
Associative arrays in C + +

Andrew Koenig

AT&T Bell Laboratories
184 Liberty Corner Road; Warren NJ 07060; ark@europa.att.com

ABSTRACT

An associative array is a one-dimensional array of unbounded size whose subscripts can be non-integral
types such as character strings. Traditionally associated with dynamically typed languages such as AWK
and SNOBOL4, associative arrays have applications ranging from compiler symbol tables to databases
and commercial data processing.

This paper describes a family of C + + class definitions for associative arrays, including programming
examples, application suggestions, and notes on performance. It concludes with a complete
programming example which serves the same purpose as a well-known system command but is much
smaller and simpler.

1. Introduction

An associative array is a data structure that acts like a one-dimensional array of unbounded size whose
subscripts are not restricted to integral types: it associates values of one type with values of another type
(the two types may be the same). Such data structures are common in AWK[1] and SNOBOL4[2], but
unusual in languages such as C[3], which have traditionally concentrated on lower-level data structures.

Suppose that m is an associative array, or map , whose subscripts, or keys, are of type String and
whose elements, or values, are integers. Suppose further that s and t are String variables. Then
m[s] is an int called the value associated with s . In this example m[s] is an lvalue: it may be used
on either side of an assignment. If s and t are equal, m[s] and m[t] are the same int object. If s
and t are unequal, m[s] and m[t] are different objects.

This is exactly analogous to the way ordinary arrays work in most languages, except that it is much
harder to pre-allocate enough memory in advance to contain all relevant elements. Thus some kind of
dynamic memory scheme is necessary to allow a map to accommodate all its elements.

C data structures do not expand automatically, and no such expanding structures are built into C + +
either. But C + +[4] is extensible: although it does little to provide high-level data structures by itself, it
makes it possible to implement such structures in ways that are easy to use.

1.1 An example

The following C + + program uses associative arrays to count how many times each distinct word occurs
in its input:

1

#include <String.h>
#include <Map.h>

Mapdeclare(String,int)
Mapimplement(String,int)

main()
{

Map(String,int) count;
String word;

while (cin >> word)
count[word]++;

Mapiter(String,int) p (count);
while (++p)

cout << dec(p.value(),4) << " " << p.key() << "\n";
}

The #include statements bring in declarations for a locally-written string package[5] and the author’s
associative array package, respectively. The string package requests <stream.h> so we do not have
to name it explicitly.

Mapdeclare(String,int) defines two new types: Map(String,int) to represent an array of
integers whose keys are of type String and Mapiter(String,int) to represent an element of
such an array.

The first declaration in the main program thus defines count to be of type Map(String,int) .

The program does most of its work in the first loop. It reads each word from its input into word and
increments the corresponding element of count . Trying to increment a non-existent element
automatically creates the element first and gives it an initial value of 0 . This value is almost
immediately incremented to 1 .

When the input is exhausted, the first loop finishes. All the information we need is now in count; we
need merely print it. To do this, we use a map iterator .

A map iterator refers to a particular map (associative array) and usually to a particular element of that
map. The declaration

Mapiter(String,int) p (count);

defines p to be an iterator that will refer to an element of count . Since we did not specify a particular
element, p is initially vacuous: it does not refer to any element.

Incrementing a vacuous map iterator causes it to refer to the first element of the map; testing it in a
while statement yields true as long as the iterator is not vacuous. Thus the final loop steps p through
all the elements of count .

Every map element has two parts: a key and a value. In the final statement we print p.value() and
p.key() , using the dec function to get the output to line up neatly.

Here is the result, collected into two columns, of giving a copy of this program as input to itself:

2

2 " 1 "\n";
2 #include 1 (++p)
1 (cin 1 (count);
4 << 1 <Map.h>
1 <String.h> 1 >>
1 Map(String,int) 1 Mapdeclare(String,int)
1 Mapimplement(String,int) 1 Mapiter(String,int)
1 String 1 count;
1 count[word]++; 1 cout
1 dec(p.value(),4) 1 main()
1 p 1 p.key()
2 while 1 word)
1 word; 1 {
1 }

The program is obviously naive about the role of punctuation, but the output is otherwise about what
one would expect. Notice especially that the output is sorted by key. The ordering, of course, depends
on the particular C + + implementation’s collating sequence for character strings. In ASCII, special
characters come before letters and upper-case letters come before lower-case letters. Thus while
appears before word and String comes before count .

2. Defining Map classes

Every file in every program that uses a map class must include <Map.h> . This header file defines four
macros: Mapdeclare , Mapimplement , Map , and Mapiter . Each of these macros takes two type
names as arguments representing the key and value types for a particular map class. Thus we use
Map(int,double) as the class name of a map with int keys and double values,
Map(String,String) as the class name of a map with String keys and String values, and so
on.

2.1 Key and value types

There are several restrictions on the key and value types:

• Each type name must be expressed as a single identifier. Thus one cannot refer to
Map(char*,int): char* is not an identifier. Use a typedef declaration to circumvent this
restriction.

• Each type must have value semantics . A map stores copies of the values given it, so it must be
possible to copy such values. Moreover, a value stored in a map must persist, and be valid, as long
as the map itself exists. Thus even if Map(char*,int) were syntactically possible, it would be a
bad idea unless extreme care were taken to preserve the memory referenced by each pointer stored in
the map. The String class does have value semantics and is therefore ideal for use in maps.
Other types with value semantics include int , char , long , and double .

There is no way for the map package to check the semantics of its underlying types. Hence trying
to define a map on types of inappropriate semantics usually leads to disaster.

• Neither the key nor the value type may require arguments in its constructor, although either type
may permit them. Equivalently, it must be possible to declare an object of each type without
initializing it.

• The key type should not contain any underscores in its name. Failure to observe this restriction
might cause two types that are conceptually different to generate the same internal name. This is
consequence of implementation details that are beyond the scope of this paper.

In addition to these restrictions, it must be possible to compare keys for sorting purposes. In other
words, if k1 and k2 are two keys, k1<k2 must be well-defined. Moreover, when < is applied to two
keys, it must be a strong total order relation. That is, it must have the following properties:

3

• k1<k1 must never hold for any key k1 .

• For any two keys k1 and k2 , either k1<k2 , k2<k1 , or k1 and k2 are equal. No more than one
of these conditions may hold for any particular values of k1 and k2 .

• For any three keys k1 , k2 , and k3 , if k1<k2 and k2<k3 both hold then k1<k3 must also hold.

Notice that we do not require that k1==k2 or k1>k2 be defined because we can infer k1>k2 from
k2<k1 and k1==k2 from !(k1<k2||k2<k1) .

The integral types (int, short , char , and long) and the String class all have an appropriate
definition for < . The floating-point types are a different matter: some machines support a special
floating-point ‘‘not-a-number’’ value (NaN) that is neither less than, greater than, or equal to anything
else. Using floating-point keys on such a machine invites disaster if a key is ever NaN. Floating-point
values cause no trouble.

2.2 Mapdeclare and Mapimplement

If K is the key type and V is the value type, saying

Mapdeclare(K,V)

declares the classes Map(K,V) and Mapiter(K,V) . Thus the user must use Mapdeclare in every
file in the program that uses either of these classes.

However, Mapdeclare includes only the declarations of these classes. It does not include the
definitions of the classes’ member functions: those appear in Mapimplement . Thus every program
that uses Map(K,V) or Mapiter(K,V) anywhere must use Mapimplement(K,V) in exactly one
file of the program. This file must also use Mapdeclare(K,V) .

Of course, if K or V is itself a class, the class definition must appear before the use of Mapdeclare .

For instance, we might split our sample program into two files. One file uses Map(String,int) and
must therefore declare it:

#include <String.h>
#include <Map.h>

Mapdeclare(String,int)

main()
{

Map(String,int) count;
String word;

while (cin >> word)
count[word]++;

Mapiter(String,int) p (count);
while (++p)

cout << dec(p.value(),4) << " " << p.key() << "\n";
}

The other file defines the map class member functions:

#include <String.h>
#include <Map.h>

Mapdeclare(String,int)
Mapimplement(String,int)

These two files can be separately compiled and linked together with the same effect as the original

4

sample program. Doing this is only of pedagogical interest for a program this small, but is important
for larger programs.

In subsequent code fragments we will omit #include statements and uses of Mapdeclare and
Mapimplement .

2.3 Using a map

Indexing is the fundamental map operation: if m is of type Map(K,V) and x is of type K , then m[x] is
an lvalue of type V . Thus we store a value v in m[x] by writing

m[x] = v;

and retrieve it again by writing

v = m[x];

If we ask for the value of m[x] without ever having specified one, we get the default value of type V:
the value of an otherwise uninitialized static variable of type V . It is very important that this is the
value of a static variable in case V is a built-in type: the default value of an ordinary int variable is
undefined but static int variables are initialized to zero. Thus after executing:

Map(String,int) m;

m["Morristown"]++;

m has one element with key Morristown and value 1 .

Because evaluating m[k] creates an element of m if an appropriate element does not already exist, we
need a way to test whether an element exists without creating one. Thus every map has a member
function called element which returns an appropriate value:

if (m.element(k))
// m[k] exists

Thus if we did not wish to rely on default values for map elements, we could write:

if (m.element(word))
m[word]++;

else
m[word] = 1;

The number of elements in a map m is m.size() .

We can explicitly nominate a default value for map elements by passing that value to the map
constructor. For example:

Map(String,String) s ("(undefined)");

declares s to be a map in which keys and values are both of type String and in which element values
are initially (undefined) .

2.4 Copying a map

If m is a map,

Map(K,V) n = m;

will create a new map n whose elements are logical copies of the elements of m (that is, the result of
applying operator=). The default value for subsequently created elements of n will be the same as
for m . The same effect can be obtained by writing:

Map(K,V) n (m);

If m and n are maps with the same key and value types, then

5

m = n;

effectively discards all the elements of m and creates new elements that are logical copies of all the
elements of n . This does not change the default value for subsequently created elements of m; the
value, if any, given when m was created remains.

One consequence of this is that passing a map as a function argument copies all the elements of the
map. This preserves the normal call-by-value semantics of C + + but may have unexpected performance
consequences. Consider writing functions whose arguments are references to maps instead of maps
themselves.

3. Iterators

Every map class Map(K,V) has a companion map iterator class Mapiter(K,V) which is useful for
extracting elements from a map. A map iterator refers to a particular map and optionally to a particular
element of that map. For example:

Map(String,int) m;
Mapiter(String,int) mi (m);

These declarations create a map m and an iterator mi that can refer to an element of m . We did not
specify any element in this example, so mi doesn’t refer to one right now. Thus we call mi vacuous.

We can make mi identify the element of m with key k by saying

mi = m.element(k);

If m[k] exists, mi now identifies it; otherwise mi is vacuous.

Thus we see that element actually yields an iterator. We can tell whether an iterator is vacuous by
using it as the subject of a test:

if (mi)
// mi is not vacuous

Assigning a map to an iterator yields a vacuous iterator. Thus, after executing:

mi = m;

mi is a vacuous iterator referring to m .

Map elements are always kept sorted by key. Thus it makes sense to ask about the lowest and highest
keys. For a map m , m.first() is an iterator that refers to the first element (the element with the
lowest key) and m.last() is an iterator that refers to the last element (the element with the highest
key). If m is empty, both m.first() and m.last() are vacuous.

If mi refers to an element, ++mi makes mi refer to the element whose key immediately follows the
current one. Similarly --mi makes mi refer to the immediately preceding key.

If mi is vacuous, ++mi effectively assigns m.first() to mi and --mi effectively assigns
m.last() to mi . If mi refers to m.last() , ++mi makes mi vacuous, and if mi refers to
m.first() , --mi makes mi vacuous. Thus we can think of all the keys in a map as being circularly
connected, with a vacuous ‘‘key’’ marking a starting (and ending) point in the circle.

At this point we know at least two ways to refer to every element in a map:

for (Mapiter(K,V) mi = m.first(); mi; ++mi)
// do something with mi

or

for (Mapiter(K,V) mi = m; ++mi;)
// do something with mi

but we need a way to get at the key and value parts of the element referenced by mi . To this end, map

6

iterators have member functions called key and value . Thus we might write:

for (Mapiter(K,V) mi = m.first(); mi; ++mi) {
K k = mi.key();
V v = mi.value();
// do something

}

If mi is vacuous, mi.key() and mi.value() are copies of static variables of type K and V
respectively, to forestall core dumps and other disasters.

4. Performance

Associative arrays greatly simplify many programming tasks, but that is almost irrelevant if they are too
expensive to use. Thus, while a map will never be as fast as an ordinary array, we have gone to some
effort to ensure that the map classes perform reasonably well. In general, for a map with n elements,

• Searching for an element takes O(log n) time.

• Inserting a new element takes O(log n) time plus the time to call malloc once.1

• Incrementing or decrementing an iterator takes O(log n) time. Visiting every element of a map takes
O(n) time (not O(n log n)).

• Copying an entire map takes O(n log n) time.

These are worst-case times: there is no pathological input that might cause the performance to degrade
beyond these bounds.

A map takes a trivial amount of space for the map itself plus an additional overhead per element of
three pointers, one character, and whatever additional overhead malloc imposes. Note that maps only
require memory to be allocated for the elements actually stored.

What about absolute execution time?

As an example, we wrote a small program to generate 20,000 random integers and store them in a
conventional array and a map. On our system (A DEC MicroVAX II running the Ninth Edition of the
UNIX system), it takes 0.9 seconds to fill the conventional array and 8.8 seconds to fill the map,
including the time spent in the rand function. So in this application maps are about ten times slower
than conventional arrays.

But of course maps are not intended to replace conventional arrays where speed is all that matters –
they do other things as well. For instance, storing values in a map has the side effect of sorting them by
key. Thus using the random numbers as keys sorts them for free. Picking them out of the map again
takes 0.8 seconds. In other words, using a map to sort 20,000 random integers takes 9.6 seconds: 8.8
seconds to put them in and 0.8 to take them out again.

In contrast, using the qsort routine to sort the conventional array takes 17 seconds.

5. Suggested applications

Although a map is not a good replacement for a conventional array when time is critical, time is often
not critical. For example, we have seen many programs that use conventional arrays to build up an
array of arguments to hand to some system command or other utility routine. The usual approach is to
make the array some arbitrary size and then either not check for overflow (so that the program aborts

1. On some systems, malloc runs in time proportional to the number of blocks already allocated. We believe this could cause
performance problems for some applications on such systems. The next version of C + + provides a clean way to define special-
purpose new and delete operators for a particular class; we will consider that facility when it is widespread.

7

unpredictably when overflow occurs) or check for it and terminate the program explicitly.

A map can often be used in this context as if it were a conventional array of unbounded size. Even if
the utility being called demands a conventional array as its input, it is possible to use the size function
to allocate the right amount of memory at the last minute and then copy the elements. This approach
may waste some machine resources, but the waste is often negligible compared to the execution time of
the utility itself and carries a compensating gain in generality and robustness.

Maps are a good candidate for use in compiler symbol tables. In particular, it is unnecessary to sort
such a symbol table in order to print a cross-reference listing.

The value of a map element can itself be a map (use typedef to get around the single-identifier
restriction). If m is such a map, m[k1][k2] has the expected meaning: m[k1] is the map that is the
value of the element of m with key k1 , and m[k1][k2] is the value of the element of m[k1] with
key k2 .

6. Implementation notes and warnings

These classes are presently implemented as AVL trees. An AVL tree is a binary tree with the added
requirement that the heights of the two subtrees of each node may differ by no more than one[6].
Although an algorithm exists for efficient deletion from an AVL tree, it is quite a nuisance and we have
not implemented it in the current version.

We believe our implementation is reasonably robust. There are, however, a few places where a user
might get into trouble:

• If m is a map, referring to m[i] creates it if it did not already exist. It is therefore a bad idea,
though a tempting one, to check whether a map element exists by comparing its value to the default
value. Use the element function instead.

• A map iterator is conceptually a pointer. Like any pointer, an iterator invites the possibility of a
dangling reference if the lifetime of an iterator exceeds that of the associated map. For example:

Map(K,V)* p;
p = new Map(K,V);
Mapiter(K,V) mi (*p);
delete p;

Because it is impossible to create an iterator without making it refer to some map, it is somewhat
tricky to step into this particular trap. Nevertheless it is possible.

• Copying a map makes a logical copy of each element. If the map is large, this can take a long time.
Many functions that deal with maps can deal just as profitably with pointers or references to maps
instead.

• Data types used in maps should only be pointers if it is possible to ensure that those pointers refer to
memory at least as persistent as the maps themselves. Otherwise some map element will ultimately
contain a pointer to garbage, with chaos as the result.

7. Another example: topological sorting

We conclude with a non-trivial programming example that uses maps, strings, and lists. We will say
enough about strings and lists in passing to enable the reader to follow the exposition; construction of
appropriate class definitions is an interesting exercise for the reader.

7.1 The problem

Our input file consists of words separated by white space (spaces, tabs, newlines). Each word is
considered to represent some abstract object; the words are taken in pairs to assert that the first object of
each pair is ‘‘less than’’ the second. If both words in the pair are the same, that pair just says that the
particular word exists without saying anything about its ordering. The problem is to find a single linear
ordering that satisfies all the given constraints. This may be impossible because of a loop in the

8

ordering. In that case, the program should say so.

For example, the following input represents some constraints on clothing:

pants belt
left_sock left_shoe
right_sock right_shoe
shirt shirt
pants left_shoe
pants right_shoe

Here, we say that one article of clothing is ‘‘less than’’ another if it must be put on before the other.
Thus each sock must be put on before the corresponding shoe, it is difficult to put on pants over shoes,
one must put one’s pants on before one’s belt, and there is a shirt in there somewhere.2

One ordering that satisfies all these constraints is:

left_sock
pants
right_sock
shirt
belt
left_shoe
right_shoe

There are others, of course.

Topological sorting is often used to put modules into an appropriate order for load module archives in
the UNIX® system; there is therefore a topological sort utility program called tsort available as a
standard for comparison.

7.2 Implementation

We use an algorithm that is easy to understand and describe:[7] we read pairs of items, or tokens,
keeping for each token a count of its predecessors and a list of its successors. Tokens with no
predecessors can be written out immediately. When we write a token, we decrement the predecessor
count of all its successors; decrementing a count to zero means that token can then be written. If we
run out of tokens to write before we’ve dealt with every token, that means there is a loop somewhere.

Here are the details. First we bring in header files and say that we are going to want to use lists of
strings:

#include <String.h>
#include <list.h>
#include <Map.h>

listdeclare(String)
listimplement(String)

The list package works similarly to the map package: the listdeclare and listimplement
macros say that we are going to want to use lists of String objects.

Now we define a structure to represent the information we need to store about an object: a count of its
predecessors and a list of its successors:

2. The author does not ordinarily wear a tie.

9

struct token {
int predcnt;
String_list succ;

};

A String_list is a list of String objects, as defined by the listdeclare macro.3

Having defined a structure with the information we need, we can now define a map whose keys are
strings and whose values are tokens:

Mapdeclare(String,token)
Mapimplement(String,token)

We are ready to do some real work. The program first reads pairs of tokens. If both tokens in the pair
are identical, we just record that the token exists. Otherwise, we increment the predecessor count of the
second one and add the second to the successor list of the first. Here we use the put member function
of a list, which appends its argument to the end of the list.

Map(String,token) m;
String p, s;

while (cin >> p >> s) {
if (p == s)

(void) m[p];
else {

m[s].predcnt++;
m[p].succ.put(s);

}
}

We look at each token and make zeroes into a list of the names of the tokens with no predecessors:

String_list zeroes;

for (Mapiter(String,token) i = m.first(); i; ++i) {
if (i.value().predcnt == 0)

zeroes.put(i.key());
}

Next we print the tokens on the list. Each time we print a token, we decrement the predecessor count of
its successors. If a count reaches zero, we add that token to the list. Along the way, we count how
many tokens we print.

To do this, we use the getX function, which removes an element from the beginning of a list, places
the element in its argument (which is a String& in this case), and returns zero (false) or nonzero (true)
to reflect the success of the operation.

3. As written, this example requires a version of the C + + translator that is still experimental; that version defines assignment and
initialization of structures in terms of assignment and initialization of their elements, even if those elements have constructors.[8]

For present versions of C + +, we write it as follows:

struct token {
int predcnt;
String_list succ;
void operator= (token& t) { predcnt = t.predcnt; succ = t.succ; }
token (token& t): predcnt (t.predcnt), succ (t.succ) {}
token() { }

};

10

int n = 0;

while (zeroes.getX (p)) {
cout << p << "\n";
n++;
String_list& t = m[p].succ;
while (t.getX (s)) {

if (--m[s].predcnt == 0)
zeroes.put (s);

}
}

Finally, we check whether we have printed every token:

if (n != m.size())
cout << "the ordering contains a loop\n";

7.3 Performance

This straightforward program is about a quarter the size (in lines of source code) of tsort , so one
should not be surprised to find that it runs substantially more slowly.

In practice, however, this is not the case. For very small inputs, tsort is faster because String input
is quite slow in our present C + + implementation.4 However, for larger inputs, the logarithmic behavior of
maps wins over the quadratic behavior of the algorithm used in tsort .5

As an example, we used two sets of test data. Because topological sorting is often used on program
dependencies, we generated our test data from two actual load module libraries: the C library on our
system and the PORT library of mathematical software. Here are the results:

_ ___
C PORT_ ___

total relations 742 6,513
distinct tokens 248 1,505
tsort execution time 7.0 406.5
C + + program execution time 9.3 101.8
input overhead 4.9 39.5_ ___ ⎜⎜

⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

The first two lines in the table characterize the size of the problem in terms of the total number of
relations and the number of distinct tokens in the input data. The next two lines give the execution
time, in seconds, to process each set of data. Note that the C + + program is slightly slower on the
smaller sample and much faster on the larger sample.

The last line shows how much of the execution time of the C + + program can be attributed to input
overhead. This shows that if we could eliminate input overhead entirely, we could more than double the
speed of the C + + program (remove 4.9 out of 9.3 seconds) on the small sample and significantly reduce
it (remove 39.5 out of 101.8 seconds) on the large one. There are several ways to do this (aside from
the obvious one of waiting for the library to improve); it is left as an exercise for the reader.

8. Conclusion

We have described a C + + implementation of a high-level data structure. The availability of this structure
led us to demonstrate it by a simple solution to a well-known problem. Our solution turned out to be a

4. This problem is understood; current work aims to reduce the overhead.

5. To forestall the objection that it is unfair to compare a quadratic algorithm to one that is intrinsically faster, we note that (a) the
present implementation of tsort was considered ‘‘not worth improving’’ for years, and (b) when David Gay finally improved
it on the Ninth Edition system, his (very fast) improvement was about ten times the size of our example.

11

quarter the size of the ‘‘standard’’ one. Moreover, its performance on large input data was substantially
better as well.

REFERENCES

1. Aho, Kernighan, and Weinberger: The AWK Programming Language; Addison-Wesley, 1988.

2. Griswold, Poage, and Polonsky: The SNOBOL4 Programming Language; Prentice-Hall, 1971.

3. Kernighan and Ritchie: The C Programming Language; Prentice-Hall, 1978

4. Stroustrup: The C + + Programming Language; Addison-Wesley, 1986

5. J. E. Shopiro: Strings and Lists for C + + , unpublished internal memorandum

6. D. E. Knuth: The Art of Computer Programming, volume 3, section 6.2.3, page 451.

7. D. E. Knuth: The Art of Computer Programming; Volume 1, page 262

8. Stroustrup, The Evolution of C + +: 1985 to 1987; Proceedings of the USENIX C + + Workshop, Santa
Fe, New Mexico, 1987; pp. 1-21.

12

