
TIME: Where Did It Go?

Alan Graham

IBM Technical Computing

Dept 6FR/Bldg 32, mail drop 35A

1510 Page Mill Road,

Palo Alto, CA 94304

(415) 855-4465

Abstract

One of the most popular features of API j2 Release 3 is the performance analysis tool. It consists of a single
external API.I function, called T I ME, that allows the lIC\Cf to ext ract rclat ivc timing informat ion hy function I
or hy line. Timing information may he extracted for selected functions Of for a11 functions in the workspace.
J\.lonitoring may he selectively enabled or disabled.

-This paper discusses the use of the T I ME function and illustrates IHl\\" C'O\Tr functions can he used to
customize and enhance the facility,

Introduction

In the course of application development, developers may need to do-performance analysis. Often,
performance problems appear in the form of an application that seems to run Ion slowly compared with the
programmer's expectation. Arc there critical sections of code that consume an inordinate amount of CPU
time? In other words, what are the hot spots?

There have been several API packages written that will monitor where the C·Pl] time is used" P/\R"El~O

is one such package, Typically, such an "PI, timing package modifies your application to include code that
looks at the accumulated (~PlJ time (1 +1 i- DA J) in bet ween the execution of each line" This generally
works quite well, but because your functions arc modified, subtle differences rnay he introduced, For
example, if cover functions arc introduced and the function call stark is queried (p OL C) it will he deeper
than expected, Also, there is always the fear that you will accidentally) SA VE the modified application over
top of your original.

Performance monitoring is something the system can do without modifying the user's code. The system
knows when a line begins execution and when it ends. In API ,2 Release 2, the hooks were put in place for
the system to keep statistics during execution of functions and to initialize. enable, and disable monitoring.
The TIME function was huilt as an interface and after some experimenting. it was included as part of APL2
Release 3.

Overview

The TIME function is established in the workspace using ONA" Processor J1 has been extended in Release
3 to access API, objects outside of the active workspace. From the uscrs point of view TIME looks like
any other locked function,

3 11 DNA 'TIME'

If you don't get a 1 result frorn ON A it is probably because you alrcndy have an object in the workspace
named TIME, you arc not running on API,2 Release 3, or there is a problem with the installation of APL2.

l'hroughoul this p:lprr the term [unction jc; used In mcnn drfincd function or defined operator.

1

NL T I ME 0 initializes the timing facility for the functions in the name list NL, The name list may he a
simple string (naming one function), a vector of strings, or a simple character matrix. If no left argument is
given, the initialization applies to all the functions in the workspace (including T I ME itself).

Internally, a pair of counters are appended onto each line of every function being monitored and set to zero.'
They are used to hold the CPl J time and a count of the number of times a line is executed, The counters of
a function are deleted if any change is made to the function hy editing Of OF X or if the function is
transferred via) 0 UT or) COPY. For an external or locked funct ion (such a"i T I ME itself) the cou nters are
appended only to the header.

N·L TIME 1 returns a four-column matrix with one row for each function in the name list that has
accumulated some time 0T has been called at least once. sorted in descending order by C:PlJ time.' If no left
argument is given, T I ME 1 reports all functions that have have heen called at least once.

The four columns arc:

] . The number of times the function was called

2. (:PlJ seconds the function accumulated (excluding subfunctions)

J, Percent of the total Cf'U time

4. lunction name

On some very fast machines a function may execute so fa"t that a clock tick dnrs not occur during its
execution, Therefore, TIME may report a function with no accumulated accumulated time.

NL TIME 2 returns a five-column matrix with one row for each line of every function in the name list
that has accumulated some time, sorted in descending order by C:Pl J time. If no left argument is given,
T I ME 2 reports all functions that have used some time. The first four columns arc the same :is T I ME 1
except that the fourth column is function name and line number. The fifth column is the line of code. for
locked and external functions only a single row arrc-:lfS showing a summary for the entire function. (No
Martha, you can't deduce details of a locked function hy using TIME.)

NL TIME 3 returns a five...column matrix with one row for each line of C\TTY function in the name list" in
ascending order by line within function. In other words, it is a function li"1 with timing information. If no
left argument is given, TIME 3 reports all functions that arc being monitored.

NL TIME - 3 delete!' the timing information frnrn the functions in the name list. If no left argument is
given, TIME - 3 deletes the timing information from all functions in the workspace. (Note: T I ME - 3 is
how you clean up a workspace that has been accidentally :apl)S/\ \IFd with the timing counters.)

TIME - 2 disables the time monitor, hut preserves the counters. 1\ Jeft argument is not allowed.

T I ME -1 enables the time monitor after it has been disabled. /\ left argument is not allowed.

T I ME 0 is a mnemonic for zero the counters.

TI ME 1is a mnemonic for one row per [unction.

uvn: Where J)id It <in?

Sample Use

JJcl0\V is a sample use of the timing facility again st n funet ion named 0 N that appends its arguments along
the leading dimension. The workspace consists of the ON function and it, subfunction MAT. 4

'iJ
[0] Z+Y ON X;OIO;N
[1] R put left argument ON top of right argument
[2] 010+0
[3] Y+'fMAT Y	 A C 17 ell" (1 C t e r matrix
[4] X+'fMAT X	 A c b a r a c t e r matrix
[5] N+(t4>py)r(t4>pX) A more co 111n7n s

~	 [6] Z+(Nt[l]Y),[O](Nt[l]X) A at t ,tC h v e r tic c1 1 1}~

V 1987-11-04 10.25.09 (GMT - 8)

'iJ
[0] Z+MAT X

[1 J A MATrix given an}' array

[2] +(2=ppZ+X)/O	 A e s c a pe if £111·e e d v me t l' i x
[3]	 Z+«x/-li-pX). - 1+1,pX)pX A r ovs by column.5

V 1987-11-04 10.23.54 (GMT - 8)

1'0 prepare for timing analysis bring in the application and the T I ME function, initialize the counters,
exclude the TIME function from being timed, set the print width and print precision, and accumulate timing
information hy running the applicat ion.

)CLE,1R A start t r e s h
CLEAR WS

)IN ON

3 11 DNA 'TIME' A get TI"'!E t u nc t: ion
1

TIME 0	 A zero counters

'TIME' TIME 3 R don't time TIME

OPW+320 ~ no w r a p p I eel <e

Opp..... 4	 A limit detail

pZ+'TOP' ON (20 10PlI00) ON 'BOTTOM'

22 30

·1'0 look at statistics on a function basis \1~ T I ~JE 1. The rC~\11t is sorted in descending order by CPU
tirnc. Functions that arc not called nrc not 5ho\\'I1.

pD+TIME 1
2 0.036 92.31 ON
4 0.003 7.692 MAT

2 4

Now we want more detail. Since the application consist« of only seven lines of executable code, it is
reasonable to look at all of them. In a typical application. you'd usc an expression such as
N+[OJ0] TIME 2 where N is a small positive integer such :IS 15.

3

TIME 2
2 0.029 74.36 ON[3] Y""'.MAT Y char" 2 0.002 5 • 128 MAT[3] Z+((X/-l+pX), -l+l,pX)pX n l'rih'

2 0.002 5.12 B Oll[2] 010+0
2 0.002 5 • 128 ON[S] 11+(+¢pY) r (t4>pX) n mo re
2 0.002 5.12 B Oll[6] Z+(Nt[l]Y),[O](Nt[l]X) R £1t t c.1

u 0.001 2.564 MI1T[2] -+(2=ppZ+X)/O A e.sc

2 0.001 2.564 ON[4] X"".MI1T X A char

4 0 0 MI1T[O] Z+MAT X

2 0 0 ON[O] 2+Y all X;OIO;N

The single line ON [3] stands out as taking the majority of the (~P(J time. Full line comments are not
shown because they do not accumulate any time. The time reported for ON [3] excludes the time taken for
the call to MAT, which is detailed in other rows. Therefore, \\'C can conclude that the majority of time is
spent in the Format (..) primitive. Notice that 0 N [4] is the same line as 0 N [3] except for the right
argument instead of the left argument, hut U~C5 far IC5~ time. In this sample fun, n left argument Format is
relatively expensive compared with a right argument Format. Forrnatting a simple integer matrix, although
fairly fast, is much morc expensive than formatting a character array (which i~ :t nn-np').

TIME 3

4 0 0 MAT[O] Z.....MI1T x

ra 0 ft111 T [1] A MATrix given c1ny d r 1·,1 y
4 0.001 2.564 ~1I1T[2] ~(2=ppZ-+-X)/O n esc
2 0.002 5 • 128 MAT[3] Z+(x/-1+pX),-lfl,pX)pX A 1"(11\'

2 0 0 ON(OJ Z+Y ON X;OIO;N

0 0 0 on[1] A put left e ro ume nt: ON t 0/) Llf

2 0.002 5 • 128 ON(2] O1O-+-O
2 0.029 74.36 ON[3] Y+"iMI1T Y A c h a r
2 0.001 2.564 ON[4] X+"fMI1T X A char

m,-,r~2 0.002 5 . 128 ONES] u-« +q>py)r< +<ppX) A

2 0.002 5 . 128 01l[6J Z -4- (N+[1] Y) • [0 J (Nt [1.] X) A ,1 t: t: c1

Listing all lines of both functions, \"C notice that prologue comments not only consume zero time, hut
actually never execute! The A PI ~2 interpreter hCgiJ15 execution on the first non-comment linc of a function.

TOP: A Simple Set of TIl\'1E Cover Functions

Although the TIME function is fairly easy to usc directly, it is provided :lC\ more of a tool than an end-user
report function. The most common problem is getting '00 much information, Fxccuting TIME 2 on an
application of 1,000 lines of code will produce a matrix of up to t ,000 rows! The c·Pt J times and percents
will display with up to OFP (usually]0) digits of precision, although typically only four digits arc significant.
Cover functions can be built to take this matrix and select only the top few ~1(l\V functions or lines.

'I'O]? is a simple set of four cover function" that :lJlO\V an application's hot .t/lolt to he quickly discovered and
neatly displayed with titles and summaries, The functions are shown in the appendix.

Initialize and run the CROSS application.

)CLEAR A start fresh
CLEAR f.'S

)IN CROSS Age t c3J)J)1 i cat i (l11

)IN TOP A get TIME, TOP, etc.
TIME 0
CROSS 'CROSS' A run e pp I i c et: ion

Show all functions called.

4 11\11.: Where IJid It Go?

http:Y""'.MAT

TOP FNS
COUNT TIME PERCENT PROGRAM

86 1.231 43.78 IDENTS
97 .460 16.36 ON
13 .399 14.19 NAMES
14 .307 10.92 CRO~~

15 .149 5.30 DETAIL
28 .113 4.02 MEMBER
27 .098 3.49 ROWS
13 .049 1.74 ~SS

1 .004 .14 CROSS
2 .002 .07 UNQUOTE

296 2.812 100.00

Slowest four functions and the slowest four lines.

TOP 4 FliS
COUNT TIME PERCENT PROGRAM

86 1.231 43.78 IDENTS
97 .460 16.35 ON
13 .399 14.19 NAMES
14 .307 10.92 CRO~~

210 2.397 85.24

TOP 4 LllS
COUNT TIME PERCENT PROGRAM LINE

86 .300 10.67 IDENTS[16] Z+(pl1)p(tl1+I10.~lorr/t1

84 .252 8.96 NAMES[15] Z6+(vf<\Z~A.=~Zh)rZ~+

15
86

.212

.168
7.54
5.97

CROSS[lS]
IDENTS[6]

O+Q~.EEt«EE MEMBER I
QS+(¢(-Q)¢~\(Q~-l+(~B

271 .932 33.14

Percent of total time.

TOP 33 PERCENT LNS
COUNT TIME PERCENT PROGRAM LINE

86 .300 10.67 IDENTS[16] Z+(plt)p(tl1+~O.~lorr/1t

84 .252 8.96 NI1MES[15] Z6+(vl<\Z~A.=~Z6)IZ~~

15 .212 7.54 CROSS[15] O+Q~trEt«rE MEMBER I
86 .168 5.97 IDENTS[6] QS+(~(-Q)~A\(Q+-1+(~B

271 .932 33.14

. TOP 50 PERCENT FNS
COUNT TIME PERCENT PROGR~M

86 1.231 43.78 IDENTS
97 .460 16.36 ON

183 1.691 60.14

Conclusions

API.,2 Release 3 includes a powerful time monitor tool, the TIM E function. It can he used either directly or
with cover functions to find an application's hoi .fl'0I.L It is not uncommon to get performance
improvements of 50o/n after modifying one or two lines of code found to he particularly CPlJ intensive,

References

1. In\-, Corporation, A/)!.,2 Programming: Using tlu: ,)t'll!,lird Routines, SI120·92.13

2. In\1 Corporation, A PI,2 Programming: System Services Reference, S1120·921 R

5

(-, , 1\1 F: Where I)id It (in?

TO P functions

H.. cport l"'OP (Slowest) Functions

v
[0] TOP X;OIO;OPW;N;H;F:T

[1 J A TOP (slowest) few lines or fns (or ops)

[2 J A syntax: TOP [nln PERCENT] (LNSIFNS)

[3] A example: TOP FNS	 A all functions
[4] A example: TOP 5 LNS A slowest 5 lin~s

[5) A example: TOP 50 PERCENT FIIS A f n SlIp t h r u 5 0 ~
[6] A attributes: a 1 0 1 OFX OCR 'TOP'

• [7] 010+0	 A z e r o origin
[8] OPK'+320	 Ado n 't w r d P d i $/11 c1Y
[9] +(2=ppX)/L1	 A jU$t timing mat r i x ?
[10] (N X)+X	 A rov cou nt: , ma t r i xr

[11] X+(NLtpX)t[O]X	 A top N l~OWS

[12] L1:	 A format v i t h h e a d e r r t oti e l s
[13] H+(t1.pX)t'COUllT' , TIME' 'PERCENT' 'PROGRAM' 'LINE'
[14] F+(2 x p H) t O 0 0 3 0 2 A Forma t v e c t o.r
[15] T+(pH)+(+r3t[1]X).'I I' A To t e I s
[16] O+F.H,[O)X,[O]T A fermat and d is p l a y

V 1987-10-30 16.34.06 (GMT-B)

Timing Matrix by Lines or Functions

v
[0] Z-+-LNS;US
[1]
[2]
[3]

A LiNeS v i t h non r z e r o times or counts
US - +'TOP' 'LNS' 'FNS' 'PERCENT' I TIftfE'
-+OpUS

- TI/lfE -
3 don't rio n i t-orA U.5

n n~}" fns

[4] Z +TIME 2 A all lines monitored
V 1987-10-30 15.47.00 (GMT - 8)

V
[0] Z-+FNS;US -
[1]
[2]
[3]
[4]

A FNS (and ops) w i t b non-zero times or COtJ1Jt5

US +'TOP' 'LNS' 'FllS' 'PERCENT' 'TIME' fnsA nl}'

+OpUS
- TIME 3 don't mo n itorA U$

Z-+TIME 1 A all fns and 01'05 mo n i t o r e d
V 1987-10-30 15.48.51 (GMT-B)

Selects N Percent of Total Time

v
[0] Z+N PERCENT X;OIO
[1] A select N percent C'f the s I owe s t: from t. im i na me t r i x
[2] A attributes: 0 1 0 0 OFX OCR 'PERCENT' ~
[3] 010+-0	 A zero o r i a i n
[4] OES(O=ONC 'N')/5 1	 A must be dy~dic
[5]	 Z+- ((t P X) l 1 ++ / n> +\ X[; 2]) -+ [0 J~\' A 5 10 I,,'e .5 t t h 1" , 1 N P e 1·c e n t

V 1987-10-30 16.34.18 (GMT-B)

7

