This work was presented to the gradjaこ= school of Yale University in candidacy for the degree of Doctor of Philosonty

Tentative Compilation A Design for an APL Compiler

May 1978
78-CS-013
Terrence C. Miller

```
Institute for Information Systems, C-02I University of California, San Diego
La Jolla, CA 92093
Report 78-CS-001
```

Dept. of Computer Science
Yale University
New Haven, CT 06520
Research Report No. 133
-

abstract

> Tentative Compllation A Design for an Apl Compiler

Terrence Clark miller Yale University, 1978

The programing language AM. has obtained a groulng following. Much of tis popularity can be ascribed to its tersenese (complicated acte can be described briefly) and composabillty (complete algorithem may be expressed as a alngle unft - the one-liner). Hovever, the user may pay a high price for these features in teims of inefficiency of execut lon, particularly in terms of memory space required. This dissectation describes the design of a compller for Apl. which siznifficanty lowers the cost of Aft execution.

The deyigu includes a wotation with which the actions required for the execution of the majoifty of the art operators nay be expressed. liansformations are opplied to the program expressed in thia laterbsitate notatiou. The transformations re-order independent calculations for a givel opetation, and Interwix calculations for several uporations. The incent is to produce an interaediate reault only when th is needed (thus avoiding storage) and only if it contributes to the fhail result (thus ellminating unnecessary calculations). Examples show that aignificame savinga are obtatned.

The output of the coaptler is expressed futeras of "ladders" - a conctol structure destaned by Alan ferlis to slmplify APL execution. The cumplier can geacrate code for the "ladder wachine" dealgned by Clatles minter.

Tentative Compllation:

A Design for an apl Compiler

A Diusertation

Presented to the Paculty of the Graduate School
of
Yale University
In Candidacy for the Degree of
Doctor of Phflosophy

by

Terrence Clark miller
May, 1978

achanledgements

lam grateful to ay advisor, Alan Perlis, for suggesting this problem and for asking the right questions to keep the work golug. The other members of my comattee, Ned Irons and Larry Snyder, provided valuable insighte luto how this work could be effectively presented.

The theals work of Charles Minter provided the hardware environment for this software design. His succese made my vork possible. He, along with Mike Condry, contributed many valuable suggestions. The text of thia thesis was prepared uing softeare much improved by the wark of Steve Reisa.

Finally, I would like to acknowledge the support of wy wife, Denise Sullivan. She contributed greatly to the author'e opelling, gramar, and eanity.

This research vae partially supported by the Mobil Poundation.

table of contents

1. introduction 18
1.1 the prublem - 18
1.2 PaEVious hork - 20
1.2.1 Simple Interpreter 20
1.2.2 Translation Into Algol 20
1.2.3 Beating And Dragging (Interpreter) 21
1.2.3.1 Beating 21
1.2.3.2 Drag-Along 21
1.2.4 Beating And Dragging (Complier) - 23
1.2.5 APL Enulator 23
1.3 a hulti-line compiler 24
2. compiling a dynahic lancuace 21
2.1 bintings 30
2.1.1 Valence 30
2.1.1.1 Function Entry 30
2.1.1.2 Function Call 30
2.1.1.3 Multiple Defindtions - 31
2.1.2 Rank 31
2.1.2.1 Multiple Assignoments 32
2.1.2.2 Transposition 32
table or contents
2.1.2.3 Reshape 32
2.1.2.4 Function Entry 32
2.1.2.5 Function Return 33
2.1.3 Operation Dtmension 34
2.1.4 Index Origin 35
2.1.5 Length 35
2.1.5.1 Compression 36
2.1.5.2 Take And Drop - 36
2.1.5.3 Over-take - 36
2.1.5.4 Reshape 31
2.1.5.5 Function Entry 37
2.1.5.6 Function Return 31
2.1.5.7 Multiple Assignments - 37
2.1.6 Value - 38
2.1.7 Type - 38
2.1.7.1 Mulciple Asaignment 38
2.1.7.2 Function Entry 39
2.1.7. 3 Function Return 39
2.1.8 Poaltion 39
2.1.9 Summary of Binding Problems 40
2.2 overview of cumbliation 43
2.2.1 Parsing 46
2.2.2 Function Calle 46
2.2.3 Control Structure 48
2.2.4 Constraint Propagation 48
2.2.4.1 Rank 50
2.2.4.2 Type - 51
2.2.4.3 Length 51
2.2.4.4 Value - 52
2.2.5 Idioms - 54
2.2.6 Operator Conversion 56
2.2.6.1 Take or Drop 56
2.2.6.2 Subecription 56
2.2.6.3 Transposition 56
2.2.6.4 Ravel 56
2.2.6.5 Reshape 57
2.2.6.6 Single bimension Operatore 58
2.2.6.7 Lamination 58
2.2.6.8 Functionale 58
2.2.6.9 Scalar Conversion 58
2.2.1 Data Dependency 58
2.2.8 Strean Generator Creation 59
2.2.9 Stream Generator Refinement 60
2.2.10 Interpreter Instructions 62
3. streah generators - a model for the execution op apl -63
3.1 arrar operation efficiency 63
4. 1.1 Dragging And Beating 65
3.1.2 Operator Transpoalcion 66
3.1.3 Filtering 67
3.1.4 Merging 69
3.2 array access and ladders 70
3.2.1 Array Storage 71
3.2.2 Laddera 12

table of contents

3. 3 STREAM GENERATORS 79
3.3.1 Beating And Dragging 81
3.3.2 Operator Transposition 82
3.3.3 Filtering 84
4. 3.4 MergIng 87
3.4 stream generatur graphs 90
3.4.1 Loop Nest Ing 91
3.4.2 Header Node 91
3.4.3 Raveled Nesting 92
3.4.4 Splice Order 92
3.4.5 Co-routIne Graph 95
3.4.6 Control Structure Sanity 96
3.4.7 Loop Indices 101
3.4.8 Loop Linit 101
3.4.9 Array Storage Polntere 103
3.4.10 Storage Spacing 105
3.4.11 Address Increments 105
3.4.12 Address Calculation 105
3.4. 13 Special Latels 106
3.4.14 Address Generation Sanlty 108
3.4.15 Loop Limit Validity 113
3.4.16 Sequencing Correction 114
3.4.17 Examples 115
3.4.17.1 Filtering 115
3.4.17.2 Herging 116
3.5 COMPILER OBject CODE 117
table of contents
5. building stream generators for apl expression 121
4.1 GRAPH TRANSFORMATION 121
4.1.1 Commands 124
4.1.1.1 Adjust 124
4.1.1.2 Check 125
4.1.1.3 Overlaying 125
4.1.1.4 Transpose 127
4.1.1.5 Reversal 128
4.1.1.6 Merging 130
4.1.1.7 Nesting 131
4.1.1.8 Alternatives 133
4.1.2 Demons 136
4.1.2.1 Address Calculation 137
4.1.2.2 Empty Nodes 137
4.1.2.3 Pointer Reset 137
4.1.2.4 Redundant Choices 137
4.1.2.5 Evocation Order 138
4.1.2.6 Scalar Operands 138
4.1.2.7 Repeated Calculatione 140
4.1.2.8 In-tine Assignment 140
6. 2 Creation of stream cenerators 141
4.2.1 Operands 141
4.2.1.1 Arrays 141
4.2.1.2 Scalare 143
4.2.2 Function 143
4.2.2.1 Separate Unft 143
4.2.2.2 Stream Generator Subrourine 143
table of Cuntents
4.2.3 Monadic Operatora 144
4.2.4 Dyadic Operators 145
4.3 elimination of unnecessary calculations 145
4.4 reduction of teipurary storage 147
4.4.1 Generation And Use 150
4.4.2 Graph Order For Maximum Overlay 153
4.5 elimination of extra control structure 159
4.5. 1 Syncronization Within Sub-graphe 159
4.5.2 Loop Jamalng 162
4.5.3 Alias Elimination 162
4.5.4 Tight Linkage of Called Functions 163
4.5.5 Subroutines 164
7. the execution of stream generators 165
5.1 ExECUTION ENviruntients 165
5.1.1 Translation Into Machine Language 166
5.1.2 The Ladder Machine 167
8. 2 translation exariples 169
5.2.1 Example 1-Prime Numbers 170
5.2.2 Example 2 - Roman Numbers 170
S.2.3 Example J ~J Choose N 171
5.2.4 Example 4-Symbol Table Update 174
5.2.5 Example 5-String Search 174
5.2.6 Example 6 - Selection 175
5.2.7 Example 1 - Transposicion 175
5.2.8 Example - Filteriog 176
S.2.9 Example 9 - Merging 176
S.2.10 Summary 177
5.2.10.1 Code Size 171
S.2.10.2 Array References (IIme) 178
5.2.10.3 Temporary Storage 179
3.3 compiler overhean 180
5.3.1 Data Dependency 180
5.3.2 Constraint Propagation 180
3.3.3 Strean Generator Refinement 180
9. Conclusions 182
6.1 THE COMPILER 182
6.2 FUIURE MORX 184
A. IDIOMS 186
A. 1 IDIOHS 186
A.l. 1 Niladic 186
A.1.1.1 Rank 186
A.1.1.2 Indices of Array 186
A.1.2 Monadic 181
A.1.2.1 Self Indexing 187
A.1.2.2 Extremus Poaition 187
A.1.2.3 Span 187
A. 1.3 Dyadic 188
A.1.3.1 End Around 188
A.I.J. 2 First-found 188
A.1.3.3 Bounded Extreaum 188
A.1.3.4 Take-till 188
A.I.3.5 Delay 188
table of Contents
A.1.3.6 Select Index 188
b. Constraint propagation 189
B. 1 constraint propagation procedure 189
B.1.I Node Propertiea 189
B.1. 2 Property List 192
B.I.2.1 Generated Information 193
B.1.2.2 Propagated Information 194
B.I. 3 Property lnsertion 195
B. 1.4 Algebra Of Properties 200
B. 1.5 Termination For Constraint Propagation 202
B. 2 Syntax Constraints 203
Q.2.1 Monadic Operatora 203
B.2.1.1 Monadic Arithmetic Operations 203
B.2.1.2 Not 203
8.2.1.3 Size 203
B.2.1.4 Index Generator 204
B.2.1.5 Ravel 204
B.2.1.6 Reduction 204
B.2.1.7 Scan 204
B.2.1.8 Reverse 204
B.2.2 Dyadic Operators 205
B.2.2.1 Dyadic Aritlomefic Operators 205
B.2.2.2 Dyadic Logical Operators 205
B.2.2.3 Dyadtc Equality Operators 205
B.2.2.4 Dyadic Relational Operators 206
B.2.2.5 Reshape 206
B.2.2.6 Catenation 206
8.2.2.7 Indexing 201
B.2.2.8 Inner Product 207
B.2.2.9 Outer Product 207
B.2.2.10 Take 207
B.2.2.11 Drop 208
B.2.2.12 Transpose 208
B.2.2.13 Kotate 208
B.2.2.14 Compress 209
B.2.2.15 Expand 209
B.2.2.16 Index 209
B.2.2.17 Membership 209
B.2.2.18 Decode 210
B.2.2.19 Encode 210
c. array addressing hith ladders 211
C. 1 address SEquencing 211
C.l. 1 Storage Spacing - G 212
C.1. 2 Pofnter Increment - DELTA 213
C. 2 the selection operators 215
C.2.1 Take 215
C.2.2 Drop 216
c.2.3 Subscription 216
C. 3 RE-ORDERING 217
c.3. 1 Tranapose 218
C.3.2 Reverse 218
c. 4 stream cenerators 219
table of contents
C.4.1 Address Calculation 220
C.4.2 Re-ordering 220
D. stream cenerators as imp-io 222
e. stream generators as ladder macbine code 228
F. streah generators for the apl operators 233
P. ${ }^{\text {l }}$ definitions 233
f. 2 tie operaturs 234
P. 2.1 Monadic operators 234
F.2.1.1 Scalar Operation 234
F.2.1.2 Take 234
F.2.1.3 Drop 235
F.2.1.4 Reverse 235
F.2.1.5 Subscription 236
F.2.1.6 Transposition 237
F.2.1.7 Reduction 238
F.2.1.8 Scan 239
F.2.1.9 Iota 240
F.2.1.10 Ravel 240
2.1.11 Shape 241
F.2.1.12 Duplication 241
F.2.1.13 Reshape 242
F.2.1.14 Scalar Creation 242
F.2.1.15 Boolean Creation 243
F.2.1.16 Self Indexing 243
F.2.1.17 Extremum Position 243
F.2.1.18 Span 243
P.2.1.19 Rank 244
P.2.1.20 Indices Of Array 244
P.2.1.21 Scalar To Vector 244
P.2.2 Dyadic Operator 245
F.2.2.1 Scalar Operation 245
F.2.2.2 Subacription 246
P.2.2.3 Rotation 247
P.2.2.4 Compress 248
.2.2.5 Expand 249
F.2.2.6 Catenation 250
.2.2.7 Index 251
P.2.2.8 Kembership 252
P.2.2.9 Outer Product 253
P.2.2.10 Inner Product 254
F.2.2.11 Decode 255
F.2.2.12 Encode 256
P.2.2.13 Assignment 257
F.2.2.14 Reshape 259
F.2.2.15 Transposition 259
P.2.2.16 Take And Drop 259
F.2.2.17 Duplication 259
2.2.18 End-around 260
F.2.2.19 First-found 260
2.2.20 Bounded Extrenum 260
F.2.2.21 Take-till 260
F.2.2.22 Delay 261

table of contents

F.2.2.23 Select-index 261
F.2.2.24 Successor 261
G. example stream cenerators 262
G. 1 example 1-prime numbers 262
G. 2 example 2 - roman nutbers 264
G. 3 example 3 - J choose 265
g. 4 example 4- smbbol table update 215
G. 5 example 5 - String search 276
G. 6 EXAMPLE 6 - SELECTION 278
G. 7 EXAMPLE 7 - transposition 279
G. 8 EXAMPLE 8 - Filtering 280
G. 9 EXample 9 - herging 282
bibliography 284
L.IST OF FIGURES
2-1 - Language Changea 29
2-2 - Operations Not Complled 42
2-3 - Sample Execution 45
3-1 - Ladder Fixed Part 15
3-2 - Ladder Splices 71
3-3 - Multi-Pointer Ladder 83
3-4 - Ladder With Multiple Nesting 89
3-5 - Nesting Graph 93
3-6 - Raveled Nesting 93
3-1 - Splice Order 96
3-8 - Evocation Graph 96
3-9 - The Super Tree 98
3-10 - Control Structure Errors 100
3-11 - Control Path to Node X 1023-12 - Addrese Generation Error111
3-13 - Loop Linit Errors 114
4-1 - The Translator 122
4-2 - Adjust and Check 126
4-3 - Transposition 129
4-4 - Merging 132
4-5 - Nesting 134
4-6 - Alternativea 136
4-7 - Evocation Order Demon 139
4-8 - Translation of an Operator 142
4-9 - Unnecessary Calculations 147
4-10 - Generation/Use 154
4-11-Generation/Use Order 158
4-12 - Synchronization Within Sub-grapha 161
4-13 - Loop Jamalng 163
B-1 - Constraint Propagation 198
B-2 - Set Algebra 201
G-1 - Example 3 269

Chapter 1

introduction

1.1 the problem

The programming language Apl has achieved agrowing following (mostly outside the computer science community). In this thesis we present a design of a syatem for executing the language uhich attempte to alleviate some of the difftcultes that have been cited as limiting the contloued gruvth of the language. In particular we address the follousing probleas

1. The interpretative execution of API programe can be slow compared to that attatined with programs complled from languagen anch an Fortran or Algol 60 [12]
2. API. functions will often generate large arrays as intemediate resultio on the way to amall array (or even a scalar) as the answer. An example of auch a function is givenin chapter 5.
3. The style of APL programaing most efficient for an experienced uaer (full use of the power of tha erray operationa to ellainate explicit control structure and laprove brevity (201) tende to worsen the problems listed above.
4. Current impleaentations which procesa functiona on line by line batis encourage the use of long lines to achieve efficieacy. Readabllity auffers.

The environment for wich the compiler is designed is that of aingle processor whose instructions act on individual data items only. it has also been designed to be most useful fo either of two circuastances:

1. When ApL is used in a production situation, a given function will be executed repeatediy. Thus the cost of compiling the function (even if high) will be offset by the savings in execution time. Also the Input arrays will tend to be large in auch a oltuation. As the execut ion the riaes, the aignificance of compller overhead diminishea. When the outer-product operator ta uned ta place of explicit looping, the eize of the intermediate results ulll often be a power of the size of the input. Given large inputa, actual storage of such intermediate values is not feasible.
2. At the other end of the scale la the mall personal apl. syatem for which storage space is the critical resource La^{25}). Many functions can not be executed if intermediate resulta must be atored in amory. The otorage required for the more complitated APL aystem is not of comparable fmportance. It can be in the form of read-only nemory which is of much lower coat. The user of such a aystem is alio In a better poaition to tolerate longer execution tiac. (Wien all elsefalis, you take the system home, and key in the function Just before gaing to bed).
1.2 PREvious hork

Currenty avallable implementations of APL have attempted to solve eme of the probleas mentioned above. In the sections below we deacribe remaining weakneases which motivated the dealgo of this thesis.

1.2.1 Simple Interpreter

The original implementation of APL [7] and anny that followed were Interpreters which execuie each operator separately as encountered. All Intermed late results are stored in memory. Great speed improvement has been obtalned by the fine cuning of the routines for various operators and by the recognition of short special patterne of operations $\mathbf{2 2 2}$. Our deatgnalso recognizes a amall number of special patterns (which we call "idioms"). However, as is shown in chapters 3 and 5 , the reduction of temporary atorage may require interleaving the individual calculatione of a sequence of operations. From the examplee presented In chapter S it ts clear that the sequences of operations which can be profitably interleaved are too long (and thus too numerous) to be recognized as special cases.

1.2.2 Tranalation Into Algol

Jenkins $\{12 \mid$ implemented a translator froma sub-set of Apl, into Algol He vas forced to reatrict the language so that compllation could take place before any data was avallable, and so a complled nodule would
aluays remaln valid. The features of ark which present difficulty in
that regard are discussed in chapter 2. While the complled code is oignificantly faster than interpreted Apl for scalar calculations the advantage almost disappeare for large arrays. Jenkins did not Investigate the reasons for the inefficiency of array calculation. However, expertence gained in this faplementation suggest that it resulted from sequentiai execution of operators which require large amounts of temporary atorage, and from the cost of array element address generation.

1.2.3 Beating And Dragging (Interpreter)

In his 1970 thesis "AN APL Machine" [i] Philip Abrams investigated the semantice of APL and developed two techniques for faproving execution efficiency. They are:
1.2.3.1 Beating - Abrams recognized that a e of of opations he called selection operations (Take, Drop, Reverse, Transpose, and Subscription by vectors of the form $A+B \times i C$ could be implemented by changes to the parameters used to generate array item addresses, and did not require actual creation of the result array. He also showed that an expression in which aelection operation was applied to the result of certain operators could be transformed so that selection (which may decrease but never increase the number of elewents) vas applied before the operation, possibly reducing the number of calculations.

2.3.2 Drag-Along - Abrame' interpreter deferred execution of

 operatora ac long as possible. Posible meant:1. The value was not required for assignment to a variable
2. The function mapping position in the realt to position in the input was simple (ie. Grade-up was not deferred aince the function would be "sort").
3. The calculationa for each reaultant array position were I ndependent .

This resulted in savings of atorage of intermediate resulte and improved opportuntites for beating.

To a large extent the work of this thesis is an extension of the work of Abrams. Three weaknesses in particular are addressed:

1. An Abrams interpreter will always atore the operands and the result of certain operators, even thought it is possible to defer them in many cases. The operators include Compression, Expansion, Catenation, Rotation, general Subscription, Scan, Encode, and Decode.
2. Function lines are processed Independently. We will see in chapter S that foportant storage savings can result from the elimination of variables that are used only to carry a value between two lines.
3. Even if assignment occurs in the interior of a line, it is never deferred. No congideration is given to eliminating storage specified by the user wien he recognizes a common sub-expression.

The elifination of user specified storage requires analysis of the
entire function to verify that the data is not used elsewhere. That analysis would not be feasible for an interpreter.

1.2.4 Beating And Dragging (Comptler)

The APL for the Hewlett Packard HP-3000 II computer is a complier (13) In contrast to the approach of Jenkins, no restrictions are placed on the APL to be complied, and no declaratione are required. Compllation s deferred until the execution of a line is required. At that time properties of the input data are avallable to guide conpllation. Hien a Ine is executed a second time, the properties of the new inpuc must be inspected to verify that the previous compliation remalne valid. This techuique, which has also been deacribed by Perlis [l9], is an extension of the concept of incremental compllation as described by mitchell [i8].

The existence of the IIP-3000 complier is faportant to the wort of this thesis in that it disproves the contention (11) that Apl can not be complled. However, it shares the linitations of the interpretative implewentation of abrams work. The compller does not consider wore than one line at a time, nor does it elininate user specified storage

2.5 APL Emulator

Significant speed fimprovements over an interpreter may be obtalned by writing aicro-programs to directly execute some of the APL operitors (for exauple (111). However, this approach prevents the interleaving of perationa required for beating and dragging. The emulator will still
perform all the unnecesary operations done by the interpreter, only faster. Also no reduction in temporary etorage is positble.

.3 A hulti-line compiler

The design presented here is an extension to the HP-3000 APL complier wich differs from that system in the following way:

1. Wien a function is executed, the compiler will detersine if several lines can be complled together as anit.
2. The execution of a larger class of operators (including assignaent) can be deferred.
3. If the definition of a variable is active only within a oingle complled unlt, the elimination of that otorage will be atteapted.

In order to lover the frequency of recompliation and increase the size of compiled units (both become more important as compller overhead increases), restrictiona are placed on the input language. They are detalled in Chapter 2, and are less aevere than those proposed by Jenkins. Chapter 2 desiribes the compilation procedure.

In common with the $\mathbf{H P} \mathbf{- 3 0 0 0}$ compiler, this compller makes no attempt to do mathematical analysis of the users algorthm.

The object code of the complier is the deacription of a network of ladders - a control structure consiating of nested loops connected by co-rout inea deaigned by Perila (19). The ladder atructure was dealgined
to facllitate the access to array elementa and the implementation of the aelection operations. Chapter 3 describes ladders in detall and digcusser the extenaliona needed to make possible the defersent (interlcaving) of the additional operatori listed above. The process of handing each APL operator and minimizing overall temporary storage is deacribed in chapter 4.

We consider the major contributions and accomplishaents of this work to be:

1. The development of a procedure (deacribed in Chapter 2) which determines the requirements for the legal execution of an APL expression, precisely lqcates the small sub-set of those requirementa that may, not be verified at complie-time, and identifies the point ut wifh information required for compliation and execution will firat becose avallable.
2. The development of a representation in which the actions required to execute a majority of the AIL operators can be expressed. Taking advantage of that representation, this compller can defer the execution of catenation, compression, expansion, general subscription, rotation, encode, decode, and scan as well as the ampler operations handled by earller aystens
3. The development of a cranslation procedure which can handle those operators which make it impossible to move all selection operators to the operands of an expression. In particular we hande those cases in which aelection operations may be efficiencly handied by being moved to the root of the parse tree for the expreasion.
4. The development of an implementation for compression which does not require the entlre left operand to be calculated in advance. Massive savinga in storage can result in those cases when the sase array appears in both the left and right operands (a common APL techuique is to conpress an artay uaing a function of itself).
5. The developnent of a storage minimization algorithe which will Identlfy -hen only part of an array must be in memory and wich can make improvements even in those cases where the sore complex operations trap a selection operator in the middle of an expression.

We stow in our examples large gaine in performance which resulted frow the new capabilitiea listed above. In contrast, the very recent work of Guibas and Wyatt (10) makes no attempt to hande iteme 2-4 and deals with 5 in very weak way.

The purpose of this work was to study the design of an APL compiler and not to build one. No actual software exists. The production of a useful, complete apl aystem is not a one-person cask. In addition, wuch of the work that would be involved (programiling workspace control, function editing,) has little connection to the deaign isaues considered in thit thesis.
dynawic features of APL which could cause the nost recompilation are not often used. Their use is also an example of atyle of programaing which l am quite happy to discourage.

Since coapilation references input values and we need to verify the continued validity of complled code, the program compiled must be divided into "unita" which are complled separately. The division must be done so that the verification of the choice of several possible compilations for the unit depende solely on properties of input variables before the unit ia executed. The complier will generate a preamble for each unit which apecifies the required operand characteristica. The testing for data dependent situations for which no compliation is correct way be done by code complied into the unit.

The tip-3000 complier will never complie more than one line in a single unit, nor will it ever include a called function into a line it is compiling. Since efficiency increases with the size of the complied unita, my compller will, when possible, do both. It also tries to locate those cases in which potental binding variability resulting from a given operation can not be legally realized, and this to eliminate the need for division into separate units.

In the course of this discussion, we ulli introduce modifications to the language APL. which are assumed by this design. They are presented individually in the eection of this chapter which first presents the design decision which motivated them. They are sumanized in Figure 2-1.

Language Changet

Functions	- Function definitions are global and may not be masked. - Valence of a definition may not change. - Local varlables are not avallable to a called function unless explicitly indicated in function header (new syntax).
One-Element Array	- A one-element array is not equivalent co acalar. Monadic 1 (new operator) creats a scalar.
Operation Moditie	- The diaension to be affected by an operator cust be implicit or apecified as a constant.
Inder Origio	- Origin way be changed only wille in calculator mode.
Take	- Take may not return more elements than in the right operand.
Goto	- The coto operator may not branch to a line which is not labeled.
Partial Aesignmet	- Wien assignment changes only part of an existing array, the right operand must have the same shape as the sub-array assigned to. - The selection operators ($t, 4, \phi, 4$, and [1]) may be used to specify the sub-array to be changed.
Execution Order	- Right-to-Left order of execution is not garanteed except for the operande of the new line separator operator 0 .

2.1 BINDINGS

The bindings which must be made in order to execute Apl, are discussed belou. For each the sources of varlabllity are listed and the bladiug time is given.
2.1.1 Valence

An APL identifier may have valence 2 (dyadic function), 1 (monadic function), or 0 (niladic function or variable). The valence of an identifier can not aluays be deteralned from the syntax of an APL. expression. For example, in the expression $A B-C$ the identifier B could have any valence. As a reault an apl expression may only be fully parsed in the context in which it will be executed, and valence bindings made at first execution may fail in three cases:
2.1.1.1 Function Entry - A global symbol may be redefined between calls on a function. Unless this is ruled out, any function which references a global aymbol aight require recompliation each tar it is executed. The entry to the function must begin a new unft.
2.1.1.2 Function Call - A global or local variable may be redefined as a side effect of a function call (the execute operator is consideres
a function call). Uniess this is ruled out, the function must return to a different unit than itgelf to perait checking for such aide effectu (done by interpreter as part of the procese of beginaing the execuction of anit).
2.1.1.3 thitiple Definitions - If a line of an APL function can be reached from wore than one predecessor (target of a coto), then there may exist multiple definition points for a aymbol used in that line. The possibility of the two definitions having different valence makes it necessary to have all such statements begin a compliation unit.

Strawn 1231 shoved that for APL without local function definitions., (assumed here), only 2π of the identifiers in ample of prograns had ambiguous valence. Once a valence is resolved (firat execution or user query) the use of the identifier remains fixed in almost all canem (1 cliange in I allition passibilities) (22).

We therefore restrict the function definition mechanism in APL slighty. All function deffiftions must be global. The masking of a global function name by a local variable or formal parameter will be an error. Any operation which changes the valence of an extating syabol is an error. Violation of this restriction is a run-time error froa $\mathrm{L}_{\mathrm{F}} \mathrm{X}$. These restrictions elimivate the necesaity of re-paraing due to valence change.

2.1.2 Rank

Both the control structure of the object code and conformablity checks depend on the rank of input operands and'intermediate resulte. Therefore compllation requires knowledge of the ranks of the result of all nodes of the parse trec. In the majority of cases a given unit will be syntactically correct with only one set of operand ranks. If this
occurs, then compllation can take place without reference to information about the operanda. The following circuastances may introduce rank variability:
2.1.2.1 Multiple Asaignaenta - If a line of an APL function can be reached from more than one predecessor (target of a coto), then there may exist wultiple assignment atatements defining the operanda of the line. To peratt the interpreter to check whether an alternate path has resulted in ranke different than at first execution, any auch etatement must begin a complied unit.
2.1.2.2 Transposition - A tranaposition operator with a variable left operand has a result of unknown rank (diagonalizat lon may or may not be spectified). If other constralnts do not elluinate this variability, the transposition may not be complled until information fixing the rank is available. It can be provided by the user, or the transposition may be placed in a epparate compliation unit fron the calculation of the left operand. The value of the left operand will be used to guide the compllation of the unit containing the tranaposition or verlfy ite reusability.
2.1.2.3 Reshape - A reshape operator with a varlable left operand has a result of unknow rank. If other constraints or information from the user do not elfainate this variability, this implementation uill not complle the operation. The generation of operands and the use of the result will be placed in separate complied units.

2.1.2.4 Function Entry - The rank of global vartables and arguments may

 change between calla on a function. In many cases only oneposibility vill be legal, but certainly a function whose oyntax allows varlable rank argumente may be wricten. In two apecial circumatancea the rank variablifty aay be hidden from the function by the caller $\{3\}$.

1. If no global variables are referenced, the function processes each argument item (or pair of items for dyadic function) Independently, and reault is acalar item for each input item, then the tunction may be complied so as not to care about the structure of input.
2. If no global variables are referenced, if the function processes Its argument (s) by rov (or plane or), and if the result for each group is efther a sealar or the same sliape as the input, then the function can be complied to be called repeatediy once for each group.
otherwise the function must be recomplied when global or argument ranks vary, and thus must begin the compiled unit containing it. The deternination that a function falle into one of the special cases llated above requires only a imple examination of the code produced when the function is complled independently (ie - if all computation is in the inner-most loop, then each operand itea is handied independentiy).
2.1.2.5 Function Return - A Function may return resulta of variable rank or change global varlables. Unleas the reault rank is a function of arguaent rank only and no global variableo are changed,
the location to which che function returna must begin a compiled unit.

Fortunately the rank of variable usually has a connection to the semantice of the program which results in its being fixed. The vork of Bauer and Saal [4] auggesta that bot of ranks way be deterained statically (without access to actual operands). Our experience is that except for the case of untueral functions, which can be comptled, use of the same expression to generate results of different rank on successive executions is rare. Host array ranke are derived froma fundamental characteristic of the problem being solved.

This dealgn identifies at complie time those acalars wich must be used repeatedly in a single operation in order to have conformability. Since array alzes may not be known at this time, this compller will not allow one element arrays to be used as acalars unless they have been converted into a scalar using a new operation Monadic 1. The process which checks for rank conformablilty will insert the conversion operator where needed if the olize of the array is known to be 1 at coapile time (ex. 1tA), and if the operation uaing the value requires a acsiar (ex. monadic 1). The ravel operator "." must be used to convert a acalar into a one element vector.

2.1.3 Operation Dimension

Several array operations apply to one (implicitiy or explicitly specified) diaension of their operand(s). The code complled for these operatione is heavily dependent on which diaeneion io affected.

Therefore, ve restrict Apl to use only constante when the dinension to be operated on is explicitly epecified.

2.1.4 Index Origin

This compller produces code which may (depending on operators in the expression) be invalid if the index origin changes. In order to avoid constant testing, we allow fudex origin to be changed oaly vis the "JORIGIN" command executed in calculator mode.

2.1.5 length

The compller will atteapt to use syntactic constraints to fix the size of array operands, but if it falle, the complier will not bind the complled code based on the sizes at first execution. This approach contrasts with the HP- 3000 APL system which does bind on size, resulting In frequent recompilations. The object code has been designed so that operand size is reflected in a mall number of parameters which must be given values by the interpreter before a coaplled unit is executed. All length conformability testa actually required will be done by the interpreter. The complier will generate preamble for each coapiled unit wiach inatructe the interpreter what calculations and tests to perform.

If a complied unit containa an operation whose result size can not be calculated before the unit execurea, the unit will interrupt ita execution then the alize is first avallable. The interpreter can thea
perform any necessary conformability checks and calculate any parameters which depend on that size. There are 7 APL events which can cause length variability.
2.1.5.1 Compression - The length of the compressed dinension is equal to the number of 1 's in the left operand. That length will be avallable the firat time the left operand has been completely used (compression of other than first dimension will result in repeated access to left operand). Parameter adjustments may be required even if conformability checking is not.
2.1.5.2 Take And Drop - The length of the result of take or drop depends on the value of the left operand. Since in the object rode these operations are implemented by changes to addressing parameters which must be caiculated by the interpreter, take or drop with a variable left argument is complled so that the operation does no begin until the left operand has been fully evaluated. At that point the interpreter will calculate the parameters which control access to the aelected elements of che right operand.
2.1.5.3 Over-take - If the Take operation is allowed to return wore elements than exist in its right operand, a Take operator with a variable left operand has a result of unknown size. Also the performance linprovement algorithm used by this implementation tries to aove the Take operation so that it is performed as early as possible. That is correct only if the Take operator will not return more elements than exist in the right operand. The restriction is
taposed dynamically when the take is executed. If the over-take
option is desired, it could be included as a separate operator
(wilch would be interpreted).
2.1.5.4 Reshape - A reshape operator with a variable left operand has a result of unknow aize. If other constrafinte do not elifinate this vartability, the operation will be performed by the interpreter.
2.1.5.5 Function Entry - If a function references global variableo, or If interual conformability is not implied by conformability of arguments, its execution will require interpreter processing on entry.
2.1.5.6 Function Return - If a function sets global variables, or $1 f$ the result shape is not that of some scalar operator applied to the argument(s) (possibly reduced), then conformablitty checking will be required after a call on the function.
2.1.5.7 Multiple Asignmenta - If a line of an APL function can be reached (rom more than one predecensor (target of a colo), then there may exist wultiple asignment otatements defining the operanda of the line. Thus conformability checking will be required.

The output of the complier in a co-routine with the interpreter. The interpreter ulll do paraneter computation and conformability checke and the complled code will evaluate the APL. The two will interleave as needed. The work of Bauer and Saal (4) suggeated that only 38% of the potential length conformability checking is actually required and that length checking wae required in an average of two places in each of a collection of functiona. Thue the amount of interleaving will not be
excessive.

2.1.6 Value

The complier attempte to perform calculations at complle time so ns to increase efficiency and tighten syntactic constraints. The interpreter will perform the fize operation (monadic p), aince that requires access to symbol table information. Code to detect value dependent errors vill be complied into the object code (index, domaln (ex. divide by zero). and right operand of expansion with urong number of 1's). We have imposed an additional conatraint on the dyàdic scalar operationa used with Scan. All itema of the operand must be in the range as vell as the dowain of the operator. This is done to perait the use of a techinique developed by McDonald $\{16\}$ for executing the acan operator without repeated acceas to elements of the operand.

2.1.7 Type

Operand type must be known at complle tiae. If ayntactic constraints do not eliminate potential variability, complation before first execution will require user interrogation. There exlats no APL operation whose result type is not given by operand types but the following situations may require type checking and recompliation:
2.1.7.1 Multiple Absignment - If a line of an Apl function may be reached from more than one predecessor (target of a COTO), the type of variables referenced aight be derived from different operands.

Thus that line must begin a complled unit.
2.1.7.2 Function Entry - A function which has alternate legal compllations depending on the type of argumente or global variables may not be included in a larger complied unit.

2.1.7.3 Function Return - A function way not be part of a larger

 complled unit if its result could be of variable type or if it changee global variables.Baver and Sasl 141 found that in a sample of programs only 12% of the dowaln checking (wifch includes type checking) could not be performed etatically. This suggests that type variability is rare.

This compller will not process integer and floating point numbers as two separate types. It assumes the arithmetic instructions of the target machine are type sensitive and convert automatically as needed. It also allows a numeric value to be used as a boolean operand (which is standard for APL). When this conversion ie required, the coapiler Inserts the new operation monadic \boldsymbol{P} into the expresion. This operator will signal a domaln error at run tme if its operand has values other than 0 and 1.

2.1.8 Position

The actual storage location for an array is not known until each execution takes place. The compller code will access array elements using pointera which are initialized from parametera at entry. The interpreter will perform atorage allocation and eet the parameters. A
reshape operation with variable left operand is performed by the interpreter eince no upper lifit can be placed on the atorage required until the operand is calculated. Storage allocation may be interleaved with the execution of the complied code in the case of compression.

2.1.9 Summary of Binding Problems

The preceding sections have listed those places which may require interpreter intervention. Some, in particulat length conformability checking, are handied by interleaving the execution of coapiled code and the interpreter. However, in other cases the validity of the comptled code about to be executed is in question. These circumstances require divistion into separate compiled units so that execution of a unit is only started if the entire unit is valid (bindings stili hold). The locations of possible unit divisions are:

1. The beginning of a statement which ray be reached from aore than one place in the function (Goto target) is a unit boundary. To make the location of such lines feasible, we restrict the Goto operation so that its right operand must be efther the empty vector (no branch). or 0 (function exit), or the line number of a line which is labeled. This restriction is imposed at run-time (Goto is interpreted).

Every labeled line thea becomes a unit boundary.
2. The entry to function will be a unit boundary except in epecial circumetances (see Section 2.2.2).
3. The return frow a function will be a unit boundary except in apecial clrcuastances (see Section 2.2.2).
6. The point at which the left operand of a Transpose is first avallable will be a unit boundary.
5. Unit boundaries are required before and after the Reshape operation except in special cases (see Section 2.2.6.5).
6. All system functlone and those API. operators which represent a complex algoritha are processed by the interpreter. Figure 2-2 lista the parts of AR which are not complled. Unit boundariea appear before and after each such operation.

In Chapter 6 we discuse briefly the problea of elfainating these restrictions. The fability of my deaign ta hande control atructure (COTO) can be costly. As an example we consider the Apl function:

Z•M COMPOSE P; $X ; T$:
(1) $U+X \cdot(\rho P) \rho 1-2+, T+1$
[2]L: $+L \times 1 M>\rho 2+2 . T+1 / U+P \times 2[X+X+T=U\}$
 vector of distinct prime numbers and is a vector of non-negative integers. Hy complier vould separate the coto operator from the body of IIne 2. As a result, the strean generator code would exit to the interpreter after each iteration. However, all information needed to compile chis function as aingle unit is avallable (including size of z which is H). The ingle unit would execute with much lower interpreter overhead.

Operationa Not Compiled

```
Roll and Deal - ?
1/O Operators - [. D. B. E. etc.
Laminate
Goto - +
Matrix Dlviaion -
Execute - monadic e or :
1-beam - I
Sort Operatore - and \
All ayatem functione - example DPX
```

2.2 overvieh op compilation

The complier ulli be evoked by the interpreter as a result of two different circumstances:

1. When an expression is executed in calculator mode or an un-compiled function is executed. At this tige the entire infe or function will be parsed and divided into compllation units. The first of these io then translated and executed. Each unit wlll be translated the first time it muat be executed. Since compliation takes place after the definition of all operands and called functions, all information necessary for conpliation is avallable.
2. The user aay also request the corallation of an entire function. This would be done to bulld a library of functions or to cause a function to be complied before the function that called it (so that Information about the called function it avallable when the caller is compiled). If the function has not previousiy been executed in the automatic compliation mode, or if argumenta are not defined, then valence, rank or type information not given by the function syntax would thave to be supplifed by the user.

If the user recorpiles a function that has been executed, he can request that bindings be made based on the propertiea of ite arguments and intergediate resulta from the prior execution. This factlity would be used as follous:

1. The user would execute a function (possibly as part of teating (t). Ae part of thif execution all functions called would be
compiled.
2. He would then request re-compliation of the original function. The called functions would be in complled form and thus the information needed to identlfy functions which could be linked into the complled unit of the caller would be avallable. At the ame the the bloding information developed during the first execution would be used to guide compilation.

However, a user will never have to request compliation in order to get correct execution of a function.

In both cases the code resulting from the translation of a function is saved and will be re-used by the interpreter if possible. The steps of compilation are deacribed below. They are motivated by the binding requirements given above. Figure 2-3 lista the steps of an example execution. Routine names shown in all capital letters give the major modules of the design.

sample execution

1. CORMAND/SCANNER gets input line and reduces $D+(C \neq 0) / C \bigcirc C+A+B$ into tokens.
2. CONSTRAINT/PROPAGATION procedure deternines that A and B and thus C suat be numeric, that C and thus A and B aust be vectors, and that A and B aust be conformable
3. The idiom/recucnizer makes no changes in this example.
4. The operatur/coliversion procedure explicitiy indicatee that / affects the second dimension of c.
5. The data/defendency procedure recognizee C as local.
6. The translator generates two outputs:
a. a stream generator which will execute this expression.
b. instructions for the set-up and management of the otrean generator (see 1 below)
7. The INTERPRETER executes the set-up instructions which include atorage allocation for D and traneferting the location and of of A. B, and D (C has been eliminated) into the local storage of the strean generator. The last instruction of the set-up program le a co-routine jump to the gtream generator.
8. When the INTERPRETER regaine control, it executea an inetruction to fetch the actual size of D from otream generator local atorage, and then extte.

2.2.1 Parsing

When all symbol valences are known, APL is a very simple language to parse. Indeed it has been show that a 3 state finite-state eachine augmented by a atack to handle nested expressions is sufficient (24). The function is parsed into one tree with lines jolned by a successor operator. The nodes of the parse tree are labeled to perwit other stages of compllation to reference individual nodes. This document use stringe (most often of length 1) of lower-case letters as parse tree node labels. They are assigned in lexagraphic order during right-left-root order traveral of the parse tree.

2.2.2 Function Call

Function calla are handed in two different vays. The most general for (always correct) is to create unit boundaries before and after the function call and handle the function call in the interpreter. (The alled function way be a compiled user function but the transition is handied by the interpreter.) This type of function call requires that the function arguments and result be held in atorage acrosa unit boundaries. The parse tree is altered so chat
<left argument> FUNCTION <right argument>
becomes
T1.<right argument>
T1<<left argument>
T3.T2 FUUNCTION T1

Syatem functions and the ARL operators lieted in table 2-1 are al aya handled in this way.

User functions wifch have been compiled previously and which meet requitementa listed below may be linked finto the code of the calling complied unit. A description of the linking mechanism is given in Chapter 4 after the control atructure of the complled code has been deacribed. For a function call to be included inside a compiled unit the following conditions aust be satisfied:

1. The function itself complied into a alngle unit.
2. The single complled unit which it the called function does not contain the calling function. (Conditions 1 and 2 rule out direct or indirect recuraion.)
3. The complied unit which is the function does not access any global vartable which is accessed by the calling unit.
4. There is only one possible legal compllation for the function (ie no rank or type variability as described in Section 2.1).

In order to simplify this analysis we require that the local variables of a function be accesstble to called function oniy fif explicitly designated in a function header entry of the form:
(FLIN1;VAR1;VAR2....)

Similar changes have been proposed by others for the purpose of decreasing opportunlties for errors. This modification to APL does not result in a static name scoping system as used by Algol. Ita effect is to hide un-named local variablea from a called function which la looking back along its call chata to batigiy a global reference. More detalled
analysis would permit gome relaxation of these restrictions.

2.2.3 Control Structure

Every Coto target begins a corapiled unit which is started by the interpreter. Thus the Coto operator is not complled and is preceded by a unit boundary. As a result of this design decision, the complier is heavily blased in favor of the style of APl programing which avolds use of coto. The whole design is oriented towards the execution of array operations

The parse tree is now converted to an ordered forest by elfulating all arcs which cross unit boundaries. Each unit is a tree.

2.2.4 Conetraint Propagation

The compller will then attempt to determine the properties of each node of the parse trees. This will be done by propagating information derived from constants and syntax restrictions. The procedure is concerned with 4 characteristics of the value produced at each node of the parse tree:

1. Rank (number of dimensions - a non-negative integer)
2. Type (numeric, boolean, numertc-or-boolean, or character)
3. Length (of each dimenaion - a non-negative integer)
4. Value (scalars and vectors only)

The constraint propagation procedure attempta to derive thie inforaation based on (ln order of use and decreasing desirabllity):

1. Nite rank (0 or 1), type, length, and value of alt constanta.
2. Operator semantics (ex. monadic alvaye produces a numeric vector and requires a numeric right argument).
3. The properties of previously complled, called functions.
4. The rank, type, and length of operanda represented as complle-tine varlablea (initially with no value) which may be propagated as if they were fixed values.
5. The actual rank and type of each operand (from existing definition or user apecification). This information givea valuen to the complletige variables deflined above.
6. The actual length of each operand.
7. The values of scalar operands.

As cach Item of information it applied, an attempt is made to propagate that information to other positions in the parse tree (ex. lita is numeric if A is numeric). Appendix bives the propagation procedure and lists all operator characteristics used. Constraint propagation is done independently for each complled unit. The handling of and requirement: for Information about each of the reault propertiea fa
deacribed below:
2.2.4.1 Rank - Ranks anst be known for compllation to take place.

Therefore rank information must exist for tach node, and if given as a complletime varlable (operand property), the varlable must be defined (operand defined). If, after propagation of the foltial information listed above, there exists a node with no rank prediction, a new complle-t tae vartable is created to represent the rank of the highest such node and that inforation is than propagated and the process repeated until all such nodes have an (undeffad) complle-time varlable representing rank associated with them. Since the propagation process never removes infonation frow a node, the above will terminate.

The lowest occurrence in the parse tree of an undefined complle-time variable representing the rank of a node indicates when, in the computation, the information needed to fix the rank witl be avallable. The most common altuation for the variable to represent the rank of an operand. Otherwise, the variable will represent value or length of a position at or belou the left argument of a tranapose or reglape operation whith lias causid rank vartablity. If the compllation of the entire function has been requested by the user, a dectaration will be requested for each rank varlable which doea not have a value. When the compllation is taking place at first execution, the point at which the variable will recetve a volue must be at a leaf (unit boundary). If this is not inftially true, the unit must be aubdivided. Execution of the flrat sub-division of the the unit thus generated will produce the
information needed for compllation of the dependent units

The lowest appearance of a defined rank variable indicatee locations where rank checking must be performed. If they apply to interuedfate results, strean generator interruption will be required.
2.2.4.2 Type - Types must be known for compllation to take place. All nodes will have a type prediction after the propagation of initial predictions. All complle-time variables appearing in these predictions must have values before coupilation can take place. If the compllation of the entire function has been requested by the user, a declaration will be requested for each undefined complle-time variable representing a node type. Then the compliation takes place at first execution, there never will be any reaaining type variability.

The appearance of defined type prediction variablea Indicatea locations where type checking is required.
2.2.4.3 Length - length values take three forma - actual length, alnimum length, and maximum length. Every node must have a maximum length deffined to perift storage allocation. The only operation Which wlll not always propagate a maxtaum length prediction upwarde is Reshape. A reshape which does not have maximum length prediction will be Interpreted.

Every node must also have an actual length prediction to peraft conformability checking. If after propagation of the inftial

Information there exlsts a node with no entry representing its actual length, a new comptle-time variable is created to represent the length of the highest such node. This information is then propagated and the process repeated until all nodes have a length prediction.

Undefined complle-time variables representing lengths do not prolibit compllation but give the location for conformability checking or parameter calculation, and if not at a leaf, force an finterruption of stream generator execution. Since all afl operators generate rectangular structures, only one unit of the dimension of unknown length must be tested for length conformability. The strean generator can then run uninterrupted and the test is executed only once. Defined variables representing length locate requirements for length checking

The length cests imposed for constraint verification also permit the interpreter to detect null arrays. Since the loop control of the etream generators tests after execution of the body the loope will alway execute once. Therefore when the interpreter detects a null array it aborts the execution of that section of the etream generator and performs the calculation directly.
2.2.4.4 Value - Value information cones from constants, scalar operands, and the operations which convert a predicted length (ρ) or rank (ρD) tisto a value. The information ia needed for compliation or parameter generation when:

1. A variable representing rank or maximum length get. ite value (lowest occurrence) from the value of node. These are handled as described in the sections for those properties (2.2.4.1 and 2.2.4.3).
2. Dyadic take, drop, transposition, or reshape appear (left operand).

Operator dowaln, index, or conformability requiremente are checked by code complled into the stream generator.

Complle-time varlables which represent the value of acalar operand or the actual length of an operand are never asaigned fixed values based on the those characteristics of the operands, unless required to deftne a rank prediction. However, the actual values may be used to rest relations between expressions involving complle-time variables. An example is the expression (N, M) $D A$ where N and M are scalare and A is a matrix with predicted lengthe X and Y. If at first execution $N: M$ equals $X \times Y$, then the reshape way be compiled as requiring so duplication. The eruality must be tested before each execut ion.

As the blocks are further subdivided into units, temporary atorage arrays will be created to hold values which are calculated in one unlt and used $1 n$ another. New nodes will be added to the parse tree at the point of division to represent the assignment and reference. The new varlables are operands to the unita referencing them and way be asigned predictions. If requireaents taposed by the same node cause subdivision at two different places in the tree, only the highest is actually done
(the other requirement is assumed not to propagate past that point).

Susan Gerhart 191 has designed a system which deteraines the properties the operands of an APL function aust have for the function to execute. Syntactic constraints are generated and propagated in amaner ataflar to that degcribed above. Hovever, she makes no attempt to develop information needed to select between alternate legal interpretations of the function. Nor does she locate those places at which such information will later be avallable (undefined coraplle-tiae variable).

Our attempt to advance binding times is simflar philosophically to the work of Jones and Huchnick (14). However, their technlque and that proposed by Kaplan and Uliman $|15|$ are oriented to determining properties which hold at entry to simple statements. APL. requires Intra-statement analysia. They also do not handie information to be avallable in the future or the inter-dependence of different properties (such as a rank depending on a value). A detalled description of the conatralnt propagation algorithm and the characteristice of the APL operators appears in Appendix B.

2.2.5 Idioms

One goal of this compller design is to process the language All using one consistent procedure. Hovever, it has become apparent that there exist a swall set of combinations of operators and operands which have a much more effictent tuplementation then that produced by translating each operstor separately. A common characteristic of these patterns is
the occurrence of the same operand on both the left and right of an operator or group of operators. These patterns will be recognized and replaced in the parse tree by a unlque new internal operator. An example is Vil/V which will require two passes over V if translated directly, but can be easily implemented using fust one. A list of all such "idioms" currently recognized is in Appendix A

Idtoms are recognized by applying a pattern matching procedure to the parse tree. Each node of the tree is visited. If it could be the root of a aub-tree headed by one of the idioms, its immediate descendants (maximum number 4) are examined to determine if they match the idfom. The nodes whichare operands in the idiom description will match any node which is predicted to have the rank or constant value required by the ldiom. The pattern matcher will never have to look lower in the parse tree.

Some of the idlums require that the same value be used in two placea in the expression. These will only be recognized if the corresponding nodes in the parse tree are leaf nodes referencing the same variable. No common sub-expression recognition will be done by the Idiom recognizer.

When an idiom is recognized, the pattern is locally contracted into a single internal operator. In the case of multiple references to the same variable, only one will be retalned. Slnce both the search for idtoms and the transformation of them requires access to amall (<4) number of nodes for each possible idion, the entire process requires a time vilich is linear in the ifze of the parse tree.
2.2.6 Operator Conversion

The parse tree of the APL function has now been split into a forest of parse trees for units each of which will be couplled separately. Based on Information obtained by constraint propagation, operations in the parse tree will be modified to distinguish special cases.
2.2.6.1 Take Or Drop - If the left argument of take or drop is known to be a constant, the operation becomes monadic with the former left operand as a modifier.
2.2.6.2 Subscription - Subscription will be expanded into a node for each dimension of the subscripted array. The left operand of eich node will be the subscript for that dimension. The right operand for the lowest (last dimension) will be the subscripted array and the remaining nodes will use successive results as their right operand. If a subscript is null, the node is reaoved from the parse tree. If a subscript is known to have a constant value of the form At $B \times 1 C$, the node 18 converted to a monadic operator with the value as modifler. If the subscript is of that form, but not all of the scalars A. B, and C are known to be constant, the A and operatlons are replaced by the successor operator in forming the left operand.
2.2.6.3 Transposition - If the left operand 19 known to be a constant, the operation becomes monadic with the left operand value as a modifier.
2.2.6.4 Ravel - The ravel operation (monadic,) will be modifted with the dimensions that it affecte. The apecial case of a scalar right
uperand will be converted to anique internal operator if the acalar ta an intermediate reault, otherwiae the operation becomen a stimple reference to ${ }^{-}$vector (which will be created by the interpreter).
2.2.6.5 Reshape - The information known about the length of the right operand will be compared to the information known about the value of the left operard to recognize 3 spectal cases.

1. If the reshape is the duplication of the right operand in a new first dimension, and if the duplication factor ia known to be a constant, the node becomes the monadic duplicate operator with the duplication factor as modifier.
2. If the reshape is the duplication of the right operand in a new first dimension, and if the duplication factor is variable, the node becomes the dyadic duplicate operator uith the bcalar duplication factor as left operand.
3. If the reshape ia a partial ravel of the right operand, the node become: a ravel operation appropriately modified.
4. If none of the above opecial cases can be recogilzed, if it in known that result has the same number of elements as the right operand, and if the slape of the reault is known, the node becomes a monadic operator with the result shape as a modifier. An example is $(() \rho C) 12), 2) p C$. the number of eleaente in the result which is $((p C)+2) \times 2$ equale $p C$ with is the number of elements in C (wien ρC is even).

A combination of 1,2 , and 3 will be split into separate nodes. If one of these opectal cases can not be tidentified, the reshape is split out into asparate unit (storage added as needed) which wilt be interpreted. Except for cases 1 and 3, a reshape with both operands constanta will be done at complle time.
2.2.6.6 Single Dimension Operators - All operations which apply to a aingle dimension are modified with the dimension. The parser will have absorbed explicit dimension indicators such as in $+/(2)$ into the nude for the operation. Implici, dimension designations which depend on operand rank (i.e. last dimension) are now fllled in.
2.2.6.1 Lamination - If the dimenstion mindifier for dyadic "," has e non-integer value indicating lamination, the operation is split out into a separate unit which will be interpreted.
2.2.6.8 Functionals - (Scan, Reduction, Inner Product, and Outer

Product) The acalar operatione assoclated with these operations are modifiers to the node.
2.2.6.9 Scalar Conversion - (the new operation - monadic 1) If a vector operand is not an intermediate result, this operation becomes a aimple reference to acolar variable.

2.2.7 Data Dependency

The compller considera user apecified array variablea which are active within only one complled unlt to be temporary atorage. This allows the
elimination of storage added to improve readability of the code or because of the users recognition of common sub-expression. If an array variable is referenced in any unit without an assignment having appeared earlier in that unit, is a global variable, or is potentially accessible to called functions, that variable will be considered as global to the complled unit and will always actually exfet in memory.

Conventional control-flow analysis $\{2 \mid$ could be done to detervine when variables are actlve, but that is not requited. Other standard program transformations such as common sub-expression elimination and woving invariants out of loops could be done at this time, but are not included in this design. .
2.2.8 Stream Generator Creation

All of the above serve as prelininaries to the real work of the compiler - the making expificit of the control atructure implifed by the array operations of Apl. Thie is accomplished by translating ApL into wat 1 call stream generators. The actions required to execute the majority of the APL operators can be expressed the theamgenerator notation. Chapters 3 and 4 contain a couplete description of atream generators and the translation process outlined below.
bach tree of the parse forest which is to be complled ts translated separately at the first time that all requirements can be evaluated. The streat gencrators are comprised of sets of nested loops connected as co-routines. They are generated by traversing the parse cree in right-left-root order. For an array leaf the code to accesa the array
is generated. At an operator node the stream generators for its operand(s) are combined, and code to calculate the result is inserted into the control structure. The way the generators are combined depends on the operation. The monadic selection operators can of ten be absorbed Anto the array accese parameters unless some previous calculation can not be reordered. At any point where temporary storage may be required for the correct or efficient execution of the APL the required assignmenta are generated.

2.2.9 Stream Generator Refinement

The atream generators created inftially may compute values wifh are never used. These calculations aust be elfminated. The next step to to ellminate all unnecessary storage. This will be done by re-ordering Independent calculations so that as soon as an intermediate result is available, it is consumed. When this is possible both the consumer and producer share the same control structure and only a single scalar them of the intermediate result will exist at any one time.

The use of the same address generation mechanisu to process several arraya in parallel requires that in addition to having the ame number of elements, they have the same shape. In order for this restriction to apply to the right and left operands of all assignment operations, shape conformabllity will be fmposed on assignment to a sub-array. The result of such an assignsent will be the right operand. The assignaents of values to each element of a sub-array are considered to be independent and may be re-ordered. As a reault, if the same position in the array
is selected more than once, the result is not fully defined (it will be one of the values assigned to that position - no error). However, the use of the same control structure for array access on both aides of the asignment operator means that all the selection operationa may be used to select the target sub-array (ex. (1 $1 \phi A$) +1 bete the diagonal of A to 1).

If a variable, whose assignment and reference are thus
synchronized, is a temporary created by the complier or aser specified variable ulith has been Identifled (see Section 2.2.1) as being temporary storage for the unit being complled, the asaignant (and the variable) way be elfminated. It ta this elimination which provides the major benefit of uing this compiler.

The re-ordering of operatione deacribed above takes advantage of the fact that the definition of APL apecifies right association but does not fix order of execution. This complier will not guarantee right to left execution order. In particular, absurdities auch as $X[X+12]$ are undeflned. Since the compller can combine lines and elfalnate storage used only to hold values between lines, more legitimate usea of execution order such as $(A \times O) / A+B+C$ will execute efficiently when written on two lines. To perinft the above and similar expressions to be handed efficiently in calculator mode, we will use a successor operator O to coabine logical lines into one input line. The two lineo are executed in right to left order. This is the only operator which imposes right to left order of evaluation on ite operands.
2.2.10 Interpreter Instructions

Assoclated with each gtrean generator fa set of instructions to the interpreter apecifying the actions necessary to verify constraints, calculate array access parameters, and transfer information to and from the interpreter symbol table. These instructions combine with the parts of the APL function wifh are not complled to produce a new function wifh is executed by the interpreter. The streati generators are co-routines whose execution is interleaved vith the interpreted part of the function. Re-coupliation of a unit, because of binding fallure, will change part of the code about to be interpreted in addition to the stream generator (indeed the teat which just failed will be changed to succeed with the nev binding).

Chapter 3

stream generaturs - a model for the execution of apl

Chapter 2 considered the question of how and when to bind information so as to permit compilation of an APL.function. Now we look at the problem of efficiently exccuting the array expressions of Apl. This chapter describes the syntax and semantics of the intermedtate representation into which the Apl expressiona are cranslated. The compiler algorithas described in Chapter 4 are stated in terma of how they manipulate this representation.

3.1 array opelation efficienct

The effictent execution of acalar oriented language auch as FORTRAN or Algol 60 requires the elfimination of unnecessary calculations and control overhead. Some common transformations are:

1. elimination of repeated calculation of the same value (common aub-expresition and loop tnvartante).
2. elimination of calculation of unused values (dead variables).
3. reduction of control overhead (loop famaing).

As a result of these transforioations, the value of expressions not assigned to variables must be retalned for varying periods. The same situation arises with intermediate results of expression evaluation and control parameters. This requires careful allocation of machine registers in order to minimize memory access. In doing the above, the compller will take advantage of the close correspondence between the operators and operands of the language and those of the machine. The operations compute only scalars, and intermediate values may thus be held in a machine register.

However wien APL is executed on machine having only acalar operations (the enviroment to which the work of this thesis is applicable), the problem is more complicated because:

1. Intermediate results may be arrays which can not be kept in wachine registers. If temporary storage in memory is to be avolded, calculations must be re-ordered so that each bcalar itum is consuned as soon as it 19 produced. The re-ordering depends on the fact that for many APl. operators the computations using array components are independent of each other. Operations for which that is not true (Ex. N) may prevent the necessary re-ordering and force the use of temporary storage.
2. The expressions generate complex control patterns when array operations are mapped Into machine instructions acting on aingle
itema. Owerhead may be reduced by combining two calculatione which run in parallel. Analysis of control patterne implied by array operations is almplified by the connection between the control and operand shape and operator semantica. Less information it avallable when trylag to transfore user specified control patterns.
3. Because of selection operatore only part of an intersediate reault
may be needed. Thus the partial execution of operators must be posifile.

The more common transformat lons are applicable (some before and oome after transiation into scalar code) but will not be discussed further here aince known algorithme apply. The examplea deacribed below show some of the transformatlons unique to APL.

3.1.I Dragging And Beating

An example of the need for operator interleaving and partial execution of operators to the simple APL expression $A+5$ $5+B+C+D$ where B, C, and D are matrices of size 10 by 10 . An Algol program with performs this calculation is shown below:

$$
\begin{aligned}
& \text { FOR I:-1 STEP } 1 \text { UNTLL } 10 \text { DU FOR J: }=1 \text { STEP } 1 \text { UNTIL } 10 \text { do }
\end{aligned}
$$

For
FOR I:-1 STEP 1 UNTIL S to FOR $J:-1$ STEP 1 UNTIL 5 do
A(I;J):-T2[I; J);

This progran represente the standard way of execting APL, which is to do each operation separately, storing all intermediate results. The
program conaluts of three sets of nested loops, does 200 additions, 425 loads, 225 stores, and uses at least 100 words of temporary storage $(200$ If T2 is not the ame storage as TI). The temporary storage is clearly unnecesary as can be seen in an Improved algol verston of the ame expresaton

> FOR $1:-1$ STEP 1 UNTIL 5 DO FOR $J:-1$ STEP I UNTIL 5 DO $$
A(1 ; J]:-8(I ; J)+(C[1 ; J]+D \mid I ; J) ;
$$

Which reflecte the tranaformat tons Abrams (I) called "beating and dragging", and has only one aet of nested loops, does 25 addittons, 15 loads, and 25 stores, and uses no temporary storage. The 2 operations have been interleaved but the items of each operand are accessed in the same order. Also the actual additions for each element are not re-ordered. The result is the same even if the additiona are non-associative floating point operations.
3.1.2 Operator Transposition

In other casea the items aust be processed in different order. For exsmple, the standard execution of $S+x /+/[1] A t B$ with A and B being 10 by 10 matrices is represented by:

> FOR 1:-1 SȚEP \mid UNTIL 10 DO FOR J:-1 STEP 1 UNTIL 10 do
> TI[1;J]:-A[I;J]/B[I;J];
> FOR J:-1 STEP 1 UNTIL 10 DO T2(J): 0 ;
> FOR $1:-10$ STEP -1 UNTIL 1 DO FOR J:-i STEP I UNTIL 10 do
> S:-1
> T2(J): $-\mathrm{T} 1(1 ; \mathrm{J})+\mathrm{T} 2(\mathrm{~J})$:
> FOR J:-10 STEP -1 UNTIL 1 DO S:-T2(J)*S

This code has 6 loops (2 nested), does 210 arithaetic operations, 410
loads: and 211 stores (S is kept in a register), and uses 110 words of temporary atorage. Changing the order of calculation so that Intermediate values may be used as soon as produced ytelda:

```
S:=1;
    BEGIN T:-0;
        FOR 1:-10 STEP -1 UNTIL 1 DO T:-(A[1;I]/B{I;J|)+T;
    END
```

which has 2 loops, does 210 arithmetic operation, 200 loads, and 1 store, and uses no temporary atorage (T wlll be a register). It takes divantage of the fact that the calculations for each element of AlB are Independent. The correctness of this transformation which may be applied at the APL level to yleld $S+x /+/ Q A t B$ was proved by Abrama.

3.1.3 Filtering

For a number of Aith operitors the above simple txansformations are not sufficient to produce reasonable execution. An example is the expression $B+(V / A) /[1] E v A \bigcirc A+C A D$ where C, D, and E are 10 by 10 boolean matrices. This expression removes a row of EVA if that row of A is all zero. An Algol program for the atandard execution of this expreasion 18 :

```
FOR I:-1 STEP 1 UNTIL 10 DO FOR J:-1 STEP I UNTIL IO DO
FOR 1:=1 STEP 1 UNTIL 10 dO FOR J:-1 STEP { UNTIL IO DO
T[[1;J]:-E[1;J] OR A[I;J];
    OR I:-I STEP I UNTIL IO DO
    begIN T2(I):-FAlSE;
        J:=10 STEP -1 UNTIL I DO T2[1]:-A{I;J] OR T2[1]
    END
FOR I:-1 STEP I UNTIL 1O DO
    begin if T2[I] then begin k:-k+1;
                        FOR J:-1 STEP 1 UNTIL 10 DO
                日(R;J):-Tl(I;J)
    END
        END
```

which consists of 4 eets of nested loops, does 300 logical operations,
between 510 and 610 loads (depending on number of rows preserved), and
between 210 and 310 stores, and uses 110 words of cemporary storage, and
makes two complete passes over A. A more efficient execution of the APL
can be obtained uaing the following program:

```
k:-0
    FOR 1:-1 STEP I UNTIL 10 do
    begin T:-FAlSE;
            FOR J:=10 STEP - I UNTIL I DO
            BEGIN A(1;J):~C[1;J] AND D[1;3);
                    T:-\(1;J) OKT
            END:
            F T THEN BEGIN K:=N+1:
                                    FOR J:-1 STEP & UNTIL 10 DO
                                    B[X;J]:-E{I;J] OR A(I;J)
```

 END
 which has only one loop at the outer level, does between 200 and 300 logical operations, between 200 and 400 loads and between 100 and 200 stores, unes no temporary storage (f a register), and aakes tw passes over each row of A in succession. The change in order of access to A is a oignificant transformation. A common occurrence in Apl functions is the generation of a large array, followed by an expression
such as the example which filtere out selected components of the original array based on their values. Further procesalng then uses only the surviving components. Thus the variable A will be referenced only in the given filter expression. The first Iaplementation wifh does two complete passea over A vould require all of a to be in storage. The second which uses A a rou at a tive would require only a row of A to extat at any one tise saving 90 words of storage in this example. (All;J) would become T2[J].)

3.1.4 Merging

API. also has operatlons which eelect between two data sources instead of filtering one. An example is the expression $S+t / t B, C,\left\lceil 17 D\right.$ where B_{t} ta 10 by 5 matrix and C and D are 5 by 5 matrices. The conventional execution is given by:

FUR $1:=1$ STEP 1 UNTIL 5 do FOR J:- 1 STEP I UNTIL 5 do
 Tilit5;J]:MD[I; 1$]$;
OR 1:-1 STEP I UNTIL 10 DO

Enn
FOR 1:-1 STEP I UNTIL 10 DO
BEGIN T3II: $=0$:
FOR J:-10 STEP - 1 UNTIL 1 DO
T3|1):-T2|1; 1)+T3(1)

end

S:-0;
FOR 1 :-10 STEP -I UNTIL 1 DO S:-T3(I) S
which uses 10 lomps, does 260 loads and 161 stores, and wees 160 worde of temporary atorage. TI (50 worda of atorage, 50 loads, and 50 atorea)
may be elfoinated by uaing half. of T2 as Ti. However co eliainata T2
and T3 the program must be tranaformed to:

```
s:-0;
FOR I:-S STEP -1 UNTIL. 1 DO
    BEGIN T:=0;
                FOR J:-S STEP -1 UNTIL I DO T:-D[I;J]+T;
                FOR J:-S STEP -1 UHTIL I DO T:-B(I+5;.1)+T;
                S:-T+S
    END;
FOR I:-S STEP -1 UNTIL I DO
    BEGIN T:=0;
        FOR J:-5 STEP -1 UNTIL I DU T:-C[I;J]+T;
        FOR J:-5 STEP -1 UNTIL I DO T:-B[I;J|+T;
        S:-T+S
    END;
```

which hae 6 loops, does 100 loads and 1 store, and uses no temporary atorage. The loops calculate a function between position in the result of catenation and position in the input.

3. 2 array access and ladders

From the number of occurrences of subscripted variables in the examples above it is clear that an important part of the execution of an APL expression ts the generation of the addresses of elements of an array. In developing an addreas generation algorithow we take advantage of the fact that the sequence of array positiona for which addresses are needed 1a often independent of calculated valucs (as true in the examples).

Index origin 0 is assumed for all the equations of this section.

2.1 Array Storage

Following the suggestion of Minter (11) we store array elements so that the function mapping subscript poitions into addressen uses only arithmetic operations, and in particular we want certaln ecquences of addresses to require only the fast arithmetic operation addition. The expresaion for the address of an array element (PI) glven the aubscripts 1s:

Pl-FETA+ + $/ 1 \times G$
(3-1)
where BETA is the address of the element whith all subscripte equal to eero, its the vector of subscripts, and Gis a vector of constants which depend on the size of the array. Given an array there are several posible storage orders for wifh it is possible to assign a G satisfying the above expression. However, APL defines a linear order on the elemente of an array. This is ravel order or row-major order (right-most subscript changing wost rapldiy). The position in ravel order of an elenent with aubeript vector itegiven by:

BY:

(3-2)
where kill if the vector of dincostons of the array. (This is known as the odoweter function.) The ravel operation will not require copylng, and zequenctug through an array in ravel order will be efaplified if there exlsts a scalar $G R$ auch that:

stream generators - a hodel for the execution uf apl
$\wedge /(I \geq O), I<R H O$
(3-4)
(all legal subscripts). When this is true the same address generation mechaniam can be used to accese the elemente as an array or as vector. We show in Appendix C that if:

$G+G B \times \times \backslash 1, \$ 1+$ RHO

(3-5)
then equation (3-3) will be satisfied. If CR is the number of addressable unite per data word this wilt cause the array to be stord in ravel order in consecutive locationa.

3.2.2 Laddere

The "ladder" is an algorithm developed by Perlis [PER] with generates addresses of successive elements of an array in ravel order. The control atructure developed to represent this algoritiog provides a framework for the execution of APL. In this thesis we use the term "ladder" to refer to those components of the intermediate or final representation of the complied program witch have that structure. We will define ladders by giving rules for writing an Algol program which representa the address gencration alporitha. The ladter whll consist of $n+1$ purely nested loops where n is the number of dimensions of the array. The program will be bullt up from program fragmenta of the following form:

fragment id	cext
A	L [0]: Pl : - beta
B(1) 1 ln (t....n)	$i_{i(1):} 1[1]:-0 ;$
$C[1] \quad \ln (1 n)$	```1[1]:= I{1] + 1; IF I\|(1] < RHO[l] THEN begin PI :- PI + DEltalif; coto L[i] END```
D	coto Liol

where PI, BETA, I\|l:n], and RHOll:n] are the quantities defined in the previdua section and deltali:n) holde the values used to focrement PI. The Algol progran representing a ladder of depth n te given by:

$$
\begin{aligned}
& \text { A; } \\
& \text { sill * } \\
& \text { B(n-1) * } \\
& B(n) 5 ; \\
& \text { C(n); : } \\
& \text { cili; *; } \\
& \text { D }
\end{aligned}
$$

Where ' ${ }^{\prime \prime}$ represents a location in the program at which additional computational otatements may be inserted, and ' $\$$ ' is a "*' at wich PI contains the addreas of the array element whose abscript position is 1.

[^0]```
L(0): PI :- BETA; *
 1(1) :- 0;
 L(1): *;
 1(2):-0;
 L(2): *íal:-
 l(3): s:
 \(1(3):-1(3)+1 ;\)
 [F i(3) < RHO[3) THEN
```



```
 *if2]:- \(\{(2 \mid+1 ;\)
 IF 1 [2] < RHO[2) THEN
 BEGIN PI :- PI + DELTA\{2); COTO L(2) END;
 \({ }^{*}\) i
 (1) \(:=1(1)+1 ;\)
 IF I(I) < RHO(1) THEN
 BEGIN PI :- PI + DEITA!II; GOTO L(I) END;
 *;
coto Ll01
```

Figure 3-1 is a flowchart of the minimum required actions of this program (called the "fixed part" of the ladder).

The boxes of the flouchart have been labeled with the identifiers of the program fragaents from which they were derived. That flouchart clearly shows the origin of the name ladder for this structure. We consider the ladder to congtst of $n+1$ "runga" consisting of the $0^{\text {th }}$ rung $A$ and $n$ rungs formed by $B(1)$ and $\mathbb{C}(1)$ for in $\left.(1, \ldots .)^{n}\right)$. When this program is executed, 1 will take on all legal subscript values in odometer order. At each cranaition a aingle elcment froo delith is added to PI. We shou in Appendix $C$ that if the array is etored in ravel order, then:

$$
\wedge / G B=D E L T A
$$

holds ( adding CR ( 1 if word addressing) will alvaye produce the address of one data element from the address of the previous date element). The address sequence is not generated by aingle loop, since coaputation of certain operators such as reduction depends on the array

structure.

This is a special case of the result derived in Appendix $C$ that for any array whose otorage is defined by equation (3-1) there exists a dFiff wifh will allow a ladder co access that array in ravel order. In Appendix $C$ it $i s$ shown that the application of certain common API. operators to an array wich is stored in ravel order yields an array wilch can also be accessed in ravel order by a ladder, but with different beta, rho, and belta. Since no data is moved in atorage then these operators are applied, and since these operators sowetimes change the ordering of the data and even the number of data items in the artay to which they are applied, the resulting array is not stored in ravel order. The fact that ladders can be used to access these resultant arrays means that the storage orderings which differ from the ravel ordering and with the ladjers can handle arc comonly occurring ones. The operators, which abrams called selection operators, are reverse, transpose, take, drop, and certain types of subscription. Ocher access orders can be generated by directly calculating PI using equation (3-1).

The 1 adder flxed part defined above generates the sequence of addresses needed to access a single array. However, that deffuttion is not cooplete as it makes no provision for calculations with the array elements when they become avallable. Figure 3-2
shows the same ladder as before except that in addition to the fixed part of the ladder shown in Figure 3-1 seven numbered boxes called "spllicea" have been added. Code to perform scalar calculations may be placed in each box. A splice may be inserted into any edge of the flowchart defining the fixed part of a ladder corresponding to the


Figure 3-2
location of a "丸" or " $\$$ " in the Algol program. Figure 3-2 shous all possible splice locations for a ladder of depth 3 (splices numbered by order of first execution). The splice which is in the inner-most loop (Splice 4 or " $\$$ ") may fetch from or store into the array element polnted to by PI. (PI will have successive values of the address sequence at each execution of splice 4.) All the splices may contain code using the control variablea (beta. PI I, RHO, G, and delta) and items from a local memory $T$.

We have now specified a structure which allows access to and calculation with the elements of a single array. Since almost all Afl. expresstons involve more than one array, the ladder deffittion also Includes a facility for combining several laddera into a larger structure. Each ladder is co-routinc. The control variables (PI, BETA, 1, RHO, DELTA, and G) are local to each ladder, and they share a global vector $T$. Control will pass betveen ladders as specified by co-routine jumps placed in the splices. The collection of ladders is a "ladder network" wifh is a co-routine with the interpreter.

The requirements of fixed rank and type present in the constraint propagation phase of the compller vere imposed because the ladder structure depends on the rank of the associated array, and the splice code instructions are dependent on the type of the data. However, the length of the data ia reflected only in the values of the control varlablea. Thue we only require length to be known at execution time when control variables (and $T$ ) are ialtialized by the interpreter.

## 3. 3 stream generators

A "stream generator" is a ladder network. However, we have modified the definition of the ladder given by Perlis (PER) (presented in previous section) so as to provide a closer match between the capabilicies of the laditer and the requirements for effictent execution of APL seen in the preceding examples. We have borrowed the term stream used by Burge (BUR] shace it aptly deacribes the flow of data right to left through an APL expression. However, the finite, aryay-based sequences of data ltems described are very different from those deacribed in (6), and the ootation used to describe them is uncelated.

In this aection we will progreasively modify the original
definition for the ladder to arrive at the definition a $\quad$ tream generator. Each change will be wotivated by reference to an example. In parallel with the modification of the structure we will introduce new notation for specifying stream generators. The reader should keep in mind that the notation presented here is designed for human processing. It shous the information needed by the complier algarithes, but not the form that information would take internal to the complier.

The examples presented above will now be re-done in terms of ladders. In these examples a simpler picture will be used to describe a ladder. The actions of the fixed part which can not be separated (a alngle rung) are collected into one box in the flouchart. The $f^{\text {th }}$ rung Ufll contain the exit teat for the loop at level $J$. Except for the $\boldsymbol{o}^{\text {th }}$ rung the new boxes have in and out-degree 2. These edges are the ladder "ralls".

The fixed code is owitted and the addreat sequence being generated Is Indicated with the name and dimension of the array upun wich fith and DELTA are based (eg. $A_{1}$ etands for the first diarnsion of A). The labeling will distinguish between assignment and reference $\left(A_{1}\right.$ reference, $\left.A_{1}{ }^{+}-a s i g n m e n t\right)$ and will incorporate the selection operators which affect only address sequencing (eg. a label may be $54 \mathrm{f}_{1}$ not Juat $A_{1}$ ). The ladder of Figure 3-2 would be shown as:

where 1.1 ts the ladder label. The aplice code is listed, labeled by splice number and is scalar APL augmented by the function EVOKE $L$ (where $L$ is a ladder label) which does a co-routine jump, and by \{Plf which refers to the array element pointed at by PI. Execution starts vith the interpreter doing Evoke li

### 3.3.1 Beating And Dragging

The APL expression $A+55+B+C+D$ was translated into the Algol progran:

FOR I:-I STEP $\mid$ UNTIL 5 DO FOR J:-I STEP 1 UNTIL 5 dO $A\{1 ; J]:=B[1 ; J\}+(C(I ; J)+D\{I ; J]) ;$

However, the satuer netw..h 3 thit expression 1s:


3:711]•[PI]
EWKE L2
ELUKE Interpreter
S:EwUKE Interpreter
 T11 $1 \times 7111$
EVOKE L$\}$


3: $\pi 11+\pi 11 \times[P I] \quad 3:[P 1]+\pi\{1]$ EVOKE 8.4

Which consists of 4 ladders instead of the ingle loop of the Algol verstion. The overhead generated by 4 sets of loop control and the co-routining is undesirable. In addition, the perfect aynchronization of the access to the 4 arrays is obscured. He thus wish to nodify the ladder concept to perwit more than one array to be accessed by atigle ladder. To accomplish this we aake PI and BETA into a vector of pointers and initial values. Each position in asociated with an array
(not a ladder) and these variables are global to the entire network. Similarly DElitA and G which were vectors wiose length was given by the rank of the array, now become matrices with a row for each item in PI. Only I and RHO (the loop control parameters) remain local to the ladders. In Figure 3-3 we see the fixed part of a ladder structure accessing two arrays.

Using thls new facility the ladder network shown above becomes:

which generates addrease efficiently with the eane low control overhead st the Algol version.
3. 3. 2 Operator Traneposition

Given this new feature we can also translace the expresston $S+x /+/(1) A: B$ into a angle ladder. The change in access order ahown in the $\mathrm{Al}_{\mathrm{go}}$ veraion:


S:-1;
FOR J:-10 STEP -I UNTIL, 1 do
becin T:-0;
FOR I:-10 STEP -1 UNTIL 1 DO $T:-(A \mid I ; J] / B[1 ; J])+T$;
End
as revergal of nesting order for the loops controlling the subscripts 1 and $J$ is reflected in the ladder:

by the inversion of array dimensiona shown by the fixed part labela.
3.3.3 Filtering

The Algol code for $B+(v / A) /[1] E v A \bigcirc A^{+} C A D$ :

## K: - 0

FOR I:-1 STEP I UNTIL, 10 do begin t:-false;
for J:-10 STEP -1 UNTIL 1 do
BEGIN A(I;J]:=C[I;J] AND D[I;J];
T:-A(I;J) OR t
END;
if T then begin k: -kil;
FOR J:-1 STEP I UNTIL 10 DO B\{K;J]:-E[I;J] OR A[I;J]
end
uses one subscript ( $K$ ) which is not a loop index. Also, the use of variable $E$ occurs only for some value of its Index 1 , the selection being dependent on values of $A$. In order to avold having to calculate an address sequence in splice code the co-rontine facillty will be used to select one of two ladders to execute in each step. The splice code is extended to include an if-then-else construct. The value of the if lause must be in a register, and the alternatives may only contain an Evoke. Both ladders will bequence the pointer (element of PI) assoclated with $E$ but only one will actually access the array and sequence the pointer to B. Additional processing necessary to get correct sequencing wlll be described in the section on stream generator

The variable A occurs 3 times in this expression. Since the assignont is the first access, each references the same values in the same storage, but there is no guarantee that the 3 uses of $A$ will proceed in eynchionization. Therefore we may need 3 different pointera o A. These "allases" for $A$ wlll be uritten as $A^{\prime}$ and $A^{\prime \prime}$. In this example two pointers do move together and may be combined.

We also elfinate the storage of all but a aingle row of a which is accessed repeatedly. Thus the ladder rung wich would have moved the
pointer to the start of the next row must reset it to the begioning of the eingle row. This if done in the ladder fixed part by using a
 formed prefixing the label for the dimension react by " ${ }^{-n}$ (ex. ${ }^{-} \mathrm{A}_{1}$ )

Using these new features the ladder network is:


2: $7111+0$
3:T[2]+[PI|1|]서PI[2]] $\quad 3:[P I[6]]+[P I[5]] \cup[P I[4]]$ [PI[3]1.712] $T[1]+712] \vee T(1)$

4:1f T111 then EVOKE 12 4:EVOKE LI
4: EVUKE LI else evoke l. 3

S:EVOKE Interpreter

Wifch has the same patern of access to as the Algol program. Because this structure moves the same PI in two different ladders at the same level, adjustments muat be made to the ladder fixed part. They are described in eection 3.4.16
3.3.4 Merging

The expresston $S+1 / 1 / B, C,[11 D$ tranalated fato an Algol program:

```
S:-0; I:-S STEP -I UNTIL I DO
 begin T:=0;
 FOR J:-S STEP -1 UNTIL I DO T:=D{I;J]+T;
 S:=T+S
 END;
 OR I:-5 STEP -1 UNTIL 1 DO
 BEGIN T:=0;
 FOR J:-S STEP -1 UNTIL I DO T:-C[I;J]+T;
 FOR J:=S STEP -1 UNTIL, 1 DO T:=B|I;J\+T
 S:=T+S
 END;
```

which does not have simply neated loops. Thus the ladder network for thite expression is one:
streat generators - a hodel for the execution of apl 88


1: 11110
2: 7(2)
3: TT $21+[P I[1]\}$
+T[ 2]
4: EWOKE L2

5: EWKE L3


2: 7[2]-1


3: $T\{2\}+\left\{P_{i}[2\}\right)$
$\times 121$
4: T[1] 7 T2]+7\{1) EVOKE L3 Evoxe li

4: Evoke L4

5: EVOKE Interpreter
which, as in the first example, uses co-routines to synchronize parts of the network driven by the same loops in the Algol program. Since only the upper level is synchronized we can not merge the two laddurs as
before. He :aust allow wore then one loop to be nested at one lavel. If the ladder has multiple nest the then the remining local control variable vectore (I and RHO) must become global matrices. A ladder ull use the same number of rows as the maximum nuaber of nodes at a given level. Figure 3-4 shows the fixed part of a ladder using the neu I and RHO.

The modified network 1s:


In wifli each rung is labeled with the row of I and rio it references.
Because this structure moves the eame PI in two loopa nested at the same level, it will require adjustments to the ladder fixed parts in order to get correct addresing. These vill be described in section 3.4.16.

### 3.4 Streak generator graphs

As the power of the ladder has grown, the flow charts needed to describe them have gotten increasingly complex, and the condensed notation is not adequate for completely apecifying the ladder fixed part. We will now modify the notation to eliainate redundant information, and at the same the increase the information contained in the diagram of the otream
generator so that aignificant processing can be done without reference to the splice code. As each new feature is described, we will spectify hou that information can be used to deteraine the actual ladder fixed part needed.
3.4.1 Loop Hesting

The flou chart draws each loop of the control structure, and in the condensed notation we retalned both arcs connecting the body of a loop to the rung containing the exit test for that loop. However, no Information is lost if the flow chart is converted into a directed graph by removing all arcs which carry the flow of control out of a loop body (upwards pointing in examples shown). Pigure 3-5 ahous an example of this conversion.

The nodes of the graph represent ladder rungs. If an edge goes from node a to node b. .then the loop controlled by the ladder fixed part defined by node bis nested inside the loop defined by the ladder fixed part deflned by node $a$. Node b is defined to have a nesting level one bigher than that of node a. Since the ladder control atructure allowa only pure nesting, the graph ia a tree.

### 3.4.2 Header Mode

The graph node derived from the $0^{\text {th }}$ rung of the flowchart is labeled to distinguish it (drawn galler) and called the "header node". It will be a root node in the nesting graph (forest if geveral laddere). These
header nodes will contain a label which gives the nesting level ( 20 ) for the header. Every node now has a fixed level. This level is used as the second subscript for all references to DELTA, G, RHO, and I in the fixed part code defined by the node. Node (1) in Figure 3-5 is the header node.
3.4.3 Raveled Nesting

The ravel operation of APL may reduce two dimensions to one. This is shown in a stream generator graph by labeling the edge connecting the two nodes (drawn $=1$ nstead of as a stagle line). (The control atructure represented does not change.) Both nodes are considered to be at the same level. The loop limit for a raveled structure is the product of the limits for the nodes. In Figure 3-6 nodes (2) and (3) form a raveled atructure.
3.4.4 Splice Order

The stream generator graph does not have a distinct edge associated with each splice and splice numbers are not slinwn. They may be calculated as follows:

1. Start at the header of 1 adder $L 1$ and with a current aplice number of 0.
2. Traverse the tree in root-right-left-root-order. (All nodes except leavea are visited twice, and all edges are traversed twice - once backwards.)


Figure 3-5 - Nesting Graph


Figure 3-6 - Raveled Mesting
3. When an edge is traversed, the current splice number is incremented and the new value is assigned to that position and direction fof the traversal, not of the edge) of the ladder structure.
4. When a leaf node is reached, the current ladder number is increanted and the new value is asaigned to the body of the (inneriosost) loop which ie controled by the fixed part defined by that node.
5. The procese is then repeated for each ladder in order.

Figure 3-7 show the splice order for a ladder of depth 2.
When the graph is not a straight line, the sub-trees are executed in right to left order for each step of the loop defined by the node with sultiple sons. For each step (a single execution of the body of the loop) of any node, the list of splices executed inside, with duplicates removed, will be sorted in increasting order.

The ladder atructure defines an infinite loop. However the instruction "EWOKE Interpreter" will always occur in the highest numbered splice of some ladder in the network, and the co-routine connectione will guaraotee that no header node at level 0 executes more than one atep.
3.4.5 Co-routine Graph

The ladders in a stream generator are linked together using the EVOKE function. The ladders are co-routinea. When a ladder is evoked, ita execation is resumed from the point ofter the last EVOKE it executed (ladders otart at the beginning of Splice 1). However, the control dependency relationship is that of non-recursive zubroutines. A ladder will aluays execute an Evoke of the lader that evoked it. This inatruction will be the final instruction of aplice which is traversed in an upuards direction. (A ladder evoked will execute one step at some level and return.) The compller will replace a string of successive EWOKEs by one equivalent EVOKE.

The linkage structure may be shown graphically by adding evocation edges to the otream generator graph. They are directed edges leading from the node defining the loop containing the EVOKE to the node defting the loop ended by the return. They will be labeled (drawn an . .-. .- - ) to distinguish them from the edges indicating nesting which are drawn as aoldd lines. We call the source of an evocation edge a "cholce" node If more than one auch edge leaves it. The nodes entered are called "target" nodes. In Figure 3-8 we see a ladder network in which the splice code for the loop defined by node (1) contalne an Evoke of the ladder contalning node (2), and the last ingtruction of the splice code of the loop defined by node (2) is an Evoke of the ladder contalning node ( 1 ).


Figure 3-7 - Splice Order


Figure 3-8-Evocation Graph

### 3.4.6 Control Structure Sanity

The stream generator description mechanism described above is too poverful in that it will allow the specification of patterna of control which can not actually be executed. To elfalnate some of the danger and to give a clearer picture of the way the strean generators will be used, a set of restrictions on the graph structure is given:

1. The header node of ladder 11 which ia the atarting point of the ladder network must be at level 0 . The "Evoke Interpreter" Instruction which ends the execution of the network must be the last inatruction of the last (highest number) splice. The header node of ladder LI is called the "entry point" of the stream generator.
2. If the trees deffned by header and loop nodes and neating edges (the ladders of the network) are considered to be alngle nodes of a super graph, the evocation edges define a directed graph. Since each ladder returns to the ladder that started it by evoking explicitiy a particular ladder, a ladder may be evoked from only one place. Ao a result the graph defined by the evocation edget is atree. Figure 3-9 sllows the graph and super tree for $A,[1](B,[2] C)$.
3. The co-routline facility fa uacd only to aynchronize two ladders (only one evocation edge leaves the super node) or to select one of two possible calculationa to do in confunction with that step of the evoking ladder. In that case two evocation edges leave the auper node. However the oplice code must guarantee that onily one is executed for each atep of the loop contalning the Evokes. Tine will be accoaplished by putting them in opposite branches of an

## A. [1] $],[2] C$



Figure 3-9 - The Super Tree

If-Then-Else statement. (The above also means that the two evocation edges will leave the same loop node in the actual graph.)
4. Except as needed to implement reshape, evocation edgea will not connect (synchronize) nodes (loops) having different levels
5. A "step" of a raveled structure is a step of the inner-most loop. Therefore, since evocation edgea synchronize steps, they may not connect to a node from which a raveled nesting edge leaves.

These restrictions are not cliecked and enforced by any part of the comptler. Rather they served as gutdelines for the writing of the actual procedures used to bulld atream generatogs (described in Chapter 4). Figure $\mathbf{3 - 1 0}$ shows violations of the last two rules.

In a ladder network meeting these restrictions, it is possible to determine for any given loop $X$ what other loops in the network have been entered but not completed when $X$ is éxecuted. That sequence of nodes called the "control path" leading to $X$ is identified by the following procedure:

1. The sequence is initialized to contain $X$.
2. If the firat node in the aequence is not a header (root) node, then put its father at the beginning of the sequence, and repeat this step.
3. If the first node in the sequence is a header node but not the entry point, put the source of the evocation entering that ladder at the beginaing of the sequence, and return to atep 2 .

This pattern is not allowed

but reshaping $V$ into $N$ requires


This pattern is not allowed

but ravel will be represented by


Figure 3-10 - Control Structure Errors

All control pathe etart at the entry point. We define the "separation point" of two control pathe to be the last node common to both sequences. Figure 3-11 show an example control path.

### 3.4.7 Loop Indices

The assignment of the row of 1 to be used in agiven ladder fixed part is aade by the compiler based on che graph structure. The rulet are:

1. The same row of will not be used in two different laddera (nodes of the super tree).
2. One son of each non-leaf node in a nesting eree will une the same row of 1 as the father. (This is alaply to reduce the number of rows used.)
3. Other nesting sons will use different rows of 1 than the father.

Stnce two nodes are in the same ladder if connected by nesting edse, no conflicte can arise.

### 3.4.8 Loop Limit

The value used to control the number of thes a loop executes is defined by a label on the graph node for that loop and has one of the following forme:

1. $\quad \rho A_{1}$ - The loop timit 1s ( $\left.\rho A\right)[I]$.


Figure 3-11 - Control Path (*) to Node $x$
2. e $\omega A_{1}$ - The loop liait 18 the current value of the index of the loop assoctated with the $i^{\text {th }}$ dinension of $A$ in the code for expreasion e.
3. pis - the loop limit ia given by the acalar value of node of the parse tree of the Afl expression.
4. De, - the loop linit is eet froa the current value of the Index ( +1 ) whenever the node labeled $e_{i}$ reaches its limit. (This is used for compression. The compressed dimension of the result ends when the compressor does.)
or an expression combining these values using $t_{0}-, i$, and scalar constants. The value specified will be stored ta the row of rho watching the row of I selected for that loop.

### 3.4.9 Array Storage Polaters

A unique element of PI and row of $\mathbf{G}$ is associated with each array accessed by a ladder network. The following labels indicate that the ladder fixed part they define increments the plasaciated with the varlable named, and specify the dimension of the array whicit definea that entry in $G$.
I. $A_{i}$ - The luop advances the PI pointing to $A$ the amount corresponding to incrementing the $1^{\text {th }}$ subscript. A is referenced.
2. $A_{1}$. - The loop advances the Pi polnting to A'the amount corresponding to incremeating the $i^{\text {th }}$ subscript. A is aseigned to.
stream generators - a hodel for the execution of apl.
3. ${ }^{-} A_{i}$ - The Pl pointing to A la backed up to the firet poaltion of the $i^{\text {th }}$ dimension (to permit repeated access).
4. ipA - The pointer takes on successive values of $1(\rho A)[1]$. (if possible the loop index will be used.)
5. 1s - The polnter takes on successive values of

1 <result of parse tree node a>.

Since there ia a one-to-one association between array names and pointers, the array name (un-subscripted) will replace the notation (PI) in aplice code to indicate access to array elements.

When an asaignment occurs inside an expression, all referencre to that variable appearing to the left of the assignment operator are considered to refer to a different variable fay be a different area in memory). Adistinct name will be used in atream gencrator labels. If the same array name appears more than once in an expression, local alfases will be assigned to permit the use of different pointers. An In-line assignment will be assumed to be two occurrences of the array name (one for the asoignment, and one for the use of the value). The use of an allas will be indicated in our examples by following the original variable name by "'". The compller will merge allases if it detects synchronized access to the same storage.
3.4.10 Storage Spacing

There will be a row of corresponding to each item of PI. The ordering of the values in a row of depende on the positions of labela in the stream generator graph.

### 3.4.11. Address Incremente

There will be a row of deliti correaponding to each item of PI. The value of delita ia calculated from $G$, RHO, and the neating relations given by the graph. The calculation is deacribed in detall in Appendix c.
3.4.12 Adress Calculation

In addition to the simple selection operators which may be affected by changes to the BETA, RHO, and G of the ladder fixed part, there are two Afl. selection uperators which wust be implemented uaing oplice code to calculate addresses. These are rotation and general aubscription. Since we want the address generation process to be completely deacribed by the labels on the nodes of the stream generator graphs, new labela are defined below wich indicate that the approprlate address computation occurs at the beginning of the loop defined by the graph node. They are:

1. $A_{i}(e)$ - the pointer to $A$ is adjusted to point to the element whose $1^{\text {th }}$ coordinate is equal to the current value of the expresion defined at node e of the parse tree of the APL expresiton. A is
referenced.
2. edA, - the pointer to $A$ ia adjusted to account for the rotation of the $i^{\text {th }}$ coordinate of $A$ epecified by the expression $e$. A is referenced.
3. $A_{i}[e]+$ - the pointer to $A$ is adjusted to point to the element whose $i^{\text {th }}$ coordinate ia equal to the current value of the expression defined at node $e$ of the parse tree of the APL expression. A is asaigned to
4. efiA. - the pointer to $A$ is adjusted to account for the rotation of the $i^{\text {th }}$ coordinate of A specified by the expression e. A is aseigned to.

Both rotation and subscription employ slaliar splice code. The previous value of the subscript is kept as an ftem of $T$ and the multiple of the item of $G$ associated with $A_{i}$ necessary to move to the new subscript position will be added to PI at each step. The ladder fixed part will have removed the effect of incrementation in lower level loops in a afilar fashion to the action indicated by the label ${ }^{-} A_{i}$.
3.4.13 Spectal labels

In order that the graph representation alone, without spifce code, be aufficient for analysis needed to ellminate unneceasary teaporary storage, labele for two apecial arrays and a set of functions which odify the meaning of labela are defined:

1. ZERO - repreaents an array of ungpecifled size containing the numeric value zero.
2. BLANK - repreaents an array of unspecified aize containing the character value blank. The coapller whll not actually generate code to access stored values when ZERO or blank are used.
3. $e_{1}$ - a function which marks its left operand as the source of the $1^{\text {th }}$ dimension of the result (subscript is omitted for a ecalar) of the expression defined by node e of the parse tree. A node so labeled is a "result node" for e. The nodes on a control path to a result node are called "active".
4. nle $1^{-}$function with the same meaning as above which also Indicaten that the calculation depends on $n$ prevtous values of reault. (fixes order)
5. ef a function with aignale that the labela modified contribute to the expression for e. The node does not produce a dimension of the result, and ite loop nust be completed before values are avallabie.
6. SKIP - a function that indicates that all computation is owitted from its teft operand and only pointer wovement is done. Since no values are produced, any result labela are removed from the operand of SK1P

The set of labela of a node will be given as a text string which should be parsed as an APL expression, with the exception that the aymbol ' ${ }^{\prime}$ is used as a list element eeparator and has a precedence lower than all
other operators, including function application.
3.4.14 Address Generation Santity

The stream generator description method debcribed above is too powerful In that it will allow the apecifications of ladders which do not generate valid address sequences. In particular an item of PI associated with a given array is only valid if a loop associated with each dimenation of the array has been eutered and not exfted. To ellminate some of the danger and to glve a clearer plature of the way the stream generators will be used, a set of restrictions on the labeling is given: (examples of violations of these restrictions appear in Figure 3-12)

1. Pointers will only be used at the highest level at with they are valid. This means that they will only appear in a splice leading down from, or up to, a fixed part whose graph node is labeled to findicate that that loop changea the pointer. The pointer is valid deeper in the nesting structure but the same value would be fetched repeatedly, so it should be moved into a register at the higher level.
2. Any label indicating pointer movement for reference ( $A_{1}, A_{1}[e]$, or e ${ }^{(1) \text { ) wust appear on a control path to a leaf on which must be found }}$ one and only one such for each dimension of A. (Aliases generated because of multiple references to the same array in the APL. are considered distinct.)
3. Any label indicating pointer movement for aseignment ( $A_{1}$, $A_{i}$ [e $]^{+}$, or efly, ") must appear on a control path to - leaf on which wust be found one and only one such for each dimension of A.
4. Tvo labels for the eame dimension of a given array reference or assigneent must be at the same level. Labels for two dimenalons may be at the same level ooly if they are in the same node. The ordering along the control path and the ordering by level must agree.
5. If the same control path to a leaf holds both an assignment and a reference to the same area of storage. the asaignment and reference for each diaension must be at the same level. The asaignment label for a diaenston must not be later along the control path than the reference to that dimension.
6. If the aeparation of two different control paths which define an asaigment and a reference to the same area of storage occur at a node with multiple nesting, the assignment must be in the right branch (executes first). If it occurs at a choice node, the asaignaent must be in the ladder contalning the choice.
7. The address calculation algorithm assumes that there are no repeata In the address sequence. If the control structure specified by the stream generator graph make repeated passes over an array or part of an array, the address polnter sust be reset. The reset operation is Indicated in the graph by labelo of the form ${ }^{-1} A_{1}$. The graph specifies a repetition if the control path to the lowest node asociated with the given reference or asaignaent containa any loop
nodes not labeled to be part of that operation. The reset operation must be placed on all the nodes in the gap.
8. If a node contains an address computation label referenciug the reault of parae tree node $e$, then a value of the expression aust be avallable at that polnt. This will be true if the control path to the node has on it labels for each diaension of $e$.
9. The control path leading to a node labeled with epf must containa node labeled with $\mathbf{f}^{\boldsymbol{A}} \mathbf{i}^{\text {. }}$
10. The restrictions of uniqueness and distinct levels which apply to addrese generation labels also are laposed on the labels for e

As was the case for the control structure rules, no part of the complier checks and enforces all of these reatrictions. Rather they served as guideltaee for the writing of the actual procedures used used to build trean generators (see Chapter 4).



Figure 3-12 - Addresa Generation Errore


Figure 3-12 - Address Generation Errors (cont.)
3.4.15 Loop Limit Validity

When a cliolce node selects between alternative targete, the number of alternatives must equal the number of choices. The alternatives must also match in alze at the other levels. In addition, aince the increment delia at one level is calculated on the asamption that all lower levels exhaust their corresponding array dimensions, the effective loop limits aust atch the size of the array. Thus we require: (see examples in Figure 3-13)

1. If tuo loop 1 imit labels appear on the ame node, they must agree. (If not based on the same array, conformablity requirements from constrafat propagation may be used to establish equality.)
2. If evocation edges leave node, the loop liuft of the choice node must equal the sum of the limite of the target nodes
3. If the control path connecting two active nodes at the same level does not pase over an evocation edge at that level, the loop limita of the two nodes must be equal.
4. The sum of the loop limits of all nodes contalning pointer increment lobele for a given array dimension must equal the length of that dimension. If there exists more than one node incrementing a single pointer, the control paths leading to those nodes must eeparste at either a node with multiple neating with is their father or at a cholce node which is at their coman level.
 $p A=11 a i t(1)-11 m i t(2)+11 m i t(3)$

linit (1) must equal linit (2) but liait (3) need not equal ilmit (4)

Figure 3-13 - Loop Linit Eerrora
3.4.16 Sequencing Correction

Wien the pointer movement for one dimenston of an aray ia acconpliahed In more than one node, the standard ladder fixed parts will not produce the correct address sequence because at both the first and the last (test fails) steps of a loop the pointera are not incremented. Therefore at the transition between two nodes moving the same pointer one increment will be omitted. It must be done in the separation node before the first execution of the oecond option to execute. Pointer resct applied to pointer motion in a different ladder will require the sane correction.
3.4.17 Examplea

The stream generator graphs for two of the examples presented earlier are shown below. In these drawings we have included only those result labels which are needed to show special properties of nodes (/) and relationships between them. This was done to save space and avoid clutter. In Appendices $F$ and $G$ graphs with all labels shown are presented. An inspection of those draulngs will quickly reveal why labels are owfted here. The procedure used to generate these grapho ts described in Chapter 4.
3.4.17.1 Filtering - The stream generator for the filtering example $B \cdot(v / A) /[1] E v A \circ \operatorname{A} C A D$ is described by:

in the new notation.
3.4.17.2 Merging - The merging example $S++/+/ B, C,[1]$ now appears as:


1:711]-1
10: T[2]+0
2: $7121 \cdot 0$
11: $\boldsymbol{T} 2 \mathrm{2}+C+\pi 2]$
3: T\{2\}-D+7\{2)
14:T[21+B.TT2]
$6: 7\{21+8.712\}$
15: T[ 1$]+\pi(2] \cdot T[1]$
$7: T[1]+721+\pi 1]$
witch is a considerable implification
3.5 COHPIIER OBJECT CODE

The object language of the compller has been designed to simply and efficiently implement the control structures given by the graph representation and to be easily translatable into achine code for the adder machine designed by Charles Minter (see Appendix E for a descriptiun of the ladder machine and an example program). A BNF definition of the ayntax follows:

| <network> <br> <ladder> | ::-<ladder> \| <network>";"<ladder>; ::-l.ADDER <ladder $\\|>":$ <statement>; |
| :---: | :---: |
| <statement> | : :-<cond statement> \| |
|  | <assign statement> \| |
|  | <lutt statement> \| |
|  | <loop atatement> \| |
|  | <switch statement> 1 |
|  | <empty>1 |
|  | (<statement list>): |
| <statement list> | : :-<statement> \| <statement list>";"<statement> |
| <cond atatement> | : :-<temporary>"a"">"<statement> \| |
|  | <temporary>"-"">"<statement>ELSE<statement>; |
| <assign etatement>: :-<var>_<expr>; |  |
| <expr> | : :-<var><dop><expr) \| |
|  | <constant><dop><expr> I |
|  | <mop><expr> 1 |
|  | ( $<$ expre) ) |
|  | <var> 1 |
|  | <constant>; |
| <var > | : :--<wemeory> \| <temporary> \| |
|  | <potnter> \| <base> \| |
|  | <1ndex> \| <limity | |
|  | <step> \| <spacing>; |
| <init otatement> <br> <loop statement> | : :-INIT <pointer 1 list>; |
|  |  |
|  | USING <index $1>$ <stupping list>; |
| <ntepping 1fst> |  |
|  | <stepping list>,<pointer \|> |
| <switch statement>: $=$ LVOKE<ladder 1>; |  |
|  |  |
| <nemory> | : :-i<pointer>l; |
| <temporary> |  |
| <potnter> | : : =Pli<pointer $1>1$; |
| <base> | : : - betal<polnter $1>1$; |
| <Index> | : : = 1\|<index |>, <level 1>1; |
| <1malt> |  |
| <step> <br> <spacing> | : :- DELIAl<pointer \|>, <level |>l; |
|  | : : - G\|<pointer 1>, <level $1>1$; |
| <mop> <br> <dop> |  |
|  | : $:-+\|-\|\times 1 \leq\|1\|\|\| *\|-\|"\| "\|$ 이 ! 1 |
|  | $\wedge\|v\| \wedge\|v\|<1 \leq 1=1 \geq 1>1 x_{i}$ |

 : :-<constant>::-<unsigned integer>

The semantics of the language are defined informally below with reference to the existing languages IMP-10 $\{5$ ) and APL. With the exception of the APL operators the language ia an extengion of IMP-10 and programs which use only the standard arichmetic operationa will complle into PDP-10 machine code. Appendix $D$ shows the IMP extension necessary and a sample of $\operatorname{IMP} \mathbf{- 1 0}$ compller output for stream generator code.

1. the operators (mop and dop) are equivalent to the corresponding acalar operatore of APL.
2. _is scalar esignment. (Algol :-)
3. $\rightarrow$ is the IMP conditional. (Algol IF .... NE 0 THEN ......)
4. The init statement is expanded to

Pl[<pointer A>) BETAl<pointer |>]
for each element of its polnter list. An init statement eust be executed for a pointer before that pointer is referenced.
5. The loop statement is expanded to

<unlque label>: <atatement>

(PI|<pointer $\mid$ | ... 1 repeat for each item in stepplng list coto <unique label>);
which can not be writtendirectiy. The index 's and level in have
values given in the USing and at clause of the loop statement.
6. Fach ladder atores a separate program counter. An EVOKE statement makes the designated ladder active (that ladder must appear as a label). All program counters start at the beginning of each ladder and execution starts with an implied EVOKE 1.
7. Control, upon reaching the end of a ladder, returns to the beginning.
8. The construct $\{\ldots$ Is an indirect reference to the wewory which holds array elements

All features not deacribed should be considered as IMP-10 extended to handle matrices. We assume that the operands and the values for BETA, RHO, dELTA, and G have been pre-loaded.

The translation of an APL expression into a stream generator takes place in three steps. First, stream generators, wifh have the maximum control and polnter flexibility and temporary storage which may be required, are generated using the graph representation. Second, transforsations are applied to the graph in order to elisinate control overliead and unnecessary storage. Finally, the graphical representation is translated into the matching program. Figure $4-1$ is a flow chart for the translator. For the purposes of describing the transiator in thia thesis, we have presented several components of it as interpreters of a cowand language. We then give the "program" to be executed in different oftuations. Such an approach could, but need not, be used in a machine implewentation.
4.1 GRami transformation

The first two atepa involve transformations of atream generator graphs. To simplify the deacription we define below a set of atandard operations

commands). The definitions of the operations are given in teros of the structure of the graphs. When a node moves, ita labels move with it These operations (except Overlay) assume that the graphe which they ransfors liave the following properties:

1. Only the entry point of the graph may have more than one nesting son, and the control path to any result node aust include the eft-most son of the entry point. We are building a control tructure which does a succession of complete operations at the highest level. The last one produces the result.
2. If a node has evocation edges leaving it, it has no nesting sone

All header nodes are at level 0
4. All result nodes are in leaves of the super (evocation) tree.

The operations (except overlay) preserve these properties if they hold for their input. Since they hold for laddere created to access an array, they wlll be preserved until the flnal atages of the improvement of the atream generator, at wifh time Overlay may be applied as the dast use of these operations.

A stream gencrator graph having these properties may be partittoned into the entry point and one or more "bub-graphs". Two nodes are in the ane sub-graph if and only if the control path to both of them includee the same nesting son of the entry point. A sub-graph is active if it containe result nodes.

### 4.1.1 Conmanda

The compller wlll process the graph using the operatione given belou. The steps carrled out for each command are given and many are llustrated by examples. In the examples, the graphs have been edited to remove labels not needed to identify result nodes.

Certain of these operations are not applicable in all cases. If an operation can not be correctly applied, it is said to "fail". Wien failure occurs, the graph is restored to its state before the operation was invoked. Fallure of a command is reported to जlatever process invoked it.
4.1.1.1 Adjust - A stream generator graph A ts "adjusted to fit" a ladder $B$ by changing loop limits in A if necessary so that:

1. For each node in $B$, the node in the entry ladder of $A$ at the same nesting level has the same limit.
2. Graph A שeets the requirements for the relation between the liafte of chaice nodes and their targets given in Sectlon 3.4.15.2.

Grapha which have been adjusted may be in violation of the restrictions given in Sections 3.4.15.3 and 3.4.15.4 which specify the correct relation between loop limits of nodes at the same level and between loop limits and array sizes. Subsequent comanils may correct the gituation, but when Ad Juat is used (in Merge belou), the comand Check aust be executed at the end of proceasing to verify
that the final graph is correct.
4.1.1.2 Check - Check does not alter a graph. It verifies that loop limits meet the restrictiong given in the three sections mentioned above. If the reatrictions are violated, then the command using Check falls. Figure 4-2 shows examples for adjust and how it can cause Check to fall.
4.1.1.3 Overlaying - When two stream generators with the same structure are operating (or can operate) in aynchionization, it ia desirable o use the gase control structure for both. This will be accomplished by overlaying the two generatora. Two grapha for sub-graphs) may be completely overlayed if:

1. The two graphe are isomorphic
2. The equating of nodes of the femorphism preaerves not only adjacency but also the typt of connection (nesting, raveled nesting, or evocation). the level, and the right-to-left order of multiple edges leaving a node.
3. The loop limitg for each equated palt of nodes agree.
4. If two choice nodes are equated, they must both make the same selection at each step.

Because of the requirement of preserving right-to-left order of edges, the overlay process involves only a single shultaneou traveral of each graph (tree). A siople intexpretation of the first two requiremente is that the pictures of the ewo graphs must

The command: Merge a and b (as in $X+Y, Z$ )

requeste that a be copied and adjusted to fit both active ladders for $b$.


Since $(\rho X)=(\rho Y)+\rho Z$ it true by confornablifty, Clieck will succeed after Overlay. However the command: Merge band d (as in $(V / A)+(W / b)$ )

requests that $d$ be adjusted to fit the active ladder for $b$ (1). This means that the 1 limite for node 1 and node 2 must agree, but conformability requires nodes 1 and 3 to have the same linit. Thus Check will fall.
look the same. Obviously this operation will not change the nesting pattern or change header level.

It is also posaible to do a partial overlaying in two cases which do not permit complete overlaying. They are:

1. If complete overlaying would combine two choice nodes with differeat selection patterns, the nodes may be combined, but overlaying atops with that node. Both gets of evocation edges leave the new node.
2. If two nodes can not be overlayed because of count or addreasing restrictions or because one ta a raveled structure and they are nenting oons of nodes that can, they may become separate nesting sons of the combined father. Overlaying stops at this division.

The last form of incomplete overlaying can create multiple nesting at any potint. However it in performed only during the flame stage of the Improvement process. The merging operation (belou) which uses overlay requesta complete overlay only.
4.1.1.4 Transpose - Several API. operators (ex. Transpose) require the permuting of the order of nesting of the nodes labeled to be part of an operand. When this is dune, it is necessary to also move the other active nodes. Transposing a atream generator graph is accomplishied using the procedure given belov wifh is illustrated in Figure 4-3.

1. The active aub-graph is detached from the entry point and tranaformed as epecified in iteps 2 thru 5.
. 2. The neating edges connecting active nodes are broken.
2. All active nodee at each level are moved to the specified new level as anit.
3. Each set of nodes formerly connected by nesting edges are reconnected in their new order. If gaps exist in the nesting, new (unlabeled) nodes are creates. (Gaps will be created wien a node which has no nesting sons is moved below a level formorly beneath it.)
4. If nodes become inactive due to transposition they are discarded. (They will have been generated earlier to fill: gap.)
5. The tranaformed aub-graph is then reconacted in the entry point. Right to left order will be preserved.

The above procedure is only correct if there is not aultiple active nesting. This transformation wlll preserve that status. it will also leave all level 0 header nodes at that level since level o is not subject to transposition.
4.1.1.5 Reversal - Several APL operators (ex. reverse) require that the processing of a given dimension of a stream zenerator be reversed. This is done by reversing all pointer increaent labela in active nodes at the opecifled level. There are 2 special cases.


Transpose command - after steps 1 and 2:

after step 3:

remult:


Figure 4-3 - Trantipose

1. The operation aay not be applied to a node containing the label functions / or 1.
2. If reversal is applied to a raveled structure, all nodes comprising the structure aust be reversed.
4.1.1.6 Merging - The generation of the stream generator graph for an operation which requires synchronized access to ite two conformable operands (ex. dyadic scalar operations) requires merging the entry points and the actlve sub-graphs of the two operands (inactive sub-graphs are first disconnected). There are $\mathbf{3}$ cases, each deacribed below and illustrated in Figure 4-4.
3. If in each graph the result nodes are in the ladder containing the entry point (ex. $A+B$ ), the two graphs are completely overlayed if possible.
4. If one graph has result nodes in a different ladder from the entry (control path uses evocation edges) (ex. fif(c,D) ), each ladder containing result nodes is detached and completely Overlayed (if possible) with a py of the graph for the other operand which has been Adjusted to fit. The resulting ladders are re-connected and the whole Checked.
5. If both operands have evocation edges as part of the control path to a result node (ex. $(A,[1] B)+C,[21 D)$ then we select the operand in which the first auch occurs at the highest level (selection can be arbitrary if levele are equal). Each ladder
containing result nodes is replaced by a copy of the the graph for the other operand which has been Adjusted to fit the ladder it replaces.

For each graph s which replaced a ladder $A$, we detach each ladder in B containing result nodes and completely Overlay it (if possible) with a copy of A wifich has been Adjuated to fit. The results are reattached, and the whole ia Checked.

The lactive aub-graphs of each operand are then attached to the header of the gerged active structure (to the right). If either Check or Overlay falls then Merge fails.

This procedure will not create sultiple active nesting ofnce complete overlaying can not cause new neating. Since ladder structures are moved intact, headers will atay ar level 0 if at that level in both operands.
4.1.1.7 Neating - Certain APL operators (ex. outer product) require a stream generator which accesses one operstor inside the inner-most loop accessing the other. The generation procedure wich is shown In Figure 4-5 is:

1. The active sub-graph for the operand to be nested under the other is detached.
2. A copy of it is attached to each result node of the other atream generator which is at the end of an active control path.

Case 1: for



Merging
$a$ and $b$ $a$ and $b$
requires requite
only
siaple overlaytag


Case 2: for


Merging a and bequires copying the ladder for a


Case 3: for


Merging a and $b$ requires copying both a and $b$


Figure 4-4 - Merging
3. If the newly positioned sub-graph contains any header nodes, new emply nodes are inserted between each header and its nesting son unt 11 nodes which had equal neating level in the original aub-graph are agaln at the same level. If a new node is a nesting ancestor of a node modified by SXIP, then that modifier la placed on the new node.
4. The header of the lover operand is combfued with the header of the upper. Any anb-graphs nested belou that header become sons of the coubined header (on the right).

The result of this procedure for nesting will have all its header nodes at level 0 if so posittoned in both operands. Since the new nesting connections are made to nodea with no active aons, and only one connection is made, no multiple active nesting can be created.
4.1.1.8 Altcriatives - The APl. operations uhich require the belection of one of two possible sources for the result (ex. expanaion) are iaplemented using co-routine evocation. New evocation edges are udded, runing from the lowest reault node(a) of the graph which wakes the selection, to the active node in the entry ladder of each alternative ulich ia at the level of the operation. The procedure

1s illustrated in Figure 4-6. There are 2 special cases:

1. If the node from which the evocation edges leave is above the level of the operation (as in $V \backslash i n d A$ where $n$ is not higheat dimenaion of A), it will be nested under new empty nodes until at a matching level.
Nesta b under a

and for:


Nests a under c
after ateps 1 and 2:

the reault after atep 3:

2. If one of the alternativen doca not have an active node in the entry ladder at the level of the operation (as in $A,[2] B,[1] C$ aee Figure 4-1), no legal connection can be made. The Evocation Order demon described in 4.l. 2 muat first be applied. it will guarantee that the new deatination for the evocation edge has a proper target.

This operation wlll fall if an alternative contalno inactive target nodes at the level of the operation (le, the result of a compression may not be compressed over the same dimenston without being stored) unless the operation is being used to represent catenation (see Appendix $G$ - Example 4).

The creation of alternatives has no effect on nesting otructure or header levels. There will be nodes nested belou the choice node only if it is posible to have an inactive node nested below a result node (which has been ruled out).

These operations whll be used both to create and improve strean generators. We show in Appendix C that reversing or transposing a sub-graph of the entry polnt will not change the contents of otorage.

Hone of these operations will create multiple active nesting or pull header nodes down from level 0 . New nesting connections are made only to the entry point and at the lowest result node of a ladder. Holliple nesting will only be created at the entry point unlesa an lnactlve sub-graph hangs below a lovest result node.
for:

the Alternative command produces:

and for:

the reault is:

4.1.2 Demons

Falthful application of the above procedures can yield graphe not suited for later phases in the compilation. To avoid this the following transformations will be carried out whenever applicable.
4.1.2.1 Address Calculation - If nodes contalning address calculations are moved by a transposition, the address calculation will be moved. If necessary to the location where the subscript is avallable (sce Section 3.4.14.8).
4.1.2.2 Empty Nodes - If empty nodes are created, they must be assigned loop limits meeting the requirements for loop limit validity given in Section 3.4.15.
4.1.2.3 Pofnter Reset - then graphs are transposed or nested, pointer reset labels must be added as required by Section 3.4.14.9, and removed when they are not required.
4.1.2.4 Redundant Choices - If a control path passes through two chotce nodes, and if the branch selected by the first deternines the branch wifh will be selected by the second, the branchs which may not be selected can be deleted. If that results in a choice having only one branch, the remaining alternative can be overlayed with the choice. An example is $(A, B)+A, C$. We saw in Figure $4-4$ how Merging the results of two Alternative operations generates a graph with two chotce nodes on each control path to a reault node. In this case they are at the same level and identical.
4.1.2.5 Evocation Order - The co-routine pattern described in Chapter 3 requires that if an evocation edge enters a ladder, it connects to a node at the same level as the source of the edge. The above cransformations may produce a graph which does not have a suitable target for a subsequent operation. If so, the streail generator wust be transformed to create one. The procedure which operates at the level of the super tree defined by the evocation edges is: (see Figure 4-7 which shous the example $A,[2], B,[1] C$ )

1. Locate a node with a son which does not contain a legal target.
2. Break the connections into the father and into and out of the son.
3. Put the son In place of the father, and in the place of each grandson attach a copy of the father (including any descendants not detached).
4. Attach each grandson to the remaining broken link on the appropriate copy of the original father.
5. Repeat until the super graph is ordered.

When the evocation edges are broken and reconnected the chotce notes remaln the same and the targets become the nodes at the matching level. This procedure has no effect on nesting structure or header level.
4.1.2.6 Scelar Operande - If an operand of a dyadic operation is a scalar, its header fiemed with the header of the other operand.

## the graph:


which results frow

$$
\wedge_{b}^{[2]}
$$

has an evocation tree
has an evocarion tree
with <1> as a "father" whose gon <2> does not have a son <2> does not have a proper target node
<4> are grandsons)

this is transformed to:

which 18:


Figure 4-7 - Evocation Order Demon

Labela to reference that acalar are placed on all the result nodes of the other operand.
4.1.2.7 Repeated Calculations - If an operation will bulld a graph which has, or could have, after transposition, nodes of one operand nested below nodes not of that operand, and if the labels modified to be the result of that operand are not simple pointer movement reference only, then labels apecifylng asaignment to a temporary array are added to each modiffed node and they become the result.
4.1.2.8 In-Line Assignment - If, in the graph for an operand, the modifiers indicating wich labels represent the result of that node of the parse tree are applid only to simple pointer increment assignment labels, and if the operation is not assignment, the stored quantity will be used as the operand. The changes wade to the graph are detailed in the section of Appendix $F$ describing the assignment operation. (Note: This interpretation of assignment tuplles that the value of anasignment to part of an array is the right operand of the assignment. It also forces shape conformability.)

This operation nests an active structure under the entry polnt. but it also removes the result labels from the old sub-graph. This the result will not have multiple active nesting. The new active sub-grapli hat no multiple nesting and contalns no tnactive nodes. Header level is not affected.

The lat two demons reflect that one intent of the gencration procesa is to leave aximum flexibility for the impraver by including all temporary
storage that could possibly be needed. The improver will never need to generate temporaries, only elfminate them.
4. 2 creation of stream cenerators

The input to the translator is the parse tree with its associated predictions and requirements. The parse tree will be traversed in right-left-root order. If, during the processing of a node for an operator, temporary storage is created to hold the result, or if an operand must be placed in a temporary before the operation can be applied, the parse tree vill be modifled to reflect the change:

where $b$ and $c$ are new parse tree labels. The action to be taken for each operand or operator la given below. Examples of the graphs produced for each operator are shown in Appendix F. Figure 4-8 ahows a flowhart of the processing of an operator.

### 4.2.1 Operands

Hien a leaf node (storage reference) is encountered, it is handed as follows:
4.2.1.1 Arrays - If the variable (or constant) ia an array, the graph
is a header node over loop nodes nested to depth equal to the rank


Figure 4-8 - Translation of an Operator
of the array. Each loop node io labeled with ef $A_{1} \cdot \rho A_{i}$. This is a elngle ladder with no multiple nesting or inactive nodes.
4.2.1.2 Scalars - If the variable is acalar, the graph ia only a header node.

Each ladder created la based on an array. New laddera will be generated for operations only when a new temporary array is created.

### 4.2.2 Punctions

User uritten functions may be handled In one of two ways:

### 4.2.2.1 Separdte Unit - If earlier phases of the compller have

separated the function call into a separate complied unit, that call
is not complied, but serves to instruct the interpreter to complie
(If necessary) and execute the function body.
4.2.2.2 Stream Generator Subroutine - If earlier analyais has deterained that a previouly compiled function may be included in the calling complled unit, it will appear in the parse tree as an operator of appropriate valence. The comand program for proceseing this operstor is:
for each operand of the function do
(bulld a staple ladder with shape of operand;
label the new ladder to assign to a temporary;
execute Merge command between new ladder and operand);
bulld a simple ladder with shape of result;
label it to asaign to a temporary
try pol and as reault of the funct
of operand and result laddera
wh result as left-most aub-grap

The result sub-graph represente the action of the function which is actually connected to the calling atream generator by evoking it
from the entry polnt. Since that ladder does not ectually exist, it can never be overlayed.

## then a function tis complied a preamble is generated containing

 instructions to be followed by the interpreter in performing validity checks and fiftialization. The preamble also lists all global variables appearing in the function together with the constraints that must be imposed upon or between the global varlablea and operands of the function.4.2.3 Monadic Uperators

When a monadic branch node (monadic operator) is traversed, the graph of che result is bullt by tranaforming that of the operand. The transformations applied for each operator are given in Appendix F (with examples).

Reduction is the only operation wifch can create an inactive node In a ladder containing result nodes. Since the result of a reduction is always placed in storage, when this slieam generator is used for an operand, the In-line Assignment demon will create a new active sub-graph which contalns only result nodes. Thus when the transformation operations are applied no result node for a monadic operation may have an inactive nesting son. Therefore no multiple nesting can be created by a conadic operation except at the entry point. Since the graphe produced for operands have headers at level 0 and no multiple nesting,
and the transformations preserve these properties, they hold for the resulto of monadic operations
4.2.4 Dyadic Operatore

The graph for the result of a dyadic operation ts built up from those of the uperands. The procedure used for each AFl operator is given in Appendix $F$ (with examples)

The dyadic operations create inactive nodes only through use of the monadic operation reduction which, as seen above, does not cause violation of the nesting restrictions. Therefore, like the monadic operations, they create multiple nesting only at the entry point. Also the ladder containing the result nodes used for the choice in the alternative operation wlll have only result nodes. Since the alternative operation uses the lowest result node as the choice node, no nodes will be nested under it. Thus the dyadic operation will also preserve the dealred properties.
4. 3 elimination of unnecessary calculations

Compression and the selection operators (except transpoattion without diagonalization) discard part of their right operand. If the value is used nowiere else it should not be calculated. During the course of stream generator creation the selection operations were applied to the atreas generators for their right operands, but the In-line Aseignaent preventa any operation from affecting the calculation of a value which
has been stored.

Now, after the completion of the generation phage, if all references to any given dimension of an array which is local to the Btream generator are affected by the same selection operator, then the equivalent operation ulll be applied to the sub-graph of the entry node which is active for the gencration of that array. then the operation is not directly applicable (would generate temporary storage). it is abandoned. If the application is succep~ful, then the selection operation is rewoved from all the labels for the array. One application of this tranaformation may create more opportunities to apply it. However, since operations are moved towards the leaves of the parse tree, the process will terminate. Figure 4-9 is a flouchart for this phase of the complier.

The "reject" side of the alternative conscruction used to tmplemen compresiton does only pointer movement for the source(s) of the right operand. If the right operand is an expression which has not been put In temporary storage, calculation of unneeded elements will be skipped. If the right operand had been stored, only the final reference to the stored value is skipped. However, the cumpller attempts to eliminate temporary atorage by moving the calculation to point of use. In the case of compression, a side effect will be the elimination of unneeded calculations.


Figure 4-9 - Un-necessary Calculations

The primary reason for tranolating APL into atream generators is to facilitate the elfaination of unnecessary temporary atorage. The stream generator graph reveals the order in which intersediate results are generated and used. It also contains the information needed to determine alternate orders. The ideal situation is a stream generator in which the order of gencration and use watch for all interwediate values. When this occurs no temporary storage is required. The compller will attempt to find the orde which comes closest to this Ideal. During this process a constraint is lmposed that no calculations Wlll be repeated in order to reduce storage. The task of determining the best ordering is complex because the constraint of no repeated calculatlons requires that certain operations be done in one particular order (ex. Scan), and because certain operations require internal temporary atorage unless done in a specific order (ex. Reduction).

If the level 0 header which is the entry point of the stream generator has wore than one nesting son, each sub-tree executes Independently in succession, communtating array data only via memory. The creation rules have produced a graph in which the entry point is the only node with move than one nesting son. They have also produced a configuration in which a successful application of the commands transpose or reversc to the generation of an aray (result labels for that parse tree node used to determine active sub-graph) will not change the result in etorage (see Appendix C). These two operat fons which ve call "reordering" may thus be applied to the atream generator as needed

The elimination of remporary storage requires that the stream generator be transformed so that the calculations are done in synchronization instead of in sequence. The desired transformation is to overlay all the sub-graphs of the entry point. When overlaying is blocked only by the presence of raveled nesting, two sub-graphs ay be synchronized as co-routines using evocation.

The compiler attempts to select the order for each sub-graph which permits the maximum overlay. Storage may be eliainated in the following case日:

1. Both assignment and all referehces to an array dimension are in the same node.
2. The assignment to an array dimension in in a choice node and the only references are in all the targeta.
3. The asaignment and reference of the entire array are at aatching levels of two ladders synchronized by evocation.

If an array is used in a node where none of the above apply, or if there exfst a node where the storage is modified by $/$ or $\$, then storage of that array may not be elfatnated lower in the graph.

The wost otraightforward approach to pleking an order for each sub-graph would be to cry all possible combinations of ordering and select the one requiring the minimum storage. Unfortunately that approach requires the examination of a number of cases that grows exponentially with the number of sub-graphs. The sectione below
describe a procedure which is not guaranteed to generate an optimal ordering, but it is computationally feasible (time) and has proved to perform well.
4.4.1 Generation And Use

The deterinfation of best order for each sub-graph is stoplified by the use of an alternate representation for the generation and use of arrays. We draw a graph in which each node representa one of the sub-graphs of the entry point of the stream generator graph. The nodes are labeled with the names of the arrays (or scalars) assigned to by that sub-graph. If one sub-grdph uses a value generated by another, a directed edge is drawn from generation to use in the new graph. The edge is labeled with the name of che array (or scalar). If a node has out-degree 0 , the values it assigns are not referenced in this streas generator. If the arrays (and scalars) generated are local to the otream generator, the node (and the associated sub-graph) are deleted (ouly functions without -ide-effects have been included in larger stream generators).

Each edge indicates a possible storage savings to be obtained by overlaying the sub-graphs represented by the two nodes connected by that edge. Thus we first eliminate edges connecting sub-graphs wich ve can determine can not be overlayed (the complexity of the recognition process is discused belou). This occurs in the following aituations: (considered in order ligred)

1. Required Storage - Storage of a generated array is required if:
2. A use of that array is aubscripted or rotated.
3. A dimension of the use is modified by a selection operator.
4. Tvo dimenaions of the use are in the same node (diagonalized)
5. Two uses of the ame array in one abb-graph (aliasea) are not in the ame order at the same levels.

When an array is used in that way, edges for that array entering that node connect two nodes which may not be overlayed. Those edges are deleted.
2. Scalars - A sub-graph generating a scalar intermediate reault in a register must complete before the value may be used. Thus edges representing acalar are deleted from the graph.
3. Alternatives - If both the generation and use of an array are in ladders which are alternatives selected by a chotce node (reached via evocat $\mathrm{t}_{\mathrm{o}}$ edges), and if the alternative is not implementing the compression operator, then overlaying is posatble (see definition) only if the choices in the two sub-grapha are identical. Otherwise overlaying tis laposilble, and the connecting edge is removed from the grapli.

In the case of compression it may be possible (see Section 4.5.1) to move an array use from the alternatives into the choice ladder. If this occurs, overlaying ie posible. Thus edgee representing that altuation are retained.
4. Order Conflict - Any path through the graph defines a function which maps each ordering of the node at the beginning of the path to that ordering(s) of the node at the end of the path which causes generation and use to be synchronized. If there exists a node with out-degree greater than 1, and if pathe which leave that node along different edges refoin, the ordering functions deftaed must be consistent. If this is not true, either the fork or join mist be elininated.
5. Repeated Use - If one use is nested under another, no order exists which permita both to be completely overlayed with its gencration.
6. Required Sequencing - If two nodes may not be overlayed, this may block the overlaying of other pairs of nodes in three circumstances:

1. A node which depende (path exista) on both may be overlayed with netther.
2. A node depended on by both may be overlayed with neither
3. Two nodes which may not be overlayed may not be overlayed with the same node.

When a chotce exists as to wifh edge in the graph to eliminate, the one representing the smallest quantity of temporary storage is selected (le - best is a global array - next the smallest temporary). If any edge for a given array has been elfalnated, that array must be atored, and it ie considered global in any further processing. As a final step, all
edges for arrays considered to be global are ellminated. Thus the procedure that selecte sub-graph orderinge will ouly attempt to match generation/uac order when storage saviag are possible. Figure 4-10 bhows an example of this procesa.

Letection of order conflict or required sequencing may require traciag all pathes from each node, and in worst case could could require the proportional to the equare of the number of nodes. The other caues depend on properties of aingle nodes or edges (number of edgea bounded by square of number of nodea or by size of original fuaction).

### 4.4.2 Graph Order Por Maximum Overlay

The removal of edges may have divided the generation/uge graph into several unconected components. Each will be processed separately in What follows. Each edge rematning indicates the possibility of elfotnation of temporary otorage via one of four patcerns of overlaying.

1. The generation and use are both in the entry ladder, and are overlayed.
2. Copies of the entry ladder containing the generation (adjusted to fit) are overlayed with the ladders of use 10 their position as alternatives. (Hecause of the in-line assigment denon, an entry ladder which is a generation will not have alternatives.)
3. The entry ladders of coptes of the sub-graph containing a uae are overlayed with the alternatives contafing the generation.

## The APL expresaiona:

C. $1 A$
$D+\cdots B$
$E+C \cdot \times D$
$S+1+1 B$

$\mathrm{P}+\mathrm{S}+\boldsymbol{E}$
are translated into


The Generation/Uue Graph fa

edge (1) 1a deleted due to aesting conflict (repeated usa)
(2) is deleted because $S$ is a scalar
(3) is deleted because (2) was deleted (required sequencing)

## leaving



Figure 4-10 - Generation/ube
4. When the chuices are identical, two sub-graphe with the gencration and use in alternatives are overlayed.

An edge may represent one of two eftuations:

1. The storage may be ellminated by overlaying the stream generator as currently ordered.
2. The storage may not be elfalnated because use and generation are in different orders. Reordering the sub-graph corresponding to elther node will correct this situation.

The end result of this algorithm is a graph with only edgea of type 1 . However, that is not sufficient to eliminate unnecessary storage. There are 2 cases which require a sub-graph to have a particular order before storage may be elfwinated. These are:

1. The storage may not be elfminated when generation occurs below a node labeled with / or $\backslash(/\{n \mid$ or $\backslash(n)$ where $n$ is not lowest dimension will require atorage unless transposed).
2. The storage may not be elininated if use is repeated (nested under another array $-B$ in $A 0 .+B$ or nested under a dumany node which was created for an alternative operation - $V$ in $V /[n] A$ where $n i s$ not highest dimension).

Wien the same array is used in both the choice and target ladders of a compression, storage of that array can only be elfininated at or above the level of the cholce. However, we have not included compreaing the
lowest dimenaion as one of the requirementa since it conflicts with the ellmination of repeated use of the left operand. Since we can use the storage allocated for the final result to hold candidate components, this is not a serfous problew.

In addition there will be sub-graphs (produced to handle reshape) which can not be reordered.

The algorithio presented below gives priority to satisfying the requirements indicated by edges and will, if necessary, leave the requirements indicated by nodes unsatisfied. Node requirements are relaxed in a fixed order depending on the operation that vas the source of the requirement. They are never reinstated even if the higlier priority requirement with which they conflicted is later eltalnated. Requirementa are relaxed in the order given below:

1. Rebhape Input - The monadic reshape operation generates a sub-graph which may not be reordered. If that causes an order mismatch along an edge entering the reshape node when all node requifements are honored, the edge is deleted. (The node requirement is absolute).
2. Repeated Use - The preference to avold repeated use will be the next one abandoned. If saving storage is critical, values used repeatedly may be calculated repeatedly.
3. Reduction and Scan - The preference that the dimension reduced or acanned be the lowest one is the last absindoned aince the resulting etorage may not be avolded. However, no examples have been seen in which the atorage of internal intermediate results required wiea the preference is not honored exceed the storage resuliting from aismatch
of generation and use.
4. Reshape Output - If, after all node requirementa are relaxed, an edge conflict involves an edge leaving a realiape node, the edge is deleted.

The complier proceeds as follows:

1. Visit each node of Generation/Use graph and establish preferencet.
2. Visit each each node which has a preference in order of decreasing prifurity, and trace each path leaving that node. If a node with a conflicting prefereace is reached, the preference with the lower priority ta abandoned. If a node with no preference ia reached, a preference is established.
3. If a node now exists with no preference, select one with in-degree 0 . Select an ordering and trace all patho leaving the sode. if contifcts with a preference are discovered, select a new ordering and repeat. If no conflicts are found, establish thit order as a preference for all nodes on the path. This step la xepeated uncil all nodes have an order preference.

Figure $4-11$ is a fluw chart of the ordering procedure.
This procedure which eatablishea preferences explores the whole graph starting fromeach node. Thus it may requitre time proportional to the square of the number of nodes. The final order selection traces the graph for each alternative tried. The number of alternatives is given by al where a to the depth of the graph (higheat array rank which


Figure 4-11 - Generation/use Order
rarely exceeda 4).
In Chapter 5 the performance of the compller for a aet of examplea 1a diacuased. The action of the above procedure for one example ia shown in Appendix $G$.
4. 5 elimination of extra control structure

Once unnccessary temporary otorage has been elfolnated, the complier will attempt to reduce overhead and code aize by aimplifying the control structure.
4.5.I Syncronization Within Sub-graphs

The alternative construction produces a stream generator in which the nodes above the level of the cholce in the cholce ladder and the alternatives are synchronized. Unless a level consists of a raveled atructure, all pointer wovement can be done in the cholce ladder. Since having threc loops dofng the work of one is undestrable, the pointer movement labels are moved. All nodea now without polnter movement labels and not nested under nodes with them are removed. This operstion will create header nodes at a level greater than 0 . The pointer Initialiention operatione are moved into the choice iadder.

If the choice node was created to execute a catenation, it exhausta first one alternative than the other. The same access pattern can be obtalned with leas overhead by making the two carget nodes nesting sone of the father of the choice. The choice node is deleted. The merging
example of chapter 3 shows this transformation.
If the choice node was created to execute a compresion, the pointer wovement labels for the right operand alay be moved from the target into the choice if either:

1. The target nodes are at the lowest level of the alternatives.
2. The choice node contains a pointer sovement label for the same array (different alias). The labels must be exactly identical. When the movement label is removed from an active target, it must be replaced with a pointer reset label.

If the target node modified by SKIP now has no pointer movement labels. that alternative way be eliminated.

Pigure 4-12 showe examplea of the above transformations.


Figure 4-12 - Syachronization Withir Sub-graphs
4.5.2 Loop Jamuing

The loop control required by the stream generators may be reduced in the ollowing situations: (see Figure 4-13)

1. Two sub-graphs match in shape and can be fully or patitally overlayed without resulting in reference to an array before assigname (the order of reference and assignment along the cuncrol patha of the resulting atream generator must be checked).
2. If in all ladders cumpriaing a sub-graph of the entry point two adjacent levels use the same DELTA value for all polnters, and if there is no splice code in the ladder ratls connecting the two levels, the two levela can be collapsed into one.

The translation into $\boldsymbol{\theta}$ tream generators has considerably ataplified the problem of recognizing the opportunity to apply these two cransformations.
4.5.3 Altas Elimituation

Given two pointers $A$ and $A^{\prime}$ which refer to the same array, If for each occurrence of $A^{\prime} J^{A}{ }^{A}$ is present in the same form on the same node, $A^{\prime \prime}$ way be eliainated. Only one pointer ia needed.
$D+A+B \bigcirc E+A+C$

$A+B+C$


Pigure 4-13 - Loop Jamaing

### 4.5.4 Tight Linkage of Called Functions

If a function wich has been linked into complled unit accesses its arguments (results) in the same order that it is generated (used), and If there are no repeats, then the two access pointe way be linked with an evocation edge. Adifferent veraion of the complled routine, which was created to expect that quantity to be in a register, will be used.
4.5.5 Stubroutines

If the stream generator contains identical sub-graphs (created by copying), one copy aay be created (with combined liaits). it will be evoked from each node formerly adjacent to one of the original coples. The evocation edges will no longer define a tree.

## Chapter 5

## the execution of stream generators

The previous gections have described a procedure for translating APL Into streat generators. Now we will examine the actual execution of atream generators and evaluate them bamed on the following criteria:
. the amount of otorage used
2. the stize of the code generated
3. the speed of extcution.

Our primary concern is with the amount of storage required. The other factors are considered to demonatrate the feasibility of this method for executing APL.

## S. 1 ExECITTION FNVIRONMENTS

Examiation of code aize and execution time require the apecification of exactly how the atrean generators will be executed.
5.1.1 Tranolation Into Machine language

The object code of the compliter can be translated into machine code for the Digital Equipment Corporation PDP-10 using an extended version of the comptler for the MP-10 language. The examples belou will stiou that this apprwach is feasible. However, three problews suggest that this pproach is not the ideal one:

1. Blost of the AfL scalar operations would have to be interpreted. If the arithmetic operations are to be Independent of number representation, then all must be toterpreted.
2. The concrol atructure will make very heavy use of short patterns of instructions. The lack of aingle instructiona to perfora these functions increases code aize and slows execution
3. The control parametera $I$, RHO, DELTA, and $G$ and the pointers PI and BETA are used frequencly, but are too numerous to keep in registers. The high rate of memory access will slow execution.

Hecause of these factors and the overhead of compllation, no speced advantage will be clalmed for a compller translating into machine code Only the size of the object module will be considered in order to demonstrate that the storage economy obtained by waing the compiler dues not require spectal hardware.

An example of the machine language represeritaction for a streaw generator is given in Appendix 1 . That example assumes that all numberb are represented as integers. It usen machine fastructions for the ecalar operationa.

## S. 1.2 The Ladder Machine

A better eaviroment for the execution of atream generator is provided by an auxiliary processor - the ladder machine. Charles Minter (17) has designed two versions of a processing unit deaigned to execute networks of ladders as conceived by Perlis (19). With ainor modifications they are also well sulted for the execution of strean generators. The ladde machine keape all control parameters in fast local memory. Access to main memory le required only to fetch or store array values (Splice code (81).

In Minter's design the ladder machine executes independently of the aatin CPU. When the ladder machine is executing a atream generator, the main CPU may do other unrelated processing. An alternate approach more sulted to a swaller machine would be to provide the ladder machine capabilities as an extension (aicro-programed) to the instruction set of the single CPU.

The modifted ladder machine upon which our estimates of code aize and speed are based is described in Appendix E. An example of the ladder code representation is given. The stream generator is the same as the one whose PUP-10 machine code representation is shoun in Appendix D.

Minter urote a translator which produced code for his ladder machine. Since the ladder is basically a hardware representation of the array accessing method employed by Abrams, Minter's translator producea code wifh reflects the transformations Abrams called "beating and dragging". Using this transiator and a imulator for his ladder
machine, Minter obtalned the folloulog comparisons:

1. For the simple expression $A+B$ :
2. The time to complle the expression and load the ladder machine would be twice that required to set up for interpretative execution.
3. The time requited to load the ladder machine with the results of a previous compilation is half that required to set up for Interpretative execution.
4. If the expresilion must be complled, the ladder machine will bc olower than the linterpreter for $A$ and $B$ with less than 50 lements
5. Minter's moderate-performance ladder processor executing with a DEC PDP-11 host CPU will execute $+/(1,200)$ ci 200 approximately 4 times faster than a $18 \mathrm{BM} 370 / 158$ running APL.SV.

In the examplea given later in this chapter, we will compare the speed of the ladder machine code produced by Minter's translator with the speed of the code produced by this complier. In making that romparison we wlll assume that the same hardware is used to execute the output of both translatore

## 5. 2 tRANSLATION EXAMPLES

In the sections below we present the output of the compller for each of
a set of examples. The output is analyzed to deteraine:

1. The aize of the object module if translated into PDP-10 machine code (see Appendix D).
2. The size of the object sodule if translated into ladder machine code (see Appendix E).
3. The number of array element loads and atores executed (given the sizee of input).
4. The amount of temporary storage used (given the oizes of input).

The last two weasures will be compared agalnst the same values obtafned based on the following methode of executing APL:

1. a nalve laterpreter which performs each operation separately, putting each intermediate result into temporary storage.
2. A compller which compiles on a line by line basis and facorporates the work of Abrams. The HP- 3000 APL complier [13] and the APL translator developed by Minter are examplea of such a compller.

The stream generators and the fiual object code for each example are given in Appendix G.
the execution of stream cenerators

The expression $S++2=+/[1] 0=(2 N) \cdot$. $\mid$ N will calculate the number of primes lesa than or equal to $N$. It is an excellent example of an expression which gemerates a large intermediate result oa the way to a small answer, and it has been analyzed by several authors [1] (Wer) ( 8 ) (19). It complies into 37 PDP-10 inatructions or 16 ladder inatructiona.

For $W$ - 10, the expreasion performa as follows:

## Array Element Refareaces Temporary Storage

| Naive Interpreter | 570 | 220 |
| :--- | ---: | ---: |
| HP-3000 Compiler | 0 | 0 |
| Stream Generator | 0 | 0 |

Results similar to chat obrained using stream generators were obtained by Wegbright (Wegl. Dantele (8) proposed to go further by consideriag mathematical properties of the operators. The apace requirementa when this expresition is interpreted grou as $N a 2$ and will limit $N$ sooner than excessive execution time.

### 5.2.2 Example 2 - Rowan Numbere


(N) finto ita representation in Roman numerala. It compiles into 68 PDP-10 inatructions or 31 ladder instractions.

Wien the result contalion 7 charactera, the execution of this expresion requires:

Array Element References Temporary storage

| Nalve luterpreter | 273 | 14 |
| :--- | ---: | ---: |
| HP-3000 Compller | 165 | 10 |
| Stream Generator | 28 | 1 |

The stream generators perforance is sinilar to that deacribed for this example in Daniels (8).
5.2.3 F.xample 3-.I Choose N

The function
D. $J$ CHOOSE $A ; B ; C ; N ; V$
[1] $N+111 \rho A$


[4] $\quad C+((1 \rho V)=V, V) / B$
$\begin{array}{ll}{[4]} & C+((1 D V)=V, V) / B \\ {[5]} & D+((d+1)=+/[1] C) / C\end{array}$
takes as its argument $A$ a boolean matrix each column of which has $J$ elements equal to $i$. Each column is unique and together they give all the ways of choosing $J$ elements from $N$. The output of the function $D$ is the same information for $\mathbf{3 + 1}$. The function makes $N$ coplea of each colurn of the input and forces "on" (1) a different position in each copy. It then discarda all duplicate columa and those wifh stlli have only Ji's.

Tie stream generator (see Appendix G) reveale the characteristice of the function. It will run without conformabllity checking (no fixed loop limit label appears on the same node as a variable label). Each coluan of $A$ is used once (the label $A_{2}$ appears only once and at level 1). That columa ia uaed repeatedy ( the label $A_{1}$ appear below a
pointer reset label for A) to generate candidates for collums of the output. This means that each column aust be in meroory, but the function could be entered repeatedly (as a co-routine since $v$ accumulates) once for each input column. If we wished to go directly from $J$ to $J+2, t w o$ copies of this otream generator could be strung together elifinating the storsge of all but aingle colum of the matrix for $\mathrm{J}+\mathrm{l}$.

It complies fato 206 PDP-10 instructions or 96 ladder instructions. For N - 10 and J = 5 this function requires:

|  | Array Element References | Temporary Storage |
| :--- | ---: | ---: |
| Nalve Interpreter | $7,318,578$ | 277,200 |
| HP-3000 Coupller | $6,533,604$ | 50,400 |
| Stream Generator | $6,414,660$ | 2,530 |

The execution time is dominated by that required to execute $V i l$ which is of order $0.5 \times(N \times I!N) * 2(6,350,400)$. A compller, which could recognize that the process of locating duplicate entries in a vector ( $V$ ) could be speeded up considerably by maintaining $V$ in sorted order and inserting each new value if unique, could produce much more efficient code.

However, that level of sophistication was not considered in the design of this compller.

The function gencrates a large number of candidates for inclusion in its output and then tests each one to determine if they really belong In the output. As scen above, the execution of such a function may require a compller wifh can execute the function without ever storing all the candidates at one time. This is especiality true if execution is to take place on amall machine with olimited workspace and on virtual
the execution of stream generators
storage. The value of a stream generator compller depends considerably on the prevalence of thia style of programang in APL. My impresoion, based on the programs writen by the introductory programaing clacses tought by Professor Perlis at Yale, is that this complier is needed. Hovever, the detalled investigation of a large sample of programs neccessary to confirm that impression has not been done.

It is alao not clear to what extent gains made by the compiler depend on a fallure by the user to properly analyze the problem. However, the answer to that question for thie particular problem is suggested by the function below:

```
 X+N CHOOSE Y; D;T;N1;M2
[1] T+2*$0.N-1
[2] M2*M1^<<\[1]M1 ○M1•0=T\bullet.|Y
[3] D+(,M2)/.12 1QYO.+1 1 2QP0.NM2
```

$[4] \quad X+(0=2 \mid D) / D$
$[5] \quad 0+\left(N_{\rho} 2\right) 10$
with is also a solution. This function makes a copy of each input column for each 0 preceding the firat in that coluan. It then turno "on" (1) a different one of those 0 's in each copy. No duplicatea are created and all columns have $\mathrm{J}+1 \mathrm{I}$ 'a. The old result is stored with each column converted to a single number. Since a column starting with I does not contribute to the new value, odd entries are discarded. The execution the of the new version is of order $N \times J!N$ inatead of ( $N \times J!N$ )*2 for the original. However, the natve interpreter and the HP-3000 compller would store at least an extra 635,040 and 5,440 elemente respectively when $N=10$ and J-5. My conjecture, supported by this example, is that uaer cleverness has more effect on speed than apace (provided he adheres to the loop-free atyle of programming).
the execution of stream cenerators

### 5.2.4 Example 4 - Symbol Table Update

The function

$$
\begin{array}{ll} 
& \text { SYN } X_{i} Y \\
{[1]} & Y+, \sim X \in A \\
{[2]} & A+A, Y /, X \\
{[3]} & B+(B, Y /, 0)+X=A
\end{array}
$$

usea global variables $A$ and $B$ which are respectively a vector of single character aymbols and a count of the number of times each symbol has been encountered. The function argument $X i s$ a character. it will be appended to A if required and the matching item of $B$ will be updated or created.

It complies into 85 PDP-10 instructions or 48 ladder instructions then $A$ has 10 elewents and $X$ is a new element, this function requires:

Array Element Refereacea Temporary Storage 137 22

HP-3000 Compller 10711
Stredm Generator ..... 42 ..... 0
S.2.5 Example S - String Search

The two line APL expreasion:
$D+(B[C \cdot .+1+1 \rho A] A .=A) / C \diamond C+(B=11+A) / 1 \rho B$
earches a string b for occurrences of atring A and puts all starting poaitions iato $D$.

It complles into 110 PDP-10 instructions or 54 ladder instructions. When $A$ is 10 characters long, ite first character occurs 10 times in $:$ wisch is 100 characters long, and $A$ occurs once in $B$, the expresition requires:

Array Element References Temporary Storage

| Natue Interpreter | 1181 | 210 |
| :--- | ---: | :--- |
| HP-3000 Complier | 951 | 210 |
| Stream Generator | 301 | 210 |

### 5.2.6 Example 6 - Selection

The APL expression $A+5 S+B+C+D$ which was used in chapter 3 to introduce multiple array ladders will complle into 45 PDP-10 instructions or 25 laddec instructions. When the inputs are 10 by 10 matrices, this expression requires:

|  | Array Element References | Temporary Storage |  |
| :--- | ---: | ---: | ---: |
| Native Interpreter |  | 650 | 200 |
| HP-3000 Compiler |  | 100 | 0 |
| Stream Cenerator | 100 | 0 |  |

### 5.2.1 Exanple J-Tranapoatition

The expreation $\operatorname{six} /+/ \mathrm{f}_{1} \mid A: B$ which was used in chapter 3 to bhow the taportance of re-ordering calculationa complies into 38 PDP-10 Instructions or 20 ladder inatructions. Wien the inpute are 10 by 10 matrices thit expression requires:

Array Element References
Temporary Storage

| Naive Interpreter | 420 | 110 |
| :--- | :--- | ---: |
| HP-3000 Comptier | 200 | 0 |
| Stream Generator | 200 | 0 |

### 5.2.8 Example 8-Filtering

The two line expression
$B+(V / A) /[1] E v A \circ \operatorname{A} C \operatorname{CAD}$
which was used in chapter 3 to introduce the use of co-routines complles into 133 PDP-10 instructions or 74 ladder instructions. When the inputs are 10 by 10 matrices and 5 rows survive, this expression requires:

|  | Array Element References | Temporary Storage |
| :--- | ---: | ---: |
| Nafve Interpreter | 870 | 210 |
| HP-3000 Complier | $7: 0$ | 210 |
| Stream Generator | 450 | 10 |

5.2.9 Example 9 - Merging

The expression $S++/+/ B, C, L 110$ which was uaed in chapter 3 to drmonairate the need for aultiple neating complies into 86 pup-io instructions or 47 ladder fastructions. When $B$ is a 10 by $S$ atrix and $C$ and $D$ are $S$ by $S$ estrices chis expression requires:

Array Element References Temporary Storage

| Nalve Interpreter | 320 | 160 |
| :--- | :--- | :--- |
| UP-3000 Coappilex | 300 | 150 |

Struat

100

## S.2.10 Sunmary

S.2.10.1 Code Size - The table showa the size (in bytes) of the 3 representations for an APL expression and gives the blow-up caused by cranslating the original APL:

| Example | APL | Ladder Code | Blow-up | PDP-10 Code | Blow-up |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21 | 64 | 3.0 | 185 | 8.8 |
| 2 | 37 | 124 | 3.4 | 340 | 9.2 |
| 3 | 82 | 384 | 4.7 | 1030 | 12.6 |
| 4 | 30 | 192 | 6.4 | 425 | 14.2 |
| 5 | 38 | 216 | 5.7 | 550 | 14.5 |
| 6 | 11 | 100 | 9.1 | 225 | 20.5 |
| 7 | 12 | 80 | 6.7 | 190 | 15.8 |
| 8 | 20 | 296 | 14.8 | 665 | 33.3 |
| 9 | 13 | 188 | 14.5 | 430 | 33.1 |
|  |  |  | 7.6 |  | 18.0 |

Considering the concisentss of the AYL notation, the blow-up factor is reasonable. For comparison Algol 60 programs for the algorithm (both before and after the transformatione made in producing the streat generator) of example 3 compiled into 230 and 158 words, respectively, of PDP-10 code (ve. 206 PDP-10 worde for atream generator). (1 found
the Algol versions harder to write than the Apl.) An object module of 206 PDP-10 worda for the function of example 3 (the largest) to certainly of tolerable bize. A workapace contalaing 20 such functions would require approximately $4 \mathrm{~K}($ octal) words of PDP-10 wemory for storage of ladder code. That size seems a reasonable cost for the 20 such powerful functions.

The last two examples, which experienced the largest blow-up, wert thoge in wifh multiple coples of a ladder referencling one array vere created as the stream generators were built, and then not eliminated as they were improved.
5.2.10.2 Array References (Time) - The cable belou show the fmprovement

In number of references to array elementa obtafned by using the stream
generators: ( $100 \%$ improvement means all refereaces vere eliminated)

| Example | va. Interpreter | ve. Hy-3000 Compller |
| :---: | :---: | :---: |
| 1 | 1007 | 02 |
| 2 | 90\% | 842 |
| 3 | $13 x$ | 22 |
| 4 | 10x | 612 |
| 5 | 75x | $69 \%$ |
| 6 | 85\% | 02 |
| 1 | 532 | 02 |
| 8 | 95x | 94.5 |
| 9 | 692 | 678 |
|  | 722 | --71x |

The comparison with the HP- 3000 complier givea an approximate indication of the speed difference between a ladder machine running code produced by this complier and a ladder machine running code produced by Minter'a (Abrams based) translator.
5.2.10.3 Temporary Storage - The table below showa the improvement in the dmount of temporary storage obtained when the stream generatore are used: (1002 improvement weans no temporary aturage)

| Example | va. Interpreter | ve. HP-3000 Coaptler |
| :---: | :---: | :---: |
| 1 | 100\% | 02 |
| 2 | 912 | 90x |
| 3 | 99\% | $95 \%$ |
| 4 | 100\% | 100\% |
| 5 | 1002 | 100\% |
| 6 | 1002 | $0 x$ |
| 7 | 1002 | 0x |
| 8 | $96 \%$ | 967 |
| 9 | 1008 | 100x |
|  | 992 | 65x |

The streaning technique is effective, and including additional operators over those handied in the HP- $\mathbf{3 0 0 0}$ complier does ake aignificant difference.

### 5.3 COHPILER OVERHEAD

Minter included in his performance estimates an allowance for the tio taken to generate ladder code. In order to compare the compilation method he implemented with the one described here, we aust estiaate the cost of the extra processing required the creation of stream generators. The extra work appears in three places.
5.3.1 Data Dependency

The data dependency analysis needed to identify temporary storage within a coraplled unit is, in the simple form described in chapter 2, a trivial book-keeping operation during a traversal of the parse forest. In the examples shown it is not required, since each example consists of only one complled unit.
5. 3. 2 Constraint Propagation

Minter's complier implicitly propagates predictions upwardy in the parse tree during the gencration of ladder code. In all of the examples given, with compliation taking place at first execution, the upwards propagation produced all the information necessary for compilation and the propagation phase ended after performing an equivalent amount of work.
5.3.3 Stream Generator Refinement

Most of the compiler algorithms have been described in terms of actions finvolving the visiting of nodes of various graph structures.

Using number of nodes visited as rough estimate of execuction time
the stream generator refincment phase of translation of Example 3 requires approximately 800 as much time as the remainder of the compliation coman to both compllera. The number of nodes viaited is reduced considerably by the fact that (as in all other examplea) the firtot ordering considered (preferences satisfied) ytelded the waxlmun poustble overlay.

Accurate performance estmates await the implementation in production form of the tranglatore from both Minter's and this thesis. liowever the examples suggest that a reasonable estimate is chat the stream generator compller would require twice the time to generate a block of code for the ladder machine. This raises the eatimated array size needed, before compliation fa fater that interpretation, to 125 elementa.
.

## chapter 6

conclus ions

The resulta presented in chapter $S$ auggest that the complier presented in this thests can and should be fmptemented. However, the cout of the final processing needed to reduce temporary atorage in suffictently high to preclude its application in all cases. The stream generator output by the creation phage requires very little further processing to be exccutable. If the coupiled code will not be used again, and if the storage required is avallable, lmaedtate (buc olower) execution may be more efficient. But in those altuations (production and/or apace Haited software) which need the full compller, the difference in execution thae performance will often be critical.

AfL expressions may be divided into three classes

1. Expressions which are executed efficiently even by a naive system (FORTRAN writiten in APL.). For such expressions, a naive system is preferable, since the compiler achieves no gain in performance to offeet the increased overhead (except when complled code is used
repeatedly).
2. Expreasions which require the processing of this compller for efficient execution (such as example 3 of chapter 5).
3. Expressions which are beyond help from this system. (The expression $S++/ \times /(\phi A)+A \subset A+V 10 . i V 2+111$ require atorage of $A$ unless either each element of A 1 a calculated twice or the calculation of $A$ is done in 4 order which is not ravel order for $A$ or $Q A$. This cumpiler would atare A).

This work will be truly valuable only if a significant percentage of Apl. expressions being uritten fall into class 2. We do not have any experimental evidence concerning that question. However, the style of APL programing advocated by Perlis in [20] and demonstrated in [21] certainly decreases the alze of class 1 , and scems to result in conalstency of orderings of access to arrays. That consistency perwita optiwization.

Exact infonmation on the performance and applicability of this design (Includity data on che trade-off described above) will not be avallable until the dealgn is implemented as part of a complete AfL system. The Hewlett Packard HP-3000 APL system would provide an ideal base for the implementation. The controlier which manages the Interaction of the incremental expresaion compller and the interpreter exista. Also the current output of the complier is code for a virtual machine. That machine could be changed to be a ladder aachine without requiring a major restructuring of the compller.

I estlmate that man-year of effort would be required to add the features of this design to the HP-3000 system. Once in operation, the complier could coliect data about its own effectiveness. A complicating factor in any such investigation would be the tendency of users to adjust their programing style to match what execute efficiently. An analysis of current Afl usage aight not show the style of programing (heavy use of outer-product and compression) for which the complier makes the moat difference almply because the nalve execution is Intoletably inefficient (or impossible).
6. 2 future work

The current design limite the size of complied unite by assuang that

1. Every labeled statement (potential Goto target) muet begin a new complled unit.
2. No two function which use the same global variables may be part of a aingle complled unit.

The work of Jones and Huchnick [14] and Kaplan and Ullman (15) ouggeste an approach which may wake it possible to exactly identify those places in the Apl function at which bindings might become invalid. This would be a valuable addition to the complier.

A second open question is the relation between this work and the expcution of Apt on parallel or pipeline machines. The atream generator graph dues Identify the level of loop neating below which all stepa are
independent and thuo could be performed in parallel. The atream generator graph and the ladder atructure also define a repeated sequence of operations which could be pipe-1ined. However, as mentioned in the dacussion of ARL emulators, there secms to be confilct between torage economy and parallellsm. This time/space trade-off ahould be Investigated

## A. 1.2 Monadic

A.1.2.1 Self Indexing - $V i V$ - The reault of this expression is the position of the first occurrence $\ln \mathrm{V}$ of each element of V . Normally execution of t requites a search of the left operand for each item in the right operand. However, when the operands are the ame, ouly the part of the left operand at and before the current poaition in the right operand need be examined. This perwits tha ditom to be executed as the items ot $V$ are calculated.
A.1.2.2 Extremum Position - Vif/V or Vil/V - The results of these expressiona are the positiona of the maximus and winimum elements of V respectively. Normal processing would result in two passes over V. Since the pass that finds the maxinum (minimum) can also remember its location, only one is needed.
A.1.2.3 Span - $/ / V \cdot .-V$ - This appression calculates the differeace between the largett and smallest elementa of $V$ by perforioing all possible subtractions and taking thie maxisum. The same result is obtained frow ( $/ / V$ ) $I / V$. We alao recognize that both the naximum and mintmum can be found in a single pass over $V$. The graph is the same as for the reduction of $v$.
A.1.3 Dyadtc
A.1.3.1 End Around ~ 1 pV.S or $1 \mathrm{NS} . \mathrm{V}$ - These expressions are equivalent to aimple catenation in the reverse order.
A.1.3.2 Firgt-found - $1 / V_{1}, V 2$ - This expression gives the firat position in Vi of whichever element of $V 2$ first occurs. Noral transiation vould result in a pass over Vifor each element of V2. A better way is to teat each element of VI agafnet all of V ,
stopping at the firat eatch.
A.1.3.3 Bounded Extremua - $1 / S . V$ or $/ / S, V$ - The acaler $S$ is used instead of the normal identity value for the reduction of $v$.
A.1.3.4 Take-t111 - (ViS)tV- The result of this expression is $V$ up to and including the first occurrence of $s$. It can be executed as a single pass over $v$ which ta equivalent to compression of $V$. Thus the expresston can be executed as $V$ is calculated.
A.1.3.5 Delay $-\mathcal{S},^{-1} 1+V$ or ${ }^{-1} 11 S . V$ - These expressions can be executed with a pasa over $v$ which ases the current value in a register for delayed access.
A.1.3.6 Select Index - A(V/ipAI - This conatruct is complled es $V / A$.

## appendix a

## CONSTRAINT propacation

b. 1 cunstraint propagation procedure

The constratint propagation procedure operates on the parse tree of the APL function. The function has been sub-divided into complled unite which have no internal control structure, and each block is analyzed indepeadently. Thus no flow analysis is involved.

## B.1.1 Node Properties

The procedure is concerned with 4 characteriatics of the value produced at each node of the parse tree

1. Rank (number of dimenaions - a non-negative integer)
2. Type (numeric, boolean, numeric-or-boolean, or character)
3. Lengch (of each dimenston - a non-negative inceger)
4. Value (scalars and vectors only)

The information regarding the result of a node is defined to have a "pobition" in the parse tree. It is located on the edge entering (leading downards into) the node. We assume an lmagiaary edge entering the root of the tree so as to provide a location for the finfuradion about the final value ef the expresition. For any node we can refer to Information located

1. Above it. (propertica of the refult of that node)
2. To the right. (properties of right operand)
3. To the left. (properciea of left operand)

In the case of monadic operators or operands, some of the positions (ite. left for a monadic operator, and left and right for a leaf) will not exist.

Knowledge of a propecty (or a requirement for that knowledge) is represented by the appearance of an expression in the slot for that property at the appropriate position. In the case of leagth and value, a vector of aparate expressions asy be required. The expressions have the form given by:
<high llait>
<low llait>
<range>
<property tera>
<property value>
::-"s"<constant>
"<"<constant>
">" <constant>;
::- <high limit> $n<l o w ~ l i a i t>$
::- <constant>1
<high 1 imit>1
<low 11ait>1
<range>;

- <property term>1
<variable>|
<property term> $n$ <varlable>;

The limit operators may only appear in expressions for rank and length.

The property values define sets of possible values for the property (only one element for type and value properties). The constants define one element sets containing themelves. The limit operators $(\leq,<, 2$, >) define sets which contain all the possible rank or length values wich have the indicated aritheetic relationship with some element of the operand set. Slace the legal values of rank and length form a finite set (non-negative integers bounded by an arbitrary maximum auch as machine size), all property value eets are finlte. The " $n$ " operator is set intergection. The complle-tine variables used in these expressions represent ififormation which has been (or will be) derived from the current values of the All variablea appearing at parse tree leaf. They will not appear in the expresaton for the value of a property which has been completely deterelned by syntax restrictions and/or value of constante.
B. 1.2 Property List

The constraint propagation algorithom keeps a list of information known
about the expression belng processed, but not yet represented in the
parse tree. at each step an item from the head of the list lis
tranafered to the proper position. The entries in the list have the
form given by:
<propagation value> ::- <property value>
(<property value>) " " "" <constant>1
(<property value>) " + " (<property value>))
(<property value>)
(<property value>) " + " (<property values)
(<property value>) ${ }^{+\prime}+{ }^{\prime \prime}$ (constant>)
(<property value>) " + " (<property value>)
(<property villue>) " + "
"-" <constant>1
"s" (<property values))
"s" (<property value>)
">" (<property value>)
" ?" (<property value>)

The operators " + " and "-" produce the set consisting of those elements generated by taking the outer product of the two sets using the Indicated arithmetic operator and eliminating all values which are not possible elements. These operators are used in expressions for rank and length information only.

These expressions give the largest property value set which way exist for a given position either absolutely (a property term) or in terms of the property values of other positions. The propagation values contain constructs which are not allowed in a property value. then a propagation value to taken of the list, evaluated and placed in the given position as a property value, a new variable is created to represent that part of the propagation expression. The value of a
variable will be given as an expreasion of the form defined by:

```
<variable sum> :i- <variable> + <variable>;
<variable atom>
 ::- (<variable sum>)!
 (<varlable sum> + <conutant>))
 (<variable atum>)|
 varlable>;
<variable lmit> ::- "\leq"<variable atom>
 "\geqq" <vactable atom>
 *" <varlable atom>
 ">" <variable atom>;
<variable term> ::- (<variable limit>)|(<variable term>)|
<varlable expr> ::- <variable <utamle term>i(<vartable expr>)
<vartable value> <variable expr> n <variable cerm>;
<variable value> ::- <variable expr>i
 <variable expr> 0 <property value>;
```

wiere the aum and limit forms are used for rank and length information only.

Iteme on the list come from two sources.
B.1.2.1 Generated Information - List items are generated by the algorthm based on propercies of the operatore or operands at individual nodes of the parse tree. Thesc items are:

1. Property terms derived from constants.
2. Property terms derived from the propertice of operators.
3. Varlable names generated to be the property values of leaf nodes which are APl varidales, not constants. The variablea are asaigned to represent rank, type, and length of all leaf nodes and the value of a leaf known to be achalar. If two leaves refer to the same APL varlables, the same complle-tha variables will be aseigned
4. Property terma derived from the current values of the APL varfables. They are the current valuen of the compile-time variablea defined above.
5. Variable names generated to represent a property value which aust be known by the complier.

Chapter 2 has discussed the order of generation and the significance of chese itema.
B. 1.2.2 Propagated Information - We call two positions in the parse tree "adjacent" if the two edges directly connect to the same parse tree node. In a binary tree a set of properties (an edge) way be adjacent to a maximum of 4 others. The operator at the node which provides the connection defines relations between adjacent eets of properties. These relations are given in section 8.2 .

For each operator there is a set of propagation expressions which give (as propagation values) the maximum property value set for a given slot in cerme of adjacent property values. An expression may be used only if all ita componente are defined. Some requite the property term of a given component to have a particular value.

1f the tranger of a liat item into ita position in the parse tree results in new inforwation being added to the property value at that poatition, both enda of che edge for the position affected are examined to deteraine if information about edjacent positions ia lmplied. If it 1a, the propagation expreasion ia added to the tall of the liat. We
define neu information to mean:

1. The appearance of a variable in a property value which wae formerly empty or contained only a property tera. Thia can happen only once for each property and position.
2. The number of items 1 the set defined by the property term has decreased. When the property value also contalne a variable, we lmmediately place on the list propagation values consisting of the nev property term for every position where the property volue also contains that variable. Normal propagation is only considered towards adjacent positions not using that variable.

An ftem on the propagation list is tagged with the name of the position generating it as vell as the poaition to which it ta to be applied. When an item is applied it will never generate a new liot item propagating that change back to its source.

Win propagation values are placed in the list, the property values are represented by name (property and position). When these expresaiona reach the head of the list, the actual expressions are subatituted for the names.

## B. I. 3 Property Insertion

When a list item is processed for ingertion of its inforastion into the parse tree, the folloulng steps are taken:

1. The propagation value la joined to the property value for the slot ubing the $n$ operator.
2. All vartables appearing in the new expression are replaced by the expression given by
"(<the variable> $n$ <vartable value for the variable>)". This proceus is repeated for any new varlable which appears. (Note: this requires warking of expanded variables so as to avoid infinite expansion. The system remembers wich terms of the result were present before expansion and the varlable from wich others were derived.
3. The resulting expression is simplified as described in section B. 1.5, and will have the form:
<expanifion> ::- <property term> | <variable expr>1 <property term> $n$ <variable expr>| <expansion> n <variable>;
4. If two varlables appear in the expansion, the two varlables are equated by replacing all occurrences of one (choice arbitrary) with the other.
5. If the expansion containg variable expression but no variable a new variable is created and foine to the expanition.
6. The new property value is the union of the property term and vartable from the expanstion.
7. The new value of the variable conslsts of the union of all components of the variable expression marked as coning from the original expression or from the expanaion of that variable

## Constraint propagation

(Including any name equating).

If at any polnt in the process a contradiction appears (ex.

An example is showin in Figure $\mathrm{B}-1$. The first page bhows the list Itews in the order they were applited to the parse tree. Indented entries indicate an fitem wifh was geaerated by a constralut propagation rule and added to the end of the 11 st when the item immediately above it was applied. The application of agenerated item is marked with a '*'. The other list items reflect inforwation known about individual nodes. The aecond page thous the final property valuea and their aignificance.
$(>5) n(<5)$ or $x(<(X+Y)))$. It indicates an error in the APL.
exprebsion. Constrainc propagation is abanduned.


[^1]3: leneth is $D$ 4: Length is D
1: leagth is B, C
i: Type is numeric
3: Type is aun
3: Type 1s numeric
3: Rank is $\underset{x+1}{ }$
*5: Type is T 7: Type is 1
2: Type is T
*2: Type is 1
Rank is $X$
7 : Rank is $A+X$
4: Rank is $X$
*5: length is E+SD 7: liength is B, C, $E$
*4: Length is 0
*7: Type is T
*7: Rank is Y-AtX
*7: Length is B, C, E
4: Type is R
R is replaced by $T$


T- numertc - type check for $B$ and $A$
$x=1 \quad$ - rank check for $B$
z-so - length of result of compresation in not fixed so Interpreter parameter calculation will be interleaved with strean generator calculations

Y-A+1-rank of $A$ is not fixed by antax, and muat be known for compllation
B. 1.4 Algebra Of Properties

White the notation used is non-standard, the objects described are finite sets of the non-negative integers. We take advantage of the well know properties of such objects to establish that:

1. <liait op 1> (<liait op 2> <get>) equale <liwit op 3> <get> for all possible combinations of op 1 and op 2.
 <1fint op 3$\rangle(\langle$ set 1$\rangle+\langle$ set 2$\rangle$ ) or 1 linft op 3$\rangle\langle$ set 1 or 2$\rangle$.

2. (<set 1> $n$ <set 2$\rangle$ ) $+\langle$ set $3>$ equals
(<set $1>+\langle$ set $3>)$ n (<set 2$\rangle+\langle$ set $3>$ )

Figure B-2 shows all actual combinations. These transformations will convert the formula produced in step 2 of the procedure given above to 2 legal expanaion. The compller builds the expressions internally as a string of tokens in Polfah posifix form. Thus the transformationa are done as simple atring pattern matching and replacement.

$(\langle x)+y>(x(X+y)) n(2 y)$
B. 1.5 Termination For Constraint Propagation

The constraint propagation procedure terminates when the list of items to be put into parse tree posicions is empty. It is clear that the procese will terminate. A new list item is generated only when the set for some property value decreases in size. Since all sets are finlce. this proceas can not continue indeffuitely. What must be evaluated more carefulty is the posstbility of decreasing the size of a very large set In tiny atepa resulting in extcution the not given as a function of parse tree size. However it cau be shown that this is not possible. A change to the property value at one position in the parse cree way result in changes at four other adjacent positions. We can magine markers moviag on the parse tree outwards from an inttial point of distubance. A marker may split into 3 at every property position. However, since we do not allow a change to propagate back to the poaition that caused it, no marker may retrace a path it or ita immediate ancestor has followed. Since the graph (tree) has no cyclea, no marker can get back to the initial position.

Thus each position th the parse tree is affected at most once for every new item of information incroduced. These items of information come from the noder of the parse tree in the form of syntax restrictions and operand properties. Each node generates a maximum of one item for each property of each of the three positions surrounding it. Ho slow refinement occurs. Thus the number of ateps of constraiat propagation 18 of order $N * 2$ where $N$ is the aize of the parse tree.
8. 2 Syntax constraints

This section lists the syntax constraints and propagation rules used by the constralnt propagation. In these rules we use two letter varlable names to refer to properties. The first letter gives the property ( T(ype), R(ank), L(ength), and V(alue)). The second gives the position ( $\mathrm{R}(\mathrm{ight}), \mathrm{L}(\mathrm{eft})$, and $\mathrm{A}(\mathrm{bove})$ ). The positions are in relation to the operator which establisises each set of rules.
B.2.1 Monadic Operatore
B.2.1.1 Monadic Arithmetic Operations - . $\times$ | 1 * $\mid$ : o

TA : = numeric
TR :- numeric-or-boolean
RA:-RR
If VR in constant then VA:- op VR
RR: $=\mathbf{R A}$
I.R $:=\mathrm{LA}$
B.2.1.2 Not - ~

TA : - boolean
TR :- boolean
RA: = RR
IA: $=\mathbf{L R}$
If VR is constant then VA : $\sim$ VR
$\begin{array}{ll}\text { RR:- } \\ \text { LR } & \text { : }\end{array}$
LR : = LiA
B.2.1.3 Size - Monadic

$$
R R:-L A
$$

$$
\begin{aligned}
& R A:=1 \\
& \text { TA :- numeric } \\
& \text { IA := RR } \\
& \text { VA : - LR }
\end{aligned}
$$

B.2.1.4 Index Generator - monadic I

## RA: $=$

TA :- numeric
RR :- 0
TR :- numeric-or-boolean
LA :- VR
I.A : = VR
8.2.1.5 Ravel
$8 \mathrm{Ra}:=1$
A :- TR
A: : x/ lid
If RR < 2 then VA :- VR
B.2.1.6 Reduction

TA :- as required by operation
TA : $=$ as
RR $:->0$
TR :- :- as required by operation
RA : = RR-1
LA :- LR with reduced dimension removed
RR : $=R A+1$
RI. : = RA for un-reduced dimensions
B.2.1.7 Scan
ta := as required by operator
RA : - >0
RR : $=>0$
RA :- RR
TR :- as required by operator
$\mathrm{RR}:=\mathrm{RA}$
$\begin{array}{ll}R R & =R \\ L R & =L R\end{array}$
$L R:=1 / A$
TA : = TR
TR : = TA
B.2.1.8 Reverse

RA :- >0
RR :->0
RA : - RR
TA : - TR

## RR :- RA <br> 

### 8.2.2 Dyadic Operators


TA :- numeric
TR :- numeric-ocboolean
TL :- numeric-oc-boolcan
If RR > 0 chen RA : © RR else RA :- RL
If RR > 0 then $1 . A:=\operatorname{LR}$
if RL. $>0$ then RA :- RL
if RL, $>0$ then IA : $=$ LL.
If RL. $=0$ and $R R=0$ then $1 A:=1$
If VR is constant and VL. is constant then VA:-VL. op VR

f RL $>0$ then RL $=$ RA
If RL. $>0$ then $L L:-1 A$
B.2.2.2 Dyadic Logical Operators - ^V*~

TA :- boolean
TK : - boulean
if RR > 0 then RA: $=$ RK else RA :- RL
If $k$ R $>0$ then LA : $=$ LR
If KL . > 0 then RA := RL
If RL. > 0 then l.A :- LLL
if Ri. $=0$ and $\mathrm{KR}=0$ then IA :- 1
if VR is constiant and VL. is constant then VA :- VL op VR
If RR > 0 then RR := RA
f $R$ R $>0$ then $L R:=L A$
$1 f$ RL. $>0$ then RL. :- RA
If RL > 0 then LL:- LA
B.2.2.3 Dyadic Equality Operators - = *

TA :- boolean
TL. :- TR
R :- TL
If RR > 0 then RA:- RR else RA := RL
$1 f R K>0$ then LA : - LR
if RL $>0$ then $\mathrm{LA}:-\mathrm{LL}$

1f RL - 0 and Ru - 0 then LA :-
if VR is constant and VL. it constant then VA :- VL. op VR
1f RR > 0 then KR:- RA
if RR $>0$ then LR $:=L$
if RL $>0$ then RL:-RA
if RL $>0$ then LL:- LA
B.2.2.4 Dyadic Relathonal Operators - < $\leq 2$

TA : = boolean
TR:- numeric-or-boolean
TL. : = numeric-or-boolean
If RR $>0$ then RA:- RR else RA :- RL
if $\mathrm{KR}>0$ then $\mathrm{LA}:-\mathrm{LR}$
If RL, $>0$ then RA := RL.
if RLL $>0$ then LA:- LL
if RL. $=0$ and $R R=0$ then $1 . A$ :- 1
if VR is constiant and VL. is conatant then VA :- VL. op VR
if RR > 0 then RR : - RA
If RR $>0$ then $L R:-L A$
if RL $>0$ then RL:- RA
if $R L>0$ then $\mathrm{LL}:-\mathrm{LA}$
B.2.2.5 Reshape - dyadic p

TA :- TR
RA:- 1 L
$R A:=I L$
$1 . A:=L$
IA $:=-L V$
$T R:=T A$

B.2.2.6 Catenation - dyadtc ,

RA :- >0
If RR > 0 chen RA :- RR
TA $:=T R$
LA :- LR except for diwension catenated
If RL $>0$ then KA :- RL
TA : = TL
A $:=$ LL except for dimension catenated
If RR -0 and RL. - 0 then RA :- 1
LA :- LLL + LR for catenated dimension
if RL, $\boldsymbol{>}$ then RL :- RA
TL. : - TA
(fR $>0$ then $\mathrm{RR}:=\mathrm{RA}$
TR :- TA
8.2.2.7 Indexing - [ ]

RA :- >0
TL :- $=$ numerlc-or-boolean
IL :- numeric-or-boolean
TA $:=$ TR
TA $:=$ TR
RA $:-+/$ RL
LA:- LL
RR:- $\leq$ RA
TR : = TA
LL : - LA
RR :- number of subscripts
8.2.2.8 I7ner Product

TA : - as required by left operator
TR :- as required by right operato
TL: :"as required by right operator
if RR $=0$ xor RL -0 then RA : $=R R+R L-1$
if $R R>0$ and $R L>0$ then $R A:=R R+R L-2$
if RR = 0 and RL -0 then RA:- 0
la:- ithi, itle
$1 f R R>0$ and $R L>0$ then
if $R$ r $>$ last position of $L L$ :- first position of $L R$
If $R R>0$ and $R L>0$ then
first position of ir :- last posicion of LL
B.2.2.9 Outer Product

RA :->0
TA :- as required by operator
TR :- as requitred by operator
TL :- as required by operator
RA:- RL. + RR
LA:= LL, LR
RR : $-<R A$
RL $:-<R A$
B.2.2.10 Take

RA :- >0
RR :- $>0$
R1. : $=<2$
$R 1:-$ R
$R A=-\quad R R$
RR $:=-R A$

$$
\begin{aligned}
& \text { L.A :- } 1 \mathrm{VL} \\
& \text { LA : - SLR } \\
& \text { I.L:- RA } \\
& \text { 8.2.2.11 Drop } \\
& \text { RA :- >0 } \\
& \text { RR: } \boldsymbol{\sim} \text { >0 } \\
& \text { TL:- } \\
& \text { RA :- R }{ }^{\text {R }} \text { : } \\
& \text { RA :- RL } \\
& \text { RR :- RA } \\
& \text { RR :- RA } \\
& \text { LL:- RA } \\
& \text { B.2.2.12 Transpose } \\
& \text { RA :->1 } \\
& \text { RR :- >1 } \\
& \text { TL :- numeric } \\
& \text { RA := SRR } \\
& \text { TA : }- \text { TR } \\
& n \text { :- naxiaum of } \mathrm{V} \\
& \text { RR: : } \geq \text { RA } \\
& \text { R:- }:=\mathrm{LR} \\
& \text { 3.2.13 Rotate } \\
& \text { RA : = >0 } \\
& \text { RR:- >0 } \\
& \begin{array}{l}
\text { TL :- numeric-or-boolean } \\
\text { RA }:=\text { RR }
\end{array} \\
& \begin{array}{l}
\text { RA }:=\text { RR } \\
\text { TA }:=\text { TR }
\end{array} \\
& \text { TA : = TR } \\
& \begin{array}{l}
\text { l.A }:=\mathrm{LR} \\
\text { RR }:=\mathrm{RA}
\end{array} \\
& \text { RR:- RA } \\
& \text { TR : - TA } \\
& \text { RL: }=\text { RA } \\
& \begin{array}{l}
\text { RL : }=\text { RA }- \\
\text { RA }:-R_{1}+1
\end{array} \\
& \text { LL :- LA Without rotated dimens io } \\
& \text { LA except rotated dimension :- LL }
\end{aligned}
$$

B.2.2.14 Compress
$\begin{array}{ll}R A:->0 \\ R R & =>0\end{array}$
RR : - > $\mathbf{~ R ~}$
RL:-
TL : $=$ boolean
TL : $=$ bool
KA $:=$ RR
$\mathrm{KA}:=R \mathrm{R}$
$\mathrm{RR}:=\mathrm{RA}$
RR:- RA
TA :- TR
LA := LR except for compressed dimension
LA := LR except for compressed dimens
IA:- LR for compressed dimenation
ir except for compressed dimension:- LA
IR except for compressed dimension:
I.R :- - LA for compressed dimension I.R :- : LA for comprebsed dimensio cumpresbed dimension of $L R:-L L$.
B.2.2.15 Expand

> RA $:=>0$ 0 n

RR : = >0
RL :- 1
TA : $=$ TR
TR : - TA
LA :- LR for un-expanded diwensione
LA :- Li. for expanded dimention
unexpanded dimensions of LR :- LAA
LL: : LiA for expanded dimension
B.2.2.16 Index

TA : = numertc
RL: : 1
RA :- RR
$L A:=L R$
$R R:=R A$
RR:= RA
LR $:=\mathrm{I} . \mathrm{A}^{2}$
$\mathrm{TL}:-\mathrm{TR}$
TL : - TR
TR $:-T L$
B.2.2.11 Mcubership

TA :- boolean
RA:- RL
$L_{A}:=L_{L}$
$R_{L}:=R_{A}$

LL : = LiA
TR : - TL
TL: : TR
8.2.2.18 Decode

B.2.2.19 Encode

$$
\begin{aligned}
& \text { TA :- } \text { numeric } \\
& \text { TR :- numeric or boolean } \\
& \text { TL := numeric or boolean } \\
& \text { RA : } \quad \text { RL + RR } \\
& \text { LA:- LL, LR }
\end{aligned}
$$

array addressing hith ladders

## J.RHOII

Since each subucript lik] aay legally range from 0 to RHO[k]
Independencly, J mad have values ranging from 0 to ${ }^{-1+x / R H O}$.

## appendix C

array addressing with laddeks

Thit appendix describes the procedurea used to calculate the array accessing parameters used by the laddera of the stream generators. It 1a largely a reforwulation of similar preaentation by Perlie [19] and particularly mincer [17].
C. 1 address sequencing

The storage locations for the elements of an array are given by equation 3-1:

$$
P I \cdot B E T A++/[\times 1
$$

The semantics of All impose an ordering - ravel order - whith orders array elements with right-most subscript varying most rapldy. This is the adie order obtalned by considering the subacripta as "digita" in a number and orderiag the subacripts according to their value as aingle numbers. If ve use equation 3-2 to calculate the numbers $J$, then:
c.l.l Storage Spacing - G

So that the APL operators which must accesa the array as a vector in ravel order do not require recopying of the data, we want to use values of BETA and $G$ such that the equation:

PI + BETAK $+J \times(G R$
will generace the same value of PI as equation C-1. If we set beta to be equal to betar, then the equality requited is:
$(+/ I \times G)=J \times C R$

## Replacing $J$ by the equation which calculates it value gives:

$(t / I \times G)=\left(R O_{1} I\right) \times G R$

In which the Decode operation can be expanded according to ita definition to give:
$(+/ I \times G)=(+/ I \times \phi \times 11 . \phi 1+R H O) \times G R$

If we apply the distributive law we obtain:
$(+/ I \times G)=+/ I \times(G R \times \phi \times \backslash 1, \phi 1+R H O)$

If GR is the number of addresabile memory unite ueed to store an item of the array (may not be amaller), then the array is atored in ravel order in consecutive locations.

## C. 1.2 Polnter Increment - delta

Figure 3-1 is a flowchart of the fixed part of a ladder. Each time control reaches the arc labeled "PI VALID", I will have a legal subscript value. All items of the initial ifill be zero (the downards path from the gtart box includes statements which clear i), and succesulve values will be in ravel order (the right-most aubacript is advanced in the botton loop and thus most rapldiy). It is obvious frou the flow hart that after execution of the arc labeled "PI VALID" oniy one horizontal rung will be executed before the botton arc is re-entered. Therefore one ftem from the vector DEliti is added to PI at each step. Equation $C-1$ defines the relation we want to hold between I and Pl each tine control reaches the botton of the ladder. A value for DEITA qust be found wich generates the required sequence.

If the horizontal rung last executed was at level $k$, then $1[1]=0$ for $1>k(1(k+1)$ is cleared on the downards path from level $k)$. If liki does not have its maximum value, then the next the the increment and test at level $k$ is executed the horizontal branch at level $k$ is executed. On return to the bottom of the ladder, $1\{1\}=0$ for $1>k$. and $I(f)$, ( $j<k$ ) are unchanged. Only $l|k|$, wich has been increased by 1. is different. By equation $\mathbf{C - 1}$ the change in PI must equal $\mathbf{c}[k]$.

If we assume control has reached the bottom of the ladder after executing rung $f$, then $I f j+1 f$ is zero. Control will reach rung $J$ egain only when the test at level f+ifalls. This will occur on the RHO[ $j+1)^{\text {at }}$ execution of the increment and test at level $j+1$. The first RHO[J+1]-1 times the test executes, it succeeds and the rung at level J+I is executed. As we saw above, PI will have been incremented by $\mathbf{G}\{j+1)$. That increment consists of delitalj+1) plus the effect of lower levels which we will call $\operatorname{LOW}(k+1)$. By this definition the equation

$$
G=\operatorname{DELTA} A+L O W
$$

holds. At the RHO(j+1) ${ }^{\text {at }}$ execution of the increment and test at level $j+1$ the test falla and rung $J$ executes resulting in a change to Pl of Dfitalj) $+\operatorname{LOW}[f+1]$. Since the total change to Pl after the second execution of rung is shown above to equal $G(f)$, the relation:

$$
\begin{aligned}
G[\mathrm{j}]= & \operatorname{DELTA}[\mathrm{j}]+\operatorname{LOW}[\mathrm{j}+1] \\
& +G[\mathrm{j}+1] \times-1+\operatorname{HOC}(\mathrm{j}+1]
\end{aligned}
$$

must hold. Uaing equation C-9 to elfoinate Low and aimplifying ve obtain a recurrence relation for del.ta:

$$
\begin{align*}
&\text { DELTA[ } j]+G[j]+D E L T A[j+1] \\
&-R H O[j+1] \times G[j
\end{align*}
$$

Since LOW(a) is obvtously zero when in is the depth of the ladder, then

## $\operatorname{DELTA}[\mathrm{n}]+G[\mathrm{n}]$

(C-12)
provides an inftial value and we can calculate DEITA. A more rigorous derivation of this result is presented by Minter $\{17]$.
c. 2 the selection operators

The operations Take, Drop, and Subecription by a vector of the form Arbxic require only changes to the addrese generation parametera. The formulae for calculating the new values are given below.
C.2.1 Take

Wien the Take operation with $T$ as the vector left operand is applied to an array, the position in the old array corresponding to subscript if of the new array 1日 given by:
$I+I T+(R H U-T) \times T<0$

The new addressing paraneters must generate the same value of PI for each subucript IT as are generated using the I calculated above and the old values of bETA and $C$. This requires that:
$(B E T A T++G T \times I T)=B E T A++/ G \times I T+(R H O-T) \times T<0$
be true for all legal it. It will be true if:

$$
\begin{align*}
& B E T A T \cdot B C T A+/ G \times(R H O-T) \times T<0  \tag{C-15}\\
& G T \cdot G
\end{align*}
$$

are uted to calculate the new values. The aize of the result has alao changed requiting:

New valuee for delta are then calculated using the formulae derived in c.1.2.
C.2.2 Drop

When the Drop operation with $D$ as the vector left operand to applied to an array, the pcsittion to the old array corresponding to subscript id of the new array is given by:

## $I \cdot I D+0 \mid D$

(C-17)

The new addressing parameters must generate the same value of PI for each oubacript 10 as are generated using the I calculated above and the old values of bETA and C. Thite requires thats
$(B E T A D++/ G D \times I D)=B E T A+/ G \times I D \times O \mathcal{D}$
(C-18)
be true for all legal id. It will be true if

```
BETAD BETA \(+/\) G \(\times\) Of \(D\)
```

$G D+G$
are uned to calculate the new values. The gize of the result has also changed requiring:

RHOD $\cdot$ RHO-1D

New valued for DELTA are then calculated ualig the formulae derived in C.1.2.
C. 2.3 Subecription

When the array is aubacripted and the aubacript in poatitionk is given by $A(k)+B(k) \times(C)(k)$ (set $A(k)+0, B(k)+1$, and $C(k)+R H O(k)$ for those dimensions not aubscripted), the pooition in the old array corresponding
to subscript is of the new array is given by:

$$
I \cdot A+B \times I S
$$

The new addressing parameters must generate the ame value of Pi for each subscript is as are generated ubing the I calculated above and the old values of beta and G. This requires that:
$(B E T A S+/ G ; \times I S)=B E T A+1 / G \times A+B \times I S$
be true for all legal IS. It will be true if:

```
BETA.S+BETA + / /G*A
```

$65 \cdot 6 \times 8$
are used to calculate the new values. The size of the reault has also changed requiring:

New values for delita are then calculated ualug the formalae derived in c. 1. 2 .

## C. 3 RE-URUERIN

The other two operations which require only changes to the address generation parameters are cranspose and reverse. The same transformationa are used during the generation and improvement of otream generstors to change the order in which array iteas are accessed.
C. 3.1 Transpose

When the Transpose operation with TR as the vector left operand is applied to an array, the position in the new array corresponding to subacript $I$ of the old array is given by:

$$
\begin{equation*}
I T R \cdot I[J K] \tag{C-25}
\end{equation*}
$$

The new addressing parameters must generate the same value of pl for each aubscript ITR as are generated uaing $I$ and the old values of BETA and $G$. This requires that:
$(B E T A T R++/ G T R \times I[T H])=B E T A++K \times I$
be true for all legal $I$. It will be true if:

$$
\begin{equation*}
B E T A T T+B E T A \tag{C-27}
\end{equation*}
$$

$$
G T R * G(T R)
$$

are used to calculate the new values. The alze of the result has also changed requiring:

## RHOTR • RHO[ $1 K]$

(C-28
New values for delita are then calculated using the formulae derived in c. 1. 2 .
C.3.2 Reverse

If the reversal operation is applied to an array, and if the boolean vector $R$ is true for each position corresponding to a dimension which is reversed, the poaition in the old array corresponding to subscript ik of
the new array la given by:
$H \cdot I R, R \times R H O-1+2 \times I K$

The new addressing parameters must generate the game value of PI for each subgeript ir as are generated ualigg I and the old valueg of BETA and $G$. This requires that
$(B E T A R++/ G R \times I R)=B E T A+/ G \times I R+R \times R H O-1+2 \times I K$
be true for all legal 1 . It will be true if:

BE'TAR•BETA $++/ G \times R \times R H O-1$ $C R \circ G-2 \times R \times G$
are used to calculate the new values. The size of the reault has not changed so that:

RHOR + RHO
(C-32)

New valuey for delta are chen calculated using the formulae derived in c. 1.2
c. 4 stream genemators

The procedure described in chapter 4 which creates stream generators from APL expressions was dealgned so that only the entry point of the graph could have more than one nesting son. It also produces a graph with all the header nodes at level 0 . Thus each sub-graph hanging below the entry point containe only one or more (if connected by evocation edgea) aimple ladders with the addreas generation mechanism described
above.
C.4.1 Address Calculation

The labels on the atream generator graph nodes specify the addressing deaired an follows:

1. If a node is labeled with a pointer movement label ( $A_{1}$ or $A_{1}$.) the value of $G$ assigned to that node will be that given for the $f^{\text {th }}$ dimenaion of $A$.
2. If a node is labeled with a pointer reset or address calculation label, the corresponding item of $G$ is zero.
3. If the array name in a label is modified by $\phi$ the corresponding iteo of $C$ is negated.
4. The valuea of rho to be used in the calculation of BETA and delta are taken from the length of the array dimension specified by the label (not from loop 11mit label).

The calculation of BETA and DELTA proceed as specified earlier.
C.4.2 Re-ordering

The sub-graphs of the entry node of a atream generator comanicate only via regiatect (scalars) and memory (arrays). Each sub-graph executes to completion before the next is started. Thua the order that calculated values are placed into storage is not important. Only the final
position in memory of each item matters.

The transposition and reveraal operationa described in chapter 4 are applied to all arrays being accessed by that ladder. It is obvious frum the preceeding sections that elements of two arrays with the same I vill have the same $1 T R$ or 18 after re-ordering. Thus for those operator which calculate each element independently, the current operand values contributing to agiven position in the result will be the eame after re-ordering.
of those AR operations wich are complied into stream generators the ones for whith each position is not independent are reduction and scan (and others defined in terms of those which include inner-product, encode, decode, and wembership). Both requitre sequential access along one dimension in a fixed direction, and accumalate a value. When these operators are tranglated into otrean generators, temporary storage for the running values is provided. Thus the dimension being reduced or scansed may be at any level (ladder may be transposed), but it may not be reversed. The definition of reversal does not permit that operation to be applied to a graph node labeled (/ or () as being reduced or scanned. Therefore legal re-orderings will not affect final array content.

```
STREAM GENERATURS AS IMP-1O
```

0 ST> : =END: ="'ELL:0";

```
0 ST> : =END: ="'ELL:0";
0
0
O init statemeht
O init statemeht
0
0
0 <PTL>::-<EXP, B>:: - " }\boldsymbol{H1(B)_HETA|B)";
0 <PTL>::-<EXP, B>:: - " }\boldsymbol{H1(B)_HETA|B)";
<<PTI.>::=<PTI.,A>,<EXH,B>::-"A;PI[B1_BETA(B)";
<<PTI.>::=<PTI.,A>,<EXH,B>::-"A;PI[B1_BETA(B)";
0<ST>::-INIT <PTL,A>::-"d";
0<ST>::-INIT <PTL,A>::-"d";
0
0
0 matrices mitil }5\mathrm{ columns
0 matrices mitil }5\mathrm{ columns
<ST> ::= <VHL,A> IS <EXP,1> BY 5
<ST> ::= <VHL,A> IS <EXP,1> BY 5
::- "A IS I*S LONG";
::- "A IS I*S LONG";
<VBL> ::- <VBL,A>{<EXi,I>,<EXP,J>
<VBL> ::- <VBL,A>{<EXi,I>,<EXP,J>
 := "A(IOCON,JOREC)" "> "A{`*l|(J]" ELSE
 := "A(IOCON,JOREC)" "> "A{`*l|(J]" ELSE
 A(1, JOCON]" m> "A(J)(ImS)"
 A(1, JOCON]" m> "A(J)(ImS)"
 ELSE "A(J+[*5)";
 ELSE "A(J+[*5)";
 repeat statement
 repeat statement
0
0
0 ISLEvi IS register, reserved;
0 ISLEvi IS register, reserved;
0 <INCL>:; =HOVING <EXP,B>
0 <INCL>:; =HOVING <EXP,B>
< ::="PI(B)_PI(B)+DELTA(B,ISLEVI)":
< ::="PI(B)_PI(B)+DELTA(B,ISLEVI)":
<INCL>::-<INCL,A>,<EXP,B>
```

```
<INCL>::-<INCL,A>,<EXP,B>
```

```


```

```
<ST>::-REPEAT <ST,A> AT <EXP,B>
```

```
<ST>::-REPEAT <ST,A> AT <EXP,B>
 USING <EXP,C>
 USING <EXP,C>
 <INCL, b;>
 <INCL, b;>
 := Lucal. RI. IN
 := Lucal. RI. IN
 "|(心.B10;
 "|(心.B10;
 RL.:A;l\\lEV! B;
 RL.:A;l\\lEV! B;
 (I|C,ISLEV!İ|(C,ISLEVI)+1) L.T RHO(C,!$LEVI|-)
 (I|C,ISLEV!İ|(C,ISLEVI)+1) L.T RHO(C,!$LEVI|-)
(E;GO TU RL)";
(E;GO TU RL)";
 USING <EXP,C>
 USING <EXP,C>
 ::- Local rl IN
 ::- Local rl IN
 "IIC,bI 0;
 "IIC,bI 0;
 RL:A;\SLEV! B;
 RL:A;\SLEV! B;
 (I|C,{$LEV!]_I|C,|SLEV!|+1) LT RHO[C,!$LEV!|->
 (I|C,{$LEV!]_I|C,|SLEV!|+1) LT RHO[C,!$LEV!|->
0
0
 Gu TO RL":
 Gu TO RL":
**
**
 l.ocal. Storage ana
 l.ocal. Storage ana
 0
 0
 T IS 17 LONG; }116\mathrm{ REGISTERS
 T IS 17 LONG; }116\mathrm{ REGISTERS
 O PI IS 17 LONG;|l6 POINTERS|
 O PI IS 17 LONG;|l6 POINTERS|
I IS 1% By 5; 116 indices - 4 levels:
I IS 1% By 5; 116 indices - 4 levels:
- (Those below actually defined by data statements)
- (Those below actually defined by data statements)
Beta is 17 long; 16 pointek initial values
Beta is 17 long; 16 pointek initial values
O delifa IS 17 by S; 16 inchements - 4 levels
O delifa IS 17 by S; 16 inchements - 4 levels
RHO IS 17 EY 5; 16 limITS - 4 LevElS
RHO IS 17 EY 5; 16 limITS - 4 LevElS
0
0
* array STORACE ***A******amama
* array STORACE ***A******amama
O
```

```
O
```

```

The ligting below it the (edited) liating output of the InP-10 complier produced during the final compilation into machine code of the stream generator description representing the AfL expresaion \(F \cdot A+\cdots(-/ B, C)+\cdots / D+E\). A complete deacription of the language and the extension mechaulsm may be found in (5).
```

IMP 1.6 7-SEP-74 STREAM.ILO[50.130] 15-JUL-7] 10:30
O
0 A"an***A*A SYNTAX EXTENSIONS
0 ladder label, evuke statement, and co-ruutine initialization
0
0 !sCurld! is recisten, kgsekved;
0!$LNERG! IS 33 LONG; ! 32 LaDDERS pOSSIBLE!
O<ST>::=LADOER <EXP,A>':'<ST,H>
            :-l.OCAI. SL,EL. IN "!$LNERG!(A) loc(SL);
O To EL;SL;B;
O
<ST> ::=EXIT ::= "DATA(047000000012B)";
0 <SI>::बEWKE <EXP,A>
::-LOCAL L. IN "ISLNIRG!|ISCRLD|! loc(l)
!sCuRLD!_A;
CO TO |ISLNKKGI!|sCurldI)];
<ST>::-BEGIN::-LOCAL EL;
0 "ISCURLDI_0;GO to Eli
O ISINTERI:EVOKE I;EXIT

```
```

O A,F ARE S LONG;
O B,C,D,E ARE 125 LOHG;
0 ***A\#**** CONTROL PARNHIETERS *************
0
0 remutes
beta: data(0,A,B|104],C[104],D(124],E(124],F);
RHO: DATA(0,5,5,5,5,
delta:data(0,0,0,0,5);
0,1,0,0,0,
0,34,29,-21,-1,
0,34,29,-21,-1,
0,124,-1,-1,-1,
0,124,-1,-1,-1,
0,1,0,0,0));
O
0 ******A** CO-RUUTINE initialization *****
0
O begin
0
0 ***** STREAM GENERATOR CODE ****\#\#***AA\#**********
0
0 APL - P_A+-/(-/B+C)+.--/D+E
0 ladoer 1:(Init 1,2,3,4,5,6;
REPEAT(T|l) O;
evpent(t(2) 0;
REPEAT(T[}] 0;
REPEAT(T(3)_(IPI(4)]+[PI(5)])-T{3])
AT 4 USING I
MOVING 4, 5;
T(4) 0;
REPEÄT(T(4)_({PI{2])+{PI{3}])-T(4))
AT 4 USING }
HOVING 2,3
[2] (T[4]-T(3))+T[2]
AT 3 USING T
HOVING 2, 3, 4,
T(1)T(2)-T(11)
AT 2 USING I
MOVING 2, 3, 4, 5:
(PI|6)]_(PI[||i)+T[1])
AT I USING I
Muving 1, 2, 3, 4, 5, 6;
evore 0);
0
*******A\#Ank**********************

```

** code producel ay prograh streah
\begin{tabular}{|c|c|c|}
\hline 000002 & SInter & \\
\hline 000006 & \(\mathrm{xL}^{2}\) & \\
\hline 000001 & 2ELL 2 & \\
\hline 000012 & 25.15 & \\
\hline 000027 & 2R1. 12 & \\
\hline 000031 & 2RItio & \\
\hline 000033 & zR1.8 & \\
\hline 000035 & 2RI.4 & \\
\hline 000051 & 21F5 & \\
\hline 000053 & 2RL6 & \\
\hline 000067 & 21F1 & \\
\hline 000107 & EIF9 & \\
\hline 000126 & 2IFil & \\
\hline 000152 & \(\underline{1 F 13}\) & \\
\hline 000155 & 2.14 & \\
\hline 000157 & 2EL. 16 & \\
\hline 000000 & movei & 1,0 \\
\hline 000001 & JRST & 2EL. 2 \\
\hline & SINTER: & \\
\hline 000002 & Muvei & 3,21.3 \\
\hline 000003 & mover & 3, SL_NKRG(1) \\
\hline 000004 & Muvel & 1,1 \\
\hline 009005 & JRST & estakrc(1) \\
\hline & 21.3: & \\
\hline 000006 & Calli & 12 \\
\hline & 2EL2: & \\
\hline 000007 & Movet \(i\) & 3, 2 SLIS \\
\hline 000010 & muvem & 3, SLNKRG+1 \\
\hline 000011 & JRST & 2ELI6 \\
\hline & 2SLIS: & \\
\hline 000012 & move & 3, betat \\
\hline 000013 & mivic & 3, PI+1 \\
\hline 000014 & Move & 4, BETA+2 \\
\hline 000015 & movem & 4, Plit \\
\hline 000016 & Muve & 5, BETA+3 \\
\hline 000017 & movem & 5, Pli 3 \\
\hline 000020 & move & 6, betat4 \\
\hline 000021 & miovim & 6, PI +4 \\
\hline 000022 & move & 1, BETA+5 \\
\hline 000023 & miovem & 7, PIts \\
\hline 000024 & mote & 10, betat6 \\
\hline 000025 & movem & 10, PI 46 \\
\hline 000026 & SETZM & 1+6 \\
\hline & 2RLI2: & \\
\hline 000027 & SETZM & T+1 \\
\hline 000030 & SETZM & 1+7 \\
\hline & 2RLI0: & \\
\hline 000031 & SETZM & T+ 2 \\
\hline 000032 & SET2M & I+10 \\
\hline & 2RL8: & \\
\hline 000033 & SET2M & T+3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 000034 & SETZM & H11 \\
\hline \multicolumn{3}{|c|}{2r14:} \\
\hline 000035 & mave & 3,4PIt5 \\
\hline 000636 & adb & 3, @PIth \\
\hline 000037 & Sues & 3. T+3 \\
\hline 000040 & movei & 2.4 \\
\hline 000041 & aus & 4. \(1+5(2)\) \\
\hline 000042 & camil & 4, RHO+5(2) \\
\hline 000043 & JRST & 2155 \\
\hline 000044 & move & 4, DELTA 24 (2) \\
\hline 060045 & ADDB & 4, Plt 4 \\
\hline 000046 & huve & S, DELTA+31(2) \\
\hline 000047 & ADDB & 5, PIt 5 \\
\hline 000050 & JRST & 2 RL .4 \\
\hline \multicolumn{3}{|c|}{XIF5:} \\
\hline 000051 & Stitam & T+4 \\
\hline 000052 & SEIZM & I+16 \\
\hline \multicolumn{3}{|c|}{2RL6:} \\
\hline 000ü3 & move & 3,401+3 \\
\hline 000054 & abid & 3. \(9 P 1+2\) \\
\hline 000055 & Subi & 3, T+4 \\
\hline 009056 & movel & 2,4 \\
\hline 000057 & ans & 4. \(1+12(2)\) \\
\hline 000060 & caill. & 4, RHOH2(2) \\
\hline 000061 & JRST & 2IF 7 \\
\hline 000062 & muve & 4, DELTA+12(2) \\
\hline 009063 & adde & 4, PIt2 \\
\hline 000064 & move & 5, DELTA 17 (2) \\
\hline 000065 & ADDB & S, Pli 3 \\
\hline 000066 & JRST & 2RL6 \\
\hline \multicolumn{3}{|c|}{X[F]:} \\
\hline 000061 & move & 3, \(7+4\) \\
\hline 000070 & stig & 3, T+3 \\
\hline 000071 & ADDB & 3, \(\mathrm{T}+2\) \\
\hline 000072 & movei & 2, 3 \\
\hline 000073 & ans & 4. \(1+5(2)\) \\
\hline 000074 & cath. & 4, RHOL5 (2) \\
\hline \(0000{ }^{\text {l }}\) & JKST & zify \\
\hline 000076 & Slive & 4. DEI.TA+12(2) \\
\hline 000471 & ADDS & 4, \(\mathrm{Hl}+2\) \\
\hline 000100 & moves & 5, deltatil(2) \\
\hline 000101 & A)bes & S, Plit \\
\hline 000102 & move & 6. DELTA 24 (2) \\
\hline 000103 & adob & 6, \(81+4\) \\
\hline 000104 & move & 1.deltat31(2) \\
\hline 000105 & Abob & 7.PItS \\
\hline 000106 & JkSt & KRLA \\
\hline \multicolumn{3}{|c|}{2IF9:} \\
\hline 600107 & move & 3, \(\mathrm{T}+2\) \\
\hline 000110 & Subs & 3, T+1 \\
\hline 000111 & HUVEI & 2,2 \\
\hline 000112 & aus & 4. \(1+5(2)\) \\
\hline 000113 & CAMS. & 4.RHO+5(2) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 000114 & JRST & 21511 \\
\hline 000115 & move & 4, DELTA \(12(2)\) \\
\hline 000116 & ADUB & 4. \(\mathrm{Pl+2}\) \\
\hline 000117 & move & 5, delitat17(2) \\
\hline 000120 & ambi & S. PI+3 \\
\hline 000121 & move & 6, DEL.TA 24 (2) \\
\hline 000122 & ADDB & \(6, \mathrm{Pl+4}\) \\
\hline 000123 & huve & 7. DELTA \(31(2)\) \\
\hline 000124 & adde & 7 , PIts \\
\hline 000125 & JRST & <RL. 10 \\
\hline \multicolumn{3}{|c|}{XIF11:} \\
\hline 000126 & move & 3,7+1 \\
\hline 000127 & ADI & 3, Pl I \(+1^{\text {d }}\) \\
\hline 000130 & mover & 3. \(6 \mathrm{Pl} \mathrm{I}+6\) \\
\hline 000131 & movei & 2,1 \\
\hline 000132 & atos & 3,115(2) \\
\hline 000133 & caill & 3, RHOLS (2) \\
\hline 000134 & JKST & 21113 \\
\hline 000135 & muve & 3, DELTAtS(2) \\
\hline 000136 & ADIUB & 3. ritl \\
\hline 000137 & muve & 4, deltati2(2) \\
\hline 000140 & Amos & 4, Plat \\
\hline 000141 & muve & S. DELTA+17(2) \\
\hline 000142 & Abiob & S. Pl +3 \\
\hline 000143 & muve & 6, UELTA \(24(2)\) \\
\hline 000144 & ADDB & \(6, \mathrm{Pl}^{\text {+ }} 4\) \\
\hline 000145 & move & 7, del.tat31(2) \\
\hline 000146 & ADil \(\mathrm{B}^{\text {- }}\) & 7. PI +5 \\
\hline 000147 & move & 10. DEI.TA +36(2) \\
\hline 000150 & ADID & 10, PIt6 \\
\hline 000151 & JRST & 2RLI2 \\
\hline \multicolumn{3}{|c|}{21F13:} \\
\hline 000152 & movel & 3, 2.14 \\
\hline 000153 & mivem & 3, \$LNKKG(1) \\
\hline 000154 & muvel & 1.0 \\
\hline 000155 & JkSt & estinkrg(1) \\
\hline \multicolumn{3}{|c|}{XLI4:} \\
\hline 000156 & JRST & zSLIS \\
\hline \multicolumn{3}{|c|}{XELI6:} \\
\hline 000157 & JRST & SInter \\
\hline
\end{tabular}

112 nouds object code

The remainder holda inacructions.

The instructions executed by the ladder machine are each single worda (32 bita) and consitat of:
1. Two eddrese inetructions for each of the APL monadic ecalar operatore.

\section*{MOP regiater \(C_{1}\), regiater \(/ 2\)}
2. Three addrese inatructions for each of the APL dyadic scalar operators.

DOP register \(1_{1}\), register \(1_{2}\), register \(\boldsymbol{O}_{3}\)
3. Main memory load and store (Indirect uaing pointers PI).

CET register pointer
PUT register dipointer
4. Local memory "load" and "store" (tr: :afer to or from \(T\)).

LUAD register t,address
STO regiater ifaddress
S. Register clear.

CLR register
6. Unconditional branct

BR addreses
7. Conditional branch
(T|register \(\|\)) \(\Rightarrow\) C COTO addreas)
BNE reglster \(\|_{\text {,address }}\)
8. Polnter inltialization
(PIfpointer (1)BETAlpointer (1)
init pointer
9. Index Increment and teat
(Iflndex Alevel tillindex flevel \(11+1\)
Illudex i,level if CE RHO[Index I, level il
-> COTO address)
INC index tievel t, addrees
0. Pofnter increment
(PI/pointer \|Pilpointer /I+DELTA/pointer filevel fl).
STEP pointer lilevel
11. Co-routine evocation.

EVOKE ladder

The op-code is is a bits vide and addressea occupy 16 bits

The atream generator for \(F+A+-/(-/ B+C)+.--/ D+E\) is given by:
```

ADDER 1:(INIT 1,2,3,4,5,6;
REPEAT(TII]_0
REPEAT(T[2]_0;
REPEAT(T[3]_0;
REPEAT(T[3]_({PI[4])+(PI(S|))-T|3|)
AT 4 USING
T(4) 0;
REPEAT(T[4) ({PI[2]}+[PI[3]])-T[4])
AT 4 USING 2
MOVING 2,3;
T(2)_(T(4)-T(3))+T(2])
AT 3 USING I
moving 2,3,4,5
T(1)T(2)-T(1)
AT 2 USING I
hoving 2,3,4,5;
(P1(6)]_(PI|I|)+T(1))
AT \USING \
MOVING 1, 2,3,4,5;
EvOKE 0);

```

This translates into the ladder code given below. We have added labels to chis listing to perwit symbolic addresses.
\begin{tabular}{lll}
LOOPO: & INIT & 1 \\
& INIT & 2 \\
& INIT & 3 \\
& INIT & 4 \\
& INIT & 5 \\
& INIT & 6 \\
& CLRI & 1,1 \\
LOOPI: & CIL & 1 \\
& CLRI & 1,2 \\
LOOP2: & CLR & 2 \\
& CLRI & 1,3 \\
1.OOP3: & CIR & 3 \\
& CLRI & 1,4 \\
LOOP4: & GET & 5,4 \\
& GET & 6,5 \\
& + & \(5,5,6\) \\
& - & \(3,5,3\) \\
& INC & 1,4, SKIPI \\
& STEP & 4
\end{tabular}
```

        STEP S
    SKIPI: CI.R 4
LouP5: GET 5,2
CET 6,3
INC 4,5,4
INC 2,4,SKI
STEP 2
STEP LOOPS
SKIP2: - 3,4,5
IHC 1,3,SKIP3
STEY 2
STEP
STEP 4
STRP
BR L.OUP3
SKIP3: - 1,2,1
INC 1,2,SKIP4
STEP 2
STEP 3
STEP 4
BR LOOP2
SKIP4: CET 7,1
+ 7.7.1
PUT 7,6
INC 1,
STEP 1
STEP 2
STEP 3

```

```

    STRP S
    SKIPS: EvOKE 0
BR LOOPO
*** 59 inatructiona ***

```

The 32 bit instructions would permit a STEP 1 netruction to upecify up to
4 pointer 1's. However, all ladder code tastruction counta in this
thesis assume the form of atep used above.

\section*{F. 2 the operaturs}
P.2.1 Monadic Operators

When a monadic brancli node (monadic operator) to traversed, the graph of the result is builc from that for the operand as follows:

\section*{F.2.1.1 Scalar Operation}

No change ia made to the graph for the operand. Code for the
operation ta built into the aplice code at. the point (a) where values are avallable.
F.2.1.2 Take

IF problem nodes are active at dimension affected
then (Assign operand into temporary array;
/* In-1ine Assignment demon acts here */
apply take to new operand)
ELSE modify labels of active nodes of operand at level affected with Take;

but

\section*{F.2.1.3 Drop}

If problem nodes are active at dimention affected
THEN (Assign operand into teaporary array;
/ An-line Assigiment demon acte here */
apply drop to new operand)
ELSE modify labele of active nodes of operand at level affected
with Drop: with Drop;
P.2.1.4 Reverse
execute Reverse command
if fallure
tHEN (Assign operand into temporary array;
/* In-line Assignment demon acts here */
apply reverse to new operand);

F.2.1.5 Subscription
if problem nodes are active at dimension affected
THEN (ABsign operand into temporary array:
/* In-line Asoigument demon acts here */ apply subscription to new operand)
ELSE modify labels of actlve nodes of operand at level affected uth Subscription:
b \([1+2 \times 13]\)
a. \(v\)

\section*{F.2.1.6 Tcansposition}
extecute Transpose command;
If diagonalization is specified /A now adjacent */
THEN (If problem nodes are active at levels affected
THEN (Assign operand fato temporary array
collapae affected levels of eat lats
In a stwilar fashion to the requitement of the re-order operation, the collapse procedure asames the absence of wultiple nesting. It ull preserve that property. Since no active node has an inactive son, the collapse operation will seduce the depth of each ladder in the active sub-graph of the entry point unlformly by one.

R.2.1.7 Reduction
butld a almple ladder with shape of operand;
label dimensions not being reduced to assign to. a temporary; label reduced dimension with /;
execute Merge command between new ladder and operand;
For a non-associative operation, the reduced dimension must be
- reverbed or alternate uperations performed. (For associative operation this dimension my be altered to match delivery.)

The reduction operation will be most efficient if the che reduction is applied to the last dimension. The temporary atorage is not accessed repeatedly, and thus its elfolnation may be possible.

F.2.1.8 Scan
build a oimple ladder with shape of operand;
abel nev ladder to assign to a temporary;
label all levels with \(\mathrm{N}_{\text {; }}\)
execute Merge command between new ladder and operand;
We require that all data acanned be in the range of the operator as well as in its domain. Non-associative operations require special handifing [16].

The acan operation will be most efficient if the acan is applied to the last dimension. The temporary atorage is not acceased, and thus its elfination may be possible.

F.2.1.9 Iota
add a neu (left-most) nesting con to the header
of the graph for the scalar operand;
label the new node as pis, is and as the new result;

\section*{F.2.1.10 Ravel}
change nesting edges connecting active nodes at levels affected to raveled nesting edges:
levels affected to raveled nesting edges:
build a new ladder with the shape of the result and
label it to assign to a temporary and as the result;
create a copy of the new ladder for each result ladder
in the operand and Adjust to fit;
In the operand and Adjust to
connect an evocation edge from
the lowest active node in each operand result ladder
to the lowe at active node th operat
to the loust active node in the matching copy of the new ladder:
\(\ddots\)
\(\vdots\)

8.2.1.11 Shape

Host uses of shape become modifiers of monadic operations. If this has not occurred, the set-up code will store the vector, and the atream geaerator is a simple reference to that new vector. The constraint propagation phase will have aubdivided che function so that the information is avallable when the generator it started. If the operand is not a variable uaed elsewhere, then only those valuea wifh deternine atize need be calculuted (may be none).

\section*{P.2.1.12 implication}
create a new one level ladder with limit
equal to duplication factor;
Nest operand under new ladder:
\(\ddots\)
\(a\)
\(a\)

\section*{F.2.1.13 Reshape}
bultd a new ladder with the shape of the result and label it to assign to a temporary and as the result;
reate a copy of the new ladder for each result ladder
In the operand and AJjust to fit
connect an evocation edge from
the lowest active node in each operand result ladder
to the lowest active node in the matching copy of the wew ladder Neither sub-grapla may be altered during later procesising.

(reshaping \(V\) to have shape of \(T\))

F.2.1.14 Scalar Creation

Splice code in the entry point will fetch the operand into a
register. If the operand of chis operation is a parse tree leaf (or 1 in, then the fetch will ba done by che interpreter. all scalar operanda and internediate reaults are kept in registers.

\section*{P.2.1.15 Boolean Creation}

The graph for the operand to unchanged. Splice code to check value range will be added to the point where values are avallable.
F.2.1.16 Self Indexing - ViV

Nest the graph for the operand under e copy of itself; change limit label of lower copy to e \(\rho V_{1}\) :

Reduce the last dimension;
b. SELLP INDEX

F.2.1.19 Rank - pod

Rank ia a scalar constant computed at complie time.

\section*{P.2.1.20 Indices Of Array - \((P A)[1]\)}

The graph is a oingle active node labeled iof \(\cdot \rho A_{1}\).

\section*{F.2.1.21 Scalar To Vector}
create a one level graph to reference the vector;
attach it as the left-most nesting son of the entry point of of the graph for tiue right operand;

The realinder of the monadic operators are treated as function calis.
F.2.1.17 Extremum Position - Vif/V or Vit/V

The graph is the same at for the reduction of \(v\).
F.2.1.18 Span-1/Vo.-V

The graph is the ame as for the reduction of \(v\).

\section*{.2.2 Dyadic Operatore}

The graph for the reault of a dyadic operation is built up frum chose of the aperanda as follows

\section*{E.2.2.1 Scalar Operation}
execute Merye comand ;
if faillite
THEN (Assign operand causing fallure to temporary
/* In-line Asaigiment demon acts here *
apply scalar operation)
ELSE build actual calculationa inco oplice code;

\section*{E.2.2.2 Subacripliun}

IF subscript is an ivector
THEN (attach right operand to the hedder of
che left operand as a new left-most nesting son apply monadic subscription)
ELSE (If active audes of right operand are problea nod THEN (Assign right operand to a temporary; /* In-ilne Asaignament dewon acts here *) subscript new right operand)
ELSE (Nest left operand under right operand;
Transpose to bring subscript adjacent to level subscripted;
demove nodes being subscripted
FOR each array refereace removed Do
add a subscription label to
the lowest node of the subscript)
If the result of a subacription in re-ordered, the subscription
labels will have to be woved to the lowest node labeled as
generacing the subscript.

\section*{F.2.2.3 Rotation}
create a one level ladder for \(1 \rho R_{r}\);
\[
\text { /* } R_{r} \text { if cotated dimecision of riglit operand * }
\]

Nest it under left operand;
Transpose to put new node at level of rotation;
If active nodes at the rotated level of the right operand
THEN (areblem nodes
THEN (Assign right operand to temporary
execute therge comand;
if Failure.
THEN (Asalgn operand cauning fallure to temporary /* In-line Assignent demon acts here * execute Morge comand);
retoove pointer movement labeis for rocated dimension of right operand;
FOR each label removed DO add a rotation label to the
lowest node of left operand
If the result of a rotation ie re-ordered, the rotation labele must
be moved to the lovest node of the right operand.

\section*{P.2.2.4 Compress}

IF right operand has choice node at level of compression and one alternative is inactive THEN (Assign right operand to a teaporary
/* In-line Assignment demons acts here *);
copy the right operand;
label one copy as the result of the compression;
add the modifler SKIp to all
(except hedder nodes) of the other;
wae the left operand to select between
two Alternatives wich are the two copies
change the linit labels of the target nodes
to be pli; \(/\) * 1 labela left operand *

v

\section*{P.2.2.5 Expand}

If right operand has choice node at leve of expansion and one alternative ts Inactive Then (Assign right operand to a temporary
/A la-litac Asuignameat demons acte here \(\#\));
bulld a new ladder with shape of right operand;
If right operand is numeric
THEN label new ladder with Zero
ElSE label new ladder with blank;
label riglit operand and new laduer as result
ute the left operand to aclect between
cwo Alternatives which are the right operand and the new ladder:
change the limit label of the target nodee in the new ladder to be \(\mathrm{Hl}_{1}\); /* 1 labela left operand *

\(\Downarrow\)

F.2.2.6 Catenation

IF right operand has choice node at level
of compression aind one alteriative is Inactive
then (Assign right operand to a temporary
I* In-line assigrauent denons acts here *)
IF left operand has choice node at level
of compression and one alternative is inactive
THEN (Asaign left operand to a temporary
/* In-line Assignaent demuns acts here *
build a new one level ladder with limit equal to the oum of the leng tha of the catenated dimension; the new ladder yelects between the right and lef operands as Alternatives at level of catenate:

\(\Downarrow\)

\section*{F.2.2.7 Index}

Neat left argument under right operaid; Reduce each dimension derived froa left operand:

\section*{.2.2.8 Membership}

Nest right operand under left operand;
Reduce each dimension derived from right operand;
(Inactive nodes may be re-ordered here and in other multiple reductions using the same associative, comatative operation.)

\section*{Y.2.2.9 Outer Product}

Nest the right operand under the left operand;
label both resulte as result of operation;

8.2.2.10 Inner Product
perform Outer Product;
Diagonalize the last dimension of left operand
with first dimension of right operand;
Reduce resulting dimenaton;

F.2.2.11 Decode

Reverse the last dimension of the left operand; Scan the last diaension of the left operand;
Reverse the last diwension of the left operand;
perform Inner Product:

P.2.2.12 Encode

Reverse the last dimension of the left operand; Scan the last dimenation of the left operand;
Reverse the last diacuaion of the left operand: perform Outer Product;

\section*{P.2.2.13 Assignament}
relabel the result nodes of the singte ladder fur the left operand to assign to the aingle array it references;
label left operand as the reant:
Merge the right and leff operands;
The in-1ine Asaignoent demon will not be applied before asaigument.
If the assignent is to a whole array (replacement), the loop ifwit labela of che left operand will be ignored. If the asaignment ta to a sub-array (left operand includes transposition, eubscription, or ample selection), then liaits must match.

If a graph it created wifch assigng the same value to more than one arcay, temporary storage array will be eliminated until only one copy of the data it atored. Reault labela will be tranaferred.

Note that the latels from the left operand are placed so as to be modified by the result labels of the right operand. If \(L\) it a temporary which is subsequently adsigned to a different array, the labele \(c_{1} a_{1} L_{1}\) would be replaced by thoat for the new auaigname.

When the ln-1fine Assignment demon is applited after an absignment, the actions are:
build a simple ladder with shape of stored result;
label to reference that array;
cranafer modifiers originally froa left operand
of assignaent to new ladder:
(\(A\) a and a in above \(A\))
Overlay entry polnts (acw ladder on the left)

F.2.2.14 Reshape

Dyadic reshape is not complied, so no graph is ever created. The interpreter will remove extra elewento or create duplicates from the stored operand (and if necessary copy the stored operand into actual ravel order).

\section*{P.2.2.15 Transposition}

The right operand becomes the successor of the left operand. If the right operand is a single ladder, and if the transposition does not specify diagonalization (this will be known due to rank constralnts), then the interpreter can apply the equivalent of monadic tranapose to that ladder by changing addreas sequence parameters. Othervise, the right operand must be assigned to a temporary, and monadic transposition applied.
F.2.2.16 Take And Drop

The right operand becoses the successor of the left operand. The conadic operation te then applied to the right operand.

\section*{F.2.2.17 Duplication}

The right operand becomes the succeasor of the left operand. The manadic operation is then applied to the right operand.
F.2.2.18 End-around - \({ }^{*} 1 \phi V . S\) or \(1 \phi S, V\)

The graph is equivalent to catenation in reverse order.
F.2.2.19 First-found - I/V1,V2

Nest V2 under VI;
Reduce lower level;

F.2.2.20 Bounded Extremum - \(1 / 5 . V\) or \(\mathrm{T} / \mathrm{S} . \mathrm{V}\)

The graph ts the anae as for reduction of \(v\).
F.2.2.21 Take-t111 - (V.s)tV

The graph is that produced for \(V / V\) with the choice node modified by
1. The header is labeled with the parse tree lablel for the leaf \(s\).

\section*{E.2.2.22 Delay - S. \({ }^{-1+V}\) or - 1 SS.V}

This will be graphed as simple accese to entire vector with scaler ceference in header.
F.2.2.23 Select-index - \(A[V / 2 \rho A]\) Thie conatruct is complled as \(V / A\).
F.2.2.24 Successor - 0

The two entry polnta are Overlayed. The right to left order of sub-graphs is preserved within and between the sub-graphs of the two operanda.

All other dyadic operationa are consldered to be function calla.

\section*{APPENDIX \(G\)}

\section*{example strenm gentrators}

The stream generators and final object code for the examples of Chapter 5 are given below. Yor all except example 3 only the final stream generator graphs are included below and they have been edited to remove all parse tree node labels not essential in ohowing the atructure of the generator. Each stage of atream generator development fa preaented for example 3.

\section*{G. 1 example 1 - prime numbers}

The expression \(S++/ 2=+/[1] 0=(1 N) \circ\). \(\mid\) iN will calculate the number of primes less than or equal to N .

The utream generator for this expression 1s:

The object code produced is:

LADDER 1:(T11) 0;
REPEAT(Ti2) 0;
T(3)_14.11:
REPEAT(T14) \(0=(1[1,2) \mid T(3))\); T(2)_T(4]+T(21)
at 2 USING \(\overline{\mathrm{l}}_{\mathrm{i}}\)
\(T(1) T(1)+(T[2]=2)\)
at 1 USing \(\bar{T}_{i}\)
Evoke 0)
which complles tato 37 rop-10 instructions or 16 ladder inetructions.

For \(H\) - 10, the expression perforns as follous:
Array Element Refereace Temporary Storage
Nalve Interpreter \(570 \quad 220\)
HP-3000 Compiler 0
Stream Generator 0
G. 2 EXAMPLE 2 - roman numbers

The expreasion \(R \cdot\left(,\left(\left(7_{\rho} 52\right) \tau N\right) \circ .211\right) / . Q_{4} 7_{\rho}{ }^{\prime}\) MOCIXVI' converts an integer (N) into ite representation ia Roman numerala. The strean generator is:

The object code produced is:

Ladoer 1: (on IS IN THI)
INIT 1,2:
T(2) T(1);
REPEAT(T13) IPI(1)]IT12);

T14)(PI(21):
REPEAT(T(5)T(3)2111,2);
T(S) 2 ESENGKE 2)
AT 1 USING 1
RHO(2,1) 1(2,1]+1;
Rhol2, 1;
evore 0);
laider 2: (init 3;
repear(ipli(3)] T44]:
evore 1)
AT I USIN
HOVING 3)
which complies into 68 PDP-10 instructiona or 31 ladder instructiona.
When the reault contafna 7 characters, the execution of this expression requires:

\section*{Array Element References}
Naive Interpreter 273
HP-3000 Compiler 16570
Stream Generator 28
G. 3 example 3 - J choose n

The function

D+ J CHOOSE A: B:C:N

[3] \(V+21 B\)
[4] \(C+((1 \rho V)=V, V) / B\)
[s] \(D+((J+1)=+/[1] C) / C\)
takes as its argument \(A\) a boolean matrix each column of which has \(J\) elements equal to 1 . Each column is unique and together they give all the ways of choosing \(J\) elementa from \(N\). The output of the function \(D i s\) the same information for \(\mathrm{J}+\mathrm{l}\). The strean generator is:

The object code ia:

LadDER 1: (INIT 1,2.7:
mepeat(til) 0
REPEAT (t.VUKE \(2 ;\)
T(1) (\(2 \times T(11)+T(2) ; 12181\) (P! \(|4| \mid\) T 21) \(1 T\)
at 2 using
moving 1 ;
(PII2il_TII) N
T(3)1:
R(3) 2,21 1(1, 1)+1: upVI
REPEAT (T14)_(|PI[7])=T|1|)AT(3)
\(\left.T(4) \rightarrow(T(3))_{0} T(5) _1(2,21)\right)\) ot
Moving 7 ;
T(4) T(5) \(=1(1.11 ; \quad\) (1 pV\()=1\)
T(4] \(\Rightarrow\) EVOKE 3)
AT I USING 1
moving 1, 2, 7
䀧(4.1)_1(4.1)+1; (paal evore 0):
LADDER 2:(INIT 3;
REPEAT(T/G) 1(3,1): HINO
repeat repent (tin_1/3,3); find
T2]_(T(6)=T(71)V(PI(3));
Evoxe 1)
at 3 USING 3
MOVING 3)
AT 2 USING 3
AT 2 USING
MOVING
at 1 using
ladder 3: (f (\(\mathrm{J}+\mathrm{i}\)) is in T\{9]
INIT 5:
repeat (t (8) 0 ;
REPEAT(T|8] (PI\{51]+T[8]) it/C
AT I USING
moving
\(T(8) T(8)=T(9)\) :
T(8) \(\Rightarrow\) EVOKE 4 ELSE EVOKE 1
at I USine
Movine
kino(5,11 \(1 \mid 5,11+1)\); toald
REPE
(Repleat(|PI|4)] (PI(6)1)
at 2 using 5
MOVING 6,4
EVOXE
moving 6, 4)
which compilea into 206 PDP-10 instructions or 96 ladder fastructions.

Por \(N\) - 10 and J 5 thia function requires:
\begin{tabular}{lrr}
& Array Element References & Temporary Storage \\
Nalve Interpreter & \(\mathbf{1 , 3 1 8 , 5 1 8}\) & 271,200 \\
HP-3000 Complier & \(6,533,604\) & \(\mathbf{5 0 , 4 0 0}\) \\
Stream Generator & \(6,414,660\) & 2,530
\end{tabular}

Pigure C-1 which follow shovs each stage of the development of this result.

Constralitt Propagation and Operator Converaion:

Figure G-I - Example 3

Stages of Stream Generator Creation:
(active sub-graph at each atep only)

to reflect creation of temporary storage for ravel
Figure C-1 - Example 3 (cont.)

to reflect creation of \(T\) as storage for Decode (reduction)

co reflect creation of \(S\) astorage for Sclf Index (reduction)

Figure G-I - Example 3 (cont.)

where

to reflect creation of \(U\) as atorage for Reduction

the final graph for ap has the graphs for ac, ah, ad, w, and \(r\) as sub-graphs. (Sowe result labels will have been removed frow generation sub-graph by ia-line assignnent demon.)

Pigure G-1 - Exsmple 3 (cont.)

\section*{Generation/Use Graph}

ad: preference conflict - elionination of repeated use of \(T\) confilicts with having corepiession affect lovest
droension.
elimination of repeated use of 1 has higher priority and ad is re-ordered
ao: preference conflict - elimination of repeated use of \(U\) conflicts with having compression affect lovest dimension
- ellimination of repeated use of 0 has higher priority and ao is re-ordered
ah: preference - reduction shouid affect lowest diaenstion
\(r\) : preference - reduction should affect lowast dimension - I is re-ordered
w: preference - reduction should affect lowest diaension

There is no conflict between nodes with an order preference. Testing possible orderings form reveals that, if wis re-ordered the graph way be overlayed to have the following forn:

c. 4 example 4 - symble table update

The fuaction
(1) SYM \(X: Y\)
(1) \(\quad Y+\sim X \in A\)
\(\begin{array}{ll}{[2]} & A \cdot A, Y /, X \\ {[3]} & B \cdot(B, Y /, 0)+X=A\end{array}\)
usee global variables \(A\) and \(B\) wich are respectively a vector of single character symbols and a counc of the number of clacs each symbol has been encountered. The fuaction argument \(x\) is a character. It will be appended to A if required and the matching item of B will be updated or created. The atream generator ia:

The object code 1a:
```

ladder 1:(%X IN Tllif
INIT 1,2,3,4;
T1210;
REPEÄ(IPI{3l] {PI|||;
\11:%
PI[4||V(PI| 2]|+T(3);
T[2]_T{2] T[3])
at 1 using; T
movine, 1, 2, 3, 4;
P(13)P[\O]OELTA\3,1);
PI|4]PI{4/10ELTA|4,11
HENSAT(T(2) -> EVOKE 2)
at I USING:2;
RHO[3,1) 113,1)+1
\&vois. 0);
LadDER 2:(%O IN TIOIt
REPF.AT{|PI|3|)_T||;
PT|4]|_T(3)+(T[1]={P1{3|])
EvOkE I)
at I using
hluving 3,4

```

Which compliea into 85 PDP-10 instructions or 48 ladder inatructions.
Array Element Referencea Temporary Storage
Nalve Interpreter
137
22
HP- \(\mathbf{3 0 0 0}\) Complicer
107
22
42
G. 5 example 5 - string search

The tuo line APL expression:
\(p \sim(B[C \bullet .+1+1 p A] A .=A] / C \bigcirc C+(B=11+A) / 1 \rho B\)
searches a string \(B\) for occurrences of atring \(A\) and puts all atarting posttions into \(D\). The stream generator in:

The object code fa:

LADDER I:(IITA IS IN TIII INIT I:
repeat(Ti2]_Ill,1]; flpBy
T(3)TII)=[PI(1)1)
T(3) \(m\) EWKE 2)
at I USING
moving 1:
RHU12,1] \([2,11+1\);
EVOKE 0);
ladder 2: (1NIT 2,3;
REPEAT(Ti) 1; T(4)_0;
REPEAT(T15) \(\mathrm{T}(2)+1(2,21-1 ;)^{-} 1+10\) At
PI[2] Pl(2) \(\mathrm{C}(2,1] \times(\mathrm{T}(5)-\mathrm{T}[4])\) :
T(3) T(3) A (\((\mathrm{PI}|2|)=(\mathrm{PI}(3 \mid 1))\))
AT 2 USING \(\overline{2}\)
moving 3;
at I using 2
Moving 2,
Rilo(3,11 II
ladjer 3: (init 4;
REMEAT(|PI(4)]T(2);
EVOKE I)
at I USING 3
moving 4)

Which complies into 110 PDP-10 inatructions or 54 ladder inatructions. When A is 10 characters long, its firat character occure 10 times in B which is 100 charactere long, and A occurs once in B, the expression
requires
\begin{tabular}{lrr}
& Array Element lieferencen & Temporary Storage \\
Halve Incerpreter & 1181 & 210 \\
HP-3000 Complier & 951 & 210 \\
Stream Generator & 301 & 210
\end{tabular}
G. 6 example 6 - selection

The ApL expresaion \(A+5 S t B+C 1 D\) which was weed in chapter 3 to introduce multiple array ladders is translated into:

The object code 1a:
```

LadDER I:(INIT 1,2,3,4;
REPEAT(REPEAT({PI|!]__PI{2]|+{PI[3])+(PI[4]])
AT 2 USING I
MOVING 1, 2, 3, 4)
at I using I
mOVINC 1, 2, 3, 4;
EWOKE 0)

```
which will complle into 45 PDP-10 inetructions or 25 ladder
example stream cenemators
inatructions. When the inputs are 10 by 10 matrices, this expression requirea:
\begin{tabular}{lrr}
& Array Element References & Temporary Storage \\
Nalve Interprecer & 650 & 200 \\
HP-3000 Complier & 100 & 0 \\
Stream Cenerator & 100 & 0
\end{tabular}

\section*{G. 7 Example 7- transposition}

The expression \(S+x /+/[1] A i B\) which was used in chapter 3 to show the iaportance of re-orderiug calculations is translated into:

The object code 19:

Ladder l: (init 1,2;
T(1) i:
repeat (ti2)o
REPEAT(T(2)_(|PI(1)])(PI(2]))+T(2])
at 2 using 1 hoving 1, 2;
T(1)_T(2)×T(1))
at 1 using \(\overline{1}\) moving 1,2
es is in tilit
evoke 0)
wich complles into 38 PDP-10 instructions or 20 ladder fustructions. When the inputa are 10 by 10 matrices this expresifon requires:

\section*{Array Element References Temporary Storage}

Naive Incerpreter 420

110
HP-3000 Complier
200
0
. 8 ExAMPLE 8 - fil.tering
the two line expresaion
\(B+(v / A) /[1] E v A \circ \operatorname{A+CAD}\)
which was used in chapter 3 to introduce the use of co-routines in cranglated into:

Ladder 1: (INIT 1,2,3,4,5,6
Tl2l 0 ;
REPEAT (T[1] 0;
REPEAT(T(2) IPI\{3)]^\{PI(4)]; (P1|1])_T(2);
T(1)T(2)vT(1))
at 2 using i
Till -> EWUKE 2 ELSE EVOKE
at I USING 1
moving 1, 2,3 ;
 EVOKE 0);
LADDER 2:(T|2) \(\Rightarrow\) PI\{S| PI\{S\}+DELTA\{S,1]:
T\{2]_1;
REPEAT(REPEAT(|PI(2))_(PI(5))V(PI(6)])
at 2 USING 2
Evive 6, 2, S;
Evore 1
at 1 USing 2
MOVING 6, 2, 5);
LADDER 3: (T(2) \(\rightarrow\) PI(5)_PI(5)+DELTA(S,1);
T\{2] 1;
repeatir(repeat (0)
AT 2 USING 3
Moving 5 ;
EVOKE 1)
AT I USING
which complies into 133 PDP-10 instructions or 74 ladder instructions
When the inputs are 10 by 10 matrices and 5 rows survive, this expression requires
\begin{tabular}{lrr}
& Array Eleaent References & Temporary Storage \\
Naive Interpreter & 870 & 210 \\
HP-3000 Compller & 710 & 210 \\
Stream Generator & 450 & 10
\end{tabular}
C. 9 EXAMPLE 9 - MERGINC

The expresaion \(S^{2}+/+/ B, C,[1] D\) which was used in chapter 3 to demonstrate the ued for multiple negting is tranalated into:

The object code fa:

AdDER 1:(INIT 1,2,3;
T11] 0;
REPEAT (TI?1 O;
REPEAT(T(2)_(PI(2)]+T(2))
AT 2 USING
MOVING 2i:
REPEAT(T/2)_(PI(1)]+T(2))
AT 2 USIRG 2
T(1) T(2)+T(1)
at 1 using \(\bar{T}\)
AT 1 USiNG moving
PI[1]_PI[1]+DEITA(1.11;
RE:PEAT(T\{2\}_0;

AT 2 USINC
REPEAT(T12) (PI \(1111+\mathrm{T}(2) \mathrm{s})\)
AT 2 USING \(\overline{2}\)
moving 1;
T(1) T(2)+T(1) \()\)
at I using 1
moving \(\mathrm{I}_{0} \mathrm{Ji}_{\mathrm{i}}\)
©T(1) NOH HOLDS St
evoke 0)

Which complles into 86 PDP-10 Instructions or 47 ladder instructions. When it is a 10 by 5 matrix and \(C\) and \(D\) are 5 by 5 matrices this expression requires:

Array Element References
Temporary Storage
160
Halve Interpreter 320

300
100

150

HP-3000 Coupller

\section*{bibliocraphy}

Abrama, P. S. "An APl. Machine", Stanford University Computer Sclence Departmeat. Report STAN-CS-70-158 (1970).

21 Aho. A. V. © Ullaan, J. D. Theory of Parsinge Tranalation and Complling. Prentice-Hall (1972).
I) Ashcroft, E. A.. "Towards an APL Compller", Dept. of Applied Analysis and Computer Science, Univeralty of Waterloo, Report Cs-70-01 (1970).
if Bauer, A. M., Sasi, H. J., "Does Apl. Really Need Run-thae Checking", Software-Practice and Expertence, 4()129-138 (1974).
S) Bitofsky, K., "PDP-10 IHP 72 Heference Manual", Dept. of Computer science, Yale University (1973).

61 Burge, W. U., Kecursive Programing Techaiques, Addison-Wesiey (1975).

11 Breed, I.. M.. lathwell, R.H., "The Implementation of Apl.360" in lateractive Syicery for Experlacaral Applifed Machematica, M. Herer and ,. Reinfeids edtiors, Acadetaic Press (1968).

1 Dantels, B., "Very High Level Optiatzation: Design of an Optimizer for Afl.". Laboratury for Cumputior Sctence, Massachusetts lastitute of Technology, thesis proposal (1976).

91
Cerhart, S. L.. "Verification of arl Programg", Depto of Computer Scteace, Carncgle-Mellon Untversity, Pli.D. thesis (1972).

101 Culbasi, 1. J., Hyate, D.K., "Compllation and Delayed Evaluation 10 APL.". Conference Record of the fifth ACM Syaposium on Principles of programaing Languages. Assuctation for Computing Machinery (1978).
11) Habitit, A., Lyon, l.. E.., "an Apl emulator on Syatem370", fbm Systems Journal, 15(4)358-376 (1976).
12) Jenking, M. A. "Traaslating APL - An Empirical Study", Proc, of the APL 75 Conference, Piea Italy, June 1975, SIGPLAN Techatcal Comaittee on APL (1975).
13) Johnaton, R. L., Hewlett-Packard Co., Palo Alto, Calitorma, personal communication (1977).

141 Jones, N. D., Muchutck. S. S., "Binding Time Optimization io Programutng languages". Conference Record of the Third Acs Sympostum on Priactples of Programalng Languages, Association for Computing Machinery (1976).
lan, M. A., Uliman, J. A., "A General Scheme for the Automati Inference of Varlatie Typeo", Conference kecord of the Fifth ACM Symposium on Principles of Prograviming Langages, Assoctation for Computing Muclitnery (1976).
omell, E. E., "The Caret Punctions: Efficient Algorichas for the Scans and Reductions of Eight Boolean functions". Procedtuge of the Sixth International APL Users Conference, Anahelá CA (1974).

17 Minter, C. R., "A Hachine Design for Efficient laplewentation of AfL", Dept. of Computer Sctence, Yale University, Research Rupure 81 (1976).
18) Mitcliei, J. G., "The Design and Construction of Flexible and Efficient Inceractive Programang Syatena". Dept. of Cociputer Science, Carnegie-Mellion Untversity. Ph.D. thests (1970).

19] Perlis, A. J., "Steps Toward an APL Compiler - Updated". Dept, of Computer Science, Yale University, Research Report i4 (1975).
201 Perils, A. J., "In Praise of APL - A language for lyrical Programing", SIAM New, 10(3) (1971).

211 Perils, A. J., Rugaber, S.. "The Art ldion hist", Dept. of Computer Science. Yale University, Research keport 87 (1977).

22] Ryun, J., Burrougha Corp., personal combuntcation (1977).
231 Strawn, G. O., "Does APL Really Need Run-time Paraing". Sofrware - Practice and Expertence, 1 (1917).
24) Zaka, R., "A Mtcroprogramed APL Japlementatiou". Dept. of Computer Science. Univ. of Calif., Berkeley. Ph.D. Chesia (1971).

25 Irons, E. T., Yale Univeralty, personal comanication (1977)```

[^0]: For no3 the program fo:

[^1]: 5: Type 1 s numeric
 1: Type is numeric
 7: Type is nuncric
 6: Type is Numeric
 4: Rank is 1
 4: Type is boolean
 4: Type is boolean
 : Type is numeric
 3: Type is nuseric
 2: Rank is 0
 3: Rank is

 - Type is T

 5: Type is
 : Type is T T
 3: Type is T
 2: Type is
 2: Type is T
 1: Rank is 5: Rank is
 3: Rank is X
 3: Rank is X
 4: Rank is X
 6: Rank is A
 1: length is D
 5: Length 1a SD
 6: Type is a
 7: Type 1s R

