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ABSTRACT

Some programs are most naturally expressed as a set of relatively independent
activities communicating to achieve a common goal. Each activity, here called a
task, has its own locus of control, a program to execute, and its own private
data. Tasks can communicate by explicit sharing of data, by messages, or by data
pipes. ;

This memorandum describes C++""% classes for a range of styles of multi-
programming techniques in a single language, single address-space environment.
Class task is a base class for representation of an activity in a multi-programmed
system. A task can be suspended and resumed without interfering with its internal
state. Class ghead and class qtail enable a wide range of message passing and
data buffering schemes to be implemented simply.

The task system can be used for writing event driven simulations. Tasks exe-
cute in a simulated time frame presented by the variable clock, and objects of
class timer provide a convenient and efficient facility for using the clock.



N

1 Intreduction

Some programs are most naturally expressed as a set of relatively independent activities com-
municating to achieve a common goal. Such activities, here called tasks, must be able to execute
in parallel with each other and communicate through means convenient to the chosen style of task
usage.

Facilities for muln-thxcad computanon can be provided in the semantics of a language, as is
done in Concurrent Pascal’ and Mesa®, or a language without such facilities can be augmmted
using special run-time support systems and library functions, as has been done for BCPLS and C°.
The uszzof C classes to implement tasks represents an intermediate approach pioneered by
Simula67°.

The tools presented here provide the basic facilities for several styles of multi-thread program-
ming in a single language, single address-space environment. The underlying facility is a simple
and efficient tasking system with non-preemptive scheduling. That is, a task will only be suspended
on its own request, so no ‘‘system policy” can be enforced without the cooperation of all tasks. In
contrast t0 pure co-routine systems, however, the task system provides provides a framework for
processor sharing and communication between tasks.

The task system is intented for applications, like event driven simulations, where tasks are used
to express a quasi-parallel structure for a single program. For this class of applications a concept
of simulated time is implemented. A unit of simulated time can represent any amount of real
time, and it is possible to compute without consuming simulated time. A few simple random
number generating classes and a class histogram for data gathering are also provided. The task
system is not intented for handling real parallelism of some underlying real-time system. Conse-
quently, no facilities are provided to map interrupts and other real-time events into the concepts
provided by the task system.

2 Tasks

The declaration of class task looks like this (the ellipsis ... is used , un-gramatically, to indi-
cate where details not considered relevant to the discussion has been removed):

+ The class object used in the declaration of class task is 2 simple base class used by all classes in the task system. It
contains some of the pointers used by the task system’s internal “‘house-keeping”, and also a value indicating the type of the
object. Class object is presented in appendix A.

The ellipsis ... is used (un grammetically) to indicate details not considered relevant to the discussion.
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class task : public object {

public:
task(chars =0, int =0, int =0);

tasks t_next;
chars t_name;

int rdstate();
long rdtime();

void resultis(int);
int result(task«);
void cancel(int);

void sleep();
void wakeup();

void delay(int);
int preempt();

void walt(objects);
int waitvec(objectss);
int waitlist(...);

void print(int);
'Y

A task is a locus of control, a virtual processor. It can only be used as a base class. A task exe-
cutes the program supplied as a derived class’s constructor. The most basic feature of an object of
class task is that it can be suspended and later resumed so that several tasks can run in quasi-
parallel. Most class task functions are conditional or unconditional requests for suspension.

A task can be in one of three states:

RUNNING:

The task is executing instructions or it will be scheduled to do so without further interven-
tion from other tasks.

IDLE:

The task is not RUNNING, but it can be transferred to the RUNNING state by some suit-
able action.

TERMINATED:

The task has completed its work. It cannot be resumed, but its result can be retrieved.

The class task function rdstate() returns the state.

A simple example of the use of tasks is where one task creates another to run in paralle] with
itself. Later the creator can obtain the result produced by the “secondary” task. For example, a
task which counts the number of spaces in a string could be declared. First a class spaces must
be declared.

struct spaces : public task {
spaces(char«);
13
In the case of class spaces the declaration is trivial. It states that spaces is derived from class
task so that each object of class spaces becomes an independently scheduled entity. The pro-
gram for the task is provided by the constructor spaces.spaces(). This use of this constructor
resembles the use of main() in a C program.




spaces.spaces(char+ 8)

{
int 1 = 03
while (#8) if (#B++ == * ’) 144}
resultis(i);

}

This function connts the spaces in its argument string and return the result using the class task
function resultis(). A task of class spaces can now be created and used like this:

spaces SS("a line with four spaces”);
count = SS.result();

When a new task is created, like 88 here, its constructor is called with the argument list pro-
vided, and the two tasks now run in parallel. The task function result() returns the value
returned from spaces.spaces() by the call of the task function resultis(), that is, in this
example the value 4. If a task calls result() for another task which has not yet completed it
will be suspended waiting for that task to become TERMINATED. When that happens it will be
resumed. A task waiting for another to complete is IDLE. I a task calls result() for itself it
will cause a run time errort.

A task cannot return a value using the usual function return mechanism; it must use the class
task function resultis(). This function puts the task into the TERMINATED state from
which it can not be resumed.

.3 Queues

A gueue is a type of storage that is organized so that objects are retrieved from it in the order
in which they were inserted into it. A queue has a head from which data is retrieved and a tail
to which data is added. With a little elaboration this basic type of data structure makes an excel-
lent inter-task communication facility.

There is a function put() which adds an object to the tail of a queue and a function get()
which retrieves an object from the head of a queue. There is no *“class queue” available to a
user. Instead, the two classes qhead and qtail provide the services needed. This allows explicit
separation between the source and the recipient of data. The declaration of class ghead looks like
this:

+ The handling of run time errars will be described below.
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class ghead : public object {

public:
ghead(int =WMODE, int =10000);

objects get();

int putback({objects);
int rdcount();

int ramode();

int rdmax();

void setmode(int);
void setmax(int);

qtails tail();

ghead+ cut();
void splice(gqtails);

void print{int);
13
A queue can be created like this:
qhead qh;
To obtain a gqtail for an existing queue execute tail() for its ghead:
qtails qtp = gh.tail();

The queue could now be used as a one way inter-task communication channel by giving its head
and tail as arguments to two new tasks:

producer PP(qtp);
consumer CC(&qh);

The producer task PP can now put() objects to its qtail (denoted by the pointer gtp) and the
consumer task CC can get() those objects from its ghead (denoted by the pointer &qh). The
class gtail function put() takes a pointer to a class object as argument, and the class ghead
function get () returns such a pointer. Unless the user has specified otherwise a task executing
put () will be suspended temporarily if the queue is fullt. When the queue becomes empty the
suspended task is resumed. Similarly a task executing get() on an empty queue will be
suspended until the queue becomes non-empty.

The objects transmitted through a queue must be of class object or derived from it. Class
object is provided by the task system, and it is up to the programmer to define types of objects
suitable for each application. Appendix A describes class object.

4 Example: A Server Task

As an example of the use of tasks and queues we will define a “server” task that receives
requests for service in the form of messages on a queue, handles the requests and returns replies
on other queues. One could define a class message as follows:

+ The default maximum size for & queue is 10000. That is, the queue can hold up to 10000 pointers. It does not, however,
pre-allocate space.
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struct message : public object {
int r_operation;
int r. argl;
int r _arg2;
C qtails x_reply;
I

A message, that is an object of class message, describes an operation r_operation that is to be
performed by the recipient of the message. Arguments for this operation can be passed as r_arg1
and r_arg2, and the result of the operation is to be returned as a message on the queue denoted
by r_reply.

A task serving requests presented as messages on a queue can be defined as follows:

class server : public task {
< server(gheads);
— 1

server.server (qgheads in)
{
for (33) {
meassages req = (messages) in->get();
gueues reply = reg->r_reply;
int res = VALUE;
int val;

switch (req->x_opexration) {

case PLUS:
val = req->r_argl + req->r_arg2;
break;

case MINUS:

s o0

default:

res = ERROR;
}
req->r_operation = res;
req->r_argil = val;
reply->put(req);

}

This style of server has proved useful in many contexts. In particular, it is the backbone of
many ‘“‘message-based systems”. In this particular example a server, that is an object of class
server, and the queue on which it depends can be declared:

(;W qtalls rq = new gqtall;
servers per = new server(rg->head());

Other tasks can now send a request to this particular server through rq. For example:

ghead rply;
gheads rply_to = rply.tail();
messages mess = new message;

B mess->r_operation = PLUS;
<;, mness->xr_argl = 1;
mess->xr_arg2 = 2;

mess->y_reply = reply.to;

rg->put(meas);
mess = (messages) rply->get();
if (mess->r_operation == ERROR) erroxr();



§ More about Queues: Mode and Size

A ghead has a private variable mode that controls what happens when get () is executed on
an empty queue. In EMODE this causes an run time error. In ZMODE it will cause get() to
return the NULL pointer instead of a pointer to an object. In WMODE a task executing a get ()
on an empty queue will wait on that queue, that is become IDLE, until the queue becomes non-
empty. Unless the user specifies the mode explicitly a ghead will be in WMODE. The ghead
function setmode () can be used to reset the mode. The function rdnode () returns the mode of
a ghead.

As mentioned above a queue also has a maximum size. This can be reset using the function
setmax( ), and read using the function rdmax().

The mode and maximum size for a queue can also be specified when the queue is created. For
example:

ghead Q1(ZMODE,10);
gheads QP2 = new ghead(EMODE,64%1024);

The public part of the declaration of class qtail is similar to that of class ghead. The two
classes complement each other, and together they provide a representation of the general idea of a
queue:

class qtall : public object {

public:
qtall(int sWMODE, int =10000);

int put(objects);

int rdspace();
int rdmax();
int rdmode();

veid setmax(int);
vold setmode(int);

ghead+ head();

qtails cut();
vold splice(gheads);

void print(int);
}s
A qtail’s mode controls what happens on queue overflow in the same way as ghead’s mode con-
trols what happens on queue underflow. For example, when a task executes put() on a full queue
where the qtail is in WMODE, then that task will be suspended waiting for a get{) on the
head. The mode of a ghead or a qtail can be inspected by rdmode() and changed at any time
by setmode(). The modes of a queue’s ghead and qtail need not be the same.

Similarly the maximum number of objects which can be on a queue can be examined by
rdmax() and changed by setmax(). Decreasing the max below the current number of objects on
the queue is legal. Doing this simply implies that no new objects can be put() on the queue until
the queue has been drained below the new limit.

The ghead function rdcount() returns the current number of objects in a queue, and the
qtail function rdspace() returns the number of objects which can be inserted into a queue
before it becomes full.

The ghead function putback() puts its argument back at the head of the queue, that is
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ghead gh(WMODE,10);
objects co = gh.get();
gh.putback(oo);

oo = gh.get();

will assign the same object to co twice. Putback() has proved to be a useful function in many
systems in the past, and it also allows a ghead to operate as a stack. When putback() is used,
the task executing it competes for queue space with tasks using put() on the queue’s tail. A
putback() to a full queue causes a run time error in both EMODE and WMODE. In ZMODE
it returns NULL.

6 More about Tasks

When a task is created it can be given three arguments. The first is a character string pointer
which is used to initialize the class task variable t_name. This name can be used to provide
more readable output and does not affect the behavior of the task. The string denoted by the
pointer will not be copied. The t_name is used by the debugging aids and error reporting func-
tions described below. The other two class task arguments are tuning parameters and will be
described below. If an argument is NULL a system default will be used. For example, we could
have given each server task a name like this:

class server : public task {
server(chars, gheads);
b
vold server.server(chars name, gheads in) : (name,0,0)
{
}

server my_name_ls_fred("fred",qhp);

The class task function sleep() suspends the task unconditionally without specifying what is
supposed to cause it to be resumed. The function wakeup() can be used to resume it.
The class function eancel() puts a task into the TERMINATED state and sets the return
value just like resultis(). However, cancel() does not invoke the scheduler.
The pointer
task+ thistask;

denotes the currently active task. If no tasks have been created its value is 0. It is illegal to assign
to thistask. The use of thistask enables the class task functions to be used from extern
functions without explicit passing of the current task’s this pointer.
The pointer
tasks task_chailn;
is the start of a chain of all tasks. In the following loop t points to every task in turn:
for (task+ t=taak_chain; t; tst->t_next) ;

It is not possible to have only one task. Therefore, when the first task is created in a program
another task is implicitly created. Main() acts as its constructor, and its name is "main”. It can
be suspended and resumed like any other task. Please remember that a return from main() ter-
minates a C program. If the *‘main’’ task should be terminated when there are other tasks
which should be left running, then resultis() can be used. For example,

thistask->resultis(0);

can be executed in main(). The program will then run on until no more tasks are or can become
RUNNING.
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It is undefined what happens if a task’s constructor returns. Always call resultis() instead
of return, and never just “drop out of the bottom” of such a constructor. Unless a task’s new
function contains an infinite loop so that it will never terminate place a call of resultis() at the
end of its body.

The task system does not provide a garbage collector. It is left to the programmer to ensure
that pointers to deallocated store are not used.

7 Waiting

Functions like task.result(), ghead.get(), and qtail.put() cach provide a way of
waiting for one single specific event to happen. More general facilities are sometimes needed.
The class task function wait() provides a way of waiting on an arbitrary object. For example,
if taskp is a pointer to a task then

walt(taskp):

will suspend the task executing it until the task denoted by taskp becomes TERMINATED.

Each class derived from class object which is ever going to be “waited on”’ must have some
rules associated with it specifying under which conditions a task executing a wait () for it will be
resumed. The rules for class task, for class ghead, and for class qtail have been stated.

The conditions for wakeup are reflected in state changes in the objects, and are not just transi-
tory unrecorded signals. For example, if a task executes a wait () for a non-empty ghead it will
immediately continue, that is the condition for returning from a wait() for a ghead is that the
queue is non-empty, not a brief state change from empty to non-empty. Rules of this type simplify
programming considerably by eliminating race conditions.

The class task functions waitvec() and waitlist() suspend a task waiting for one of a
list of objects, for example to wait for messages to arrive on one of a number of gheads.
Waitlist() takes a list of object pointers terminated by a zero as argument, for example:

ghead+s q1;
gheads q2;
short who = waitlist(q1,q2,0);

will suspend the task executing it until either q1 or q2 is non-empty. If either is non-empty when
waitlist() is executed the task will continue immediately.

The value returned is the position in the list of the object that caused the return from the wait,
that is if q2 caused the task to resume the value 1 will be assigned to who. Positions are num-
bered starting from 0. waitlist() can take any number of arguments. The degenerated exam-

ple

waltlist(0);

causes unconditional suspension of the task executing it without any guarantee of later resumption.
It is equivalent to sleep() and wait(0).

Please note that one should not assume that because waitlist() returns a particular value
indicating one object as the cause of resumption none of the other objects are “ready”. The value
returned by waitlist() only indicates what is known to have happened, and it does not exclude
other independent possibilities. On the other hand, even if waitvec() indicates a particular
object, that object cannot in all circumstances be assumed to be *“ready”. For example, two tasks
could be taking objects from the same qhead, each using waitvee() to wait for several objects.
If waitvec() returns with an indication that the queue has become non-empty, then this does not
guarantee that the queue is still non-empty.

Because every class in the task system allows non-blocking examination of the conditions which
might lead to suspension using the three wait functions, the value returned by waitvec() can
always be ignored. The information it conveys can always be obtained by direct inquiry. In many
cases, however, the value returned can be trusted and used to write simpler, more efficient pro-
grams.

waitvec() takes the address of a vector holding a list of object pointers, for example:

-
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objects vec[] = { q1, q2, 0 };

short who = waitvec(vec);

is equivalent to the previous example.

8 System Time and Timers

The long variable clock measures simulated time. It is initialized to zero. It is illegal to
assign to clock.
The task function delay suspends a task for a specified time. That is,

long t = clock;
delay(n);
actual_delay = clock-t;

will assign the value n to actual_delay. Delay() is useful for representing service delays in
simulations. While a task is delayed in this way its state is still RUNNING, but it will not be
affected by the actions of other tasks except if cancel() or preempt() is used on it
Delay(n) makes an IDLE task RUNNING so that it will start executing at time clock+n.

The class task function preempt() makes a RUNNING task IDLE and returns the number
of time units left of its delay. Applying preempt () to a IDLE or TERMINATED task causes a
run time error. This function is useful when tasks are used to represent processes in a system with
preemptive scheduling and delay times are used to represent the time used by executing processes.
The value returned by preempt() allows the preempted task to be re-started with a new delay
time which is a function of the delay time at the time of preemption. For example:

int time_left = other_task->preempt();
other_task->delay(time_left+10);

A timer provides a facility for implementing time-outs and other time dependent phenomena.
Class timer has this declaration:

class timer : public object {

public:

timer(int);
int rdstate();
int result();

void reset(int);
void cancel(int);

. void print(int);
¥
A timer is quite similar to a task with a constructor consisting of the single statement
delay(d); thatis, when a timer is created it simply waits for the number of time units given to it
as its argument, and then wakes up any tasks waiting for it.
A timer’s state can be either RUNNING or TERMINATED. This state can be inspected by
using rdstate().
A common use of timers is to wait for a task and a timer. For example, one can wait for the
completion of a task handling an input operation and also on a timer. The timer ensures that the
waiting task will eventually be resumed even if the input operation is never completed?:

% In a quasi-paralle] system this will only be true provided no infinite loop without task system calls exists. Such a loop con-
stinrtes an errar that only a system with true parallelism can recover from.
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timers tt = new timer(15);
short res = waitlist(io_ptr,tt,0);

switch (res) {

cage 0: /x normal completion of i/0 %/
break;

cage 1: /+ time out occurred */
break;

default:
error (IMPOSSIBLE);

}

The class timer function result() is very similar to task.result(). They differ only in

_that the value returned by timer.result() is undefined unless cancel() was used. In the

same way timer.cancel() is identical to task.cancel().

The function reset() re-sets the timer delay to the value of its argument. This makes
repeated use of timers possible. A timer can be reset () even when it is TERMINATED.

A unit of simulated time can be used to represent any unit of real time. Only use of delay()
causes the clock to advance.

9 More about Queues: Cutting and Splicing

One of the most convenient and powerful ways of using tasks involves tasks defined to do a
transformation on a data stream. Such a task is called a filter. It reads its input from one queue
and writes its output onto another queue. Tasks at the “‘other ends” of these queues tend to view
these queues plus the filter as one entity. The data source simply sees an output queue that is being
emptied at some rate, and the task at the receiving end sees an input queue being filled. In other
words, a task sees only its input and output queues and cares littie about the “internal organiza-
tion” of the programs that operate on the other ends of those queues.

For example, one task could produce a stream of lines of characters, that is objects of class
line, and another expect an input stream consisting of words, that is objects of class word. A
filter that handles the conversion could be defined and used like this:

struct line_to_word : public task {
line_to_word{gheads, qtalls);
words next_word(lines);
}s

line_to_word.line_to_word(gheads in_q,qtalls out_q)
{
for(ss) {
word+ w;
lines 1 = in_g->get();
while(w = next_word(l)) ocut_q->put(w);

}

gheads line_q = new ghead(WMODE,10);
ghead+ word_q = new gtail(WMODE,50);

producer+ prod = new producer(line_gq->tail());
‘consumer+ cons = new consumer (word_g->head());
line_to_words £1i1t = new line_to_word(line_q,word _q);

In this way the filter £i1t is programmed into the path between cons and prod using two queues
to separate £ilt’s input from its output.

This is a fairly static use of a filter. Often one would like to insert a filter into an existing data
path. For example, a macro-based text formatting program could be organized as a sequence of
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filters - each doing its small part of the common task. First some filters re-arrange the input into a
form suitable for the formatter proper, then the “input independent” formatter does its job produc-
ing output of a standard form, and last some output filters adjust this output to a form suitable for
physical output. The task £i1t is an example of such a filter. In this scenario it would be useful
to have each macro defined as a filter which the formatter proper inserts just in front of itself
when the macro expansion is needed and which removes itself when it is not needed any more.
Assuming that data streams are represented by queues, this can be achieved by using the class
ghead functions cut() and splice()

When the task formatter recognizes a call to the macro “‘foo” it creates a new task of class
macro to handle a macro of type FOO and diverts its own input through it. This is done by first
“cutting” the input queue to create a place to insert the new filter, and then creating the filter giv-
ing it the new ghead and qtail as arguments:

gheads newhead = input_gueue->cut{);
qtails newtail = input_queune->tail();
macro* £ = new macro(FOO,newhead,newtail);

cut() splits the queue to which it is applied into two. Newhead, the pointer returned from
cut (), denotes the ghead for the original queue and has the same mode as the original ghead.
The original ghead is now attached to a new empty queue with the same max as the original.

Put()’s to the original qtail will therefore place objects on the filter’s input queue, and
get()’s from the original ghead will retrieve objects from the filter’s output queue.

The result of these operations has been to insert a filter with an input and an output queue into
a queue without changing the appearance of that queue to anyone using it, and without halting the
flow of objects through that queue. In our example the macro expansion filter foo will get () the
input which would otherwise have gone to the formatter, interpret it as macro arguments, and out-
put the expanded input as its output.

The filter can be removed again by splicing its input and output queues together with
splice():

newhead->splice(newtail);

Splice() deletes the ghead to which it is applied, the qtail given to it as an argument, and
the queue denoted by that qtail. If the splice() operation causes an empty queue to become
non-empty or a full queue to become non-full all tasks waiting for such a state change are
resumed.

Deleting the filter completes the cleanup:

delete £11t;

Typically a filter would remove itself when its task was completed, because the task that
inserted it would not be programmed to be aware of the presence of the filter it inserted. The
sequence of operations which enables a task to remove itself without a trace is:

cancel (any_value);
delete this;

This will work because cancel() does not imply immediate suspension, only a guarantee that the
task cannot be resumed.

The qtail functions cut() and splice() are similar to ghead’s, but they operate on the
other end of the queue.

-
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10 Encapsulation

Passing information between tasks through queues can lead to rather tedious repetitive (and
therefore error prone) packing and unpacking of information into messages. Simple encapsulation
techniques can be used to relieve the programmer of this. For example, by adding a constructor to
the class message the server example could be re-written thus:

struct message : public object {

int r_operation;

int r argl;

int r_arg2;

qtalls x_reply;

message(int op, int a1, int a2, gqtails rp)
{ r_operation=op; r_argi=al; r_arg2=a2; r_replysrp; };

1
rg->put{ new meassage({PLUS, 1, 2, reply.to) );
message+ mess = (messages) rply->get();
if (mess->r_operation == ERROR) error();

Furthermore, because the message queues obviously are meant to hold only message objects a
specific message queue could be defined and used:

struct mghead : public ghead {
message+ get() { return (messages) ghead.get(); };
h

struct mqtaill : public qtaill {
int put(message* m) { return gtail.putim); };
|
The use of mqtail.put() ensures that only class message objects are put on the queue, and no

type cast is needed when class message objects are taken from the queue using mghead.get().
For example:

mesa = rply->get();

Because the body of mgtail.put() is present in the class mgtail declaration calls of
mgtail.put() will be expanded inline. This ensures that using a mqtail is no less efficient as
using a qtail directly. In many cases some error handling can also be handled by the derived
put() and get() functions.

An alternative solution is to provide the server class with functions which handle the packing:

class Berver : public task {
qgheads inp;
public:
server (chars name) : (name) { inp=new gtall (WMODE,100); }
int plus(int, int, mgtails);
int ninus(int, int, mgtalls);
b

int server.plus(int argil, int arg2, mgheads rqt)
{
inp->put( new message(PLUS,argil,arg2,rq) );
message+ mess = rgt->head()->get();
int x = mess->r_operation;
delete mess;
return x;

}
so now the server task can be requested to perform services like this:
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ngtail qq;

server SS("plus_and_minus");
int two = SS.plus(1,1,58qq);
int ten = §S.minus(12,2,8qq);

For large programs this style of inter-task communication promises not only increased clarity;
but also increased efficiency. The message queue interaction may, where necessary, be tran-
sparently replaced by a specially tailored inter-task communication facility.

11 Histograms and Random Numbers

To ease data gathering class histogram is provided.

struct histogram {
int 1, r, nbin;
int+ hj
long sum;
long sgsum;
void histogram(int=16, int=0, int=16);
void add(int);
void print():
I
A histogram consists of nbin bins h[0] ... h[nbin-1] covering a range [1:r] of integers.
The function add() adds one to the correct bin for its integer argument. The sum of the integers
added is maintained in sum, and the sum of their squares is maintained in sqsum. If an argument
to add () is outside the range [1:r] the range is adapted by either decreasing 1 or increasing r.
The number of bins remains constant so the size of the range covered by a bin is doubled each
time the size of the range [1:r] is. The print() function prints out the numbers of entries for
each non-empty bin.
In most simulations some form of random number generation is needed. The generators pro-
vided here are intended to help the developer of a simulation to get started and to provide a para-
digm for generators of more suitable distributions.

class randint {
/4 uniform distribution of positive integers and floats =/

public:
void seed(long);
randint(long 8 =0) { seed(s); };
int draw();
£float fdraw();
};
The following program shows the use of class randint. The ints returned by draw() are uni-
formly distributed in the interval [0:largest_positive_int[. The floats returned by
fdraw( ) are uniformly distributed in the interval [0:1[.

main()

{
randint ir;

for (register i=0; 1<100; i++)
printf("iaXa £=%£f ", ir.draw(), ir.fdraw());
}

Each object of class randint provides an independent sequence of random numbers. The
seed () function can be used to reinitialize a generator. The draw() function uses the same algo-
rithm as the C library rand()®. Using class randint, generators for other distributions
are easily programmed. Note that erand.draw() calls log() from the math library, so a pro-
gram using it must be loaded with -1m.
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struct urand : public randint {
/% uniform distribution in the interval [low:high] «/
int low, high;
urand(int 11, int hh) { lows=ll; highshh; };
int draw();
13

struct erand : public randint {
/% exponential distribution with mean "mean” «/
int mean;
erand(int m) { mean=m; };
int draw();
};

12 Implementation Details

The followmg sections contain many mplcmmmnon-dependcm details. The mplemmmnon
described is the version for a VAX nmmng UNIX’. Implementation-dependent information is
unfortunately often necessary to allow tuning and ease debugging.

13 Task Stack Allocation

The two arguments mode and stacksize allow the user to guide the system’s handling of the
task. Their exact interpretation is implementation dependent. Users who are not interested in
implementation details and/or want a more portable program should set them both to zero. The
system will then choose (hopefully reasonable) implementation-dependent default values.

The stacksize argument indicates the maximum amount of stack storage that the task is
allowed to use. Using more is an error. It will be expressed in a unit of store suitable for stack
allocation on the host system. The stack is the one which is supported by the standard compiler
and operating system.

The mode provides additional information:The value SHARED indicates that the stack space
should be taken from the stack space of the parent task, that is the task which created the new
task. Where SHARED stacks are used the active part of the stack is copied to a save area when a
task is suspended, and copied back when it is resumed. Since stack locations are not dedicated to a
single task pointers to local variables should not be passed to other tasks. The time needed to
suspend and resume a task with SHARED stack is approximately proportional to the amount of
stack space actually used at the time of suspension.

If, on the other hand mode is DEDICATED then a new and separate stack area is allocated,
and no copying of stack space will occur.

14 Scheduling

Functions of a system class, known as the scheduler, are invoked as the result of any function
of class task which causes the suspension of a running task, and may be invoked by any function
from the standard classes described here. The scheduler selects the next task to run. When the
scheduler finds no more tasks to run it examines the pointer variable exit_£ct, and if this is
non-zero the scheduler will call the function denoted by it.

Whenever clock is advanced the scheduler examines the pointer variable clock_task. If
this denotes a task, then that task will be resumed before any other task. The clock_task must
be IDLE when resumed by the scheduler. The class task function sleep() is useful to ensure
this.
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15 Debugging and Tuning Aids

The task system has been designed under the assumption that a typical use of tasks may involve
hundreds of tasks and need tuning to achieve an acceptable time-space tradeoff. The task of debug-
ging such a system can safely be assumed to be non-trivial.

Classes were used in the implementation of the task system largely because they allow the scope
of data and functions to be explicitly restricted to the object to which they belong. This allows
better type checking of a multi-threaded program than could be achieved by a function-based
implementation. The classes which constitute the task system were designed to allow quite strong
type checking of programs using them.

A number of run time errors are detected by the task system. For example it is illegal to
delete a queue on which a task is waiting. When such a run time error is detected the task sys-
tem function task_error is called with the number of the error and the this pointer of the
object which caused the error as arguments. Appendix B is a list of run time errors.
Task_exrror () will in turn examine the pointer error_£ct, and if this is non-zero call the func-
tion denoted by it with a copy of its own arguments. Otherwise task_error() will call the sys-
tem function exit () with the error number as argument.

When returning from task_error() after executing an error_fct which returned rather
than using exit() the task system will re-try the operation which caused the error (provided that
error_£ct could have affected the condition which caused the error). For example, a put() to
a ghead will be re-tried because the user’s error_£ct might have either caused the get () func-
tion to be used on the gueue, or used chmax() to allow more objects to be inserted into that
queue. Note that allocation operations using the new operator which failed due to lack of free
store will be re-tried because some kind of garbage collection may have been implemented in
error_£ct by the user.

Beware of infinite loops.

All task system classes have a function print() which can be used to print the contents of
their objects on stdout. A print() function takes an int argument indicating the amount of
information to be printed. Print(0) gives the minimum amount of information,
print(VERBOSE) rather more, and print (CHAIN) will call print() for objects on lists associ-
ated with the object with its own arguments. The print() argument constants can be combined
by the or operator. For example

thistask->print( (VERBOSE);
run_chain->print (VERBOSE | CHAIN);

will verbosely describe every non-TERMINATED timer and every RUNNING task. For tasks
information about the run time stack is printed by print(STACK). If the function hwm() has
been called print (STACK) will also give an estimate of the maximum amount of stack space ever
used by the task, the stack’s “high water mark”. For tasks that share a stack, the high water mark
printed will be the high water mark of most greedy task. For example, information describing
stack usage for all tasks can be printed by:

task_chain->print (STACK!CHAIN);

The output of the print() functions is implementation-dependent and hopefully self-
explanatory.

16 Overheads and Performance
The store used for representing a class object in addition to the user specified data is:

cbject 3 words

timer 5 words

task 16 words + stacksize

queune 10 words (including the ghead and the qtail)

The time needed to execute some of the task system functions are approximately:
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procedure call + return 1 unit

task suspend + resume 9 units (using result())
put 2 units

get 2 units

walt, waitvec, or waitlist 3 units

The last four actions can all cause a task to be suspended. When this happens add 6 units of time.
The task system uses about 8K bytes of store for program and data.
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19 Appendix A: Objects

The task system as described above is implemented using a lower level of abstraction based on
the direct use of the class object. Class object can also be used as a base for other (user
defined) abstractions, but beware, it is an implementation tool that is not intended to be used
directly.

Class object is a base class for all classes in the task system and also the most basic facility
for inter-task communication. The declaration of class object looks like this:

class object {
olinks o_link;
public:
object(int =0);
~object();
short o.type;
objects o_next;

void rememberx (tasks);
voia forget (tasks+);
void alert();

void print(int);
b
The task system implements objects of type TASK, QHEAD, QTAIL, and TIMER.
A task can be added to the set of tasks “‘remembered” by an object by executing remember ()
and a task can be removed from this set by executing forget(). Executing alert() has the

- effect of transferring all IDLE tasks remembered by the object to the RUNNING state. A task

can be “remembered” by several objects or several times by the same object without any bad
effects. Forget() will insure that its argument is not ‘‘remembered” any more, and it causes no
bad effects when used for an object that does not ‘‘remember” its argument task. No record is
kept of how many alert() operations have been executed on an object. Alert() does not cause
an object t0 forget() tasks. Executing a remember() does not suspend a task. Applying
alert() to an object that does not remember any tasks is legal, but has no effect. Caveat emp-
tor!

The class object functions remember(), forget(), and alert() provide a simple, effi-
cient, but unstructured and therefore error-prone, communication mechanism.

The declarations for the task system classes can be found in <task.h>.



