
Vectorized APL2: Design and Implementation

Nancy Wheeler

IBM

APL Development

General Products Division

Santa Teresa Laboratory

San Jose, California

Abstract

This report discusses some of the design factors effecting the implementation of support for the 3090 Vector
Facility in APL,2. The vcctorization of the reduction operator is used as a detailed example of the design
process.

ii Vcctorizcd A PI ,2: Design and Implementation

Contents

Introduction I

Vector Pcrfonnance factors

Scalar Primitive Functions 3

Theory of Scalar Primitives 3

Implementation of Vcctorizcd Scalar Primitives 4

Performance Factors for Scalar Primitives 5

Strings of Scalar Functions 6

Theory of Scalar Function Strings 6

Pitfalls of Scalar Function Strings 6

Operators, Etc. 8

'Ibc Reduction Operator 9

Reduction of a Vector 10

Reduction of a Matrix 10

Reduction in Three Dimensions 14

l~he Generalization of Red uction 19

Conclusion 21

Appendix A. Tables of Vcctorized Scalar Primitives 22

Monadic Scalar functions 22

Dyadic Scalar Functions 23

The Circular functions 24

Appendix B. Other \'ectorization in API..2 25

Operators 25

Idioms 25

Special Cases 25

Appendix C. References 26

Contents iii

Figures

1. Scalar Primitive functions on a Scalar Machine J
2. Scalar Primitive Functions on a Vector Machine 4
3. Reduction of a Matrix (Along Last Axis) 10
4. Reduction of a Matrix with Long Last Dimension II
5. Reduction of a Matrix with Long First Dimension 12
6. Reduction of a Matrix (Along First Axis) 12
7. Reduction of a Matrix with Long Last Dimension 13
R. Reduction of a Matrix with Long First Dimension I]
9. Reduction of a 3 0 Array (Along First Axis) 14

10. Reduction of a 3 D Array with I .ong Last Dimension
11. Reduction of a 3 D Array with Long First Dimension
12. Reduction of a 3 D Array (Along Last Axis) 1()
13. Reduction of a 3· J) Array with Long Last Dimension
14. Reduction of a 3 D Array with Long First Dimension
15. Reduction of a 3 1) Array (Along Middle Axis) 17
16. Reduction of a 3-1) Array with Long Last Dimension
17. Reduction of a 3- I) Array with LAJng First Dimension
lR. Reduction of a 3-D Array with Long Middle Dimension
19. Generalization of Reduction 19
20. Rules of Vectorized Reduction 20

15
15

16
17

IS
]8

lq

iv Vectorizcd A PJ.2: Design and Implementation

Introduction

The implementation of support for the 3090 Vector Facility is different from the usual task of adding
support for a new function or feature, because there is an almost infinite amount of work which could be
done.

There are many places in the APL,2 interpreter where vcctorization techniques can be used. Some are
obvious (add, subtract, etc.) and some less obvious. Some arc simple 10 implement, others very complex.
Some have not yet been discovered.

Given a limited development resource, therefore, a subset of the many vcctorizable items were chosen for
j\ PL,2 Release 3. This paper will discuss the factors involved in designing and implementing those items.

While pcrfonnance is discussed in general terms here, it is not the purpose of this paper to present specific
performance numbers for APl,2 on the Vector Facility. Sec Appendix C for references to publications which
address that issue.

Vector Performance Factors

When implementing support for the 3090 Vector facility, the foremost consideration, of course, is perform­
ance. It docs not make sense to vectorize if performance will not he improved. The following factors effect
the ability to vectorize or the performance of vcctorizcd routines:

•	 Data Type. Most of the vector instructions operate on floating point numbers, and many on fullword
integers. There are also some Boolean operations. API ~2 docs represents numbers in those types, but it
also uses other types such as byte integers, complex numbers and characters. Usability of the vector
facility depends on the type of the data and the availability of vector operations for that data type and
function.

•	 Vector Length. Even when vector operations exist, there is overhead involved in their use. If the vectors
involved are very short, the overhead cost can be greater than the gain realized by using vector oper­
ations.

•	 Stride. The vector facility will operate on vectors whose items arc contiguous, or non-contiguous vectors
whose items are regularly spaced (as are the columns of an ,\ PI. array). Stride is the distance between
elements of a vector. In general, the larger the stride, the smaller the performance gain possible with the
vector facility. In fact, with very large stride, degradation may even he experienced. \Vhen items are very
far apart, new pages of memory need to be brought in more often. and paging can become the dominant
factor in performance.

•	 AIJ:orithnl. As is the case with any problem to he solved on a computer, there is often more than one
way to vectorize a given function. Since each vector instruction operates on an entire segment of data,
choosing the most efficient algorithm is extremely important. Fvcn nne additional vector instruction can
have a significant effect on performance.

•	 Cache/Page ~Iana~cmcnt As has already been mentioned. stride h:l~ an effect on paging, which in tum
has an effect on performance. Vector algorithms can be further optimized hy taking into account the
existence and characteristics of cache memory.

In different areas of the i\PL,2 implementation of vector facility support. these performance factors take on
different levels of importance. Data type, vector length. stride. and algorithm are all factors in our design. As

Introduction 1

of now, we have not added special logic for cache management, although it is implicitly part of the picture
wherever stride is considered.

2 Vectorizcd API ,2: Design and Implementation

Scalar Primitive Functions

Theory of Scalar Primitives

Scalar primitive functions (also called pervasive functions) arc primitive functions that operate on array argu­
ments to produce array results of the same shape. It is easy to think about these functions in terms of the
vector facility. Figure I shows a pictorial representation of how one of these functions is executed by the
J\PL2 interpreter on a scalar machine.

A
B

R

DO for I = 1 to N
R[I] ~ A[IJ + B[I]

figure I. Scalar Primitive Functions on a Scalar Machine

Note that because the arrays are stored in the A PL,2 workspace in row major order, the shape (p) of the
array is not an issue. The loop delimiter is the count of items in the array (x / p), and the result takes the
same shape as the argumcnt(s).

In order to execute this scalar primitive function on a machine which operates on vectors of arbitrary length,
then, one would simply replace the scalar loop with an instruction which operates on the entire vector:

R -+- A + B

(This notation should begin to look very familiar to API... programmcrs.)

In reality, the vector hardware operates on vectors of a fixed length called the section size, so the loop must
he rewritten as shown in Figure 2 on page 4.

Scalar Primitive Functions 3

A

ITIIIJ B

R

DO for I = 1 to N by ss

R[I:I+SS-1J ~ A[I:I+SS-1J + B[I:I+SS-1J

Figure 2. Scalar Primitive Functions on a Vector Machine

Implementation of Vectorized Scalar Primitives

For scalar primitive functions, then, the APL,2 interpreter must do two things. First, the loops which control
execution must be rewritten to operate on sections of an array rather than clements. Second, routines must
he provided that will apply the appropriate functions to the array sections. J'or functions like add, subtract,
multiply and divide, providing such a vector routine is a matter of executing a vector facility machine instruc..
tion. For others, such as logarithm and exponential, the logic can he very complicated.

For each primitive vcctorized, of course, it is desirable to find the best possible algorithm. Even a simple
primitive like addition can be optimized. The more general method,

LOAD REGISTER (right argument)
LOAD REGISTER (left argument)
ADD (register/register)
STORE (result)

can be improved:

LOAD REGISTER (right argument)
ADD (register/storage)
STORE (result)

One can imagine that as the algorithms increase in complexity, the number of possible implementations
Increases.

For J\PI/2 Release 3, all the scalar primitive functions and the dyadic circle functions (which can each be
treated as an individual monadic scalar function) were evaluated for vcctorization. Decisions on which to
vcctorize were made on the basis of the availability of existing vector routines (such as the VS rORTRA~

mathematical routines), and the feasibility of writing new routines where none existed. It must be rcmcm..
berea also that routines can not always he provided for all data types due to the lack of vector instructions
which operate on those data types. In some cases, arguments arc convened to a different type (such as
integer to floating point in many scientific routines), but in other cases the conversion would be more expen..
sive than the gain from using the vector facility (Boolean arguments to the same routines).

4 Vcctorizcd APL2: Design and Implementation

,\ summary of the vector routines available for scalar primitives in i\ PI .2 Release .3 is found in Appendix A.

Performance Factors for Scalar Primitives

The performance factors considered in the scalar primitives arc data type, vector length, and algorithm. 1\'/0
of these have already been discussed. Data type helps determine whether a vector routine can he provided at
all, and the algorithm should be chosen to get the best possible improvement from the vector facility.

Vector length is the other factor which was evaluated. As has been stated, if vectors are too short. the over...
head of loading the vector registers and getting started can outweigh the benefits of operating on vectors.
Measurements were made in 1\1>[12, and a vector cutoff of 20 clements was chosen as the best estimate of the
length where most primitives start to sec improvement. The 1\ PI ,2 intcrprctcr will not U~ vector routines
on arrays with a count (x / p) of less than 20. The optimum improvement. of course. comes as vector
length approaches section size, since the vector registers are then fully loaded and operating at their best. The
section size on the IBM 3090 Vector facility is 12R clements.

The storage arrangement of arrays in the API,2 workspace places the clements contiguously, in row major
order. Even if an expression involves indexing, the index operation is performed first. creating a new contig­
uous array. In the case of scalar primitives, therefore, stride is not a factor in determining performance.
Stride is always I (for floating point and integer arguments) or 2 (for complex numbers). The vector facility
is optimized for both these values of stride.

IIow can AI)l.l2 application programmers effect their vector performance? For scalar primitives. they can
make sure that their code can take advantage or the vector facility hy <implv using arrays whenever possible.
The AI'I.,2 language is made for operating on arrays, and code that operates on arrays is made for the vector
facility.

Scalar Primitive r unctions 5

Strings of Scalar Functions

Theory of Scalar Function Strings

Another way in which API,2 Release 3 optimizes performance with the vector facility is by recognizing the
situation where several scalar primitives arc being executed, creating one result. For example,

R ~ A + B x C - D

Each of these functions has a vector routine, so if A, B, C and D arc all arrays. the vector facility can be
used to compute the result R.

Normally, when interpreting that expression in API ~l each function is executed independently, and a tempo­
rary result created at cach step:

T1 ~ C - D

T2 -+- B x T1

R --+- A + T2

Even when using a scalar machine, the usage of the temporary results consumes time and storage. On a
vector machine, the problem is of greater magnitude since loading and storing the vector registers is a rela­
tively expensive operation. If the interpreter were able to eliminate the temporary result, it would appear that
substantial performance gains could be realized, The APL,2 Release J interpreter contains special code to
recognize these strings of scalar functions if the 3090 Vector Facility is active.

Pitfalls of Scalar Function Strings

The objectives in implementing support for strings of scalar functions arc twofold. The first, as has been
discussed, is to optimize performance and reduce usc of storage by eliminating temporary results. Second,
and equally important, the recognition of the strings must he as efficient as possible to avoid impacting per­
formance negatively with the recognition process. If hoth these objectives can he met, we should be able to
achieve the theoretical performance gains.

In practice, some problems do stand in the way of our objectives. There is an overhead in performing the
scan, which because of the interpretive nature of the language is done at execution time. Furthermore. there
arc many expressions that do not qualify for the optimization. For example, index hrackets and parentheses
stop the scan of the expression, and functions which are not scalar primitives cannot be executed in this
manner because the result shape does not remain the same across the string,

As a result of the many non-qualifying cases, our ability to achieve an efficient scan is challenged. When a
qualifying scalar function string is found and executed. the performance gain far outweighs the cost of the
extra scanning. When no qualifying code can be found in an expression. and the scan is restarted many
times due to brackets and parentheses, and the expression is repeated a large number of times, the cost of the
scan can he measurable,

6 Vcctorizcd A PL2: Design and Implementation

Just as API ~2 application programmers can cause the "ector facility to he used more often by replacing loops
of operations on scalars with operations on arrays, they can a15Cl effect their performance in this area. Elirni­
nation of redundant parentheses is one way, and using indexing sparingly is another. For example, the
expression

R ~ A[I;] + B x A[I;] * 2

could be written in a better style for both the scalar and vector machines:

R +- A[I;]

R ~ R + B x R * 2

Now the indexing is only done once, and the optimizing code [rtf strings of scalar functions will fmd a quali ­
fying casco

Note, however, that pre-executing all indexing operations is not advisable. In the case of the expression

R +- A[I;J + B x C[J;] * 2

rewriting it as

T1 ~ A[I;]

T2 -+- C[J;]

R +- T1 + B x T2 * 2

does not provide the advantage of eliminating duplicate work, and has the disadvantage of increasing the
complexity of the code and the size of the name table.

Strings of Scalar Functions 7

Operators, Etc.

When progressing from the orderly realm of scalar primitives into non-scalar primitives and operators, the
techniques used in vectorizing become more complex, and need to he individually developed, since these
functions and operators all have their own unique rules for the formation of results,

In these cases, there are many more factors to be considered. The result is not necessarily the same shape as
the argument. The shape of the argument is significant, where it was not for scalar primitives. Applying a
function or operator along a different axis can change the approach taken entirely. It is here that stride
becomes a factor in choosing a vector algorithm, because the data clements are not always contiguous.

In order to show the kinds of design decisions that are made in vcciorization. the fest of this paper will be
devoted to an example. The design theory behind the vector irnplcrncntation for the reduction operator will
he given in detail. It win be shown that data type, shape, and stride arc all factors in the choice of algo­
rithms.

A Jist of the operators which have been vectorizcd in API,2 Release -' is given in Appendix H, along with a
Jist of idioms and other special cases which are recognized when using 1he VCC10f facility.

8 Vcctorizcd A PI ,2: Design and Implementation

The Reduction Operator

The reduction operator, / or I, operates on a dyadic function to cause that function to be applied between
elements of an array. For example,

+/ 2 3 4

is the same as

2 + 3 + 4

and yields a result of g.

\Vhcn the argument has more than one dimension, the function is applied along one axis of the array.

+/ 2 3 4
567

is the same as

(25) + (3 6) + (47)

and yields a result of (9 1 8).

Changing the shape of the argument changes the result:

+/ 2 3
4 5

6 7

is the same as

(2 4 6) + (3 5 7)

and yields a result of (5 9 1 3).

Now change the axis of reduction for yet a different result:

+1 2 3
4 5

6 7

is the same as

(23) + (45) + (67)

The Reduction Operator 9

and yields (1 2 1 5).

Prom these simple examples it can already be seen that the argument shape and axis of reduction effect the
result value and shape. Finding one vector algorithm for reduction is not sufficient. More than one will he
necessary, and the choice of an algorithm will depend on many different factors.

Reduction of a Vector

Reduction of a vector (a one-dimensional array) is the simplest case, hut will vcctorize least often. Because
reduction causes a function to be applied between clements of onc array rather than t\VO, the vector routines
we have written for scalar primitives, which take t\VO arrays as arguments, cannot he used. We can vectorize
one-dimensional reduction only if a machine-level solution is available which docs exactly what we want.

Fortunately, machine-level solutions are available for three of the most common reductions: plus (-+),
maximum (f) and minimum (L). Unfortunately, the vector facility instructions that implement these sol­
utions operate only on floating point numbers, so the vcctorization is limited to that type.

Reduction of a Matrix

Increasing the dimensions of the array to two opens up new possibilities for vcctorization.

Reduction Along Last Axis

Reduction of a two-dimensional matrix along the last axis requires that each row of the matrix be reduced to
one clement by applying the function between the clements of the row. I 'igurc 3 shows that there are two
different ways that could be accomplished.

Algorithm 1:

+/ ITITJ
+/ ITITJ
+/ ITITJ

Algorithm 2:

Figure 3. Reduction of a Matrix (!\Iong Last Axis)

The first algorithm takes each row of the matrix and reduces it as a vector. This will only work, of course, if
the function is +, f, or L, and the argument is floating point. The second algorithm takes each column

10 Vcctorized APL2: Design and Implementation

of the matrix as a vector, and uses the standard vector routine for the funet ion. This algorithm will work for
any scalar primitive function which has a vector routine for the argument and argument type we have.

Which algorithm is better? For the case in figure 3 on page 10, it is hard to tell. It looks like each would
involve about the same number of machine-level instructions. Algorithm I. however, operates on rows,
which arc contiguous (stride one), and Algorithm 2 operates on columns, which are not (this case has stride
4).

Figure 4 shows a different example.

/

pA : 3 16

** Algorithm 1:
STRIDE =1, LENGTH 16

Algorithm 2:
STRIDE = 16) LENGTH 3

Figure 4. Reduction of a Matrix with Long Last Dimension

In that case, the last dimension is significantly longer, and the choice of an algorithm becomes clearer. Algo­
rithm 1 has a short stride and a long length, while Algorithm 2 has a long stride and short length. Since our
goal is always longer lengths and shorter strides, Algorithm I is a clear winner.

Figure 5 on page 12, hO\VeVCT, shows the other extreme. In that case, the first dimension is longer. While
Algorithm 2 still has a slightly longer stride, its length is much longer and causes it to win out.

l'hc Reduction Operator 11

+/ pA: 16 3

Algorithm 1:
STRIDE =1
LENGTH =3

** Algorithm 2:
STRIDE =3
LENGTH = 16

-

Figure 5. Reduction of a Matrix with Long First Dimension

Reduction Along First Axis

Reduction of a two-dimensional matrix along the first axis requires that each column of the matrix be
reduced to one clement hy applying the function between the elements of the column. figure 6 shows that
there arc also t\VO different ways to accomplish that. The two algorit hrns arc similar to, but not exactly the
same as, those for reducing along the last axis.

Algorithm 1:

ITDJ
+

ITDJ
+

ITDJ

Algorithm 2:

+/ +/ +/ +/

§§§§
Figure 6. Reduction of a Matrix (Along first Axis)

12 Vcctorizcd API.2: Design and Implcmcnlation

The first algorithm takes each row of the matrix and uses the stnndard vector routine for the function. This
algorithm will work for any scalar primitive function which has a vector rout inc. The second algorithm
takes each column of the matrix and reduces it as a vector. This will only work if the function is +. r, or
L. Again, it is difficult to see an advantage for either algorithm unless the cases arc more extreme.

Figure 7 shows the type of case that will prove Algorithm 1 to he superior. and Figure 8 the type that Algo­
rithm 2 will do best at.

+f

pA : 3 16

** Algorithm 1:
STRIDE =1s LENGTH 16

Algorithm 2:
STRIDE =16, LENGTH =3

Figure 7. Reduction of a Matrix with Long Last Dimension

+1 pA: 16 3

Algorithm 1:
STRIDE = 1
LENGTH =3

** Algorithm 2:
STRIDE = 3
LENGTH =16

Figure R. Reduction of a Matrix with Long first Dimension

'Inc Reduction Operator 13

Reduction in Three Dimensions

Let us go one step further into three dimensions to look at even more w.iv« to vcctorize.

Reduction Along First Axis

Reduction of a three-dimensional array along the first axis requires that the function he applied between
elements of the planes of the argument to create a two-dimensional result. Figure 9 shows two different
ways to accomplish that goal.

REDUCTION of a 3-D ARRAY
•••8 long first axis

Algorithm 1:

+

Algorithm 2:

-r:
o

D

Figure 9, Reduction of a 3-D Array (Along First Axis)

Algorithm 1 treats each plane as a vector (remember that the scalar primitive function routines ignore shape)
and applies the standard vector routine between the planes. Algorithm 2 treats ns a vector corresponding
items in each planet and uses the machine-level reduction on the resulting vectors,

At first glance it would seem that Algorithm I is clearly superior, and for arrays with a long last or middle
dimension that is the case. Figure 10 on page 15 shows the case with long first dimension. Since stride is
one for Algorithm I, and the length is long, it will perform much better.

14 Vectorized 1\1'1.2: nr~ign and Implementation

+/[1]
 I I I
I I I
I I I

I I I I I I I I
I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

pA : 2 3 16

** Algorithm 1:
STRIDE = 1, LENGTH = 48

Algorithm 2:
STRIDE =48, LENGTH =2

Figure 10. Reduction of a 3-D Array with Long I ..ast Dimension

There is a case, however, where Algorithm 2 can be beneficial, I;igufe 11 shows a three-dimensional array
with a long first dimension and short last and middle dimensions. In that case, even though stride is not
one, the long length gives an advantage to Algorithm 2.

+/[1] EEB
pA : 16 2 3

EEB Algorithm 1:
STRIDE =1EEB LENGTH =6

EEB ** Algorithm 2:
o
o STRIDE =6

LENGTH =16o

Figure 1]. Reduction ora 3-1) Array with Long First Dimension

Reduction Along Last Axis

Reduction of a three-dimensional array along the last axis requires that the function he applied between ele­
ments of the rows of the argument. Figure 12 on page 16 shows two different algorithms for this case.

111e Reduction Operator 15

REDUCTION of a 3-D ARRAY
•••8 long last axis

Algorithm 1: Algorithm 2:

+/LIILl
+/LIILl
+/LIILl + ++

+/LIILl
+/LIILl
+/LIILl

Figure 12. Reduction of a 3-D Array (Along Last Axis)

Algorithm 1 treats each row as a vector and uses the machine-level reduct ion on them. Algorithm 2 treats
each column as a vector and applies the standard vector routine between those vectors, across each TO\\·. It
can ignore the plane boundaries and make one vector for all the corresponding columns in each plane,

J Jere again the algorithm choice depends on the shape of the argument. With a long last axis, as shown in
Figure 13, Algorithm I, with stride of one and long length, is superior. \Vith a long middle or first axis,
however, Algorithm 2 is better, with short stride and long length. Figure 14 on page 17 shows an example.

+/[3J

pA : 2 3 16

** Algorithm 1:
STRIDE =1) LENGTH =16

Algorithm 2:
STRIDE =16) LENGTH = 6

figure] 3. Reduction of (I 3·0 Array with Long Last Dimension

16 Vcctorizcd /\ PI,2: Design and Implementation

+/[3] Ern
pA : 16 2 3

Ern
Algorithm 1:

STRIDE =1
LENGTH = 3

Ern
Ern

o ** Algorithm 2:
o STRIDE = 3
o

LENGTH = 32

Ern
Figure] 4. Reduction of a 3-D Array with Long first Dimension

Reduction Along Middle Axis

Reduction of a three-dimensional array along the middle axis requires that the function he applied between
clements of the columns of the argument. Figure 15 ShO\V5 three different algorithms for this case.

REDUCTION of a 3-D ARRAY
...along rrrddle axis

Algorithm 1: Algorithm 2: Algorithm 3:
+ up columns, B 11 +/ +/ +/ +/ITIIJ planes at oree

+

ITIIJ 0

0

0

0

§
+

ITIIJ

ITIIJ

+

ITIIJ
+

ITIIJ

Figure 15. Reduction or a 3-D Array (Along Middle Axis)

lne Reduction Operator t 7

Algorithm 1 treats each row as a vector and applies the vector routine between them. Algorithm 2 treats
corresponding items of the planes as vectors and applies the vector routine between them. Algorithm 3
applies the machine-level solution to each column.

Again, there are cases where each of the three algorithms is best. Figure 16, ligurc t7, and Figure 18 on
page 19 show examples of a case for each algorithm.

+/[2] I I I
I I I
I I I

pA : 2 3 16

** Algorithm 1:
STRIDE = 1, LENGTH = 16

Algorithm 2:
STRIDE = 48, LENGTH = 2

Algorithm 3:
STRIDE = 16, LENGTH = 3

Figure 16. Reduction of a 3-D Array with Long Last Dimension

+/[2] EEEJ pA : 16 2 3

Algorithm 1:

EEEJ STRIDE = 1
LENGTH = 3

EEEJ ** Algorithm 2:
STRIDE = 6EEEJ LENGTH = 16

o
o Algorithm 3:
o STRIDE = 3

LENGTH = 2EEEJ
figure 17. Reduction of a 3-D Array with Long first Dimension

18 Vcctorizcd ;\ PI,2: Design and 1rnplcmcntation

pA : 2 16 3 +/[2]

Algorithm 1:
STRIDE =1
LENGTH =3

Algorithm 2:
STRIDE =48
LENGTH =2

** Algorithm 3:
STRIDE =3
LENGTH =16

Figure) 8. Reduction or a 3- D Array with Long l\ fiddle Dimension

The Generalization of Reduction

\Vc have demonstrated the many cases of reduction in different dimensions. and shown how "ector length,
stride, function and data type arc involved in choosing an algorithrn.

Fortunately, the implementation of vectorizcd reduction is not as complicated as these examples might indi­
catc. Reduction can be generalized. In fact, all cases of reduction can he described in terms of the three­
dimensional, middle-axis case, the last case described here, and all of the vector algorithms we saw can be
equated to one of the three algorithms for that casco

Figure 19 shows how \VC describe reduction in terms of the three dimensional case. The axis of reduction
always becomes the middle dimension. Axes on the left of the axis of reduction are combined to form the
first dimension. Axes on the right of the axis of reduction arc combined to form the last dimension. If there
is nothing to the left or right, that dimension takes length onc.:

pA: 5 > 1 5 1
pA: 3 4 > 1 3 4 (first aris)
pA: 3 4) 3 4 1 tl.ast. arisJ
pA: 3 4 5 ~ 12 5 1 (~ast aris)
pA: 3 4 5 6 ~ 12 5 6 (thirad asrie)

Figure 19. Generalization of Reduction

lnc Reduction Operator 19

The three basic reduction algorithms are seen in the three- dimensional middle-axis casco These algorithms
have all been implemented and tested for performance.

Algorithm I involves treating rows as vectors. This algorithm gives the best results if length is reasonably
long (the vector cutoff of 20 is used) because stride is always one.

Algorithm 2 involves treating corresponding items of each plane as vectors. It gives good results if the first
dimension is long, and stride (which will be the product of the other two dimensions) is not too long. The
cutoff used in that case is one also arrived at by empirical measurements, and may change as different vector
machines are developed.

Algorithm 3 involves the usc of the machine..level instructions for +, r, and L. It gives the least
improvement, but is useful if the other two are eliminated due to short lengths or long strides.

Figure 20 summarizes the rules for generalized reduction in the i\ PI ,2 interpreter. It should also he noted
that implied in all these decisions is the existence of a vector routine for the function operand and argument
data type of the reduction. Without that routine, no vcctorization is possible,

IF the last dimension is large,
USE Algorithm 1

ELSE
IF the first dimension is large,

AND the product of the other two

dimensions (STRIDE) is not too large,

USE Algorithm 2

ELSE
IF the middle dimension is large,
and we have +. r, OI' L
USE Algorithm 3

Figure 20. Rules of Vectorized Reduction

20 vectorizcd J\PL2: I)csign and Implementation

Conclusion

Implementing support for the 3090 Vector facility is an almost infinite task whose individual parts range
from the extremely simple to the very complex. It has been hoth challenging and exciting to complete a part
of that task in APL2 Release 3.

Of course, there are many other areas of APL,2 where vcctorization can he achieved. More scalar primitives
can be vectorized. Some computational non-scalar primitives arc candidates for vectorization. In addition, it
is possible to move beyond strictly computational functions and usc the vector facility to move data as well.
The next part of the task should be just as challenging and excit ing.

Conclusion 21

Appendix A. Tables of Vectorized Scalar Primitives

I indicates an identity function (result equal to argument)

I) indicates domain error (function not defined for the type)

V indicates existence of vector routine

Monadic Scalar Functions

FIJI"C~rI () N Il()()IJ~AN IN'rl':C;l:R REAl~ CO:\IPI..EX

Conjugate (+) I 1 I V

Negative (-) v V V

Direction (x) I v V V
_.

Reciprocal (f) v V V
--~-~--- ~~~

Magnitude (I) I v V V
--- ­

Floor (L) I I
-- ­

Ceiling (r) I I
-­ -_. ­ ~

Exponential (*) v V V
- - --~--~ - --­

Natural Logarithm (5) v V
-~ --~----

Pi times (0) v V V
,._-----­

Factorial (!)

Not ("I) I) 0 0
- -

Roll (?)
- ~-~---~

22 Vcctorizcd APL2: Design and Implementation

Dyadic Scalar Functions

f~lJNCTI()N n()()I.lf~AN 1:\'r"~(;I-:R REr\L cO,tPLEX

Addition (+)
-

v V V

Subtraction (-) V V V

Multiplication (x) v V V

Division (f) V V

Residue (I)
Minimum

Maximum

(L)

(r)
V

_.

V

V

V

0

D

Power (*) V

Logarithm (fA')

Binomial (!)

And (A) I) D 0

Or (v)

Nand (~)

Nor (¥)

Less (<)

Not Greater

Equal (=)
(~)

I)
---.

I)
~

I)
--­

v
...

V

V

D

D

D

V

V

V

D

D

D

D

D

Not Less (~) V V D

Greater (>) V V D

Not Equal (~) V V

Appendix 1\. 'J .ihlcs of Vcctorizcd Scalar Primitives 23

The Circular Functions

1~"lJN crt0 N noot.r.cv)~rr":(;":R REt\I~ I CO'IPLEX

*OJlxR (-120) v V I v

OJlxR (-110) v V ! \T

Conjugate (-100) I I I v

Identity (- sc) I I I I

-(-1-R*2)*.5 (- 8 0)

Arctanh (-70)

Arccosh (- 60) v V

Arcsinh (- 50)

(-1+R*2)*.5 (- 4 0) v V

Arctan (- 3 a) \' V

Arccos (- 2 0)

Arcsin (-10)

(1-R*2)*.5 (00) v V

Sine (10) \' V I
Cosine (20) v V I
Tangent (30) v V I

(1+R*2)*.5 (40) V V

Sinh (50)

Cosh (60)

l'anh (70)

(-1-R*2)*.5 (80)

Real Part (90) I I I v
Magnitude (100) I \' V v

Imaginary Part (110) v V \"

Phase (120) v V
--­

24 Vcctonzed /\PL2: Design and Implementation

Appendix B. Other Vectorization in APL2

Operators

• Expand (\)

• Reduction (f I)

• Inner Product (f • g)

• Outer Product (f g)0 •

Note that the vectorization of reduction, inner product and outer product will occur only if, at interpretation
time, the arguments are determined to be of appropriate dimensions for vcctorization, and if vectorized rou­
tines exist for the function operands and argument types.

Idioms

The idioms implemented are implemented for both the vector and the scalar machine. Where a type is
indicated, the vectorization will only occur for that type­

• Vlr IV (Real)

• V 1 l I V (Real)

• +/ I

• r/ I

· l I I

Special Cases

Some additional cases have special vector routines:

• +/ (Boolean vectors)

• Square (* 2)

• Square Root (* . 5)

• Base 10 Logarithm (Integer and Real)

Appendix R, Other Vectcrization in t\ Pl2 25

Appendix C. References

IBM Systcm/370

Vector Operations

81\22-7125

Understanding the IBM 3090 Vector Facility
Dr. James A. Brown
APtJ Chief Architect
SEAS AM87

I\PIJ2 Release 3 Performance
Henry Altaras
International Technical Support Center
ZZ8] ..0196

I\Pl,2 Version 1 Release 3
Primitive Function Performance on the
IBI\1 3090 Vector Facility
Michael Van Der Meulcn
Mario V. Morreale
IBM Kingston
l'R 21.1078

26 Vcctorized APL2: I)r~ign and Implementation

