadic operator
producing a monadic function and one dyadic function.

Function example:

2+3x4 may be written
2(+)3x4 add redundant parentheses
2(*)3x4 syntactic sUbstitution
2*3x4 remove redundant parentheses

and the syntax is unchanged. In order for syntactic substitution
to hold, every object in a given syntactic class must have equal
precedence. Therefore the rule for syntactic substitution
implies the following property of functions in APL2 :

Functions in an expression have no precedence.
The order of execution depends only on
position in the expression.

Replacing one function with another can never change the
fundamental syntax of an expression. (This is not true in
standard ari thmetic notation.) Only the evaluation of the
expression changes and only at the point where the substitution
was made.

38

Array examples:

2 3 4 5,B is written
2 (3) 4 5,B add redundant parentheses
2 (9) 4 5,B syntactic sUbstitution
2 9 ~ 5,B remove redundant parentheses

2 3 4 StB is written
2 (3) 4 StB add redundant parentheses
2 ('A') 45 tB syntactic sUbstitution
2 'A' 4 5 tB remove redundant parentheses

and the syntax is unchanged. The left argument to catenate is
still a four-item vector.

~ THE SIGNIFICANCE OF SUBSTITUTION

The sUbstitution rules are intimately tied up with the nature of
APL2.

Expression sUbstitution is the process used by an implementation
(and by readers of APL code) to evaluate expressions.

Syntactic sUbstitution expresses the fundamental precedence of
operations that has always been a characteristic of APL.
Functions have no precedence so one may substitute one function
for another function without affecting the syntax of the
expression. This is not true of traditional mathematics or of
most programming languages.

Each of the substitution rules simplifies how one looks at and
deals with APL expressions.

39

L-Q BRACKETS

Brackets are a special syntactic construction for writing lists ·
of arrays for use in indexing and axis specifications. They are
correct if correctly paired and if what is inside is one of the
following:

o	 Nothing I J

o	 An array expression [1] [2+2]

o	 More than one of the above separated by semicolons [;J [1;J

[1;234]

Brackets are used for two different purposes: indexing and axis
specification. In each case evaluating a bracket expression is a
substi tution in that brackets to the right of an array (indexing)
produces an array, and brackets to the right of a function or
operator (axis specification) yield a function or operator
respectively .

.2...a..1 INDEXING

Brackets indicate an indexing function when written to the right
of an array expression (a single name or an expression in
parentheses).

A[2]
(matrix expression)[3;]

Such constructions are always syntactically correct but there
are domain restrictions implied by the semantics of brackets.
Namely the rank of the array indexed must equal 1 plus the number
of semicolons inside the brackets. The consequences of this are
that brackets cannot be used to index a scalar and cannot be used
to the right of an expression that at different times produces an
array of different rank.

Bracket indexing is a function in that it maps an array and some
indices (which may be considered a vector of arrays) to a new
array (i.e. it is a dyadic function). It fails to be like other
APL2 functions because more than one symbol is needed to write
the function. Even though it is dyadic it does not use infix
notation. It may not be used as the operand to an operator. There
appears to be no way to introduce a related monadic function. And
the same symbols when used for axis specification do not
represent a function.

40

~ AXIS SPECIFICATION

Brackets indicate an axis specification when wri tten to the right
of a function or operator expression (a single name or an
expression in parentheses) .

¢[1]

The brackets are considered to be a notation for wri ting an
operation related to the one on its left. It cannot be considered
an operator because the defini tion of the related function cannot
be expressed, in a uniform way t in terms of the original
function.

Writing the brackets next to a function or operator is always
syntactically correct but evaluation of the related function or
operator succeeds only under specific conditions. An AXIS ERROR
is generated when the condi tions are not met. The condi tions
are:

o	 The bracket expression must contain no semicolons.

o	 If the related function is used monadicallYt the original
function must be one of ~ C t ¢ e.

o	 If the related function is used dyadically t the original
function must be one of ¢ e , t i· and the scalar functions.

o	 If the related operator is monadic t the original operator
must be one of /\1\.

The primi tive functions mentioned above may be wri tten as
primitive symbols or as user names having the primi tive operation
as value (because of parameter substitution in a defined
operator) .

Here are examples of incorrect axis specifications:

2t[2;3]A

gives an AXIS ERROR because the bracket expression contains
semicolons; and

t[3]A

gives an AXIS ERROR because 1. is not one of the monadic functions
mentioned above.

p"[1] A

gives AXIS ERROR because .. is not one of the monadic operators
mentioned above. The reason why the brackets are not treated as
applying to the derived function c " is presented in the next
section.

41

Evaluation of the related function could yield many error
condi tions including AXIS ERROR for other reasons. For example:

~[5J 2 3 4

is allowed by the conditions but gives an AXIS ERROR because 5
does not indicate an axis of the argument array.

When an operation can be wri tten wi th an axis specification,
there is always a choice of axes which gives the same result as
the function wi thout axes.

For example:

L+R ~~ Lt[lppR] R

~ BINDING STRENGTH

Brackets are not an array, a function, or an operator. They are
treated as members of a special syntactic class. We must,
therefore, make an individual assessment of where they fall in
the binding hierarchy. The following example shows that there is
a choice. Let oor be a dyadic operator:

+ DOP 4>[1J

If right operand binding is higher than bracket binding, this
must mean

(+ DOP ¢)[1J

which gives an AXIS ERROR because the rules do not include any
valid use of brackets wi th a derived function. If bracket
binding is higher than right operand binding this must mean

+ DOP (¢ [1])

which is a legal function expression. Neither choice is more
formally correct. The second option lets us wri te a useful
expression without parentheses and is the option chosen in APL2.
As usual, parentheses may be used to delay binding but no useful
expression can be so produced.

If brackets have stronger binding than right operands then ,if we
are to maintain the simple linear hierarchy, their binding is
stronger than any other binding giving the following binding
hierarchy:

42

Binding strength

brackets
right operand
vector
left operand
left argument
right argument

This implies that in the expression

+/[1JA

the brackets bind to the operator / producing a new monadic
operator which binds to + as i ts left operand.

A useful way to phrase the binding strength of brackets is to say
that "Brackets are tightly bound to the object on their left."
For example:

A +.x(2] B

expresses an inner product with operands + and x [2 J. If A, B 9 and
C are vector arrays 9 then

A[1] B[2] C[3]

expresses the three i tern vector whose first i tern is A [1] and
whose second item is B[2J and whose third item is C[3J.

A E C[2]

is a three i tern vector whose first i tern is A, whose second i tern is
B, and whose third i tern is C[2]. Application of expression
substi tution in the above example" shows that

2 3 4[2J ~~ 2 3 (4[2J)

Which is a RANK ERROR. Such constant vectors are viewed as
expressions containing the names of three scalars. This is
different from APL1. Indexing of a constant numeric vector
requires parentheses. (Note that)MCOPY (Migration COpy) and)IN
make this change in defined functions migrated from APL1 •)

The practical effect of this placement of brackets in the
hierarchy is that brackets become syntactically transparent.
Whenever brackets are seen in an expression (for indexing or axis
specification) they bind tightly to whatever is on the left and
the combination may be immediately evaluated and replaced by the
computed value from the same class. This is why brackets and
their contents may be treated as a single syntax class.
Parentheses around brackets and the object to their left don't
delay any bindings and are always redundant.

43

Brackets, which have always been an exceptional case in APL1
(sometimes described as a function and sometimes as an operator) •
are now regularized and explained.

~ EVALUATION PATTERNS FOR AXIS SPECIFICATIONS

Even though axis specifications do not follow one uniform rule,
there are, none the less, guiding principles for definitions of
functions wi th axis.

Those uses of axis specification from APL1 are preserved and new
ones obey identi ties or follow a single predictable pattern.

The pattern consists of splitting an array into subarrays along
some axes, applying a function to each subarray, then gathering
the resul ts together into an array.

The function SPLIT in Appendix 2 takes as left argument the axes
along which the right argument is to be split. The function
UNSPLIT takes as left argument the result axes into which the
i terns of R will be merged. UNSPLIT is the left inverse of SPLIT.

Most functions which have an axis specification may be described
in terms of SPLIT and UNSPLIT. The function enclose with axis
(c:[X]) is the simplest of these and is defined as follows:

c[X] R ~~ X SPLIT R

Disclose with axis is defined as the left inverse of enclose Hilh
axis.

~[XJ R ~~ X UNSPLIT R

giving the identity

R =>[X] c::[X] R

By extension disclose wi th axis accepts an argument where not all
the items have the same shape. This extension is not defined in
this paper and is not used in the equations below.

In the following discussion, other functions wi th axis are
defined by using enclose with ~ to split arrays, applying the
function under discussion without an axis to each item of the
split array (using the ~ operator), then reassembling the
resul t wi th disclose wi th axis. This form fails to be a universal
formula because the way results are reassembled depends on the
shape of arrays produced from application of the function to the
items of the split arrays. Furthermore, for the dyadic scalar
functions, the argument split depends on the relative ranks of
the arguments.

The monadic functions wi th axis	 are defined as follows:
44

¢[XJR +---+ ='[X] ¢.. c[XJR
'3 [x]R ~-+ ~ [x] e .. c [x]R
, [XJR ~-+- ='[L/X] , ··c[XJR for non-fractional X
, [XJR +--+ ~, ··c[XJR for empty X

A single expression can be wri tten for ravel wi th axis but the two
above are easier to apply.

The monadic operators wi th axis are defined as follows:

F\[X]R +--+ :>[X] F\" c[XJR for F array or function
F/[XJR +--+ :>[X] FI" c[X]R for F array
FI[X]R +--+ FI" c[XJR for F function

For dyadic functions wi th axis, one argument is generally treated
as a control to be applied to each of the 5ubarrays of the other
argument. Therefore, in the formula, the control argument is
enclosed:

L +[XJR +--+ ~[XJ (eL) t·· c:[XJR

L 4-[XJR +--+ :>[X] (cL) ~ .. c[X]R

L F / [X] R +--+ => [X] (cL) F t" c [X] R

The scalar functions with axis follow the above pattern if the
left argument is of lower rank. Otherwise the following formula
is used:

L DF[XJR -+--+ (c[XJL) DF·· cR

Catenate has a slightly different pattern where the array of
lower rank is not enclosed:

L,[XJR +--+ :>[X](c[X] L),··R for R lower rank

L,[XJR 0+-4 =>[X] L ,··c[XJR for L lower rank

Rotate has a pattern similar to catenate:

L¢[XJR +--+ =,[X] L q," c::[X] R
L e [X] R +-~ :> [X] (c::L) e·' c [X] R

These patterns are retained for compatibility with APL1 .

Catenate and ravel wi th fractional axis specification are
related by the following identi ty:

L~[X] R +--+ (,[X]L),[rX] ,[X]R

for scalar fractional X

It is possible to define these patterns or any others in a defined
operator. Appendix 2 gives an example of a RANK operator similar
to the one defined by Iverson [Iv3] . Because these operators
would not make use of bracket notation, they could be defined
uniformly on all functions. Any such defined operator which
proved to be especially useful could be considered the definition
of some new primitive axis operator.

45

~ OTHER SPECIAL SYMBOLS

APL2 includes the use of several special symbols that do not
represent arrays, functions, or operators. These are
parentheses~ brackets, semicolons, right and left arrows, and
jot. Parentheses, brackets, and semicolons have been treated
previously.

llL....1. ASSIGNMENT

The assignment arrow (~) is the only syntactic co~struction for
associating names wi th arrays. There are two kinds of assignment:
one which associates a name (perhaps wi th no value) wi th an
arbi trary array (direct assignment) and one which merges an array
into indicated posi tions in another array already associated
with a name (selective assignment), In each case one parameter
is an array and the other is ei ther a name or posi tions in a named
array. Therefore the assignment arrow can be neither a function
nor an operator (since these operate on values not names). The
assignment arrow is in a separate syntactic class.

The name whose value is replaced or modified must be a
constructed name having no value or having an array value, This,
in particular, excludes names of niladic defined functions which
are otherwise treated syntactically as arrays.

10.1.1 ASSIGNMENT SYNTAX

To fit assignment into the binding hierarchy, we must consider
the relative strengths wi th which a left arrow binds wi th what is
on its left and what is on its right, APL1 answer both these
questions.

Consider the expression:

A-+-2+3

Clearly left argument binding must be stronger than assignment
right binding so that the addi tion is done before the assignment.
Assignment right binding must therefore be placed either just
above or just below right argument binding. Because the left
arrow cannot be a function. the order is immaterial, We
therefore select to place assignment right binding as lowest.
giving the following binding hierarchy:

46

Binding strength

brackets

right operand

vector

left operand

left argument

right argument

assignment right

APL1 only helps a little in determining assignment left binding.
The expression:

2+A+-3

shows that assignment left binding is stronger than right
argument binding. Because APL1 did not have operators wi th array
operands, we may choose how much stronger than right argument
binding it is.

Consider the following expression where DOP is a dyadic operator
wi th array right operand:

+ DOP A+-3

If right operand binding is stronger than assignment left binding
then this means:

(+ DOP A)~3

which is an error. If assignment left binding is stronger than
right operand binding, this means:

+ DOP (Af-3)

which is a legal function expression. This is the choice made in
APL2 giving the hierarchy:

Binding strength

brackets

assignment left

right operand

vector

left operand

left argument

right argument

assignment right

(Because brackets do not bind on the right at alIt assignment
left could have been put at the top.)

This choice of assignment left binding has the practical effect
of tight binding a left arrow to the thing on its left. Thus an
assignment can always be immediately evaluated and replaced by

47

its value (which is always the array on its right) making
assignments syntactically transparent.

10.1.2 ASSIGNMENT RESULT

While assignment is not treated like a function, it may be
thought of as a function whose explici t resul t is the value of i ts
right argument. Al ternatively it may be considered syntactically
transparent in the sense that after the assignment is complete,
the arrow and whatever is bound to it on the left are removed from
the expression leaving the right argument array as value. In
ei ther case t after the assignment, a value is left and is
considered the explicit result of the assignment. This may then
be used in further computation.

Here are some examples of assignments in value expressions and
the value that is computed:

Expression Value after execution

A..-3 3

(A+-3) 3
(A"-2) ~ (B+-3) 2 3
2+A+-1 3
(A+-2) (Eof.4) 2 4

The following rule determines when the value of an expression
should be printed:

If the last syntactical action (binding or evaluation)
in an array expression is an assignment,
the final array value of the expression is
not printed. If any binding occurs after
the last assignment, or if there is no
assignment, the final array value is printed.

Here are executions of the above examples using this rule:

48

A+-3
no display - last action is assignment

(A+-3)
no display - last action

parentheses
is assignment
are redundant

2
(A+-2) , (B+-3)
3 display last action is binding of 2 and

catenate (followed by execution)
3 to

3
2+A+-1

display - last action is binding of 2 and
plus (followed by execution)

1 to

2
(A+-2)
4

(B+-4)
display last action is binding

(no function executed)
2 to 4

10,1,3 ASSIGNMENT SEMANTICS

In the case of direct assignment~ the semantics are perfectly
clear - - the name is associated wi th the array on the right.

In the case of selective assignment~ the expression in
parentheses on the left of the arrow follows the same rules of
syntax as any other expression. The semantics ~ however, are qui te
different, One of the names in the expression will have its array
value modified by the assignment. We need to define which name is
the one into which values are merged. The rule adopted in APL2 is
that the first name from the right end of the expression not in
brackets is the one into which values will be merged. The value
associated wi th this name will not change in either rank or shape
because of the assignment. Scanning the name produces an array
indicating positions in that array. (These were called position
scalars in [Br1J and the arrays were called name arrays.) The
remaining functions in the expression operate on this array of
positions. Any function which selects, subsets, or rearranges
this array is allowed in the expression. No ari thmetic is allowed
on these arrays. When the expression completest the assignment
completes by inserting the values from the right argument into
the indicated posi tions of the selected array.

These name arrays could be considered a new data type but are not
because they can never be associated wi th a name and they can only
be manipulated in the context of selective assignment.

In the following example the array into which values are merged
is A.

49

A[2J~3

(1+A)~3

(2~2 3,A)~3

(I~A)+-3

Note that in the implementation 9 not all functions formally
permi tted in an expression left of an arrow are actually
supported.

~ BRANCH AND ESCAPE

The right arrow, when used to control sequencing in a defined
operation or when used to resume execution, is called Branch. It
is syntactically like a function and so does not influence the
binding hierarchy. It fails to be a function in the strict sense
because it does not have an explicit result. It can therefore
only be used in a valueless expression. The execute function (!.)
and user defined operations may also fail to return an explicit
result but are none the less still considered functions. Branch
is not considered a function semantically and in particular
cannot be the operand of an operator. Its only purpose is the
determination of the next line to be executed.

When the right arrow is used wi thout a right argument it is called
escape and it must be the only symbol in the expression. Syntax is
not a question because nothing is next to it. It is simply treated
as a special case request to clear out any executions that are
pendant on completion of the current operation (or in the case of
escape in immediate execution to clear out executions that are
pendant and suspended) .

The jot symbol 'at is used as a special symbol to distinguish
between the two derived functions of the array product operator
dot (.). If the left operand of matrix product is a function
(F. G). the derived function is inner product. If the left
operand of matrix product is jot (o.G>. the derived function is
outer product. Inner product (F • G) takes two functions as
operands. outer product (o.G) takes one function as operand and
the jot is a place holder for the other operand. Its use is not
exploi ted or extended beyond its use in APL1 .

strictly speaking~ jot is in its own syntactic class.
Syntactically, however 9 it is treated as a function when it is
used in the context of outer product and so does not influence the
binding hierarchy.
operators but expa
problems.

It
nding

cannot
its

be
use

used
would

as an
intr

operand
oduce no

to other
formal

50

~ FUNCTION PROPERTIES

The fundamental concept of syntax is adjacency. Expressions are
wri tten by wri ting names of objects next to each other along wi th
special symbols. Evaluation of an expression is an iterative
process composed of identifying operations 9 evaluating them 9 and
then using the result of the evaluation in identifying the next
operation. The next sections deal wi th the second of these -- the
application of functions (primitive, defined, or derived) to
arguments.

When more than one function exhibi ts some behavior, that behavior
may be isolated and defined on its own in which case it is called
a function property.

We first discuss some ordinary mathematical properties 9 then
some new ones of particular interest to APL2 •

~ MATHEMATICAL PROPERTIES

The mathematical properties of functions may be defined in a
general way and are defined here because they are useful in
definitions of other properties.

o The Commutative Property

Dyadic function F is a commutative function if:

A F B ~4 BFA for constant values A and B

o The Associative Property

Dyadic function F is an associative function if:

A F(B F C) ~~	 (A F E)F C
for constant values A 9 B 9 and C

o The Distributive Property

Dyadic function F distributes over dyadic function G if:

A F(B G C) ~~	 (A F B) G (A F C)
for constant values A 9 B 9 and C

Dyadic function F distributes over monadic function G if:

A F(C C) ~4 C (A F C)

for constant values A and C

The properties might be used to write concise expressions. For
example, in:

51

(AxB)+C

because + is commutative, an equivalent expression can be written
wi thout parentheses as

C+AxB

In general, though, the mathematical properties apply to actual
values but not necessarily to expressions. For example:

2+3 ...-. 3+2

but

A+B is not B+A

when A and B are shared variables or niladic functions. Plus is
commutative on values not on names.

The implementation can take advantage of mathematical properties
to compute resul ts more efficiently. For example since + is
associative the expression:

+\ 2 3 4

which is defined as

(+/2) (+/2 3) (+/2 3 4)

may be computed by a single left to right pass through the vector
using the I th result in computing the I+1 st result.

(+/2) «+/2)+3) «+/2 3)+4)

Formally this gives the same result and is much more efficient
than the exact definition of scan. Numerically (because of the
precision of the machine) round off may cause the two expressions
to give very different results.

~ 4ELl FUNCTION PROPERTIES

In APL2 a few new properties are defined which relate to large
classes of functions and which, therefore, simplify
understanding of how the functions operate.

11.2.1 THE SCALARWISE PROPERTY

The scalarwise property is defined using one of the mathematical
properties. A function is scalarwise if indexing distributes
over the function. For monadic F where Z+-F R:

52

Z[I] ~~ (F R)[I] ~~ F R[I]
for all I that can index R

for dyadic F where Z~L F R:

Z[I] ~4 (L F R)[IJ ~~ L[IJ F R[I]
for all I that can index Rand
where scalar extensions (if any) have
already been done.

Note that because the indexing function of APL has special
syntax, the expression above does not exactly match the form for
the distributive property given previously. Also the arguments
may be of any rank even though the bracket notation for indexing
cannot be used on variable rank arguments. If the symbol 0 were
defined as an indexing function (it is not in APL2) 9 the formulas
would read:

I 0 Z ~~ I 0 (L F R) ~4 (I 0 L) F (I 0 R)
I D Z ~~ I 0 (F R) ~~ F (I 0 R)

which does follow the form and would work on any rank array.

In APL2, two sets of functions have the scalarwise property: the
scalar functions and the derived functions of the each operator.
The implication is that these functions may be defined by saying
how they operate on scalars, then saying that they apply
independently to each scalar of any other array.

Thus, for monadic functions, a length n argument implies a length
n resul t made up of the application of the function to each scalar
of the argument. For example:

;.2 1 0
(+2) (+10)
• 5 • 1

and

p"V+-(2 3pl6) (4 3 2pO)

(p"V[1]) 9 (p"V[2])

(p2 3Pl6) (p4 3 2pO)

(2 3) (4 3 2)

For dyadic functions with the same shape argument on each side.
the scalarwise property implies application of the function to
corresponding scalars one from each side. For example (leaving
out the indexing step) :

2 3p·· 4 5

(2p4) (3pS)

(4 4) (5 5 5)

It is impossible to define a function which has the scalarwise
property but which is not defined in terms of each. Thus it is

53

both correct and necessary to phrase the above discussion in
terms of scalars and not i terns.

By extension one argument is allowed to be a scalar or one item
vector (perhaps nested) in which case the item is paired with ·
each i tern of the other argument. This is called scalar extension.

11.2.2 THE PERVASIVE PROPERTY

The pervasive property is also defined in terms of a mathematical

property. A function is pervasive if R1Qk distributes over it.

For monadic function F where Z 04--+ F R:

I~Z ~~ I~(F R) ~~ F I~R

for all I that can pick from R

For dyadic function F where Z +-~ L F R:

I~Z 04--+ I~(L F R) 04-~ (I~L) F (I~R)

for all I that can pick from R

where scalar extensions (if any) have

already been done.

Since the pick function may select an item at an arbitrary depth
in a nested arraYt it may select deep enough to access a simple
scalar (because nested arrays have fini te depth). Thus a
pervasive function may be thought of as applying independently to
each simple scalar in i ts argument (s) .

Suppose an argument J is found which picks a simple scalar from
array R. Then for monadic F:

J~Z 04-~ J~F R ~~ F J~R by definition or Pervasive

~ can select from a scalar with an argument of (etO) and a
simple scalar is defined, by the control on termination of
nesting, to be an array which contains itself as its only i tern:

5 ~-+ (c:\O)~5

Therefore it is also true, by definition of the pervasive
property, for the same monadic F and array R that:

where pick gets the only item of the simple scalar. But since a
simple scalar contains itself, both picks produce the same
scalar:

and so

54

and is a simple scalar by defini tion. Therefore a pervasive
function eventually applies to simple scalars and returns simple
scalars and the resul t of a pervasive function has the same
structure as i ts argument (s) (after scalar extension). This
means that it is impossible to write a defined operator that
applies a nonpervasive function in a pervasive manner. There is
no general way to force a simple scalar resu! t from simple scalar
arguments. Another way to say this is that for a function to be
pervasive it is necessary (but not sufficient) that when it is
applied to simple scalars , it returns a simple scalar result.

For computational purposes 9 the pervasive property may be stated
in terms of the each operator. (In fact this may be taken as an
alternate definition of pervasive.) For monadic pervasive
function F where Z +-~ F R:

Z +--+ F R +--+ F" R

For dyadic pervasive function F where Z +--+ L F R:

Z +--+ L F R +--+ L F" R

Then, in computing the result of a pervasive function, if the
arguments are not simple scalars, apply the each operator
recursively.

In APL2 the scalar functions and only the scalar functions are
pervasive.

Example:

+(1 2) «5 10) 20)
(+1 2) (+(5 10) 20)
«+1)(+2» «+510) (+20»
(1 .5) «(+5)(+10» .05)
(1 .5) «.2.1) .05)

11.2.3 THE LEAFWISE PROPERTY

The leafwise property is related to the pervasive property except
it is more restricted in its application. A function is leafwise
if ~ distributes over it wi th left arguments that do not
select from simple scalars (i. e. do not end in c \ 0). For monadic
function F where Z +--+ F R:

I~Z +--+ I~(F R) ~-+ F I~R

where: ~(\O) = +¢I

For dyadic function F where Z +--+ L F R:

55

I~Z ~~ I~(L F R) ~~ (I~L) F (I~R)

ignoring scalar extension
and where :-(,0) = t¢I

The restriction on the index means that while I may be a path to a
simple scalar, no paths are allowed that pick into a simple
scalar. The practical difference between a leafwise function and
a pervasive function is that when a leafwise function applies to
simple scalars the result need not be a simple scalar and the
result of a leafwise function might not have the same structure
as the arguments (s) •

For computational purposes 9 the leafwise property may be stated
in terms of the each operator. (In fact this could be taken as an
alternate definition.) For monadic leafwise function F where Z
+--+ F R:

Z +--+	 F R .--+ F·· R

for R not a simple scalar

For dyadic leafwise function F where Z +--+ L F R:

z ~-+	 L F R ..-~ L F .. R

for Land R not both simple scalars

Then, in computing the resul t of a leafwise function, if the
arguments are not simple scalars apply each recursively.

In APL2 the scalar functions have the leafwise property. The
operator LEAF in Appendix 2 is a defined operator whose derived
function has the leafwise property. For example:

2 pLEAF (5 10) 20

(2 pLEAF 5 10) (2 pLEAF 20)

«2 pLEAF 5)(2 pLEAF 10» (20 20)

«5 5)(10 10» (20 20)

Thus, unlike the pervasive property, an operator may be applied
to any function giving a derived function having the leafwise
property.

56

~ APPLICATION OF FUNCTIONS

Some functions may be simplified by breaking down the application
of the function into simpler pieces. other functions cannot
usefully be broken down. These are called intrinsic functions.

There are three fundamental concepts relating to the application
of functions to arguments: application of functions to items of
array arguments; splitting of array arguments into contiguous
subarrays followed by the application of functions to the
subarrays; and application of intrinsic functions to data.

Many functions involve more than one of these concepts. For
example, the derived function reduction on a multi-dimensional
array splits the array into vectors. Vector reduction is then
applied to each vector and is defined in terms of items.
Eventually the vector reduction reaches an intrinsic function.

~ FUNCTIONS ON ITEMS

Many functions are defined by selecting items from their
arguments, then applying a simpler function to these arrays.
This is the most fundamental concept of function application.
Many functions use the concept directly; functions which split
arguments into subarrays are best described by making the
5ubarrays items of a lower-rank array; and the intrinsic
defini tion of many functions is best described in terms of i terns.

As shown previously, any function which has the pervasive or
leafwise property is clearly defined in terms of items. Vector
reduction is defined in terms of i terns in that if:

V~A B C

then

FIV ~4 cA F B F C

i.e. the function of reduction is applied between the items of
the vector producing a resul t having rank one less than the
argument.

outer product is defined in terms of items in that its result
contains the application of its operand function between all
pairs of items -- one from the left argument and one from the
right argument. For Z~L o. F R:

(I,"J)~Z +--+ (I~L) F (J::>R)

57

~ FUNCTIONS ON SUBARRAYS

Many functions are defined on higher-rank arrays by spli tting the
array along some axes into subarrays of lesser rank then applying
a simpler function to the subarrays. This is the case with most
of the primi tive functions and operators which take an axis
specification.

Functions that apply to subarrays in APL1 are normally defined in
terms of indexing which selects the subarrays by indexing along
one or more axes wi th one or more scalars giving arrays of smaller
rank. For example reduction of a matrix can be defined:

(+/R)[IJ ~~ +/R[I;J

the implication being that the above expression is evaluated for
each scalar integer I possible.

In APL2 such functions are normally defined in terms of enclose
along an axis which builds an array whose i terns are the subarrays
of interest. Then the application of the simpler function to each
of the 5ubarrays may be expressed in closed form as an
application of the each operator. For example reduction of a
matrix can be defined:

and this is a complete executable defini tion. The final disclose
in this expression undoes the split implied by the enclose by
assembling the scalars resulting from each reduction into the
desired result. Thus functions defined on subarrays are best
described in terms of an array containing the subarrays as i terns.

~ INTRINSIC FUNCTIONS

The intrinsic functions are defined directly on their array
arguments. For example, the function matrix divide (ffi)~ applied
to a matrix, cannot be easily broken down to a simpler function
that applies to rows or columns or items of its argument. Even
when a primitive function can be applied to subarrays or items.
eventually a point is reached where further simplification is not
reasonable. Even the scalar functions eventually are reduced to
the case where the arguments are simple scalars at which point
the intrinsic function is applied. The APL2 Language Manual [1]
only defines the intrinsic scalar functions with the discussion
of their application to other arrays factored out and described
in a single place.

Many of the structural functions in APL2 (reshape. ravel,
transpose, etc.) cannot be simplified, yet their intrinsic
behavior is still defined in terms of items. For example, vector
catenate can be described as producing the vector containing the

58

i terns from the left argument followed by the i terns from the right
argument.

59

~ RELATED FUNCTIONS

A function in mathematics is a mapping from a domain to a
codomain. A function in APL2 is a collection of five related
mathematical functions. Whenever an APL2 function is evaluated,
one function from this collection is selected to satisfy the
evaluation. The collection of functions is divided into two
groups: principal functions and implied functions. The principal
functions are used when functions are directly executed and
either a principal or an implied function is used when functions
are executed by an operator.

~ DIRECT EXECUTION OF FUNCTIONS

When an APL2 function is evaluated directly (not under control of
an operator), one of two principal functions is selected. If a
left argument exists, the dyadic principal function is selected;
otherwise the monadic principal function is selected. Thus when
we say that a function is ambi-valent, we mean there are two
principal functions wi th the one chosen depending only on
context. If one of the principal functions is not defined, a
VALENCE ERROR is generated on an attempt to use it. The syntax is
correct - - a principal function is missing.

~ INDIRECT EXECUTION QE FUNCTIONS

When an APL2 function is the operand of an operator, one of its
principal functions may eventually be evaluated. However, under
some circumstances, one of the implied functions is evaluated
instead. APL2 defines three implied functions: two fill
functions and an identi ty function. For a particular APL2
function, if an implied function is not defined, a DOMAIN ERROR
is generated on an attempt to use it.

13.2.1 THE ~ FUNCTIONS

When the derived function of ~ or outer product is applied to
empty arraySt the operator definition specifies that the
principal function of its operand should not be applied and that
instead a fill function should be applied. Each function has a
monadic fill function and a dyadic fill function. The one applied
depends on context and on the operator. The scalar functions may
be defined in terms of each so the above discussion also holds for
them.

60

The fill functions are selected so that empty arguments do not
cause discontinuities in identities or other unexpected
behavior. Definitions and specific cases are discussed in the
section on empty arrays.

13.2.2 THE IDENTITY FUNCTION

When the derived function reduce is applied to empty arrays, the
operator definition specifies that the principal function of its
operand should not be applied and that instead an identi ty
function should be applied. Identity functions are an extension
of the notion of identi ty elements from APL 1 [Br4J. The identi ty
functions are selected so that they produce arrays which are the
nested array equivalents of identity items from APL1.
Definitions and specific cases are discussed in the section on
empty arrays.

61

a.J! FILL ITEMS

The APL2 functions take (t)9 expand (A\), and replicate (AI)
produce results consisting of some i terns from their right
arqumerrt along with some fill i terns. In APL 1 , where a given array
is either all numeric scalars or all character scalars, the fill
item chosen is zero (0) or blank (t t) respectively. Thus the
result has the same properties as the argument. A numeric array
remains numeric and a character array remains character. There is
no choice here because APL1 only has homogeneous array. We could
not fill a character array wi th zeros and certainly not wi th
nested fill i terns.

Given the wider variety of arrays in APL2, a scheme for
determining what fill i tern to use wi th these functions is
required. For example, suppose we apply take to the following
nested array:

A+-(1 2) (3 4) (5 6)

Z+-NtA

The array A is called a uniform array because each item has the
same structure. (In particular any array containing one or fewer
items is uniform.) Clearly if the value of N is 1,2, or 3, Z is
also uniform array. If take is to retain properties where
possible (this is an objective) then for N=5, Z should still be
uniformly nested. Thus a reasonable answer for 5tA is:

5 t A +a-+ (1 2) (3 4) (5 6) (0 0) (0 0)

When take produces a result bigger than its argument (along any
axis) the operation is called an overtake t

If the original array is not uniformly structured, there does not
seem to be a reasonable choice for fill that fits every
conceivable situation. Any choice of fill would give a result
that was not uniformly nested. The choice for fill in APL2 is
chosen to satisfy the following guidelines:

o Do what APL 1 does, where defined.

Keep simple arrays simple.

Keep numeric arrays numeric.

Keep character arrays character.

o Keep uniform arrays uniform.

o Fill i tern must be predictable.

In order to do what APL1 does where defined, we need an expression
that will produce a zero if an array is numeric and a blank if an
array 15 character. Let the function TIFEOF be a monadic function

62

which given a simple scalar returns zero if the scalar is a number
and blank if the scalar is a character (see Appendix 2). Then a
definition that works for APL1 is "Fill wi th the type of the first
item (TYPEOF t R)".

In order to satisfy the second guideline we need to be able to
compute an array whose structure is the same as a given array A
but with zeros replacing numbers and blanks replacing
characters. Such an array is called the ~ of A. Thus the type
of an array is itself an array. Appendix 2 contains the
definition of such a TYPE function. A definition for fill that
works for all arrays is: "Fill with the type of the first item
(TYPE t R) tr. For every nonempty array A, type of first (TYPE t)
is well-defined and the resulting array is called the prototype
of the array (proto type +--+ first type). For uniform arrays ~

filling with the prototype preserves structure and type but not
values.

All of the functions which produce fill i terns in the manner
described here have been described in the section on brackets as
being defined on multi-dimensional arrays by splitting the array
into arrays of smaller rank, then applying a simpler case of the
function. This affects the production of fill i terns. For example ~

the function expand is intrinsically defined on vectors.
(Iverson would call ita rank 1 or a vector function [Iv3].) When
applied to mul ti -dimensional arrays, the array is spli t into
vectors as follows:

If A~ 2 2 p 2 'A t 3 t B t
A

2 A
3 B

Then 1 a 1 \A
implies (1 0 1 \ 2 3) and (1 0 1 \ t A' t B t)

giving
2 A
o
3 E

Each vector is filled wi th a fill i tern appropriate to that
vector.

The function take is not a vector function yet it still can be
defined in terms of splitting its right argument into arrays of
lower rank by using the identi ty:

L+[XJR ~~ (+L)t[tX] (1.L)+[1+X] R

Therefore if

63

x- 2 2 2 p 1 2 3 4 tAt t B' t C t t D'
X

1 2
3 4

A B
C D

An argument similar to the one above for expand explains the
following result

3 3+[2 3] X
120
3 If 0
000

A B
C D

The question of fill items for empty arrays is discussed in the
section on empty arrays.

64

~ EMPTY ARRAYS

The arrays of APL2 are fini te rectangular collections which
contain arrays as items. The items of an array are ordered along
zero or more directions called axes. The number of axes is called
the array rank. The vector containing the length of each axis is
called the array shape. The number of items in the array is the
product of the shape. Any array whose shape contains a zero (L, e .
has an axis of length zero) has no items and is called an empty
array,

The designers of APL1 were very careful to be sure that
primitives operated correctly in the limiting cases. As a result
when expressions are applied at the limits (axis lengths of 1 or 0
and ranks of 1 or O)t there are no surprising discontinuities.
Functions in APL 1 work correctly in the limiting cases.

In extending APL1 great care is taken to preserve this behavior
at the limits. Achieving correctness is especially difficult
because our intui tion cannot always be trusted in these cases. We
therefore must rely on more formal means of discovering the
behavior of functions in limiting cases. The following sections
detail the approach to discovering the nature of empty arrays and
the application of functions to empty arrays.

~ EMPTY NESTED ARRAYS

There are two approaches to defining empty arrays as discussed
previously (see Methods). The constructive approach is the most
obvious approach but, because we are dealing at the limits 9 we
know that the deductive approach must also be examined. The
following two discussions will show that it is possible to get
two different answers to a limiting case question depending on
the approach taken.

15.1.1 THE CONSTRUCTIVE APPROACH ~ EMPTY ARRAYS

In the constructive approach to extensions, we start wi th what we
have and extrapolate.

In APL1 we have simple rectangular collections of numbers and
characters. The constructive approach to nested arrays is to
allow any of those numbers or characters to itself be a
rectangular collection. Then by recursively substituting arrays
for i terns, we can construct arbitrarily complicated arrays.
Indexed specification can be used to replace any scalar wi th
another scalar.

65

A[I; ••• ;KJ~ 5

Therefore nested arrays can be achieved merely by postulating a
function which when applied to any array produces a scalar in
such a way that the original array can be reconstructed. In APL2
we use the function enclose (c) to do this. So any nested array
can be constructed by indexed specifications of the following
sort:

A[I; .•. ;K]~ cB for arbitrary array B

The question of interest here is t'Can an empty array be nested?"
and the answer is obvious. Since we start with simple arrays and
construct nested arrays by substituting enclosed arrays for the
simple scalars, it is clear that an empty array cannot be nested
because an empty array has no i terns for which we can substitute.

The conclusion is that introduction of nested arrays does not
introduce any new empty arrays. All empty arrays are simple.

Perfectly well-defined and usable extensions can be defined
using this conclusion. The following discussion shows that the
deductive approach leads to different resul ts.

15,1,2 THE DEDUCTIVE APPROACH TO EMPTY ARRAYS

In the deductive approach we start from where we want to be; wri te
the equations that describe the behavior away from limits; then
investigate what happens as the limi ts are approached and believe
what we discover. As in APL1, we wish to have no surprising
discontinuities when we reach the limit. We want functions to
work in expected ways in lirni ting cases.

The identity that defines the relationship between enclose with
axis and disclose wi th axis is an easy one to believe and is
restated here assuming A is a matrix and the function is applied
along axis 2:

A +--+ ~[2J e[2] A

or

A +--+ 2 VNSPLIT 2 SPLIT A

This says that if we form a vector whose items are the rows of a
matrix~ then form the items back into a matrix~ the same array
results. This is easy to believe because it is a spatial
relationship that we can picture - itt s obvious.

The relationship can be explored at the limi ts by starting wi th a
nonempty matrix and examining what happens as we reduce the
length of an axis to zero. The assumption is that the equation

66

will hold when A becomes an empty array. Since we are talking
about relationships we can picture we will use words instead of
equations to investigate the identity. (This is nott of course t
a mathematical proof. See [Mo1] for a more formal approach to
this subject.) Let the array A be defined as follows:

Consider approaching emptiness along the column axis:

If	 the shape of A is 2 3, then
the shape of e[2] A is 2
and the shape of each item of c[2J A is 3

If	 the shape of A is 2 2, then
the shape of c[2J A is 2
and the shape of each item of c[2] A is 2

If	 the shape of A is 2 1, then
the shape of e[2] A is 2
and the shape of each item of c[2] A is 1

If	 the shape of A is 2 0, then
the shape of e[2] A is 2
and the shape of each item of c[2J A is 0

Clearly, at each step the result of e[2] is well-defined and the
reconstruction of A by =,[2J is no problem. Thus the equation
holds at least in some empty cases.

Now consider approaching emptiness along the row axis:

If	 the shape of A is 2 3 , then
the shape of c[2J A is 2
and the shape of each item of e[2] A is 3

If	 the shape of A is 1 3 t then
the shape of c[2J A is 1
and the shape of each item of c:[2] A is 3

If	 the shape of A is 0 3 t then
the shape of c[2] A is 0
and the shape of each item of e[2] A is 3

Although this last step follows the progression of numbers
naturally wi th i terns always being length 3 tit cannot be pictured
visually. This might be a demonstration that the "obvious"
equation is not true! It appears that the result of the enclose
on axis 2 is an empty vector so how could each i tern have shape 3?
Yet, if the equation is to hold everywhere, the information that
the original argument had three columns must be retained
somewhere!

Because we believe the equation and know that our intuition
cannot be trusted at the limits, we declare that the equation
must hold everywhere and that the result of the enclose is a new

67

object, implied by the theory, that we did not know existed: an
empty nested array. In this case it is an empty vector of
three-i tern vectors. The implication is that there is more to
arrays than shape and items -- there is information about the
structure of arrays. In the example above, the information about
the structure is that the array contains 3 - i tern vectors. The
function first is extended so that when applied to an empty array
it returns an array that describes that structure. Thus

B~c:[2] A~O 3pO

+B ~~ 0 0 0 by definition

Furthermore if A is a character array:

B~c[2] A~O 3pl I

tB ~~ t t by definition

The empty array A contains no data. Since the array describing
the structure must have something for items, it contains zeros
and blanks indicating data type. The function TYPE has no effect
on such an array so above where we have first (t) we may also say
"type of first" (TYPE t) and by defini tion this is the prototype
of A. Thus the array that describes the structure of an empty
array is i ts prototype.

An empty array having any desired prototype can be constructed by
use of the reshape function. For example an empty vector whose
prototype is a 2 3 numeric matrix is constructed by reshaping the
enclose of the desired prototype as follows:

Opc:2 3pO

Keep in mind that since only type and shape are kept that nonzero
values will become zeros in the prototype of the empty array.

Adopting the above defini tion for first answers the question
posed earlier about the fill item on overtake of an empty array.
If fill items are determined by the expression "type of first"
(TYPE t), then fill items are defined for empty arrays because
first (t) is defined for empty arrays. For example consider the
following expression involving take and a uniform nested array.

Nt (1 2) (3 4) (5 6)

It has already been shown that, for N>O, the resul t is a uniformly
nested array. With this definition of first and the existence of
prototypes, the resul t is uniformly nested for all N.

Thus prototypes are used to complete the defini tions of functions
and make them work in expected ways even at limi ting cases. This
is why APL2 adopts the an~wer ~rovided by the deductive approach
rather than the answer provided by the constructive approach.
The section on scalar extension gives another example of the
deductive approach. This simple and elegant solution to the
problem of emptiness is due to many years of intensive work by Dr.
Trenchard More. He applied the scientific method to data and

68

discovered a new "particle" -- empty nested arrays. It is similar
to what Mendeleev did in working out the periodic table. He
arranged the elements in order of atomic weight and in a system of
rows and columns that divided them into natural families wi th all
elements in a column showing similar properties. When an element
didn t t fi t he did not conclude that his notion was wrong, he
assumed that the atomic weights were computed incorrectly. When
there was a hole in the table t he predicted (correctly) the
existence of new elements. In nested arrays we are merely
arranging i terns instead of elements.

The following sections will point out several other situations
where empty nested arrays allow definitions to hold universally
even in empty cases.

~ EMPTY ARRAYS AND FILL FUNCTIONS

When functions are applied with operators, usually one of the
principal functions (the monadic one or the dyadic one) is
selected. For example, consider the following use of the ~

operator:

L~N+(1 2)(3 4)(5 6)

R~N+(7 8 9)(8 7 6)(5 4 3)

L R9··

By defini tion of each this implies evaluation of the dyadic
principal function of catenate N times once for each
corresponding pair of i terns one from each argument. If N is 3 this
evaluates as follows:

(1 2)(3 4)(5 6) , .. (7 8 9)(8 7 6)(5 4 3)
(1 2,7 8 9) (3 4,8 7 6) (5 6 95 4 3)

(1 2 7 8 9) (3 4 8 7 6) (5 6 5 4 3)

If N=O, the principal function is evaluated zero times (that is
not at all). Instead the related dyadic fill function is
evaluated with arguments (tL) and (tR) and the result computed
defines the prototype of the resul t of ,.' (which is by defini tion
empty). Thus for N=O the expression becomes:

L~Ot(1 2)(3 4)(5 6)

R~Ot(7 8 9)(8 7 6)(5 4 3)

L ," R

The fill function for catenate is catenate (as is often but not
always true of the primitive functions) so it is called:

(tL) t (tR)
o 0 , 000
o 0 0 a 0

This five i tern vector becomes the prototype of the result of ,
69

L t" R +--+ OpcO 0 0 0 0

Thus the original expression always results in a vector of five
i tern vectors - - even when N is zero.

As a second example consider a monadic derived function and a
fill function different from the principal function.

R~ Np (2 3pl6) (2 3pl6) (2 3Pl6)
s: R

Ignoring the numerical resul t of the inverse primitive, for
nonzero N the shape of each item (if a DOMAIN ERROR is not
signalled) is 3 2 because pffiA +-4 ¢pA (even in APL1). The fill
function for inverse is transpose so if N=O:

R~ Op (2 3p16) (2 3pt6) (2 3pt6)
fE" R

The fill function is called wi th argument +R:

~ tR
o 0
o 0
o 0

This becomes the prototype of the resul t of (B" :

[B" R +--+ Opc3 2pO

Again the expected structure is achieved even in the empty case.

All the discussion above deals with vector arguments. The same
analysis holds for higher rank arrays. For example let R be rank
3 :

R~ 2 0 3p (2 3pt6) (2 3pl6) (2 3p\6)
Bj" R

The fill function is called:

lI\' tR
o 0
o 0
o 0

This becomes the prototype of the resul t of fE" :

m.. R .-... 2 0 3 p c 3 2 p 0

The fill function for F" and o. F are the same as the fill function
for F. APL2 does not provide a means to specify the fill function
of a defined function.

70

~ EMPTY ARRAYS AND SCALAR EXTENSION

15,3,1 SCALAR EXTENSION

The dyadic scalar functions normally require arguments wi th
matching shapes:

L+R requires (pL) = (pR)

The same is true wi th derived function of the each operator.

L F·· R requires (pL) E (pR)

The scalar functions may be defined in terms of each so, in the
following discussion, we will only consider functions derived
from each as representative of any function having the scalarwise
property,

Dyadic scalarwise functions relax the conformability
requirements and admi t one argument that is scalar when the other
is not scalar. In addition, one item vectors are treated like
scalars for compatibility wi th APL1. The i tern of the scalar
argument is then paired wi th each i tern of the non-scalar
argument. This repeated use of scalars is called scalar
e,:tension.

Here is an example of scalar extension using a nested scalar:

(c:2 3) p .• 4 5 (\6)
(2 3p4) (2 3pS) (2 3p\6)

44455 5 123

44455 5 456

This is a three i tern vector of 2 by 3 arrays.

In general, to apply F with left argument L against each item of
an array R, we may wri te:

(c:L) F·· R

(In array theory this is accomplished by using two primitive
operators -- each right and each left. These operators are ~

needed in APL2 because of the definition of scalar extension.)

In the case where R of the above formula is an empty array, our
verbal definition of scalar extension does not tell us precisely
how to compute the result. Using the deductive approach (because
this is an empty case), we write an equation which we believe
describes scalar extension. For simplicity, we consider only a
scalar (S) left argument. A similar discussion would hold for a

71

scalar right argument. We propose the following formula as the
defining equation for scalar extension:

F
US R ~-+ «	 pR) pS) F" R

This is the definition from APL1 which says "reshape the scalar
to be the same shape as the nonscalar argument".

Now we want to examine this equation in the limit. Consider the
statement:

(c:2 3) p" V for vector V

Clearly 9 for nonempty vector V, the resul t will always be a
vector of 2 by 3 arrays. Suppose V is an empty vector. Then by the
proposed formula:

(c 2 3) o ' V	 +--+ « p V) p c 2 3) p V

~-+ (0 p c 2 3) c ' V

Now both arguments have the same shape (namely 0) and we know the
fill function is called with the prototypes as arguments. The
fill function for reshape is reshape so:

(tOpc2 3) p	 tV ~-+ 0 0 P tV

and this becomes the prototype of the empty resul t. Thus for
nonempty V we get a vector of 2 by 3 arrays but for empty V we get
a vector of 0 by 0 arrays.

This is not an incorrect result, only a surprising one. We expect
prototypes to take care of discontinuities of shape. Note that
there is a discontinuity of shape even though the equation we
propose does hold universally. We have two choices - - believe the
equation and admit that the empty case is a singularity; or find
another defining equation.

Another equation is found by noting that what we really want is to
bind the scalar argument to the function, and to apply the
resul ting monadic function to each i tern of the the nonscalar
array. A binding of this sort may be accomplished by a
composi tion operator (see Appendix 2) .

L COMP p

gives a monadic function that does an L reshape. This may then be
used in another defining equation for scalar extension:

SF" R +-~ «	 +S) COMP F)·· R

where redundant parentheses are used for clarity. Note that this
and the earlier proposed formula both define scalar extension
properly for APL1. Since APL2 does not provide a way to specify
the fill function of a defined operation, the above equation will
not execute in the empty case.

72

This equation reduces scalar extension on dyadic functions to
each on a monadic function. Each on a monadic function does not
involve scalar extension and so is completely defined. Now in the
case where V is empty, we find that:

(c:2 3) o ' V

gives an array whose prototype is a 2 by 3 array. This second
equation solves the singularity of shape in scalar extension and
is, therefore, adopted as the defining equation for scalar
extension.

Note that in practice we do not need to introduce the concept of
composi tion to make scalar extension understandable. We may say
"the scalar is paired with each item of a nonempty argument or
wi th the prototype of the empty argument". This defini tion of
scalar extension also applies to inner product, compress,
expand, etc. but no new insight is gained by studying those
functions.

15,3.2 OUTER PRODUCT

When outer product is used with a scalar argument, it produces
the same resul t as the each operator:

S o.F R +-4 S Fit R for scalar S

While no proof of this is given, we can see that each side of the
equation means "apply S to each item of Rlf. If this equation is
to be universally true, it defines how outer product works when R
is empty. Clearly the prototype of the resul t must be:

(+5) F tR

Thus 2 o. p R will return an array of 2 i tern vectors even when R is
empty.

~ EMPTY ARRAYS AND ~ IDENTITY FUNCTION

Reduction on nonscalars is defined so that the rank of the result
is always one less than the rank of the argument. In particular.
the reduction of a vector is a scalar.

In the expression:

F/ NpV

If N>O, the principal function of F is evaluated N-1 times. When
N=1, the principal function is not evaluated at all. The result

73

is the scalar (lO)p1pV -- a scalar containing the same item as
1 p V.

When N=O, again the principal function is not evaluated. Instead
the identi ty function is applied to the prototype of the argument
producing an array I. The scalar resul t is then defined as cI. (In
the case of reduction of an empty higher rank array A, the resul t
is (-1~pA)pcI.)

Consider times reduction of a vector:

R x/NpV

If V is a simple vector then R is a simple scalar.

6 x/2 3 1 +--+ x/OpO

If V is a uniformly nested vector then R is a scalar whose item
has the same structure as i terns of V:

8 15 +--+ tx/(2 3)(4 5)
1 1 +--+ tx/OpcO 0

Thus in F/NpV, as N is reduced to zero, there is no sudden change
in the structure of the resul t when N reaches zero,

The scalar functions, for which identity function are defined,
have a specified simple scalar identity item (i.e. 1 for times, 0
for plus, etc.), The identity functions for these scalar
functions are defined to return arrays whose structure is that of
their argument (the prototype of the original argument) but with
all values replaced by the identi ty i tern,

If I I is the identi ty i tern of some scalar function, then the
identi ty function for that scalar function is:

VZ+- IDF R
[1J Z~II+R

Since R is a prototype it can contain only zeros. The addition of
the scalar II gives a Z which is the same structure as R except it
has II where R has 0, Any characters in R will cause a domain
error.

Consider the evaluation of reduction on a nested empty vector:

tx/Opc:2 3pO

111

111

The identity function for times is called with a prototype as
argument tOpc2 3pO which is 2 3pO. The identity function computes
1+ 2 3 pO (because 1 is the identity i tern for times) and the scalar
resul t of reduction is computed as c 2 3p1

74

The identi ty functions defined in APL2 are listed in the Language
Reference [1J. Application of the identity function produces an
array which usually is a left and right identity item for the
function. If a function has only a left or only a right identi ty 9 •

that value is used. Sometimes an identity function is defined
for a subset of arguments (for example = which has identi ty i tern 1
only when applied to logical arrays) .

Identi ty functions for the mixed functions are derived by
considering reduction of nonempty uniformly nested vectors.
This is done because as we reduce the length of the vector toward
zero, i t becomes uniformly nested when the length reaches 1 .

As an example let V be the vector made up of A, B ~ and C which are
identically shaped matrices. Then consider catenate reduction of
V:

~fV4:-A B C

The identity function for catenate must return an array I such
that

,fA E C ~4 ,/ A E C I

Therefore the identity function chosen is «-1+pP)~O)pP where P
is the prototype of t'.

75

~ CONCLUSI ON

APL 2 contains a l a r g e s et o f e x tensions to APL1 • They a re de fi n ed
as proper e x tens i on s of A PL 1 a nd in t h e s a me s p ir i t a s APL1 . Th e y
give the a p pe a r a n c e tha t t h e designe rs o f APL 1 h a d t h e se
extensions i n mi nd whe n they desig n ed t h e origina l A PL. Wh i le
th is was probab ly n o t the c a s e , it is n o accident tha t the n e w
facili ti e s fi t s o n ice l y. Th e creato r s o f A PL1 we r e ca r e f u l to
adopt simple r u l e s that a pplied unifo r mly. Such ru l es can be
easi ly extende d and a p p lied i n n e w si t uations. Th e rec og n i ti on
o f operators as d i f f e r e nt f rom funct ions g a ve tre mend ous
functiona l capab i l ity without a n e x p l os i on o f s ymbo l s .
Extensions to expressi ons o f o perat o r s was a c h ieve d i n A PL2 wi t h
almos t no c h a n ge fr om the orig i n al r u l es o f A PL 1 •

A PL 2 provide s f ur t h e r s implification o f c oncepts and rule s . More
statemen t s c a n be ma d e that hold universally . Fe we r exc e p t i on s
need t o be described. Bin d ing , the un i f i ed field theo r y o f APL2
syntax, g i ves one c once p t tha t tie s t oge t h er the conce pts of
order o f e xe c u ti on , p r e c e de n ce of operators ove r functions, us e
of p a r e n the s e s , e t c . The f i n a l r e s ul t i s that t h e exte n s ions
look like they were a l wa y s part of A PL .

The re s ult i n g l a ngu a g e i s a p owerful an d p roductive tool fo r the
wri ting o f a p p l i c a t i on s a nd the s olv i n g of prob lems. I t ha s
fewe r excepti on s ; mo r e things work a s expected (the l aw of l e a st
surprise); f ewer loops a re ne e ded; e tc.

As a res ul t, a nov ice c an solve a wide r class of problems . He c an
make use of the powe r f u l fe atures (such as nested array s) for
ordinary tasks (s u ch a s r e por t writing) withou t k n owle dg e o f t h e
complete languag e o r of the u n de r l y i ng t h e ory . The us e r of APL 1
can use APL 2 imme d iate l y a n d g row into the n e w f e a t u re s b e cause
APL 1 i s a s ubs e t of APL 2 . Th e p r ofe ss i o n a l programmer c an write
applicati ons in fewe r l i n e s a n d in a shor t e r t i me .

The summati on of the s imp l i f i c a t i on s, functional e n han cements ,
and usabili t y enhanceme n ts l e ads t o a n o t a t i on which c a n be u s e d
as a tool for t h i n k ing a nd f o r the so lution of proble ms .

76

~ ACKNOWL EDGEMENTS

I would l ike t o t h a n k t h e many pe ople wh o i n f lue n c e d the des i g n
and im plementation of APL 2 an d t he p e op le wh o r e a d many d r a f t s of
this p a pe r a n d p r ov ide d v a l u a b l e f e e dba c k . Th e s e inc l u de : Ph i l
Abrams, Doug Aiton , Bob Bernecky, No r m Brenne r , Kare n Br own,
Larry Bre e d , Di c k Doy le , Di c k Dun bar , Ted Edwa r d s , Ed Eus e b i , Ron
Frank, Ziad Gh a n d ou r , J e a n- J acque s Gira r dot , Alan Gr a h a m, Bruce
Hartigan , Di c k Ha r vey , Hans He g e i , Bo b Hendr i cks, Ke n I v e r s on ,
Mike Jenkins , Di c k La t hwell , Di e t er La t t e r ma n n , Ga r y Log a n ,
Blair Mart i n, Ken Ma rt i n, Ge n e Mc Donne l l, J on Mc Grew, J o rge
Mezei, Eben Moglen, Mi ke Montalbano, Al e x Mo r r ow , Ch u c k Nor cutt,
Andre Or lans , Don Orth , Sa n d ra Pak i n , Ray Po livk a , Da v e
Rabenhors t, J im Ry a n , Stan Schmi dt, Ch r i stin a Sh e n , Bob s mi t h ,
Howard Smith, Ka rl So o p , Ray Tr i mble , Mike v a n de r Meu len, and
Ron Wilks.

I wish to give specia l t hanks t o Dr . Ga r t h Foste r wh o g u i de d my
early work on ne ste d a r r a y s l e a d ing t o my the s i s; Dr . Ke n n e t h
Iverson who l a i d t h e f ounda t i ons of APL; Dr. Trenchard Mor e who
provided the theoret i c a l bac k g round wi t h his array theory and
gave me a n apprec ia t i on o f t he d educ t i ve approach; Ad i n Falk off
from whom I l e a r n ed a wa y o f t h i nking a b ou t e x t e nsions a nd wh o was
my manage r on a nd o f f f o r a de cade; Ev Al len wh o wo r k e d wi th me on
the project almo s t from t h e s t a r t ; Mi k e Wh e a tl e y who e ngineered
many of t he f o rm a l a nd poli t ical interfaces fo r the pr oduc t; Ph i l
Benkard who appli e d the c on c e p t s o f binding p owe r to APL2 syntax;
and especially t o John Ge r t h a n d J ohn Bun d a wh o s e i ns istence on
discovering a n d a p plyi n g pr i n c i p les l e d to the forma l i z at i on of
the rules fo r APL 2 a n d t h e wr i ting of t h i s p a per .

7 7

~ REFERENCES

These references include papers directly relating to the topic
of this paper as well as general references for APL extensions.

[1]	 APL2 Programming: Language Reference, IBM Corp., 1 984,
SH20-9227

[2) APL2 General Information, IBM co r p , , 1984, GH20-9214

[3 J APL2 Programming: System Services Reference, IBM Corp.,
1 9B4, SH 20 - 921 8

[4]	 APL2 Programming: Using structured Query Language (SQL), IBM
Corp., 1984, SH20-9217

[5J APL2 Language Reference Card, IBM Corp., 1984, SX26-3738

[6] APL2 Programming Guide, IBM Corp. , 1 984, SH20- 921 6

[7J APL2 Installation and Customization under eMS, IBM Corp.,
1 98 4, SH 2 0 - 9 2 21

[8J APL2 Installation and Customization under TSO, IBM Corp.,
1 9 8 4, SH 2 0 - 9 2 2 2

[9J APL2 Diagnosis Guide, IBM Corp., 1984, SY26-3931

[10J APL2 Diagnosis Reference, IBM Corp. t 1984, SY26-3932

[11J APL2 Messages and codes, IBM Corp., 1984, SH20-9220

[12]	 APL2 Language Manual, IBM Corp., 1 982, Installed User
Program 5798-DJP, SB21-3015.

[13J APL2 Terminal Users Guide, IBM Corp., 1982, Installed User
Program 5798-DJP, SB21-3014.

[14) APL2 Introduction Manual, IBM Corp., 1982, Installed User
Program 5798-DJP, SB21-3014.

[Be1] R. Bernecky and K.E. Iverson, "Operators and Enclosed
Arrays", 1980 APL users meeting, 319-331 .

[Be2] J.P. Benkard, "Valence and Precedence in APL Extensions",
APL Quote Quad, Vol. 13, No 3, pp. 233-242.

[Br1J J.A. Brown, "A Generalization of APL", Doctoral Thesis,
1971, Dept. of Computing and Information Science,
Syracuse University. New York, Clearing House 74h004942
AD-770488.

78

[Br2] J .A. Brown, "APL Language Extensions", Proceedings of SEAS
1 97 8 anniversary meeting, stresa, Italy, Vol. 1, pp.
335-353.

[Br3] J .A.Brown, "Evaluating Extensions to APL", APL Quote Quad,
Vol. 9, No.4 - part 1, June, 1979, pp. 148-155.

[Br4]	 J.A.Brown, "The APL identity Crisis", Proceedings of
APL81 , San Francisco, California, Oct. 1981.

[BrS] J.A.Brown, "APL Syntax -- Is it Really Right to Left", APL
Quote Quad, Vol. 13, No 3.

[Bu1] J.D.Bunda and J.A.Gerth, "APL two by two - Syntax Analysis
by Pairwise Reduction", Proceedings of APL84, Helsinki,
Finland.

[Ch1] Cheney, "Nested arrays reference manual", STSC 1981

[Fa1] A.D. Falkoff and K.E. Iverson, "APL\360 User's Manual", IBM
Corp., FH20-0683-1, 1970.

[Fa2J A. D. Falkoff, K. E. Iverson, and E. H. Sussenguth, "A Formal
Description of System 360", IBM Systems Journal, 3. pp 1 98
ff~ 1964.

[Fa2] A.D. Falkoff, "Criteria for a System Design Language",
Report on NATO Science Committee Conference on Software
Engineering Techniques, April 1970.

[Gh1] Z. Ghandour, and J. Mezei, "General Arrays, Operators and
Functions", IBM Journal or Research and Development, Vol.
17 , no. 4, July, 1973.

[Gu1] W.E. Gull, and M.A. Jenkins, "Recursive Data structures in
A PL", CAeM vol. 2 2, no. 4, Feb. 1 9 7 9, P P • 7 9 - 9 6 •

[Ha1] H.R. Haegi, "The Extension of APL to Treelike Data
structures", APL Quote Quad, Vol. 7 ,no. 2 •

[Iv1] K. E . Iverson, "Operators and Functions", IBM Research
report 17091 , Yorktown Heights New York.

[Iv2] K.E. Iverson, "A Programming Language", Wiley, New York,
1 962 .

[Iv3] K.E. Iverson, "Rationalized APL", I.P. Sharp Research
Report #1 , April, 1 983/

[La1] R. H. Lathwell and J. E. Mezei, "A Formal Description of
APL", Colloque APL, Insti tut de Recherche d t -Informatique
et dtAutomatique, Rocquencourt, France, 1971.

[Lo1] P.G. Lowney, "Carrier Arrays: An Extension to APL", PhD
Thesis, Yale University, May, 1983.

79

[Mr1J R. Mercer, "Extensions of APL to include Arrays of Arrays" 9

University Computing Center Report. University of Mass.,
Amherst.

[Mo1] T. More, "Notes on the Development of a Theory of Arrays It ,

Philadelphia Scientific Center report 320-3016, May 1973.

[Mo2J T. More, "Notes on the Axioms for a Theory of Arrays",
Philadelphia Scientific Center report 320-3017 , May 1973 #

[Mo3J T. More, "Axioms and Theorems for a Theory of Arrays ", IBM
Journal of Research and Development, Vol. 17 t no. 2, 1 973 •

[Mo4] T. More, "A Theory of Arrays wi th Applications to
Databases", IBM Cambridge Scientific Center report
G320-2106, Sept 1975.

[MoSJ T. More, "Types and Prototypes in a Theory of Arrays", IBM
Cambridge Scientific Center report g320-2112, May 1976.

[Mo6J T. More, "On the composition of Array-theoretic
Operations", IBM Cambridge Scientific Center report
G320-2113, May 1976.

[Mo7] T. More, "Nested Rectangular Arrays for Measures,
Addresses, and Paths", ACM-STAPL/SIGPLAN APL79
Conference Proceedings, APL Quote Quad :I 9, No. 4 - Part 1 ,
June 1979, PP. 156-163.

[MoSJ T. More, "The Nested Rectangular Array as a Model of Data" ,
Invited address, ACM-STAPL/SIGPLAN APL79 Conference
Proceedings, APL Quote Quad # 9, No. 4 - Part 1 , June 1 979 t

PP. 55 -7 3 .

[Mo9] T. More, "Rectangularly Arranged Collections of
Collections" , Invited address, APL82 Heidelberg

[Mo1 0 J	 T. More, "Notes on the Diagrams, Logic, and Operations of
Array Theory", IBM Cambridge Scientific center, TR
G320-2137 Sept., 1981 •

[Mo11 J	 T. More, "structures and Operations in Enginerring Second
Lerchendal Book and Management Systems", Edi ted by Oyvind
Bjorke and Ole I. Franksen, Tapir Publishers, Trondheim,
Norway 1981. pp. 497-666.

[Pa1] S. Pakin, "APL\360 Reference Manual", Science Research
Associates, Inc. , Chicago, 1968.

[Sm1) R. Smith, "Nested arrays, Operators and Functions tt, APL 81
Proceedings, 286-290.

80

~ APPENDIX ~ SUMMARY OF RULES AND DEFINITIONS

Object Classes: There are three classes of objects:
o arrays
o functions

o operators

Array: An ordered rectangular collection of items
each of which is itself an array

Simple Array: An array each of whose items is a

single number or a single character.

Nested Array: An array at least one of whose items
is not a single number of a single character.

Homogeneous array: An array containing only one

type of data -- numbers or characters.

Function Valence: All functions are ambi-valent
(both valences) and the one evaluated in any
instance is determined only by context.

Operator Valence: Operators are not ambi-valent.
A given operator is either monadic or dyadic
determined by definition not context.

Syntax classes: There are six syntax classes:
o arrays
o functions
o monadic operators
o dyadic operators
o assignement arrow
o brackets

81

Parentheses rule: Parentheses are used for grouping.
They are correct if properly paired and if
what is inside evaluates to an array, a
function, or an operator.

Redundant Parentheses: Correct parentheses that

don't alter any bindings are redundant

o	 general
- group a single name (primitive or constructed)
- group an expression in parentheses

o	 array expressions
- do not both group and separate
- group right argument of a function
- group vector left argument of a function

o	 function expressions

- group left operand of an operator

- group function expression and left

parenthesis does not separate two arrays
o	 bracket expressions

- group brackets and object to the left

Expression: A linear string of names and symbols,
taken from the six syntax classes, punctuated
with parentheses.

Right to left rule: In an unparenthesized expression
without operators, functions are evaluated from
right to left.

Function Precedence: Functions in an expression
have no precedence. The order of execution
depends only on position in the expression.

Rewriting rule for character vectors: If a vector
in parentheses is made up entirely of single
characters, it may be rewritten with a single
pair of enclosing quotes.

Expression substitution: In an expression, any
sub-expression may be replaced by another
expression that computes the same value
without changing the value of the original
expression.

82

Syntactic Substitution: In an expression, any object
in parentheses may be replaced by an object of
the same syntax class without changing the syntax of
the statement.

Printing results: If the last syntactical action in
an array expression is an assignment, the final
array value of the expression is not printed.
If any binding occurs after the last assignment,
or if there is no assignment, the final array
value is printed.

Scalarwise function: A function over which indexing
distributes.

Pervasive function: A function over which pick
distributes

Leafwise function: A function over which pick
distributes where no pick operation selects
the item from a simple scalar.

Scalar extension: When a scalarwise function
is applied to two arrays and one array is
a scalar and the other is not, the item of
the scalar is paired with each item of the
nonempty nonscalar array, or the item of the
scalar is paired with the prototype of the
empty array -- defining the prototype of the
result.

83

Bind i ng Hi e r a r c h y

brackets

as s i gnme n t l e f t

r i g h t ope r and

vecto r

l eft operand

l eft arg ument

r i g h t a r gu me n t

assignme n t r i gh t

brackets --- - - --- - b i nd i ng o f brack ets t o wh a t
i s on the l e f t

ass ignment l e ft -- b i nd i ng o f a left arr ow
to what is on i t s l e f t

r igh t ope r and -- - - b i n ding o f a dy a d ic o pe r a to r
to i ts operand on the r igh t

v e c t o r - - --------- b inding o f a n a r ray t o
a n a r r a y

left ope r and ----- b i n d ing o f an opera to r t o
wha t is on its left

lef t a rgu me n t - - - - b i nding a f unc tion to i t s
left a r g ume n t

righ t a r gument -- - b i n d i ng o f a function t o i t s
r i g ht a rgument

ass i g nme n t righ t - bin d ing o f a l eft arrow
t o wh a t is on i ts r igh t

Brac ke ts a n d monad i c ope rators h a ve no binding

stre ng t h on t h e r igh t .

Ri gh t ar row i s s yntactic ally a function that

produces n o v a lue.

Ni l a d i c f un c t i on s a r e synt act i cally array s .

APL2 fun c t ion se t: An APL2 function i s a co l l ect ion
of t he f o l l owing r elated funct i ons :

o Monadi c pr inc i pa l f unct i on

o Dya d i c pr incipa l func t ion

o Monadic f il l f unc t i on

o Dyad i c f i l l f unction

o Mona d i c identi t y func tion

84

20,0 APPENDI X ~ DEFI NE D FUNCTI ONS

The define d o p e r at ions p r e sente d he r e are defin i tions or
e xamples and i n g e n e r a l d o n o c h eck ing f o r bad a rguments or
exceptional conditi ons .

The SPLIT fun c tion defines enc l ose wi t h axis,

VZ~I SPLIT R; IRH O;ZRHO ASPLI T R ALONG AXES I
[1 J IRHO~(pR)[I J ASHA PE OF RESULT ITEMS
[2J ZRHO~(pR)[(,p pR)-IJ ASHAPE OF RES ULT
[3J R~(~ «,p pR)-I),I)~R AMOVE I AXES TO RI GHT
[4 J Z~Op c R ASET PROTO TYPE OF RESULT
[5J ~(O£pZRHO) / END ANO LOOP I F RESULT EMPTY
[6 J R~ , R AGET LI ST OF I TEMS
[7J LP : Z~Z, cIRHO p R ABUILD NEXT RESULT ITEM
[8 J ~ (O~pR~ (x / IRHO) + R) /LP ADROP I TEMS USED
[9 J E ND:Z ~ZRH O p Z ARESHA PE TO RESULT SHAPE

V

The UNSPLI T f u n c t i o n
inverse of S PLI T and
same shape,

de f i n e s d i sclo se wi t h a x i s . It i s
i n a dd i t i on pad s i f i tems do n o t

the
h a v e

left
the

[1J
[2J
[3 J

V Z ~ I UNSPLI T R
R~ => R

I~ «,p pR) -I) ,I

Z ~ I~ R

V

AUNSP LIT R FORMI NG AXES I
APUT AXES ON RI GHT
ACOM PUTE TRANSPO SE
AMOV E AXES TO I POSI TIONS

The LEAF opera t o r p r odu ces a d e r i v ed f unction tha t has t h e
leafwise property ,

V Z~L (F LEAF)R AAPPLY F TO S IMPLE SCALARS
[1 J ~(2= DNC ' L') / DYA D ASEP ARATE DYADIC CALL
[2J A

[3J ~(O = :: R) /MF ABRANCH S I MP LE SCALAR
[4J Z~F LEAF " R AAPPLY F TO EACH IT EM
[5J ~ O

[6J MF:Z~F R AAPPLY F TO S IMPLE SCALAR
[7J ~O

[8J A

[9J DYAD :~ (1 = :: L R) /D F ABRANCH S IMPLE SCALARS
[1 0 J Z ~L F LEAF"R AAPPLY F TO EACH ITEM
[11 J ~O

[12 J DF :Z +-L F R AAPPLY F TO SIMP LE SCALARS
[1 3 J ~O

V

The RANK opera t or appl ies a functi on l e ft opera n d F t o con t i g u ou s
subarrays from its argum e n ts as defin ed by i t s r ight o pe r a n d N
[Iv3J , N i s a thre e i t e m i n t e g e r vector contain i n g the r a nk s of
the arguments t o which F i s u l tirnately a ppl i e d . The first i tern of

8 5

N is the rank for monadic uses of the derived function. The second

and third i terns of N are the ranks of the left and right arguments

ul timately used wi th application of F for dyadic uses of the

derived function. The ranks specified are maximums. If an

argument has smaller or equal rank than the i tern of N, the

argument is used unchanged. If an argument has greater rank than

the i tern on N, then the argument is spli t into rank N arrays and F

applied to each piece. Axes of the resul ts produced by each

application of F are arranged as right axes of the result of the

derived function. A negative N means use complementary rank (-2

means spli t except for first two axes) .

VZ~L(F RANK N)R;RL;RR AAPPLY F WITH RANK N
[1J N~OrN+(N<O)x«ppR)-IOLN)-N~MAKE NEGATIVE A POSITIVE
(2J ~(O~ONC 'Lf)/V2 ASEPARATE DYADIC CALL
[3J ~

[4J RR~-(ppR)L1pN ~USE SMALLER OF N AND RANK
[5J Z+-::>F"c[RR+1.ppRJR p.APPLY F TO EACH PIECE
[6J -+0
[7J A

[8J V2:RR+--(ppR)L-1+3pN ~USE SMALLER OF NAND RT RANK
[9J RL~-(ppL)L1t1.3pN p.USE SMALLER OF NAND LFT RANK
[10J Z+-~(c[RLt,ppLJL)F··c:[RRt1.ppRJRp,APPLY F TO PIECES
[11J -+0

v

The TYPEOF function takes a simple scalar argument and returns a
zero if it is a number and a blank if it is a character.

VZ~TYPEOF R RGET DATA TYPE OF SIMPLE SCALAR
[1]	 Z+-(O t f)[R = TRJ

V

In APL2 the type of an array R is an array of the same structure
but wi th all numbers set to zero and all characters set to blank.
The following are two different definitions of a function which
computes the type of an array. The first recursively searches
the argument for simple scalars, then applies TYPEOF from above.
This function is a constructive definition because it actually
finds the scalars then changes them. It fails on empty arrays
because there is no way to specify the fill function related to
the derived function TYPEOF LEAF. The second uses the intimate
relationship between array types and empty arrays to extract the
type array directly. It always produces the correct answer.

VZ~TYPE R A GET TYPE OF ARRAY R

[1J Z~TYPEOF LEAF R

V

VZ~TYPE R A GET TYPE OF ARRAY R
[1]	 Z+-+Opc:R

v

The COMP operator forms a monadic function by associating with a
dyadic function a fixed left argument. Thus while + is the
addi tion function and 1+A is its dyadic use, 1 COMP + is the

86

increment function and (1 COMP +) A is i ts monadic use (wi th
redundant parentheses used for clari ty) .

VZ~(A COMP F) R ~COMPOSE ARRAY WITH DYADIC FUNCTION

[1J Z+-A F R

87

~ APPENDIX ~ A BRIEF CHRONOLOGY OF APL DEVELOPMENT

APL, as a notation for writing about data processing, grew from
work begun in 1 957 by Dr. Kenneth E. Iverson. His book, tlA
Programming Language" (1 962) presented a version of the language
referred to as "Iverson Notation". Shortly after Iverson joined
IBM in 1960, he teamed up with Adin Falkoff and for many years
they led various groups in designing and developing APL products.
In early 1963 Falkoff began work on the "Formal Description of
System 360", which was completed with the collaboration of
Iverson and Sussenguth. In 1964 9 Iverson and Falkoff designed
the first APL type ball for the IBM selectric typewriter. This
required the linearization and regularization of the language.
Larry Breed and Phil Abrams produced an early implementation on
the IBM 7090 in 1 965. Dick Lathwell joined Falkoff and Iverson in
1966 and with Breed and Rodger Moore produced an implementation
for the IBM 360. This evolved into IBM's first APL program
product APL \ 360 •

In 1971 Falkoff's group began serious investigation of shared
variables under the direction of Dick Lathwell. This work evolved
into APLSV. Alex Morrow led the development group that produced
further releases of APLSV. Bob Creasy, Tony Hassit and Len Lyon
led the group that developed APL/CMS which became the VSAPL
program product.

Dr. Trenchard More joined Falkoff in 1 967. He was one of the
first to recognize operators as different from functions. His
work on array theory provided the theoretical background for the
arrays of APL2 -- especially empty arrays. Vector notation in
APL2 derives from More t s strand notation.

Dr. James A. Brown joined Falkoff in 1 969 and participated in the
development and release of APL\360, APLSV, and VSAPL. His thesis
itA Generalization of APLIt (1 971) included significant
contributions from Dr. Garth Foster, Syracuse University, and
became one of the bases for APL2 .

APL2 entered the IBM product plan in 1981 due to the efforts of
Karen Riley and an experimental version was released as an
Installed User Program (IUP) in June 1 982.

Benkard provided the background theory that unified APL2 syntax
in 1 982 •

Dr. Brown is currently manager of APL Language Development at
IBM's Santa Teresa Laboratory in San Jose. Mr. Falkoff is manager
of the APL Design Group at IBM Research in Yorktown Heights.

88

	Untitled
	198403_THE PRINCIPLES OF APL2

