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ABSTRACT 

This paper presents the rules governing the APL2 language and 
the principles that motivated the design decisions. 
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The Principles of APL2 
by 

Dr. James A. Brown 

~ INTRODUCTION 

IBM has many products which follow the IBM internal standard for 
APL (VSAPL, APLSV, PC APL, 81 00 APL). This level of the APL 
language is referred to as APL1 in this paper. 

APL2 is based on this writer' 5 PhD Thesis [Br1], the array theory 
of Trenchard More [Mo1 ] 1) and most of all on APL1. See Appendix 3 
for a brief chronology of the development of APL2. APL2 removes 
many of the restrictions of APL1. APL2 generalizes many of the 
fundamental concepts of APL1 and extends or completes many 
functions and operators. 

Although this paper attempts to be formal in its approach, some 
statements are made without proof when the details of the proof 
would not add to understanding. While a presentation of 
principles would be brief, this paper derives and discusses the 
rules and principles. No attempt is made to present the new 
language in its entirety. Familiarity with the concepts of APL2 
is assumed. Those wishing a more complete description of APL2 may 
refer to the APL2 publications library [1-11]. This is rather a 
discussion of how APL2 was designed and what motivated the 
choices that were made. 
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~ THE OBJECTIVES OF APL2 

APL1 has proven itself to be an extremely powerful, usable 
language. This is because it has arrays as data; has functions 
which apply directly to arrays and produce arrays as results; has 
operators which apply to functions in a uniform manner producing 
families of related functions; and has syntax governed by a few 
simple, easily understood rules. 

Arrays are collections of numbers or collections of characters. 
Arrays are rectangular in the sense that in a matrix, for 
example, each row has the same number of columns. 

Numbers are one-sorted in that all numbers are real numbers and a 
user of the notation does not have to manage number 
representations. 

Array operations allow computations to be performed where the 
data itself controls the limits of the operation. A summation 
operation is controlled only by the data being summed. No loop is 
explicitly written. You can do arithmetic on whole collections 
of numbers in a single operation. 

Operators provide a means for controlling the application of 
functions to data. When you understand how an operator works when 
applied to one function, you know how it applies to any function 
in its domain. If you understand +/, then you can figure out -/ 
and 0/ even if you t ve never seen them. 

The simple syntax of APL1 does not assign precedence to 
functions. You do not need to remember which functions are 
evaluated before which other functions. Only their position in an 
expression determines when they are evaluated. 

If we understand what is good about APL1 ~ we may proceed to 
consider extensions which will enhance the good features. The 
extensions range from the removal of somewhat arbitrary 
restrictions to incorporation of pervasive changes. 

In APL2 the APL1 restriction which forbids numbers and characters 
in the same array is relaxed. An array may be a collection of 
numbers and characters. Numbers are one-sorted in that all 
numbers are taken from the complex number field. The term 
nonreal number is reserved for numbers with a nonzero imaginary 
part. Real numbers are the proper subset which have an imaginary 
part of zero. 
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APL2 extends the array concept by permi tting any i tern of an array 
to be any other array. Actual data is not always rectangular. 
APL2 retains the useful properties of rectangular data yet lets 
non-rectangular data be easily represented in nested arrays. 
Nested arrays can be used wi th the same ease as APL 1 arrays. 
Users are not burdened with the managing of the data structures. 
More operations are controlled by the data and the need for 
explicit controls on these computations is removed. The result 
is a reduction in the complexi ty of programs. 

Operators from APL1 are generalized so that they apply to all 
dyadic functions even those defined by the user. One new 
primi tive operator is defined and users may define their own 
operators. 

The syntax of APL2 is essentially unchanged from APL1. 
Restrictions on the use of parentheses are removed so that one 
simple rule governs the use of all parentheses. This provides 
the ability to write expressions of operators and a convenient 
way to write lists of arrays (especially nested vectors) as an 
extension of constant vector notation. 

In summary: the objective of APL2 is to produce a more powerful 
and productive language; the challenge is to make it formally 
correct and complete while providing a rich set of tools for 
problem solving. 
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L....Q CRITERIA 

There is no doubt that the set of possible extensions is 
inter-related. It is not possible to study each extension in 
isolation from the others. Yet there has to be some measure by 
which we jUdge any change. 

Four criteria against which any proposal for an extension may be 
measured are: 

o compatibility 

o formality 

o simplicity 

o usability 

3.1.1 COMPATIBILITY 

Compatibility is the measure of the extent to which a proposal 
imposes a change on something in APL1. There are four kinds of 
changes to functions which might affect compatibili ty: 

o errors become answers ~ 

o answers become different answers, 

o answers become errors ~ and 

o errors become different errors. 

Many changes cause APL2 to give answers where APL1 produced an 
error message. In general, these are not considered serious 
compatibility issues and changes of this kind have been taking 
place throughout the history of APL. However a system where every 
expression gives an answer no matter what would be a difficult 
one in which to develop an application. 

Changes which cause answers different from those in APL1 are 
serious compatibility issues and should be adopted only for very 
strong reasons. 

Changes which cause errors where APL1 gave answers appear serious 
at first glance but are not because the error message and the 
carets point precisely to the offending statement. These are 
therefore easier to fix than the second case above where a 
failure may not occur. 

In some situations APL2 gives a different error message than 
APL1. This does not affect compatibility because there was no 
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way under program control to determine which error occurred. It 
does affect documentation and user practice. Since APL2 has 
error handling' facilities, future changes in error messages 
could affect compatibili ty. 

Another factor that can influence the decision is the extent to 
which a change can be automatically detected or even corrected. 

A second form of compatibility has to do with the rules users 
apply when using the notation. APL1 has many identities which 
help people understand and remember how functions work. For 
example the shape of the result of the indexing function may be 
diff icul t to figure out wi thout the identi ty: 

It is important to preserve useful identi ties whenever possible. 

3,1,2 FORMALITY 

Formality is the measure of the extent to which a proposal 
follows rules. This is where consistency must be determined. A 
formally incorrect proposal can never be considered. However 
there may be many correct formalisms and the choice among them 
must be guided by other principles. 

Formal arguments are normally phrased in terms of identi ties. As 
described in the previous section, APL1 has many identities and 
jUdgement is required in choosing those which are to remain true 
and those which will be violated. Very often the identities of 
APL1 dictate which of several definitions for a primitive should 
be chosen. Of course it is a matter of judgement which identi ties 
are the important ones. In APL2 the shape identities from APL1 
(au in indexing ~ outer product, etc.) are considered important. 

Also formal correctness of the extended notation may be assured 
by choosing easily understood -- universally true identities 
describing the new function. For example, in APL2 the new 
function disclose (~) is defined as a left inverse of enclose 
( c: ) : 

The function disclose is also given a meaning when applied to 
nonscalar arguments but even so the above identi ty remains 
strictly and universally true. 
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3,1,3 SIMPLICITY 

Simplicity is the measure of several things. Having few rules is 
better than having many; having classes of objects with similar 
properties is better than treating each object separately; 
resul ts that are conformable wi th arguments are better than 
results that are not; a rule without an exception is better than 
one wi th an exception. 

Again these are not independent considerations. It is clearly 
good that the class of functions called the scalar functions all 
operate the same way_ Saying all functions are ambi-valent lets 
us then talk about all functions as a class. Yet operators are not 
ambi -valent because the addi tional parentheses that would be 
needed are not desirable. 

The simplicity principle is sometimes called Occam's Razor -- if 
two explanations describe some behavior then the simpler one is 
probably correct. That is how renaissance astronomers concluded 
that the Sun was the center of the solar system - the motion of 
the planets was simpler to describe. 

3.1.4 USABILITY 

Usability is the measure of the ease with which the notation can 
be understood and applied. Although important, it is the most 
difficult criterion to measure or subject to an objective test. 
This is probably the reason why companies have whole departments 
devoted to usabili ty studies and human factors. In the end, 
usabili ty is strongly influenced by formali ty and simplici ty. 

Given that the other principles are followed, usability follows 
from conscious decisions to make things easy to do. It can arise 
from making the most common things people want to do easy to 
express even when another formulation may be desirable for other 
reasons. One proof of usabili ty is the abili ty to correctly 
predict how an operation works in an unfamiliar situation -- the 
law of least surprise. Usabili ty in APL2 most often follows from 
the knowledge of a few simple rules -- again the application of 
identities. 

~ DESIGN DECISIONS 

These principles are not independent properties. At first it is 
tempting to try to order them by priority. Perhaps formality is 
more important than compatibility; or usability is more 
desirable than simplicity. If a given change falls only under 
one of these headings, that may decide the question, For example 
a prototype of APL2 returned 0 as the answer to 0+0. There are 
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good arguments why that answer is better, but 0 is not more 
formally correct than 1. (Formally any number is correct - 0+0 is 
not undefined, it's over-defined.) Only compatibility with APL1 
dictated that we must return 1. More often the decision is a 
trade off between several principles and in these cases human 
judgement must be applied to determine the decision. This is why 
language design is an art rather than a science and one reason why 
reasonable people can come to different conclusions given the 
same problem. 

Common to all four criteria is the notion of an identity. APL2 
must be compatible with useful identi ties in APL 1 ; identities are 
the key to formality; identities make ideas simple to understand 
and that makes them usable. 

In the following sections an attempt will be made to identify how 
these principles are applied in making the decisions embodied in 
APL2. 
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~ METHOD 

There are two very different approaches to extending APL which 
were used in the design of APL2. The approaches were used for 
different purposes and at different times in the design process. 
The constructive approach assures us that the desired function is 
available in the new language. The deductive approach assures us 
that the new language is formally correct. 

~ THE CONSTRUCTIVE APPROACH 

In the constructive approach we start with what we have (APL1) 
and make extensions -- at each point being sure we have not 
introduced any formal inconsistency, anything difficult to use, 
etc. We build new things from the old things. 

~ THE DEDUCTIVE APPROACH 

In the deductive approach we start with where we want to be and 
make sure that the resulting notation is compatible, formally 
correct, simple, and usable. We begin by adding things one at a 
time, then look back and formalize what was produced. The rules 
may be proposed when you start but are not validated until you 
finish. The real rules are discovered after we know where we want 
to be. The process is iterative -- extend, discover rules, adjust 
the extensions to meet the rules ~ and repeat the process refining 
the ideas and the notation at every step. When using this 
approach, since it is a matter of judgement as much as with the 
constructive approach, it is advisable to stay away from the 
limiting cases where intuition may not serve well. Therefore we 
stay away from arrays of rank a and 1 , from axes of length 0 and 1 , 
and therefore from arrays having 0 or 1 items. Rather we examine 
extensions away from the limits t attempt to understand what is 
true, write the identity that describes what is true, and then 
approach the limi t formally. If the identi ty fails at the limi t t 

either the identity is not universally true, we wrote the wrong 
identity, or we discover some new property of the data or the 
operations which make it true. 

The section on empty arrays contains two examples of the 
deductive approach. In the first we choose to believe the formal 
equation and postulate data that makes the equation universally 
true. In the second, the example is universally true but does not 
do what is expected in the empty case. This time we reject the 
equation in favor of another which is also universally true but 
which does what is expected as well. The choice you make in any 
given instance is, alas, a matter of judgement. 
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~ COMPARISON OF THE APPROACHES 

Neither approach is more correct than the other and in cases 
where the same conclusion is reached by either approach very 
Ii ttle jUdgement need be employed. Which approach is chosen in a 
particular instance depends on the impact of the proposed 
extension. 

When adding a single primi tive operation it is clearly most 
important that it fi t wi th what exists. If the primitive is 
isolated from other considerations such as syntax and new data 
structures it may be considered in isolation. The only questions 
are "Is it a good definition?", "Is it easy to use?", etc. 

When adding a large extension that pervades a significant part of 
the notation, you still begin with the constructive approach -
adding things carefully one at a time. After everything is in 
place, however, the resulting notation should be compatible, 
formal, simple, and usable. This involves writing down what you 
believe to be true about the extended notation (keeping away from 
the limits), then studying the limits making adjustments to rules 
or extensions until you are satisfied that all the criteria are 
satisfied. 

In particular, extending the universe of data to nested arrays 
must, by its very nature, affect every operation. Given nested 
arrays, some new primitives must be viewed as part of the whole 
and not as isolated extensions. 

The following sections introduce APL2 objects. Starting with 
general abstract notions, we apply controls to limit the set of 
objects. Since we know what we want to achieve, we know what 
controls to impose. Thus, when talking about functions in the 
abstract, we make choices knowin~ that we want a linear infix 
notation that can allow at most two arrays as arguments. It is 
therefore no surprise when talking about syntax that we can 
easily devise ways to wri te the functions we have included. 
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L..Q THE OBJECTS OF APL2 

APL2 recognizes three classes of objects: arrays, functions, and 
operators. In this section each object class is examined first 
as an abstract notion and then as the subset actually permitted 
in APL2. 

L..1 ARRAYS 

The arrays of APL2 are based on this writer's PhD dissertation 
[Br1]and on the array theory of Trenchard More [Mo1 etc.] and 
influenced by numerous other papers (see references). Array 
theory is an attempt to give a scientific basis to the theory of 
data and has been proven to be correct (i.e. consistent) if set 
theory is correct. 

Arrays are the objects least constrained by APL1. Evidence of 
this is the existence of two very different nested array 
implementations: one based on array theory and one based on other 
principles. other possibilities also exist. One can conceive of 
arrays wi th different numbers of i terns in each row (ragged 
arrays) and these would not conflict with rectangular arrays 
which would be a proper subset of them. Geoff Lowney t s PhD 
dissertation [Lo1J, for example, is an interesting (although not 
entirely compatible) possible direction for extension to arrays. 

5.1.1 THE CONCEPT OF AN ARRAY 

Arrays may be viewed in the abstract. An array is an ordered 
collection of i terns. It is the analog of a set which is an 
unordered collection of items. At this level of abstraction the 
i terns can be anything at all and they can be ordered in any 
conceivable manner. 

The concept of ordered collections stands on its own and may be 
considered and understood without a syntax to write collections 
or operations to manipulate them. APL2 adds to this concept 
controls which organize and define a subset of the set of all 
possible arrays on which we define operations. It then defines a 
syntax for expressing some arrays, operations to transform them 
into other arrays, and rules for applying the operations. 
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5.1,2 CONTROLS ON ARRAYS 

The first control on arrays is rectangularity, We include in our 
universe of data only arrays where the number of items along any 
axis is independent of the posi tion along the other axes (that is 
the axes are orthogonal) . 

The next control is to specify the nature of the items. We will 
include in our universe of data only arrays whose items are 
arrays. 

While it is conceivable to have arrays in which the recursion 
continues wi thout end, we know we want to express computations on 
real data. We therefore stipulate as the next control the 
condi tions for the termination of nesting [Mo8J. We declare that 
a single number or character (that is a simple scalar) contains 
itself as its only i tern. Thus arrays contain arrays as i terns and 
recursion is effectively terminated by a simple scalar. 

The next control on arrays is fini teness. The length of any of the 
orthogonal axes of the rectangular arrays is finite. The number 
of axes is finite and the depth of nesting is fin! te. 

5.1.3 ARRAYS.IH APL2 

The arrays of APL2 are finite rectangular arrays which contain 
arrays as i terns. When the term array is used 9 it means this 
subset of all possible arrays. 

The arrays of APL2 are the same as the arrays of Array Theory and 
in particular empty arrays have structure as defined by Array 
Theory [Mo1 etc.]. 

An array one of whose i terns is other than a single number or 
character (a simple scalar) is called a nested array. An array 
containing only numbers or containing only characters is called a 
homogeneous array. An array all of whose i terns are either single 
numbers or single characters is called a simple array. The 
arrays of APL1 are simple and homogeneous. 

In some sense every array in APL2 is nested because it contains 
other arrays. The term is reserved for those which contain at 
least one i tern which is not a single number or character. Thus the 
universe of arrays is partitioned into two subsets: simple 
arrays and nested arrays. 
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h2. FUNCTIONS 

The functions of APL2 are defined as in APL1. Although APL2 has 
several new functions and old functions have been extended, the 
defini tion of and controls on functions are not different and are 
included here for completeness. 

5.2.1 THE CONCEPT OF A FUNCTION 

A function is a mapping from the members of its domain to the 
members of its codomain. (The codomain is sometimes called the 
range.) Both the domain and the codomain are sets (as opposed to 
arrays) because there is no implied ordering. The mapping 
represented by a function may be specified by a formula 
(especially if the domain has an infinite number of members) or 
by a table listing the codomain member corresponding to each 
member of the domain. 

APL2 adds to this concept controls which select the subset of 
functions we wish to make representable. 

5.2.2 CONTROLS ON FUNCTIONS 

Since the data of APL2 is arrays, we want functions to operate on 
arrays and produce arrays. An APL function may take ei ther one or 
two arrays as arguments and produce one array as a result. 
Therefore the first control we impose on functions is that the 
largest domain is the set of all arrays together with the set of 
all pairs of arrays. It is this choice of domain that makes all 
functions ambivalent. Which is written in any instance is a 
syntactic decision not a semantic one (see section on array 
expressions). 

The second control is that the largest codomain of functions is 
the set of all arrays. When a function is evaluated, the array 
from the codomain that is produced is called the explicit result 
of the function. 

Thus the functions of APL2 map arrays (monadic) or pairs of 
arrays (dyadic) onto arrays. 

5.2.3 FUNCTIONS IN APL2 

While the arrays of APL2 match those of array theory ~ the 
functions (and the symbols used to represent them) are taken from 
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APL1. Not all possible functions are made primitive but a way to 
generate functions is provided (operators) as well as a way to 
define functions. 

Given the new data structures, the restrictions on the number of 
arguments to functions are not severe. Al though APL allows 
functions of at most two arguments and at most one result, nested 
arrays give an easy way to package arrays into a vector. The 
vector may be thought of as mul tiple arguments even though 
syntactically i t is one argument. 

The function universe of APL2 also includes functions which do 
not produce a resul t. These are not functions in the strict sense 
because they do not have a codomain. In a strict function this 
could only be true if the domain were also empty. The only 
primitive function which returns no result in some circumstances 
is execute (~). User defined functions without results are also 
permitted. 

Notice that the description of functions does not include APL's 
concept of niladic function (a function wi th no arguments) and in 
general when we talk about "all functions" we do not mean the 
niladic ones. Except for compatibili ty wi th APL1 terminology ~ we 
would give these a different name. Syntactically they are 
treated like arrays. 

~ OPERATORS 

Operators are one of the most powerful concepts in APL and will 
probably provide the most interesting direction for future 
extensions. APL1 has a very limi ted set of operators which can be 
used only with specific functions. APL2 has an unlimited set of 
operators. 

5.3.1 THE CONCEPT OF AH OPERATOR 

An operator is a mapping from a member of its domain to a member 
of its codomain. This is exactly what was said about functions. 

Operators differ from functions because the largest domain for 
operators is larger than that for functions; the codomain is 
different from that for functions; and operator binding to 
operands is stronger than function binding to arguments. 
Operators and functions as a group are referred to as operations. 
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5.3.2 CONTROLS ON OPERATORS 

Operators in APL1 are defined as applying to functions giving new 
functions as a resul t. In APL2, operators wi th array operands are 
allowed so the first control on operators is that the largest 
domain of operators is the union of arrays, functions, and pairs 
of arrays and functions in any combination. Thus an operator may 
take one array or one function as an operand (monadic); or two 
arrays, two functions, or a function and an array as operands 
(dyadic). It is the concept of an operator taking array operands 
that permits using / as both reduction and replicate (compress). 
In APL2 I is an operator. It is not possible in APL1 to tell if / 
is a function or an operator. No expression of the form 
array /array could give a different answer depending on the 
interpretation of array/ as a monadic operator with an array 
operand or array / array as a dyadic function. 

The second control on operators is that the domain of any 
particular operator contains either arrays and/or functions or 
pairs of arrays and/or functions. It is this choice of domain 
that prohibits operators from being ambi-valent. When an 
operator is defined a semantic choice is made that determines the 
number of operands allowed. Context does not influence the 
decision. No operator is both monadic and dyadic. 

The third control on operators is that the largest codomain is 
the set of all functions. Therefore operators return functions as 
their results and the functions so produced are called derived 
functions. Operators that produce arrays may be correct but are 
not included in APL2 • 

5.3.3 OPERATORS IN APL2 

Not all possible primitive operators are defined and no general 
way to generate operators (derived operators) is provided. A 
mechanism to define the derived functions of user operators is 
provided. 

The operators of APL2 match those of APL1 in concept but there are 
several important generalizations and one new operator. 

The operators of APL1 are extended in APL2 so they apply to all 
dyadic functions -- primitive~ derived, and defined. The new 
operator each ( .. ) transforms the concept of iteration into one of 
an array operation and applies to all functions -- monadic and 
dyadic. 

The controls put on operators are strict and examining 
relaxations of the controls could lead to exciting new concepts. 
For example ~ currently there is no capabili ty to deal wi th 
collections of functions as there is wi th collections of data. 
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Note that nothing in the language precludes the inclusion of 
other objects perhaps of higher binding power than operators but 
none have been included. 
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~ NAMES 

In the previous section we defined APL2 objects in the abstract. 
In this section we discuss how the objects are identified in a 
written notation. 

A name is a string of one or more characters which is~ or may bet 
associated wi th an APL2 object. Some names are always associated 
with the same object, others may not be associated with objects 
at all or may be associated with different objects at different 
times. 

Names are considered atomic, indivisible units of writing even 
when they take more than one character to represent. 

~ PRIMITIVE NAMES 

Primitive names are those that are defined as part of the 
definition of the language. They have fixed associations in that 
a given primitive name is always associated with the same object. 

6.1.1 PRIMITIVE ARRAY NAMES 

APL2 arrays are collections of numbers and characters. The 
primitive arrays (the ones given names) are single numbers and 
single characters (that is simple scalars) . 

Numeric scalars are wri tten using their decimal representations. 
Complete rules for writing numbers may be found in [1J. Here are 
examples of various styles of numbers. 

245.5 

is the name of a single numeric scalar. It is treated as an 
indivisible unit despi te the fact that it occupies 5 print 
positions. 

Negative numbers are written as positive numbers prefixed with a 
high bar. 

Notice that, unlike conventional mathematics, the negative 
attribute of a number (-) is distinguished from the subtraction 
operation (-). 

Numbers may be represented in scaled form by specifying an 
integer power of ten scaling factor. 
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2.35E13 

Complex numbers may be wri tten as a real and imaginary part 
connected wi th a J 

and in polar form with magnitude and angle expressed in degree~ 

or radians. 

2D45 
1 R1 • 71 6 

While any rational number may be written 9 in an implementation 
not all are associated wi th a scalar object. For example t 

2E987654 is a legal name for a number but is not associated with 
an object in most implementations because the number is not 
representable. 

A given numeric object may be associated with many names. For 
example, the number ttfifteen" can be written: 

15 
1 5 . 
15.0
 
1 • SE1
 
15JO
 
etc. 

Character scalars are written by enclosing the graphic 
associated with the character in single quotation marks. 

tAt 

This is a single character and is treated as an indivisible unit 
despi te the fact that on input i t occupies three print posi tions. 
The use of the quotes means it is always possible to distinguish 
between a number which is represented by a single digit and the 
character whose graphic is that digit. 

2 cannot be confused with '2' in an expression 

While the APL2 implementation allows for 2, 1 47 9483,647 different 
characters, not all may be written as constants. See [1] for the 
list of characters allowed in quotes. 

6.1.2 PRIMITIVE OPERATION NAMES 

Primitive operations are named by single symbols each of which 
occupies one print posi tion. 

There is a large set of primi tive functions using the symbols: 
17 



+ - x of- r L ? •* 
0 V 1f <IE - A ¥ S
 

> ;t p ~ c:: ¢
= ~ 
~ 1- t t ~ 4 T £ .t ... 
J. T 

There are only a few primi tive operators using the symbols: 

• / \ f ~ .. 

Note that dot (.) is an ambiguous symbol used as a decimal point 
in addition to its use as an operator. Which is intended in any 
instance is clear from context. 

~ CONSTRUCTED NAMES 

constructed names are strings of one or more characters with the 
following constraints: 

Ini tial or only character is from the set 

ABC • •• X.YZ~O
 

ABC, , ,XYZ6
 

and remaining characters (if any) are from the set 

ABC • •• XYZ~-_ 

ABC, , ,XYZA 
0123456789 

6,2,1 USER NAMES 

User names follow the above rules except that the initial 
character may not be D. Any name constructed according to these 
rules is valid (no length limitation) and none has any value 
(i.e. none is associated with an object) until some action is 
taken to specify the association. User names may be associated 
wi th any class of APL2 object. 

Arrays and user names are associated through use of the 
specification arrow (~)t through parameter substitution caused 
by invoking a defined operation ~ and as an implici t resul t of the 
DTF function. A name which is associated wi th an array is called 
a variable. Thus a variable is said to be array valued. It is 
different from a constant array in that at different times it may 
have a different array as value. 

Functions and operators are associated wi th user names as an 
implici t resul t of the DFX and DTF functions. Functions may also 
be associated wi th user names through parameter subs t i tution in a 
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defined operator. Thus a user name may indicate the same function 
as a primi tive function or even a derived function. 

Facili ties outside the language can also provide the 
associations (editors, system commands, etc.). 

For historical reasons, the implementation gives special 
propeties to names beginning with S~ and T~. These names shall 
not be discussed in this paper. 

6.2.2 DISTINGUISHED NAMES 

Names which begin with the character 0 are reserved for fixed 
uses in the language. Any distinguished name is valid but only a 
few are associated wi th objects. 

Distinguished names associated wi th arrays are called system 
variables. System variables are associated wi th new values 
through use of the specification arrow. They are shared 
variables and provide communication with the system or 
environment in which APL2 is executed. Shared variables are not 
further discussed in this paper. 

Distinguished names associated with functions are called system 
functions. They provide an alternative to the use of symbols for 
system related operations. 

No distinguished names associated wi th operators are provided in 
APL2. 

~ WRITING NAMES 

Primi tive operations are named by single symbols. When writing a 
linear sequence of names, a primitive operation name need never 
be separated from adjacent names. Thus the two names + and 
wri tten next to each other 

+

can never be confused wi th a single different operation. All 
other names may require more than one symbol. When wri ting a 
linear sequence of names, these names, if adjacent, must be 
separated to avoid confusing the combination wi th a single 
different name. Thus the two names 12 and 34, when written next to 
each other, must be separated to avoid confusion with the name 
1234. The separation character is a blank if no other nonblank 
character falls between them. For example 

12 34 blank needed for separation 
12(34) blank not needed for separation 
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In later sections when substitution is discussed, removal of a 
redundant parenthesis may imply the insertion of a blank to 
prevent two names from becoming one new name. For example: 

12(34)	 becomes 12 34
 
not 1234
 

~ DISPLAYING NAMES 

When the character representation of expressions is produced 
(because of an error or because of execution of OCR or DTF) • names 
are always displayed as they were entered. This is different from 
APL1 only in the case of constant array names. For example, 
entering 2.5000 causes a display of the representation of the 
value 2. 5 : 

2.5000 
2.5 

However t if the same name is used in an expression containing an 
error, the original name, not a representation of the value, is 
displayed: 

2.5000x 
SYNTAX ERROR 

2.5000x 
A 

The assumption is that a user chooses how he enters a number for 
some reason and the representation should not be a1 tered. In the 
above example he may know the value to five digi ts precision. As a 
second example consider a defined function containing the 
following expression: 

DFN[3] PI~3.141592653589793238q6 

Here, even if the particular implementation could not handle this 
much precision the function could be transferred to some othert 

implementation that could represent PI without loss of 
precision. 

~ GLOBAL AND LOCAL NAMES 

The set of names that are defined outside the context of the 
evaluation of defined operations are called global names. When a 
defined operation is evaluated, names are defined that are 
associated only with this evaluation. These names are called 
local names. When the defined operation completes evaluation, 
the values associated with local names are discarded and values 
associated with the names prior to evaluating the defined 
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operation are restored. When a local and a global share the same 
name t the global value is said to be shadowed by the local value. 

The concept of local and global does not affect the definition of 
any primitive operation. Evaluation of expressions is affected 
only in that any reference to a name yields its most local value. 
Therefore local names will not be considered further. 
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L.Q SYNTAX 

This section and following sections show the derivation of the 
definition of syntax for APL2. Appendix 1 includes a summary of 
the rules. 

The syntax of APL is simple, straightforward, and easy to learn. 
This is so because of the great care exercised by the creators of 
APL1. Similar care is required in making any extensions or 
changes to syntax. With the exception of the removal of mixed 
output, the syntax has been unchanged since the early days of the 
language. Therefore extensions to syntax are probably the most 
constrained by APL1. The resulting syntax must retain at least 
the following properties: 

o	 It is linear - we do not want to introduce anything that 
cannot be written on a line (like superscripts, subscripts, 
radical signs, and so forth) . 

o	 Primi tive operations are represented by single symbols. 

o	 It uses a function symbol for two (usually related) functions 
- one monadic and one dyadic - that is primitive functions 
are ambi-valent. 

o	 No functional precedence all functions have equal 
precedence and execute according to their posi tion in an 
expression. 

o	 Operators have higher binding power than functions. 

The	 syntax of APL2 must be able to express: 

o	 arrays, 

o	 functions and their application to arguments, and 

o	 operators and their application to operands. 

The linear collection of special symbols and names (prim!tive and 
constructed) used to write arrays, functions and their 
application to arguments, and operators and their application to 
operands, is called an expression, 

The names and symbols used to write an expression are divided 
into six syntax classes: 

o	 array 

o function 

o	 monadic operator 
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o dyadic operator 

o assignment arrow 

o brackets 

(Note that the object class operator is divided into two syntax 
classes; brackets and their contents are treated as one class; 
and ~ are treated like functions.) To these classes are added 
parentheses - - the only punctuation symbols in an expression. 

Evaluation of an expression may produce any of the three objects 
or may produce no object at all and be correct (al though an 
attempt to display or assign the result of an expression that 
produces a function or operator generates an error) . 

Expressions are classified by the object they produce: 

o array expression: one that evaluates to an array 

o function expression: one that evaluates to a function 

o operator expression: one that evaluates to an operator. 

o valueless expression: one that evaluates to no object. 

With these thoughts in mind we examine how each kind of 
expression may be wri tten. First only the simplest forms are 
explored and in particular parentheses are not introduced until 
later. Formation and evaluation of expressions are approached by 
examining the binding strengths of the objects. The concept of 
binding strength brings together in one measure all the concepts 
of syntax -- order of execution, precedence of operators over 
functions, building lists of arrays, etc. 

Evaluation involves scanning the names (in a strictly right to 
left order), determining binding strengths of objects next to 
each other, and evaluating operations whenever they are 
completely determined. 

Thus the fundamental concept of syntax is that of adjacency or 
juxtaposition and its use for the most important actions: forming 
of vectors, applying functions to arguments, and applying 
operators to operands. 

In the following we examine binding strengths of various 
combinations of objects. The objective is to arrive at a simple 
linear hierarchy that is easy to use in practice to parse 
expressions. Bindings are chosen so that useful expressions can 
be written without parentheses. Parentheses are then introduced 
as a way to delay certain bindings. 
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~ EXPRESSIONS WITHOUT PARENTHESES 

First, we investigate how to wri te arrays, functions, and 
operators and discover the bindings implied when symbols and 
names of objects are placed next to each other. 

7.1.1 VECTOR EXPRESSIONS 

There is one rule for writing a simple vector: write the simple 
scalars which are the items of the simple vector next to each 
other wi th separating blanks as needed. Notice that, because the 
rule involves a separation of items, the resulting vector must 
have at least two i terns. 

Here are three examples of simple constant vectors. The first is 
all numeric, the second is a mixture of numbers and characters, 
and the third is all character: 
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2 'B' 4 

tA' 'E' te' 

The last example is a different way of writing a simple character 
vector than provided in APL 1 . 

This is the first extension to syntax. It is a simplification. 
There is now one rule for writing a vector: write the scalar 
items separated by spaces. This may be generalized by saying 
that when two arrays are written next to each other, a binding 
exists between them. Thus if I and J are arrays, writing them 
next to each other implies construction of a vector containing 
them as items. In the following this is called vector binding. 
Later a rewriting rule is presented that gives a compatible way 
to wri te a character vector. 

7.1.2 ARRAY EXPRESSIONS 

Given that we can write some arrays we may now consider how we 
wri te functions and apply them to arrays. The rule is the same as 
in APL1: a function symbol may represent two functions - one 
monadic (one argument or valence 1 ) and one dyadic (two arguments 
or valence 2). A monadic function is wri tten wi th its single 
argument on the right and a dyadic function is wri tten wi th 
arguments on the left and the right (infix notation) . 

monadic function +2 
dyadic function 5+2 
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There is only one reasonable way to interpret these expressions. 
It could be argued that if +2 is a monadic function that 5+2 is 
the number 5 sitting to the left of a monadic function. This is 
even easier to argue if instead of f we use a symbol which does 
not have a dyadic definition. For example the symbol used for 
enclose (c) has not been given a dyadic meaning. One could argue 
that 2c::3 is really a 2 next to a monadic function. APL solves this 
possible ambigui ty wi th the rule: 

All functions are ambi-valent (both valences) 
and the one evaluated in any instance is determined 
only by context. 

Thus functions in the abstract are ambi-valent but at evaluation 
time (call time) the syntax uniquely determines which function is 
intended. If you wri te a function symbol wi th an argument on each 
side, you have wri tten a dyadic function. If it has a meaning 9 it 
is evaluated and otherwise it is an error. In the case of c if 
this should ever be given a dyadic meaning, it will not be 
considered a change to the syntax of APL it is a change to the 
semantics. This is why in APL2 attempting to execute such an 
expression does not give SYNTAX ERROR. It gives VALENCE ERROR, 
meaning that the function is not defined for the given number of 
arguments. 

In the same sense that arrays written next to each other have 
vector binding, writing arrays next to functions have argument 
binding. In the following this is called left argument binding 
and right argument binding. 

When an expression is written containing more than one function, 
rules for determining which is to be evaluated first must be 
given. In the expression: 

2x3+4 

which is done first - - the mul tiplication or t'1e addi tion? 
Another way of phrasing this question is: "Which gets bound to 
the 3? x or +?" This can be answered many ways all of which lead 
to the same result (because we know what we want to reach). We 
want all functions to be the same syntactically and we want 
precedence to be positional with the rightmost function whose 
arguments are available to be evaluated first. Here it is most 
convenient to phrase the rule in terms of binding. We want 3 to be 
the left argument of + not the right argument of x so that the 
rightmost function is evaluated first. Therefore we declare that 
left argument binding is stronger than right argument binding. 

Binding strength (strongest on top) 

left argument 
right argument 

Thus, the above expression means 3+4, then 2)( the result. This is 
equivalent to the right-to-left rule: 
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In an unparenthesized expression without operators J 

functions are evaluated right to left. 

By this rule, the rightmost function is evaluated first with its 
explicit result becoming the right argument of the next function · 
or the value of the expression if there is no next function. 

The next question to answer is: Where does vector binding fit in
 
wi th argument binding. There are three choices: below right
 
argument binding, above left argument binding or between them.
 
Beginners in APL, not being told otherwise, often assume that
 
vector binding is lower than right argument binding so that in
 
the expression:
 

2x3 4+5 (extra spaces for emphasis) 

times binds it right argument 3 and plus its left argument 4 
getting two resul ts 6 and 9 and that then these are bound giving 
the two item vector 6 9. There is absolutely nothing wrong with 
this analysis except that APL chooses to put vector binding 
higher than argument binding. Thus APL2 has the following 
hierarchy 

Binding strength 

vector 
left argument 
right argument 

In the above example 3 is bound to 4 first and then the pair is 
bound to + as its left argument. It is this choice that gives APL2 
its array processing capabilities. The fundamental data in APL2 
is arrays. We therefore make i t easy to construct arrays and 
apply functions to them. 

7.1.3 FUNCTION EXPRESSIONS 

Without operators the only function expression that can be 
wri tten is one which contains only the name of a function. Thus: 

x 

is a syntactically correct function expression. It means we are 
talking about the function itself as opposed to its application 
to arguments. Therefore the above expression results in the 
function "times". Al though it is an error to attempt to display 
or assign this result, in the future even this could be allowed 
and would not be an extension of syntax. Without these 
extensions, function expressions are useful only in expressions 
containing operators. The reason for allowing function 
expressions becomes clear after parentheses are discussed. 
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Operators can be used to write other function expressions, in 
which case the function result is called a derived function. 

The syntax of operators is in many aspects the mirror image of the 
syntax of functions. A monadic operator is wri tten wi th its 
single operand on the left 

+/ for / a monadic operator 

A dyadic operator is wri tten wi th its operands on the left and the 
right. 

+.x for. a dyadic operator 

Each of these evaluates to a derived function and so is a valid 
function expression. As before the attempt to display the derived 
function generates an error. 

Operators differ from functions (even in mirror image) in that 
they are not ambi-valent. A particular operator is either 
monadic or dyadic but never both. This is why operators are 
represented by two syntax classes. 

APL1 only allows function expressions consisting of a single 
operator applied to scalar functions. APL2 permits the operand 
of an operator to be any function - - even the function which 
results from the application of another operator (that is its 
derived function). We therefore have to answer the question: "In 
the following function expre5sion~ which operator is evaluated 
first?" 

+.x/ 

This could be an inner product between + and xl or it could be a 
reduction by an inner product. The question is further 
complicated by the possibili ty of array operands. 

As with functions the answer can be approached by specifying the 
binding strengths of operators to their operands. Unlike binding 
of arguments to functions, APL1 gives no help with determining 
what the binding of operands to operators should be. Ei ther 
ranking of left operand binding versus right operand binding is 
correct. since the operands are presented in the mirror image of 
functions~ we choose binding strengths in the mirror image. Thus 
we stipulate the following: 

Binding strength 

right operand 
left operand 

with the understanding that monadic operators have no binding 
strength on the right at all. Therefore the conclusion is that in 
the expression 

+.x/
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the right binding strength of . is stronger than the left binding 
strength of / and the expression is a reduction by an inner 
product. 

The next question to be addressed is: "Where does operand binding 
fi t wi th argument binding? tt The answer is entirely arbi trary but 
is guided by APL1 and designed to make using operators as simple 
as possible. In the expression 

A+. xB 

we do not want xB to be computed and so we say that right operand 
binding is higher than left argument binding. (We also did not 
allow functions to take operators as left arguments when controls 
were imposed.) This gives: 

Binding strength 

right operand
 
left argument
 
right argument
 

Left operand binding could go in any of three places ( since it is 
below right operand binding) but since we are not trying to 
express the sum of A with anything we make left operand binding 
higher than right argument binding. Because no object is both a 
function and an operator, the ordering of left argument and left 
operand does not matter. Therefore the binding hierarchy for 
functions and operators is defined as: 

Binding strength 

right operand
 
left operand
 
left argument
 
right argument
 

It is in this sense that operators have higher precedence than 
functions; they have stronger bindings. 

With the binding of operands placed in the hierarchY9 we can say 
why it is not desirable for operators to be ambi-valent. 

Suppose that operators were ambi-valent in a system wi th the same 
binding hierarchy and consider the expression: 

+/A+B 

If operators were ambi-valent t then because right operand 
binding is higher than left argument binding 9 / would get A as its 
right operand and the derived function would apply to fE. The 
monadic use of / (or any other monadic operator) would require 
parentheses to limit the binding. This is not wrong but is not 
compatible with APL1 and would make the use of operators more 
difficult. The remedy is to stipulate that operators are not 
ambi-valent and that I is strictly monadic. Of course, the 
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derived function from any operator is still a function and all 
functions are ambi-valent. Therefore a strictly monadic operator 
may produce both a monadic and a dyadic function. For example: 

+/B 
A+/B 

are both syntactically correct and are respectively the monadic 
and dyadic use of the derived function +/ • 

The next question to be answered is: "Where in the binding 
hierarchy does vector binding belong? At the moment we only know 
that i t is above left argument binding. Therefore i t could go in 
any of three positions: 

Binding strength 

~----

right operand 
<if----

left operand 
~----

left argument 
right argument 

Because / is an operator, compatibility with APL1 requires that 
vector binding be higher than left operand binding. In the 
expression 

1 0 1 / A 

we want the vector formed before the left operand of / is bound. 
Therefore vector binding must be stronger than left operand 
binding. This reduces the possibilities to: 

Binding strength 

~----
right operand 

~----
left operand 
left argument 
right argument 

Either of these posi tions is correct and both were tried 
experimentally in the APL2 lUP (which did not allow array left 
operands). The question is exemplified by the following 
expression using a dyadic defined operator DOP because there is 
no primi tive dyadic operator that takes an array right operand: 

+ DOP A B 

If vector binding is above right operand binding, this is a 
function expression wi th A B as the right operand. If vector 
binding is below right operand, this is an array expression which 
applies the derived function + DOP A to argument B. This second 
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choice makes operators with array right operands easier to use 
because otherwise parentheses are always needed. This is the 
order chosen. 

Therefore the binding hierarchy for functions 9 operators 9 and 
vectors is: 

Binding strength 

right operand
 
vector
 
left operand
 
left argument
 
right argument
 

7.1.4 OPERATOR EXPRESSIONS 

The only operator expressions are a single operator name or a 
single operator name to the left of brackets. (Brackets are 
discussed separately,) 

7,1,5 VALUELESS EXPRESSIONS 

User-defined functions that do not return explicit resul ts may be 
wri tten. The only valueless expressions that can be written 
involve such a user-defined function 9 the primitive function 
execute (~) whose evaluation includes such a function, or an 
empty expression such as 

L1 : A EMPTY EXPRESSION 

~ EXPRESSIONS WITH PARENTHESES 

In APL1 parentheses are used only to group functions with their 
arguments. In APL2 there is the need to express other groupings 
(for example, grouping an operator with its operands). Rather 
than use a new pair of grouping symbols, a new simplified 
parentheses rule is adopted, This rule is: 

Parentheses are used for grouping. 

They may be used anywhere as long as they are properly paired and 
what is inside the pair evaluates to an array, a function, or an 
operator. An expression inside parentheses (or one which could 
be put in parentheses without changing the evaluation of 
anything) is called a subexpression. 
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Evaluating expressions wi th parentheses is only a matter of 
evaluating what is inside the parentheses and then substituting 
for the parenthesized expression the value it produce s . 

Some parentheses that are correct can be removed from an 
expression wi thout affecting the resul t of the expr-e s s Lon . 
Correct parentheses that don t t delay any bindings are called 
redundant parentheses. In par t Lcu Lar , parentheses surrounding a 
name of an object (primitive or constructed) or a parenthesizeq 
expression do not have the action of grouping and are always 
redundant. Here are examples of parentheses redundant by this 
rule: 

2(+)3 Constant operation name
 
A +(.)x B Constant operation name
 
(A)+-3 constructed name
 
(2)+1 Constant array name
 
«2-3»+1 Parenthesized expression
 

Here is an example of parentheses that seem redundant by this 
rule but are not: 

(NDFN) niladic function without result 

These parentheses are not correct because what is inside does not 
evaluate to an array, a function, or an operator. 

Redundant parentheses may be added to or removed from expressions 
freely wi thout changing the value of the expressions. 

Addi tional rules for when parentheses may be removed are given in 
the following sections. The effect is to say that parentheses 
which do not delay any bindings are redundant. 

7.2,1 VECTOR EXPRESSIONS IN PARENTHESES 

In expressions of arrays, parentheses that do not separate a 
group from another part of the expression are redundant. Here are 
some examples of redundant parentheses: 

2 (3) 4 These do not group_ 
(2 3 4) These group but do not separate. 

Notice that in each case what is inside the parentheses is a 
correct APL2 expression. 

Nonredundant uses of parentheses in vector expressions give a 
facility for writing nested vectors. For example consider: 

2 (3 4) 

What is inside the parentheses is a valid APL2 expression and so 
the parentheses are correct. Evaluating what is inside the 
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parentheses gives us an array (a two-i tern vector). Vector binding
 
tells us that writing 2 next to an array gives us a vector. Thus
 
parentheses may be used to write nested vectors. This is called
 
vector notation in APL2 and strand notation by others[Mo1 J. It is
 
seen as a consequence of the simplified parentheses rule. Vector
 
notation is an extension of the concept of a numeric vector
 
constant in the sense that numeric constants are covered by the
 
rules for vector notation.
 

Now that we have array expressions with parentheses we can state
 
the rewriting rule that permits the APL1 style of simple
 
character vectors. The rule is:
 

If a vector in parentheses is made up entirely 
of single characters, it may be rewritten 
with a single pair of enclosing quotes. 

The parentheses must be part of the rule even though they appear 
redundant. Thus in the following example even though 'B' re' is 
made up entirely of singIe characters t the rewri ting rule may not 
be applied. 

'A' 'B' te' is not 'A' 'BC' 

The following is a correct application of the rule: 

('A' tB' te t ) is rewritten ('ABC') Rewriting rule 
('ABC' ) is rewritten 'ABC' Remove redundant parentheses 

This gives a compact way of writing character vectors that is 
compatible wi th APL1 • 

7.2.2 ARRAY EXPRESSIONS IH PARENTHESES 

Parentheses in any expression may be used to delay the binding of 
arguments to functions. Therefore if it is desired to add 2 to 3 
then divide the resul t by 4 we may delay the binding of divide to 
i ts left argument by using parentheses: 

(2+3)+4 

and this causes 3 and + to be bound even though the left argument 
binding of .. is stronger. 

Parentheses in array expressions are redundant if they group the 
right argument of a function or a vector left argument of a 
function. 

2x(3+4) Group right argument.
 
(2 3)x4 Group vector left argument.
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7.2.3 FUNCTION EXPRESSIONS IN PARENTHESES 

Parentheses in any expression may be used to delay the binding of 
operands to operators. To express an outer product where the · 
function applied is an inner product ~ we wri te : 

o • ( + • x ) 

This causes + to be bound to the dot on its right even though the
 
right operand binding of the other dot is stronger.
 

Parentheses in function expressions are redundant if they group 
the left operand of an operator. 

(+.x)/ Group left operand. 

Parentheses around a function expression are redundant if the 
left parenthesis does not separate two arrays. 

A (+.x) E Group function expression, 

However~ the following parentheses are not redundant because the 
left parerrthe s Ls separates arrays. 

A (E/) C Required parentheses 

Note that (B/) evaluates to an ambi-valent function which, in 
this case, is dyadic because it has two arguments A and C. This 
results in a VALENCE ERROR because B/ has no dyadic meaning in 
APL2. 

7.2.4 OPERATOR EXPRESSIONS ZH PARENTHESES 

It is not possible to wri te an operator expression that uses 
non-required parentheses. Even in an operator expression 
involving brackets ~ parentheses are redundant. (Brackets are 
discussed separately,) Thus in any syntactically valid operator 
expression, parentheses are redundant. 

7.2.5 VALUELESS EXPRESSIONS IH PARENTHESES 

A valueless expression may not be a subexpression (that is it may 
not be within parentheses), Writing a valueless expression in 
parentheses results in a VALUE ERROR. 
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~ STATEMENTS 

An APL2 statement is made up of three parts each of which is 
optional: a label followed by a colon; an expression; and a 
comment. A defined operation may validly contain a statement 
having none of the optional parts. The canonical representation 
of such an operation will have a blank row. In immediate 
execution mode (see below), a blank or empty line may be thought 
of as an execution of an empty expression. 

A label is a user name which~ if present~ must be followed by a 
colon. The expression is any APL2 expression. A comment is a 
string of characters whose first nonblank character is the lamp 
symbol (PI). 

The statement is the executable unit of work. Expressions 
presented for evaluation as independent lines are said to be 
executed in immediate execution mode. statements selected from a 
defined operation for evaluation are said to be executed in 
function execution mode. In addition implementations normally 
have a defini tion mode where statements are collected into 
defined operations for later execution. This will not be 
considered further here. 

7.3.1 IMMEDIATE EXECUTION MODE 

In immediate execution mode labels and comments are ignored and 
only the expression is evaluated. 

7.3.2 FUNCTION EXECUTION MODE 

In function execution mode, labels and comments are also ignored 
at the time a statement is selected for evaluation. However. at 
the time that a defined operation begins execution, each label 
becomes a local name associated wi th a scalar whose value matches 
the line number of the statement in which the label appears. 
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~ THE SUBSTITUTION PRINCIPLES 

The notion of substitution is one of the most primitive notions 
that people learn. In the abstract, the substitution rule says 
that equals may be sUbstituted for equals. In practice this is 
much too general to apply. If we substitute 4 for 2+2, we do have 
equal values but not equal statements - one is a constant the 
other is the application of a dyadic function. We must specify 
what it is that we may substi tute and what remains the same after 
we do it. 

APL2 has two substitution rules. One preserves values 
(expression substitution) and the other preserves syntax 
(syntactic substi tution). The rules are intimately connected 
wi th the parentheses rules. They involve the insertion of 
redundant parentheses followed by the treatment of what is wi thin 
the parentheses as an expression or value for which a substitute 
may be supplied. 

In this section ~ applications of the substi tution rules are 
wri tten wi th equivalent expressions arranged vertically wi th the 
reason for the rewri ting on the right. 

~ EXPRESSION SUBSTITUTION 

The rule of expression substitution covers replacing one 
expression with another which, when evaluated, produces the same 
object (array, function, or operator). In general, the syntax of 
the expression will change -- there will be different numbers of 
arrays, functions, and operators. 

The Rule of Expression Substitution 

In an expression, any subexpression may be 
replaced by another expression that computes 
the same value without changing the value of the 
original expression. 

For example: 

may be written 
expression substitution 

The new expression has fewer functions but evaluates to the same 
value as the original. 

Because a single array is the limiting case of an array 
expression the following corollary holds: 

35 



Corollary 1: Array Substitution 

In an expression, any array in parentheses may 
be replaced by another array or array expression 
having the same value as the original array without 
changing the value of the original expression. 

Conversely, 

In an expression, any array expression 
in parentheses may be replaced by an array that 
has the same value. 

This means, for instance, that a constant may be replaced by a 
variable having the same value. Here is an example of an array 
being substi tuted for an array: 

If A+-2 3 4 

2 3 4,5 is written 
(234),5 add redundant parentheses 
(A) ,5 array substitution 
A,5 remove redundant parentheses 

Here are examples of expressions being substi tuted for arrays. 

2+3 is written
 
(2)+3 add redundant parentheses
 
(4702)+3 array substitution
 

2+3 is written 
2+(3) add redundant parentheses 
2+(4-1 ) array substitution 
2+4-1 remove redundant parentheses 

Examples of the converse are obtained by reading the above 
examples from bottom to top. 

Because arrays contain arrays as items. the following corollary 
holds: 
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Corollary 2: Item Substitution 

In an expression~ any item of an array 
enclosed in parentheses may be replaced 
by another array or array expression having the 
same value as the original item without changing 
the value of the original expression. 

Conversely, 

in an expression, any array expression 
that is an item of an array may be replaced by 
the array having the same value without 
changing the value of the original expression. 

If A+-2 3 4 

(2 3 4) (5 6) is written 
(A) (5 6) item substitution 
A (5 6) remove redundant parentheses 

If B-+-'ABC' 

B (5 6) is rewritten 
(B)(5 6) redundant parentheses 
('ABC t ) (5 6) item substitution 
'ABC' (5 6) remove redundant parentheses 

234 is written 
2 (3) 4 add redundant pclrentheses 
2 (2+1) 4 array sUbstitution 

Examples of the converse are obtained by reading the above 
examples from bottom to top. 

All the examples given are for array-valued objects because those 
are the most useful cases. In general, there are no useful 
alternate ways to write function expressions. If there were a 
primitive APL2 function called summation, we could do 
substitution between it and +/. If APL2 ever allows functional 
specification as in 

CARTESIAN~ 0.,/ 

Then we could give examples. The rule would not need to be changed 
to cover this case. 
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~ SYNTACTIC SUBSTITUTION 

The rule of syntactic sUbstitution covers substitutions that can 
be made that do not a1 ter the syntax of an expression. There will 
be the same number of arrays" functions t and operators before and 
after the substitution. The parts of the expression not touched 
never become different in meaning, binding strength, valence, 
value, and so forth. No dyadic function will become monadic, nQ 
vector will become shorter or longer. However the value of the 
expression will generally be different. 

The Rule of Syntactic Substitution 

In an expression, any object in parentheses may 
be replaced by an object of the same class 
without changing the syntax of the statement. 

(Recall that monadic and dyadic operators are different syntax 
classes.) 

Operator example: 

2+,/A may be written 
2+,(/)A add redundant parentheses 
2+,(U)A syntactic substitution 
2+, ··A remove redundant parentheses 

and the syntax is unchanged. There is still one monadic operator 
producing a monadic function and one dyadic function. 

Function example: 

2+3x4 may be written 
2(+)3x4 add redundant parentheses 
2(*)3x4 syntactic sUbstitution 
2*3x4 remove redundant parentheses 

and the syntax is unchanged. In order for syntactic substitution 
to hold, every object in a given syntactic class must have equal 
precedence. Therefore the rule for syntactic substitution 
implies the following property of functions in APL2 : 

Functions in an expression have no precedence. 
The order of execution depends only on 
position in the expression. 

Replacing one function with another can never change the 
fundamental syntax of an expression. (This is not true in 
standard ari thmetic notation.) Only the evaluation of the 
expression changes and only at the point where the substitution 
was made. 
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Array examples: 

2 3 4 5,B is written 
2 (3) 4 5,B add redundant parentheses 
2 (9) 4 5,B syntactic sUbstitution 
2 9 ~ 5,B remove redundant parentheses 

2 3 4 StB is written 
2 (3) 4 StB add redundant parentheses 
2 ('A') 45 tB syntactic sUbstitution 
2 'A' 4 5 tB remove redundant parentheses 

and the syntax is unchanged. The left argument to catenate is 
still a four-item vector. 

~ THE SIGNIFICANCE OF SUBSTITUTION 

The sUbstitution rules are intimately tied up with the nature of 
APL2. 

Expression sUbstitution is the process used by an implementation 
(and by readers of APL code) to evaluate expressions. 

Syntactic sUbstitution expresses the fundamental precedence of 
operations that has always been a characteristic of APL. 
Functions have no precedence so one may substitute one function 
for another function without affecting the syntax of the 
expression. This is not true of traditional mathematics or of 
most programming languages. 

Each of the substitution rules simplifies how one looks at and 
deals with APL expressions. 
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L-Q BRACKETS 

Brackets are a special syntactic construction for writing lists · 
of arrays for use in indexing and axis specifications. They are 
correct if correctly paired and if what is inside is one of the 
following: 

o	 Nothing I J 

o	 An array expression [1] [2+2] 

o	 More than one of the above separated by semicolons [;J [1;J
 
[1;234]
 

Brackets are used for two different purposes: indexing and axis 
specification. In each case evaluating a bracket expression is a 
substi tution in that brackets to the right of an array (indexing) 
produces an array, and brackets to the right of a function or 
operator (axis specification) yield a function or operator 
respectively . 

.2...a..1 INDEXING 

Brackets indicate an indexing function when written to the right 
of an array expression (a single name or an expression in 
parentheses). 

A[2] 
(matrix expression)[3;] 

Such constructions are always syntactically correct but there 
are domain restrictions implied by the semantics of brackets. 
Namely the rank of the array indexed must equal 1 plus the number 
of semicolons inside the brackets. The consequences of this are 
that brackets cannot be used to index a scalar and cannot be used 
to the right of an expression that at different times produces an 
array of different rank. 

Bracket indexing is a function in that it maps an array and some 
indices (which may be considered a vector of arrays) to a new 
array (i.e. it is a dyadic function). It fails to be like other 
APL2 functions because more than one symbol is needed to write 
the function. Even though it is dyadic it does not use infix 
notation. It may not be used as the operand to an operator. There 
appears to be no way to introduce a related monadic function. And 
the same symbols when used for axis specification do not 
represent a function. 
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~ AXIS SPECIFICATION 

Brackets indicate an axis specification when wri tten to the right 
of a function or operator expression (a single name or an 
expression in parentheses) . 

¢[ 1 ] 

The brackets are considered to be a notation for wri ting an 
operation related to the one on its left. It cannot be considered 
an operator because the defini tion of the related function cannot 
be expressed, in a uniform way t in terms of the original 
function. 

Writing the brackets next to a function or operator is always 
syntactically correct but evaluation of the related function or 
operator succeeds only under specific conditions. An AXIS ERROR 
is generated when the condi tions are not met. The condi tions 
are: 

o	 The bracket expression must contain no semicolons. 

o	 If the related function is used monadicallYt the original 
function must be one of ~ C t ¢ e. 

o	 If the related function is used dyadically t the original 
function must be one of ¢ e , t i· and the scalar functions. 

o	 If the related operator is monadic t the original operator 
must be one of /\1\. 

The primi tive functions mentioned above may be wri tten as 
primitive symbols or as user names having the primi tive operation 
as value (because of parameter substitution in a defined 
operator) . 

Here are examples of incorrect axis specifications: 

2t[2;3]A 

gives an AXIS ERROR because the bracket expression contains 
semicolons; and 

t[3]A 

gives an AXIS ERROR because 1. is not one of the monadic functions 
mentioned above. 

p"[1] A 

gives AXIS ERROR because .. is not one of the monadic operators 
mentioned above. The reason why the brackets are not treated as 
applying to the derived function c " is presented in the next 
section. 
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Evaluation of the related function could yield many error 
condi tions including AXIS ERROR for other reasons. For example: 

~[5J 2 3 4 

is allowed by the conditions but gives an AXIS ERROR because 5 
does not indicate an axis of the argument array. 

When an operation can be wri tten wi th an axis specification, 
there is always a choice of axes which gives the same result as 
the function wi thout axes. 

For example: 

L+R ~~ Lt[lppR] R 

~ BINDING STRENGTH 

Brackets are not an array, a function, or an operator. They are 
treated as members of a special syntactic class. We must, 
therefore, make an individual assessment of where they fall in 
the binding hierarchy. The following example shows that there is 
a choice. Let oor be a dyadic operator: 

+ DOP 4>[1J 

If right operand binding is higher than bracket binding, this 
must mean 

(+ DOP ¢)[1J 

which gives an AXIS ERROR because the rules do not include any 
valid use of brackets wi th a derived function. If bracket 
binding is higher than right operand binding this must mean 

+ DOP (¢ [1 ] ) 

which is a legal function expression. Neither choice is more 
formally correct. The second option lets us wri te a useful 
expression without parentheses and is the option chosen in APL2. 
As usual, parentheses may be used to delay binding but no useful 
expression can be so produced. 

If brackets have stronger binding than right operands then ,if we 
are to maintain the simple linear hierarchy, their binding is 
stronger than any other binding giving the following binding 
hierarchy: 
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Binding strength 

brackets 
right operand 
vector 
left operand 
left argument 
right argument 

This implies that in the expression 

+/[1JA 

the brackets bind to the operator / producing a new monadic 
operator which binds to + as i ts left operand. 

A useful way to phrase the binding strength of brackets is to say 
that "Brackets are tightly bound to the object on their left." 
For example: 

A +.x(2] B 

expresses an inner product with operands + and x [2 J. If A, B 9 and 
C are vector arrays 9 then 

A[1] B[2] C[3] 

expresses the three i tern vector whose first i tern is A [1 ] and 
whose second item is B[2J and whose third item is C[3J. 

A E C[2] 

is a three i tern vector whose first i tern is A, whose second i tern is 
B, and whose third i tern is C[ 2]. Application of expression 
substi tution in the above example" shows that 

2 3 4[2J ~~ 2 3 (4[2J) 

Which is a RANK ERROR. Such constant vectors are viewed as 
expressions containing the names of three scalars. This is 
different from APL1. Indexing of a constant numeric vector 
requires parentheses. (Note that )MCOPY (Migration COpy) and )IN 
make this change in defined functions migrated from APL1 • ) 

The practical effect of this placement of brackets in the 
hierarchy is that brackets become syntactically transparent. 
Whenever brackets are seen in an expression (for indexing or axis 
specification) they bind tightly to whatever is on the left and 
the combination may be immediately evaluated and replaced by the 
computed value from the same class. This is why brackets and 
their contents may be treated as a single syntax class. 
Parentheses around brackets and the object to their left don't 
delay any bindings and are always redundant. 
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Brackets, which have always been an exceptional case in APL1 
(sometimes described as a function and sometimes as an operator) • 
are now regularized and explained. 

~ EVALUATION PATTERNS FOR AXIS SPECIFICATIONS 

Even though axis specifications do not follow one uniform rule, 
there are, none the less, guiding principles for definitions of 
functions wi th axis. 

Those uses of axis specification from APL1 are preserved and new 
ones obey identi ties or follow a single predictable pattern. 

The pattern consists of splitting an array into subarrays along 
some axes, applying a function to each subarray, then gathering 
the resul ts together into an array. 

The function SPLIT in Appendix 2 takes as left argument the axes 
along which the right argument is to be split. The function 
UNSPLIT takes as left argument the result axes into which the 
i terns of R will be merged. UNSPLIT is the left inverse of SPLIT. 

Most functions which have an axis specification may be described 
in terms of SPLIT and UNSPLIT. The function enclose with axis 
(c:[X]) is the simplest of these and is defined as follows: 

c[X] R ~~ X SPLIT R 

Disclose with axis is defined as the left inverse of enclose Hilh 
axis. 

~[XJ R ~~ X UNSPLIT R 

giving the identity 

R ....... =>[X] c::[X] R
 

By extension disclose wi th axis accepts an argument where not all 
the items have the same shape. This extension is not defined in 
this paper and is not used in the equations below. 

In the following discussion, other functions wi th axis are 
defined by using enclose with ~ to split arrays, applying the 
function under discussion without an axis to each item of the 
split array (using the ~ operator), then reassembling the 
resul t wi th disclose wi th axis. This form fails to be a universal 
formula because the way results are reassembled depends on the 
shape of arrays produced from application of the function to the 
items of the split arrays. Furthermore, for the dyadic scalar 
functions, the argument split depends on the relative ranks of 
the arguments. 

The monadic functions wi th axis	 are defined as follows: 
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¢[XJR +---+ ='[X] ¢.. c[XJR 
'3 [ x]R ~-+ ~ [ x ] e .. c [ x ]R 
, [XJR ~-+- ='[ L/X] , ··c[XJR for non-fractional X 
, [XJR +--+ ~, ··c[XJR for empty X 

A single expression can be wri tten for ravel wi th axis but the two 
above are easier to apply. 

The monadic operators wi th axis are defined as follows: 

F\[X]R +--+ :>[X] F\" c[XJR for F array or function 
F/[XJR +--+ :>[X] FI" c[X]R for F array 
FI[X]R +--+ FI" c[XJR for F function 

For dyadic functions wi th axis, one argument is generally treated 
as a control to be applied to each of the 5ubarrays of the other 
argument. Therefore, in the formula, the control argument is 
enclosed: 

L +[XJR +--+ ~[XJ (eL) t·· c:[XJR
 
L 4-[XJR +--+ :>[X] (cL) ~ .. c[X]R
 

L F / [X ] R +--+ => [ X ] (cL) F t" c [ X ] R
 

The scalar functions with axis follow the above pattern if the 
left argument is of lower rank. Otherwise the following formula 
is used: 

L DF[XJR -+--+ (c[XJL) DF·· cR 

Catenate has a slightly different pattern where the array of 
lower rank is not enclosed: 

L,[XJR +--+ :>[X](c[X] L),··R for R lower rank
 
L,[XJR 0+-4 =>[X] L ,··c[XJR for L lower rank
 

Rotate has a pattern similar to catenate: 

L¢[XJR +--+ =,[X] L q," c::[X] R 
L e [X] R +-~ :> [X] (c::L) e·' c [X] R 

These patterns are retained for compatibility with APL1 . 

Catenate and ravel wi th fractional axis specification are 
related by the following identi ty: 

L~[X] R +--+ (,[X]L),[rX] ,[X]R
 
for scalar fractional X
 

It is possible to define these patterns or any others in a defined 
operator. Appendix 2 gives an example of a RANK operator similar 
to the one defined by Iverson [Iv3 ] . Because these operators 
would not make use of bracket notation, they could be defined 
uniformly on all functions. Any such defined operator which 
proved to be especially useful could be considered the definition 
of some new primitive axis operator. 
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~ OTHER SPECIAL SYMBOLS 

APL2 includes the use of several special symbols that do not 
represent arrays, functions, or operators. These are 
parentheses~ brackets, semicolons, right and left arrows, and 
jot. Parentheses, brackets, and semicolons have been treated 
previously. 

llL....1. ASSIGNMENT 

The assignment arrow (~) is the only syntactic co~struction for 
associating names wi th arrays. There are two kinds of assignment: 
one which associates a name (perhaps wi th no value) wi th an 
arbi trary array (direct assignment) and one which merges an array 
into indicated posi tions in another array already associated 
with a name (selective assignment), In each case one parameter 
is an array and the other is ei ther a name or posi tions in a named 
array. Therefore the assignment arrow can be neither a function 
nor an operator (since these operate on values not names). The 
assignment arrow is in a separate syntactic class. 

The name whose value is replaced or modified must be a 
constructed name having no value or having an array value, This, 
in particular, excludes names of niladic defined functions which 
are otherwise treated syntactically as arrays. 

10.1.1 ASSIGNMENT SYNTAX 

To fit assignment into the binding hierarchy, we must consider 
the relative strengths wi th which a left arrow binds wi th what is 
on its left and what is on its right, APL1 answer both these 
questions. 

Consider the expression: 

A-+-2+3 

Clearly left argument binding must be stronger than assignment 
right binding so that the addi tion is done before the assignment. 
Assignment right binding must therefore be placed either just 
above or just below right argument binding. Because the left 
arrow cannot be a function. the order is immaterial, We 
therefore select to place assignment right binding as lowest. 
giving the following binding hierarchy: 
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Binding strength 

brackets
 
right operand
 
vector
 
left operand
 
left argument
 
right argument
 
assignment right
 

APL1 only helps a little in determining assignment left binding. 
The expression: 

2+A+-3 

shows that assignment left binding is stronger than right 
argument binding. Because APL1 did not have operators wi th array 
operands, we may choose how much stronger than right argument 
binding it is. 

Consider the following expression where DOP is a dyadic operator 
wi th array right operand: 

+ DOP A+-3 

If right operand binding is stronger than assignment left binding 
then this means: 

(+ DOP A)~3 

which is an error. If assignment left binding is stronger than 
right operand binding, this means: 

+ DOP (Af-3) 

which is a legal function expression. This is the choice made in 
APL2 giving the hierarchy: 

Binding strength 

brackets
 
assignment left
 
right operand
 
vector
 
left operand
 
left argument
 
right argument
 
assignment right
 

(Because brackets do not bind on the right at alIt assignment 
left could have been put at the top. ) 

This choice of assignment left binding has the practical effect 
of tight binding a left arrow to the thing on its left. Thus an 
assignment can always be immediately evaluated and replaced by 
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its value (which is always the array on its right) making 
assignments syntactically transparent. 

10.1.2 ASSIGNMENT RESULT 

While assignment is not treated like a function, it may be 
thought of as a function whose explici t resul t is the value of i ts 
right argument. Al ternatively it may be considered syntactically 
transparent in the sense that after the assignment is complete, 
the arrow and whatever is bound to it on the left are removed from 
the expression leaving the right argument array as value. In 
ei ther case t after the assignment, a value is left and is 
considered the explicit result of the assignment. This may then 
be used in further computation. 

Here are some examples of assignments in value expressions and 
the value that is computed: 

Expression Value after execution
 
A..-3 3
 
(A+-3) 3 
(A"-2) ~ (B+-3) 2 3 
2+A+-1 3 
(A+-2) (Eof.4) 2 4 

The following rule determines when the value of an expression 
should be printed: 

If the last syntactical action (binding or evaluation) 
in an array expression is an assignment, 
the final array value of the expression is 
not printed. If any binding occurs after 
the last assignment, or if there is no 
assignment, the final array value is printed. 

Here are executions of the above examples using this rule: 
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A+-3 
no display - last action is assignment 

(A+-3) 
no display - last action 

parentheses 
is assignment 
are redundant 

2 
(A+-2) , (B+-3 ) 
3 display last action is binding of 2 and 

catenate (followed by execution) 
3 to 

3 
2+A+-1 

display - last action is binding of 2 and 
plus (followed by execution) 

1 to 

2 
(A+-2) 
4 

(B+-4) 
display last action is binding 

(no function executed) 
2 to 4 

10,1,3 ASSIGNMENT SEMANTICS 

In the case of direct assignment~ the semantics are perfectly 
clear - - the name is associated wi th the array on the right. 

In the case of selective assignment~ the expression in 
parentheses on the left of the arrow follows the same rules of 
syntax as any other expression. The semantics ~ however, are qui te 
different, One of the names in the expression will have its array 
value modified by the assignment. We need to define which name is 
the one into which values are merged. The rule adopted in APL2 is 
that the first name from the right end of the expression not in 
brackets is the one into which values will be merged. The value 
associated wi th this name will not change in either rank or shape 
because of the assignment. Scanning the name produces an array 
indicating positions in that array. (These were called position 
scalars in [Br1J and the arrays were called name arrays.) The 
remaining functions in the expression operate on this array of 
positions. Any function which selects, subsets, or rearranges 
this array is allowed in the expression. No ari thmetic is allowed 
on these arrays. When the expression completest the assignment 
completes by inserting the values from the right argument into 
the indicated posi tions of the selected array. 

These name arrays could be considered a new data type but are not 
because they can never be associated wi th a name and they can only 
be manipulated in the context of selective assignment. 

In the following example the array into which values are merged 
is A. 
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A[2J~3 

(1+A)~3 

(2~2 3,A)~3 

(I~A)+-3 

Note that in the implementation 9 not all functions formally 
permi tted in an expression left of an arrow are actually 
supported. 

~ BRANCH AND ESCAPE 

The right arrow, when used to control sequencing in a defined 
operation or when used to resume execution, is called Branch. It 
is syntactically like a function and so does not influence the 
binding hierarchy. It fails to be a function in the strict sense 
because it does not have an explicit result. It can therefore 
only be used in a valueless expression. The execute function (!.) 
and user defined operations may also fail to return an explicit 
result but are none the less still considered functions. Branch 
is not considered a function semantically and in particular 
cannot be the operand of an operator. Its only purpose is the 
determination of the next line to be executed. 

When the right arrow is used wi thout a right argument it is called 
escape and it must be the only symbol in the expression. Syntax is 
not a question because nothing is next to it. It is simply treated 
as a special case request to clear out any executions that are 
pendant on completion of the current operation (or in the case of 
escape in immediate execution to clear out executions that are 
pendant and suspended) . 

The jot symbol 'at is used as a special symbol to distinguish 
between the two derived functions of the array product operator 
dot (.). If the left operand of matrix product is a function 
(F. G). the derived function is inner product. If the left 
operand of matrix product is jot (o.G>. the derived function is 
outer product. Inner product (F • G) takes two functions as 
operands. outer product (o.G) takes one function as operand and 
the jot is a place holder for the other operand. Its use is not 
exploi ted or extended beyond its use in APL1 . 

strictly speaking~ jot is in its own syntactic class. 
Syntactically, however 9 it is treated as a function when it is 
used in the context of outer product and so does not influence the 
binding hierarchy. 
operators but expa
problems. 
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~ FUNCTION PROPERTIES 

The fundamental concept of syntax is adjacency. Expressions are 
wri tten by wri ting names of objects next to each other along wi th 
special symbols. Evaluation of an expression is an iterative 
process composed of identifying operations 9 evaluating them 9 and 
then using the result of the evaluation in identifying the next 
operation. The next sections deal wi th the second of these -- the 
application of functions (primitive, defined, or derived) to 
arguments. 

When more than one function exhibi ts some behavior, that behavior 
may be isolated and defined on its own in which case it is called 
a function property. 

We first discuss some ordinary mathematical properties 9 then 
some new ones of particular interest to APL2 • 

~ MATHEMATICAL PROPERTIES 

The mathematical properties of functions may be defined in a 
general way and are defined here because they are useful in 
definitions of other properties. 

o The Commutative Property 

Dyadic function F is a commutative function if: 

A F B ~4 BFA for constant values A and B 

o The Associative Property 

Dyadic function F is an associative function if: 

A F(B F C) ~~	 (A F E)F C 
for constant values A 9 B 9 and C 

o The Distributive Property 

Dyadic function F distributes over dyadic function G if: 

A F(B G C) ~~	 (A F B) G (A F C) 
for constant values A 9 B 9 and C 

Dyadic function F distributes over monadic function G if: 

A F(C C) ~4 C (A F C)
 
for constant values A and C
 

The properties might be used to write concise expressions. For 
example, in: 
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(AxB)+C 

because + is commutative, an equivalent expression can be written 
wi thout parentheses as 

C+AxB 

In general, though, the mathematical properties apply to actual 
values but not necessarily to expressions. For example: 

2+3 ...-. 3+2 

but 

A+B is not B+A 

when A and B are shared variables or niladic functions. Plus is 
commutative on values not on names. 

The implementation can take advantage of mathematical properties 
to compute resul ts more efficiently. For example since + is 
associative the expression: 

+\ 2 3 4 

which is defined as 

(+/2) (+/2 3) (+/2 3 4) 

may be computed by a single left to right pass through the vector 
using the I th result in computing the I+1 st result. 

(+/2) «+/2)+3) «+/2 3)+4) 

Formally this gives the same result and is much more efficient 
than the exact definition of scan. Numerically (because of the 
precision of the machine) round off may cause the two expressions 
to give very different results. 

~ 4ELl FUNCTION PROPERTIES 

In APL2 a few new properties are defined which relate to large 
classes of functions and which, therefore, simplify 
understanding of how the functions operate. 

11.2.1 THE SCALARWISE PROPERTY 

The scalarwise property is defined using one of the mathematical 
properties. A function is scalarwise if indexing distributes 
over the function. For monadic F where Z+-F R: 
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Z[I] ~~ (F R)[I] ~~ F R[I] 
for all I that can index R 

for dyadic F where Z~L F R: 

Z[I] ~4 (L F R)[IJ ~~ L[IJ F R[I] 
for all I that can index Rand 
where scalar extensions (if any) have 
already been done. 

Note that because the indexing function of APL has special 
syntax, the expression above does not exactly match the form for 
the distributive property given previously. Also the arguments 
may be of any rank even though the bracket notation for indexing 
cannot be used on variable rank arguments. If the symbol 0 were 
defined as an indexing function ( it is not in APL2) 9 the formulas 
would read: 

I 0 Z ~~ I 0 (L F R) ~4 (I 0 L) F (I 0 R) 
I D Z ~~ I 0 (F R) ~~ F (I 0 R) 

which does follow the form and would work on any rank array. 

In APL2, two sets of functions have the scalarwise property: the 
scalar functions and the derived functions of the each operator. 
The implication is that these functions may be defined by saying 
how they operate on scalars, then saying that they apply 
independently to each scalar of any other array. 

Thus, for monadic functions, a length n argument implies a length 
n resul t made up of the application of the function to each scalar 
of the argument. For example: 

;.2 1 0 
(+2) (+10) 
• 5 • 1 

and 

p"V+-(2 3pl6) (4 3 2pO)
 
(p"V[1]) 9 (p"V[2])
 
(p2 3Pl6) (p4 3 2pO)
 
(2 3) (4 3 2) 

For dyadic functions with the same shape argument on each side. 
the scalarwise property implies application of the function to 
corresponding scalars one from each side. For example (leaving 
out the indexing step) : 

2 3p·· 4 5
 
(2p4) (3pS)
 
(4 4) (5 5 5) 

It is impossible to define a function which has the scalarwise 
property but which is not defined in terms of each. Thus it is 
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both correct and necessary to phrase the above discussion in 
terms of scalars and not i terns. 

By extension one argument is allowed to be a scalar or one item 
vector (perhaps nested) in which case the item is paired with · 
each i tern of the other argument. This is called scalar extension. 

11.2.2 THE PERVASIVE PROPERTY 

The pervasive property is also defined in terms of a mathematical
 
property. A function is pervasive if R1Qk distributes over it.
 
For monadic function F where Z 04--+ F R:
 

I~Z ~~ I~(F R) ~~ F I~R 

for all I that can pick from R 

For dyadic function F where Z +-~ L F R: 

I~Z 04--+ I~(L F R) 04-~ (I~L) F (I~R)
 

for all I that can pick from R
 
where scalar extensions (if any) have
 
already been done.
 

Since the pick function may select an item at an arbitrary depth 
in a nested arraYt it may select deep enough to access a simple 
scalar (because nested arrays have fini te depth). Thus a 
pervasive function may be thought of as applying independently to 
each simple scalar in i ts argument (s ) . 

Suppose an argument J is found which picks a simple scalar from 
array R. Then for monadic F: 

J~Z 04-~ J~F R ~~ F J~R by definition or Pervasive 

~ can select from a scalar with an argument of (etO) and a 
simple scalar is defined, by the control on termination of 
nesting, to be an array which contains itself as its only i tern: 

5 ~-+ (c:\O)~5 

Therefore it is also true, by definition of the pervasive 
property, for the same monadic F and array R that: 

where pick gets the only item of the simple scalar. But since a 
simple scalar contains itself, both picks produce the same 
scalar: 

and so 
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and is a simple scalar by defini tion. Therefore a pervasive 
function eventually applies to simple scalars and returns simple 
scalars and the resul t of a pervasive function has the same 
structure as i ts argument (s) (after scalar extension). This 
means that it is impossible to write a defined operator that 
applies a nonpervasive function in a pervasive manner. There is 
no general way to force a simple scalar resu! t from simple scalar 
arguments. Another way to say this is that for a function to be 
pervasive it is necessary (but not sufficient) that when it is 
applied to simple scalars , it returns a simple scalar result. 

For computational purposes 9 the pervasive property may be stated 
in terms of the each operator. (In fact this may be taken as an 
alternate definition of pervasive.) For monadic pervasive 
function F where Z +-~ F R: 

Z +--+ F R +--+ F" R 

For dyadic pervasive function F where Z +--+ L F R: 

Z +--+ L F R +--+ L F" R 

Then, in computing the result of a pervasive function, if the 
arguments are not simple scalars, apply the each operator 
recursively. 

In APL2 the scalar functions and only the scalar functions are 
pervasive. 

Example: 

+(1 2) «5 10) 20) 
(+1 2) (+(5 10) 20) 
«+1)(+2» «+510) (+20» 
(1 .5) «(+5)(+10» .05) 
(1 .5) «.2.1) .05) 

11.2.3 THE LEAFWISE PROPERTY 

The leafwise property is related to the pervasive property except 
it is more restricted in its application. A function is leafwise 
if ~ distributes over it wi th left arguments that do not 
select from simple scalars (i. e. do not end in c \ 0). For monadic 
function F where Z +--+ F R: 

I~Z +--+ I~(F R) ~-+ F I~R
 

where: ~(\O) = +¢I
 

For dyadic function F where Z +--+ L F R: 
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I~Z ~~ I~(L F R) ~~ (I~L) F (I~R) 

ignoring scalar extension 
and where :-(,0) = t¢I 

The restriction on the index means that while I may be a path to a 
simple scalar, no paths are allowed that pick into a simple 
scalar. The practical difference between a leafwise function and 
a pervasive function is that when a leafwise function applies to 
simple scalars the result need not be a simple scalar and the 
result of a leafwise function might not have the same structure 
as the arguments (s ) • 

For computational purposes 9 the leafwise property may be stated 
in terms of the each operator. (In fact this could be taken as an 
alternate definition.) For monadic leafwise function F where Z 
+--+ F R: 

Z +--+	 F R .--+ F·· R
 
for R not a simple scalar
 

For dyadic leafwise function F where Z +--+ L F R: 

z ~-+	 L F R ..-~ L F .. R
 
for Land R not both simple scalars
 

Then, in computing the resul t of a leafwise function, if the 
arguments are not simple scalars apply each recursively. 

In APL2 the scalar functions have the leafwise property. The 
operator LEAF in Appendix 2 is a defined operator whose derived 
function has the leafwise property. For example: 

2 pLEAF (5 10) 20
 
(2 pLEAF 5 10) (2 pLEAF 20)

«2 pLEAF 5)(2 pLEAF 10» (20 20)
 

«5 5)(10 10» (20 20) 

Thus, unlike the pervasive property, an operator may be applied 
to any function giving a derived function having the leafwise 
property. 
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~ APPLICATION OF FUNCTIONS 

Some functions may be simplified by breaking down the application 
of the function into simpler pieces. other functions cannot 
usefully be broken down. These are called intrinsic functions. 

There are three fundamental concepts relating to the application 
of functions to arguments: application of functions to items of 
array arguments; splitting of array arguments into contiguous 
subarrays followed by the application of functions to the 
subarrays; and application of intrinsic functions to data. 

Many functions involve more than one of these concepts. For 
example, the derived function reduction on a multi-dimensional 
array splits the array into vectors. Vector reduction is then 
applied to each vector and is defined in terms of items. 
Eventually the vector reduction reaches an intrinsic function. 

~ FUNCTIONS ON ITEMS 

Many functions are defined by selecting items from their 
arguments, then applying a simpler function to these arrays. 
This is the most fundamental concept of function application. 
Many functions use the concept directly; functions which split 
arguments into subarrays are best described by making the 
5ubarrays items of a lower-rank array; and the intrinsic 
defini tion of many functions is best described in terms of i terns. 

As shown previously, any function which has the pervasive or 
leafwise property is clearly defined in terms of items. Vector 
reduction is defined in terms of i terns in that if: 

V~A B C 

then 

FIV ~4 cA F B F C 

i.e. the function of reduction is applied between the items of 
the vector producing a resul t having rank one less than the 
argument. 

outer product is defined in terms of items in that its result 
contains the application of its operand function between all 
pairs of items -- one from the left argument and one from the 
right argument. For Z~L o. F R: 

(I,"J)~Z +--+ (I~L) F (J::>R) 
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~ FUNCTIONS ON SUBARRAYS 

Many functions are defined on higher-rank arrays by spli tting the 
array along some axes into subarrays of lesser rank then applying 
a simpler function to the subarrays. This is the case with most 
of the primi tive functions and operators which take an axis 
specification. 

Functions that apply to subarrays in APL1 are normally defined in 
terms of indexing which selects the subarrays by indexing along 
one or more axes wi th one or more scalars giving arrays of smaller 
rank. For example reduction of a matrix can be defined: 

(+/R)[IJ ~~ +/R[I;J 

the implication being that the above expression is evaluated for 
each scalar integer I possible. 

In APL2 such functions are normally defined in terms of enclose 
along an axis which builds an array whose i terns are the subarrays 
of interest. Then the application of the simpler function to each 
of the 5ubarrays may be expressed in closed form as an 
application of the each operator. For example reduction of a 
matrix can be defined: 

and this is a complete executable defini tion. The final disclose 
in this expression undoes the split implied by the enclose by 
assembling the scalars resulting from each reduction into the 
desired result. Thus functions defined on subarrays are best 
described in terms of an array containing the subarrays as i terns. 

~ INTRINSIC FUNCTIONS 

The intrinsic functions are defined directly on their array 
arguments. For example, the function matrix divide (ffi)~ applied 
to a matrix, cannot be easily broken down to a simpler function 
that applies to rows or columns or items of its argument. Even 
when a primitive function can be applied to subarrays or items. 
eventually a point is reached where further simplification is not 
reasonable. Even the scalar functions eventually are reduced to 
the case where the arguments are simple scalars at which point 
the intrinsic function is applied. The APL2 Language Manual [1] 
only defines the intrinsic scalar functions with the discussion 
of their application to other arrays factored out and described 
in a single place. 

Many of the structural functions in APL2 (reshape. ravel, 
transpose, etc.) cannot be simplified, yet their intrinsic 
behavior is still defined in terms of items. For example, vector 
catenate can be described as producing the vector containing the 
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i terns from the left argument followed by the i terns from the right 
argument. 
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~ RELATED FUNCTIONS 

A function in mathematics is a mapping from a domain to a 
codomain. A function in APL2 is a collection of five related 
mathematical functions. Whenever an APL2 function is evaluated, 
one function from this collection is selected to satisfy the 
evaluation. The collection of functions is divided into two 
groups: principal functions and implied functions. The principal 
functions are used when functions are directly executed and 
either a principal or an implied function is used when functions 
are executed by an operator. 

~ DIRECT EXECUTION OF FUNCTIONS 

When an APL2 function is evaluated directly (not under control of 
an operator), one of two principal functions is selected. If a 
left argument exists, the dyadic principal function is selected; 
otherwise the monadic principal function is selected. Thus when 
we say that a function is ambi-valent, we mean there are two 
principal functions wi th the one chosen depending only on 
context. If one of the principal functions is not defined, a 
VALENCE ERROR is generated on an attempt to use it. The syntax is 
correct - - a principal function is missing. 

~ INDIRECT EXECUTION QE FUNCTIONS 

When an APL2 function is the operand of an operator, one of its 
principal functions may eventually be evaluated. However, under 
some circumstances, one of the implied functions is evaluated 
instead. APL2 defines three implied functions: two fill 
functions and an identi ty function. For a particular APL2 
function, if an implied function is not defined, a DOMAIN ERROR 
is generated on an attempt to use it. 

13.2.1 THE ~ FUNCTIONS 

When the derived function of ~ or outer product is applied to 
empty arraySt the operator definition specifies that the 
principal function of its operand should not be applied and that 
instead a fill function should be applied. Each function has a 
monadic fill function and a dyadic fill function. The one applied 
depends on context and on the operator. The scalar functions may 
be defined in terms of each so the above discussion also holds for 
them. 
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The fill functions are selected so that empty arguments do not 
cause discontinuities in identities or other unexpected 
behavior. Definitions and specific cases are discussed in the 
section on empty arrays. 

13.2.2 THE IDENTITY FUNCTION 

When the derived function reduce is applied to empty arrays, the 
operator definition specifies that the principal function of its 
operand should not be applied and that instead an identi ty 
function should be applied. Identity functions are an extension 
of the notion of identi ty elements from APL 1 [Br4J. The identi ty 
functions are selected so that they produce arrays which are the 
nested array equivalents of identity items from APL1. 
Definitions and specific cases are discussed in the section on 
empty arrays. 
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a.J! FILL ITEMS 

The APL2 functions take (t)9 expand (A\), and replicate (AI) 
produce results consisting of some i terns from their right 
arqumerrt along with some fill i terns. In APL 1 , where a given array 
is either all numeric scalars or all character scalars, the fill 
item chosen is zero (0) or blank (t t) respectively. Thus the 
result has the same properties as the argument. A numeric array 
remains numeric and a character array remains character. There is 
no choice here because APL1 only has homogeneous array. We could 
not fill a character array wi th zeros and certainly not wi th 
nested fill i terns. 

Given the wider variety of arrays in APL2, a scheme for 
determining what fill i tern to use wi th these functions is 
required. For example, suppose we apply take to the following 
nested array: 

A+-(1 2) (3 4) (5 6)
 
Z+-NtA
 

The array A is called a uniform array because each item has the 
same structure. (In particular any array containing one or fewer 
items is uniform.) Clearly if the value of N is 1,2, or 3, Z is 
also uniform array. If take is to retain properties where 
possible (this is an objective) then for N=5, Z should still be 
uniformly nested. Thus a reasonable answer for 5tA is: 

5 t A +a-+ (1 2) (3 4) (5 6) (0 0) (0 0) 

When take produces a result bigger than its argument (along any 
axis) the operation is called an overtake t 

If the original array is not uniformly structured, there does not 
seem to be a reasonable choice for fill that fits every 
conceivable situation. Any choice of fill would give a result 
that was not uniformly nested. The choice for fill in APL2 is 
chosen to satisfy the following guidelines: 

o Do what APL 1 does, where defined. 

Keep simple arrays simple. 

Keep numeric arrays numeric. 

Keep character arrays character. 

o Keep uniform arrays uniform. 

o Fill i tern must be predictable. 

In order to do what APL1 does where defined, we need an expression 
that will produce a zero if an array is numeric and a blank if an 
array 15 character. Let the function TIFEOF be a monadic function 
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which given a simple scalar returns zero if the scalar is a number 
and blank if the scalar is a character (see Appendix 2). Then a 
definition that works for APL1 is "Fill wi th the type of the first 
item (TYPEOF t R)". 

In order to satisfy the second guideline we need to be able to 
compute an array whose structure is the same as a given array A 
but with zeros replacing numbers and blanks replacing 
characters. Such an array is called the ~ of A. Thus the type 
of an array is itself an array. Appendix 2 contains the 
definition of such a TYPE function. A definition for fill that 
works for all arrays is: "Fill with the type of the first item 
(TYPE t R) tr. For every nonempty array A, type of first (TYPE t) 
is well-defined and the resulting array is called the prototype 
of the array (proto type +--+ first type). For uniform arrays ~ 

filling with the prototype preserves structure and type but not 
values. 

All of the functions which produce fill i terns in the manner 
described here have been described in the section on brackets as 
being defined on multi-dimensional arrays by splitting the array 
into arrays of smaller rank, then applying a simpler case of the 
function. This affects the production of fill i terns. For example ~ 

the function expand is intrinsically defined on vectors. 
(Iverson would call ita rank 1 or a vector function [Iv3].) When 
applied to mul ti -dimensional arrays, the array is spli t into 
vectors as follows: 

If A~ 2 2 p 2 'A t 3 t B t 
A 

2 A 
3 B 

Then 1 a 1 \A 
implies (1 0 1 \ 2 3) and (1 0 1 \ t A' t B t ) 

giving 
2 A 
o 
3 E 

Each vector is filled wi th a fill i tern appropriate to that 
vector. 

The function take is not a vector function yet it still can be 
defined in terms of splitting its right argument into arrays of 
lower rank by using the identi ty: 

L+[XJR ~~ (+L)t[tX] (1.L)+[1+X] R 

Therefore if 
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x- 2 2 2 p 1 2 3 4 tAt t B' t C t t D' 
X 

1 2 
3 4 

A B 
C D 

An argument similar to the one above for expand explains the 
following result 

3 3+[2 3] X 
120 
3 If 0 
000 

A B 
C D 

The question of fill items for empty arrays is discussed in the 
section on empty arrays. 
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~ EMPTY ARRAYS 

The arrays of APL2 are fini te rectangular collections which 
contain arrays as items. The items of an array are ordered along 
zero or more directions called axes. The number of axes is called 
the array rank. The vector containing the length of each axis is 
called the array shape. The number of items in the array is the 
product of the shape. Any array whose shape contains a zero ( L, e . 
has an axis of length zero) has no items and is called an empty 
array, 

The designers of APL1 were very careful to be sure that 
primitives operated correctly in the limiting cases. As a result 
when expressions are applied at the limits (axis lengths of 1 or 0 
and ranks of 1 or O)t there are no surprising discontinuities. 
Functions in APL 1 work correctly in the limiting cases. 

In extending APL1 great care is taken to preserve this behavior 
at the limits. Achieving correctness is especially difficult 
because our intui tion cannot always be trusted in these cases. We 
therefore must rely on more formal means of discovering the 
behavior of functions in limiting cases. The following sections 
detail the approach to discovering the nature of empty arrays and 
the application of functions to empty arrays. 

~ EMPTY NESTED ARRAYS 

There are two approaches to defining empty arrays as discussed 
previously (see Methods). The constructive approach is the most 
obvious approach but, because we are dealing at the limits 9 we 
know that the deductive approach must also be examined. The 
following two discussions will show that it is possible to get 
two different answers to a limiting case question depending on 
the approach taken. 

15.1.1 THE CONSTRUCTIVE APPROACH ~ EMPTY ARRAYS 

In the constructive approach to extensions, we start wi th what we 
have and extrapolate. 

In APL1 we have simple rectangular collections of numbers and 
characters. The constructive approach to nested arrays is to 
allow any of those numbers or characters to itself be a 
rectangular collection. Then by recursively substituting arrays 
for i terns, we can construct arbitrarily complicated arrays. 
Indexed specification can be used to replace any scalar wi th 
another scalar. 
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A[I; ••• ;KJ~ 5 

Therefore nested arrays can be achieved merely by postulating a 
function which when applied to any array produces a scalar in 
such a way that the original array can be reconstructed. In APL2 
we use the function enclose (c) to do this. So any nested array 
can be constructed by indexed specifications of the following 
sort: 

A[I; .•. ;K]~ cB for arbitrary array B 

The question of interest here is t'Can an empty array be nested?" 
and the answer is obvious. Since we start with simple arrays and 
construct nested arrays by substituting enclosed arrays for the 
simple scalars, it is clear that an empty array cannot be nested 
because an empty array has no i terns for which we can substitute. 

The conclusion is that introduction of nested arrays does not 
introduce any new empty arrays. All empty arrays are simple. 

Perfectly well-defined and usable extensions can be defined 
using this conclusion. The following discussion shows that the 
deductive approach leads to different resul ts. 

15,1,2 THE DEDUCTIVE APPROACH TO EMPTY ARRAYS 

In the deductive approach we start from where we want to be; wri te 
the equations that describe the behavior away from limits; then 
investigate what happens as the limi ts are approached and believe 
what we discover. As in APL1, we wish to have no surprising 
discontinuities when we reach the limit. We want functions to 
work in expected ways in lirni ting cases. 

The identity that defines the relationship between enclose with 
axis and disclose wi th axis is an easy one to believe and is 
restated here assuming A is a matrix and the function is applied 
along axis 2: 

A +--+ ~[2J e[2] A 

or 

A +--+ 2 VNSPLIT 2 SPLIT A 

This says that if we form a vector whose items are the rows of a 
matrix~ then form the items back into a matrix~ the same array 
results. This is easy to believe because it is a spatial 
relationship that we can picture - itt s obvious. 

The relationship can be explored at the limi ts by starting wi th a 
nonempty matrix and examining what happens as we reduce the 
length of an axis to zero. The assumption is that the equation 
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will hold when A becomes an empty array. Since we are talking 
about relationships we can picture we will use words instead of 
equations to investigate the identity. (This is nott of course t 
a mathematical proof. See [Mo1] for a more formal approach to 
this subject.) Let the array A be defined as follows: 

Consider approaching emptiness along the column axis: 

If	 the shape of A is 2 3, then 
the shape of e[2] A is 2 
and the shape of each item of c[2J A is 3 

If	 the shape of A is 2 2, then 
the shape of c[2J A is 2 
and the shape of each item of c[2] A is 2 

If	 the shape of A is 2 1, then 
the shape of e[2] A is 2 
and the shape of each item of c[2] A is 1 

If	 the shape of A is 2 0, then 
the shape of e[2] A is 2 
and the shape of each item of c[2J A is 0 

Clearly, at each step the result of e[2] is well-defined and the 
reconstruction of A by =,[2J is no problem. Thus the equation 
holds at least in some empty cases. 

Now consider approaching emptiness along the row axis: 

If	 the shape of A is 2 3 , then 
the shape of c[2J A is 2 
and the shape of each item of e[2] A is 3 

If	 the shape of A is 1 3 t then 
the shape of c[2J A is 1 
and the shape of each item of c:[2] A is 3 

If	 the shape of A is 0 3 t then 
the shape of c[2] A is 0 
and the shape of each item of e[2] A is 3 

Although this last step follows the progression of numbers 
naturally wi th i terns always being length 3 tit cannot be pictured 
visually. This might be a demonstration that the "obvious" 
equation is not true! It appears that the result of the enclose 
on axis 2 is an empty vector so how could each i tern have shape 3? 
Yet, if the equation is to hold everywhere, the information that 
the original argument had three columns must be retained 
somewhere! 

Because we believe the equation and know that our intuition 
cannot be trusted at the limits, we declare that the equation 
must hold everywhere and that the result of the enclose is a new 

67 



object, implied by the theory, that we did not know existed: an 
empty nested array. In this case it is an empty vector of 
three-i tern vectors. The implication is that there is more to 
arrays than shape and items -- there is information about the 
structure of arrays. In the example above, the information about 
the structure is that the array contains 3 - i tern vectors. The 
function first is extended so that when applied to an empty array 
it returns an array that describes that structure. Thus 

B~c:[2] A~O 3pO
 
+B ~~ 0 0 0 by definition
 

Furthermore if A is a character array: 

B~c[2] A~O 3pl I
 

tB ~~ t t by definition
 

The empty array A contains no data. Since the array describing 
the structure must have something for items, it contains zeros 
and blanks indicating data type. The function TYPE has no effect 
on such an array so above where we have first (t) we may also say 
"type of first" (TYPE t) and by defini tion this is the prototype 
of A. Thus the array that describes the structure of an empty 
array is i ts prototype. 

An empty array having any desired prototype can be constructed by 
use of the reshape function. For example an empty vector whose 
prototype is a 2 3 numeric matrix is constructed by reshaping the 
enclose of the desired prototype as follows: 

Opc:2 3pO 

Keep in mind that since only type and shape are kept that nonzero 
values will become zeros in the prototype of the empty array. 

Adopting the above defini tion for first answers the question 
posed earlier about the fill item on overtake of an empty array. 
If fill items are determined by the expression "type of first" 
(TYPE t), then fill items are defined for empty arrays because 
first (t) is defined for empty arrays. For example consider the 
following expression involving take and a uniform nested array. 

Nt (1 2) (3 4) (5 6) 

It has already been shown that, for N>O, the resul t is a uniformly 
nested array. With this definition of first and the existence of 
prototypes, the resul t is uniformly nested for all N. 

Thus prototypes are used to complete the defini tions of functions 
and make them work in expected ways even at limi ting cases. This 
is why APL2 adopts the an~wer ~rovided by the deductive approach 
rather than the answer provided by the constructive approach. 
The section on scalar extension gives another example of the 
deductive approach. This simple and elegant solution to the 
problem of emptiness is due to many years of intensive work by Dr. 
Trenchard More. He applied the scientific method to data and 
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discovered a new "particle" -- empty nested arrays. It is similar 
to what Mendeleev did in working out the periodic table. He 
arranged the elements in order of atomic weight and in a system of 
rows and columns that divided them into natural families wi th all 
elements in a column showing similar properties. When an element 
didn t t fi t he did not conclude that his notion was wrong, he 
assumed that the atomic weights were computed incorrectly. When 
there was a hole in the table t he predicted (correctly) the 
existence of new elements. In nested arrays we are merely 
arranging i terns instead of elements. 

The following sections will point out several other situations 
where empty nested arrays allow definitions to hold universally 
even in empty cases. 

~ EMPTY ARRAYS AND FILL FUNCTIONS 

When functions are applied with operators, usually one of the 
principal functions (the monadic one or the dyadic one) is 
selected. For example, consider the following use of the ~ 

operator: 

L~N+(1 2)(3 4)(5 6)
 
R~N+(7 8 9)(8 7 6)(5 4 3)
 
L R9·· 

By defini tion of each this implies evaluation of the dyadic 
principal function of catenate N times once for each 
corresponding pair of i terns one from each argument. If N is 3 this 
evaluates as follows: 

(1 2)(3 4)(5 6) , .. (7 8 9)(8 7 6)(5 4 3) 
(1 2,7 8 9) (3 4,8 7 6) (5 6 95 4 3)
 
(1 2 7 8 9) (3 4 8 7 6) (5 6 5 4 3)
 

If N=O, the principal function is evaluated zero times (that is 
not at all). Instead the related dyadic fill function is 
evaluated with arguments (tL) and (tR) and the result computed 
defines the prototype of the resul t of ,.' (which is by defini tion 
empty). Thus for N=O the expression becomes: 

L~Ot(1 2)(3 4)(5 6)
 
R~Ot(7 8 9)(8 7 6)(5 4 3)
 
L ," R
 

The fill function for catenate is catenate (as is often but not 
always true of the primitive functions) so it is called: 

(tL) t (tR) 
o 0 , 000 
o 0 0 a 0 

This five i tern vector becomes the prototype of the result of , 
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L t" R +--+ OpcO 0 0 0 0 

Thus the original expression always results in a vector of five 
i tern vectors - - even when N is zero. 

As a second example consider a monadic derived function and a 
fill function different from the principal function. 

R~ Np (2 3pl6) (2 3pl6) (2 3Pl6)
s: R 

Ignoring the numerical resul t of the inverse primitive, for 
nonzero N the shape of each item (if a DOMAIN ERROR is not 
signalled) is 3 2 because pffiA +-4 ¢pA (even in APL1). The fill 
function for inverse is transpose so if N=O: 

R~ Op (2 3p16) (2 3pt6) (2 3pt6) 
fE" R 

The fill function is called wi th argument +R: 

~ tR 
o 0 
o 0 
o 0 

This becomes the prototype of the resul t of (B" : 

[B" R +--+ Opc3 2pO 

Again the expected structure is achieved even in the empty case. 

All the discussion above deals with vector arguments. The same 
analysis holds for higher rank arrays. For example let R be rank 
3 : 

R~ 2 0 3p (2 3pt6) (2 3pl6) (2 3p\6) 
Bj" R 

The fill function is called: 

lI\' tR 
o 0 
o 0 
o 0 

This becomes the prototype of the resul t of fE" : 

m.. R .-... 2 0 3 p c 3 2 p 0 

The fill function for F" and o. F are the same as the fill function 
for F. APL2 does not provide a means to specify the fill function 
of a defined function. 
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~ EMPTY ARRAYS AND SCALAR EXTENSION 

15,3,1 SCALAR EXTENSION 

The dyadic scalar functions normally require arguments wi th 
matching shapes: 

L+R requires (pL) = (pR) 

The same is true wi th derived function of the each operator. 

L F·· R requires (pL) E (pR) 

The scalar functions may be defined in terms of each so, in the 
following discussion, we will only consider functions derived 
from each as representative of any function having the scalarwise 
property, 

Dyadic scalarwise functions relax the conformability 
requirements and admi t one argument that is scalar when the other 
is not scalar. In addition, one item vectors are treated like 
scalars for compatibility wi th APL1. The i tern of the scalar 
argument is then paired wi th each i tern of the non-scalar 
argument. This repeated use of scalars is called scalar 
e,:tension. 

Here is an example of scalar extension using a nested scalar: 

(c:2 3) p .• 4 5 (\6) 
(2 3p4) (2 3pS) (2 3p\6)
 

44455 5 123
 
44455 5 456 

This is a three i tern vector of 2 by 3 arrays. 

In general, to apply F with left argument L against each item of 
an array R, we may wri te: 

(c:L) F·· R 

(In array theory this is accomplished by using two primitive 
operators -- each right and each left. These operators are ~ 

needed in APL2 because of the definition of scalar extension. ) 

In the case where R of the above formula is an empty array, our 
verbal definition of scalar extension does not tell us precisely 
how to compute the result. Using the deductive approach (because 
this is an empty case), we write an equation which we believe 
describes scalar extension. For simplicity, we consider only a 
scalar (S) left argument. A similar discussion would hold for a 
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scalar right argument. We propose the following formula as the 
defining equation for scalar extension: 

F 
US R ~-+ «	 pR) pS) F" R 

This is the definition from APL1 which says "reshape the scalar 
to be the same shape as the nonscalar argument". 

Now we want to examine this equation in the limit. Consider the 
statement: 

(c:2 3) p" V for vector V 

Clearly 9 for nonempty vector V, the resul t will always be a 
vector of 2 by 3 arrays. Suppose V is an empty vector. Then by the 
proposed formula: 

( c 2 3) o ' V	 +--+ « p V ) p c 2 3) p V
 
~-+ (0 p c 2 3) c ' V
 

Now both arguments have the same shape (namely 0) and we know the 
fill function is called with the prototypes as arguments. The 
fill function for reshape is reshape so: 

(tOpc2 3) p	 tV ~-+ 0 0 P tV 

and this becomes the prototype of the empty resul t. Thus for 
nonempty V we get a vector of 2 by 3 arrays but for empty V we get 
a vector of 0 by 0 arrays. 

This is not an incorrect result, only a surprising one. We expect 
prototypes to take care of discontinuities of shape. Note that 
there is a discontinuity of shape even though the equation we 
propose does hold universally. We have two choices - - believe the 
equation and admit that the empty case is a singularity; or find 
another defining equation. 

Another equation is found by noting that what we really want is to 
bind the scalar argument to the function, and to apply the 
resul ting monadic function to each i tern of the the nonscalar 
array. A binding of this sort may be accomplished by a 
composi tion operator (see Appendix 2) . 

L COMP p 

gives a monadic function that does an L reshape. This may then be 
used in another defining equation for scalar extension: 

SF" R +-~ «	 +S) COMP F)·· R 

where redundant parentheses are used for clarity. Note that this 
and the earlier proposed formula both define scalar extension 
properly for APL1. Since APL2 does not provide a way to specify 
the fill function of a defined operation, the above equation will 
not execute in the empty case. 
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This equation reduces scalar extension on dyadic functions to 
each on a monadic function. Each on a monadic function does not 
involve scalar extension and so is completely defined. Now in the 
case where V is empty, we find that: 

(c:2 3) o ' V 

gives an array whose prototype is a 2 by 3 array. This second 
equation solves the singularity of shape in scalar extension and 
is, therefore, adopted as the defining equation for scalar 
extension. 

Note that in practice we do not need to introduce the concept of 
composi tion to make scalar extension understandable. We may say 
"the scalar is paired with each item of a nonempty argument or 
wi th the prototype of the empty argument". This defini tion of 
scalar extension also applies to inner product, compress, 
expand, etc. but no new insight is gained by studying those 
functions. 

15,3.2 OUTER PRODUCT 

When outer product is used with a scalar argument, it produces 
the same resul t as the each operator: 

S o.F R +-4 S Fit R for scalar S 

While no proof of this is given, we can see that each side of the 
equation means "apply S to each item of Rlf. If this equation is 
to be universally true, it defines how outer product works when R 
is empty. Clearly the prototype of the resul t must be: 

(+5) F tR 

Thus 2 o. p R will return an array of 2 i tern vectors even when R is 
empty. 

~ EMPTY ARRAYS AND ~ IDENTITY FUNCTION 

Reduction on nonscalars is defined so that the rank of the result 
is always one less than the rank of the argument. In particular. 
the reduction of a vector is a scalar. 

In the expression: 

F/ NpV 

If N>O, the principal function of F is evaluated N-1 times. When 
N=1, the principal function is not evaluated at all. The result 
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is the scalar (lO)p1pV -- a scalar containing the same item as 
1 p V. 

When N=O, again the principal function is not evaluated. Instead 
the identi ty function is applied to the prototype of the argument 
producing an array I. The scalar resul t is then defined as cI. (In 
the case of reduction of an empty higher rank array A, the resul t 
is (-1~pA)pcI.) 

Consider times reduction of a vector: 

R .... x/NpV 

If V is a simple vector then R is a simple scalar. 

6 ...... x/2 3 1 +--+ x/OpO 

If V is a uniformly nested vector then R is a scalar whose item 
has the same structure as i terns of V: 

8 15 +--+ tx/(2 3)(4 5) 
1 1 +--+ tx/OpcO 0 

Thus in F/NpV, as N is reduced to zero, there is no sudden change 
in the structure of the resul t when N reaches zero, 

The scalar functions, for which identity function are defined, 
have a specified simple scalar identity item (i.e. 1 for times, 0 
for plus, etc.), The identity functions for these scalar 
functions are defined to return arrays whose structure is that of 
their argument (the prototype of the original argument) but with 
all values replaced by the identi ty i tern, 

If I I is the identi ty i tern of some scalar function, then the 
identi ty function for that scalar function is: 

VZ+- IDF R 
[1J Z~II+R 

Since R is a prototype it can contain only zeros. The addition of 
the scalar II gives a Z which is the same structure as R except it 
has II where R has 0, Any characters in R will cause a domain 
error. 

Consider the evaluation of reduction on a nested empty vector: 

tx/Opc:2 3pO
 
111
 
111
 

The identity function for times is called with a prototype as 
argument tOpc2 3pO which is 2 3pO. The identity function computes 
1+ 2 3 pO (because 1 is the identity i tern for times ) and the scalar 
resul t of reduction is computed as c 2 3p1 
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The identi ty functions defined in APL2 are listed in the Language 
Reference [1J. Application of the identity function produces an 
array which usually is a left and right identity item for the 
function. If a function has only a left or only a right identi ty 9 • 

that value is used. Sometimes an identity function is defined 
for a subset of arguments (for example = which has identi ty i tern 1 
only when applied to logical arrays) . 

Identi ty functions for the mixed functions are derived by 
considering reduction of nonempty uniformly nested vectors. 
This is done because as we reduce the length of the vector toward 
zero, i t becomes uniformly nested when the length reaches 1 . 

As an example let V be the vector made up of A, B ~ and C which are 
identically shaped matrices. Then consider catenate reduction of 
V: 

~fV4:-A B C 

The identity function for catenate must return an array I such 
that 

,fA E C ~4 ,/ A E C I 

Therefore the identity function chosen is «-1+pP)~O)pP where P 
is the prototype of t'. 
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~ CONCLUSI ON 

APL 2 contains a l a r g e s et o f e x tensions to APL1 • They a re de fi n ed 
as proper e x tens i on s of A PL 1 a nd in t h e s a me s p ir i t a s APL1 . Th e y 
give the a p pe a r a n c e tha t t h e designe rs o f APL 1 h a d t h e se 
extensions i n mi nd whe n they desig n ed t h e origina l A PL. Wh i le 
th is was probab ly n o t the c a s e , it is n o accident tha t the n e w 
facili ti e s fi t s o n ice l y. Th e creato r s o f A PL1 we r e ca r e f u l to 
adopt simple r u l e s that a pplied unifo r mly. Such ru l es can be 
easi ly extende d and a p p lied i n n e w si t uations. Th e rec og n i ti on 
o f operators as d i f f e r e nt f rom funct ions g a ve tre mend ous 
functiona l capab i l ity without a n e x p l os i on o f s ymbo l s . 
Extensions to expressi ons o f o perat o r s was a c h ieve d i n A PL2 wi t h 
almos t no c h a n ge fr om the orig i n al r u l es o f A PL 1 • 

A PL 2 provide s f ur t h e r s implification o f c oncepts and rule s . More 
statemen t s c a n be ma d e that hold universally . Fe we r exc e p t i on s 
need t o be described. Bin d ing , the un i f i ed field theo r y o f APL2 
syntax, g i ves one c once p t tha t tie s t oge t h er the conce pts of 
order o f e xe c u ti on , p r e c e de n ce of operators ove r functions, us e 
of p a r e n the s e s , e t c . The f i n a l r e s ul t i s that t h e exte n s ions 
look like they were a l wa y s part of A PL . 

The re s ult i n g l a ngu a g e i s a p owerful an d p roductive tool fo r the 
wri ting o f a p p l i c a t i on s a nd the s olv i n g of prob lems. I t ha s 
fewe r excepti on s ; mo r e things work a s expected (the l aw of l e a st 
surprise); f ewer loops a re ne e ded; e tc. 

As a res ul t, a nov ice c an solve a wide r class of problems . He c an 
make use of the powe r f u l fe atures (such as nested array s) for 
ordinary tasks ( s u ch a s r e por t writing) withou t k n owle dg e o f t h e 
complete languag e o r of the u n de r l y i ng t h e ory . The us e r of APL 1 
can use APL 2 imme d iate l y a n d g row into the n e w f e a t u re s b e cause 
APL 1 i s a s ubs e t of APL 2 . Th e p r ofe ss i o n a l programmer c an write 
applicati ons in fewe r l i n e s a n d in a shor t e r t i me . 

The summati on of the s imp l i f i c a t i on s, functional e n han cements , 
and usabili t y enhanceme n ts l e ads t o a n o t a t i on which c a n be u s e d 
as a tool for t h i n k ing a nd f o r the so lution of proble ms . 
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~ APPENDIX ~ SUMMARY OF RULES AND DEFINITIONS 

Object Classes: There are three classes of objects: 
o arrays 
o functions
 
o operators
 

Array: An ordered rectangular collection of items 
each of which is itself an array 

Simple Array: An array each of whose items is a
 
single number or a single character.
 

Nested Array: An array at least one of whose items 
is not a single number of a single character. 

Homogeneous array: An array containing only one
 
type of data -- numbers or characters.
 

Function Valence: All functions are ambi-valent 
(both valences) and the one evaluated in any 
instance is determined only by context. 

Operator Valence: Operators are not ambi-valent. 
A given operator is either monadic or dyadic 
determined by definition not context. 

Syntax classes: There are six syntax classes: 
o arrays 
o functions 
o monadic operators 
o dyadic operators 
o assignement arrow 
o brackets 
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Parentheses rule: Parentheses are used for grouping. 
They are correct if properly paired and if 
what is inside evaluates to an array, a 
function, or an operator. 

Redundant Parentheses: Correct parentheses that
 
don't alter any bindings are redundant
 

o	 general 
- group a single name (primitive or constructed) 
- group an expression in parentheses 

o	 array expressions 
- do not both group and separate 
- group right argument of a function 
- group vector left argument of a function 

o	 function expressions
 
- group left operand of an operator
 
- group function expression and left
 

parenthesis does not separate two arrays 
o	 bracket expressions
 

- group brackets and object to the left
 

Expression: A linear string of names and symbols, 
taken from the six syntax classes, punctuated 
with parentheses. 

Right to left rule: In an unparenthesized expression 
without operators, functions are evaluated from 
right to left. 

Function Precedence: Functions in an expression 
have no precedence. The order of execution 
depends only on position in the expression. 

Rewriting rule for character vectors: If a vector 
in parentheses is made up entirely of single 
characters, it may be rewritten with a single 
pair of enclosing quotes. 

Expression substitution: In an expression, any 
sub-expression may be replaced by another 
expression that computes the same value 
without changing the value of the original 
expression. 
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Syntactic Substitution: In an expression, any object 
in parentheses may be replaced by an object of 
the same syntax class without changing the syntax of 
the statement. 

Printing results: If the last syntactical action in 
an array expression is an assignment, the final 
array value of the expression is not printed. 
If any binding occurs after the last assignment, 
or if there is no assignment, the final array 
value is printed. 

Scalarwise function: A function over which indexing 
distributes. 

Pervasive function: A function over which pick 
distributes 

Leafwise function: A function over which pick 
distributes where no pick operation selects 
the item from a simple scalar. 

Scalar extension: When a scalarwise function 
is applied to two arrays and one array is 
a scalar and the other is not, the item of 
the scalar is paired with each item of the 
nonempty nonscalar array, or the item of the 
scalar is paired with the prototype of the 
empty array -- defining the prototype of the 
result. 
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Bind i ng Hi e r a r c h y 

brackets
 
as s i gnme n t l e f t
 
r i g h t ope r and
 
vecto r
 
l eft operand
 
l eft arg ument
 
r i g h t a r gu me n t
 
assignme n t r i gh t
 

brackets --- - - --- - b i nd i ng o f brack ets t o wh a t 
i s on the l e f t 

ass ignment l e ft -- b i nd i ng o f a left arr ow 
to what is on i t s l e f t 

r igh t ope r and -- - - b i n ding o f a dy a d ic o pe r a to r 
to i ts operand on the r igh t 

v e c t o r - - --------- b inding o f a n a r ray t o 
a n a r r a y 

left ope r and ----- b i n d ing o f an opera to r t o 
wha t is on its left 

lef t a rgu me n t - - - - b i nding a f unc tion to i t s 
left a r g ume n t 

righ t a r gument -- - b i n d i ng o f a function t o i t s 
r i g ht a rgument 

ass i g nme n t righ t - bin d ing o f a l eft arrow 
t o wh a t is on i ts r igh t 

Brac ke ts a n d monad i c ope rators h a ve no binding
 
stre ng t h on t h e r igh t .
 
Ri gh t ar row i s s yntactic ally a function that
 
produces n o v a lue.
 
Ni l a d i c f un c t i on s a r e synt act i cally array s .
 

APL2 fun c t ion se t: An APL2 function i s a co l l ect ion 
of t he f o l l owing r elated funct i ons : 

o Monadi c pr inc i pa l f unct i on 

o Dya d i c pr incipa l func t ion 

o Monadic f il l f unc t i on 

o Dyad i c f i l l f unction 

o Mona d i c identi t y func tion 
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20,0 APPENDI X ~ DEFI NE D FUNCTI ONS 

The define d o p e r at ions p r e sente d he r e are defin i tions or 
e xamples and i n g e n e r a l d o n o c h eck ing f o r bad a rguments or 
exceptional conditi ons . 

The SPLIT fun c tion defines enc l ose wi t h axis, 

VZ~I SPLIT R; IRH O;ZRHO ASPLI T R ALONG AXES I 
[ 1 J IRHO~(pR)[ I J ASHA PE OF RESULT ITEMS 
[2J ZRHO~(pR )[ (,p pR )-IJ ASHAPE OF RES ULT 
[ 3J R~( ~ «,p pR )-I ),I )~R AMOVE I AXES TO RI GHT 
[4 J Z~Op c R ASET PROTO TYPE OF RESULT 
[5J ~(O£pZRHO) / END ANO LOOP I F RESULT EMPTY 
[6 J R~ , R AGET LI ST OF I TEMS 
[7J LP : Z~Z, cIRHO p R ABUILD NEXT RESULT ITEM 
[8 J ~ (O~pR~ ( x / IRHO ) + R ) /LP ADROP I TEMS USED 
[9 J E ND:Z ~ZRH O p Z ARESHA PE TO RESULT SHAPE 

V 

The UNSPLI T f u n c t i o n 
inverse of S PLI T and 
same shape, 

de f i n e s d i sclo se wi t h a x i s . It i s 
i n a dd i t i on pad s i f i tems do n o t 

the 
h a v e 

left 
the 

[1J 
[2J 
[ 3 J 

V Z ~ I UNSPLI T R 
R~ => R 

I~ «,p pR ) -I ) ,I 

Z ~ I~ R 

V 

AUNSP LIT R FORMI NG AXES I 
APUT AXES ON RI GHT 
ACOM PUTE TRANSPO SE 
AMOV E AXES TO I POSI TIONS 

The LEAF opera t o r p r odu ces a d e r i v ed f unction tha t has t h e 
leafwise property , 

V Z~L ( F LEAF )R AAPPLY F TO S IMPLE SCALARS 
[1 J ~( 2= DNC ' L') / DYA D ASEP ARATE DYADIC CALL 
[2J A 

[3J ~(O = :: R ) /MF ABRANCH S I MP LE SCALAR 
[4J Z~F LEAF " R AAPPLY F TO EACH IT EM 
[5J ~ O 

[6J MF:Z~F R AAPPLY F TO S IMPLE SCALAR 
[7J ~O 

[8J A 

[9J DYAD :~ ( 1 = :: L R ) /D F ABRANCH S IMPLE SCALARS 
[ 1 0 J Z ~L F LEAF"R AAPPLY F TO EACH ITEM 
[ 11 J ~O 

[ 12 J DF :Z +-L F R AAPPLY F TO SIMP LE SCALARS 
[ 1 3 J ~O 

V 

The RANK opera t or appl ies a functi on l e ft opera n d F t o con t i g u ou s 
subarrays from its argum e n ts as defin ed by i t s r ight o pe r a n d N 
[Iv3J , N i s a thre e i t e m i n t e g e r vector contain i n g the r a nk s of 
the arguments t o which F i s u l tirnately a ppl i e d . The first i tern of 
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N is the rank for monadic uses of the derived function. The second
 
and third i terns of N are the ranks of the left and right arguments
 
ul timately used wi th application of F for dyadic uses of the
 
derived function. The ranks specified are maximums. If an
 
argument has smaller or equal rank than the i tern of N, the
 
argument is used unchanged. If an argument has greater rank than
 
the i tern on N, then the argument is spli t into rank N arrays and F
 
applied to each piece. Axes of the resul ts produced by each
 
application of F are arranged as right axes of the result of the
 
derived function. A negative N means use complementary rank (-2
 
means spli t except for first two axes) .
 

VZ~L(F RANK N)R;RL;RR AAPPLY F WITH RANK N 
[1J N~OrN+(N<O)x«ppR)-IOLN)-N~MAKE NEGATIVE A POSITIVE 
(2J ~(O~ONC 'Lf)/V2 ASEPARATE DYADIC CALL 
[3J ~ 

[4J RR~-(ppR)L1pN ~USE SMALLER OF N AND RANK 
[5J Z+-::>F"c[RR+1.ppRJR p.APPLY F TO EACH PIECE 
[6J -+0 
[7J A 

[8J V2:RR+--(ppR)L-1+3pN ~USE SMALLER OF NAND RT RANK 
[9J RL~-(ppL)L1t1.3pN p.USE SMALLER OF NAND LFT RANK 
[10J Z+-~(c[RLt,ppLJL)F··c:[RRt1.ppRJRp,APPLY F TO PIECES 
[11J -+0 

v 

The TYPEOF function takes a simple scalar argument and returns a 
zero if it is a number and a blank if it is a character. 

VZ~TYPEOF R RGET DATA TYPE OF SIMPLE SCALAR 
[1]	 Z+-(O t f)[R = TRJ
 

V
 

In APL2 the type of an array R is an array of the same structure 
but wi th all numbers set to zero and all characters set to blank. 
The following are two different definitions of a function which 
computes the type of an array. The first recursively searches 
the argument for simple scalars, then applies TYPEOF from above. 
This function is a constructive definition because it actually 
finds the scalars then changes them. It fails on empty arrays 
because there is no way to specify the fill function related to 
the derived function TYPEOF LEAF. The second uses the intimate 
relationship between array types and empty arrays to extract the 
type array directly. It always produces the correct answer. 

VZ~TYPE R A GET TYPE OF ARRAY R
 
[1J Z~TYPEOF LEAF R
 

V
 

VZ~TYPE R A GET TYPE OF ARRAY R 
[1]	 Z+-+Opc:R
 

v
 

The COMP operator forms a monadic function by associating with a 
dyadic function a fixed left argument. Thus while + is the 
addi tion function and 1+A is its dyadic use, 1 COMP + is the 
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increment function and (1 COMP +) A is i ts monadic use (wi th 
redundant parentheses used for clari ty) . 

VZ~(A COMP F) R ~COMPOSE ARRAY WITH DYADIC FUNCTION
 
[1J Z+-A F R
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~ APPENDIX ~ A BRIEF CHRONOLOGY OF APL DEVELOPMENT 

APL, as a notation for writing about data processing, grew from 
work begun in 1 957 by Dr. Kenneth E. Iverson. His book, tlA 
Programming Language" (1 962) presented a version of the language 
referred to as "Iverson Notation". Shortly after Iverson joined 
IBM in 1960, he teamed up with Adin Falkoff and for many years 
they led various groups in designing and developing APL products. 
In early 1963 Falkoff began work on the "Formal Description of 
System 360", which was completed with the collaboration of 
Iverson and Sussenguth. In 1964 9 Iverson and Falkoff designed 
the first APL type ball for the IBM selectric typewriter. This 
required the linearization and regularization of the language. 
Larry Breed and Phil Abrams produced an early implementation on 
the IBM 7090 in 1 965. Dick Lathwell joined Falkoff and Iverson in 
1966 and with Breed and Rodger Moore produced an implementation 
for the IBM 360. This evolved into IBM's first APL program 
product APL \ 360 • 

In 1971 Falkoff's group began serious investigation of shared 
variables under the direction of Dick Lathwell. This work evolved 
into APLSV. Alex Morrow led the development group that produced 
further releases of APLSV. Bob Creasy, Tony Hassit and Len Lyon 
led the group that developed APL/CMS which became the VSAPL 
program product. 

Dr. Trenchard More joined Falkoff in 1 967. He was one of the 
first to recognize operators as different from functions. His 
work on array theory provided the theoretical background for the 
arrays of APL2 -- especially empty arrays. Vector notation in 
APL2 derives from More t s strand notation. 

Dr. James A. Brown joined Falkoff in 1 969 and participated in the 
development and release of APL\360, APLSV, and VSAPL. His thesis 
itA Generalization of APLIt (1 971 ) included significant 
contributions from Dr. Garth Foster, Syracuse University, and 
became one of the bases for APL2 . 

APL2 entered the IBM product plan in 1981 due to the efforts of 
Karen Riley and an experimental version was released as an 
Installed User Program (IUP) in June 1 982. 

Benkard provided the background theory that unified APL2 syntax 
in 1 982 • 

Dr. Brown is currently manager of APL Language Development at 
IBM's Santa Teresa Laboratory in San Jose. Mr. Falkoff is manager 
of the APL Design Group at IBM Research in Yorktown Heights. 
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