ATsl

AT&T C++ Language System

UNIX® System V
Release 2.0

Release Notes

Y

Select Code 307-090

© 1989 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

Amdahl is a registered trademark of Amdahl Corporation.

Apollo is a registered trademark of Apollo Computer.

DEC is a registered trademark of Digital Equipment Corporation.

DG/UX is a trademark of Data General.

Eclipse MV is a registered trademark of Data General.

HP is a registered trademark of Hewlett-Packard.

HP-PA is a trademark of Hewlett-Packard.

HP-UX is a trademark of Hewlett-Packard.

IBM is a registered trademark of International Business Machines.

Intel is a registered trademark of Intel Corporation.

Motorola MC68000 is a trademark of Motorola Inc.

Sun Workstation and Sun Microsystems are registered trademarks of
Sun Microsystems.

Sun-2, Sun-3, and Sun-4 are trademarks of Sun Microsystems.

UNIX is a registered trademark of AT&T.

UTS is a registered trademark of Amdahl Corporation.

VAX is a registered trademark of Digital Equipment Corporation.

WE is a registered trademark of AT&T.

\..,/}

Contents

Preface
Preface

vii

Introduction
Introduction

1-1

Contents of the Release

Contents of the Release 2-1
Installing the Translator

Overview 3-1
Installing the Translator on an AT&T 3B2 Computer 3-4
Installing the Translator from Tape 3-7
Building the C++ Libraries 3-23
Porting the C++ Translator 3-26
Environment Information 3-38
Common Problems 3-39
Compatibility with Previous Releases

Compatibility with Previous Releases 4-1
Appendix A

Known Problems A-1
Appendix B

Documentation B-1
Index

Index I-1

Table of Contents

Table of Contents

Release Notes

S

Figures and Tables

Figure 1-1: Operation of the CC Command

Figure 2-1: Directory Structure of the AT&T C++ Language System Tape
Figure 3-1: C++ Translator Installation Roadmap

Figure 3-2: C++ Translator List of Procedures

Figure 3-3: Output of szal.c for AT&T 6386 WGS Computer

Figure 3-4: Predefined Macro Strings Used in src/size.h

Figure 3-5: Specifications in src/size.h File for AT&T 6386 WGS Computer
Figure 3-6: Labels for szal Output

Table of Contents

1-1
2-1

3-9

3-10
3-28
3-29
3-31
3-32

‘\\./’,

Preface

Preface

Table of Contents

Preface

e The AT&T C++ Language System Release Notes describe Release 2.0 of the AT&T C++ Language System.

The manual is part of a set of four documents that are supplied with your C++ Language System. The
other documents are:

the Product Reference Manual, which provides a complete definition of the C++ language sup-
ported by Release 2.0 of the C++ Language System.

the Selected Readings, which contains papers describing aspects of the C++ language
the Library Manual, which describes the three C++ class libraries and tells you how to use them

The Release Notes consist of four chapters and two appendices, which describe how to install and use
the translator, changes in the C++ language for this release, and other information you need to know:

/“\,k

Chapter 1 is a general description of the C++ Language System and new features that are part of
this release. You should read this chapter as a general introduction to the release.

Chapter 2 is a description of the contents of Release 2.0. This chapter includes a diagram of the
contents of the tape or diskettes from which you install the C++ Language System. You can use
this diagram and the accompanying descriptions as a reference when you install and use the
Language System.

Chapter 3 tells you how to install the C++ Language System and how to port it to machines for
which it is not directly supported.

Chapter 4 covers compatibility with previous releases of the C++ Language System; it describes
anything that has changed in Release 2.0 and might require you to make changes in code written
for previous releases. You should read this chapter if you have existing code running under a
previous release of the C++ Language System.

Appendix A describes known problems with the C++ Language System and suggests wor-
karounds for these problems. '

Appendix B is a list of documentation and ordering information.

To make the best use of the Release Notes, you must be familiar with the C programming language and
the C programming environment under the UNIX® operating system. Refer to Appendix B for further
sources of information about these topics.

Preface

—

-

1 Introduction

introduction
The AT&T C++ Language System
m New Features

Hardware

Table of Contents

7

7

a

Introduction

The AT&T C++ Language System

The AT&T C++ Language System, Release 2.0, is a translator that translates C++ source code to C
source code. It supports the C++ programming language (as described in the enclosed C++ Language
System Product Reference Manual). The CC command invokes the translator, which does semantic and
syntactic checking on the C++ input program and translates the C++ program to C language. The CC
command then invokes the C compiler on your machine to compile the resulting C program and run
related processes such as linking function libraries.

Figure 1-1 shows the operation of the CC command and the processes it invokes:
Figure 1-1: Operation of the CC Command

C++ Language System
CC command

C Compiler

cc command

\ | optimizer !
C : (optional) :
re- C output l__...v._._J

J assembler
C++ __j\ W

Translator

object
file
(.o file)

link - libraries

object file
utilities

debugger

prof

Introduction 1-1

introduction

The C++ Language System can run on most UNIX systems with a C compiler that supports the follow-
ing features:

m long variable names (of at least 31 characters)

W structures as arguments to functions and return values from functions

See “Installation Procedures” for detailed prerequisites and information on porting.

New Features

Release 2.0 of the C++ Language System supersedes Release 1.2. This new release supports the follow-
ing language changes, enhancements, and new features added since Release 1.2 was introduced (see
Chapter 1 of the C++ Language System Selected Readings).

multiple inheritance

type-safe linkage

new and delete operators as class members

overloading of the ->, ->*, and , operators

const and static member functions

static initialization
Additionally, Release 2.0 provides the following enhancements to the translator product:

m enhanced portability
m revised C++ libraries supporting 1/0, tasking operations, and complex arithmetic
m simplified installation procedures

m expanded documentation

Hardware

The AT&T C++ Language System Release 2.0 can be installed on the following machines:

m AT&T 3B Series Computers
m DEC VAX line of Computers (including VAX BSD machines)
m SUN 2, SUN 3, and SUN 4 Workstations
The Language System has also been successfully ported to other machines, including:

m AT&T 6386 WGS

m Motorola 68000-based Apollo and HP workstations
s Amdahl UTS Computer

m Intel 80286 large model and 80386-based machines

1-2 Release Notes

e

C

——

7N

Introduction

m Hewlett-Packard 9000 series 800 HP-PA based machines
m IBM RT Personal Computer
m Data General MV Computers running AOS/VS and DG/UX

The C++ Language System can also be ported to other machines not on this list. Porting to machines
besides the AT&T 3B series, DEC VAX line of computers, and SUN 2/3/4 workstations requires that
you have access to an AT&T 3B series, DEC VAX, or SUN 2/3/4 computer, or that you have access to
an existing working C++ translator. For information about porting, see Chapter 3, under “Porting the
C++ Translator.”

Introduction 1-3

f-\‘

2 Contents of the Release

Contents of the Release

Table of Contents

2-1

o

Contents of the Release

The AT&T C++ Language System includes:
m a tape or a set of five floppy diskettes (depending on the machine on which the release will be
installed) containing the files that make up the C++ Language System
m the AT&T C++ Language System Release Notes (this document)

m the AT&T C++ Language System Product Reference Manual, which describes the C++ programming
language in detail

m the AT&T C++ Language System Selected Readings, which contains papers describing aspects of the
C++ programming language

m the AT&T C++ Language System Library Manual, which describes the iostream, task, and complex
class libraries provided with the C++ Language System

Figure 2-1 shows the structure of the directories that will be created when you extract the tape follow-
ing the instructions in Chapter 3 of this document.

Figure 2-1: Directory Structure of the AT&T C++ Language System Tape

demo/ Incl-master/ lib/ man/ Munch/ Patch/ scratch/ src/ tools/
I .
task/ tools/ complex/ stream/ task/ lib/ mnch/ src/ demangler/
1

const-headers/ proto-headers/ | demangler/

P T

Ostream/ complex/ generic/ mk/ new/ static/ stream/ task/

In the root directory you will find the following files:

w a README file, containing up-to-date information about the release
m the program makefile, which make uses to build the translator
m the program szal.c, an aid for porting the translator

® the program bsd.fix, used to adapt the translator for users running the 4th Berkeley Software
Distribution (BSD)

m the CC command, which you use to invoke the translator and the other tools required to pro-
duce an executable C++ program.

The mnch subdirectory under the scratch directory is only found on tape versions of the C++
Language System.

Contents of the Release 2-1

Contents of the Release

Make sure you read the README file before attempting to install the C++ Language System.

The following list describes the contents of the subdirectories under the Language System root direc-

tory:
src

incl

lib

2-2

contains the C++ source for the translator itself.

contains the #include files for use with C++. Many of these files are standard UNIX system
header files with argument types added to the function declarations. (Chapter 3 describes
how to convert your own C header files by adding argument types and making other
changes to function declarations.) The other files in incl are headers for C++ library func-
tions.

The incl directory is not included on the tape, but is created when you run make. The
header files that end up in incl differ depending on the machine for which you build the
translator. The prototypes for the header files are in the incl-master directory when you
install the translator.

The following list shows the contents of incl on an AT&T 3B2 Computer:

Ostream.h fstream.h memory.h setjmp.h sys/
assert.h ftw.h mon.h signal.h sysent.h
common.h generic.h new.h stdarg.h task.h
complexh grp.h nlisth stddef.h time.h
ctype.h iomanip.h osfcn.h stdio.h unistd.h
curses.h iostream.h ploth stdiostream.h ustat.h
dial.h 1dfen.h pwd.h stdlib.h utime.h
dirent.h libc.h rand48.h stream.h utmp.h
errno.h malloc.h regemp.h string.h vector.h
fentlh math.h search.h strstream.h

incl has one subdirectory, incl/sys. This subdirectory contains the UNIX System V headers
for files that you may be used to seeing in /usr/include/sys.

ipch msgh signalh stath times.h utsname.h
lockh sem.h shm.h statfs.h types.h

contains the following subdirectories, which have the C++ source for the library functions
included with the C++ Language System:

m Ostream, the old Release 1.2 C++ I/O library

m complex, the complex arithmetic library (see Chapter 1 of the C++ Language System
Library Manual)

®m generic, a common error-reporting function and generic stack and vector types

m mk, the directory in which the libC.a makefile resides. 1ibC.a is the standard C++
library, and is composed of functions defined in the files under generic, new, static,
and stream.

Release Notes

—

~

Contents of the Release

Munch
Patch

scratch

new, which handles run-time memory management

static, which handles invocation of static constructors and destructors (see Chapter 3 of
the C++ Language System Selected Readings for descriptions of constructors and destruc-
tors)

stream, the C++ iostream library (see Chapter 3 of the C++ Language System Library
Manual)

task, the C++ task library. This package is machine dependent and is currently imple-
mented only on the AT&T 3B line and 6386 WGS computers, the DEC VAX line of
computers, and SUN workstations using the Motorola 68000 processor family (though
Chapter 2 of the C++ Language System Library Manual provides information on how to
port it to other machines).

contains the source files necessary to compile the munch version of the C++ Translator.

contains the source files necessary to compile the patch version of the C++ Translator. See
Chapter 3 under “The Patch and Munch Options” for more information.

contains the intermediate C source for the translator, which you need only if you bootstrap
the translator on a machine that has no existing C++ translator.

The source diskettes for the AT&T 3B2 Computer do not contain scratch files, since new
scratch files can be generated using the binary version.

The scratch directory contains additional files: a makefile, the file bsd.sed, and various
other sed files, which are used to modify the C source for other machines.

Scratch contains the following subdirectories:

lib, which includes a makefile and the C source for libC.a

mnch, the C source for the program munch, which is used by the translator to see that
static constructors and destructors are called. This subdirectory is only provided on
tape versions of the C++ Language System.

src¢, which includes a makefile and the C source for the translator

Contents of the Release 2-3

3 Installing the Translator

Overview 3-1
Prerequisites 32
= Software Dependencies 3-2
m Space Requirements 3-2
The Patch and Munch Options 33
Installing the Translator on an AT&T 3B2 Computer 3-4
Prerequisites 3-4
Installing Binary C++ Translator on the 3B2 Computer 34
Installing Source C++ Translator on the 3B2 Computer 35
Installing the Translator from Tape 3-7
Overview 3-7
m C++ Translator Roadmap and List of Procedures 3-9
Extracting the Contents of the Tape 3-11
Setting Makefile Variables 3-11
m SYS Makefile Variable 3-11
a OS Makefile Variable 3-12
m STDINCL Makefile Variable 3-12
m SYMBOLICLINK Maksefile Variable 3-12
m MACH Makefile Variable 3-13
m INSTALL_BIN Makefile Variable 3-13
m INSTALL_LIB Makefile Variable 3413
m INSTALL_INC Makefile Variable 3-13
m INSTALL Makefile Variable 3-14
m CPIO Makefile Variable 3-14
& CC Maksfile Variable 3-14
m CCFLAGS Makefile Variable 3-14
m The FILLDEF and FILLUNDEF Makefile Variables 3-14
m SZAL Makefile Variable 3-15
m DENSE Variable in src/makefile 3-15
Building Release 2.0 on a Machine with a Translator Present 317
Building Release 2.0 on a Machine with No Translator 3-18
m Bootstrapping the Translator 3-18
= Building the Release 2.0 Translator from C++ Source 3-19
Expected Warning Messages During Build 3-20
Testing Results of the Build 3-20
Installing Files Created During Build 3-21
Options to the make Command 3-21
w The make clean Procedure 3-21
m The make clobber Procedure 3-22

Table of Contents |

Table of Contents

Building the C++ Libraries 3-23
Setting the CC Variable 3-23
Building the Task Library 3-23
Building the Complex Arithmetic Library 3-24
Building the Old Stream Library 3-25
Installing the Libraries 3-25
Porting the C++ Translator 3-26
Overview 3-26
Porting Instructions 3-27
Miscellaneous Adjustments 3-37
m UNIX System Shells 3-37
= NonUNIX Systems 3-37
Environment Information 3-38
Release Date Stamp 3-38
Setting Environment Variables for the CC Command 3-38
Common Problems 3-39
General Build Problems 3-39
Machine-Specific Build Problems 3-39
m AT&T 3B Line of Computers 3-39
m AT&T 3B2 Computers 3-40
m 386-Based Computers 3-40
m Amdahl UTS Computers 3-40
m Hewlett-Packard 9000 Computers 3-40

Release Notes

N

P

5

Overview

This chapter explains how to install the C++ translator, which is the principal component of the AT&T
C++ Language System, on a computer running the UNIX operating system.

The C++ Language System is available for the machines listed below.

m AT&T 3B2, 3B5, 3B15, and 3B20 Computers
m DEC VAX line of computers
m SUN 2, SUN 3, and SUN 4 Workstations

If you have an existing C++ translator, or access to an AT&T 3B, DEC VAX, or SUN 2/3/4 computer,
you can port the translator to many other computers, including the:

m AT&T 6386 WGS Computer

m Motorola 68000-based Apollo Workstations

® Amdahl UTS Computers

m Intel 80286 large model and 80386-based machines

m Hewlett-Packard 9000 series 800 HP-PA based machines

m IBM RT Personal Computer

m Data General MV Computers running AOS/VS and DG/UX

The AT&T 3B series computers, DEC VAX line of computers, and SUN 2/3/4 workstations require no
porting to build the translator. If you have one of these machines, and you do not have a previous
version of the translator running, you can build an intermediate version using the ..c files in the
scratch directory on the translator tape, then use this intermediate version to build the final version of
the translator.

Other computers cannot use these ..c files to build an intermediate translator, and require porting to
build the translator.

Porting to a machine requires that you:

® have an existing version of the translator on any machine
or

m have access to an AT&T 3B series computer, DEC VAX computer, or SUN 2/3/4 workstation.
You can then build the translator directly on the AT&T 3B, VAX, or SUN machine, and use this
as your existing translator to port the translator to another machine.

Some work has been done to simplify porting to the target machines listed above, for example the
inclusion of size and alignment information for these machines in src¢/size.h. However, you should
still go through all steps described under “Porting the C++ Translator” for these machines.

For further information, see “Porting the C++ Translator.”

Installing the Translator 3-1

Overview

, If you are installing the translator on a computer that runs UNIX System V or the 4th Berkeley
NOTE| Software Distribution (BSD), read the section on “The Patch and Munch Options.”

l

Prerequisites

Software Dependencies

m The instructions in this manual assume your machine runs some form of the UNIX operating
system. The C++ translator has been ported to machines running other operating systems, but
no guarantees are made as to the success of such porting or support for the translator running
under another operating system.

® You need a C compilation system that supports the following features of the C programming
language:
o Flexnames

The compiler and link editor must be able to handle variable names (including external
functions) of at least 31 characters. All characters of these names must be significant.
C++ encodes information in function names, which can reach lengths of 100 characters
or more in extreme cases. The long names provide for some type checking among pro-
gram modules.

If your system accepts variable names of at least 31 characters, but less than 100 charac-
ters, see the section “DENSE Makefile Variable.”

o Structure arguments

Structures must be legal as arguments to functions and as return values from functions.
Structure assignments must also be supported.

Any AT&T 3B Computer running the C Programming Utilities, Issue 4.1 or later, fullfills the
requirements for building and running the translator.

Space Requirements
To build the translator, you need three megabytes of free disk storage space.

The translator tape contains about three megabytes of source, as follows:

m scratch directory — about two megabytes

m everything else — about one megabyte

If you already have a version of the C++ translator running on your system, you need only the one
megabyte of disk storage for “everything else.” However, if you do not have a translator running on
your system, you need the two additional megabytes of storage for scratch (see “Bootstrapping the
Translator’’).

3-2 Release Notes

e

~

Overview

After you install the translator, you need 500 kilobytes of disk storage space to run it. A breakdown
of this requirement follows:

® the translator and other executables — 350 kilobytes
® header files (/usr/include/CC) — 150 kilobytes

The Patch and Munch Options

This section describes an optional step that you can choose to take later when building the translator.
If you are installing the translator under UNIX System V or BSD, read this section.

By default, make builds what is called a munch version of the translator. In the munch version, the
translator has to run the link editor twice when creating an a.out to make sure that all static construc-
tors are called before the main program runs.

If you are running either UNIX System V or BSD on your machine, you can build a different version
of the translator, called the patch version. The patch version provides a utility that manipulates the

executable file directly. This replaces munch and lets you avoid having to run the link editor a second
time.

If you install the binary version of the translator on an AT&T 3B2 Computer, the patch version is
installed by default.

If you build the translator from source, you can decide whether to build a patch version or a munch
version (make with no arguments creates a munch version by default).

Note that you may not mix components from different versions (e.g., a patch cfront and a munch CC),
as a translator constituted of such executables will fail.

Instructions for installing a patch version appear in each of the sections on installation.

Installing the Translator 3-3

Installing the Translator on an AT&T 3B2 Computer

If you are installing the translator on an AT&T 3B2 Computer, follow the instructions below. If not,
proceed to “Installing the Translator from Tape.”

If you ordered the translator for the 3B2 computer, you will receive the following;:

m two diskettes labeled AT&T C++ Language System, Release 2 Version 0. These diskettes contain the
executable files, the header files, and the class libraries for the C++ translator, and are the only
diskettes you need to install the translator.

m three diskettes labeled AT&T C++ Language System Source, Release 2 Version 0. These diskettes
contain the C++ source files for the translator and the C++ libraries. You do not need to install
these diskettes to use the translator unless you want to port the translator from your 3B2 to
another machine.

| Installing the translator using the following instructions will overwrite any existing translator found in

NOTE:| the standard locations on your 3B2. If you wish to save the existing translator, first copy it to another

, directory before installing the new transiator. A list of the files that will be installed (overwriting any
| previous versions) is given under “Installing Binary C++ Translator on the 3B2 Computer.”

Prerequisites

The following packages must be installed on your 3B2 Computer before you can install the C++ trans-

lator:)

m if you are installing the binary translator, your 3B2 Computer must be running UNIX System V,
Release 3 or later

® C Programming Language Utilities, Issue 4.1 or later

m Software Generation Ultilities, Issue 4.1 or later

If either of these packages is not installed on your 3B2 Computer, an error message will be displayed
when you try to install the translator.

Installing Binary C++ Translator on the 3B2 Computer

You install the translator just like any other utilities package that does not have device drivers. Enter
the command:

$‘ éys’ddﬁl:ikisfallpkg &

The system will issue instructions to guide you in installing the translator. When the system asks you
to install the removable medium in the diskette drive, put the diskette labeled AT&T C++ Language
System, Release 2 Version 0 — diskette 1 of 2 into the drive and press <CR>.

3-4 Release Notes

Installing the Translator on an AT&T 3B2 Computer

The files will be copied from the diskette to the hard disk. After the files on each diskette are copied
onto the hard disk, sysadm installpkg will prompt you to insert the next diskette. Be sure to insert
the diskettes in the correct sequence (i.e., 1 of 2, then 2 of 2). These executable files provide a patch
version automatically.

Your C++ Language System is now installed. The procedure described above installs the following
files and subdirectories in the directories listed:
m CC, the shell script that invokes the C++ translator (in /ust/bin)
cfront, the main pass of the translator (in /usr/bin)
patch, the secondary pass of the translator (in /usr/bin)
libC.a, libtask.a, and libcomplex.a, the C++ class libraries (in /usr/lib)

c++filt, which decodes the variable name encoding in any error messages (in /usr/bin)

the subdirectory /usr/include/CC and its subdirectory /usr/include/CC/sys, which contain the
C++ header files for your machine

L The remainder of this chapter does not apply to installing the binary translator on the 3B2. You need
NOTE| not read further in this chapter.

Installing Source C++ Translator on the 3B2 Computer

Install the source on the 3B2 only if you plan to port the translator from your 3B2 to another machine.
NOTE

If you want to install the source, use the diskettes labeled AT&T C++ Translator Source, Release 2 Ver-
sion 0. Type the command:

§ sysadm installpkg

The system will issue instructions to guide you in installing the translator. When the system asks you
to install the removable medium in the diskette drive, put the diskette labeled AT&ET C++ Translator,
Release 2 Source Version 0 — diskette 1 of 3 into the drive and press <CR>. After the files on each
diskette are copied onto the hard disk, sysadm installpkg will prompt you to insert the next diskette.
Be sure to insert the diskettes in the correct sequence (i.e., 1 of 3, 2 of 3, etc.).

All the source files will be copied from the floppies to the hard disk; they can be found under the
directory /usr/sr¢/emd/CC.

If you are using your 3B2 as a host machine to port to another machine, continue with the instructions
in the next section, starting under “Setting Makefile Variables.”

Installing the Translator 3-5

Installing the Translator on an AT&T 3B2 Computer

NOTE

2

“NOTE

l

See the saction “Common Problems” at the end of this chapter before beginning to install the transla- N)
tor from source, to read about any problems that apply to the machine on which you want to install i
the translator.

Diskettes containing source for the 3B2 do not contain scratch files. You can generate scratch files
for porting using the executable installed from the binary diskettes.

Release Notes

Installing the Translator from Tape

-] See the section “Common Problems” at the end of this chapter before beginning to install the transla-
NOTE | tor to read about any problems that apply to the machine on which you want to install the translator.

—

You can install and build the C++ translator directly from tape on:

m AT&T 3B5, 3B15, or 3B20 Computers
m DEC VAX Computers
m SUN 2, SUN 3, and SUN 4 Workstations

You may also port the translator to many other machines. In order to port the translator to another
machine, you must either have access to an AT&T 3B series computer, DEC VAX computer, or SUN
2/3/4 workstation, or you must have access to a working version of the translator. Some machines to
which the translator has been successfully ported are:

AT&T 6386 WGS Computer

Motorola 68000-based Apollo workstations

Amdahl UTS Computer

Intel 80286 large model and 80386-based machines

Hewlett-Packard 9000 series 800 HP-PA based machines

IBM RT Personal Computer

Data General MV Computers running AOS/VS and DG/UX

You can port the translator to many other machines not on the above list. If you need to port to other
machines, the installation instructions refer you to the section “Porting the C++ Translator” at the
appropriate point.

Overview

This section describes the general principles of how you build your Release 2.0 C++ translator.

When you install the Release 2.0 C++ Translator on one of the machines listed above, you are instal-
ling source for the translator. This source is itself written in the C++ programming language. There-
fore, in order to compile the Release 2.0 translator, you must have a translator on your machine.
There are two ways you can provide a translator:

= if you have an emstmg C++ translator, you can use it to translate the C++ source for the Release
2.0 translator by running the make or make patch command.

m if you do not have a previous release of the C++ translator, and are installing the translator on
an AT&T 3B computer, DEC VAX computer, or SUN 2/3/4 workstation, you can create an inter-
mediate version of the translator using files prowded with Release 2.0 and use this intermediate
version to build the Release 2.0 translator itself (this is called ““bootstrapping’” the translator) by
making one of the following versions of the translator:

Installing the Translator 3-7

Installing the Translator from Tape

o if you are running UNIX System V or BSD, you can make a patch or munch version)
using the make patch or make procedures, respectively .

o if you are running another form of the UNIX system, you can make a munch version
using the make procedure

After you finish building the translator, you can run some procedures to test the operation of the new
translator and clean up unneeded files. You can then use your new translator to compile the source
for the C++ class libraries.

3-8 Release Notes

C++ Translator Roadmap and List of Procedures

C

Installing the Translator from Tape

Figure 3-1: C++ Translator Installation Roadmap

START
yes (Does your machine 7 no
have an existing ;
L translator?
1
yes (Is the target machine
an AT&T 3B, VAX,
or SUN 2/3/47?
no
Do you have access
yes to an existing Release
2.0 translator on
t another machine?
no
<~" move to host machine buid on the AT&T 3B, Yes| Do you have access
+ move scratch files =—| VAX, orSUN 2/3/4 tgraanN 3‘/3/35 X
to target machine
\1, no

make scratch
on target machine

¥

N
make or
make patch
¢ J
\
Your translator is
now complete
J

This document does not
explain how to build a C++
translator under these circum-
stances: if you want to try,
you will have to alter the

delivered scratch files (see
bsd.sed as an example).

@

Installing the Translator

Figure 3-1 is a roadmap showing the various paths through the procedure for building the translator.
This roadmap is read from the top down. At each decision point, by answering “yes” or “no” to the

39

Installing the Translator from Tape

question, you can see what procedures you need to do to build the translator.

Figure 3-2 is a list of procedures that guides you through installing the C++ translator from tape. The
list of procedures is read from the top down, following the path applicable to your machine (e.g., exist-
ing translator, no existing translator, etc.). Note that the procedures at the top and bottom apply to all

installations.

v Read the instructions in the following sections thoroughly. The translator installation roadmap and list
'NOTE| of procedures are only summaries of how to install the translator. Do not attempt to build the transla-
: tor using the roadmap or list of procedures.

Figure 3-2: C++ Transiator List of Procedures

C++ Translator List of Procedures

copy files from tape using cpio or tar

edit the parameters at the beginning of the
makefile in the top-level directory to
appropriate settings for your machine

with existing translator:

without existing translator:

build translator:
m make]
or
m make patch

bootstrap translator:
if you are not on an AT&T 3B, VAX, or SUN 2/3/4,
port the translator by generating new include
files and new intermediate C scratch files
using an existing translator on another machine
make scratch
make install
make clean (optional)

make a patch version make a munch version
(if UNIX System V
or BSD)

®m make patch m make

on all systems: test, edit, and move files

make CC="pwd’/CC demos

make install

set CC in makefile to newly installed CC

make libraries and install in final locations (optional)
make clean or make clobber (optional)

now that you have a Release 2.0 translator, you can
use it to port the translator to other machines

3-10

Release Notes

A‘\—//,

\..../l

N
J 5
{ !

v'r’-‘\‘_

Installing the Translator from Tape

Extracting the Contents of the Tape

The C++ translator tape may be either in cpio format or in tar format. The format of your tape
depends on the machine you specified in your order for the translator. Check your tape; the format is

clearly marked on it.
1. Place the tape on the tape drive for your machine.

2. cd to a directory from which you want to install the translator. This will be the working direc-
tory from which you do all the installation procedures. When you extract the contents of the
tape, they are placed in a directory tree below this working directory.

1. If the file is in cpio format, run the cpio command:

: o c‘ﬁio’ “ievud < .‘tj‘qp,

2. If the file is in tar format, run the tar command:

: $-tarxf tnpe;drive._:s;;a':'

1 tape_drive_spec is the device name of your tape drive, and may differ depending on your machine. For
“NOTE | example, on an AT&T 3B15 computer, the device name of tape drive 0 will be /dev/irmt/Om. You may

| also require different options to cpio or tar, depending on the kind of machine you use; check your
operating system user’s manual for details.

The contents of the tape will be installed under the current directory. Figure 2-1 in Chapter 2
shows the structure of the directory tree that will be created when you extract the tape.

Setting Makefile Variables

Before building the C++ translator, you must set several variables in the makefile located in the top
directory installed from the translator tape. This section lists each of these variables, explains its func-
tion, and lists the possible settings. You may not need to change some of the settings and some may
not apply to your system or machine.

SYS Makefile Variable

The SYS parameter specifies the operating system under which the translator will run. Possible set-
tings for the SYS variable are:

Installing the Translator 3-11

Installing the Translator from Tape

Setting | Operating System
SYSV UNIX System V
BSD 4th Berkeley Software Distribution

If you set SYS to “BSD,” the makefile runs the script bsd.sed on the files in the scratch directory,
altering them to match the correct BSD structures.

OS Makefile Variable

The setting of the OS parameter determines which set of header files is generated for use with C++.
Different machines require different header files since their underlying C compilation systems differ.

The settings for OS depend on the setting of SYS. The following table shows what settings are avail-
able for OS, depending on your SYS setting:

SYS Setting | OS Setting | Operating System

SYSV svr2 UNIX System V Release 2
svr3 UNIX System V Release 3

BSD bsd2 Berkeley Software Distribution Release 4.2
bsd3 Berkeley Software Distribution Release 4.3
sun SUN operating system
hpux Hewlett-Packard UX operating system

Set OS to the value that is closest to your machine’s operating system. If you are building the transla-
tor on a machine not on this list, see “Porting the Translator’” for more information.

When you set OS to “sun,” the makefile determines whether you are running SUNOS 3 or SUNOS 4
NOTE | automatically. You can also explicitly set OS to *“sunos3” or “'sunos4” to build on a machine running
SUNOS 3 or SUNOS 4, respectively.

STDINCL Makefile Variable

The STDINCL makefile variable specifies the location of the standard C language #include files on
your machine. For example, if your #include files are in /usr/include, you would set STDINCL as fol-
lows:

STDINCL=/usr/include

SYMBOLICLINK Makefile Variable
Set the SYMBOLICLINK makefile variable to “1” if you are not running UNIX System V and you
want your C++ header files to use symbolic links.

‘ | SYMBOLICLINK should not be set when you are porting the translator.
NOTE

3-12 Release Notes

N

‘

{

A
e’

N

Installing the Translator from Tape

MACH Makefile Variable

The setting of the MACH parameter identifies your machine for building the task library. For exam-
ple, to build the task library on an AT&T 3B Computer, you would set MACH as follows:

MACH=3b

The following settings are available for MACH.
Setting | Machine

3b AT&T 3B Series Computers (except 3B1)

386 AT&T 6386 WGS and other Intel 80386-based machines
vax DEC VAX Computers

68k Motorola 68000-based SUN-2/3 workstations

You do not need to set MACH if you do not intend to build the task library. Instructions for building
the task library are provided under “Building the Task Library.” If you are building the translator on
a machine not on this list, see Chapter 2 of the AT&T C++ Language System Library Manual, under
“Porting the Task Library,” for more information.

INSTALL_BIN Makefile Variable
The INSTALL_BIN parameter specifies the directory where you want the translator executables CC,

cfront, c++filt, and patch or munch to reside. For example, if you want them to reside in /usr/add-
on/C++/bin, set INSTALL_BIN as follows:

INSTALL BIN=/usr/add-on/C++/bin
The default value for INSTALL_BIN is /usr/bin.

INSTALL_LIB Makefile Variable

Set the INSTALL_LIB parameter in the makefile to the directory where you want the C++ class
libraries to reside. For example, if you want them to reside in /usr/add-on/C++/lib, set INSTALL_LIB
as follows:

INSTALL_LIB=/usr/add-on/C++/1lib
The default value for INSTALL_LIB is /usr/lib.

INSTALL_INC Makefile Variable

Set the INSTALL_INC parameter in the makefile to the directory where you want the C++ header files
to reside. For example, if you want them to reside in /usr/add-on/C++/include, set INSTALL_INC as
follows:

INSTALL_INC=/usr/add-on/C++/include

The default value for INSTALL_INC is /usr/include/CC.

Installing the Translator 3-13

Iinstalling the Translator from Tape

i The C++ header files have the same names as the standard C header files, and thus must reside in a
‘NQTE‘ different directory from the standard C language include directory.

i
INSTALL Makefile Variable

The INSTALL parameter identifies the command used to move files to the installation directory. The
default value is “cp” (the UNIX System command cp, which copies files). You may substitute a
system-specific installation command for this value. You might also substitute the UNIX system mv
command to move, rather than copy, the files.

CPIO Makefile Variable

The CPIO makefile variable specifies the command used to copy a directory tree of newly built header
files from the incl-master directory to the top-level incl directory.

CC Makefile Variable

The CC parameter identifies the C++ translator command to be used to build the translator itself. The
default is “CC.”

If you are installing the translator on a machine with a translator already present, the CC parameter in
the top level makefile should point to the location of the CC command for your existing translator.

CCFLAGS Makefile Variable

The CCFLAGS parameter lists any special options to pass to the CC command. This variable defaults
to the value ““-O -D$(SYS)”’ (the optimizer and operating system setting).

The default setting for CPIO is cpio -pdlm, the UNIX System cpio(1) command. If your system does
not have the cpio command, the translator has an alternative shell script cpio.sh -pdlm that you can
use. To use this shell script, you would reset CPIO as follows:

CPIO=cpio.sh -pdlm

The FILLDEF and FILLUNDEF Makefile Variables

The FILLDEF and FILLUNDEF makefile variables are used for porting the translator, like the SZAL
makefile variable.

FILLDEF defines the predefined macro string for the target machine. FILLUNDEF removes the
definition of the predefined macro string for the host machine.

When you build a bootstrapped translator on your host machine to use on the target machine for the
final build of the C++ translator, you need to undefine the host and define the target. For example,
suppose you are building a bootstrapped translator on an AT&T 3B2 for porting to an AT&T 6386
WGS. You would define the 6386 and undefine the 3B2 as follows:

FILLDEF=-Di386
FILLUNDEF=-Uu3b2

When you run make fillscratch on your host AT&T 3B2, you will build an intermediate translator
appropriate for running on the target AT&T 6386 WGS.

3-14 Release Notes

TN

, FILLDEF is set to ~D followed by the predefined macro string for the target machine (for an AT&T
NOTE| 6386 WGS, the string is “i386”). FILLUNDEF is set to —U followed by the predefined macro string
for the host machine (for an AT&T 3B2 Computer, the string is “u3b2”).

SZAL Makefile Variable

If you are porting the translator, you use the SZAL parameter to specify the location of a file contain-
ing size and alignment information for the machine on which you are installing the C++ translator.
The setting of SZAL will be the full pathname of the output file generated in step 3 under “Porting the
Translator.” For example, if your output file is /usr/patp/szal, you would set SZAL as follows:

SZAL=/usr/patp/szal
The default value of SZAL is null.

DENSE Variable in src¢/makefile

The C++ Language System encodes type information into function names, resulting in long internal
names that can reach lengths of 100 characters or more in extreme cases. The Release 2.0 translator
can generate names that do not exceed 31 characters, but these names will be harder for programmers
to decode.

If your C compilation system does not distinguish between names of more than 31 characters, you
must set the DENSE makefile variable to build a translator that generates shorter names. Setting the
DENSE variable in src/makefile to ~-DDENSE before you run make will cause the makefile to build a
translator that generates names of 31 characters or less.

DENSE is set to —D followed by “DENSE.”
‘NOTE

If your C compilation system does not distinguish between names of at least 31 characters, then even
the DENSE option will not work. You cannot use the translator with a compilation system that does
not handle at least 31-character variable names.

The following table summarizes the circumstances under which you should set DENSE:

Your C compiler distinguishes between set DENSE?
variables of length:

m less than 31 characters you can’t use the translator

m less than or equal to 31 characters yes
m greater than or equal to 31 characters | if needed
but less than 100 characters

greater than or equal to 100 characters | no

Installing the Translator 3-15

Installing the Translator from Tape

Installing the Translator from Tape

3-16

If your C compilation system distinguishes between names longer than 31 characters, but limits o
names to some other length, you may in some circumstances encounter name clashes because long

names have been truncated by your compiler. In this case, you should set the DENSE variable to

-DDENSE in src/makefile and rebuild the translator.

Release Notes

Installing the Translator from Tape

(,,,,, | Building Release 2.0 on a Machine with a Translator Present

If you have an existing C++ translator on your machine, follow this procedure to build the new trans-
lator. If not, skip to “Building Release 2.0 on a Machine with No Translator.”

1. Make sure the CC parameter in the makefile is set to the location of the CC command for your
existing translator.

2. Decide whether you want to make a munch or a patch version of the translator. You can only
make a patch version if you are running UNIX System V or BSD (the patch version is described
under ‘“The Patch and Munch Options”).

3. Run one of the following commands:

1. If you want to make a patch version, run the command make patch:

2. If you want to make a munch version, run the command make munch. (The make
command with no argument builds a munch version by default.)

_§ make munch

Either procedure builds the complete C++ translator, implementing all the new features of
Release 2.0. (See Chapter 4 of this document and Chapter 1 of the C++ Language System Selected
Readings for further information on new features.)

When you start the build procedure, skip directly to the section “Expected Warning Messages
During Build” to read about warning messages you may see while building. When the pro-
cedure is finished, your prompt will return. Continue with the installation procedure following
“’Expected Warning Messages During Build” (the next section is ““Testing Results of the Build”).

Installing the Translator 3-17

Installing the Translator from Tape

Building Release 2.0 on a Machine with No Translator

The following procedures explain how to build a Release 2.0 translator on a machine with no previous
version of the translator. Since the C++ translator source is written in the C++ programming
language, you need to create an intermediate translator to translate the source so that it can be com-
piled. This is called “bootstrapping” the translator.

This section describes some preliminary procedures, then tells you how to bootstrap the translator and
build the new Release 2.0 translator.

Bootstrapping the Translator

The bootstrapping procedure creates an intermediate C++ translator with which to compile the C++
translator source. This procedure (called make scratch) uses C source files in the scratch subdirectories
to build the intermediate translator. These source files are only appropriate for AT&T 3B computers,
DEC VAX computers, or SUN 2/3/4 workstations.

If you are installing the translator on an AT&T 3B computer, DEC VAX computer, or SUN 2/3/4
workstation, you can simply go ahead and do the following steps.

VAX computer, or SUN 2/3/4 workstation. If you are not installing on one of these machines, do
the steps under “Porting the C++ Translator” and regenerate scratch files (using make fillscratch)
for your machine before continuing.

W Do not continue with these instructions unless you are installing on an AT&T 3B computer, DEC

Run the program make scratch as follows:

$ make -Scraf

Running make scratch produces five files and a subdirectory in the current directory:

CC, the shell script that invokes the C++ translator

cfront, the executable code (main pass) for the translator itself

munch, a secondary pass of the translator, which handles static constructors and destructors
libC.a, an incomplete version of the C++ library

c++filt, which decodes the variable name encoding in any error messages

the subdirectory incl, which contains the C++ header files for your machine

make scratch also edits the existing CC command, which you use to invoke the translator.

You should now make the C++ translator from the C++ source, as described in the next sections. Note
that you need to do this to complete libC.a.

3-18 Release Notes

'_,/’i

e ™,

Installing the Translator from Tape

Building the Release 2.0 Translator from C++ Source

At this point, if you want, you can run the make clean command to remove .o files created when you

'NOTE | bootstrapped the translator. This will free space that may be needed during the build.

sions of CC, cfront, munch, and libC.a that you produced. We recommend, if you have space,

If you bootstrapped the translator, building the translator as described below will overwrite the ver-
that you save copies of these versions in case you encounter problems with building the translator.

1. Decide whether you want to make a munch or a patch version of the translator. You can only
make a patch version if you are running UNIX System V or BSD (the patch version is described
under ““The Patch and Munch Options”).

2. Run one of the following commands:

1. If you want to make a patch version, run the command make CC="pwd’/CC patch
(setting CC on the make command line overrides any possibly incorrect setting).

_: 8 makeCC-pwd‘lCCpatc

or

2. If you want to make a munch version, run the command make CC="pwd/CC munch.
(The make command with no argument builds a munch version by defauit.)

~§ make CC'pwd/CC munch

Either procedure will build a Release 2.0 C++ translator. When the procedure is finished, your
prompt will return.

Installing the Translator 3-19

installing the Translator from Tape

Expected Warning Messages During Build

When the cfront component of the C++ Translator is being compiled, during the generation and com-
pilation of the y.tab.c file, several warning messages are generated. They need not concern the user.

Testing Results of the Build

Do the following steps to test the installation procedure:

1. If you want, run the make demos procedure.

§ make CC='pwd'/CC demos

This procedure checks static constructors and grammar by running test programs invoking the
C++ 1/0 library. If the programs complete successfully, then the Release 2.0 translator has been
built correctly. The demonstration programs are provided mainly as examples of how to use the
new C++ features and libraries.

2. If you want, run make clean (described under “Options to the make Program’) to remove .0
files generated by the installation. This procedure is entirely optional, and you may want to
save the .o files for future use. However, if space is tight on your machine, running this pro-
cedure will free some extra space.

A good general test of the newly built C++ Translator is to have it rebuild itself. If you want to do this
NOTE:| optional step, run make clean and make install, set the CC parameter in the makefile to point to the
CC command that invokes the newly created cfront, and run make or make patch again.

3-20 Release Notes

’\\//'

TN

installing the Translator from Tape

Installing Files Created During Build

Running one of the build procedures described above produces five files and a new subdirectory in the
current directory:

CC, the shell script that invokes the C++ translator

cfront, the main pass of the translator

either patch or munch, the secondary pass of the translator

libC.a, the standard C++ library

c++filt, which decodes the variable name encoding in any error messages

the subdirectory incl, which contains the C++ header files for your machine

You can move these files to other directories of your choice using the following procedure:

1. Make certain the INSTALL_BIN, INSTALL_LIB, and INSTALL_INC parameters in the
makefile are set to the appropriate directories in which you want the translator executables to
reside.

For information on the settings of these variables, see the section ““Setting Makefile Variables.”

2. Run the command make install:

 $ make install

This command moves the files to the directories you specified and edits the CC command so
that it knows where to find the necessary executables.

The CC command should now be ready to use.

Options to the make Command

The make command has several options that can be run to do specific functions required during instal-
lation of the translator. These options may be useful at this point of the installation. This section
describes these options and how to run them.

The make clean Procedure

The make clean procedure removes .o files generated during compilation. To run this program, enter:

Installing the Translator 3-21

installing the Translator from Tape

You can use this procedure to free space taken up by these files.

The make clobber Procedure
The make clobber procedure removes both .o files and executables created during compilation. You
might use this procedure if:
m something went wrong during the build and you want to remove everything and start over
again, or
® you want to free space after you have run make install

To run make clobber, enter:

] make_icl‘ ber

make clobber leaves the directory structure as it was when the source was copied from the translator
tape, except for the scratch files. If you have altered the scratch files, you must re-install them from
the tape.

make clobber removes all executables in the directory where you build your C++ translator. You
should not run this option unless you want to remove all the translator executables and start over.

make clobber will not remove translator executables that have been moved to final locations using
make install.

3-22 Release Notes

e’

N

Building the C++ Libraries

After you have done all the installation steps described above, you can build several optional C++
function libraries. Building the translator automatically builds the new iostream library. In addition,
you can build the following libraries:

m the task library

m the complex arithmetic library

m the old stream library

Setting the CC Variable

You should use your newly installed translator to build the C++ class libraries. Before building the
libraries, set the CC parameter in your makefile to point to the location of your newly installed CC
command.

Building the Task Library

The C++ task library supports co-routine programming, allowing you to run and control multiple
tasks within one UNIX system process. The task library is described in detail in Chapter 2 of the C++
Language System Library Manual.

You can build this library by running the make libtask.a command. You must specify a setting for the
parameter MACH to identify your machine when you build the task library. The settings for the
MACH parameter are listed under ““Setting Makefile Variables.”

To build the task library, run the command:

$ make libtaska

Computer, run the command make MACH=3b libtask.a. A value set from the command line over-
rides any value previously set in the makefile.

‘ You can also set MACH on the command line. For example, to build the task library on an AT&T 3B
NOTE‘

T

If you want to build the task library on a machine other than the AT&T 3B line, the AT&T 6386 WGS,
NOTE| the SUN 2/3/4 workstations, or VAX computers, see Chapter 2 of the C++ Language System Library

......

Manual under “Porting the Task Library.”

After building the task library, you can test it by running the make demotask command. This com-

-~ mand compiles five programs that use the task library and compares their output with files containing

the expected output. The file demo/task/README lists and describes these tasking programs.

Installing the Translator 3-23

Building the C++ Libraries

To run this command for an AT&T 3B computer, you would enter:

from the top directory of the translator source.

As with make task, you must make sure that the MACH parameter is set in the makefile or from the
'"NOTE | command line.

make demotask will run make libtask.a if necessary, so you can build the task library and test it in
one step by entering this command.

When the program finishes running, a message will confirm the success of each test and your
demo/task directory will contain executable files corresponding to the tests described in the README
file, with the suffix .E (e.g., triv.E).

: The source for these task library tests, contained in .C files (e.g., triv.C, shared.C, etc.), provide
NOTE:| examples of how to use the task library in C++ programs.

Building the Complex Arithmetic Library

The complex arithmetic library provides a data type and operators for complex numbers. This library
is described in detail in Chapter 1 of the C++ Language System Library Manual. 1f you want to build
this library, run the command:

$ make libcomplex.a -

After building the complex aritmetic library, you can test it by running the make democomplex com-
mand. This command compiles programs that use the complex arithmetic library and returns mes-
sages telling you whether the programs passed or failed.

To run these demonstration programs, you enter:

from the top directory of the translator source.

3-24 Release Notes

Building the C++ Libraries

make democomplex will run make libcomplex.a if necessary, so you can build the complex library
and test it in one step by entering this command.

Building the Old Stream Library

The new iostream library, which is built automatically with the translator as part of 1ibC.a, is now the
default stream library. This library is described in detail in Chapter 3 of the C++ Language System
Library Manual. The new iostream library is upwardly compatible with the old stream library, and
most programs written using the old library will still run.

The old stream library is included with Release 2.0 for users who want to continue using it; however,
it must be built explicitly. This library is optional for users who have existing software written under
Release 1 that makes use of the internals of the library.

You can build the old stream library for use with Release 2.0 by running the command:

§ make libOstream.a.

If you want to continue using the stream library delivered with Release 1.2 of the translator, you can
do so by changing any #include statements to specify Ostream.h. In Release 2.0, #include <stream.h>
and #include <iostream.h> will use the headers for the new iostream library.

Installing the Libraries

Once you have built the C++ class libraries, you must install them in the appropriate directory. The
location of the C++ class libraries must correspond to the location specified by your newly built CC
command. You should check the CC shell script, and put the libraries in the directory specified by the
CCLIBDIR parameter (1libC.a will already be installed in this directory).

Installing the Translator 3-25

Porting the C++ Translator

The following instructions will help you adjust your translator to make it run on some machines. In
general, you must port the translator if your target machine: ’
m is not an AT&T 3B computer, DEC VAX computer, or SUN 2/3/4 workstation
and
m does not have an existing translator running

To port the translator to another machine, you must have access to an AT&T 3B computer, DEC VAX
computer, or SUN 2/3/4 workstation, or to an existing translator.

-1 The translator tape supplies header files for machines running UNIX System V Release 2 or 3, BSD
NOTE| 4.2 and 4.3, SUN workstations running SUNOS, and Hewlett Packard machines running HP-UX. If
you are installing on a machine running another operating system, you may need to do some porting
| work on header files, even if you have an existing translator on your machine.

If you are installing on a machine with an existing translator for which the tape does not provide
header files, check these instructions (particularly step 7) to determine if you need to port header files
to your machine.

L Some computers with essentially the same sizes and alignments as the 3B line of computers (e.g.,
NOTE| the DEC VAX computers) can have the translator installed with few or no porting changes.

| For certain other machines, we provide sed scripts to alter the intermediate C language files to build
correctly. For example, on BSD systems the makefile automatically invokes the script bsd.sed for this

purpose.

You need an operating translator to port the translator to any machine for which no sed script is pro-
vided.

Overview

Porting requires that you have Release 2.0 of the translator running on a base machine, called the host
machine, from which you can do the work necessary to build the translator on another machine, called
the target machine.

Simply put, porting involves adjusting the C++ translator include files for your target machine and
regenerating scratch files (the intermediate ..c files). After doing these steps, you proceed to build the
translator on the target machine, as described in ‘‘Bootstrapping the Translator.”

Where appropriate, this chapter tries to provide helpful hints for certain target machines based on the
previous experience of users porting the translator to their machines.

You should do all of the steps in the following list to port the translator. Each step is detailed in the
sections that follow this overview.
m copy the translator directory tree structure onto the host machine

m compile and run the szal.c program on the target machine and move a file containing its output
to the host machine

m check that the size and alignment information in the src/size.h file is correct for your target
machine

3-26 Release Notes

Porting the C++ Translator

7N

® port the C++ header files on the host machine so that they are correct for the target machine and
replace the header files currently on the host machine with the ported ones

® make intermediate ..c files by running the make fillscratch command on the host machine
B copy the translator directory tree structure from the host machine to the target machine

® bootstrap the translator on the target machine (using make scratch) as described under
“Bootstrapping the Translator”

Porting Instructions

Do the steps below to port your translator to the target machine. You should work on the host
machine from the translator root directory.

1. Install the source for the translator on your host machine.

2. Make certain you have a Release 2.0 translator on your host machine. If you do not, you can
build the Release 2.0 translator from the source by running the make or make patch procedure
on the host, as described under “‘Building Release 2.0 on a Machine with No Translator.”

3. Move a copy of the szal.c file (in the translator root directory) from the host machine to the
target machine. Compile (with your C compiler) and run the szal.c file on the target machine,
redirecting the output of the program to a file such as szal:

Cfecsmale
“§ aout>szal-

When compiled on the target machine, szal.c generates target machine size and alignment
information that can be used by the make program.

Figure 3-3 shows the size and alignment information generated for an AT&T 6386 WGS Com-
puter by compiling and running the szal.c program.

Installing the Translator 3-27

Porting the C++ Translator

Figure 3-3: Output of szal.c for AT&T 6386 WGS Computer .)

The first field of the bit line shows the number of bits in a byte. The second field shows the
number of bits in a word. All other rows (except struct2) show the size and alignment in
bytes in the first and second field, respectively. For example, in the double row, the first
column shows a size of 8 bytes for doubles and the second column an alignment of 4 bytes for

doubles.
Note that the int line contains a third field, which shows the maximum unsigned integer value.)
The first field of the struct2 entry shows whether the bit field specification is sensitive to type o

(i.e., whether int : 2 is different from char : 2). The second field shows whether consecutive bit
fields are packed into consecutive bits.

szal.c is a C++ translator porting aid, and not part of the C++ Translator. Because it
attempts to determine machine-dependent properties, unexpected dependencies or bugs
on the target system may cause it to fail.

4. Move the output file you created in step 3 (i.e., szal) back to the host machine.

5. Edit the makefile file under the translator root directory on the host machine and set the fol-
lowing parameters:

m set the SZAL parameter to the full pathname of the output file generated in step 3.
For example, if your output file is /ust/patp/szal, you would set SZAL as follows:

SZAL=/usr/patp/szal

m set the FILLUNDEF parameter to the predefined macro string corresponding to your
host machine. For example, if your host machine is an AT&T 3B2, set FILLUNDEEF as
follows:

3-28 Release Notes

Fama
7 |
] 2

Porting the C++ Translator

FILLUNDEF=-Uu3b2

m set the FILLDEF parameter to the predefined macro string corresponding to your tar-
get machine (see Figure 3-2 for a list of predefined macro strings). For example, if
your target machine is an AT&T 6386 WGS, set FILLDEF as follows:

FILLDEF=-Di386

6. Check the size and alignment information in the src/size.h header file under the C++ translator
directory on the host machine. The size and alignment information in this file should
correspond to your target machine. (The relationship between the information in src/size.h
and the szal output is shown in Figure 3-6.)

There are three ways of providing the correct size and alignment information:

® The src/size.h file may already contain information specific to your target machine. In
Release 2.0, it contains information for the following target machines, which are given in
Figure 3-4 along with the predefined macro strings used in src/size.h:

Figure 3-4: Predefined Macro Strings Used in src/sizeh

Yt

N

Machine Predefined Macro String
AT&T 3B2 Computer u3b2
AT&T 3B5 Computer u3bs
AT&T 3B15 Computer u3b15
AT&T 3B20 Computer u3b

AT&T 6386 WGS Computer i386

DEC VAKX line of Computers vax

IBM RT Personal Computer ib032
SUN-2 Workstations sun2
SUN-3 Workstations sun3
SUN-4 Workstations sun4
Amdahl UTS Computer uts

Intel 80286 large model Ai2861
Intel 80386-based computers i386
Hewlett-Packard 9000 series 200 | hp9000s200
Hewlett-Packard 9000 series 300 | hp9000s300
Hewlett-Packard 9000 series 800 | hp9000s800
Pyramid Computers pyr

Alliant Computers alliant
68000-based Apollo Workstations | apollo

Installing the Translator

3-29

Porting the C++ Translator

=7:-] The predefined macro strings in Figure 3-4 are only used by the translator for porting to .)
:NOTE{| these machines. The predefined macro string used by your native C compiler may
E differ.

If your machine is on this list, you probably do not need to make any changes to the
src/size.h file, but you should check the information as described below.

® The size and alignment information for your machine may be identical to that of one of
the machines listed in src/size.h. If the size and alignment values for the machine you are
going to use correspond to a set of values already in the sr¢/size.h file, you can simply
add to the appropriate conditional. For example, if you were porting to a SUN-3 works-
tation, you would change

#ifdef apollo
to
#1if defined(apollo) || defined(sun)

-] The SUN 3 workstation already has an entry in the src/sizeh file, of course, and it
"NOTE| would not be necessary to add it; it is provided only as an example of how to add a
~:-1 machine that is not defined.

S You will have to determine the predefined macro name for your machine (e.g., “sun” for
-NOTE.| the SUN-3 workstation in the example above). We recommend you refer to documen-
.| tation for your C compiler to determine this macro string. You will need to know this
| macro string if your machine is not already defined in src/size.h, either to add to a con-
ditional entry as above, or to add an entire size and alignment entry, as described
below.

.

m If your machine is not one of the machines listed in src¢/size.h, and its size and alignment
values do not correspond to one of these machines, you will have to add an entire #else
#if your_target statement followed by an appropriate set of #define values before the final
#else in src/size.h. These #define statements list the size and alignment information for
your machine. Figure 3-5 shows the size and alignment information in src/size.h for the
AT&T 6386 WGS computer. '

3-30 Release Notes

Porting the C++ Translator

Figure 3-5: Specifications In src/size.h File for AT&T 6386 WGS Computer

~ fdefine DSZ DOUBLE.:
5 $define “DAL_| DOUBLE
 tdefine DSZ_STRICT.

' Kdefine DLARGEST INT "2147483647"
4define DF_SENSITIVE 0

| #define DF_OPTDMIZED 1

Add an entry in src¢/size.h for your machine with the correct size and alignment values in
the format shown in Figure 3-5. The easiest way to do this is to edit the file, copy the size
and alignment values for another machine in the file, and then edit those values so they

correspond to your machine. To find the correct values, look at the output in the file szal,

which you created in step 3.

Figure 3-6 shows how the values in your szal output file correspond to the parameters
you need to specify in src/size.h. The italicized labels in Figure 3-6 are parameter names
from src/size.h, and appear immediately to the right of the value that corresponds to that
parameter name. By taking your szal output and using Figure 3-6 as a template, you can

match each parameter with its appropriate value for your machine.

Installing the Translator

3-31

Porting the C++ Translator

Figure 3-6: Labels for szal Output

For example, the first column in the long row is the value of the parameter DSZ_LONG,
which has the value ““4.” You would edit the DSZ_LONG line in src¢/size.h to read:

| fdefine DSZ IONG 4

Edit all the parameters to correspond to the parameters in szal, and be sure to change the
#ifdef statement at the beginning of your entry to your machine name. For example, if
you are defining the size and alignment information for an AT&T 6386 WGS computer,
the first line of the definition would read #ifdef i386.

7. Port the header files in the incl directory of your host machine to the target machine and
replace the header files on your host machine with the ported ones as follows:

A. Copy the directory structure under incl-master from your host machine to your target
machine. Change to the target machine, so that all the following steps up to step 8 are
done on the target machine.

B. Check to see if the operating system of your target machine is on the following list of set-
tings for the OS parameter. This list corresponds to the settings for OS that are available
in the top-level makefile.

=1 The setting for OS must be one of the valid settings that corresponds to your SYS set-
‘NOTE | ting as shown in the table.

3-32 Release Notes

—_—~

Porting the C++ Translator

SYS Setting | OS Setting | Operating System

SYSV svr2 UNIX System V Release 2
svr3 UNIX System V Release 3

BSD bsd2 Berkeley Software Distribution Release 4.2
bsd3 Berkeley Software Distribution Release 4.3
sun SUN operating system
hpux Hewlett-Packard UX operating system

| When you set OS to “sun,” the makefile determines whether you are running SUNOS
:NOTE| 3 or SUNOS 4 automatically. You can also explicitly set OS to "“sunos3” or “sunos4” to
e | 1 build on a machine running SUNOS 3 or SUNOS 4, respectively.

If the target machine’s operating system is on the list, skip the next step and proceed
directly to step D.

If the target machine’s operating system is not on the list, proceed with the next step (step
Q.

Do this step only if the operating system of your target machine is not in the list of set-
tings for OS given in step B.

You will have to do a full port of the header files to new operating systems as described
in this step. In order to do a full port, you need to understand how the header files for a
given operating system are generated.

Suppose for a moment that the OS parameter for your target machine is listed in the top
level makefile. To generate the header files for this machine, you would set the OS
parameter in the makefile and type make headers (as described in step D). The top level
makefile calls incl-master/makefile, passing it the OS setting. The incl-master/makefile
checks each header file in the proto-headers directory to determine whether it is used by
the operating system you specified. If it is, make transforms the header file into what it

_ should look like on your target machine’s operating system and moves the transformed

header file into the directory incl-master/incl.

Each proto-header file in the proto-headers directory contains the necessary information
to specify (1) which operating systems the header file is used with, and (2) how to
transform the proto-header file on each of those operating systems. For example, consider
the following proto-header file foo.h (line numbers are for reference):

Installing the Translator 3-33

Porting the C++ Translator

3-34

N S N ROR o oin
GRbkES ane

The following summary explains the function of the significant lines in foo.h:

line 1. The #usedby directive specifies which operating systems a header file is used
with. The header file foo.h is used with sun, hpux, and svr3. The #usedby
directive should appear once, somewhere near the top of the proto-header.

lines 2, 3, 16 These lines are the standard header file “wrapper.”

lines 4, 5 The #hide directive is used to hide C-style prototypes that appear in the target
machine’s native C header files. Since C++ has strong type checking, these C-
style prototypes are usually wrong. There should be a separate #hide directive
for each C-style prototype in the native C header file.

line 6 The #expand directive specifies the place in the header file where the native C
header file on the target machine should be physically inserted. Each proto-
header should contain a single #expand directive with the pathname of the
proto-header as its argument (the path must locate the proto-header file rela-
tive to the directory /usr/include). The #expand directive should appear after
all #hide directives, but before the extern "C" block.

lines 7-15 The extern "C" block specifies the C++-style prototypes for all functions
relevant to this header. Since different operating systems can have different
prototypes, #os directives specify which prototypes go with which operating
systems. In foo.h, the prototype char *baz(int); is correct for sun and hpux,
while char *baz(long); is correct for svr3. (char *bar(int); is correct for all
three.)

#os directives can appear anywhere in the proto-header, but they cannot be
nested.

To port the header files to a new operating system, you must do the following:
m For each header file used with the new operating system, add the operating system’s
name to the #usedby directive of the proto-header, and fix the prototypes appropri-

ately, using #os directives to avoid introducing errors into the information for other
operating systems.

Release Notes

Porting the C++ Translator

® Add the new operating system to the set of porting targets in incl-master/makefile.
If you edit incl-master/makefile you will see a list of the machines for which OS can
be set (as described in step B). Add your porting target to this list. For example,
suppose you are adding an Amdahl UTS to the list of targets. The excerpt below
shows an entry for the Amdahl added to the other entries:

m If you need to do any operating system dependent adjustments, insert them in the
build shell script, in the section entitled “Operating System Dependent Adjust-
ments.” (The incl-master/build shell script is called by the makefile to drive the
entire build process; the actual transformation of proto-header to C++ header is done
by the shell script transform and the executable file expand.)

Now that you have finished the complete port of the header files for your target machine,
continue with the build procedure described in step D.

D. Set the following parameters in incl-master/makefile to their appropriate settings:

® set the value of the OS parameter to the appropriate setting for the operating system
of your target machine given in the table in step B (if you are porting to a machine
not in this table, the setting should be the predefined macro string for the new
machine as described in step C)

m set the value of the SYMBOLICLINK parameter to ‘0"

E. Run the command make from the incl-master directory on the target machine:

Running make populates the directory incl-master/incl with C++ header files for the tar-
get machine.

F. Move a copy of the directory structure rooted at incl-master from the target machine to
the incl-master directory of the host machine.

G. Edit the top level makefile, changing the OS entry to correspond to your target machine
(you might have to add a new OS entry). For example, if your target machine is an
- Amdahl UTS computer, and the predefined macro string for the machine is uts, you
would add the entry as in the following excerpt:

Installing the Translator 3-35

Porting the C++ Translator

H. Before running make incl, which will copy the directory structure rooted at incl-
master to the top level incl directory, you may want to save the current contents of
incl on the host by copying them to another directory.

From the top level directory of your host machine, run the command make incl:
This command moves the files in incl-master/incl to the top level incl directory on your
host machine.
8. On your host machine, make certain the parameter CC in the top level makefile points to the
existing C++ translator on the host machine.
9. On your host machine, set and export the parameter I in the CC shell script to point to the
incl directory under your working directory.)
10. Execute make fillscratch from the translator root directory on your host machine.

$makefxllsctatch > SN

Running this command repopulates the scratch directory with the intermediate ..c files.

11. Copy the translator source (i.e., everything under your translator root directory) from your
host machine to your target machine.

‘ The entire directory structure of the translator is about 6000 blocks. In moving files from one machine
NOTE| to another, you may encounter problems with your ulimit. If this happens, moving the translator
~ source in smaller pieces should resolve the problem.

12. Make sure the parameters in your makefile are set correctly for your target machine, as
described under ““Setting Makefile Variables.”

13. Check the sections “Miscellaneous Adjustments” and ““Common Problems” to see if there are
any other adjustments you should make for your target machine before you build the transla-
tor.

3-36 Release Notes

N

Porting the C++ Translator

14. Build the translator on the target machine from the ..c files as detailed under “Bootstrapping
the Translator,” (which describes how to run make scratch), and continue with the installation
procedure from that point.

Miscellaneous Adjustments

The following sections describe adjustments that may be required before bootstrapping the translator.

UNIX System Shells

The CC command is a shell script written under the UNIX System V Bourne Shell. It may not work
correctly under every UNIX Shell variant. The #!/bin/sh first line in CC causes the BSD system to
invoke /bin/sh rather than, say, /bin/csh.

The Amdahl UTS may require a colon (:) as the first character of the shell script file to invoke /bin/sh.
If this is a problem on your system, you will have to edit the CC command file.

Non—-UNIX Systems

The C++ translator has been successfully ported to machines supporting operating systems other than
the UNIX System. However, since the CC command is made up of UNIX system shell commands, CC
will probably require significant changes if it is to run under a non-UNIX system.

In addition, the CC command uses the UNIX system command nm to pass the symbol table of the
just-compiled program to munch. munch inspects the symbol table to see if the program has any
static constructors or destructors. Any port of the C++ translator to a non—-UNIX system will have to
replace the call to nm in CC with a functionally similar command. See the munch source in
lib/static/munch.c for further details.

Installing the Translator 3-37

Environment Information

Release Date Stamp

The official release date of each release of the C++ Language System is encoded in the cfront com-
mand. The date stamp of each release is as follows:

m Release 1.0: 10/10/85

m Release 1.1: 5/20/86

® Release 1.2: 1/15/87

m Release 2.0: 6/30/89

To see the date stamp for your system, you may either invoke cfront directly, or look in the intermedi-
ate ..c C language file the C++ Translator generates when you run the command CC -Fc -..c file.c.

Setting Environment Variables for the CC Command

The CC script uses environment variables to locate files it needs to run. You can override the values
of these environment variables by setting them to different locations and exporting them. For instance:

will use /fusr/my/cc as the C compiler instead of the default cc.

The following table lists the most important environment variables used by CC:

Environment Variable Default Function

ccC cc C compiler

cppC Nlib/cpp C preprocessor

I /ust/include/CC/ directory for include files
CCROOTDIR /usr/bin directory containing

cfront, c++filt, patch or
munch, and the CC com-
mand

CCLIBDIR lust/lib directory containing the
C++ libraries

3-38 Release Notes

Common Problems

This section lists problems that can occur when trying to build the C++ translator.

We recommend that you look through this list before beginning to build or port your translator.

Checking this list will help you avert potential problems or recognize the source of any problems that
do occur.

Wherever a know workaround exists for the problem described, it will be explained.

General Build Problems

The following problems may occur when trying to build the translator on any machine.

® Problem: Error message “free store exhausted’” occurs.

Solution: Your machine does not have enough memory to build the translator. The C++ transla-
tor can grow to over 500 kilobytes when it is compiling itself. If this is too large for your
ulimit(2), have a system administrator raise the limit for your processes.

® Problem: Error message about a yacc overflow occurs.

Solution: The C++ grammar may overflow the internal tables on some yacc files. You will need
to ask your system administrator to rebuild yacc with larger tables.

® Problem: Compiler can’t distinguish between variable names. This will show up as an error
message that two names which differ only in the last character positions are redeclared.

Solution: The C compiler on your system must be able to distinguish variable names of at least
31 characters to use the translator. If your compiler distinguishes between less than 100 but
more than 31 characters, you must set the DENSE makefile variable to —D followed by
“DENSE” in your makefile before building the translator.

If your compiler cannot distinguish at lease to 31 character positions, then you cannot use the
translator.

m Problem: An internal compiler error ““tree size exceeded” occurs.

Solution: The default maximum tree size of your C compiler is not large enough. Ask your sys-
tem administrator to increase the tree size variable in your C source and rebuild the C compiler.

Machine-Specific Build Problems

The following problems may occur while installing the translator on a particular machine.

AT&T 3B Line of Computers

m Problem: Any attempt to use the task library dumps core. This happens on all UNIX System V
Release 2 operating systems running on WE32000-based machines (e.g., AT&T 3B15 computers).
This problem does not occur under System V Release 3.

The problem occurs because System V Release 2 on WE32000-based machines did not allow the
stack pointer to point into the free store. Because DEDICATED tasks rely on this capability, they
cannot be used on these systems.

Installing the Translator 3-39

Common Problems

Solution: Define the SHARED_ONLY parameter before building the task library from source.
To do this, set the CCFLAGS parameter in the top level makefile as follows:

CCFLAGS=-D_SHARED_ONLY

This will build a version of the task library that only uses SHARED tasks.

AT&T 3B2 Computers

® Problem: The error message “mau hardware required’”” occurs when trying to use executables

produced by C++.

Solution: 3B2 binaries are built for systems with a MAU (math accelerator unit). If your
machine does not have a MAU, rebuild the translator, setting CCFLAGS="$CCFLAGS -f" to
invoke the floating point emulator. Otherwise, contact support to obtain a MAU that does float-
ing point emulation.

386-Based Computers

m Problem: Programs using the task library fail when a signal handler must be called. This hap-

pens on all Intel 386-based machines running UNIX System V Release 3 with DEDICATED tasks.
(System V Release 3 on 386-based machines does not call signal handlers when the task is run-
ning on a stack in the free store, i.e., a DEDICATED task.)

Solution: Define the SHARED_ONLY parameter before building the task library from source.
To do this, set the CCFLAGS parameter in the top level makefile as follows:

CCFLAGS=-D_SHARED_ONLY

This will build a version of the task library that only uses SHARED tasks.

Amdahl UTS Computers

m Problem: When trying to use C++, a fatal error in /lib/c2 occurs or internal compiler errors

occur.

Solution: This problem has occurred when trying to compile C++ programs with the optimizer
(-O) flag. The compiler has bugs in it when it tries to optimize C++ code. You should edit the
top-level makefile and remove the -O value from the CCFLAGS variable.

Hewlett-Packard 9000 Computers

m Problem: The C compiler will give an internal error when building dcl4.c and possible other

3-40

routines.

Solution: There is a bug in the C compiler on Hewlett-Packard machines when the -O (optim-
izer) option is used. Do not use the optimizer when building. To remove the optimizer feature,
edit the makefiles src¢/makefile and lib/mk/makefile and remove the -O value for the CCFLAGS
parameter.

Release Notes

i\,..‘/}

4 Compatibility with Previous Releases

Compatibility with Previous Releases 4-1
Recompilation of Old Code Required 4-2
Building the Translator 4-2
m The FDOTRIGHT Macro 4-2
m DENSE Maksefile Variable 4-2
m RETBUG Parameter No Longer Needed 4-3
Header Files 4-3
m Header Files Have Been Restructured 4-3
a stdio.h Contains Only I/O Function Declarations 4-4
Changes to the CC Command 4-4
m +a Option 4-4
m +p Option 4-5
m +w Option 4-5
m +S and +V Options 45
m CC Command Uses /usr/tmp 4-5
m /usr/tmp 4-5
m _ _cplusplus Macro 4-5
Language Extensions and Changes 4-6
m Implicit Overloading and Type-Safe Linkage 4-6
m All Functions Must Be Declared before Use 4-7
m Overload Function Matching Improved 4-7
m () No Longer Matches (...) in Function Declarations 4-8
a New Keywords 4-8
m Default Initialization and Assignment Is Memberwise Copy 4-8
= operator=() Must Be a Member Function 4-9
m Assignment to this Is an Anachronism 4-9
m Return Types for User-Defined Conversions and Destructors Now lilegal 49
m Visibility of Operator Functions Now Strictly Enforced 4-10
m const Checking and const Member Functions 4-10
m Constructors Are Not inherited 4-11
m Default Argument Initializers Can Be Specified Only Once 4-11
m Implicit Initialization of Static Data Members is an Anachronism 4-12
m Linkage Changes 4-13
m Changes to Enumerations 4-14
m Cannot Adjust Access Protections of Base Members 4-15
m Allocation Failures 4-16
m Size Argument to Overloaded new and delete 4-16
m Warning for Hidden Virtual Function 4-16
m Use of :: Instead of . for Scoping 4-17
m Inlines May Be Ignored If Too Complicated 4-17
m Pointers to Class Member Functions 4-17
m Error for Function Not Returning Class Object As Declared 4-17
m Warning for Unspecified Access for Base Class 4-18
Library Changes 4-18
m Building Libraries 4-18
m The lostream Library 4-19
m The Task Library 4-20

Table of Contents i

1
N ,:
vy

TN

M

Compatibility with Previous Releases

Release 2.0 of the C++ Language System is generally source compatible with C++ programs running
under previous releases of the C++ Language System.

This chapter lists new features of Release 2.0 of the C++ Language System that may require changes to
existing C++ programs running under Release 1.2. In general, the new features added since Release
1.2 do not require the rewriting of existing code. These upwardly compatible new features are not
described here, but are discussed in detail in Chapter 1 of the C++ Language System Selected Readings.
This chapter focuses on changes since Release 1.2 that may require source code changes.

However, all existing code will need to be recompiled using the Release 2.0 Language System to link
with new code compiled under Release 2.0.

This chapter also describes changes in procedures for building, installing, and using the C++ Language
System.

This chapter is organized into the following sections:
@ Building the Translator — tells you information you must know before installing the C++ transla-
tor
m Header Files — tells you about changes to C++ Language System header files in Release 2.0

m Changes to the CC Command — tells you about new options to the CC command, macro name
changes, and other changes in functionality

m Language Extensions and Changes — tells you about changes and extensions to the language that
may affect the usability of C++ programs written under previous releases of the Language Sys-
tem. (Other language extensions that do not affect the compatibility of code written under pre-
vious releases are described in Chapter 1 of the C++ Language System Selected Readings.)

m Library Changes — discusses new libraries supplied with Release 2.0 and changes in their organi-
zation

Compatibility with Previous Releases 4-1

Compatibility with Previous Releases

Recompilation of Old Code Required

Previously compiled code should be recompiled using Release 2.0. The internal name encoding algo-
rithm that the translator uses in Release 2.0 is considerably different from the encoding algorithm used
in previous releases. Additionally, the implementation of multiple inheritance necessitated some
changes in object layout. Therefore object files and libraries compiled with previous releases of the
Language System will not be compatible with object files compiled under Release 2.0.

Building the Translator

The procedures for building and installing the Release 2.0 translator have been streamlined and
NOTE | simplified. The makefile will do more things automatically, but first you must edit the top level
makefile and change the settings of the user-tunable variables as needed for your environment.
| Please read Chapter 3 for details.

The following tips should be noted before building the Release 2.0 translator.

The FDOTRIGHT Macro

Some C compilers prohibit expressions like f().x, where £() is a function that returns a struct with a
member x. This is valid ANSI C, but the original Kernighan and Ritchie C Reference Manual didn’t say
anything about it, so some compiler writers didn’t implement it. To cope with such compilers, the
translator no longer assumes that the C compiler will get f().x right. Whenever it needs to generate C
that looks like f().x, it generates (temp=£(),&temp)->x instead.

If your C compiler allows expressions like f().x, add ~-DFDOTRIGHT to the list of CCFLAGS in the
makefile as follows:

(ccruss = -0 ~D§ (SYS) -DFDOTRIGAT

This builds a translator that assumes it can produce such expressions and will therefore omit these
temporaries (and associated overhead).

DENSE Makefile Variable

The C++ Language System encodes type information into function names, resulting in long internal
names that can reach lengths of 100 characters or more in extreme cases. The Release 2.0 translator
can generate names that do not exceed 31 characters, but these names will be harder for programmers
to decode. If your C compilation system does not distinguish between names of more than 31 charac-
ters, you must set the DENSE makefile variable to build a translator that generates shorter names.
Setting the DENSE variable in sr¢/makefile as follows:

4-2 Release Notes

Compatibility with Previous Releases

DENSE=-DDENSE

will cause the sre/makefile to build a translator that generates names that do not exceed 31 characters.

If your C compilation system does not distinguish between names of at least 31 characters, then even
the DENSE option will not work. You cannot use the translator with a compilation system that does
not handle at lease 31-character variable names.

if your C compilation system distinguishes between names longer than 31 characters, but limits
NOTE| names to some other length, you may in some circumstances encounter name clashes because long
names have been truncated by your compiler. In this case, you should set the DENSE variable in
| src/makefile to DENSE=—-DDENSE, as above, and rebuild the translator.

RETBUG Parameter No Longer Needed

The RETBUG parameter, which was formerly used as a workaround for a C compiler bug, is no
longer needed and has been removed from src¢/makefile.

Header Files

C++ programs can use C functions supplied by the underlying C compilation system and the operat-
ing system, but the header files defining the interface usually will need to be modified to be usable by
C++ programs. In particular, C++ requires that all functions be declared using function prototypes
and that all C functions be declared to have C linkage by using extern "C" declarations. (See the sec-
tion on type-safe linkage, below, and Chapter 6 of the C++ Language System Selected Readings, for more
information on extern "C" declarations.)

Header Files Have Been Restructured

In previous releases of the C++ Language System, C++ versions of C header files were supplied in the
incl directory. These headers were based on the standard C headers supplied for AT&T C compilers
on UNIX System V, and required porting for different C compilation systems and operating systems.
In Release 2.0, C++ versions of C header files are automatically generated by the makefile using the
standard C header files on your machine along with prototype header files supplied in the incl-
master/proto-headers directory. These prototype header files identify which operating systems supply
which headers, and also provide the function prototype declarations required for use with C++.
Release 2.0 supplies prototype header files for these operating systems: UNIX System V Releases 2
and 3, SUN OS, and Hewlett-Packard UX Operating System.

1 If you use a different operating system, you will have to port your system’s standard header files for
NOTE | use with C++. See Chapter 3, under "“Porting the C++ Translator” for instructions.

The makefile now uses the OS variable to specify which header files should be generated:

Compatibility with Previous Releases 4-3

Compatibility with Previous Releases

OS Setting | Operating System

bsd2 Berkeley Software Distribution Release 4.2
bsd3 Berkeley Software Distribution Release 4.3
svr2 UNIX System V Release 2

svr3 UNIX System V Release 3

sun SUN operating system

hpux Hewlett-Packard UX operating system

, The standard header files on most machines are supplied by both the C compilation system and the

'NOTE | operating system. Using the operating system as the determinant for which header files to generate

L is correct in most cases, but in some cases you may need to port header files based on the C compi-
] lation system on your machine.

stdio.h Contains Only I/O Function Declarations

In Release 1.2, several commonly used C function declarations, which were not in any standard C
header file, were placed in stdio.h for C++. In addition, some of these declarations were repeated in
libe.h, which contained declarations for functions in the standard C library that were not declared in
any standard C header file.

ANSI C now specifies that standard C library functions be declared in stdlib.h. In Release 2.0, func-
tion declarations have migrated to their correct header files. In particular, stdio.h contains only I/O
function declarations. stdlib.h contains additional standard C library function declarations, as
specified by the ANSI C standard. libc.h is retained for compatibility with previous releases and con-
tains the same function declarations as stdlib.h, except that stdlib.h contains declarations for the mal-
loc(3) family of functions while libc.h does not.

The function declarations that have been removed from stdio.h are: exit(), abort(), atoi(), atof(), and
atol(). These declarations are all in stdlib.h and libc.h. New code calling any of these functions
should include stdlib.h. Old code that included stdio.h to obtain any of these function declarations
must be changed to include stdlib.h as well.

The header file restructuring described above changed the locations of other function declarations for
NOTE | certain operating systems. If you get an error message about an undeclared function, grep the
o header file directory to find which header file contains the declaration you need.

Changes to the CC Command

The following changes have been made to the CC command and how it compiles C++ source files.

+a Option

The translator can now generate either ANSI C style or “Classic C”” (also known as K&R C) style
declarations. A new option, +a, has been added to the CC command to specify which style of declara-
tion should be produced. This is primarily to allow the use of single precision floating point computa-
tion on systems that have an ANSI C compiler that supports it. In addition, initialization of automatic
aggregates (aggregates at local scope) is only implemented under the +al option, as only ANSI C com-
pilers handle the generated C code. +a0, the default, causes the translator to generate ““Classic C”
style declarations, while the +al option causes it to generate ANSI C style declarations.

4-4 Release Notes

o

Compatibility with Previous Releases

+p Optidn

The CC command now accepts a +p option (for “pure”’) under which the translator disallows any
anachronistic constructs, such as assignment to this. See the AT&T C++ Language System Product Refer-
ence Manual, Appendix B under “Anachronisms,” and Appendix C, “Implementation Specific

Behavior,” for lists of anachronisms.

+w Option

The CC command now has a +w option that makes the translator produce warnings about constructs
that are occasionally (but not always) questionable. Without the +w option, the translator only issues
a warning if it is almost certain that an error exists.

+S and +V Options

The CC command options +V and +$ are no longer supported. These commands caused the transla-
tor to accept C function declarations and print information to stderr, respectively.

CC Command Uses /usr/tmp

/ust/tmp

The CC command no longer by default generates a ..c file in the user’s working directory. It now gen-
erates a .c intermediary C language file in the /usr/tmp directory.

This change permits object language tools such as profilers and debuggers to find the C source
language file under the expected .c name. The +i or -Fc -..c options will still, however, generate the
intermediate C file with the ..c suffix in the user’s directory.

_ _cplusplus Macro

For ANSI C compatibility, the macro definition ¢_plusplus has been changed to __cplusplus. For
backward compatibility, ¢_plusplus has been retained for (at least) this release. New code should use
__cplusplus.

The __cplusplus macro is defined in the CC command and allows the mixing of “Classic C” and C++
in the same header.

#ifdef _ cplusplus

int printf(char*...); /* C++ function declaration */
felse

int printf(): /* C function declaration */
fendif

Compatibility with Previous Releases 4-5

Compatibility with Previous Releases

Language Extensions and Changes

Release 2.0 implements a number of C++ language extensions and changes. Many of the extensions
are upwardly compatible with C++ Release 1.2, but some may require changes to code written under
Release 1.2. In addition, bug fixes to the translator may break some code which used to be accepted,
but should never have been accepted. The following sections describe changes in Release 2.0 that may
affect code written under previous releases of the C++ Language System. A comprehensive discussion
of changes in the language is provided in Chapter 1 of the C++ Language System Selected Readings.

Implicit Overloading and Type-Safe Linkage

In Release 2.0, two or more functions with the same name are overloaded automatically, and overload-
ing is now independent of the order in which the functions are declared. In addition, the default func-
tion linkage is C++ linkage, rather than C linkage; C functions must be declared explicitly to have C
linkage. Implicit overloading is implemented by encoding all C++ functions with type information,
which in turn allows function calls to be type-checked across files. These changes may necessitate a
few changes in existing programs.

In previous releases, a function had to be explicitly overloaded. The first instance of an overloaded
function was given C linkage and subsequent instances given C++ linkage. This enabled the user to
overload library function names and still link with an existing C library by declaring its instance first.
For example:

overload abs; // Release 1.2 syntax
int abs(int i);

double abs(double d);

complex abs(complex c);

main() {
int i = abs(1);
}

Declaring int abs(int) first meant that it was given C linkage. This order dependency was prob-
lematic, especially when header files were mixed. Instead, in Release 2.0, you must explicitly give a
function C linkage by declaring it extern "C":

double abs(double);

extern "C" { // Release 2.0 syntax
int abs(int)

}

complex abs(complex);

main() {
int i = abs(1):
}

In the new syntax, the function declared within the extern "C" block (here, the function abs taking an
int argument) is given C linkage, and will link with the abs(} function defined in the C library. The
overload keyword is no longer necessary as all functions with C++ linkage are implicitly overloaded.
The overload keyword is now ignored.

4-6 Release Notes

Compatibility with Previous Releases

The overload keyword is now an anachronism. It is still accepted, but may not be accepted in future
NOTE | releases.

|

Any C library functions must now be declared using the extern "C" syntax.

It is best to #include standard header files to obtain declarations of C functions. This ensures that the
NOTE | declaration uses the correct prototype and avoids errors resulting from conflicting or inaccurate

declarations.

A given function name may only be declared once with C linkage. Any other functions by the same
name (e.g., abs() declared for double and complex) must be declared outside the extern "C" block, and
will be overloaded automatically by the translator.

Note that all C++ header files supplied with Release 2.0 contain the necessary extern "C" declarations.
If you use any user-created header files from previous releases, be sure to convert any declarations of
C function names to the new extern "C" syntax.

For a complete discussion of type-safe linkage and overloading, see Chapter 6 of the C++ Language
System Selected Readings.

You cannot use extern "C" at a local scope.
NOTE

[

All Functions Must Be Declared before Use

Previously, a function that was used but not declared caused the translator to produce a warning mes-
sage. In Release 2.0, this condition produces an error message, and code using undeclared functions
will not compile. Often this problem can be corrected by #includeing the header file that contains the
needed function declaration.

Overload Function Matching Improved

The mechanism for overloaded function matching (deciding which of a set of overloaded functions to
call) has been revised in Release 2.0. The new scheme is more expressive and catches more ambiguity
errors. It allows programmers to overload functions based on arguments that used to be considered
“too similar”’ to distinguish, such as float and double. For example:

int f(double);
int f(float);

The second declaration of f() would produce a warning under Release 1.2 that the overloading
mechanism cannot tell an int (double) from an int (float). It would then use a heuristic that chose the
first match (f(double)) to resolve any ambiguous call to £().

Release 2.0 can distinguish between floats and doubles and other similar types in function matching.
Furthermore, all function matching is independent of the order in which functions are declared.

Compatibility with Previous Releases 4-7

Compatibility with Previous Releases

Additionally, the function matching semantics for overloaded and non-overloaded functions are identi-
cal under Release 2.0 (the rules for overloaded functions used to be stricter than those for non-
overloaded functions). In Release 1.2, a standard conversion was not applied to an argument of an
overloaded function if it involved a truncation. For example:

overload £;
void £ (char *);
void £ (int);

// In Release 1.2: error: bad argument list
// In Release 2.0: warning: float passed as int
£(3.14159);

The call to f() with a float argument is disallowed by Release 1.2, because the standard conversion
from a float to an int involved a truncation. This was incompatible with C semantics, and with the
semantics of non-overloaded functions. In Release 2.0, these incompatibilities have been resolved. The
translator warns about the truncation, but performs the standard conversion on the argument to ().

Because Release 2.0 counts all matches that require a standard conversion on an argument to be
equally good matches, some calls that used to be accepted may be rejected by Release 2.0 as ambigu-
ous. Programmers can resolve such ambiguities by using explicit casts or by adding additional func-
tion declarations.

See the section on “Overloading Resolution” in Chapter 1 of the C++ Language System Language Manual
for more complete details on function matching.

() No Longer Matches (...) in Function Declarations

In Release 2.0, a function declaration followed by empty parentheses (e.g., £()) no longer matches a
function declaration followed by parentheses containing an ellipsis (e.g., f(...)). A function declaration
with no argument prototype declares a function that takes no arguments.

New Keywords

Release 2.0 reserves two new keywords: template and catch. These are reserved in anticipation of
future implementations of parameterized types and exception handling, respectively. Any code using
these words as identifiers will have to be changed. Use of these words will usually provoke a “not
implemented”” error message (depending on the context).

Default Initialization and Assignment Is Memberwise Copy

Beginning with Release 2.0, default assignment and initialization is memberwise copy, rather than bit-
wise copy. This means that if no assignment operator or copy constructor is defined for a class, and
one is needed, the translator will generate the needed operator or constructor. Each member of the
class will be assigned or initialized using either a user-supplied or translator-generated assignment
operator or copy constructor. These rules are applied recursively to members.

4-8 Release Notes

S,

Compatibility with Previous Releases

A copy constructor for a class X is a constructor that can be called with a single argument of type X,
NOTE | for example X(X&).

operator=() Must Be a Member Function

The Release 2.0 translator will generate a warning for any definition of operator=() that is not a
member function.

Global operator=() is an anachronism and may not be accepted in future releases.
NOTE

|
T

Assignment to this Is an Anachronism

In Release 2.0, the mechanisms for user-defined memory management have been refined and extended,
eliminating the need for “‘assignment to this.” In particular, the new and delete operators can be
defined as class member functions, operator new() can be overloaded to take additional arguments,
operator delete() can be defined to take a size argument that will be supplied automatically by the
translator, and destructors can be called explicitly. These facilities are described in detail in Chapter 1
of the C++ Language System Selected Readings.

| Code with constructors that assign to this will be accepted with a warning in Release 2.0, but may not
NOTE | compile in future releases.

In addition, it is illegal in Release 2.0 to take the address of this.

Return Types for User-Defined Conversions and Destructors Now lllegal

Return types for user-defined type conversions and destructors are no longer allowed in Release 2.0.
For example, the following syntax was allowed by Release 1.2:

class String {
String* operator String*(): // Release 2.0 syntax error
void ~String(); // Release 2.0 syntax error
|

but it is illegal in Release 2.0. You can fix this syntax error by removing the return types from the
declaration:

class String {

operator String*():
~String();

Compatibility with Previous Releases 4-9

Compatibility with Previous Releases

Visibility of Operator Functions Now Strictly Enforced

In Release 2.0 the protection level of user-defined operators is now strictly enforced by the translator.
Previous releases of the translator did not check the protection level of user-defined operators. For
example, the following illegal program compiled under Release 1.2, but will fail under Release 2.0:

class X {
operator int ();
};

int f(X& x) { return x; } // used to work, but shouldn’t

The operator definition in this class definition defaults to private because no public keyword is pro-
vided. Therefore, since the function f() is not a member function of X, it cannot use the private opera-
tor int to convert x to an int. Adding an explicit public keyword to the class definition:

class X {
public:
operator int ();
};

allows access to the operator and resolves the problem.

const Checking and const Member Functions

Before Release 2.0 const checking was incomplete. It was possible to declare a const class object and
then call a member function for that const object to change its value. For example:

class X {
int data;
public:

X() { data = 0; }
int get_data() { return data; }
void set_data(int i) { data = i; }

i
void £()
{
X xobij;

const X const_xobj;

int i = xobj.get_data();

i = const_xobj.get_data(); // Read-only access

xobj.set_data(10);

const_xobj.set_data(l0): // Attempt to modify const object!
}

In previous releases, set_data() could be called to modify the constant object const_xobj. This problem
has been resolved in Release 2.0 by the addition of const member functions. In Release 2.0, the above
code produces a warning:

4-10 Release Notes

N

Compatibility with Previous Releases

"prog.c", line 1l4: warning: non const member function X::get_data() called for const object
"prog.c", line 16: warning: non: const member function X::set data() called for const object

In future releases this warning will become an error.
NOTE

In Release 2.0, member functions can be declared const, which means that they can be called for a
const object, such as const_xobj in the example above. The correct way to declare X:get_data() in the
example above would be as follows:

int get_data() const { return data; }
This declaration will eliminate the first warning. The translator will check whether a const member

function modifies the object, and will produce an error if it does. So, for example, if X::set_data(int)
were declared const, Release 2.0 would produce the following error message:

error: assignment to member X: :data’of const ;tructi X

Constructors Are Not Inherited

In previous releases, the following erroneous code was accepted:

struct B {
B(int) ;
}:

struct D: B { };

void £()
{

D d(3); // error: no D::D(int) has been defined.
}

This is clearly an error, since constructors are not inherited, and the Release 2.0 translator will no
longer accept this code. This may cause some programs (which should never have worked) to break.
Explicitly defining a D::D(int) constructor will fix this error.

Default Argument Initializers Can Be Specified Only Once

In Release 2.0, default argument initializers can be specified only once in a file. For example, the fol-
lowing code was accepted in Release 1.2:

Compatibility with Previous Releases 4-11

Compatibility with Previous Releases

extern int £(int 1 = 0);

int £(int 1 = 0) // error in Release 2.0
{ return 1 * 2; }

but now produces an error:

line 3: error: two initializers for f£(} argument i

We recommend putting default argument initializers in the header file, as that is generally where users
will see it.

Implicit Initialization of Static Data Members is an Anachronism

In previous releases of the C++ Translator, while it was possible to declare static data members of a
class, it was not possible to initialize them, nor were they allowed to be of a type with a constructor.
Static data members were implicitly defined and initialized to 0.

In Release 2.0, static data members must be initialized explicitly, and there is a new syntax for doing
so. In addition, static data members may be of a type with a constructor.

//File X.h
class X {
public:
static int gdata;
static XgX;
X () { gdata++; }
}i
//File X.c
int X::gdata = 0; // initialize X::gdata
X X::9X; // calls X::X constructor to initialize X::gX

Like other global data, static data members of classes must be initialized exactly once. Therefore, such
initializations should generally not be in header files.

For compatibility with previous releases, uninitialized static data members are implicitly initialized to 0
in Release 2.0, unless the +p option is used.

" Implicit initialization of static data members to 0 is an anachronism. Code failing to initialize static
NOTE | data members may not compile under a later release.

Because failure to initialize a static data member is not detected until link time, the translator issues no
warnings about such failures.

4-12 Release Notes

o

// Mi\:

Compatibility with Previous Releases

Linkage Changes

Default linkage for all const objects is static, and this is enforced in Release 2.0. That is, const objects
that are meant to be used in other files must be explicitly declared extern. For example:

extern const int global_var;
const int global_var = 10;

Global anonymous unions (unions declared at file scope) must be declared static in Release 2.0. For
example, the following code was accepted under Release 1.2, but will produce an error under Release
2.0:

union { int i; double d; } // error in Release 2.0
This error can be corrected by inserting the keyword static at the beginning of the line.

Member functions are implicitly extern and can no longer be defined as having static linkage.

Don't confuse member functions having static linkage with static member functions. Static member
NOTE | functions are a new feature in Release 2.0. See Chapter 1 of the C++ Language System Selected Read-
|

ings for further details.
For example, the following code was legal in Release 1.2, but is an error in Release 2.0:

class X {
public:
void £().
}s
static wvoid X::£() { } // error in Release 2.0

Additionally, functions declared to be friends of a class implicitly have external linkage in Release 2.0.
These can, however, be explicitly declared to have static linkage before the friend declaration. For
example:

static void sf ().

class X {
friend void sf(): // sf remains static
friend void £(); // £ implicitly declared extern

}.
static wvoid sf() {)} // OK
static wvoid £() { } // error: f declared as both static and extern

Similarly, it is illegal in Release 2.0 to declare a function or object as extern and then to redeclare it as
static. The reverse, however, generates only a warning. For example:

Compatibility with Previous Releases 4-13

Compatibility with Previous Releases

exﬁern void f£{();
static void f(); // error in Release 2.0

static void g{();
extern void g{(); // warning in Release 2.0

Release 1.2 accepted both constructs without warnings or errors.

Changes to Enumerations
Enumerations are distinct types in Release 2.0. This means that you can overload a function when the
arguments differ only in the enum argument they take. For example:

enum el { a, b, c };
enum e2 { d, e };
void f(el);

void f(e2);

void g(int);
void g(el);

In addition, because they are distinct types, assigning an int to an enum will produce a warning in
Release 2.0.

vious releases, but it will become an error in future releases.

T

However, an enum can be assigned to an int, because it is a standard integral promotion.

Assignment of an int to an enum is accepted with a warning in Release 2.0 for compatibility with pre-
NOTE

enum small _ints { one=l; two, three, four, five };

const small_ints half doz = 6; // warning: type mismatch
const small ints smallest = one;
int i = smallest; // okay, standard integral promotion

An enumerator is entered in the scope in which the enumeration is defined. For example, if an
enumerator is defined in a class, that enumerator is visible in that class’s scope, subject to the usual
access rules. For example:

4-14 Release Notes

*_/;

Compatibility with Previous Releases

class X {
enum { x, y, z };
public:
enum { a, b, ¢ };
//
i
void f()
{
int i = a; // error: a is undefined; X::a is not in scope
i=X::a; // okay
i=X::x; // error: X::x is private

An enumerator cannot be declared as an enumerator for more than one enumeration. For example,

the following code, which was accepted with a warning in Release 1.2, will produce an error in Release
2.0:

enum small_ints { one=l1, two, three, four, five };
enum low_numbs { zero, one }; // error: one declared in two enumerations

Finally, forward declarations of enum specifiers were accepted in Release 1.2, but are errors in Release
2.0. For example:

enum E; // error: forward declaration of enum E
enum E { a, b, ¢ };

Cannot Adjust Access Protections of Base Members

In Release 1.2, it was possible to adjust the access protections of base members in a derived class. In
Release 2.0, it is illegal to grant access to base members that was not already granted by the base class,
and it is also illegal to remove access that was granted by the base class. For example:

class B {
int priv;
public:
int publ;
int pub2;

b

class D : public B {

B: :publ; // Release 2.0 error: B::publ is public
public:

B::priv; // Release 2.0 error: B::priv is private
I

However, it remains legal in Release 2.0 to restore access in the derived class to what it was in the
base class. This is useful in a private derivation of a base class. For example:

Compatibility with Previous Releases 4-15

Compatibility with Previous Releases

class B {
int priv;
public:
int publ;
int pub2;

|

class D2 : private B {
public:

B::publ; // OK, was public in base
}:

In this case, the private derivation of B in D makes the access of all B’s members private. Public
access to Bupubl can be restored with an explicit declaration.

Allocation Failures

[t is guaranteed in Release 2.0 that if new runs out of memory, it will not call the constructor. Con-
structors no longer need to test for this!=0 to forestall core dumps.

Size Argument to Overloaded new and delete
[f you define your own operator new or delete, the size argument must be of type size_t, not long.

The ANSI C standard defines size_t as an unsigned integer big enough to hold an address. size_t is
the type returned by sizeof() and also the type of the argument to malloc(). It is defined in stddef.h
and also (for C++) in new.h. For most machines, it will be unsigned int, but many MS-DOS imple-

mentations will use unsigned long for the big memory models.

If you define an operator new or delete with a long argument, you get a warning message and the
translator will convert it to size_t for you. The warning becomes an error if you use the “strict” com-
pilation option. ‘

Warning for Hidden Virtual Function

In the following example, the function D::f(int) hides the virtual £() declared in the base class B. The
Release 2.0 translator will issue a warning in this case.

class B {
/7 ...,
virtual void f (double);
virtual void f(class B*);
virtual void £():
//

class D : public B {
//
void f(int): //warning; hides wvirtual B::f()
//

};

Release 1.2 flagged the above declaration of D::f(int) as a type mismatch error.

4-16 Release Notes

s

Compatibility with Previous Releases

Use of :: Instead of . for Scoping

The use of the period (.) to indicate scoping, as in C.£(), is archaic. It was mentioned only as an
anachronism in The C++ Programming Language (and not at all in the Reference Manual). Use of this
notation now produces a warning:

", line 2: warning: "." used for qualification; please use "::" j

The scoping operator . has been changed to :: because of some subtle potential ambiguities and a con-
sistent pattern of misunderstanding of the use of . and :: in expressions.

Inlines May Be Ignored If Too Complicated

In C++, you may specify inline for any function; the keyword is just a suggestion to the translator,
which the translator can ignore. However, the translator sometimes gives a ‘“sorry, not implemented”
error message when it cannot deal with an inline.

Pointers to Class Member Functions

In Release 2.0 the pointer to member operators —~>* and .* are considered single tokens, which cannot
contain white space.

class X {
public:
int mf(int i) { /* ... */ }
}:
typedef int (X::*PMFI) (int);
X xobj;
X *p_xobj = &xobj;

PMFI pmf = &X::mf;

int k = (p_xobj->*pmf) (1);

k = (xobj.*pmf) (1);

k (p_xobj -> *pmf) (1); // 2.0 syntax error
k (xobj . *pmf) (1); // 2.0 syntax error

Error for Function Not Returning Class Object As Declared

Declaring a function to return a value, and then defining that function without returning a value pro-
duces an error message in both Releases 1.2 and 2.0. However, if the function is declared to return a
class object and the function definition does not return anything, Release 2.0 will generate an error
message.

Compatibility with Previous Releases 417

Compatibility with Previous Releases

Warning for Unspecified Access for Base Class

The Release 2.0 translator produces warnings when the access protection of a base class is unspecified
in the declaration of a derived class.

class X { int i; public: £(); 1};
class Y : X { int i; };
g(¥* p) { p>£0; }
The call to the function £() is illegal because although f() is a public member function of X, X is by

default a private base class of Y. The declaration of class Y above will yield the following warning in
Release 2.0

r.

\\\~ , line 2: warning: base X private by default: please be explicit ": private X"

Declaring X explicitly as a private base class of Y:
class Y : private X { int i; };

eliminates the warning.

Library Changes

The following sections describe changes to the C++ function libraries.

Building Libraries
The following libraries are provided with the C++ Language System:

m the standard C++ library libC.a, which includes the iostream library and other functions
m the task library

m the complex library

n

the old stream library

The specialized task and complex libraries have been broken out from the basic libC.a C++ library,
and must now be compiled separately from the translator itself. Additional make targets, libtask.a
and libcomplex.a, have been added to the makefile for building these libraries.

Information on building these libraries is provided in Chapter 3.

4-18 Release Notes

/r‘*\.‘

{ T
H :
t 3

Compatibility with Previous Releases

The lostream Library

The I/0 portion of libC.a has been significantly extended and re-engineered for Release 2.0. The new
implementation is referred to as the iostream library. The iostream library provides the following
enhancements over the old stream library:

m greater support for formatting control and operations (there should be no need to revert to stdio
for specialized formatting)

® support for the full range of UNIX system file operations, including repositioning (seek) opera-
tions

m redesign of the streambuf class to support extensibility
m bug fixes

The new package is largely source compatible with the old unless your program has used the internals
of the streambuf class. New programs using I/O should #include <iostream.h>. A new version of
stream.h is present for compatibility with the old stream library. Complete information on the ios-
tream library is provided in Chapter 3 of the C++ Language System Library Manual and in the manual
pages in Appendix A of that volume.

The old /0 library, referred to as the old stream library, is still available as libOstream.a. If you
want to continue using the old stream implementation, you must build it explicitly and change any
#include directives to include Ostream.h rather than stream.h.

The section called ‘‘Converting from Streams to Iostreams” in Chapter 3 of the C++ Language System
Library Manual details changes you might need to make to convert code that used the old stream
library to use the iostream library. Some highlights are listed here.

m The internals of the streambuf class in the old stream library were public; in the iostream library
they are private, and they are different. Programs that rely on the internals of the old streambuf
class will need to be changed to run under iostreams in Release 2.0.

m In the old stream library, streambufs used character arrays by default as sources and sinks of
characters. While the iostream library allows this behavior for compatibility, it is considered
obsolete. Instead, the class strstreambuf is provided (strstream.h) to support incore formatting.
Uses of streambuf, istream, and ostream constructors that take character array arguments
should be replaced with uses of strstreambuf, istrstream, and ostrstream constructors.

m Programs using the filebuf class will need to include fstream.h. The old stream library provided
istream and ostream constructors that took file descriptor arguments. Uses of these constructors
will need to be replaced with uses of the ifstream and ofstream constructors under iostreams.

m Interactions with the C stdio library differ in the iostream library from the old streams behavior.
The iostream library provides classes stdiostream and stdiobuf to handle such interactions. Any
code that passes stdio FILE pointers to filebufs, istreams, or ostreams, should be rewritten to
use stdiobufs or stdiostreams instead.

m In the old stream library, the predefined streams cin, cout, and cerr were directly connected to
the stdio FILEs stdin, stdout, and stderr. Puts and gets to these streams were done one charac-
ter at a time. In iostreams, the predefined streams are connected to file descriptors. Users mix-
ing code that uses stdio with code using iostreams should use the function
ios:sync_with_stdio(). This causes the predefined streams to be connected to the corresponding
stdio files in a unit-buffered mode. This means that each inserter will flush characters to output.

~ompatibility with Previous Releases 4-19

Compatibility with Previous Releases

® The old stream library provided a form() function to allow printf()-like formatting. This func- J
tion is not available in iostreams. Users should use the new formatting flags and manipulators ~
instead. See Chapter 3 of the C++ Language System Library Manual and the ios manual page for
details.

m The old stream library allowed assignment of one stream to another. Such assignments should
be changed to use pointers or references to streams in iostreams.

@ The iostream library supplies a character inserter (operator <<(char)). The old stream library
converted chars to decimal on output. Code depending on this behavior will need to use expli-
cit casts.

The Task Library

The task library has also been enhanced and re-engineered for Release 2.0. Enhancements include:

m Addition of facilities for tasks to wait for external events, using UNIX System signals.
m AT&T 6386 WGS port

® Sun-2, Sun-3 ports
m Bug fixes

The task library continues to be supplied for AT&T 3B computers and DEC VAX computers. In addi-
tion, porting information has been supplied for additional machines. A detailed discussion of the
library can be found in Chapter 2 of the C++ Language System Library Manual.

4-20 Release Notes

:/M& "

A Appendix A

Known Problems

Preprocessor Problems

Problems with Code Generation

Restrictions on Global Structures

Restrictions on Typename Reuse

typedef Restrictions

Restrictions on Order of Names in Class Template
Restrictions on Resolution of Overloaded Arguments
Other Restrictions

Failure to Detect lllegal Code

Failure to Detect lllegal Code with Resultant cc Errors
Failure to Detect lllegal Code with Resultant Indeterminate Effect
Incompatibilities with the Draft ANSI C Standard
Spurious Warnings

Error Recovery Failures

Table of Contents

A-1
A-1
A-2
A-3
A-4
A-5
A-5
A-5
A-7
A-8
A-10
A-10
A-11
A-12
A-13

Known Problems

!
o There remain problems in the following general areas of the C++ Language System:
m some declarations, particularly name reuse for types across scopes, are more constrained than
the language definition allows

m illegal, but obscure usages are not always detected. These sometimes result in complaints from
the underlying C compiler.

® some incompatibilities with the draft ANSI C standard remain, particularly with regard to cer-
tain forms of declaration

m some complicated conversions are invalidly rejected
m there are occasional failures to recover after detecting an invalid construction

m there are some instances of spurious warning messages

The following sections detail specific problem areas that remain in the C++ Language System.

Preprocessor Problems

The C++ Language System does not include a version of cpp but instead uses the cpp resident on the
machine. Many cpps do not recognize C++ comments. This can sometimes lead to surprising results.

C++-style comments (//) in a macro definition will not be ignored:

Q #include <stream.h>
#define a 5 // define something

main() {
cout << a;
}

The comment in the second macro definition results in the following error messages:

error: ‘;’ missing after statement
error: syntax error

Similarly, use of a macro name within a // comment:
#include <generic.h>
main() {
int a; // declare variables

float £;
}

will send many preprocessors into an infinite loop expanding the macro declare that is defined inside

generic.h. Note that generic.h may be included by other files as well. stream.h, for example, contains
an #include of generic.h.

Appendix A A-1

Known Problems

Finally, interactions with normal C comments and C++ comments should be noted. For example:

#include <stddef.h>

main() {
//** this looks like a c—-style block comment to cpp
char *c = NULL;
/* this is a c-style block comment */

}

will result in the following error message if cpp doesn’t properly handle C++-style comments:

error: NULL undefined . - ' i j

Problems with Code Generation

m The calculation for a pointer to data member for a nested anonymous union is incorrect and will
result in bad code at runtime when used. For example:

#include <stream.h>

struct s {
int ss;
union
int i;
int *p;
};
}i

typedef int s::*p_s_mem;

main () {

s §;
S.ss = 1;
S.i=2;

p_s_mem mem = &s::i;

p_s_mem mem2 = &S::SS;

if (mem2 == mem)

cout << "something’s wrong: mem2 == mem0;
}

will detect that the pointers to i and to ss are equal, which is incorrect. This case failed in
Release 1.2 as well.

A-2 Release Notes

N4

—

I3
4

C

C

Known Problems

Restrictions on Global Structures

& In K&R C and the draft ANSI C standard, implementations are free to decide how to treat multi-

ple, uninitialized definitions at global scope. In C++ exactly one definition, initialized or unini-
tialized, may occur in any compilation.

In order to enforce this rule, the C++ Language System initializes all global variables to 0. This
has the side-effect of generating code that most K&R C implementations will reject when the first
element of a class or struct is a union. For example:

struct {
union {
int i;
}:
by

will generate C code including an initialization of y that looks like this:
struct _ Cly={ 01} ;

This may result in a C compiler error message about incompatible types on the assignment.

As described above, the C++ Language System ordinarily forces an initialization of all global
variables. In the case of static class members this is not currently implemented. This may lead
to linkage problems with some linkers. The problem is that some linkers do not pull in modules
from an archive if there are no initialized external references. If a file exists whose only external
dependency is a static class member, these linkers will fail to include the module with a result-
ing failure at runtime. For example:

1. File ab.h defines a class with a static member:
struct A {
int i;
A() (i =3; }
b
struct B {

static A a;
}s

2. File ab.c defines this symbol:
#include "ab.h"

A B::a;

3. File main.c refers to it:

Appendix A A-3

Known Problems

#include <stdio.h>
#include "ab.h"

main ()
{

printf ("%d\n", B::a.i);
}

If these files are directly compiled and linked, the expected output of 3 will be printed on the
standard output. However, if the file ab.c is compiled and stored in a library and linked with
main.c then those linkers that do not resolve uninitialized data will print “0.”

Restrictions on Typename Reuse

® If a nested class name reuses a member name following the declaration of that member, subse-

quent uses of the member name following the declaration of the nested class will be misparsed.
For example:

class class_af{
class class_1{

public:
float memb;
struct memb(
int i;
memb (int ii) : i(ii){};
}:
class_l(int value) : memb(value) {
}i
}:
}:

Moving the definition of struct memb so that it does not fall between the declaration and use of
class_a:memb resolves the problem.

m For compatibility with existing C programs, the following code fragment should be acceptable.
However, the C++ Language System incorrectly rejects this program:

struct s { /*...*/ };
£0 {
int s(s*);
s(0);
}

Inserting a struct modifier on the argument declaration for the function s allows the code to
compile. ‘

A-4 Release Notes

Known Probiems

(_ typedef Restrictions
m Use of a typedef name in a class header is not recognized:
struct B { };
typedef B alias;
struct D : public alias { };
D::D(int i) : alias(i) { };

This code results in the following errors:

error: unexpected argtmanﬁ list: no base class alias
error: argument 1 of type int expected for B::B{()

Restrictions on Order of Names in Class Template

Q/ ’ m The C++ language places no restriction on order of declaration of names within a class template,
but some uses before declaration are not accepted. For example:

struct foo {

foo(void (foco::*pmf) (int) = &foo::bar);
void bar(int);
}:

generates the following error message:

(erz’or: qualified name foo :: bar not found in foo. .

Restrictions on Resolution of Overloaded Arguments

m The C++ Language System sometimes incorrectly detects an ambiguity. In the following exam-
ple, it is unable to detect that converting the pair variable p to int and then calling the complex

operator+ on int is preferable to converting p to int, using the standard conversion to double,
and then invoking operator+ on double:

Appendix A A-5

Known Problems

struct complex ({
complex operator+(int);
complex operator+(double);

}:

struct pair {
operator int ()

}:

main ()

{
pair p;
complex x;
X =X+ p;

}

This code produces the error message:

error: ambiguous argument for complex::operator +():
complex complex::(int) and complex complex::(double)

m [n this example, the C++ Language System is unable to recognize that foo->double is better than
foo->double->char:

struct ostream {
ostream& operator<<(char);
ostream& operator<<(unsigned char);
ostream& operator<<(double);

}s

struct foo {
operator double() const;

}:

extern foo £;
extern ostream cout;

main ()

{
cout << £;

}

m The C++ Language System fails to accept use of the compiler generated copy constructor for
arguments to new: For example:

Release Notes

Known Problems

PO struct foo {
K int 1i;
foo (int) ;
}i

main ()

foo £(2);

foo g(f);

g = foo(f):

foo* h = new foo(f);
}

This code results in the following error message:

error: bad argument 1 type for foo::f00(): foo (int expected)

for the initialization of h. Instead, as with the previous initialization of g, the compiler should
have generated a foo(const foo&) constructor to pass as the argument to new.

Other Restrictions

&f : m Use of private and public labels within a named union are not permitted.

m [n a ?: expression, the C++ Language System will incorrectly detect a type clash between the
name of a function and a cast of a value to a pointer to the same function type. Explicitly taking
the address of the function or reordering the expression allows the code to compile:

typedef void * (*MakeFn) (void *);

MakeFn fnp;

extern void *g_mknode (void *attrs);

void foo(int insert)

{ fnp = (insert ? g_mknode : (MakeFn)0); // fails

fnp = (insert ? &g_mknode : (MakeFn)0); // compiles
fnp = (insert ? (MakeFn)0 : g_mknode); // compiles

-

Appendix A A-7

Known Problems

Failure to Detect lllegal Code

m Arrays of objects with constructors may only be declared for objects with a default constructor,
that is, a constructor with no arguments. This is not the same as a constructor that has all of its
arguments declared with defaults. The C++ Language System fails to enforce this restriction
when the array is itself a member of another class. For example, the following declarations are
accepted, but the resulting code does not pass the default arguments to the constructor:

struct s {

int ss;

s(int a =2, int b =3);
}s

s::s(int a, int b) {
ss = a * b;

}

struct t {
s ses[2];

}:

m With Release 2.0, static class members may be of any type, but must be explicitly initialized
exactly once in the compilation. However, the system does not detect static members that are
multiply defined. Static class members that have constructors will be initialized once for each

file in which the static member is defined. For example:
File a.h defines a class with a static member:

#include <stream.h>
struct A {A() {cout << "A::A()0;1};}.

struct B {static A ab;}:
and file a.c defines the class static:

#include "a.h"
A B::ab;

as does file main.c:

#include "a.h"
A B::ab;
main()

}:

The result will be two calls to the A constructor for the static member ab.

m Protection is not honored in an aggregatc initialization when the private datum is hidden by an
extra level of indirection. For example, the following illegal initialization will be accepted:

A-8

Release Notes

Known Problems

class A {
int a:;

7

};

struct B {
A obj;
b

B object = { 5 };

® Members of const objects are not recognized to be const themselves. For example:
struct T { int a; };

void £()
{
const T t;

t.a = 0;
*gt.a = 0;
}

Only the first assignment will be correctly flagged as an error. Similarly, the C++ Language Sys-
tem will fail to detect the illegal call of the non-const member function Foo::foo from the const
member Bar::bop:

class Foo {
int x;

public:
void foo(int a) {x = a;}
};

class Bar {
Foo p;

public:
void bop() const {p.foo(2);}
}:

m The overload keyword is incorrectly accepted as a variable modifier. Generally, this is harmless
and the duplicate declaration is detected. However, when two variables are overloaded and one
is of type int, the int declaration is quietly ignored:

overload int i;
overload float i; // no complaint, i is float

overload int k;

overload float k;
overload double k; // error detected

Appendix A A-9

Known Problems

A meaningless and illegal declaration of constructors and virtuals as friends is accepted.

A meaningless and illegal use of the const qualifier on the declaration of a global function or a
static member function is accepted.

A meaningless and illegal default argument for a function defined to take a void is accepted.

A meaningless and illegal use of the extern keyword is not detected within an argument list.

Failure to Detect lllegal Code with Resultant cc Errors

m The Language System accepts aggregate initialization of a struct with a union member; however,
most K&R C compilers do not accept the output code:

union U {
int 1i;
float £
}:

struct S {
U mem;
}:

Sobj={11};
s The Language System allows sizeof() applied to a function or a bitfield, which causes errors in
the underlying C compiler.

Failure to Detect lllegal Code with Resultant Indeterminate Effect

m The translator fails to detect illegal use of a member whose name reuses that of a type before the
name has been declared to be a member. Depending on the context, this may yield errors from
the C++ Language System, errors from your underlying C compiler, or code that is likely not to
match the programmer’s intent.

A-10 Release Notes

Known Problems

typedef int Integer ;

class A {
public:
int minus3() { return (Integer) - 3; }
int Integer;
o
class B {
public:
int Integer;
int minus3() { return (Integer) - 3; }
b

In class A, Integer is taken as the typedef and results in a cast of -3 to int; in class B, it is parsed
as the int member named Integer.

Incompatibilities with the Draft ANSI C Standard

m Fails to accept a draft ANSI conforming declaration for nested initialization of enums:
enume { el = (enum { z = 10 }) 3, e2};

This code produces the following error:

error: cast to non-integral type in constant expression

@ The translator fails to accept draft ANSI conforming declarations for functions taking function
arguments:

void f(int ()):

This declaration produces the following error:

//'

Crror: argument type expected for f()

A similar declaration taking a function pointer argument is accepted:

void £(int (*) ().,

Appendix A A-11

Known Problems

Spurious Warnings)

® Some instances of “used but not set” warnings are invalid. For example:

struct A {
operator =(int);
operator int ().
i
main() {
A a;
int i;
a=>5;
i = a;

}
falsely warns about a.
m Some instances of non-const reference (&) argument warnings are invalid. For example:

struct foo {
foo ()
foo(int) ;
}i

void faz(foos):

main()
{

faz(foo(3)).
}

falsely warns about foo.
m The C++ Language System is sometimes too conservative in deciding when it is necessary to call

destructors. On some C compilers this results in spurious warnings about unreachable code.
For example:

A-12 Release Notes

o struct A {
(\w- A();
~A(Q);

};
main () {
extern int i;
switch (i) {
case 0: {
A avar;
break;

b
may result in an invalid C compiler warning.

Similarly, for the following case, destructors are properly called on each return path but also
from the end of the function:

struct A {
A();
~A();
}:
main() {
A avar;
extern int i,

&(if (i)
. return i;

else
return i;

Error Recovery Failures

m Errors in class declarations occasionally lead to cases from which the translator is unable to
recover. For example, the following error is correctly detected, but compilation stops prema-
turely:

class a {
class a { // error class a redefined
i

}:

This code produces the error message:

Appendix A A-13

Known Problems

Known Problems

error: class a redefined
sorry, cannot recover from previous error

A-14 Release Notes

B Appendix B

Documentation B-1
How to Order Documents B-3
Other Sources B-3

Table of Contents

C

C

Documentation

The AT&T C++ Language System includes four documents:

w ATST C++ Language System Release Notes (select code 307-090) — this document, which describes
the C++ Language System and programming language, the contents of Release 2.0 of the
Language System, how to install and port the C++ translator, and compatibility between this
rclease and previous releases.

m AT&ET C++ Language System Product Reference Manual (select code 307-146) — describes the C++
programming language in detail.

m AT&T C++ Language System Selected Readings (select code 307-144) — provides papers describing
aspects of the C++ programming language, including a discussion of new features, a tutorial
introduction to the language, and other miscellaneous chapters on significant language features.

m AT&T C++ Language System Library Manual (select code 307-145) — describes the three class
libraries provided with the C++ Language System:
a the complex arithmetic library
o the task library

o the iostream library

These documents may also be ordered separately (see “How to Order Documents’’).

Many other documents containing related material about the programming environment on the UNIX
system may be purchased. They are listed in the AT&T Computer Systems Documentation Catalog (select
code 300-000). The most important documents available are described below:

m The C++ Programming Language by Bjarne Stroustrup (select code 320-025)

This is the standard introduction to the C++ programming language. It includes discussions of
all the basic features of the language.

® UNIX System V User’s Guide (select code 307-231)

The User’s Guide introduces the basic principles of the UNIX operating system. It includes tutori-
als on using the UNIX system text editors ed and vi, shell programming, and communication
tools.

m UNIX System V User’s Reference Manual (select code 307-012)

The User’s Reference Manual contains reference material in the form of manual pages for UNIX
system commands for general users.

m UNIX System V Programmer’s Reference Manual (select code 307-013)

The Programmer’s Reference Manual contains reference material in the form of manual pages for
all commands used by UNIX system programmers, including standard system calls, subroutines,
libraries, file formats, macro packages, and character-set tables.

Appendix B B-1

Documentation

| The UNIX system is portable to many different computers. The reference manuals listed for the UNIX

NOTE | system are available for many of these computers. The manuals listed above are usually included

with the computers; if you need additional copies, refer to the section “How to Order Documents” for
ordering information.

® UNIX System V Programmer’s Guide (Select Code 308-139)

The Programmer’s Guide contains descriptive information about the C language and associated
libraries, the C compiler, the C program checker (lint), the symbolic debugging program (sdb),
and many other related topics. It includes a summary of the grammar and rules of the C pro-
gramming language.

w The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie (select code 307-136)

This is the standard introduction to the C programming language. It includes a tutorial intro-
duction to C, complete discussions of all the major features of the language, and a reference sec-
tion.

8 C Programmer’s Handbook (select code 320-022)

The C Programmer’s Handbook is a short reference guide to the C programming language. Topics
covered include syntax, data types, operators and expressions, statements, functions, declara-
tions, program structure, libraries, formatted input/output, and portable C programs.

® The UNIX Programming Environment by Brian W. Kernighan and Rob Pike (select code 311-026)

This is an introduction to the UNIX operating system. It includes a tutorial introduction fol-
lowed by information on the file system, shell programming, system calls, document prepara-
tion, and other topics.

m AT&T 3B2 Computer C Programming Language Utilities/Advanced Programming Ultilities Product
Overview (select code 308-227)

The Product Overview contains a summary of the C Programming Language Utilities and
Advanced Programming Utilities and a brief technical description of most of both products’
features. It is especially helpful for new users.

The following textbooks on the C++ programming language are also available:

m A C++ Primer by Stanley Lippman (1989, Addison-Wesley, Reading, MA)

m Programming in C++ by Stephen C. Dewhurst and Kathy T. Stark (1989, Prentice-Hall, Englewood
Cliffs, NJ)

B-2 Release Notes

How to Order Documents

Order Documents

CALL

WRITE

in continental USA: 1-800-432-6600
in Canada: 1-800-255-1242
elsewhere: 1-317-352-8556

AT&T Customer Information Center
Customer Service Representative
P.O. Box 19901

Indianapolis, Indiana 46219

Sign up for UNIX system or 3B2 Computer courses

CALL

TELEX

in continental USA: 1-800-247-1212
elsewhere: 1-201-953-7554

919-365-ATTI-UR
Attention: Training Registration

Find out about UNIX system source licenses

CALL

WRITE

in continental USA

(except NC): 1-800-828-UNIX

NC and elsewhere: 1-919-279-3666

Software Licensing
Guilford Center

P.O. Box 25000
Greensboro, NC 27420

Contact marketing representative about AT&T hardware and software

CALL

WRITE

in continental USA: 1-800-247-1212
elsewhere: 1-201-953-7554

Other Sources

not applicable

The AT&T Computer Systems Documentation Catalog (select code 300-000) lists documents for all models
of the AT&T 3B Computer family, and for hardware add-on products, AT&T software, and releases of

UNIX System V.

The AT&T Computer Software Catalog (select code 311-020) lists over 500 software products reviewed or

Documentation

certified for compatibility with AT&T computers.

Appendix B

B-3

A

I Index

Index

Table of Contents

Index

? : operator A:7

A

+a option 4: 4

abort() function 4: 4

allocation failures 4: 16
Amdahl UTS computers 3: 40
ANSI C draft standard A: 11
argument initialization 4: 11-12
arrays, of objects with constructors A: 8
atof() function 4: 4

atoi() function 4: 4

atol() function 4: 4

AT&T 3B computers 3: 39
AT&T 3B2 computers 3: 40
AT&T 6386 computer 3: 40

B

bootstrapping the translator 3: 7, 18
build shell script 3: 35
building translator 4: 2

from C++ source 3: 19

C

catch keyword 4: 8
CC command 1: 1, 3: 5, 21, 37

new options to 4: 4-5
cc errors A: 10
CC makefile variable 3: 14
CC makefile variable 3: 23
CC makefile variable 3: 36
ccC environment variable 3: 38
CCFLAGS makefile variable 3: 14, 4: 2
c++filt program 3: 5, 18, 21
cfront program 3: 5, 18, 21
cfrontC environment variable 3: 38
class declaration, order of names in A: 5
class declarations, errors in A: 13
comments, C++-style A: 1

compatibility, with previous releases 4: 1-20

complex arithmetic library 2: 2
building 3: 24-25

const keyword A: 10

const member functions 4: 10-11

Index

const objects, members of A:9
constructors 4: 11

copy 4 8
contents of the release 2: 1-3
conversions, user-defined 4: 9
CPIO makefile variable 3: 14
__cplusplus macro 4:5
cppC environment variable 3: 38

D

delete operator 4: 9
DENSE makefile variable 3: 15, 39, 4: 2-3
destructors A: 12-13
documentation B: 1-3
how to order B: 3

E

editing files created during build 3: 21
enumerators 4: 14-15, A: 11
environment variables, setting 3: 38-40
exit() function 4: 4

#expand directive 3: 34

extern “C” syntax 3: 34, 4: 3, 6-7
extern keyword A: 10

F

FDOTRIGHT macro 4:2
FILLDEF makefile variable 3: 14
FILLUNDEF makefile variable 3: 14
flexnames 3: 39, 4: 2
free store exhausted error message 3: 39
friend declarations A: 9
function matching resolution 4: 7-8
functions

inline 4: 17

return type errors 4: 17

G

generic function 2: 2

Index

H

header files 4: 3—-4

full port of 3:33-35

porting 3: 32-36
Hewlett-Packard 9000 computers 3: 40
#hide directive 3: 34

I

I environment variable 3: 18, 36, 38
incl directory 3: 18
include files, defining location of 3: 18
incorrect code A:2
inline functions 4: 17
INSTALL makefile variable 3: 14
installation roadmap 3: 9
INSTALL BIN makefile variable 3: 13
INSTALL_INC makefile variable 3: 13
installing source on AT&T 3B2 Computer 3: 5-6
installing the translator, common problems 3:
39-40
installing translator 3: 1-40
from tape 3: 7-22
on AT&T 3B2 Computer 3: 4-6
on machine with existing translator 3: 17
on machine without existing translator 3:
18-19
INSTALL_LIB makefile variable 3: 13
Intel 386-based machines 3: 40
introduction to C++ language system 1: 1-3
iostream library 2: 3, 4: 19-20

K

known problems A: 1-14

L

language extensions and changes 4: 6-18
libC.a program 3: 5, 18, 21
libraries 4: 18-20

building 3: 23

iostream 4: 19-20

task 4: 20
LIBRARY environment variable 3: 38
library functions 1: 2 '
linkage 4: 13-14, A: 3

static 4: 13

type-safe 4: 6-7
list of procedures, for building translator 3: 9

M

MACH makefile variable 3: 13
machines supported for language system 3: 1
make clean procedure 3: 20-21
make clobber procedure 3: 22
make command 3: 19

options to 3: 21-22
make demos procedure 3: 20
make fillscratch procedure 3: 27, 36
make munch command 3: 19
make patch procedure 3: 19
make procedure 3: 17
make scratch procedure 3: 18
makefile variables, setting 3: 11
malloc() function 4: 4
MAU (math accelerator unit) 3: 40
member name, reuse of A: 10-11
mk directory 2:2
moving files created during build 3: 21
Munch directory 2: 3
munch option 3: 5, 17-18, 21
munch program 2: 3
munchC environment variable 3: 38

N

new functions 2: 3
new operator 4: 9, 16
size argument to 4: 16

@)

old stream library, building 3: 25
operator=() definition 4: 9
operators
delete 4: 9
new 4:9, 16
pointer to member (>, .*) 4: 17
scoping () 4: 17
user-defined 4: 10
optimizer flag 3: 40
#os directives 3: 34
OS makefile variable 3: 12, 32-33, 35-36
overload keyword 4: 6, A: 9
overloading, functions 4: 6-7

Release Notes

e’

Index

P

+p option 4: 5
Patch directory 2: 3
patch option 3: 3, 5, 17, 21
patchC environment variable 3: 38
pointer to member operators (>, .*) 4: 17
porting the translator 3: 26-37

to non-UNIX systems 3: 37
preprocessor problems A: 1-2
prerequisites

for installing the translator 3: 2-3

for installing translator on AT&T 3B2 Com-

puter 3: 4

private label A:7
problems, known A: 1-14
protection A: 8-9

of base members 4: 15-16
public label A: 7

R

references A: 12

release 1.2, recompiling existing code from 4: 2
release date stamp 3: 38

resolution of overloaded arguments A:5
RETBUG parameter 4: 3

return types, for user-defined conversions 4: 9

S

+S option 4: 5

scoping (::) operator 4: 17

scratch directory 2:3

setting makefile variables 3: 11

software dependencies 3: 2

space requirements, for installing translator 3: 2
src directory 2: 3

src/size.h header file 3: 30, 32

static class members A: 3, 8

static functions 2: 3

static members, initialization of 4: 12
STDINCL makefile variable 3: 12
stdio.h header file 4: 4

stdlib.h header file 4: 4

structure arguments 3: 2

structures, global A: 3-4
SYMBOLICLINK makefile variable 3: 12
SYS makefile variable 3: 11

SZAL makefile variable 3: 15

Index

szal.c program 3: 26-28

T

task library 2: 3, 4: 20
building 3: 23-24
problems with 3: 39
template keyword 4: 8
testing results of build 3: 20
this, assignment to 4: 9
translator tape, extracting contents of 3: 11
tree size variable 3: 39
typedef restrictions A: 5
type-safe linkage 4: 6-7

U

#usedby directive 3: 34

\Y%

+V option 4: 5

variable names, length of 3: 2, 39
virtual functions, hidden 4: 16
void arguments A: 10

\%

+w option 4: 5
warning messages, during build 3: 20

Y

yacc command 3: 39

	Contents
	Preface
	1. Introduction
	2. Contents of the Release
	3. Installing the Translator
	4. Compatibility with Previous Releases
	Appendix A. Known Problems
	Appendix B. Documentation
	Index

