Packaged Workspaces

April 7th, 1988

Michael T. Wheatley

IBM

APL Development
General Products Division
Santa Teresa Laboratory
San Jose, California, USA

11 Packaged Workspaces

Packaged Workspaces

Abstract
Packaged workspaces are a new facility in AP 2 Release 3 and provide an
alternative fornm in which applications can be provided to users. Packaged
workspaces allow APT application code to be shared between APl 2 users and
provide name scope isolation between portions of AP@ applications,
This paper describes packaged workspaces. their uses, benefits and pitfalls.
Introduction

The concept of a workspace. a working area in the computer’s memory, has been
important in every AL implementation since AP\ 260, A workspace is a very
practical thing: :

® it is the arca of memory which the APH interpreter uses to to obtain and
store values, to hold function definitions, and for temporary storage during
cxecution of APl primitives;

e it defines a set of names and associated definitions or values which comprise
an APl application. or a sct of related AP@ functions;

* it may be stored on a computer’s external medium such as a disk drive or
magnctic tape, and is then referred to as a “saved workspace™;

* when brought into the computer’'s memory for processing it is referred to as
an “active workspace ™.

In 1966, when AP\ 6D was introduced. a 32K workspace was typical and
considered adequate. Ten vears later, typical workspaces had grown to about
12RK; five vears after that, SO0K and 1MB workspaces were common, and today
AP .2 supports 1280V B workspaces.

As workspaces and the applications in them grew, the problems involved in
managing named objects in the workspace beeame more and more serious. It is
not uncommon to find applications today that consist of thousands of functions
and varables. Since the name of each function and variable must be unique at

Packaged Workspaces |

2

Packaged Workspaces

any given instant in a workspace, large applications become complex. if nothing
clse, in terms of “name pollution”. Tt is often difficult 1o extend a large
application. or to perform maintenance on it without introducing crrors because
of the large number of named objects in the workspace.

Other programming languages have effectively dealt with this problem of name
pollution by allowing program segmentation, and the creation of applications by
linking scparately compiled modules together. Fach module need only be known
by a few external names or entry points, even thongh it may contain a large
number of internal names. Some similar capabilitics are provided by the
localization of names in APL functions. But AP functions arc often tiny in
comparison to the compilation units in other langiages, and the sheer number of
APL functions in a large application often causes name pollution.

The workspace provides another mechanism for scgmentation of large APL
applications. By structuring the application as a <eries of workspaces., the
number of objects in cach workspace can be substantially reduced. ‘This works
well in some applications where the application can be broken down into
relatively large phases, with cach phase implemented by a separate workspace.
For more dynamic applications, however, where there is not a predictable pattern
in the use of the functions, the cost of saving the current workspace, loading a
new one, and most importantly, transferring data between workspaces, is very
high. .

Packaged workspaces are designed to provide an answer 1o this problem of name
pollution, an answer that allows large applications to be effectively and simply
segmented into manageable components.

As the use of APL for large production applications grows, another problem
becomes apparent: cach user of the application requires his own copy of the
application code in his active workspace. As the mmber of simultancous users
grows, the requirement for real memory to suppaort them also grows. The
situation beecomes worse as users begin to contend for real memory in the
computer complex and the paging subsystem begins to thrash,

Packaged workspaces also attempt to address this problem by allowing APLL
application code to be shared between simultancons users of an application.
Only onc copy of the application need reside in the computer memory; all users
can share it on a read-only basis.

Packaged workspaces offer a number of other benefits in many situations:

¢ they facilitate the process of central maintenance, because users do not, and
often cannot, save their own copy of the application code or utility functions;

¢ they provide a greater level of control for the application developer by
allowing limits to be set on the entry points to applications;

® in some cases substantial performance improvements can be attained for
shared applications through the climination of function files;

e they can provide a greater degree of sccurty than is offered by saved
workspaces.

Description of Packaged Workspaces

The following discussion is intended to be itlustrative, and does not contain
complete tutorial or reference material. For reference material concerning these
facilitics, sce Chapter 24 in the "API 2 Programming: Svstem Services Reference”
manual (S1120-9218).

What is a packaged workspace?

Saved workspaces are collections of AP names, values and dcfinitions that are
stored on a computer’s external medium (such as a disk drve). Saved
workspaces are created with the AP) SATE command and are acceseed with
the APl YLOAD and YCOFPY commands. '

An APT user can have only one “active workspace™ (one that has been activated
bya YLOAD or YCLEAR command) at a time. Through the use of AP 101
(the stack processor) it is possible to activate a new saved workspace under
program control. But there is never more than one such active workspace for an
APIL. uscr at a given instant in time.

A packaged workspace is simply a reformatted saved workspace. It contains the
same information as a saved workspace. It i< reformatted so that it can be
handled by the same operating system facilities that locate and load compiled
program modules. Packaged workspaces are accessed through Processor 11
which uses these operating system facilities to dynamically load or locate
packaged workspaces.

Packaged workspaces and objects within them can be accessed dynamically by
APL. applications through the vse of O#¥ 4 and Processor 11, Multiple packaged
workspaces can be available and in use at the same time in an APL user’s address
spacc.

How are packaged workspaces created?

Packaged workspaces are created from saved workspaces. A saved workspace can
be transformed into a packaged workspace by using the external function
PACKACGE which is provided with API 2. The FACKACE function reads a
saved workspace from disk, converts it to the format of an object module, and
stores that object module in another di<k file.

The object module produced by the PACKAGF function has the same format as
object modules prodiced by compilers such as Fortran or COBOI.. The
PACKACE function docs not compile a saved workspace, rather it simply
converts its format to that of an object module. Object modules, whether they
arc produced by the FACKAGE function or by a compiler, look the same to the
operating svstem and can be processed by other operating system facilities such as
a linkage cditor or loader.

Packaged Workspaces 3

In most sttuations, the object module file created by the FACKAGE function
must be processed by a linkage editor before it can be aceessed by an APL. user
as a packaged workspace. The linkage editor again transforms the format of the
object module into something called a load module, and saves the resulting load
module in a load module library,

The packaged workspace in the form of a load module in a load library can be
accessed by APL users. Any APIL, user who has aceess to the load library can
causc a copy of the packaged workspace to be foaded into his address space. By
limiting access to the load library, the application owner can limit access to the
packaged workspace in much the same way access i< limited for saved
workspaces.

If the application is to be used simultancously by multiple APL. users, however, it
may be desirable to install a resident shared copy of the packaged workspace in a
shared arca of the computer’s memory (c.g., the Tink Pack Arcain MVS or a
DCSS in VAL, This is not o task that can be normally accomplished by an APL
programmer - it requires some planning and manual imervention by the
authonized personnel who maintain the computer facility.

The process of creating a packaged workspace may sound difficult and complex
to APIL. users because of the number of steps involved and because of the need to
use unfamiliar facilities such as the linkage editor. Actually, the whole process is
relatively simple and straight forward and can he quickly accomplished by the
average APL. user without the need for any substintial education in operating
system facilities. Only if the packaged workspace is to be installed on a resident
shared basis do systems personnel have to be involved, and they must be
involved in this case because specialized system knowledge as well as systems
level authorization is required to complete this step.

An cxample will clarify the process and illustrate its simplicity. Because the
process differs slightly between the VM/CMS and MVS/TSO environments, two
examples in appendices A and B have been developed. 1t is recommended that
the reader review the appropriate appendix.

Once a workspace is packaged, how can it be accessed?

4

Packaged Workspaces

Once a \\'(Srkspacc has been transformed into a packaged workspace, objects in it
can be accessed through Processor 11 Using ONA. an APL user can declare a
name 1o be external to his workspace and to exist in a packaged workspace. For
cxample, the user might declare SETUPE as an external function which cxist§ in
packaged workspace REFORT in load library RET'I, IR with the following API,
cxpression: :

*REPLIB.REPORT' 11 ONA 'SFTUP!
After this declaration, the SETUP function can be nsed as if it existed in the

uscr’s workspace. It can be called with arguments, and it can be used as part of a
larger APL application. The workspace in which it is declared can be saved and

rcloaded, and the external function SETUPE can continue to be used, without
having to be redeclared.

This “magic” is accomplished as follows:

¢ When the name SETUF is declared using ONA, Processor 11 is contacted. 1t
uses the first item of the left argnment of ONA to locate the packaged
workspace. It loads that packaged workspace and attempts to locate SETUP
within it.

¢ If SETUP is found in the packaged workspace, it is established as a name in
the user’s workspace. It’s pame class and attributes (function, variable, time
stamp, ctc.) arc taken from the packaged workspace.

e Sufficient information is stored in the user’s workspace to locate SETUP in
the packaged workspace.

® When the name SETUP is encountered during exccution of an APL,
cxpression in the user’s workspace, the system locates it's definition (or value
il it is a varable) from the packaged workspace.

¢ If the user’s workspace is saved, the external name SETUP and the control
informatron associated with it is saved alone with the user’s workspace.

¢ I the user’s workspace is cleared, or replaced with a YLOAD command,
Processor 11 is contacted by the system and the packaged workspace is
deleted.

o If the saved workspace containing the external name SETUP is reloaded, the
packaged workspace in which SETUP actually exists is not reloaded until
SETUP is first encountered during the exceution of an APL, expression.

As can be scen from this explanation, a packaged workspace is loaded when a
name is declared with ONA to exist within it, or when a name that was previously
declared to exist within i, is encountered during exeewtion of a YLOA Ded
application. Thus, unless an external name is localized in an application, there is
no nced to reissue the ON A after reloading an application.

If a resident shared copy of the packaged workspace installed (in the Link Pack
Arca in MVS, or in a DCSS in VM), it is simply accessed as needed by Processor
11, If it was not installed on a resident shared basis, Processor 11 typically must
load the packaged workspace from a load Tibrary into free space (defined with the
APL2 "FREESPACE” invocation option) in the user’s address space.

When the user’s workspace in which the external name is declared is cleared or
replaced with a)LOAD command, or when the user signs off AL, Processor 11
releases its access to the packaged workspace. I the packaged workspace had
been loaded by Processor 11, this causes it to be deleted from the user’s address
space. T'he packaged workspace will also be released if all of the external names

Packaged Workspaces 5

in the user’s workspace which point to the packaged workspace are expunesd.
So, for example, if an external name is localized:

VRUN;SETUP
{1) »(1="REFLIB.FEPORT' 11 ONA 'SETHP')/EFECS
(2]

and if that cxternal name is the only onc in the user’s workspace which is defined
to exist in that packaged workspace, then the packaged workspace will be loaded
cach time the function RUN is exccuted and deleted cach time the function
completes. Obviously, if the RUN function is exceented frequently, substantial
overhead will be incurred as a result of this localization of the extemal name.

How does the system locate a packaged workspace?

6

Packaged Workspaces

When an cxternal name is declared, Processor 11 uses the first item in the left
argument of ONA to locate the packaged workspace. There are a number of
different variations in the way this information can be specified.! but two arc
commonly uscd: B

'LIB.MEMB' 11 [ONA 'ROUTINE!

spectfics that the object ROUTINE is located in the packaged
workspace which is stored as member #EMB in load libmary LIE. In
MVS/TSO, LIB is the ddname allocated to the dataset in which
MEMB resides. In VM/CMS, LIB specifies the file name of the load
library in which MEMB resides; that load library must have file type
LOADLIB and must reside on an accessible minidick..

'MODULE' 11 ONA 'ROUTINE'

specifies that the object ROUTINE is located in the packaged
workspace named MODULE. In MVS TS, MODULE will be found
using standard OS scarch order (e, T PALIPA, STEFPHIB. etc)). In
VM/CMS, a CNIS nucleus extension named MODULE will be used if
it exists, otherwise, Processor 11 will attempt to load a 7EXT file
with file name MODULE.

The first altemative (* LIB . MEMB ') is typically used when the packaged
workspace is 10 be loaded from a load library on disk.

The second alternative (*MODULE) is typically used to gain access to a
packaged workspace that has been installed on a recident shared basis. This
alternative must be used with care beeanse:

! For a complete explanation of the possible felt argnments to 0¥ A, <ce the "APL 2
Programming: System Services Reference” manual, ST120-9218.

e Under MVS/TSO, Processor 11 issucs a T OAD (SVC R) against the name
MODULE. This will cause the operating svstem to search the following, in
order, for a load modnle with the specified name:

1. the job pack arca (for a previously loaded module with the same name);

2. any task librarics that are in effect (this sometimes includes the toad
library from which APL.2 is loaded):

3. the step library (if one exists):

4. the link pack arca (this is the place where shared routines are placed in
MVSY:

S. the MVS link librarics.

Since the shared area is far down in this scarch order, the possibility exists
that a non-shared copy will be located instead. Further, because the system
scarches through a Iarge number of names in this process, there is a
reasonable possibility that it will first find comething clse with the same
name. This is particularly true if the packaced workspace has a common
name like LOAD, AFL2, or ITEFRRF14. API uscrs are advised to
consult a svstem administrator or svstem programmer when attempting to
install or name packaged workspaces for resident shared use.

¢ Under VM/CMS, speaial initialization (deseribed below) is required to cause
the resident shared packaged workspace to be available as a CMS nucleus
extension. I a CMS nucleus extension with the specificd name is not found,
the system attempts to load a TEXT file with the same name. Ifa TEXT file
is loaded, it will not be shared.and mav be destroved by CMS commands
issucd from the APT 2 session. The use of TEXT files for packaged
workspaces is not reccommended.

In the VAI/CMS environment, packaged workspaces can be installed on a
resident shared basis by link editing them with AT 2 (RFSEPS option at APL2
installation) and placing AP 2 in a DCSS, or they may be saved in separate
DCSS's. Either of these options require the involvement of an authorized system
administrator. The sccond alternative (separate DCSS's) provides more
flexibility, since updates to a packaged workspace do not require reinstallation of
ATPL.2 or other packaged workspaces. Fach packaged workspace must be placed
in a scparate DCSS, but the DCSS’s may be overlapped. Processor 11 will take
carc of making surc that the correct PDCSK i available at the appropriate times.

H, under VNI/CMS, resident shared packaged workspaces are loaded into scparate
DCSS’s, the user mnst issue the following CMS command before attempting to
use ONA to access objects in a packaged workspace:

AP2VUTIL DCSS LOADFY des< name pkag_name
where dess_name is the name of the DCSS in which the packaged workspace
is saved. and pkg_name i< the name to be assigned to the packaged workspace.

This pkg_name must correspond to the MODULE name specificd in the left
argument of ONA, viz.:

Packaged Workspaces 7

JCLEAR
CLEAR WS
100 DSVO 'CMD!
2
CMD«'*AP2VIITIL DCSS LCADPY RFPDCSS REPORT!
CMD

‘REPORT' 11 0ONA ‘'SETUP!
This AP2VUTIL command causes the RETDC S5 to be accessed and set up as

a CMS nucleus extension named REFORT. The snbsequent ONA directs
Processor 11 to that CMS nucleus extension.

Finally, whilc it is not cssential, if the VM CMS API 2 user wishes to delete
access to the resident shared packaged workspace when he is finished with it, the
following CMS command can be issued:)

AP2VUTIL DCSS PURGEFW drcess_name pkg_name

Can more than onc packaged workspace be loaded at a time?

8

Packaged Workspaces

Yes, if there is sufficient space in the user’s address space. many packaged
workspaces can be loaded simultancousty. The number is limited simply by
workspace size and free space size. Some space is required in the user's
workspace and in free space to hold control information about a packaged
workspace, and of course, if the workspace is not aceessed on a resident shared
basis, it will require space into the vser’s address space.

Names can be declared in the user's'workspace to be external and to cxist in one
or more packaged workspaces. But names can also be declared to be external in
a packaged workspace and to cxist in another packaged workspace. Thus, the
user’s workspace can point to a packaged workspace and that packaged
workspace can point to another packaged workspace, and so on. Packages can
point to cach other, and can even point back to the user's workspace.

As can be imagined, such structures can be quite complex. ‘Fo attempt to clarify
terminology in such a structure, the term “user's active workspace”, or “active
workspace” is used to refer to the workspace which the user controls with
JCLEAR,)LOAD, or)SAVE commands. This is the primary workspace: it
is available automatically on a read-write basis when the user invokes AP1.2 and
its contents are managed with system commands. For a given APL. user, there is
only onc active workspace. ‘The same user, however, may have aceess to many
saved workspaces and many packaged workspaces. As described above, many
packaged workspaces may be accessed simultancously for a given APY user as a
result of external names declued in the active workspace or external names
declared in other packaged workspaces which are aceessed by the user.

What sorts of things can be accessed in a packaged workspace?

The uvser who creates a packaged workspace can specify limits on just what can
be accessed in that packaged workspace. The PACKAGE function, used to create
a packaged workspace. is ambivalent. If a left argument is supplied, it specifies a
list of names that are to be accessible in the packaged workspace. If such a list is
provided when the packaged workspace s ereated, only those names can be
accessed in the packaged workspace. Attempts 1o use ONA to access a name not
on the list will fail.

If a left argument is not provided to the FACKAGE function when the packaged
workspace is created, all names in the packaged workspace will be accessible as
external names from the veer’s active workspace or from another packaged
workspace.

Within the constraints imposed by the left arpument of FACKAGE, any name
that cxists in the packaged workspace is aceessible as an external name through
the use of ONA. This incindes: .

namcs of defined functions and defined operators;

names of variables:

natnes of labels (if there were suspended functions in the saved workspace
when it was packaged):

names of svstem functions or system variables;

namcs of shared variables (see explanation below);

namcs of external vanables, functions or operators,

Shared variables do not exist as such in a saved workspace. To be shared, a
variable must be offered vsing DSV O after the workspace has been loaded or
accessed. Since packaged workspaces are created from saved workspaces, to have
a shared varable in a packaged workspace, it must have been offered after the
package was accessed. This is possible in two situations:

¢ the user invokes an external function which exists in a packaged workspace
and that function. as part of its processing, <hares a variablc;

e the user accesses OS1°2 in a packaged workspace and and uses it to share a
variable. ‘This is possible using a surrogate name in the right argument of

ONA. viz.:
*REPLIF.RFPCRT' 11 U'N/l *ASVO QSsvVo:!
1
100 ASVO VAR
2
*REPLIR.FFPORT' 11 ONA 'VAR?
1
VAR« '(COMMAND*
VAR
]

Unlike shared variables, external variables retain their charactenistics across
YLOAD and)SAVE. and across packaging. ‘Thus a name that was external

Packaged Workspaces 9

when a workspace was saved, will remain an external name when the workspace
is reloaded, or if the workspace is packaged and subsequently accessed. Names of
such external objects in packaged workspaces may themselves be the target of
ONA. Thus, for example, if X was a variable in <aved workspace S X, and that
workspace was packaged, then another workspace 1.5Y could define it as external
with the expression:

*LIB.WSX' 11 ONA 'X!

If workspace WSY was subscquently packaged, an API, user could declare X to
be external to his active workspace and 1o exist in packaged workspace WSY, viz.:

'LIB.WSY' 11 ONA X!
With these declarations the user would actually aceess X in W SX.

The limit for such indirection (external names pointing to external names) is 181
levels of indirection. As the reader can imagine, declaration of such indirection
could be extended to a structure that eventually creates a loop and points to
itsell. If such a structure is created, the system will deteet it when the extenal
name is encountered during execution and a SYSTEM LIMIT (interface
capacity) error will be penerated,

How arc global references resolved in external functions?

10

Packaged Warkspaces

Iiach workspace, packaged or saved, defines a set of named objects - variables,
functions and operators. Defined functions and defined operators can refer to
their arguments and operands, can create and use loeal names, and can create and
use global names. When a global reference is made from within a defined
function or operator, that name is expected 1o be found in the workspace. If the
name is not found, a VALUE ERROR rcsulls,

Similarly, when a function in a packaged workspace refers to global names, those
names must be found in the packaged workspace, or more preciscly in the name
scope of the packaged workspace. Thus, in a simple case, if a user executes an
external function that exists in a packaged workspace, and that function refers to
a global variable, that variable had better exist in the packaged workspace, or the
function will be suspended with a VALUE FRROR. No attempt is made to
look for the name in the caller’s active workspace if it cannot be found in the
packaged workspace.

In a sense, having access to a packaged workspace is like having a sccond
workspace loaded simultancously, When an external function is called from the
user’s active workspace, the system switches from the name scope of the active
warkspace to the name scope of the packaged workspace. Until the external
function completes exceution, all names will be resolved in the packaged
workspace name scope. and no reference will he made fo names in the user’s
active workspace. When the external function completes execution, the system
switches back to the name scope of the user’s active workspace.

How do name scopes work?

If, while exccuting in the name scope of a packaeed workspace, a function creates
new global variables or changes the values of global variables, those changes
remain in cffeet in the packaged workspace name scope as long as the packaged
workspace is accessed - even if the user's workspace is saved and reloaded at a
later date. “Thus, if the user calls an external function that creates a global
variable, that variable is created in the packaged workspace’s name scope and is
available to other functions in the packaged workspace. or for that matter as the
target of a ONA from another name scope.

To understand how this works, one has to understand a little bit about name
management in an AP workspace. T'very AT'E workspace - the active
workspace, saved workspaces and packaged workspaces - contains a name table
which is used to catalog the names in the workspace and to locate their values or
definitions. ‘This name table is accessed by the)FNS,)YVARS,)OFRS,
and)NMS commands and by system functions ike ONC and ONL. The name
table is a volatile thing: new entries are added as names (including local names)
arc created, and entries are deleted as names are expunged or de-localized. In
manyv APl systems the name table is referred 1o as the “symbol table™

When a name is declared to be external and to exist in a packaged workspace. the
system locates and accesses the packaged workspace and copies the name table
from the packaged workspace into the user’s active workspace. This sccond
namc {able is not directly acceessible to the user. but i< used by the system as the
definition of the packaged workspace’s name scope. When the user calls external
functions or references external variables in the packaped workspace, this second
name table is used to locate their definitions or values. If the user specifics an
external variable, this sccond name table is updated to point to the new value.
The same thing occurs if an external function creates or changes the value of
variables during it’s exccution - the sccond name table is updated to reflect the
changes. :

The sccond name table is also significant insofar as it represents this APD user’s
instance of the packaged workspace. I the packaged workspace is installed on a
resident shared basis, and if another APD user simultancously accesses it, both
users get individual copics of the packaged workspace’s name table in their active
workspaces. Each vser’s maodifications to the packaged workspace name scope
are reflected in the user’s private copy of its name table. Thus, onc user’s
modifications arc not available to another user.

When and if the user saves his active workspace with a)SAVE command. the
sccond name table is saved along with it. When the saved workspace is
reactivated with a) LOAD command. the sccoml name table comes in with it
and the status of that name scope when the active workspace was saved is
preserved.

*ackaged Workspaces 11

Docs each name scope have its own copy of system variables?

The svstem variables that can be set by the user can be divided into two
calegorics: those that are workspace related and those that are session related.
Workspace related system variables are restored to their default values when the
workspace is cleared. They may also be saved with a workspace and will retain
their values when that workspace is reloaded. Session related system variables
retain their values for the duration of an AP session or until reset. Those values
arc not reset by YCLEAR or YLOAD. 'The session related system vaniables
defined in AP12 arc: OFPY, ONLT, and OT2Z.

The system maintains only onc copy of session related system variables. The
values of those variables are not affected by moving from one naine scope to
another. If their values arc set in one name scope. those values remain in effect
when the system enters another name scope.

Irach workspace - active, saved or packaged - has ite own copy of the workspace
related system variables. As the system moves from one name scope to another,
the values of these variable mav change. Scetting the values of these variables in
onc name scope does not not affect their values in other name scopes.

How arc updated values in a packaged workspace handled?

12 Packaged Workspaces

If a user updates an external variable, or if while exceuting in an external
function, the function updates a global variable, the new value is placed in the
user’s active workspace and the private copy of the packaged workspace’s name
table ts updated to point to it. Thus, values ercated or maodified during exccution
in a packaged workspace corsume space in the user’s workspace. ‘These new
values, although they exist in the vser's workspace, are not accessible to the user,
except through external names. The new values physically exist in the user’s
active workspace, but arc part of the packaged workspace’s name scope and not
of the active workspace’s name scope. They are pointed to by the private copy
of the packaged workspace’s name table. not by the active workspace’s name
tablc.

The same principles hold true for changes in the definition of functions or
operators, or for defined functions or operators that are dynamically created or
read from a function file while executing in a packaged workspace’s name scope.
Similarly, if valucs or definitions are expunged from the packaged workspace’s
name scope, the associated name table is updated 1o reflect these changes.

Just as the updated packaged workspace name table is saved with the user’s active
workspace when a)SAVE command is issued, new or maodified values or
definitions arc also saved and are preserved when the workspace is reloaded.

One final important picee of information before completing this topic. When an
unmodificd defined function or defined operator is accessed (for exceution, or by
functions like OCR), its definition is accessed direetly from the packaged
workspace, without having to make a copy of the definition in the user’s active
workspace. Thus, the definitions of functions or operators from a packaged

workspace do not consume space in the user’s active workspace unless they have
been modificd. or dynamically created. The same thing is not true for vanables.
When a variable from a packaged workspace 1s accessed for the first time, even
for a read-only reference. or as the argument to a function, a copy of the value of
the variable is made in the user’s active workspace before execution procceds.
The reasons for this are complex. and are duc to practical engincering issues
rather than any theoretical reasons why it must be done this way. Nonctheless,
in APL2 Release 3. all variables in packaged workspaces that are referenced as
external variables, or accessed in the course of executing in the packaged
workspace’s pame scope, consume space in the user’s active workspace. They are
“faulted in” from the packaged workspace as they are accessed.

What is the cffect of a name class change in a packaged workspace?

When a name is declared to be external thronugh the vse of ONA. the system
determines the name class (function. varable, operator) from its class in the
packaged workspace. That same name class is used for the external object. ONC
applicd to an external name will vield the torrect result.

As a result of execution in the packaged workspace’s name scope. however, the
narmne class of the external object conld be chaneed This could happen. for
cxample. if one function in the packaged workspace expunged another function
and then credted a global variable of the same name. If this happened. a
mismatch between the name class of the external object and the actual object in
the packaged workspace would result. The system does not attempt to resolve or
correct such mismatehes, sinee the.overhead to do so would be too high.

Instead., it will detect such a mismatch when and if the external.name is
subsequently referenced and issue an crror message (VALUE ERFOR for an
cxternal vanable, or VALENCE ERROR for an external function).

The only way to correet such a name class mismateh is to expunge the external
name and reestablish it with ONA. In practice, this behavior does not normally
cause a problem. since name elass changes of this sort are rarc in most
applications,

Can an external function be suspended?

An cxternal function in a packaged workspace is just like a function in the user’s
active workspace. If it does not carry the non-suspendable attribute. it can be
suspended as the result of an error or an interrupt, just like any such function in
the user’s active warkspace.

When an APL user is in immediate excention mode with no pendant functions
on the stack. he is in the name scope of the active workspace. That is to say, the
names available to him (and reported by YENS,)VARS, ctc.) are defined in
the name table of the user’s active workspace. When an external function is
cxccuted by the user, the svstem switches to the name scope of the external
function’s packaged workspace. If, while the external function is exccuting. it is
suspended (as a result of im crror or an interrupt), the user is left in the name
scope of the packaged wortkspace. YERS, YUAR, ONL, etc. will report

Packaged Workepaces 13

names from the packaged workspace’s name table. Names from the active
workspace’s name table will not be aceessible until the pendant function is
removed from the stack.

While suspended in a packaged workspace’s name scope, there is no restriction
on what the user can do. FPor example. the user can display the state indicator
(the stack). display and modilv defined functions, modify local or global vanables,
cxccute functions, and resume execution. All of these operations are camried out
in the name scope of the packaged workspace. .
‘This ability to be suspended in a packaged workspace is an extremely useful
characteristic of the system. It allows normal debeeing techniques to be used
for applications that are structured to use packaged workepaces. (Unfortunately,
however, getting an application to suspend in a packaged workspace is not always
that casy. Typically, to cause suspension, a developer simply sets a stop vector
on the desired function. For a stop vector to he effective on an external function,
however, it must be sct in the name scope of the packaged workspace. This can
be done using JEC in the packaged workspace s name scope. viz.:

'REPLIB.FEFPORT* 11 QONA 'SETI'P!

1
'REPLIB.RFFORT* 11 0ONA 'AFC DEC!
1
AEC 'SASETIP«t:!
2 00 1
SETUP *INITIAL!
SETUP{1)
)SI

SETUP[1])
*

If the workspace was packaged with a left argument to FACKACGE. and if DEC
was not included in that list, this technique will not be effective. Developers,
therefore, should plan to incorporate debugging hooks in applications that are to
be packaged with a left argument to PACKACE. Such debugging hooks can be
as simple as including QFC in the left argnment of the FACKAGE function.

What if a packaged workspace is replaced with a new version?

14

Packaged Workspaces

When an external name is declared in the user's active workspace, the name table
is copicd from the packaged workspace into the user’s active workspace. As
exccution proceeds, changes to this name table are made to reflect new and
updated variables and other changes in the packaged workspace’s name scope. If
the user then issues a) FA VE command, these changes and the modified
packaged workspace's name table are saved along with the user’s active
workspace. The packaged workspace itself. however. is not saved.

If the user reloads the <aved workspace at some future date. the modificd
packaged workspace’s name table and associated changes are reloaded along with
it. The actual packaged workspace will be reaceessed by the system when the
first unmodificd external name in it is accessed. ' xecution proceeds as it would
have prior to the)SATE command. That is to sav. the state of the active

How do external operators

workspace and the packaged workspace are the <ame as they were when the user
issued the) SAVE command.

If. however, the packaged workspace had been maodified and repackaged by its
owner between the time the user saved and refoaded his workspace, a mismatch
would occur. The madificd copy of the packaged workspace’s name table would
not necessarily correspond to the actual contents of the new version of the
packaged workspace.

The svstem detects such potential mismatehes by maintaining a creation date in
cach name table in the system. Thus the maodified copy of the packaged
workspace’s name table, which was saved along with the user’s workspace, would
have onc creation date, and the new version of the packaged workepace would
have a different onc. The svstem detects such a mismateh when the user
attempts 1o access any cxternal objeet in the packaged workspace. Fach time the
mismatch is detected., the svstem will issue 2 warning message:

PACKAGED WORKSPACE name MODIFIED SINCE LAST ACCESS

and will attempt to access the external object in the new version of the packaged
workspace, using its new name table. Since the name table from the new version
of the packaged workspace is used, modifications that were recorded in the old
version of that name table will not be available.

In most situations, this behavior will not eause problems. If, however. the
application depends on the maodified state of the packaged workspace name table
across)SAVE and)LOAD. a new version of the underlyving packaged
workspace will cause this modified state (and all as<ociated data) to be lost. To
avoid such loss of data, owners of packaged workspaces are advised to maintain
backup copics of previous versions of their packaged workspaces that can be uvsed
when this situation occurs I the user does not resave his active workspace after
reeciving the waming message, the modified state and data can be recovered by
reverting to use of the previous version of the packaged workspace.

work?

In APL.2, defined operators may take functional operands which may be specified
to vary the behavior of the derived function, viz.:

VZ«(FN COMPUTE)R
{1) Z«'THE RESULT IS: '.¥FN F
v

-COMPUTE 1 2 3
THE RESULT IS: "1 "2 "3
1COMPUTE 3
THE RESULT IS: 1 2 3

When a defined operator is placed in a packaged workspace and declared as
external from the user’s active workspace, its operands and arguments come from
the user's active workspace, as would be expected. If an operand is a defined
function, any names it refers to during its exeemtion come from the user’s active

Packaged Workspaces 15

workspace. rather than the packaged workspace. Similarly, if a functional
opcrand requires implicit arguments (like 1), those implicit arguments must come
from the user’s active workspace, viz.:

*REPLIB.REPORT' 11 0ONA 'COMFPUTE'!

1
0I0+0
WCOMPUTE 3

THE RESULT IS: 0 1 2
0I0+1
WCOMPUTE 3

THE RESULT IS: 1 2 13

When a functional operand is passed to an external operator, the system passcs
an identification of its name scope along with the operand. Tater, if that operand
is exccuted in the packaged workspace. the svstem switches back to the correct
name scope 1o carry out its exccution. If the functional operand passed to an
cxternal operator is passed along as an operand to another external operator in a
different packaged workspace. it continues to carry its original name scope
identifier with it. i

Docs the user have access to the name scope identificr?

A name scope is identificd by the left argument to N A for the function or
operator used to enter that name scope. In the example shown above, the name
scopce identifier for the external operator COMPUTE is

'REPLIB.REFORT"' 11. Aswe will see below, the name scope identifier
for the user’s active workspaceis ' '- 11.

An application can determine its own name scope identifier through the use of
the external function @N .S which is distributed with APL2, viz.:

3 11 ONA 'QNST

QNS O
REPLIB.REP 11

Can a packaged workspace access ifs caller?

We have scen that DN A can be used to create a link from the active workspace to
a packaged workspace, or between packaged workspaces. It can also be used to
create a link from a packaged workspace to the user’s active workspace.

** 11 ONA 'ROVUTINE!

specifics that the external object ROUTTNE is to be located in the user’s active
workspace and not in a packaged workspace. This variant of ONA can only be
successfully issued from a packaged workspace, since it is not possible to declare
an external name to exist in your own NamMe scope.

This use of ONA provides a valuable facility that allows applications in packaged

workspaces to “reach back” into the user’s active workspace to access objects
there. For example, using this facility, a packaged application, designed to print

16 Packaged Workspaces

the functions in the user’s active workspace, could reach back to use ONL to
obtain the necessary list of function names. and reach back to use OCR to obtain
the definitions, viz.:

't 11 ONA ARL ONL?
‘' 11 OFA *ACR OCR!

+sLW0JACR c[2)ANL 3 4

While this technique will work well for many applications, there are other
situations where the application in the packaged workspace might be called from
the user’s active workspace or from another packaged workspace. In such
situations, it may be important to be able to reach back into the caller’s
environment rather than all the way back into the active workspace. There arc a
number of ways in which this can be done:

o If, when entering the packaged workspace, the caller had provided his own
name scope identifier (found through He vse of @NS5 0) as an argument to
the external function, the external function could then use that information as
the left argument to ON A to access objects in its ealler’s environment.

¢ If the packaged workspace was entered via on external operator, a functional
operand could be provided which would excente in the ealler’s name scope.
This functional operand could be used by the external operator as the vehicle
by which access to the caller’s name scope could be gained.

¢ Ancxternal function, EXP, is provided with AP 2 to facilitate this process
of reaching back into the caller’s name scope. This function, described in the
“AP1 2 Programming: Using the Supplicd Routines” manual (S1120-9233),
provides the ability to execute functions and to reference or specify variables
in the previous name scope, viz.:

3 11 ONA 'EXP?

1
a Reference caller's (0010
EXP c'(OIn? :

0
f Specify caller's (110
EXP '0I0' '«' 1

1
a Execute ONL in caller's environment
EXP ‘ONL' 2

ONE

TwO

EXF will exccute in the caller’s active workspace if there is no previous name
scope 1o reach back to. Conscquently, it can be used in applications during
the debugging phase. before they are packaged.

‘These three different techniques are all valuable in different sitvations, for
cxample:

Packaged Workspaces 17

® The first technique uses ON A to specifically identify the target name scope.
It is particularly uscful where an application wants to ensure it is reaching
back into the user's active workspace, as opposed to any intenvening
packaged workspaces.

¢ The operand to an external operator approach is valuable because it 1< a
relatively transparent mechanism to use, and becavse the name scope
identificr is passed along to any other packaged workspace the callee might
itsclf catl.

® The third technique, using EXP, is simple and general. but requires special
coding in the application program.

Packaged Workspace Applications

Application segmentation

Name scope isolation

IR

Packaged Workspaces

Packaged workspaces represent an important advance for AP svstemes and APL
application developers. They can be used toadvantage in a wide vanety of
different applications. This scction attempts to deseribe some of the common
uses and associated benefits.

Packaged workspaces provide a simple, effective wav of segmenting large
applications. For example, sclf contained portions of an application could be
placed in separate packaged workspaces and thus isolated from one another.
Each portion could be considered as a “black box™ capable of performing certain
function and accessible through entry points defined with 074, The application
developer could then access these “black boxes” as required without concem for
name conflicts or undesired side effects with other portions of hic< application.
Each “black box” portion could be developed and tested separately, and in fact
could be replaced with updated technology or algorithmes at a later date, without
affecting the operation of the rest of the application system.

Such a notion should not be foreign to APT deaclopers. Defined functions. with
their ability to localize names. provide the same sort of facility on a smaller scale.
With packaged workspaces, however, it is possible 1o isolate groups of functions
and variables, including global variables whose values can be updated and used in
subsequent accesses to the packaged workspace.

There are many AP workspaces which are designed to be used in conjunction
with other arbitrary APl applications. For example, workspace analysis tools
which can be used to analvze a user's application, producing call trees or cross
reference reports, are common. Normally, tools like these are copied into the
user’s workspace and mnst co-reside there with the user’s application. This
incvitably leads to name conflicts. Tools like these often go to extraordinary
lengths to avoid name conflicts, only to be done in by other tools which use a
similar technique.

Packaged workspaces provide an effective sohttion to this problem. Tools that
must work in conjunction with arbitrary AP applications can be implemented
as packaged workspaces, without concern for name conflicts. Only the entry
points must be declared (nsing QN A4) as names in the user’s application, and
those name conflicts can be resolved by specifying a surrogate name in the right
argument to ONA, viz:

'TOOLS.XREF' 11 ONA 'MYREF XKEF:

Dynamically accessed applications

Sharcd applications

Very large AP applications are sometimes implemented as a senies of
workspaces which are accessed by stacking YLCAD commands. 1t is not
uncommon, for example, to sce applications which present a menu of
subapplications to the user and which implement aceess to those subapplications
using this sort of technique.

Threading one’s way through a serics of workspaces using stacked YLOAD
commands, however, is not simple and is rarely 1obust. Unexpected errors or
interrupts can leave the naive user stranded in a subapplication. Frror trapping
facilitics such as OEC are not effective across workspace transitions.

Again, packaged workspaces provide a simple and effective altemnative for such
applications. Subapplications, implemented as packaged workspaces, can be
dynamically accessed and deleted. Fxecution of functions within the packaged
workspaces can be implemented under control of OEC at the external function
level. If an error or unexpected event occurs during subapplication exceution,
control will be returned to the master application which can then recover in a
graccful fashion.

The use of packaged workspaces for such applications considerably reduces the
complexity of the control mechanisms for subapplication transition, while at the
sime time improving the reliability and integrity of the overall application.

An obvious benefit of packaged workspaces is the ahility to share APL
application code between simultancous users. Instead of requiring each user to
YLOAD a scparate copy of the application inte his address space, a single copy of
a packaged workspace can be madce resident in a <hared area of the computer’s
memory (1 PA in MVS, DCSS in VM), and aceessed by multiple simultancous
APl users. Resident shared access to a packaeed workspace can dramatically
reduce the total real memory reguired to support a set of simultancous users
running the same applications. Further, if there are a sufficient number of users
active, large portions of the application code which would otherwise have to be
paged in will remain resident in the compnter’s real memory. This can Iead to
improved responsc times, and of course, a significantly reduced paging load on
the system.

‘There are many sorts of applications that might be installed on a resident shared
basis in a particular installation. Obvious candidates include applications like

Packaged Workspaces 19

Alternative to function files

1C/1 which are large and often used by more than one user simultancously,
Highly volatile applications (where the application code changes frequently) are
less attractive, if only because of the necessity to involve systems personnel to
install the packaged workspaces on a resident shared basis. Frequently accessed
utility programs and tools, however, often make other good candidates for
resident shared packaged workspaces. Tor example, in an environment with a
number of concurrent AP developers active, it might be worthwhile considering
implementing the public workspace 1 DISFLAY as a resident shared packaged
workspacc.

Many large applications resort to implementing “function files” in an attempt to
reduce their real memory (or “working set”) requirement. Rather than requiring
all functions to be resident in the workspace at the <ame time, the application
stores many of the less frequently used functions on an external file and reads
them in as required for excention. When exceeution of such a function is
complete the function is expunged to make room for the next function to be
called.

While this technique is effective at reducing the working set for a large AP,
application, it imposes an overhead on the appheation to manage this dynamic
accessing of functions. This overhead is measurable in two ways: CPU
utilization and complexity. It is not uncommon fo find that up to 30% of the
CPU time incurred in such an application is devoted to this process of
dynamically accessing functions. Further. an application using such techniques is
often larger and more complex, if only beeause these techniques must be
imbedded in the applications itsell. This, of course, increases the working sct of
the application - the original problem we were attempting to solve.

If the application is to be used by multiple simultancous APL, users, it could be
installed as a resident shared packaged workspace. Some of the resulting real
memory reduction could be used to make more or all of the dynamically accessed
functions from the function file resident in the packaged workspace. This can, in
many situations, lead to substantial reductions in CPU utilization and response
tuncs.

Central maintenance control

20

Packaged Workspaces

One problem with public workspaces is that-users often save their own copics of
them, or)COFY functions from them inlo their own applications. 1 ater, if a
new version of the public workspace is installed, nsers may be unaware that their
own capics are down level. This can lead to all sonts of problems.

Worsce, there are applications, like ADRS whose operation is dependent on cach
user saving his own private copy. Such applications must implement complex,
confusing and often unreliable mechanisms which attempt to ensure that the code
is at the correet maintenance fevel.

If instead, the application was installed as a packaged workspace, a fresh copy of
the code would be accessed each time the vser aceessed the application. TFurther,
if the user had saved a workspace which accessed the packaged workspace, he
would be notificd automatically by the system if & new version of the packaged
workspace had been installed when he subsequently attempted to use his saved
workspace.

Objcct code only applications

Once flaw sometimes cited by those who do not espouse the use of APIL is that it
is difTicult if not impossible 1o proteet proprictary application code. Thev point

to compiled languages where it is possible 1o ship the application in object code

("OCO7) form and thus prevent user’s access to the proprictary details imbedded
in the source code.

It is generally acknowledged that object code does not afford complete protection
of proprictary information, particularly against disassembler tools and aggressive
“hackers”, Tt does, nonctheless, make it considerably more difficult for normal
and non-malicious users to gain access to algorithms used in the product.

The ability to lock functions in APL. is not considered to be the same level of
sccurity as is afforded by object code. Packaged workspace, however, do provide
some additional facilitics when combined with other technigques can in fact
provide about the same level of protection as object code. By:

removing comments from the workspace,

changing the names to non-mcaningful names,

locking the functions,

packaging the workspace,

limiting access to functions in it (throngh the use of the left argument to
PACKAGE),

6. protecting the packaged workspace load maodales with operating system
sccurity facilitics,

nh PN -

the application developer can further timit aceess to the algorithms embodied in
the code.

As noted in the list above, packaged workspaces provide two of the facilitics
which aid in this process. First, by providing a left argument to the PACKAGE
function when a packaged workspace is ereated. the developer can limit the entry
points to the packaged workspace. Sccond, beeanse a packaged workspace is a
load module which is accessed by operating system facilities on a read only basis,
sccurity facilitics fike RACTE can be used 1o limit access to it, just as they can be
uscd to limit access to compiled programs.

Packaged Workspaces 21

Access to data

Many AP applications use a considerable amount of CPU resouree reading data
from files into the AP workspace. Often such dita is static and doces not have
to be written back out. With larger and larger workspaces, it is possible in many
situations to read an entire file into the workspace and reap the resulting benefits
of application simplicity and performance. In such cases, however, the
application must still read the data, one or a few records at a time into the
workspacc.

If the data was placed in a packaged workspace instead of in a file, it could be
accessed as an external variable. While it would still consume space in the uscr’s
workspace. it could take considerably less time to load it, since the Toad of a
packaged workspace is accomplished by operating system techniques rather than
an APL application that involves looping. In fact, if the packaged workspace was
installed on a resident shared hasis. it would take almost no time to access it!

22 Packaged Workspaces

Appendix A: Creating Packaged Workspaces in VM /CMS

The process of ereating a packaged workspace is simple and relatively straight
forward. Tt does, however. involve the use of some operating system facilities
which may be unfamiliar to the APL user. For additional information on
VM/CMS commands such as FILEDEF or LXED, consult the "VNM,SP CMS
Command Reference” manual (SC19-6209).

Creation of a packaged workspace from a saved workspace requires three steps:

Copying and resaving the workspace to be packaged.

Conversion of the saved workspace to an object module. This process is
performed with the function PACKACFE which is provided with APL2.

Conversion of the object module to a load module. This process is
performed with the “linkage editor” - a program that is provided as a part of
VMOMS.)

For the purposes of lustration, we will assume that the following simple
functions and variables have been defined and <aved in a workspace called
REFPORT.

‘

JCLEAR
VZ+«SETUF R
[1} Z+«R,MESSACF
v
VZ<«PROCESS R
(1] GLOBAL+R
(2] Z«'PROCESSING COMPLETE!
v
MESSAGE«*' SETUP COMPLETE'
0I0+0

JSAVE REFPORT

Step 1 - Copying and resaving the Q\'nrk%pncc

Before beginning the packaging process. it is recommended that the user)CCPY
and resave the workspace to he packaged. This accomplishes two things:

2.

it compacts the workspace and cleans out any unnccessary garbage in it;

it ensures that the workspace is at the correct fevel. The PACKAGE
function will not process workspaces saved in prior releases of APL2.

I'or our simple sample workspace, this can by accomplished as follows:

Packaged Workspaces 23

YJCLEAR

JCOPY EREFPORT
DI0+0

YWSID REFORT
)SAVE

Note that any system variables with non-defanlt valnes must be recet in this
process, since the)COFPY command does not copy svstem vanables.

Step 2 - Creating the object module

24

Packaged Workspaces

An object module is a file with a specific infernal format that differs from the
format of the file produced by the)SAVE command. The extemnal function
PACKAGE. provided with AP1 2, will convert the hle produced by the YSAVE
command to once in object module format. ‘This process is performed under
control of APL.2:

JCLEAR
CLEAR WS -

3 11 ONA 'PACKACE!

PACKAGE 'REPORT APLWSV2 A
REPORT TEXT A

The right argument to the FPACKAGE function is the VAT CMS file identifier of
the saved workspace. VNONIS file identificrs consist of 2 ficlds: filename,
filetype and filemode. T'or an API 2 saved workspace, the filename is the
workspace name as specificd on the’)SAVE command. The filetspe i<
APLIWSV?2 for private workspaces or F00000 02 for public workspaces (n
specifics the library number). The filemode is the identification of the CMS
minidisk on which the saved workspace resides and is defined by the library
number from the YSAVE command and the LIFTARB AFL?2 file which defines
thosc libraries.

The saved workspace to be packaged must reside on an accessible CMS minidisk.
Notc that the) SAVE command has the ability to dynamically link to and access
CMS minidisks. The PACKAGE function docs not have this ability - the CMS
minidisk must be already accessed before the TACKACGE function is run.

If the filetype and filemode are not specificd in the right argument to TACKAGE,
APLWSV2 * will be defanlted. Tlence. in the example above.
PACKAGE ‘'FREPORT'

could have been substituted.

The PACKACE function is ambivalent. I no left argument is specified. as in the
cxample above, all names in the packaged workspace will be accessible to users.
By specifying a list of names as a left argument to FACKACE. the developer can
limit access 1o objects in the packaged workspace. Por example,

'SETUP' 'PROCESS' PACKACE 'REFPORT!

would cause a packaged workspace (o be built in which only the SETUF and
PROCESS functions would be accessible (via OV 4) to users. Other names like
MESSAGE, 0OIOQ or OF¢ in the packaged workspace could not be accessed.

The PACKAGE function produces an output file in which the resulting object
module is placed. This file has a filename which matches the filename of the
saved workspace and a filetype and filemode of TEXT A, The result of the
PACKAGE function is the VM/CMS identifier of the object module file
produced. This file identificr will be required for the next step in the process.

If the PACKAGE function fails in this process of creating an object module file,
it will return a null vector result. Normally, a message indicating the error will
also be produced. T'vpical errors inclnde:

® WORKSPACE DATARET OFEN FAILUVRE: the saved workspace
specified cannot be found -

® WS INVALID: the inpnt file specificd is not an API 2 workspace, or is an
API 2 workspace saved under a prior release of APL2

® AN I/0 ERROR HAS OCCURRFD WHILE WRITINC THE
WORKSPACE: insufficient space on disk for the object module file.

Step 3 - Creating the load module

The object module file created in siep 2 by the FACKAGE function can be
converied to a load module using the linkage editor provided as a part of
VMICMS, The following CMS commands will accomplish this task for our
sample workspace:

FILDEF SYSLMOD DISK REFPLIP LOADLIB A (RECFM U
LKED REPORT (NAME REPORT

FILEDEF SYSLMOD CLEAR

ERASE RFFORT TEXT &

These VM/CMS commands can be issued outside the API 2 environment or
from within the APl 2 eovironment by means of the)HOST command or via
AP 100.

The first command above specifies the name of the load library into which the
resulting load module will be placed. In this example. a load library named
REPLIB LOADLIE A will be created. Fxeept for the filename, REFLIB,
and filemaode, A, this command should be specified as shown. Changing other
command arguments could lead to undesirable resalts. The filename (REFL I B)
can be specified by the user as the filename of an existing or new load library,
and the filetype can be specified as * or as the OIS minidisk on which the load
library resides.

The second command canses the objeet madnle file REPORT TEXT +.
produced in step 2. 1o be converted 1o load maodnle format and placed as a

Packaged Waorkspaces 25

member named REFQR T in the load library defined above. This command has
the following format:

LKED filename (NAME membernane

where £ 1 Iename i< the filename of the object module file produced in step 2.
and membername is the name of the resulting load module produced. Tt is
recommended. but not requited that the two names be the same.

The final two commands clear the ddname SYSLMOD and delete the object
module file created in <tep 2, which i< no Tonger needed. These commands are
optional, but are recommended as part of normal cleanup. Finally, it is
recommended that the original saved workspace be retained, since #t may be
required for maintenance or other purposes in future.

26 Packaged Warkspaces

Appendix B: Creating Packaged Workspaces in MVS/TSO

The process of creating a packaged workspace is simple and relatively straight
forward. It does, however, involve the use of some operating svstem facilitics
which may be unfamiliar to the APT user. For additional information on
MVS/TSO commands such as ALLOCATE. FREE, LINK and DELETE.
consult the "OS/VS2 TSO Command I anguage Reference” manual (SC2R-0646).

Creation of a packaged workspace from a saved workspace requires three steps:
1. Copying and recaving the workspace to he packaged.

2. Conversion of the saved workspace to an object module. This process is
performed with the function PACKAGE which is provided with API2.

3. Conversion of the object module to a load module. This process is provided
with the “Tlinkage editor” - a program that is provided with the MVS
operaling system. .

For the purposes of illustration, we will assume that the following simple
functions and varables have been defined and <ned in a workspace ealled
REPORT.

YCLEAR
VZ+SETUP R
[1] Z«R,MESSACE
v
V2«PROCESS R
(1] GLOBAL+R
[2]) Z«'PROCESSING COMPLETE'
v
MESSAGE«' SETUP COMPLETE®
0I0+0

YJSAVE REPORT
Step 1 - Copying and resaving the workspace

Before beginning the packaging process. it is recommended that the user YCOFY
and resave the workspace to be packaged. This accomplishes two things:

1. it compacts the workspace and cleans out any unnecessary garbage in it:

2. it ensures that the workspace is at the correet level The PACKAGE
function will not process workspaces saved in prior releases of APL2.

For our simple sample workspace. this can by accomplished as follows:

Packaged Workspaces 27

JCLEAR

JCOPY REFPORT
0Io+«0

YWSID FREFORT
YSAVE

Note that any system variables with non-defanlt values must be reset in this
process, since the YCOPY command does not copy system variables.

In the MVS7TSO environment, workspaces may be saved in SAM or VSAM
libraries depending on the library number specified on the) SAVE command (for
details see “"APL.2 Programming: System Serviees Reference”, SH20-921R). ‘The
FPACKAGE function uscd in the next step will only process workspaces which
have been saved in a SAM library. If the workspace to be packaged exists in a
VSAM library, it should be resaved in this step in a SAM library by specifving an
appropriate library number on the)SAVE command.

Step 2 - Creating the object module

2R

Packaged Workspaces

An object module is a file with a specific internal format that differs from the
format of the file produced by the) SAVE comnumd. “Fhe external function
FACKAGE. provided with AP 2, will convert the file produced by the)SAVE
command to onc in object module format.

The object module produced by the PACKAGE function will be written into a
sequential data set allocated to the ddname SYSPHNCH. This allocation must
be performed before the PACKAGE function is exceuted. The data set allocated
should have LRECL(80) and RECFM(F) or RECFM(F B), and should
be approximately 1.5 times the size of the saved workspace in bytes. For our
cxample, we will allocate SYSPUNCH to a new data set named REPORT . OBJ
with the following TSO command:

ALLOCATE FILE(SYSPUNCH) DSN(RFFPORT.O0BJ) NEW +

DSORG(PS) SPACE(S S5) TRACKS +
RECFM(F B) LRFCL(80) BLKSIZE(3120)

Once this allocation is complete, the FACKAGE fanction can be run:

JCLEAR
CLEAR WS

3 11 ONA 'PACKACE'

PACKAGE ‘'REPORT'
IISER.REPCRT.0OBJ

The right argument to the PACKAGE function is the name of the workspace to
be packaged. as specified in the) SAVE command that ercated it. As noted
above, that workspace must be saved in a sequential library.

The PACKACE function is ambivalent. Il no left argnment is specificd, as in the
cxample above, all names in the packaged workspace will be accessible to users.

By specifving a list of names as a left argument 1o PACKAGE, the developer can
limit access to objects in the packaged workspace. For example,

'SETUP' 'PROCESS' FACKAGE 'REPORT!

would cause a packaged workspace to be built in which only the SETUP and
PROCE RS functions would be accessible (via ONA4) to users. Other names like
MESSACE, 0OIO or OFC in the packaged workspace could not be accessed.

The result of the PACKAGE function is the fully qualificd data set name of file
into which the object maodule is written (i.c., the file allocated to ddname
SYSPUNCH). If the PACKAGE fails in this process of creating an object
module, it will return a null vector result. Normally, a message indicating the
crror will also be produced. ‘T'ypical errors include:

® ALLOCATION ERROR - SYSFUNCH:thc SYSPUNCH ddname for
the input saved workepace has not been allocated

® IS INVALID: the nput data sct is not an AP’1L2 workspace, or is an
APT 2 workspace saved under a prior release of APL2, or saved in a VSAM
library

e AN I/0 ERROR HAS OCCURRED WHILE WRITING THE
WORKSPACE: insufficient space in the output data sct.

Step 3 - Creating the load module

The object module ereated by the PACKACGE function in step 2 can be converted
into a load module using the linkage editor provided with the MVS operating
svstem. The linkage editor, invoked with the '1SO command LINK, reads the
object module file and creates a load module as a member of a load library. The
load module created will be approximately the same size in bytes as the oniginal
saved workspace. The load library in which it will be created by the linkage
cditor:

® must be a partitioned data sct,

® must exist before the the LINK command is executed,

* normally has a data sct name whose lowest level qualifier is LOAD,

¢ must have RECEM(U), but may have any RLKST ZE less than 32K, and
e nccd not be allocated to a ddname when the LI NK command is exccuted.

The following TSO commands can be used to create the necessary load library
for our example:

ALLOCATE FILE(REPLIB) DSK(PKGLIB.LOAD) NEK +
DEORG(PO) SPACE(S,5) TRACKS +
BLKSIZE(u096) RFCFM(U) DIR(2)

The TSO LINK command takes the following format:

LINK object LOAD(1library(member) options

where:

Packaged Workspaces 29

object isthe data set name of the objeet module 1o be link cdited:

library isthe data set name of the load library into which the resulting load
module will be placed;

member is the member name to be assigned to the resulting load module;

options arc various options supported by the LTNK command. The only
option that is required to create a packaged workspace load module
is RMODE(ANY), and that is required only in the MVS/XA
environment.

The following LINK command can be uscd to transform the sample object
module REPORT . 0BJ. created in step 2, into a Joad module stored as member
REFORT in the load library FKGLIB . LOAD allocated above:

LINK REPORT.0BJ LOAD(PKCLIR.LOAD(REPORT)) FMODE(ANY)

The TSO LINK command will assume low level gualifiers of OBJ and LOAD
for the input and output data sets if they are not specified. Consequently, in our
cxample, the LINK command can be simplified 1o:

LINK REPORT LOAD(PKCLIB(RFEPORT)) RMODE(ANY)

Once the LINK command has exccuted suceessfolly, the object module created
in step 1 can be deleted. It is recommended. however, that the orginal saved
workspace be retained for maintenanee purposes. The following commands
accomplish this cleanup and free the two ddnames that remain allocated in our
cxample:

FREE FILE(SYSPUNCH)

FREE FILE(REPLIB)
DELETE REPORT.0BJ

30 Packaged Workspaces

Packaged Workspaces

M. T. Wheatley '
IBM Santa Teresa Laboratory
San Jose, California, USA

PWO0

Packaged Workspaces

* APL workspaces formatted
as load modules

* May be shared between APL users

* Dynamically accessible via ONA

* Provide name scope Isolation

* Improved system performance
when shared

* Alternative to function files

* Central maintenance control

* Allow OCO-like applications

PWO1

Creating Packaged Workspaces (CMS)

JSAVE REPORT
JCLEAR

JCOPY REPORT
(70«0

WSID REPORT
JSAVE

Saved workspace:
REPORT APLWSV2 A

JCLEAR

3 11 [IVA 'PACKAGE

PACKAGE 'REPORT'
REPORT

Object module:
REPORT TEXT A

FILEDEF SYSLMOD DISK REPLIB LOADLIB A
(RECFM U

LKED REPORT (NAME REPORT

FILEDEF SYSLMOD CLEAR

ERASE REPORT TEXT A

Load module:
REPLIB LO_ADLIB A(REPORT)

'REPLIB .REPORT' 11 [WNA 'SETUP'

Creating Packaged Workspaces (TSO)

JSAVE REPORT
JCLEAR

JCOPY REPORT
(70«0

WSID REPORT
JSAVE

Saved workspace:
V.REPORT

ALLOCATE FILE(SYSPUNCH) DSN(REPORT.0BJ)

JCLEAR

3 11 ONA 'PACKAGE'

PACKAGE 'REPORT'
USER .REPORT .OBJ

Object module:
REPORT.OBJ

ALLOCATE FILE(REPLIB) DSN(PKGLIB.LOAD)
LINK REPORT LOAD(PKGLIB(REPORT)) RMODE(ANY)

FREE FILE(SYSPUNCH)
DELETE REPORT.OBJ

Load module:
REPLIB. LOAD(REPORT)

'REPLIB.REPORT' 11 [WVA 'SETUP'

PWO3

Accessing Packaged Workspaces

Active workspace

L_\
/ ™ Processor 11

'"REPLIB.REPORT' 11 (WA ‘'SETUP' REPORT REPLIB

3 3 2

| | vzeszwp g REPORT

SETUP 'INITIAL' /V

PWO4

Accessing Packaged Workspaces

active packaged
workspace Mworkspace

5
o

S - -
— | -
—— N

T

PWOS

Name Scopes

workspace
name
table
A 123
B
{ ABCDE |
FN —3{VFN R
Ok
active workspace packaged workspace
name name
table table
A —#H123
v o ({132
XF § XF 1
VXF D
16D
FN VFN R
OeR

Name Scopes

active workspace packaged workspace
A 123 +56
- 789
) 44 8 XV /
__._—-———-"”_‘@
aJ0 H Q10 —"""
XFN 4§ XEN
FN XX —l v}a‘”’l\?‘L
XX<XV(0;]
VFN R 456
O<R
JSAVE

PWO7

New Version of Packaged Workspace

JLOAD

XV — XV (1 2 3

XX Pt 56

PACKAGED WORKSPACE xxx MODIFIED SINCE LAST ACCESS

xv — xv r«[iza
XF XF vXF R
XF | X231%+1

XX-%ESG

PWOB

Reach Back

A/i\

aro ARG

V\\\ ATO
“

v

1. VA to active workspace
'v 11 Ova 'arC OEC!

2. Pass name scope identifier

3 11 W4 ‘s
QNS O
LIB.MIMB 11

3. Operand to external operator

'LIB.MIMB' 11 [INA 'OP'
¢ OP DATA

4. Use EXP

3 11 (va 'ExP

EXP c'(110" :

EXP '00Io' '«' 0

EXP 'FN' (1 2 3)

EXP (1 2 3) 'FN' (4 5 6)

Uses for Packaged Workspaces

* application segmentation
* name scope isolation

* dynamically accessed applications
* shared applications

* alternative to function files

* central maintenance con’;rol |

* object code only applications

* gqccess to data

PW10

