N

TN

,/,_\\‘

Complex Arithmetic in C+ +

Leonie V. Rose
Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This memo describes a data type complex providing the basic facilities for
using complex arithmetic in C++. The usual arithmetic operators can be used on
complex numbers and a library of standard complex mathematical functions is pro-
vided. For example:

#include <complex.h>

main(){
complex xx;
complex yy = complex(1,2.718);
xx = log(yy/3);
- cout<<1+xx;
}

initializes yy as a complex number of the form (real+imag#i), evaluates the
expressions and prints the result: (0.706107,1.10715).

The data type complex is implemented as a class using the data abstraction
facilities in C++'. The arithmetic operators + - » /, the assignment operators =
+= -= #= /=, and the comparison operators == != are provided for complex
numbers. So are the trigonometric and mathematical functions: sin(), cos(),
cosh(), sinh(), sqrt(), log(), exp(), coni(), arg(), abs(), norm(),
pow(). Expressions such as (xx+1)#*log(yyslog(3.2)) that involves a mix-
ture of real and complex numbers are handled correctly. The simplest complex
operations, for example + and +=, are implemented without function call over-
head.

[1] Bjarne Stroustrup: “The C+ + Programming Language - Reference Manual™ In this volume.

7

Introduction

The C++ language does not have a built-in data type for complex numbers, but it does provide
language facilities for defining new data types (see also references 2 and 3). The type complex
was designed as a useful demonstration of the power of these facilities.

There are three plausible ways to support complex numbers in C+ +. First, the type complex
could be directly supported by the compiler in the same way as the types int and £loat are.
Alternatively, a preprocessor could be written to translate all use of complex numbers into stan-
dard C++. A third approach was used to implement type complex; it was specified as a user-
defined type. This demonstrates that one can achieve the elegance and most of the efficiency of a
built in data type without modifying the compiler. It is even much easier to implement than the
pre-processor approach, which is likely to provide an inferior user interface.

This facility for complex arithmetic provides the arithmetic operators + / « -, the assignment
operators = += —= &= /=, and the comparison operators == = for complex numbers. Input and
output can be done using the operators << (‘‘put to”) and >> (‘“get from”). The initialization
functions and operator >> accept a Cartesian representation of a complex. The functions real()
and imag() return the real and imaginary part of a complex, respectively, and operator <<
prints a complex as (real,imaginary). The internal representation of a complex, is, how-
ever, inaccessible and in principle unknown to a user. Polar coordinates can also be used. The
function polar () creates a complex given its polar representation, and abs() and arg() return
the polar magnitude and angle, respectively, of a complex. The function norm() returns the
square of the magnitude of a complex. The following complex functions are also provided:
sqrt(), exp(), log(), sin(), cos(), sinh(), cosh(), pow(), conj(). The declaration
of complex and the declarations of the complex functions can be found in Appendix A. A com-
plete program using complex numbers can be found in Appendix B.

Complex Variables and Data Initialization

A program using complex arithmetic will contain declarations of complex variables. For exam-
ple:

complex zz = complex(3,-5);

will declare zz to be complex and initialize it with a pair of values. The first value of the pair is
taken as the real part of the Cartesian representation of a complex number and the second as the
imaginary part. The function complex() constructs a complex value given suitable argumentst.
It is responsible for initializing complex variables, and will convert the arguments to the proper
type (double). Such initializations may be written more compactly. For example:

complex 22z(3,-5);

complex c_name(-3.9,7);

complex rpr(SQRT._.2,root3);

A complex variable can be initialized to a real value by using the constructor with only one
argument. For example:

complex ra = complex(1);

will set up ra as a complex variable initialized to (1,0). Alternatively the initialization to a real
value can also be written without explicit use of the constructor:

complex rb = 1233

The integer value will be converted to the equivalent complex value exactly as if the constructor
complex(123) had been used explicitly. However, no conversion of a complex into a double
is defined, so ’

[2] Bjarne Stroustrup: “Data Abstraction in C+ +" In this volume.
[3] Bjarne Stroustrup: “Operator Overloading in C++"* In this volume.
+ Such a function is called a constructor. A constructor for a type always has the same name as the type itself.

7N

double dd = complex(1,0);

is illegal and will cause a compile time error.
If there is no initialization in the declaration of a complex variable, then the variable is initial-
ized to (0,0). For example:

complex orig;
is equivalent to the declaration:
complex orig = complex(0,0);
Naturally a complex variable can also be initialized by a complex expression. For example:

complex cx(-0.5000000e+02,0.8660254e+02);
complex cy = cx+log(cx);

It is also possible to declare arrays of complex numbers. For example:
complex carray[30];
sets up an array of 30 complex numbers, all initialized to (0,0). Using the above declarations:
complex carr[] = { cx, cy, carray[2], complex(1.1,2.2) };

sets up a complex array carr([] of four complex elements and initializes it with the members of
the list. However, a struct style initialization cannot be used. For example:

complex cwrong[] = (1.5, 3.3, 4.2, 4};

_ is illegal, because it makes unwarranted assumptions about the representation of complex numbers.

Input and Output

Simple input and output can be done using the operators >> (*“‘get from’) and << (“put t0”) .
They are declared like this using the facility for overloading operators:

ostreaml operator<<{ostreamf, complex);
istream& operator>>{istream&, complexi);

When zz is a complex variable cin>>zz reads a pair of numbers from the (standard) input
stream cin into zz. The first number of the pair is interpreted as the real part of the Cartesian
representation of a complex number and the second as the imaginary part. The expression
cout<<zz writes zz to the (standard) output stream cout. For example:

vold copy(istreamd from, ostreami to)
{

complex 2z}
while (from>>2zz) to<<zz;

}

reads a stream of complex numbers like (3.400000,5.000000) and writes them like (3.4,5).
The parentheses and comma are mandatory delimiters for input, while white space is optional. A
single real number, for example 10e~7 or (123), will be interpreted as a complex with 0 as the
imaginary part by operator >>.

A user who does not like the standard implementation of << and >> can provide alternate ver-
sions.

Cartesian and Polar Coordinates

The functions real() and imag() return the real and imaginary parts of a complex number,
respectively. This can, for example, be used to create differently formatted output of a complex:

complex cc = complex(3.4,5);
cout<<real(cc)<<"+"<<imag(cec)"si";

will print 3.4+5#1.

7N

.

-4-

The function poiar() creates a complex given a pair of polar coordinates (magnitude,
angle). The functions arg() and abs() both take a complex argument and return the angle and
magnitude (modulus), respectively. For example:

complex cc = polar(SQRT_2,PI/4); /+ also known as complex(1,1) #/
double magn = abs(cc); /% magn = sqrt(2) =/
double angl = arg(cc); /% angl = PI/4 «/

cout<<" (m="<<magn<<", a="<<angl<<")";

If input and output functions for the polar representation of complex numbers are needed they
can easily be written by the user.

Arithmetic operators

The basic arithmetic operators + - (unary and binary) / », the assignment operators = += -=
»= /m, as well as the equality operators == != can be used for complex numbers. The operators
have their conventional precedences. For example: a=b#c+d for complex variables a, b, ¢, and d
is equivalent to as(b*c)+d. There are no operators for exponentiation and conjugation; instead
the functions pow() and conj() are provided. The operators += -= #= /= do not produce a
value that can be used in an expression; thus the following examples will cause compile time
eITOors:

complex a, bj;

1f ((a+=2)==0) { ...}
b = a #= b;

Mixed Mode Arithmetic

Mixed mode expressions are handled correctly. Real values will be converted to complex where
necessary. For example:

complex xx(3.5,4.0);
complex yy = log(yy) + log(3.2);

This expression involves a mixture of real values: log{3.2), and complex values: log(yy) and
the sum. Another example of mixing real and complex, xx=1 is equivalent to xx=complex(1)
which in turn is equivalent to xx=complex(1,0). The interpretation of the expression
(xx+1)%yy*3.2is (({xx+complex(1))+yy)*complex(3.2))

Mathematical Functions

A library of complex mathematical functions is provided. A complex function typically has a
counterpart of the same name in the standard mathematical library. In this case the function name
will be overloaded. That is, when called, the function to be invoked will be chosen based on the
argument type. For example, log(1) will invoke the real log(), and log(complex(1)) wil
invoke the complex log(). In each case the integer 1 is converted to the real value 1.0.

These functions will produce a result for every possible argument. I it is not possible to pro-
duce a mathematically acceptable result, the function complex_erroxr() will be called and some
suitable value returned. In particular, the functions try to avoid actual overflow, calling
complex_error() with an overflow message instead. The user can supply complex_error().
Otherwise a function that simply sets the integer errno is used. See appendix C for details.

complex conj(complex);
Conj{zz) returns the complex conjugate of zz.
double norm(complex);

Norm(zz) returns the square of the magnitude of zz. It is faster than abs(zz), but more likely
to cause an overflow error. It is intented for comparisons of magnitudes.

overload pow;

double pow(double, double);
complex pow(double, complex);
complex pow{complex, int);
complex pow(complex, double);
complex pow(complex, complex);

Pow(aa,bb) raises aa to the power of bb. For example, to calculate (1-i)«#4:
cout<<pow(complex(1,-1), 4);
The output is (-4,0).

overload log;
double log(double);
complex log(complex);

Log(zz) computes the natural logarithm of zz. Log(0) causes an error, and a huge value is
returned.

overload exp;
double exp(double);
complex exp(complex);

Exp(zz) computes es#zz, e being 2.718281828...

overload sqrt;
double sqrt(double);
complex sqrt(complex);

sqrt(zz) calculates the square root of zz. The trigonbmeu-ic functions available are:

overload 8in;
double sin(double);
complex sin(complex);

overload cos;
double cos(double);
complex cos(complex);

Hyperbolic functions are also available:

overload sinh;
double sinh(double);
complex sinh(complex);

overload cosh;
double cosh(double);
complex cosh{complex);

Other trigonometric and hyperbolic functions, for example tan() and tanh(), can be written
by the user using overloaded function names.

Efficiency

C+ +’s facility for overloading function names allows complex to handle overloaded function
calls in an efficient manner. If a function name is declared to be overloaded, and that name is
invoked in a function call, then the declaration list for that function is scanned in order, and the
first occurrence of the appropriate function with matching arguments will be invoked. For further
detail see reference 4. For example, consider the exponential function:

overload exp;
double exp(double);
complex exp(complex);

When' called with a double argument the first, and in this case most efficient, exp() will be

,
R

P

-6-

invoked. If a complex result is needed, the double result is then implicitly converted using the
appropriate constructor. For example:

complex foo = exp(3.5);
is evaluated as
complex foo = complex(exp(3.5))i
and not
complex foo = exp(complex(3.5));‘
Constructors can also be used explicitly. For example:

complex add(complex a1, complex a2) /# silly way of doing a1+a2 «/
{

return complex(real(a)+real(a2), imag(a1)+imag(a2));
}

Inline functions are used to avoid function call overhead for the simplest operations, for exam-
ple, conj(), +, +=, and the constructors (See appendix A).
Acknowledgments

Phil Gillis supplied us with the complex functions used for the exp package. Most of the func-
tions presented here are modified versions of those. Stu Feldman provided us with valuable advice
and some functions. Doug Mcllroy’s constructive comments led to a major re-write. Eric Grosse
suggested the FFT function in Appendix B as an example.

a

&

Appendix A: Type complex

This is the definition of type complex. It can be included as <complex.h>. A friend
declaration specifies that a function may access the internal representation of a complex. The file
stream.h is included to allow declaration of the stream i/o operators << and >> for complex
numbers.

#include <stream.h>
#include <errno.h»>

overload cos;
overload cosh;
overload exp;
overload log;
overload pow;
overload sin;
overload sinh;
overload sqrt;
overload abs;

#include <math.h>

class complex {
double re, im;
public:
complex(double r = 0, double i = 0) { re=r; imsi; }

friend double abs(complex);

friend double norm(complex);

friend double arg(complex);

friend complex conj(complex);

friend complex cos(complex);

friend complex cosh(complex);

friend complex exp(complex);

friend double imag(complex);

friend complex log(complex);

friend complex pow(double, complex);
friend complex pow(complex, int);
friend complex pow(complex, double);
friend complex pow(complex, complex);
friend complex polar(double, double = 0);
friend double xreal(complex);

friend complex sin(complex);

friend complex sinh{complex);

friend complex sqrt(complex):

friend complex operator+(complex, complex);

friend complex operator-(complex);

friend complex operator-(complex, complex);

friend complex operators(complex, complex);

friend complex operator/(complex, complex);

friend int operatorss=(complex, complex);
friend int operator!s(complex, complex);

vold operator+s{complex);
vold operator-={complex);
void operators#s(complex);
void operator/=(complex);

O

-8-

ostreams operaior<<(ostxeam&. complex);
istreams operator>>(istreami, complexi);

inline complex operator+{complex a1, complex a2)

{
}

inline
{

}

inline
{

}

inline
{

}

inline

inline
{

return

complex

return

complex

return

comﬁlex

return

complex{a1.re+a2.rxe, at.im+a2.im);

operator-(complex at,complex a2)

complex(a1.re-a2.re, al.im-a2.im);

operator-(complex a)

complex(-a.re, a.im);

conj(complex a)

complex{a.re, -a.im);

int operator==(complex a, complex b)

return

(a.xe==b,re && a.im==b.im);

int operatoris{complex a, complex b)

return

(a.rel=b.re !! a.im!=b.im);

void complex.operator+=(complex a)

re += a.re;
im += a.im;

void complex.operator-=(complex a)

re -= a.re;
im -= a.im;

Appendix B: A FFT Function

Transcribed from Fortran as presented in “FFT as Nested Muluphcanon with a Twist”” by Carl
de Boor in SIAM Sci. Stat. Comput. Vol 1 No 1, March 1980.

#include <complex.h>

N
!

void fftstp(complexs, int, int, int, complexs);

const NEXTMX = 12;
int prime[NEXTMX] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 };

complexs fft(complex #z1, complex #z2, int n, int inzee)

/%
Construct the discrete Fourler transform of z1 (or z2) in the
Cooley-Tukey way, but with a twist.

5

zi[before], z2[before].
inzee==1 means input in z1; inzee==2 means input in 22

int before = n;
int after = 1;
int next = 03
int now;

do {
int np = prime[next];
if ((before/np)snp < before) {
1f (++next < NEXTMX) continue;
now = before;
before = 1;
}
else {
now = np;
before /= np;
}
if (inzee == 1)
fftatp(z1, after, now, before, 2z2);
else ‘
fftetp(z2, after, now, before, z1);
inzee = 3 - inzee;
after »= now;
} while (1 < before)

return (inzee==1) ? z1 : 22;

7N

-10 -

vold fftstp(complexs zin, int after, int now, int before, complek* zout)
/%

zin(after,before,now)

zout(after,now,before)

there are ample scope for optimization

%/
t
double angle = PI2/(nowsafter);
complex omega = complex(cos(angle), =-sin(angle));
complex arg = 1;
int b
for (3=0; J<now; J++) {
int iaj
for (la=0; lac<after; ia++) {
int 1b;
for (ib=0; lb<before; ibe++) {
int in;
/+ value = zin(ia,ib,now) */
complex value = zin[la + ib#after + (now-1)sbeforesafter];
for (in=now-2; O<s=in; in--) {
/% value = valuerarg + zin{ia,ib,in) »/
value #= arg;
value += zin[ia + ibsafter + insbeforesafter];
}
/% zout(ia,j,ib) = value »/
. zout[ia + jeafter + ibsnowsafter] = value;
}
arg s#= omega;
}
}
}

-11 -

The main program below calls ££+() with a sine curve as argument. The complete unedited

_output is presented on the next page. All but two of the numbers ought to have been zero. The

very small numbers shows the roundoff errors. Since double-precision floating-point arithmetic
was used these errors are smaller than the equivalent errors obtained using the published Fortran
version.

#include <complex.h>

main()
/®
test ££t() with a sine curve
L 74
{
int 1, n=26;
complex «z1;
complex #22;
complex xzout;
extern complexs f£ft(complex+, complexs, int, int);

z1 = new complex[n];
22 = new complex[n];

cout<<"input: \n";

for (1 = 0; 1 < n ji+4) {
z1[4i] = sin(i«PI2/n);
cout<<z1{i]l<<"\n";

}

errno = 03
zout = f££ft(z1, z2, n, 1);
1f (errno) cout<<"Cerror "<<errno<<" occurred\n";

cout<<"output: \n";
for (1 = 0; 1 <n ;i+s)
cout<<ezout{i]<<"\n";

7N

4

-12-

input:

(0, 0)

(0.239316, 0)

(0.464723, 0)

(0.663123, D)

(0.822984, 0)

(0.935016, 0)

(0.992709, 0)

(0.992709, 0)

(0.935016, 0)

(0.822984, 0)

(0.663123, 0)

(0.464723, 0)

(0.239316, 0)

(6.35984e-17, 0)
(-0.239316, 0)

(-0.464723, 0)

(-0.663123, 0)

(-0.822984, 0)

(-0.935016, 0)

(-0.992709, 0)

(~0.992709, 0)

(-0.935016, 0)

(-0.822984, 0)

(-0.663123, 0)

(-0.464723, 0)

{(-0.239316, 0)

output:

(9.56401e-17, 0)
(-3.76665e-16, -13)
(9.39828e-17, 1.11261e~-17)
(6.42219e-16, -4.20613e-17)
(7.37279e-17, 2.33319e-16)
{2.85084e-16, 2.87918e-16)
(4.03134e~17, 5.1789e-17)
(2.60865e-16, 6.78794e-17)
(-5.71667e~17, -3.86348e-17)
(2.76315e-16, 2.36902e-17)
(~-6.43755e-17, -3.80255e-17)
(1.95031e-16, 9.77858e-17)
(1.49087e-16, -7.57345e-17)
(3.17224e-16, 1.64294e-17)
(1.49087e~16, 7.57345e-17)
(2.7218e-16, -4.03777e-17)
(-6.43755e~17, 3.80255e-17)
(4.93805e~-16, 3.36874e-17)
(-5.71667e-17, 3.86348e-17)
(7.86047e-16, -4.11068e-18)
(4.03134e-17, -5.1789e-17)
(1.60788e-15, -1.06841e-16)
(7.37279e~-17, -2.33319e-16)
(5.45186e-15, 2.42719e-16)
(9.39828e~-17, -1.11261e~17)
(-1.12013e-14, 13)

-13.-

Appendix C: Errors and Error Handling
These are the declarations used by the error handling:

int errno;

int complex_error(int, double);

The user can supply complex_error(). Otherwise a function that simply sets exrno is used.

The exceptions generated are:

cosh(zz):
C_COSH_RE
C_COSH_IM

exp(zz):
C_EXP_RE_POS
C_EXP_RE_NEG
C_EXP.IM

log(zz):
C_LOG_0

sinh(zz):
C_SINH_RE
C_SINH.IM

lzz.1¢| too large. Value with correct angle and huge magnitude returned.

fzz.im| too large. Complex(0,0) returned.

2z.im too small. Value with correct angle and huge magnitude returned.

zz.re too small. Complex(0,0) returned.
fzz.im| too large. Complex(0,0) returned.

zz==(0. Value with a large real part and zero imaginary part returned.

fzz.re| too large. Value with correct angle and huge magnitude returned.

lzz.im| too large. Complex(0,0) returned.

