
TEXAS INSTRUMENTS

C++ Object-Oriented Library
User’s Manual

MANUAL REVISION HISTORY

C++ Object-Oriented Library User’s Manual (2566801-0001)

Original Issue March 1990.

Copyright © 1990, 1991 Texas Instruments Incorporated

Permission is granted to any individual or institution to use, copy, modify, and
distribute this document, provided that this complete copyright and permission
notice is maintained, intact, in all copies and supporting documentation.

Texas Instruments Incorporated makes no representations about the suitability of
this document or the software described herein for any purpose. It is provided
”as is” without express or implied warranty.

Texas Instruments Incorporated
Information Technology Group

Austin, Texas

C++ OBJECT-ORIENTED LIBRARY
USER’S MANUAL

vCOOL User’s Manual

CONTENTS

Paragraph Title Page

About This Manual xi.

1 Overview of COOL
1.1 Introduction 1-1 .
1.2 Audience 1-1 .
1.3 Major Attributes 1-1 .
1.4 Macros 1-2 .
1.5 Parameterized Templates 1-2 .
1.6 Symbols and Packages 1-3 .
1.7 Polymorphic Management 1-3 .
1.8 Exception Handling 1-4 .
1.9 Classes 1-4 .

1.10 Class Hierarchy 1-7 .

2 String Classes
2.1 Introduction 2-1 .
2.2 Requirements 2-1 .
2.3 String Class 2-1 .
2.4 String Example 2-7 .
2.5 Auxiliary char* Functions 2-8 .
2.6 Regular Expression Class 2-10 .
2.7 Regular Expression Example 2-12 .
2.8 General String Class 2-13 .
2.9 General String Example 2-20 .

3 Number Classes
3.1 Introduction 3-1 .
3.2 Requirements 3-1 .
3.3 Random Class 3-1 .
3.4 Random Class Example 3-3 .
3.5 Complex Class 3-4 .
3.6 Complex Example 3-7 .
3.7 Rational Class 3-9 .
3.8 Rational Example 3-13 .
3.9 Bignum Class 3-14 .

3.10 Bignum Example 3-19 .
3.11 Range Class 3-20 .
3.12 Range Example 3-21 .

Contents

vi COOL User’s Manual

Paragraph Title Page

4 System Interface Classes
4.1 Introduction 4-1 .
4.2 Requirements 4-1 .
4.3 Date_Time Class 4-1 .
4.4 Time zone.h File 4-6 .
4.5 Country.h File 4-7 .
4.6 Calendar.h File 4-7 .
4.7 Date_Time Example 4-8 .
4.8 Timer Class 4-9 .
4.9 Timer Example 4-10 .

5 Parameterized Templates
5.1 Introduction 5-1 .
5.2 Requirements 5-1 .
5.3 Parameterized Classes 5-2 .
5.4 Templates 5-2 .
5.5 DECLARE and IMPLEMENT Example 5-5 .
5.6 Template Example 5-5 .
5.7 COOL C++ Control Program 5-7 .
5.8 CCC Example 5-9 .
5.9 Container Classes 5-10 .

5.10 Container Example (Current Position) 5-11 .
5.11 Iterator Class 5-12 .
5.12 Iterator Example 5-13 .
5.13 Making Your Own Container Classes 5-13 .
5.14 Storing Objects in Container Classes 5-14 .

6 Ordered Sequence Classes
6.1 Introduction 6-1 .
6.2 Requirements 6-1 .
6.3 Vector Class 6-2 .
6.4 Vector Example 6-8 .
6.5 Stack Class 6-9 .
6.6 Stack Example 6-12 .
6.7 Queue Class 6-13 .
6.8 Queue Example 6-16 .
6.9 Matrix Class 6-16 .

6.10 Matrix Example 6-19 .

7 Unordered Sequence Classes
7.1 Introduction 7-1 .
7.2 Requirements 7-1 .
7.3 List Class 7-2 .
7.4 List Example 7-8 .
7.5 Pair Class 7-10 .
7.6 Association Class 7-11 .

Contents

viiCOOL User’s Manual

Paragraph Title Page

7.7 Association Example 7-14 .
7.8 Hash_Table Class 7-16 .
7.9 Hash_Table Example 7-19 .

8 Set Classes
8.1 Introduction 8-1 .
8.2 Requirements 8-1.
8.3 Set Class 8-2 .
8.4 Set Class Example 8-5 .
8.5 Bit_Set Class 8-6 .
8.6 Bit_Set Class Example 8-11 .

9 Node and Tree Classes
9.1 Introduction 9-1 .
9.2 Requirements 9-1 .
9.3 Binary_Node Class 9-2 .
9.4 Binary_Tree Class 9-3 .
9.5 Binary_Tree Example 9-5 .
9.6 AVL_Tree Class 9-6 .
9.7 AVL_Tree Example 9-9 .
9.8 N_Node Class 9-10 .
9.9 D_Node Class 9-12 .

9.10 N_Tree Class 9-14 .
9.11 N_Tree Example 9-17 .

10 Macros
10.1 Introduction 10-1 .
10.2 Requirements 10-1 .
10.3 COOL Preprocessor 10-1 .
10.4 defmacro 10-3 .
10.5 MACRO 10-4 .
10.6 MACRO Examples 10-5 .
10.7 ISSAME 10-7 .
10.8 KEYARGS 10-8 .
10.9 ONCE_ONLY 10-9 .

10.10 EXPAND_ARGS 10-9 .
10.11 INITIALIZE 10-10 .
10.12 IGNORE MACRO 10-11 .

11 Symbols and Packages
11.1 Introduction 11-1 .
11.2 Requirements 11-1 .
11.3 Symbol and Package Classes 11-2 .
11.4 Symbol Class 11-2 .
11.5 Package Class 11-3 .
11.6 DEFPACKAGE 11-6 .

Contents

viii COOL User’s Manual

Paragraph Title Page

11.7 Adding Symbols To A Package 11-8 .
11.8 Enumeration Package 11-10 .
11.9 Enumeration Package Example 11-10 .

11.10 Text Package 11-11 .
11.11 Text Package Example 11-12 .
11.12 Symbol Package 11-16 .
11.13 Symbol Package Example 11-17 .
11.14 ONCE_ONLY Package 11-19 .
11.15 Interfacing to the SYM Package 11-20 .
11.16 Symbol Package Implementation 11-20 .

12 Polymorphic Management
12.1 Introduction 12-1 .
12.2 Requirements 12-1 .
12.3 Generic Class 12-2 .
12.4 Runtime Type Checking Example 12-4 .
12.5 TYPE_CASE Macro 12-5 .
12.6 Heterogenous Container Example 12-5 .
12.7 Class Macro 12-7 .
12.8 Class Macro Example 12-9 .

13 Exception Handling
13.1 Introduction 13-1 .
13.2 Requirements 13-1 .
13.3 Exceptions 13-1 .
13.4 Exception Class 13-2 .
13.5 Excp_Handler Class 13-5 .
13.6 Excp_Handler Example 13-6 .
13.7 Predefined Exception Types And Handlers 13-7 .
13.8 EXCEPTION 13-8 .
13.9 EXCEPTION Examples 13-9 .

13.10 RAISE 13-11 .
13.11 RAISE Example 13-12 .
13.12 STOP 13-13 .
13.13 STOP Example 13-14 .
13.14 VERIFY 13-14 .
13.15 VERIFY Example 13-15 .
13.16 Jump_Handler Class 13-16 .
13.17 IGNORE_ERRORS 13-17 .
13.18 IGNORE_ERRORS Example 13-18 .
13.19 Exceptions as Symbols and Package 13-18 .
13.20 User-Defined Exception Types 13-19 .

14 COOL Methodology
14.1 Introduction 14-1 .
14.2 Requirements 14-1 .
14.3 Preprocessor and Macros 14-1 .
14.4 Parameterized Templates 14-2 .

Contents

ixCOOL User’s Manual

Paragraph Title Page

14.5 Symbols and Packages 14-4 .
14.6 Polymorphic Management 14-4 .
14.7 Exceptions 14-6 .
14.8 Coding Style and Conventions 14-7 .

14.8.1 Naming Conventions 14-8.
14.8.2 Class Header File Organization 14-9.
14.8.3 Private, Protected, and Public Data 14-10.
14.8.4 Documentation 14-10.
14.8.5 Source Code Indentation 14-10.
14.8.6 Error Message Resource Package 14-10.
14.8.7 Regression Test Suite 14-11.
14.8.8 Source Code System Independence 14-11.
14.8.9 Build Procedure 14-11.

14.9 Class Hierarchy 14-11.

Glossary
Index

Contents

x COOL User’s Manual

xiCOOL User’s Manual

ABOUT THIS MANUAL

Introduction This manual contains supporting software documentation for COOL (the C++ Object-
Oriented Library), a collection of classes, objects, templates, and macros that extend the
capabilities of the C++ language. This manual is written for high level C++ application
programmers using COOL.

Organization This manual is divided into the following sections and appendixes:

• Section 1: Overview of COOL — Contains an introduction to the COOL User’s
Manual and what to expect on the various classes, macros and other enhancements
to C++ that are discussed in this manual.

• Section 2: String Classes — Describes a collection of classes that implement tex-
tual operations and functions.

• Section 3: Number Classes — Contains information on a collection of numeri-
cally oriented classes that augment the built-in numerical data types to provide ex-
tended precision, range-checked types, and complex numbers.

• Section 4: System Interface Classes — Includes classes for calculating the date
and time in different time zones and countries.

• Section 5: Parameterized Templates — Describes classes that allow a program-
mer to design and implement a class template without specifying the data type.

• Section 6: Ordered Sequence Classes — Describes classes that are a collection of
basic data structures that implement sequential-access data structures as
parameterized classes.

• Section 7: Unordered Sequence Classes — Describes classes that are a collection
of basic data structures that implement random-access data structures as
parameterized classes.

• Section 8: Set Classes — Describes classes that implement two basic data struc-
tures for random-access set operations.

• Section 9: Node and Tree Classes — Describes classes that are a collection of
basic data structures that implement several standard tree data structures as
parameterized classes.

• Section 10: Macros — Describes COOL macro facilities that are an extension to
the standard ANSI C macro preprocessor functions and that support constant sym-
bols, keyword and body arguments, parameterized templates and complex expres-
sion evaluation.

• Section 11: Symbols and Packages — Describes functions that manage error
message textual descriptions, provide polymorphic extensions to C++ for object
type and contents queries, and support sophisticated symbolic computing.

About This Manual

xii COOL User’s Manual

• Section 12: Polymorphic Management — Describes the mode of managing sym-
bolic constants and run-time symbolic objects and packages. Also discusses the
Generic class, which is inherited by most COOL classes and manipulates lists of
symbols to manage type information.

• Section 13: Exception Handling — Describes COOL exception handling, which
is a raise, handle, and proceed mechanism that uses the COOL symbolic computing
capability.

• Section 14: COOL Methodology — Describes COOL methodology for manag-
ers and programmers who need a brief overview of COOL components, organiza-
tion, style guide, and rules for extending the library.

Conventions Certain conventions and syntax are used to simplify presentation of the material in this
manual. The following typographical conventions are used:

• Bold type — Words in bold represent either a class name, macro name, or system-
supplied function.

• Italics — Words in italics enclosed by angle brackets or parenthesis represent argu-
ments that must be specified by the programmer .

• Monowidth Font — Program examples and output are distinguished by monowidth
font of a smaller size than the normal manual text. (e.g., #include <COOL/
String.h>)

Program examples illustrated and defined within this manual are supplied and can be
found in the ~COOL/examples subdirectory. Examples are given specific file names by
appending a suffix of .C to its associated paragraph number. For example, the string
class example in paragraph 2.4 is located in the 2.4.C filename.

Each section includes a requirements paragraph that states the prerequisites needed to
understand and use the components or functions being discussed.

Certain paragraphs document reference information about COOL classes. A special
format is used that provides the following information:

• Class Name

• Synopsis

• Base Classes

• Friend Classes

• Constructors

• Member Functions

• Friend Functions

• Example Program

1-1COOL User’s Manual

OVERVIEW OF
 COOL

Introduction 1.1 The C++ Object-Oriented Library (COOL) is a collection of classes, objects,
templates, and macros to extend the capabilities of the C++ language for developing
complex problem-solving applications. Significant language features in COOL, such as
parameterized types, symbolic computing, and exception handling, are implemented
with sophisticated C++ macro facilities. These features and facilities are designed to
enhance and improve a programmer’s development capability.

COOL is intended to simplify the programming task by allowing the programmer to
concentrate on the application problem to be solved, not on implementing base data
structures, macros, and classes. In addition, COOL provides a system-independent soft-
ware platform on which applications are built. An application built on top of COOL will
compile and run on any platform supporting COOL.

Audience 1.2 This manual is intended for use by programmers who have a working under-
standing of the C++ programming language as implemented by AT&T in release 2.0
and type system. Users must also understand the distinction between the concepts and
principles associated with overloaded operators and friend functions.

Features 1.3 The major features that COOL contributes to enhancing the C++ language and
program development capabilities are the following:

• An enhanced macro language that supports constant symbols, keyword and body
arguments, parameterized templates, and complex expression evaluation

• Parameterized templates that allow development of type-independent container
classes with support for multiple iterators

• Dynamic, user-defined packages implementing name spaces for symbols with
names, property lists, and values

• Polymorphic features derived from the Generic virtual base class that supports
is_type_of() run-time queries

• A multi-level exception handling mechanism that utilizes macros, symbols, and a
global error package and is similar in design to the Common Lisp Condition Han-
dling System

• A collection of classes implementing a wide range of useful data structures and
system interface facilities

The following paragraphs provide brief descriptions of each of these features, including
information on what to expect in the rest of this manual on the various classes, macros,
symbolic computing facilities, exception handling routines, and methodology that gov-
erns the implementation of COOL.

Overview Of COOL

1-2 COOL User’s Manual

Macros 1.4 Supplied as part of the library, the COOL macro facilities are an extension to the
standard ANSI C macro preprocessor functions and are portable and compiler-inde-
pendent. The COOL macro facilities support constant symbols, keyword and body ar-
guments, parameterized templates, and complex expression evaluation. Some macros,
such as those that support the parameterized types, are implementations of theoretical
design papers published by Bjarne Stroustrup.

The COOL preprocessor is derived from and based upon the DECUS ANSI C
preprocessor made available by the DEC User’s group in the public domain and sup-
plied on the X11R3 source tape from MIT. The preprocessor complies with the draft
ANSI C specification with the exception that trigraph sequences are not implemented.

The preprocessor was modified to recognize a #pragma defmacro statement to allow a
programmer to define powerful extensions to the C++ language. The proposed draft
ANSI C standard indicates that extensions and changes to the language and features
implemented in a preprocessor and compiler should be made by using the #pragma
statement. The COOL preprocessor follows this recommendation and uses this as the
means by which all macro extensions are made. The #pragma defmacro statement is
the single hook through which features such as the class macro, parameterized tem-
plates, and polymorphic enhancements are implemented. This statement also allows ar-
bitrary filter programs and macro expanders to be run on C++ code fragments passing
through the preprocessor. Note, however, that once a macro is expanded, the resulting
code is conventional C++ 2.0 syntax acceptable to any conforming C++ translator or
compiler.

Parameterized 1.5 Parameterized classes allow a programmer to design and implement a
Templates class template without specifying the data type. The user can then customize the class by

specifying the type when it is used in a program. Parameterized classes can be thought
of as metaclasses in that only one source base needs to be maintained to support numer-
ous variations of a type of class.

An important and useful type of parameterized class is known as a container class. A
container class is a special type of parameterized class where you put objects of a par-
ticular type. A container class that is parameterized over an object does not require the
user to manage memory, activate destructors, and so forth. COOL supplies several com-
mon container class data structures that include support for the notion of a built-in
iterator that maintains a current position in the container object. Multiple iterators into
an instance of a container class are provided by the Iterator<Type> class.

Parameterized classes are handled by the COOL C++ Control program (CCC) which
provides all functions of the original CC program and also supports the COOL
preprocessor and COOL macro language. CCC controls and invokes the various com-
ponents of the compilation process.

Alternately, a declaration macro can be used to instantiate a type-independent
parameterized class for a user-specified type by introducing a new valid type name to
the compiler. An implementation macro defines the member functions of a
parameterized class for a specific type.

Overview Of COOL

1-3COOL User’s Manual

Symbolic Computing 1.6 COOL symbol and package facilities provide the following capabilities:

• management of error message text

• polymorphic extensions to C++ for object type and contents queries

• support of sophisticated symbolic computing normally unavailable in conventional
languages

A package provides a relatively isolated namespace for various COOL components
called symbols. Each symbol is unique within its own package and can be used as a
dynamic enumeration type. Symbols also can be run-time variables, with the package
acting as a symbol table. Those symbols grouped into a particular package are said to be
owned (interned) by that package. The package system provides logical groupings of
symbols that support relationships established between named objects and the values
they contain. COOL provides several kinds of macros to simplify the usage and ma-
nipulation of symbols and packages.

COOL supports efficient and flexible symbolic computing by providing symbolic con-
stants and run-time symbol objects. You can create symbolic constants at compile-time
and dynamically create and manipulate symbol objects in a package at run-time by us-
ing any of several simple macros or by directly manipulating the objects.

The COOL DEFPACKAGE macro allows for efficient symbol and package manipula-
tion and is used extensively by COOL to implement run-time type checking and type
query. DEFPACKAGE allows an application programmer to declare a package that is
a program-wide database of constant symbols with associated default values and prop-
erties.

A package is created with the DEFPACKAGE macro, and macros for adding and re-
trieving constant symbols in a package are defined with the DEFPACKAGE_SYM-
BOL macro. In COOL, the most common types of packages are made easier to use by
the following four macros:

• enumeration_package

• symbol_package

• text_package

• once_only

Polymorphic 1.7 COOL supports enhanced polymorphic management capabilities
Management with a programmer-selectable collection of macros, classes, symbolic constants, run-

time symbolic objects, and dynamic packages. The Generic class, combined with mac-
ros, symbols, and packages, provides efficient run-time object type checking, object
query, and enhanced polymorphic performance unavailable in the C++ language other-
wise.

Overview Of COOL

1-4 COOL User’s Manual

COOL supplies several sophisticated macros that augment and manipulate the symbol
objects maintained in the COOL global symbol package. The type_of and is_type_of
virtual member functions provide run-time object type query support. Describe and
print member functions provide symbolic and value-oriented output capabilities. In ad-
dition, the typecase macro provides an efficient mechanism analogous to the C++
switch statement for branching, based upon an object’s type. Finally, the class macro
provides a user-extensible system for querying an object to determine if a particular
named function or data member accessor is available or should be created.

Exception Handling 1.8 COOL exception handling is a raise, handle, and proceed mechanism that uses
the COOL symbolic computing capability. When a program encounters an anomaly it
can:

• Represent the anomaly in an exception object

• Announce that the anomaly has occurred by raising the exception

• Provide ways to deal with the anomaly by defining handlers

• Proceed from the anomaly by invoking a handler

The exception handling facility provides an exception class, an exception handler class,
a set of predefined subclasses of the exception class, and a set of predefined exception
handler functions. Each exception subclass is provided a default exception handler
function that is called if no other exception handler is established. The Exception class
inherits from the Generic class to facilitate run-time type checking and query of excep-
tion objects.

Also available are macros that simplify the process of creating exceptions, raising ex-
ceptions, and ignoring raised exceptions. These include the EXCEPTION, RAISE,
STOP, VERIFY, and IGNORE_ERRORS macros.

There are six predefined exception type classes provided as part of COOL. The Excep-
tion class is the base class from which specialized exception subclasses are derived.
Derived from Exception are Warning, System_Signal, System_Error, Fatal, and
Error. These classes are a means of saving the status information that represents a par-
ticular problem or condition, and communicating this information to the appropriate
exception handler.

Classes 1.9 Following is a brief description of the various classes developed for COOL to
supplement the development of C++ applications.

NOTE: All COOL constants such as TRUE and FALSE are defined in the ~COOL/
misc.h header file.

String Classes – The String class provides dynamic, efficient strings for a C++ appli-
cation. The intent is to provide efficient char*-like functionality that frees the program-
mer from worrying about memory allocation and deallocation problems, yet retains the
speed and compactness of a standard char* implementation. All typical string opera-
tions are provided including concatenation, case-sensitive and case-insensitive lexical
comparison, string search, yank, delete, and replacement.

Overview Of COOL

1-5COOL User’s Manual

The Regexp class provides a convenient mechanism to present regular expressions for
complex pattern matching and replacement and utilizes the built-in char* data type. The
Gen_String class provides general purpose, dynamic strings for a C++ application
with support for reference counting, delayed copy, and regular expression pattern-
matching. The intent is to provide a sophisticated character string function for the appli-
cation programmer. The Gen_String class combines the functions of the String and
Regexp classes, along with reference counting and self-garbage collection, to provide
advanced character string manipulation.

Number Classes – The Number classes are a collection of numerically oriented classes
that augment the built-in numerical data types to provide such features as extended pre-
cision, range-checked types, and complex numbers. Included are the Random, Com-
plex, Rational, Bignum and Range classes.

The Random class implements five variations of random number generator objects.
The Complex class implements the complex number type for C++ and provides basic
arithmetic and trigonometric functions, conversion to and from built-in types, and sim-
ple arithmetic exception handling. The Rational class implements an extended preci-
sion rational data type for inadequate round-off or truncation results from the built-in
numerical data types. The Bignum class implements near-infinite precision integer
arithmetic. Finally, the parameterized Range<Type> class enables arbitrary user-de-
fined ranges to be implemented in C++ classes. Typically, this is used with other num-
ber classes to select a range of valid values for a particular numerical type.

System Interface Classes – System Interface classes include classes for calculating the
date and time in different time zones and countries and measuring the time duration
between two points in some application program.

The Date_Time class executes time zone–independent date and time functions. This
class also supports all time zones in the world, along with several special cases requiring
alternate handling based upon political or daylight saving time differences. The Timer
class is publicly derived from the Generic class and provides an interface to system
timing. It allows a C++ program to record the time between a reference point (mark)
and now.

Ordered Sequence Classes – The ordered sequence classes are a collection of basic
data structures that implement sequential access data structures as parameterized
classes, thus allowing the user to customize a generic template to create a user-defined
class. The ordered sequence classes include Vector, Stack, Queue and Matrix.

The Vector<Type> class implements single dimension vectors of a user-specified type.
The Stack<Type> class implements a conventional first-in, last-out data structure,
while the Queue<Type> class implements a conventional first-in, first-out data struc-
ture. These two classes each hold a user-specified data type. The Matrix<Type> class
implements two-dimensional arithmetic matrices for a user-specified numeric data
type. The Vector, Stack, and Queue classes can be dynamic in size.

Unordered Sequence Classes – The unordered sequence classes are a collection of ba-
sic data structures that implement random access data structures as parameterized
classes, thus allowing the user to customize a generic template to create a specific user-
defined class. The unordered sequence classes include List, Pair, Association, and
Hash_Table.

The List<Type> class implements Common Lisp style lists providing a collection of
member functions for list manipulation and management. A list consists of a collection
of nodes, each of which contains a reference count, a pointer to the next node in the list,
and a data element of a user-specified type.

Overview Of COOL

1-6 COOL User’s Manual

The Pair<T1,T2> class implements an association between one object and another. The
objects may be of different types, with the first representing the key of the pair and the
second representing the value of the pair. The Association<Ktype,Vtype> class is pri-
vately derived from the Vector<Type> class and implements a collection of pairs. As
above, the first of the pair is called the key and the second of the pair is called the value.
The Hash_Table<Ktype,VType> class implements hash tables of user-specified types
for the key and the value.

Set Classes – The set classes implement two basic data structures for random-access set
operations as parameterized classes, thus allowing the user to customize a generic tem-
plate to create a specific user-defined class. The set classes include Set and Bit_Set.

The Set<Type> class implements random access sets of objects of a user-specified
type. Classical set operations such as union, intersection, and difference are available.
The Set<Type> class is publicly derived from the Hash_Table<KType,VType> class
and is dynamic in nature.

The Bit_Set class implements efficient bit sets. These bits are stored in an arbitrary-
length vector of bytes (unsigned char) large enough to represent the specified number of
elements. Elements can be integers, enumerated values, constant symbols from the enu-
meration package, or any other type of object or expression that results in an integral
value.

Node and Tree Classes – The node and tree classes are a collection of basic data struc-
tures that implement several standard tree data structures as parameterized classes, thus
allowing the user to customize a generic template to create a specific user-defined class.
The node and tree classes include Binary_Node, Binary_Tree, N–Node, D-Node,
AVL_Tree and N–Tree.

The Binary_Node<Type> class implements parameterized nodes for binary trees. The
Binary_Tree<Type> class implements simple, dynamic, sorted sequences in a tree
where each node has two subtree pointers. The AVL_Tree<Type> class implements
height-balanced, dynamic, binary trees. The AVL_Tree<Type> class is publicly de-
rived from the Binary_Tree<Type> class.

The N_Node<Type,nchild> class implements parameterized nodes of a static size for
n-ary trees. The D_Node<Type,nchild> class implements parameterized nodes of a dy-
namic size for n-ary trees. The D_Node<Type,nchild> class is dynamic in the sense that
the number of subtrees allowed for each node is not fixed. D_Node<Type,nchild> uses
the Vector<Type> class to support run-time growth characteristics. Both classes are
parameterized for the type and a number of subtrees that each node may have. In addi-
tion, the constructors for both classes are declared in the public section to allow the user
to create nodes and control the building and structure of an n-ary tree where the ordering
can have a specific meaning, as with an expression tree.

The N_Tree<Node,Type,nchild> class implements n-ary trees, providing the organiza-
tional structure for a tree (collection) of nodes while knowing nothing about the specific
type of node used. N_Tree<Node,Type,nchild> is parameterized over a node type, a
data type, and subtree count, where the node specified must have a data member of the
same Type as the tree class. The subtree count indicates the number of possible subtree
pointers (children) from any given node. Two node classes are provided, but others can
also be written.

Symbol and Package Classes – The Symbol and Package classes implement the basic
COOL symbolic computing support as standard C++ classes. These classes support
efficient and flexible symbolic computing by providing symbolic constants and run-
time symbol objects. Programmers can create symbolic constants at compile-time and
manipulate symbol objects in a package at run-time

Overview Of COOL

1-7COOL User’s Manual

The Symbol class implements the notion of a symbol that has a name with an optional
value and property list. Symbols are interned into a package, which is a mechanism for
establishing separate name spaces. Because each named symbol is unique within its
own package, the symbol can be used as a dynamic enumeration type and as a run-time
variable. The Package class implements a package as a hash table of named symbols
and includes support for adding, retrieving, updating, and removing symbols at run-
time. It also provides completion and spelling correction on a Symbol name.

Generic Class – The Generic class is inherited by most other COOL classes and ma-
nipulates lists of symbols to manage type information. Generic adds run-time type
checking and object queries, formatted print capabilities, and a describe mechanism to
any derived class. The COOL class macro automatically generates the necessary im-
plementation code for these member functions in the derived classes. A significant
benefit of this common base class is the ability to declare heterogeneous container
classes parameterized over the Generic* type. These classes, combined with the cur-
rent position and parameterized iterator class, lets the programmer manipulate collec-
tions of objects of different types in a simple, efficient manner.

Class Hierarchy 1.10 The COOL class hierarchy implements a rather flat inheritance tree, as opposed
to the deeply nested SmallTalk model. All complex classes are derived from the Ge-
neric class, to facilitate run-time type checking and object query. Simple classes are not
derived from the Generic class due to space efficiency concerns. The parameterized
container classes inherit from a base class that results in shared type-independent code.
This reduces code replication when a particular type of container is parameterized sev-
eral times for different objects in an application. The COOL class hierarchy is shown on
the following page.

Overview Of COOL

1-8 COOL User’s Manual

Pair<Ktype,Vtype>
Range

Range<Type>
Rational
Complex
Bignum
Generic

String
Gen_String
Regexp
Vector

Vector<Type>
Association<Ktype,Vtype>

List_Node
List_Node<Type>

List
List<Type>

Date_Time
Timer
Bit_Set
Exception

Warning
Error

System_Error
Verify_Error

Fatal
System_Signal

Excp_Handler
Jump_Handler

Hash_Table
Set
Hash_Table<Key,Value>

Package
Matrix

Matrix<Type>
Queue

Queue<Type>
Random
Stack

Stack<Type>
Symbol
Binary_Node

Binary_Node<Type>
Binary_Tree

Binary_Tree<Type>
AVL_Tree<Type>

N_Node<Type,nchild>
D_Node<Type,nchild>
N_Tree<Type,Node,nchild>

2-1Cool User’s Manual

STRING CLASSES

Introduction 2.1 The string classes are a collection of classes that implement textual operations and
functions for such commonplace actions as string concatenation and growth, allocating
memory as necessary and thus relieving the programmer from having to perform this
task manually. The following classes and functions are discussed in this section:

• String Class

• char* functions

• Regular Expression (Regexp) Class

• Gen_String Class

The String class implements dynamic, efficient strings comparable to the built-in
char* data type. The char* functions supplement the standard ANSI C character string
library functions. Taken together, String and char* provide such operations as string
concatenation, case sensitive and insensitive comparison, case conversion, and simple
string search and replacement. The Regexp class provides a convenient mechanism to
present regular expressions for complex pattern matching and replacement, and uses the
built-in char* data type. The Gen_String class combines the functions of the String
and Regexp classes, along with reference counting and garbage collection, to provide
sophisticated character string manipulation.

Requirements 2.2 This section assumes you have a working knowledge of the C++ language and
type system. In addition, you should understand the distinction between the concepts
associated with overloaded operators, member functions, and friend functions.

String Class 2.3 The String class provides dynamic, efficient strings for a C++ application. The
intent is to provide efficient char*-like functionality that frees the programmer from
worrying about memory allocation and deallocation problems, yet retains the speed and
compactness of a standard char* implementation. The String class is dynamic in the
sense that if an operation such as concatenate results in more characters than can fit in
the currently allocated memory, the string object grows according to some established
size or ratio value. All typical string operations are provided, including concatenation,
case-sensitive and case-insensitive lexical comparison, string search, yank, delete, and
replacement. System-provided functions for char* such as strcpy and strcmp are also
available via the overloaded operator char* member function.

String Classes

2-2

Cool User’s Manual

Name: String — Simple, dynamic string class

Synopsis: #include <COOL/String.h>

Base Classes: Generic

Friend Classes: None

Constructors: String ();
Initializes an empty string object with a default size block of memory allocated to
hold 100 characters.

String (char c);
Initializes a string object with the default size block of memory allocated to hold
100 characters whose value is the string consisting of the single character argument
c.

String (const char* str);
Initializes a string object with the default size block of memory allocated to hold
100 characters whose value is copied from the specified character string argument
str. If str is longer, the string will grow as necessary.

String (const char* str, long size);
Allocates an initial block of memory the size of the integer argument size, or the
strlen(str), whichever is longer. and initializes the string object with a copy of the
specified character string str. Note that size is ignored if less than the length of str.

String (const String& str);
Duplicates the size and value of another string object str.

String (const String& str, long size);
Duplicates the size and value of another string object str by allocating an initial
block of memory to be the size of the integer argument size, or strlen(str), which-
ever is longer. The duplication is then performed.

Member Functions: inline long capacity () const;
Returns the maximum number of characters that the string object can contain with-
out having to grow.

void clear ();
Resets the NULL character string terminator to the beginning of the string and sets
the length of the string to zero.

Boolean insert (const char* str, long position);
Inserts a copy of the sequence of characters pointed to by the first argument str at
the zero-relative index provided by the second argument position. This function
returns TRUE if successful; otherwise, this function returns FALSE if the index is
out of range.

inline operator char* () const;
Provides an implicit conversion operator to convert a string object into a char*
value.

String operator+ (char c);
Overloads the addition operator to concatenate a single character c to a string ob-
ject. This function returns a new string object, via the stack.

String Classes

2-3Cool User’s Manual

String operator+ (const char* str);
Overloads the addition operator to concatenate a copy of the specified character
sequence str to a string object. This function returns a new string object.

String operator+ (const String& str);
Overloads the addition operator to concatenate the value of the specified string ob-
ject str to a string object. This function returns a new string object.

inline String& operator= (char c);
Overloads the assignment operator to assign a single character c to a string object.
This function returns a reference to the modified string object.

inline String& operator= (const char* str);
Overloads the assignment operator to assign a copy of the specified character se-
quence str to a string object. This function returns a reference to the modified
string object.

inline String& operator= (const String& str);
Overloads the assignment operator to assign the value of another string object str to
a string object. This function returns a reference to the modified string object.

inline String& operator+= (char c);
Overloads the addition-and-assignment operator to concatenate a single character c
to a string object. This function returns a reference to the modified string object.

inline String& operator+= (const char* str);
Overloads the addition-and-assignment operator to concatenate a copy of the speci-
fied character sequence str to a string object. This function returns a reference to the
modified string object.

inline String& operator+= (const String& str);
Overloads the addition-and-assignment operator to concatenate the value of the
specified string object str to a string object. This function returns a reference to the
modified string object.

inline Boolean operator== (const char* str) const;
Overloads the equality operator for the String class. This function returns TRUE if
the string object and str have the same sequence of characters; otherwise, this func-
tion returns FALSE.

inline Boolean operator== (const String& str) const;
Overloads the equality operator for the String class. This function returns TRUE if
the strings have the same sequence of characters; otherwise, this function returns
FALSE.

inline Boolean operator!= (const char* str) const;
Overloads the inequality operator for the String class. This function returns
FALSE if the string object and str have the same sequence of characters; other-
wise, this function returns TRUE.

inline Boolean operator!= (const String& str) const;
Overloads the inequality operator for the String class. This function returns
FALSE if the strings have the same sequence of characters; otherwise, this func-
tion returns TRUE.

String Classes

2-4

Cool User’s Manual

inline Boolean operator< (const char* str) const;
Overloads the less-than operator for the String class. This function returns TRUE
if the string is lexically less than the char* s argument; otherwise, this function
returns FALSE.

inline Boolean operator< (const String& str) const;
Overloads the less-than operator for the String class. This function returns TRUE
if the string object is lexically less than the string str; otherwise, this function re-
turns FALSE.

inline Boolean operator<= (const char* str) const;
Overloads the less-than-or-equal operator for the String class. This function re-
turns TRUE if the string object is lexically less than or equal to the character string
argument str; otherwise, this function returns FALSE.

inline Boolean operator<= (const String& str) const;
Overloads the less-than-or-equal operator for the String class. This function re-
turns TRUE if the string object is lexically less than or equal to the string str;
otherwise, this function returns FALSE.

inline Boolean operator> (const char* str) const;
Overloads the greater-than operator for the String class. This function returns
TRUE if the string object is lexically greater than the character string argument str;
otherwise, this function returns FALSE.

inline Boolean operator> (const String& str) const;
Overloads the greater-than operator for the String class. This function returns
TRUE if the string object is lexically greater than the string str; otherwise, this
function returns FALSE.

inline Boolean operator>= (const char* str) const;
Overloads the greater-than-or-equal operator for the String class. This function re-
turns TRUE if the string object is lexically greater than or equal to the character
string argument str; otherwise, this function returns FALSE.

inline Boolean operator>= (const String& str) const;
Overloads the greater-than-or-equal operator for the String class. This function re-
turns TRUE if the string object is lexically greater than or equal to the string str;
otherwise, this function returns FALSE.

inline char operator[] (long position) const;
Returns the character at the zero-relative index position in the string. If the index is
invalid, an Error exception is raised.

Boolean remove (long start, long end);
Removes the sequence of characters between the zero-relative inclusive start and
exclusive end indexes. This function returns TRUE if successful; otherwise, this
function returns FALSE if either one or both of the indexes is out of range.

Boolean replace (const char* str, long start, long end);
Replaces the sequence of characters between the zero-relative inclusive start and
exclusive end indexes with a copy of the character string str. This function returns
TRUE if successful; otherwise, this function returns FALSE if either one or both
of the indexes is out of range.

void resize (long size);
Resizes the string object to hold at least size number of characters. If size is less
than existing length, the operation is ignored.

String Classes

2-5Cool User’s Manual

void reverse ();
Reverses the ordering of the characters in a string object.

inline void set_alloc_size (int size);
Updates the allocation growth size to be used when the growth ratio is zero. Default
allocation growth size is 100 bytes. If size is negative, an Error exception is raised.

inline void set_growth_ratio (float ratio);
Updates the growth ratio for this instance of a string to the specified value. When a
string needs to grow, the current size is multiplied by the ratio to determine the new
size. If ratio is negative, an Error exception is raised.

void sub_string (String& str, long start, long end);
Sets the given string object str to the values in the character sequence between the
zero-relative inclusive start and exclusive end indexes provided. This function re-
turns TRUE if successful; otherwise, this function returns FALSE if either one or
both of the indexes is out of range.

void yank (String& str, long start, long end);
Deletes the sequence of characters between the zero-relative inclusive start and
exclusive end indexes provided and sets the given string object str to the value of
the deleted characters.

Friend Functions: inline friend double atof (const String& str);
Returns the floating-point value represented by the characters in the string object
str.

friend int atoi (const String& str);
Returns the decimal radix integer number represented by the characters in the
string object str.

friend long atol (const String& str);
Returns the decimal radix long number represented by the characters in the string
object str.

friend String& capitalize (String& str);
Capitalizes each word and returns the modified string str. A word is defined to be
any subsequence of alphanumeric characters. This function returns a reference to
the modified string str.

friend String& downcase (String& str);
Converts any alphabetic character to lowercase. This function returns a reference to
the modified string str.

friend String& left_trim (String& str1, const char* str2);
Removes any prefix occurrence of the character string str2 specified from the
string object str1. This function returns a reference to the modified string str1.

friend ostream& operator<< (ostream& os, const String& str);
Overloads the output operator for a reference to a string object str.

inline friend ostream& operator<< (ostream& os, const String* str);
Overloads the output operator for a pointer to a string object str.

friend String& right_trim (String& str1, const char* str2);
Removes any suffix occurrence of the character string str2 specified from the string
object str1. This function returns a reference to the modified string str2.

String Classes

2-6

Cool User’s Manual

friend String& strcat (String& str, char c);
Returns the result of concatenating the character c to a string object str.

friend String& strcat (String& str1, const char* str2);
Returns the result of concatenating a copy of the specified character string str2 to a
string object str1.

friend String& strcat (String& str1, const String& str2);
Returns the result of concatenating one string object str2 to another str1. This func-
tion returns the modified string object str1.

friend char* strchr (const String& str, char c);
Overloads the forward character search function to scan from left to right through a
string object str for the first occurrence of the character c. This function returns a
pointer to the character if found; otherwise, this function returns NULL.

friend String& strcpy (String& str1, char str2);
Overloads the copy string function to copy the character string str2 into a string
argument str1. This function returns a reference to the modified string object str1.

friend String& strcpy (String& str1, const char* str2);
Overloads the copy string function to copy the specified character string str2 argu-
ment into the string argument str1. This function returns a reference to the modified
string object str1.

friend String& strcpy (String& str1, const String& str2);
Overloads the copy string function to copy the second string argument str2 into the
first string argument str1. This function returns the modified string object str1.

inline friend long strlen (const String& str);
Returns the number of characters (length) of the string str.

friend String& strncat (String& str1, const char* str2, int length);
Returns the result of concatenating a copy of some number of characters length
from a character string str2 to a string object str1. This function returns a reference
to the modified string object str1.

friend String& strncat (String& str1, const String& str2, int length);
Returns the result of concatenating some number of characters length from one
string object str2 to another str1. This function returns a reference to the modified
string object str1.

friend String& strncpy (String& str1, const char* str2, long length);
Overloads the strncpy function to copy some number of characters length from the
specified character string argument str2 into the string argument str1. This function
returns a reference to the modified string object str1.

friend char* strrchr (const String& str, char c);
Overloads the backward character search function to scan from right to left through
a string object str for the last occurrence of a specific character c. This function
returns a pointer to the character if found; otherwise, this function returns NULL.

friend double strtod (const String& str, char** ptr = NULL);
Returns the double floating-point value represented by the characters in the string
object str. If the second argument is non-zero, it is set to the character terminating
the converted string value.

String Classes

2-7Cool User’s Manual

friend long strtol (const String& str, char** ptr = NULL, int radix=10);
Returns the long number represented by the characters in the string object str. If a
specific radix is not specified, the default radix is decimal. If the second argument
is non-zero, it is set to the character terminating the converted string value.

friend String& trim (String& str1, const char* str2);
Removes any occurrence of the character string str2 from the string object str1.
This function returns a reference to the modified string str1.

friend String& upcase (String& str);
Converts any alphabetic character to uppercase. This function returns a reference to
the modified string str.

String Example 2.4 The following program declares a string object and manipulates it with several
member functions to change its value and size. Several of the overloaded String opera-
tors are used to perform concatenation and assignment. After each operation is com-
plete, the resulting string is printed.

 1 #include <COOL/String.h>

 2 int main (void) {

 3 String s1 = ”Hello”; // Create string

 4 cout << ”s1 reads: ” << s1 << ”\n”; // Display string

 5 cout << ”s1 has ” << strlen (s1) << ” characters\n”; // Display count

 6 s1 = s1 + ” ” + ”world!”; // Concatenate

 7 cout << ”s1 reads: ” << s1 << ”\n”; // Display string

 8 cout << ”s1 has ” << strlen (s1) << ” characters\n”; // Display count
 9 s1.reverse (); // Reverse order

10 cout << ”s1 backwards reads: ” << s1 << ”\n”; // Output string

11 s1.reverse (); // Restore order

12 cout << ”s1 upper case: ” << upcase (s1) << ”\n”; // Uppercase value

13 cout << ”s1 lower case: ” << downcase (s1) << ”\n”; // Downcase value

14 cout << ”s1 capitalized: ” << capitalize (s1) << ”\n”; // Capitalized value

15 s1.insert (”Oh, ”, 0); // Insert at start

16 cout << ”s1 reads: ” << s1 << ”\n”; // Display string

17 s1.replace (”Goodbye”, 4, 9); // Replace ‘hello’

18 cout << ”s1 reads: ” << s1 << ”\n”; // Display string

19 s1.remove (4, 12); // Remove ‘goodbye’

20 cout << ”s1 reads: ” << s1 << ”\n”; // Display string

21 exit (0); // Exit with OK

22 }

Line 1 includes the COOL String.h class header file. Line 3 declares a new string ob-
ject and initializes it with the word Hello. Lines 4 and 5 output the value of the string
and the number of characters it contains. Line 6 uses the overloaded operator+ to con-
catenate a space and the word World to the string object. The result and new character
count is then output in lines 7 and 8. Line 9 uses the reverse() member function to re-
verse the order of the letters in the string object. Again, the results are output in line 10,
and then reverted back in line 11 with another call to the same reverse member function.
Lines 12 through 14 change the case and output the value of the string object. Line 15
adds some letters to the string object by using the insert() member function, and line 16
outputs the result. Lines 17 through 19 replace and then remove letters from the string
object with the result outputted after each operation. Finally, the program ends with a
valid exit code.

String Classes

2-8

Cool User’s Manual

The following shows the output from the program:

s1 reads: Hello
s1 has 5 characters
s1 reads: Hello world!
s1 has 12 characters
s1 backwards reads: !dlrow olleH
s1 upper case: HELLO WORLD!
s1 lower case: hello world!
s1 capitalized: Hello World!
s1 reads: Oh, Hello World!
s1 reads: Oh, Goodbye World!
s1 reads: Oh, World!

Auxiliary char* 2.5 The ANSI C specification requires a collection of standard functions for
Functions the manipulation of character strings. However, these do not include some of the more

useful functions found in the String and Gen_String classes. In addition, many generic
character string functions can be used for the String and Gen_String objects because of
the implicit operator char*. For these reasons, the following auxiliary functions are
defined for the built-in char* data type:

Name: char* — Auxiliary character string functionality

Synopsis: #include <COOL/char.h>

Friend Functions: Boolean is_equal (const char* str1, const char* str2, Boolean
 case_flag = FALSE);

Compares two character strings for lexical equality. If case_flag is TRUE, a case-
sensitive comparison is made; otherwise, a case-insensitive comparison is made.
This function returns TRUE if the strings are lexically equivalent; otherwise, this
function returns FALSE.

Boolean is_not_equal (const char* str1, const char* str1, Boolean
 case_flag = FALSE);

Compares two character strings for lexical inequality. If case_flag is TRUE, a
case-sensitive comparison is made; otherwise, a case-insensitive comparison is
made. This function returns FALSE if the strings are lexically equivalent;
otherwise, this function returns TRUE.

Boolean is_equal_n (const char* str1, const char* str1, int n,
Boolean case_flag = FALSE);

Compares n characters in two character strings for lexical equality. If case_flag is
TRUE, a case-sensitive comparison is made; otherwise, a case-insensitive com-
parison is made. This function returns TRUE if the strings are lexically equivalent;
otherwise, this function returns FALSE.

Boolean is_ge (const char* str1, const char* str2, Boolean case_flag);
This function returns TRUE if str1 is lexically greater than or equal to str2; other-
wise, this function returns FALSE. If case_flag is TRUE, a case-sensitive com-
parison is made; otherwise, a case-insensitive comparison is made.

Boolean is_gt (const char* str1, const char* str1, Boolean case_flag);
This function returns TRUE if str1 is lexically greater than str2; otherwise, this
function returns FALSE. If case_flag is TRUE, a case-sensitive comparison is
made; otherwise, a case-insensitive comparison is made.

String Classes

2-9Cool User’s Manual

Boolean is_le (const char* str1, const char* str1, Boolean case_flag);
This function returns TRUE if str1 is lexically less than or equal to str2; otherwise,
this function returns FALSE. If case_flag is TRUE, a case-sensitive comparison is
made; otherwise, a case-insensitive comparison is made.

Boolean is_lt (const char* str1, const char* str2, Boolean case_flag);
This function returns TRUE if str1 is lexically less than str2; otherwise, this func-
tion returns FALSE. If the Boolean value is TRUE, a case-sensitive comparison is
made; otherwise, a case-insensitive comparison is made.

char* c_capitalize (char* str);
Capitalizes each word and returns a pointer to the modified character string str. A
word is defined to be any subsequence of alphanumeric characters.

char* c_downcase (char* str);
Converts any alphabetic character to lowercase. This function returns a pointer to
the modified character string str.

char* c_left_trim (char* str1, const char* str2);
Removes any prefix occurrence of the second character string str2 in the first char-
acter string str1. This function returns a pointer to the modified character string
str1.

char* c_right_trim (char* str1, const char* str2);
Removes any suffix occurrence of the second character string str2 in the first char-
acter string str1. This function returns a pointer to the modified character string
str1.

char* c_trim (char* str1, const char* str2);
Removes any occurrence of the second character string str2 from the first character
string str1. This function returns a pointer to the modified character string str1.

char* c_upcase (char* str);
Converts any alphabetic character to uppercase. This function returns a pointer to
the modified character string str.

char* strfind (const char* str1, const char* str2, long& start = 0,
 long& end = 0);

This function provides simple pattern matching by scanning from left to right
through str1 for the first occurrence of str2. An asterisk can be used to match for
zero or more characters and a question mark can be used to match for any single
character. This function returns a pointer to the start of the matching character
string and updates the zero-relative start and end indexes if found; otherwise, this
function returns NULL.

char* strrfind (const char* str1, const char* str2, long& start = 0,
 long& end = 0);

This function provides simple pattern matching by scanning from right to left
through str1 for the first occurrence of str2. An asterisk can be used to match for
zero or more characters and a question mark can be used to match for any single
character. This function returns a pointer to the start of the matching character
string and updates the zero-relative start and end indexes if found; otherwise, this
function returns NULL.

String Classes

2-10

Cool User’s Manual

char* strndup (const char* str, long position);
Duplicates into a new character string allocated off the heap the sequence of char-
acters from the beginning of str to the zero-relative index position. This function
returns a pointer to the duplicated character string if successful; otherwise, this
function returns NULL if the index is out of range.

char* strnremove (char* str, long position);
Removes the sequence of characters from the beginning of str to the zero-relative
index position. This function returns a pointer to the new character string if suc-
cessful; otherwise, this function returns NULL if the index is out of range.

char* stryank (char* str, long position);
Deletes the sequence of characters from the beginning of str to the zero-relative
index position and allocates a new character string off the heap whose value is the
deleted characters. This function returns a pointer to the yanked string if successful;
otherwise, this function returns NULL if the index is out of range.

void reverse (char* str);
Reverses the order of characters in a string str.

Regular Expression 2.6 A regular expression allows a programmer to specify complex patterns
(Regexp) Class that can be searched for and matched against the character string of a string object. In its

simplest form, a regular expression is a sequence of characters used to search for exact
character matches. However, many times the exact sequence to be found is not known,
or only a match at the beginning or end of a string is desired. The COOL regular expres-
sion class implements regular expression pattern matching as is found and implemented
in many UNIX commands and utilities.

The regular expression class provides a convenient mechanism for specifying and ma-
nipulating regular expressions. The regular expression object allows specification of
such patterns by using the following regular expression meta-characters:

 ^ Matches at beginning of a line
 $ Matches at end of a line
 . Matches any single character
 [] Matches any character(s) inside the brackets
 [^] Matches any character(s) not inside the brackets
 – Matches any character in range on either side of a dash
 * Matches preceding pattern zero or more times
 + Matches preceding pattern one or more times
 ? Matches preceding pattern zero or once only
 () Saves a matched expression and uses it in a later match

Note that more than one of these metacharacters can be used in a single regular expres-
sion in order to create complex search patterns. For example, the pattern [^ab1–9] says
to match any character sequence that does not begin with the characters ”ab” followed
by numbers in the series one through nine.

String Classes

2-11Cool User’s Manual

Name: Regexp — Regular expression pattern matching

Synopsis: #include <COOL/Regexp.h>

Base Classes: Generic

Friend Classes: None

Constructors: inline Regexp ();
Creates an empty regular expression object with no private data initialized.

inline Regexp (char* str);
Creates a regular expression object and initializes all the data by compiling the
regular expression provided str. If an invalid regular expression is detected, an Er-
ror exception is raised.

Regexp (const Regexp& reg);
Creates a regular expression object and duplicates the values and regular expres-
sion of another regular expression object reg.

Member Functions: void compile (char* str);
Creates a compiled version of the argument str and places it in the private data. If an
invalid expression is detected, an Error exception is raised.

Boolean deep_equal (const Regexp& reg) const;
Determines if two regular expressions are the same, including the zero-relative
start and end indexes of the last successful pattern match. This function returns
TRUE if the expressions are the same; otherwise, this function returns FALSE.

inline long end () const;
Returns an index into the last character string successfully searched for by this ob-
ject. The index corresponds to the character after the last item found. If none are
found, its value is NULL.

Boolean find (char* str);
Searches for the already specified regular expression in str. If the expression is
found, this function returns TRUE and sets start and end indexes appropriately. If
an invalid expression is detected, an Error exception is raised.

inline Boolean is_valid () const;
Returns TRUE if a valid regular expression is compiled and ready for use; other-
wise, this function returns FALSE.

Boolean operator== (const Regexp& reg) const;
Determines if two regular expression objects are the same. This function returns
TRUE if the expression objects are the same; otherwise, this function returns
FALSE.

inline Boolean operator!= (const Regexp& reg) const;
Determines if two regular expression objects are not the same. This function re-
turns TRUE if the expression objects are different; otherwise, this function returns
FALSE.

inline void set_invalid ();
Invalidates the current regular expression of the regular expression object.

String Classes

2-12

Cool User’s Manual

inline long start () const;
Returns an index into the last character string successfully searched for by this ob-
ject. The index corresponds to the beginning of the last item found. If none are
found, its value is NULL.

Regular Expression 2.7 The following program utilizes the COOL regular expression class to set
Example and search for several patterns. The first is a simple character match, the second a search

for a range of characters, and the third a complex match using sub-patterns. Each pattern
and string to be searched is printed, along with the ensuing matches and zero-relative
index results.

 1 #include <COOL/Regexp.h> // Include Regexp header file

 2 int main (void) {

 3 Regexp r1(”Hi There”); // Define simple pattern

 4 char* dummy = ”Garbage Hi There garbage”; // Dummy string to search

 5 cout << ”The pattern ‘Hi There’ ”; // Output start of sentence

 6 if (r1.find (dummy) == TRUE) // Pattern found in string?

 7 cout << ”is”; // Yes, indicate affirmative

 8 else

 9 cout << ”is not”; // Else indicate failure

10 cout << ” found in ‘” << dummy << ”\n”; // And complete output

11 cout << ”The pattern begins at zero–relative index ” << r1.start ();

12 cout << ” and ends at index ” << r1.end () << ”\n”;

13 r1.compile(”[^ab1–9]”); // Complex pattern

14 strcpy (dummy, ”ab123QQ59ba”); // Another string to search

15 cout << ”The pattern ‘[^ab1–9]’ ”; // Output start of sentence

String Classes

2-13Cool User’s Manual

16 if (r1.find (dummy) == TRUE) // Pattern found in string?

17 cout << ”is”; // Yes, indicate affirmative

18 else

19 cout << ”is not”; // Else indicate failure

20 cout << ” found in ‘” << dummy << ”\n”; // And complete output

21 cout << ”The pattern begins at zero–relative index ” << r1.start ();

22 cout << ” and ends at index ” << r1.end () << ”\n”;

23 r1.compile(”O(.*r)”); // New complex pattern

24 strcpy (dummy,”That’s OK for me. OK for you?”);// Another string to search

25 cout << ”The pattern ‘O(.*r)’ ”; // Output start of sentence

26 if (r1.find (dummy) == TRUE) // Pattern found in string?

27 cout << ”is”; // Yes, indicate affirmative

28 else

29 cout << ”is not”; // Else indicate failure

30 cout << ” found in ‘” << dummy << ”\n”; // And complete output

31 cout << ”The pattern begins at zero–relative index ” << r1.start ();

32 cout << ” and ends at index ” << r1.end () << ”\n”;

33 exit (0); // Exit with OK status

34 }

Line 1 includes the COOL Regexp.h class header file. Lines 3 and 4 define a simple
regular expression object and a character string pattern to be searched. Lines 5 through
12 search the character string for the pattern, output the search results, and indicate the
zero-relative start and end points. Line 13 sets a more complex pattern for the regular
expression object. This says to match anything that does not begin with the characters
”ab” followed by numbers in the series one through nine. Lines 15 through 22 search the
character string for this pattern, output the search results, and indicate the zero-relative
start and end points. Line 23 establishes a pattern that matches a character string begin-
ning with ”O”, followed by a sequence of zero or more characters that ends with ”r”.
Lines 25 through 32 search the character string for this pattern, output the search results,
and indicate the zero-relative start and end points.

The following shows the output from the program:

The pattern ‘Hi There’ is found in ‘Garbage Hi There garbage’
The pattern begins at zero–relative index 8 and ends at index 16
The pattern ‘[^ab1–9]’ is found in ‘ab123QQ59ba’
The pattern begins at zero–relative index 5 and ends at index 6
The pattern ‘O(.*r)’ is found in ‘That’s OK for me. OK for you?’
The pattern begins at zero–relative index 7 and ends at index 24

General String 2.8 The Gen_String class provides general-purpose, dynamic strings for
Class a C++ application with support for reference counting, delayed copy, and regular ex-

pression pattern matching. The intent is to provide sophisticated character string func-
tionality for the application programmer. As in the String class, interface and member
functions provide typical string operations. These include concatenation, case-sensitive
and case-insensitive lexical comparison, string search, yank, delete, and replacement. In
addition, the inclusion of regular expression pattern matching facilitates easier use of
this COOL class with character strings. The Gen_String class is dynamic in the sense
that if an operation such as concatenate results in more characters than can fit in the
currently allocated memory, the string object grows according to some established size
or ratio value. System-provided functions for char* such as strcpy and strcmp are also
available via the overloaded operator char* member function.

String Classes

2-14

Cool User’s Manual

Name: Gen_String — Dynamic general-purpose strings with reference counting, delayed
copy, and regular expression pattern matching

Synopsis: #include <COOL/Gen_String.h>

Base Classes: Generic

Friend Classes: None

Constructors: Gen_String ();
Initializes an empty general string object with the default size block of memory
allocated to hold 100 characters.

Gen_String (char c);
Initializes a general string object with the default size block of memory allocated to
hold 100 characters whose value is the general string consisting of the single char-
acter c.

Gen_String (const char* str);
Initializes a general string object with a default size block of memory allocated to
hold 100 characters whose value is a copy of the specified character string argu-
ment str. If str is longer than 100 char then the Gen_String will grow to the correct
size.

Gen_String (const char* str, long size);
Allocates an initial block of memory of size size or size strlen(str) whichever is
longer. Initializes the general string object with a copy of the specified character
string str.

Gen_String (const Gen_String& str);
Duplicates the size and value of another general string object str.

Gen_String (const Gen_String& str, long size);
Duplicates the size and value of another general string object str and allocates an
initial block of memory of size size or size strlen(str) whichever is longer.

Member Functions: inline long capacity () const;
Returns the maximum number of characters that the general string object can con-
tain without having to grow.

void clear ();
Resets the NULL character sting terminator to the beginning of the general string
and sets the length of the general string to zero.

void compile (char* str);
Creates a compiled version of the regular expression argument str. If an invalid
expression is detected, an Error exception is raised. Note that you must recompile a
regular expression after changing the value of the Gen_String object.

inline long end () const;
Returns an index into the last string successfully searched for by this object. The
index corresponds to the character after the last item found, or if none was found
(the uninitialized state) then its value is NULL.

Boolean find ();
Searches for the first or next established regular expression in the string. If the ex-
pression is found, this function returns TRUE and sets start and end appropriately.
If an invalid expression is detected, an Error exception is raised.

String Classes

2-15Cool User’s Manual

Boolean insert (const char* str, long position);
Inserts a copy of the sequence of characters str at the zero-relative index position.
This function returns TRUE if successful; otherwise, this function returns FALSE
if the index position is out of range.

inline Boolean is_valid () const;
Returns TRUE if a valid regular expression is compiled and ready for use; other-
wise, this function returns FALSE.

Gen_String operator+ (char c);
Overloads the addition operator to concatenate a single character c to a general
string object. This function returns a new general string object.

Gen_String operator+ (const char* str);
Overloads the addition operator to concatenate a copy of the character sequence str
to a general string object. This function returns a new general string object.

Gen_String operator+ (const Gen_String& str);
Overloads the addition operator to concatenate the value of another general string
object str to a general string object. This function returns a new general string ob-
ject.

inline Gen_String& operator= (char c);
Overloads the assignment operator to assign a single character c to a general string
object. This function returns a reference to the modified general string object.

inline Gen_String& operator= (const char* str);
Overloads the assignment operator to assign a copy of the character sequence str to
a general string object. This function returns a reference to the modified general
string object.

inline Gen_String& operator= (const Gen_String& str);
Overloads the assignment operator to assign the value of another general string ob-
ject str to a general string object. This function returns a reference to the modified
general string object.

Gen_String& operator+= (char c);
Overloads the addition-and-assignment operator to concatenate a single character c
to a general string object. This function returns a reference to the modified general
string object.

Gen_String& operator+= (const char* str);
Overloads the addition-and-assignment operator to concatenate a copy of the char-
acter sequence str to a general string object. This function returns a reference to the
modified general string object.

Gen_String& operator+= (const Gen_String& str);
Overloads the addition-and-assignment operator to concatenate the value of an-
other general string object str to a general string object. This function returns a ref-
erence to the modified general string object.

inline Boolean operator== (const char* str) const;
Overloads the equality operator for the Gen_String class. This function returns
TRUE if the general string object and str have the same sequence of characters;
otherwise, this function returns FALSE.

String Classes

2-16

Cool User’s Manual

inline Boolean operator== (const Gen_String& str) const;
Overloads the equality operator for the Gen_String class. This function returns
TRUE if the general strings have the same sequence of characters; otherwise, this
function returns FALSE.

inline Boolean operator!= (const char* str) const;
Overloads the inequality operator for the Gen_String class. This function returns
FALSE if the general string object and str have the same sequence of characters;
otherwise, this function returns TRUE.

inline Boolean operator!= (const Gen_String& str) const;
Overloads the inequality operator for the Gen_String class. This function returns
FALSE if the general strings have the same sequence of characters; otherwise, this
function returns TRUE.

inline Boolean operator< (const char* str) const;
Overloads the less-than operator for the Gen_String class. This function returns
TRUE if the general string object is lexically less than str; otherwise, this function
returns FALSE.

inline Boolean operator< (const Gen_String& str) const;
Overloads the less-than operator for the Gen_String class. This function returns
TRUE if the general string object is lexically less than str; otherwise, this function
returns FALSE.

inline Boolean operator<= (const char* str) const;
Overloads the less-than-or-equal operator for the Gen_String class. This function
returns TRUE if the general string object is lexically less than or equal to str; other-
wise, this function returns FALSE.

inline Boolean operator<= (const Gen_String& str) const;
Overloads the less-than-or-equal operator for the Gen_String class. This function
returns TRUE if the general string object is lexically less than or equal to str; other-
wise, this function returns FALSE.

inline Boolean operator> (const char* str) const;
Overloads the greater-than operator for the Gen_String class. This function re-
turns TRUE if the general string object is lexically greater than str; otherwise, this
function returns FALSE.

inline Boolean operator> (const Gen_String& str) const;
Overloads the greater-than operator for the Gen_String class. This function re-
turns TRUE if the general string object is lexically greater than str; otherwise, this
function returns FALSE.

inline Boolean operator>= (const char* str) const;
Overloads the greater-than-or-equal operator for the Gen_String class. This func-
tion returns TRUE if the general string object is lexically greater than or equal to
str; otherwise, this function returns FALSE.

inline Boolean operator>= (const Gen_String& str) const;
Overloads the greater-than-or-equal operator for the Gen_String class. This func-
tion returns TRUE if the general string object is lexically greater than or equal to
str; otherwise, this function returns FALSE.

inline char operator[] (long position) const;
Returns the character at the zero-relative index position into the general string. If an
invalid index is specified, an Error exception is raised.

String Classes

2-17Cool User’s Manual

inline operator char* () const;
Provides an implicit conversion operator to convert a string object into a char*
value.

Boolean remove (long start, long end);
Removes the sequence of characters between the zero-relative inclusive start and
exclusive end indexes provided. This function returns TRUE if successful; other-
wise, this function returns FALSE if either one or both of the indexes is out of
range.

Boolean replace (const char* str, long start, long end);
Replaces the sequence of characters between the zero-relative inclusive start and
exclusive end indexes with a copy of the character string str. This function returns
TRUE if successful; otherwise, this function returns FALSE if either one or both
of the indexes is out of range.

void resize (long size);
Resizes the general string object to hold at least size characters. If a negative size is
specified, an Error exception is raised.

void reverse ();
Reverses the ordering of the characters in a general string object. The Reg_Exp
does not need to be recompiled.

inline void set_alloc_size (int size);
Updates the allocation growth size to be used when the growth ratio is zero. Default
allocation growth size is 100 bytes. If a negative size is specified, an Error excep-
tion is raised.

inline void set_growth_ratio (float ratio);
Updates the growth ratio for this instance of a Gen_String class object to the speci-
fied value. When a string needs to grow, the current size is multiplied by the ratio to
determine the new size. If a negative growth ratio is specified, an Error exception
is raised.

inline long start () const;
Returns an index into the last string successfully searched for by that object. The
index corresponds to the beginning of the last item found.

void sub_string (Gen_String& str, long start, long end);
Sets the general string object str to the values of the character sequence between the
zero-relative inclusive start and exclusive end indexes provided. This function re-
turns TRUE if successful; otherwise, if the start or end indexes or both are out of
range, an Error exception is raised and, if the handler returns, this function returns
FALSE.

void yank (Gen_String& str, long start, long end);
Deletes the sequence of characters between the zero-relative inclusive start and
exclusive end indexes provided and sets the string object str to the value of the de-
leted characters. If the start or end or both indexes are out of range, an Error excep-
tion is raised.

Friend Functions: inline friend double atof (const Gen_String& str);
Returns the floating-point value represented by the characters in the general string
object str.

String Classes

2-18

Cool User’s Manual

friend int atoi (const Gen_String& str);
Returns the decimal radix integer number represented by the characters in the gen-
eral string object str.

friend long atol (const Gen_String& str);
Returns the decimal radix long number represented by the characters in the general
string object str.

friend Gen_String& capitalize (Gen_String& str);
Capitalizes each word and returns the modified general string str. A word is defined
to be any subsequence of alphanumeric characters, but it must start with a letter.
This function returns a reference to the modified general string.

friend Gen_String& downcase (Gen_String& str);
Converts any alphabetic character to lowercase. This function returns a reference to
the modified general string str.

friend Gen_String& left_trim (Gen_String& str1, const char* str2);
Removes any prefix occurrence of the character string str2 in the general string
object str1. This function returns a reference to the modified general string str1.

friend ostream& operator<< (ostream& os, const Gen_String& str);
Overloads the output operator for a reference to a general string object.

inline friend ostream& operator<< (ostream& os, const Gen_String* str);
Overloads the output operator for a pointer to a general string object.

friend Gen_String& right_trim (Gen_String& str1, const char* str2);
Removes any suffix occurrence of the character string str2 in the general string
object str1. This function returns a reference to the modified general string str1.

friend Gen_String& strcat (Gen_String& str, char c);
Concatenates a single character c to a general string object str. This function returns
a reference to the modified general string str.

friend Gen_String& strcat (Gen_String& str1, const char* str2);
Concatenates a copy of the character string str2 to a general string object str1. This
function returns a reference to the modified general string str1.

friend Gen_String& strcat (Gen_String& str1, const Gen_String& str2);
Concatenates one general string object str2 to another general string object str1.
This function returns a reference to the modified general string str1.

friend char* strchr (const Gen_String& str, char c);
Overloads the forward character-search function to scan from left to right through a
general string object str for the first occurrence of a specific character c. This func-
tion returns a pointer to the character if found; otherwise, this function returns
NULL.

friend Gen_String& strcpy (Gen_String& str, char c);
Returns the result of copying a single character into a general string object str.
This function returns a reference to the modified general string object str.

friend Gen_String& strcpy (Gen_String& str1, const char* str2);
Copies a character string str2 into a general string object str1. This function returns
a reference to the modified general string object str1.

String Classes

2-19Cool User’s Manual

friend Gen_String& strcpy (Gen_String& str1, const Gen_String& str2);
Copies one general string object str2 into another general string object str1. This
function returns a reference to the modified general string object str1.

inline friend long strlen (const Gen_String& str);
Returns the number of characters (length) of the general string str.

friend Gen_String& strncat (Gen_String& str1, const char* str2, int n);
Concatenates some number of characters n from a character string str2 to a general
string object str1. This function returns a reference to the modified general string
object str1. If a negative length is specified, an Error exception is raised.

friend Gen_String& strncat (Gen_String& str1, const Gen_String& str2,
 int n);

Concatenates some number of characters n from one general string object str2 to
another general string object str1. This function returns a reference to the modified
general string object str1. If a negative length is specified, an Error exception is
raised.

friend Gen_String& strncpy (Gen_String& str1, const char* str2,
long n);

Copies some number of characters n from the character string str2 into the general
string object str1. This function returns a reference to the modified general string
object str1. If a negative number is specified, an Error exception is raised.

friend char* strrchr (const Gen_String& str, char c);
Overloads the backward character-search function to scan from right to left
through a general string object str for the last occurrence of a specific character c.
This function returns a pointer to the character if found; otherwise, this function
returns NULL.

friend double strtod (const Gen_String& str, char** ptr = NULL);
Returns the double floating-point value represented by the characters in the general
string object str. If the second argument is non-zero, it is set to the character termi-
nating the converted string value.

friend long strtol (const Gen_String& str, char** ptr=NULL,
 int radix=10);

Returns the long number represented by the characters in the general string object
str. If no specific radix is specified, the default radix is decimal. If the second argu-
ment is non-zero, it is set to the character terminating the converted string value.

friend Gen_String& trim (Gen_String& str1, const char* str2);
Removes any occurrence of the character string str2 in the general string object
str1. This function returns a reference to the modified general string str1.

friend Gen_String& upcase (Gen_String& str);
Converts any alphabetic character to uppercase. This function returns a reference to
the modified general string str.

String Classes

2-20

Cool User’s Manual

General String 2.9 The following program uses the COOL general string class to show the
Example combined functionality of the previous two classes. A general string object is declared

and manipulated with several of the member functions to change its value and size. Sev-
eral of the overloaded Gen_String operators are used to perform concatenation and as-
signment. After each operation is complete, the resulting string is printed. In addition,
several search operations using the built-in regular expression capability are performed.
The first is a simple character match, the second a search for a range of characters, and
the third a complex match using sub-patterns. Each pattern and string to be searched is
printed, along with the ensuing matches and zero-relative index results.

 1 #include <COOL/Gen_String.h> // Include header file

 2 #include <COOL/Regexp.h> // Include header file

 3 int main (void) {

 4 Gen_String s1 = ”Hello”; // Create string

 5 cout << ”s1 reads: ” << s1 << ”\n”; // Display string

 6 cout << ”s1 has ” << strlen (s1) << ” characters\n”; // Display count

 7 s1 = s1 + ” ” + ”world!”; // Join characters

 8 cout << ”s1 reads: ” << s1 << ”\n”; // Display string

 9 cout << ”s1 has ” << strlen (s1) << ” characters\n”; // Display count

10 s1.reverse (); // Reverse order

11 cout << ”s1 backwards reads: ” << s1 << ”\n”; // Output string

12 s1.reverse (); // Restore order

13 cout << ”s1 upper case: ” << upcase (s1) << ”\n”; // Uppercase value

14 cout << ”s1 lower case: ” << downcase (s1) << ”\n”; // Downcase value

15 cout << ”s1 capitalized: ” << capitalize (s1) << ”\n”; // Capitalized value

16 s1.insert (”Oh, ”, 0); // Insert at start

17 cout << ”s1 reads: ” << s1 << ”\n”; // Display string

18 s1.replace (”Goodbye”, 4, 9); // Replace‘hello’

19 cout << ”s1 reads: ” << s1 << ”\n”; // Display string

20 s1.remove (4, 12); // Remove ‘goodbye’

21 cout << ”s1 reads: ” << s1 << ”\n”; // Display string

22 s1.compile(”Hi There”); // Define pattern

23 s1 = ”Garbage Hi There garbage”; // Set search string

24 cout << ”The pattern ‘Hi There’ ”; // Output start

25 if (s1.find () == TRUE) // Pattern found?

26 cout << ”is”; // Yes

27 else

28 cout << ”is not”; // Else failure

29 cout << ” found in ‘” << s1 << ”\n”; // Complete output

30 cout << ”The pattern begins at zero–relative index ” << s1.start ();

31 cout << ” and ends at index ” << s1.end () << ”\n”;

32 s1.compile(”[^ab1–9]”); // Complex pattern

33 s1 = ”ab123QQ59ba”; // Search string
34 cout << ”The pattern ‘[^ab1–9]’ ”; // Output start

35 if (s1.find () == TRUE) // Pattern found?

36 cout << ”is”; // Yes

37 else

38 cout << ”is not”; // Else failure

39 cout << ” found in ‘” << s1 << ”\n”; // Complete output

40 cout << ”The pattern begins at zero–relative index ” << s1.start ();

41 cout << ” and ends at index ” << s1.end () << ”\n”;

42 s1.compile(”O(.*r)”); // New pattern

43 s1 = ”That’s OK for me. OK for you?”; // Another string

44 cout << ”The pattern ‘O(.*r)’ ”; // Output start

45 if (s1.find () == TRUE) // Pattern found?

46 cout << ”is”; // Yes

String Classes

2-21Cool User’s Manual

47 else

48 cout << ”is not”; // Else failure

49 cout << ” found in ‘” << s1 << ”\n”; // Complete output

50 cout << ”The pattern begins at zero–relative index ” << s1.start ();

51 cout << ” and ends at index ” << s1.end () << ”\n”;

52 exit (0); // Exit with OK

53 }

Line 1 includes the COOL Gen_String.h class header file, and line 2 includes the
Regexp.h class header file. Lines 4 through 9 perform the assignment and concatenation
of a character string to the Gen_String object. Lines 10–15 reverse the order of the
characters in the object and manipulate the case of the words. Lines 16 through 21 in-
sert, replace, and remove various characters from the object. Lines 22 through 31 dem-
onstrate use of the built-in regular expression function in the Gen_String class with the
first pattern used in the Regexp example program. Lines 32 through 41 demonstrate use
of the second pattern, and lines 42 through 51 use the third pattern from the regular
expression program. Finally, line 52 ends the program with a successful status.

The following shows the output from the program:

s1 reads: Hello
s1 has 5 characters
s1 reads: Hello world!
s1 has 12 characters
s1 backwards reads: !dlrow olleH
s1 upper case: HELLO WORLD!
s1 lower case: hello world!
s1 capitalized: Hello World!
s1 reads: Oh, Hello World!
s1 reads: Oh, Goodbye World!
s1 reads: Oh, World!
The pattern ‘Hi There’ is found in ‘Garbage Hi There garbage’
The patter begins at zero–relative index 8 and ends at index 16
The pattern ‘[^ab1–9]’ is found in ‘ab123QQ59ba’
The pattern begins at zero–relative index 5 and ends at index 6
The pattern ‘O(.*r)’ is found in ‘That’s OK for me. OK for you?’
The pattern begins at zero–relative index 7 and ends at index 24

String Classes

2-22

Cool User’s Manual

3-1

COOL User’s Manual

NUMBER CLASSES

Introduction 3.1 Simple integers and floating point numbers do not provide the needed precision
for many applications. The COOL number classes are a collection of numerically-ori-
ented classes that augment the built-in numerical data types to provide such features as
extended precision, range-checked types, and complex numbers. The following classes
are discussed in this section:

• Random

• Complex

• Rational

• Bignum

• Range<Type,lbound,hbound>

The Random class implements five variations of random number generators, each with
different portability, efficiency, and accuracy characteristics. The Complex class im-
plements the complex number type for C++ and provides all of the basic arithmetic and
trigonometric functions. The Rational class uses the built-in long type to implement an
extended precision rational data type for resolving inadequate round-off or truncation
results from the built-in numerical data types. The Bignum class implements near-infi-
nite precision integers and arithmetic by using a dynamic bit vector.

Finally, the parameterized Range<Type,lbound,hbound> class enables arbitrary user-
defined ranges to be implemented in C++ classes. Typically, but not always, this is used
with other number classes to select a range of valid values for a particular numerical
type. Features and advantages of the Range<Type,lbound,hbound> class are discussed
in this section. However, complete details of parameterized templates are provided in
Section 5.

Requirements 3.2 This section discusses the number classes. It assumes you have a working under-
standing of the C++ language and type system. In addition, you should understand the
distinction between the concepts and ideas associated with overloaded operators and
friend functions.

Random Class 3.3 The Random class provides several general-purpose random number generators
with features similar to those as described in Chapter 7 of Numerical Recipes in C, writ-
ten by William T. Vetterling. The ANSI C draft standard specifies the rand function
that allows an application to obtain successive random numbers in a sequence by re-
peated calls. However, system-supplied random number generators in the form of the
rand function are generally of poor quality, particularly when true random distribution
over a range is important. Specifically, system random number generators are almost
always linear congruential generators whose period is not very large. The ANSI C draft
specification only requires a modulus of 32767, which can be disastrous for such uses as
a Monte Carlo integration over 10^6 points.

Number Classes

3-2

COOL User’s Manual

The Random class allows an application to select one of five types of random number
generators based upon the usage requirements. Each generator function has different
characteristics and all are defined to be of type RNG_TYPE. The SIMPLE and SHUF-
FLE functions use the system rand function, while the ONE_CONGRUENTIAL,
THREE_CONGRUENTIAL, and SUBTRACTIVE functions are self-contained,
portable implementations. Following are descriptions of each generator function.

• SIMPLE — When speed is the predominant concern, this function uses the sys-
tem-supplied rand function. Although sequential correlation of successive random
values is a high probability, this function at least ensures that the value’s least sig-
nificant bits are as random as the most significant bits. In many system random
generator functions, the value’s least significant bits are often less random than the
most significant bits.

• SHUFFLE — This function uses the rand function and a shuffling procedure.
Random numbers are stored in a buffer and selected randomly to break up sequen-
tial correlation in the system-supplied function.

• ONE_CONGRUENTIAL — This self-contained function uses one linear con-
gruential generator instead of the rand function to implement a portable random
number generator. This guarantees no sequential correlation between the random
values returned.

• THREE_CONGRUENTIAL — This portable function uses three linear con-
gruential generators to implement a random number generator whose period is es-
sentially infinite and has no sequential correlations.

• SUBTRACTIVE — This function implements a portable random number genera-
tor that does not use linear congruential generators, but rather an original subtrac-
tive member function as suggested in Volume 2 of The Art of Computer
Programming, written by Donald Knuth.

Name: Random — A portable, user-selectable random number generator

Synopsis: #include <COOL/Random.h>

Base Classes: Generic

Friend Classes: None

Constructor: Random (RNG_TYPE r_type, int seed = 1, float lower = 0.0,
float upper = 100.0);

Constructor for a floating-point random number generator that initializes the se-
lected random number generator function with the user-supplied seed value.

Member Functions: inline double next ();
Returns the next double floating-point random number within the user-specified
range.

inline int get_seed () const;
Returns the seed value for the currently-selected random number generator.

inline void set_rng (RNG_TYPE r_type);
Sets the random number generator function to the type selected by the user and
reinitializes the state.

Number Classes

3-3

COOL User’s Manual

inline void set_seed (int seed);
Sets the seed value for the currently-selected random number generator function
and reinitilizes the state.

Random Class 3.4 The following program creates two random number objects using different
Example generator algorithms to provide random numbers within a specified range. The first

uses a variation of the system-supplied rand() function and the second a three-con-
gruential linear generator. Ten random numbers from each are sent to the standard out-
put.

 1 #include <COOL/Random.h> // Include Random class

 2 int main (void) {

 3 Random r1 (SIMPLE, 1, 3.0, 9.0); // Simple rand() generator

 4 Random r2 (THREE_CONGRUENTIAL,1,5.0,11.5); // Highly random generator

 5 cout << ”Simple random number generator:\n”; // Output banner title
 6 for (int i = 0; i < 10; i++) // Generate 10 random numbers

 7 cout << ” Random number ” << i << ” is: ” << r1.next () << ”\n”;

 8 cout << ”\nThree congruential linear random number generator:\n”;

 9 for (i = 0; i < 10; i++) // Generate 10 random numbers

10 cout << ” Random number ” << i << ” is: ” << r2.next () << ”\n”;

11 return (0); // Exit with OK status

12 }

Line 1 includes the COOL Random.h class header file. Line 3 defines a random number
generator of type SIMPLE for generator numbers within the range of 3.0 to 9.0 inclusive.
Line 4 defines a random number generator of type THREE_CONGRUENTIAL for generator
numbers within the range of 5.0 to 11.5 inclusive. Lines 6 through 10 utilize two loops
to generate and print ten numbers from each generator. Finally, the program ends with a
valid exit code.

The following shows the output from the program:

Simple random number generator:
Random number 0 is: 6.08322
Random number 1 is: 4.05445
Random number 2 is: 4.85191
Random number 3 is: 6.2072
Random number 4 is: 8.68577
Random number 5 is: 4.03042
Random number 6 is: 7.21339
Random number 7 is: 4.35858
Random number 8 is: 5.96864
Random number 9 is: 3.74832

Three congruential linear random number generator:
Random number 0 is: 9.26861
Random number 1 is: 7.84012
Random number 2 is: 8.84924
Random number 3 is: 7.22898
Random number 4 is: 8.1818
Random number 5 is: 7.3039
Random number 6 is: 9.18251
Random number 7 is: 10.0368
Random number 8 is: 10.3957
Random number 9 is: 11.3929

Number Classes

3-4

COOL User’s Manual

Complex Class 3.5 The Complex class is a complex number class with basic arithmetic support, con-
version to and from built-in types, and simple arithmetic exception handling. A Com-
plex object has the same precision and range of values as the system-defined type
double. Implicit conversion to the system-defined types short, int, long, float, and
double is supported by overloaded operator member functions. However, despite the
implicit conversions and judicious use of inline member functions, arithmetic opera-
tions on Complex objects are slower than the built-in types.

The Complex class implements common arithmetic exception handling and provides
application support for detecting negative infinity, positive infinity, overflow, and un-
derflow that may result from an operation. If one of these conditions is detected or an
attempt to convert from a Complex with no value to a built-in type is made, an excep-
tion is raised. The programmer can provide an exception handler at runtime to take care
of this problem. If no such handler is available, an error message is printed and program
execution ends. See Section 13 for more information on the COOL exception handling
mechanism.

Name: Complex — Complex number class

Synopsis: #include <COOL/Complex.h>

Base Classes: None

Friend Classes: None

Constructors: inline Complex ();
Creates a new complex number object initialized to floating point zero.

inline Complex (double real, double imaginary = 0.0);
Creates a new complex number object whose real part is set to real and whose
imaginary part is initialized to the value of imaginary.

inline Complex (const Complex& c);
Creates a new complex number object whose real and imaginary parts are initial-
ized to the values of those of another complex number c.

Member Functions: inline Complex conjugate () const;
Calculates the conjugate of a complex number and returns a new object whose
value is the negated imaginary value of the object. If the operation results in an
arithmetic error of some type, the appropriate exception is raised.

inline Complex cos (Complex& c) const;
Calculates the cosine of a complex number c. A new complex object is returned as
the result. If the operation results in an arithmetic error of some type, the appropri-
ate exception is raised.

inline Complex cosh (Complex& c) const;
Calculates the hyperbolic cosine of a complex number c. A new complex object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

operator double ();
Overloaded operator to provide implicit conversion between complex objects and
the built-in double type when appropriate.

Number Classes

3-5

COOL User’s Manual

operator float ();
Overloaded operator to provide implicit conversion between complex objects and
the built-in float type when appropriate.

inline double imaginary () const;
Returns the imaginary part of the complex number.

inline Complex invert () const;
Returns the reciprocal of a complex number. If the operation results in an arithme-
tic error of some type, the appropriate exception is raised.

operator int ();
Overloaded operator to provide implicit conversion between complex objects and
the built-in int type when appropriate.

operator long ();
Overloaded operator to provide implicit conversion between complex objects and
the built-in long type when appropriate.

Complex operator– ();
Overloads the unary minus operator for the Complex class and returns a new object
whose value is the negated real value of the object. If the operation results in an
arithmetic error of some type, the appropriate exception is raised.

Complex& operator= (const Complex& c);
Overloads the assignment operator for the Complex class and assigns one complex
number to have the value of another. A reference to the updated object is returned.

inline void operator+= (const Complex& c);
Overloads the addition-with-assignment operator for the Complex class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline void operator–= (const Complex& c);
Overloads the subtraction-with-assignment operator for the Complex class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

inline void operator*= (const Complex& c);
Overloads the multiplication-with-assignment operator for the Complex class. If
the operation results in an arithmetic error of some type, the appropriate exception
is raised.

inline void operator/= (const Complex& c);
Overloads the division-with-assignment operator for the Complex class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline Complex& operator++ ();
Overloads the increment operator to provide an increment capability for the
Complex class. If the operation results in an arithmetic error of some type, the ap-
propriate exception is raised. A reference to the updated complex object is re-
turned.

Number Classes

3-6

COOL User’s Manual

inline Complex& operator–– ();
Overloads the decrement operator to provide a decrement capability for the
Complex class. If the operation results in an arithmetic error of some type, the ap-
propriate exception is raised. A reference to the updated complex object is re-
turned.

inline Boolean operator! () const;
Overloads the logical NOT operator for the Complex class and returns TRUE if
the complex number has a zero value; otherwise, this function returns FALSE.

inline Boolean operator== (const Complex& c) const;
Overloads the equality operator for the Complex class. This function returns
TRUE if the complex numbers have the same value; otherwise, this function re-
turns FALSE.

inline Boolean operator!= (const Complex& c) const;
Overloads the inequality operator for the Complex class. This function returns
TRUE if the complex numbers have different values; otherwise, this function re-
turns FALSE.

inline double real () const;
Returns the real part of the complex number.

operator short ();
Overloaded operator to provide implicit conversion between complex objects and
the built-in short type when appropriate.

inline Complex sin (Complex& c) const;
Calculates the sine of a complex number c. A new complex object is returned as the
result. If the operation results in an arithmetic error of some type, the appropriate
exception is raised.

inline Complex sinh (Complex& c) const;
Calculates the hyperbolic sine of a complex number c. A new complex object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

inline N_Status status () const;
Returns the numerical exception state of the complex object.

inline Complex tan (Complex& c) const;
Calculates the tangent of a complex number c. A new complex object is returned as
the result. If the operation results in an arithmetic error of some type, the appropri-
ate exception is raised.

inline Complex tanh (Complex& c) const;
Calculates the hyperbolic tangent of a complex number c. A new complex object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

Friend Functions: inline friend Complex operator+ (const Complex& c1,
const Complex& c2);

Overloads the addition operator to provide addition for the Complex class. A new
complex object is returned as the result. If the operation results in an arithmetic
error of some type, the appropriate exception is raised.

Number Classes

3-7

COOL User’s Manual

inline friend Complex operator– (const Complex& c1,
const Complex& c2);

Overloads the subtraction operator for the Complex class. A new complex object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

inline friend Complex operator* (const Complex& c1,
const Complex& c2);

Overloads the multiplication operator for the Complex class. A new complex ob-
ject is returned as the result. If the operation results in an arithmetic error of some
type, the appropriate exception is raised.

friend Complex operator/ (const Complex& c1, const Complex& c2);
Overloads the division operator to provide division for the Complex class. A new
complex object is returned as the result. If the operation results in an arithmetic
error of some type, the appropriate exception is raised.

inline friend ostream& operator<< (ostream& os, const Complex& c);
Overloads the output operator for a reference to a complex object to provide a for-
matted output.

inline friend ostream& operator<< (ostream& os, const Complex* c);
Overloads the output operator for a pointer to a complex object to provide a format-
ted output.

Complex Example 3.6 The following impedance example using complex numbers is accredited to a
LISP program published in LISP, written by Patrick Henry Winston and Berthold Klaus
Paul Horn. This example calculates the impedance of an electrical circuit operating at a
given frequency by using standard formulas from basic hardware design texts.

 1 #include <COOL/Complex.h> // Include complex header file
 2 #define FREQUENCY 346.87

 3 #define OMEGA (2 * 3.14159265358979323846 * FREQUENCY)

 4 inline Complex in_series (const Complex& c1, const Complex& c2) {

 5 return (c1+c2);

 6 }

 7 inline Complex in_parallel (const Complex& c1, const Complex& c2) {

 8 return ((c1.invert() + c2.invert()).invert ());

 9 }

10 inline Complex resistor (double r) {

11 return Complex (r);

12 }

13 inline Complex inductor (double i) {

14 return (Complex (0.0, i * OMEGA));

15 }

16 inline Complex capacitor (double c) {

17 return (Complex (0.0, –1.0 / (c * OMEGA)));

18 }

19 int main (void) {

20 Complex circuit;

21 circuit = in_series (resistor (1.0),

Number Classes

3-8

COOL User’s Manual

22 in_parallel (in_series (resistor (100.0), inductor (0.2)),

23 in_parallel (capacitor (0.000001),

24 resistor (10000000.0))));

25 cout << ”Circuit impedance is ” << circuit << ” at frequency ” <<
FREQUENCY << ”\n”;

26 return 0; // Exit with OK status
27 }

Line 1 includes the COOL Complex.h class header file. Lines 2 and 3 define a fre-
quency constant and a value OMEGA based upon pi and the frequency and is used in calcu-
lating impedance formulas. Lines 4 through 6 define a function for calculating the
impedance of two components placed in series. Similarly, lines 7 through 9 define a
function for calculating the impedance of two components placed in parallel. Lines 10
through 18 provide functions for determining the impedance of resistors, inductors, and
capacitors, based upon their tolerances. Line 21 is the heart of the program that calls the
necessary functions to calculate the impedance of a circuit. Finally, the result is sent to
the standard output and the program ends with a successful exit code. Figure 3.1 illus-
trates the circuit used in this example program.

10MΩ

1Ω

0.2Hy

100Ω

1μF

Figure 3.1

The following shows the output from the program:

Circuit impedance is (2000.6,0.00747744) at frequency 346.87

Number Classes

3-9

COOL User’s Manual

Rational Class 3.7 The Rational class provides infinite precision rational numbers and arithmetic
using the built-in long type for the numerator and denominator objects. Consequently, a
rational object will grow in 32-bit chunks as necessary. Implicit conversion to the sys-
tem-defined types short, int, long, float, and double is supported by overloaded opera-
tor member functions. However, arithmetic operations on rational objects are slower
than the built-in integer types.

The Rational class implements common arithmetic exception handling and provides
application support for detecting negative infinity, positive infinity, overflow, and un-
derflow that may result from an operation. If one of these conditions is detected or if an
attempt to convert from a Rational with no value to a built-in type is made, an exception
is raised. The programmer can provide an exception handler at runtime to take care of
this problem. If no such handler is available, an error message is printed and program
execution terminates. See Section 13 for more information on the COOL exception han-
dling mechanism.

Name: Rational — Infinite precision rational numbers

Synopsis: #include <COOL/Rational.h>

Base Classes: Generic

Friend Classes: None

Constructors: inline Rational ();
Simple constructor to create a new rational object.

Rational (long n, long d = 1);
Constructor that specifies an integer numerator and optional denominator argu-
ments to create a new rational object.

Rational (const Rational& r);
Constructor that takes a reference to an existing rational object and creates a new
object with the same value.

Member Functions: inline long ceiling () const;
Returns an integer that represents the value of the rational object truncated towards
positive infinity.

inline long denominator () const;
Returns the denominator value of the object.

inline operator double ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in double type when appropriate.

operator float ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in float type when appropriate.

inline long floor () const;
Returns an integer that represents the value of the rational object truncated towards
negative infinity.

Number Classes

3-10

COOL User’s Manual

operator int ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in int type when appropriate.

Rational& invert ();
Returns a reference to the inverse of the rational number object.

operator long ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in long type when appropriate.

inline long numerator () const;
Returns the numerator value of the object.

inline Rational operator–();
Overloads the unary minus operator for the Rational class and returns a new object
whose value is the negated value of the object. If the operation results in an arithme-
tic error of some type, the appropriate exception is raised.

inline Rational& operator= (const Rational& r);
Overloads the assignment operator for the Rational class and assigns one rational
number to have the value of another. A reference to the updated object is returned.

void operator+= (const Rational& r);
Overloads the addition-with-assignment operator for the Rational class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline void operator–= (const Rational& r);
Overloads the subtraction-with-assignment operator for the Rational class. If the
operation results in an arithmetic exception of some type, the appropriate exception
is raised.

void operator*= (const Rational& r);
Overloads the multiplication-with-assignment operator for the Rational class. If
the operation results in an arithmetic error of some type, the appropriate exception
is raised.

inline void operator/= (const Rational& r);
Overloads the division-with-assignment operator for the Rational class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator%= (const Rational& r);
Overloads the modulus with assignment operator for the Rational class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

inline Boolean operator!() const;
Overloads the logical NOT operator for the Rational class and returns TRUE if the
complex number has a zero value; otherwise, this function returns FALSE.

inline Rational& operator++ ();
Provides an increment capability for the Rational class. If the operation results in
an arithmetic error of some type, the appropriate exception is raised. A reference to
the modified Rational object is returned.

Number Classes

3-11

COOL User’s Manual

inline Rational& operator–– ();
Provides a decrement capability for the Rational class. If the operation results in an
arithmetic error of some type, the appropriate exception is raised. A reference to
the modified Rational object is returned.

inline Boolean operator== (const Rational& r) const;
Overloads the equality operator for the Rational class. This function returns
TRUE if the rational numbers have the same value; otherwise, this function returns
FALSE.

inline Boolean operator!= (const Rational& r) const;
Overloads the inequality operator for the Rational class. This function returns
TRUE if the rational numbers have different values; otherwise, this function re-
turns FALSE.

Boolean operator< (const Rational& r) const;
Overloads the less-than-operator for the Rational class and returns TRUE if the
object is less than the specified argument; otherwise, this function returns FALSE.

inline Boolean operator<= (const Rational& r) const;
Overloads the less-than-or-equal operator for the Rational class. This function re-
turns TRUE if the object is less than or equal to the value of the specified argument;
otherwise, this function returns FALSE.

Boolean operator> (const Rational& r) const;
Overloads the greater-than operator for the Rational class and returns TRUE if the
object is greater than the specified argument; otherwise, this function returns
FALSE.

inline Boolean operator>= (const Rational& r) const;
Overloads the greater-than-or-equal operator for the Rational class. This function
returns TRUE if the object is greater than or equal to the value of the specified
argument ; otherwise, this function returns FALSE.

long round () const;
Returns an integer that represents the value of the rational object truncated towards
the nearest integer.

operator short ();
Overloaded operator to provide implicit conversion between rational objects and
the built-in short type when appropriate.

inline N_Status status () const;
Returns the numerical exception state of the rational object.

inline long truncate () const;
Returns an integer that represents the value of the rational object truncated towards
zero.

Friend Functions: friend Rational operator+ (const Rational& r1, const Rational& r2);
Overloads the addition operator for the Rational class. A new rational object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

inline friend Rational operator– (const Rational& r1, const Rational& r2);
Overloads the subtraction operator to provide subtraction for the Rational class. A
new rational object is returned as the result. If the operation results in an arithmetic
error of some type, the appropriate exception is raised.

Number Classes

3-12

COOL User’s Manual

friend Rational operator* (const Rational& r1, const Rational& r2);
Overloads the multiplication operator for the Rational class. A new rational object
is returned as the result. If the operation results in an arithmetic error of some type,
the appropriate exception is raised.

inline friend Rational operator/ (const Rational& r1, const Rational& r2);
Overloads the division operator for the Rational class. A new rational object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend Rational operator% (const Rational& r1, const Rational& r2);
Overloads the modulus operator for the Rational class. A new rational object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

inline friend ostream& operator<< (ostream& os, const Rational& r);
Overloads the output operator for a reference to a rational object to provide a for-
matted output capability.

inline friend ostream& operator<< (ostream& os, const Rational* r);
Overloads the output operator for a pointer to a rational object to provide a format-
ted output capability.

Number Classes

3-13

COOL User’s Manual

Rational Example 3.8 The following program uses the Rational class and the built-in float type to illus-
trate the added precision available for calculations involving multiplication, division,
addition, and determining the remainder for numeric ratios. The first half of the pro-
gram calculates answers for problems using the Rational class. The second half calcu-
lates answers for the same problems using the built-in float type. The results from each
are printed on the standard output stream for comparison of precision.

 1 #include <COOL/Rational.h> // Include COOL Rational class

 2 int main (void) {

 3 Rational r1 (10,3); // Create rational object

 4 Rational r2 (–4,27), r3; // Create rational objects

 5 r3 = r1 + r2; // Calculate sum of values

 6 cout << r1 << ” + ” << r2 << ” = ” << r3 << ”\n”; // And display result

 7 r3 = r1 * r2; // Calculate product of values

 8 cout << r1 << ” * ” << r2 << ” = ” << r3 << ”\n”; // And display result

 9 r3 = r1 / r2; // Calculate quotient of values

10 cout << r1 << ” / ” << r2 << ” = ” << r3 << ”\n”; // And display result
11 r3 = r1 % r2; // Calculate remainder of values

12 cout << r1 << ” % ” << r2 << ” = ” << r3 << ”\n”; // And display result

13 double d1 = double (10.0 / 3.0); // Create double ratio

14 double d2 = double (–4.0 / 27.0), d3; // Create double ratios

15 d3 = d1 + d2; // Calculate sum of values

16 cout << d1 << ” + ” << d2 << ” = ” << d3 << ”\n”; // And display result

17 d3 = d1 * d2; // Calculate product of values

18 cout << d1 << ” * ” << d2 << ” = ” << d3 << ”\n”; // And display result

19 d3 = d1 / d2; // Calculate quotient of values

20 cout << d1 << ” / ” << d2 << ” = ” << d3 << ”\n”; // And display result

21 return 0; // Return valid success code

22 }

Line 1 includes the COOL Rational.h class header file. Lines 3 and 4 declare three
rational objects (r1, r2, r3), the first two of which have initial values of 10/3 and –4/27,
respectively. Lines 5 and 6 calculate the sum of the two rational objects, assign it to the
third, and display the answer. Likewise, lines 7 and 8 calculate the product, lines 9 and
10 calculate the quotient, and lines 11 and 12 calculate the remainder of the same two
rational numbers. Lines 13 through 20 perform the same calculations with the built-in
type double as were performed in lines 3 through 10. As indicated from the results, a
loss of precision occurs from the floating point calculations, thus highlighting the po-
tential benefit of using the ratios maintained by the Rational number class. Finally, the
program ends with a valid exit code.

The following shows the output from the program:

10/3 + –4/27 = 86/27
10/3 * –4/27 = –40/81
10/3 / –4/27 = –45/2
10/3 % –4/27 = 2/27
3.33333 + –.148148 = 3.18519
3.33333 * –.148148 = –.493827
3.33333 / –.148148 = –22.5

Number Classes

3-14

COOL User’s Manual

Bignum Class 3.9 The Bignum class implements near-infinite precision integers and arithmetic by
using a dynamic bit vector. A Bignum object will grow in size as necessary to hold its
integer value. Implicit conversion to the system defined types short, int, long, float,
and double is supported by overloaded operator member functions. Addition and sub-
traction operators are performed by simple bitwise addition and subtraction on un-
signed short boundaries with checks for carry flag propagation. The multiplication,
division, and remainder operations utilize the algorithms from Knuth’s Volume 2 of
“The Art of Computer Programming”. However, despite the use of these algorithms and
inline member functions, arithmetic operations on Bignum objects are considerably
slower than the built-in integer types that use hardware integer arithmetic capabilities.

NOTE: The Bignum class requires that the built-in type long is larger than the built-in
type short and can accommodate the result of multiplying two short values. The maxi-
mum positive value that can be represented by the Bignum class is:
(2^(sizeof(unsigned long) * sizeof(unsigned short)))–1.

The Bignum class supports the parsing of character string representations of all the lit-
eral number formats. The following table shows an example of a character string repre-
sentation on the left and a brief description of the interpreted meaning on the right:

Character String Representation Interpreted Meaning

1234 1234
1234l 1234
1234L 1234
1234u 1234
1234U 1234
1234ul 1234
1234UL 1234
01234 1234 in octal (leading 0)
0x1234 1234 in hexadecimal (leading 0x)
0X1234 1234 in hexadecimal (leading 0X)
123.4 123 (value truncated)
1.234e2 123 (exponent expanded/truncated)
1.234e–5 0 (truncated value less than 1)

The Bignum class implements common arithmetic exception handling and provides
application support for detecting negative infinity, positive infinity, overflow, and un-
derflow that may result from an operation. If one of these conditions is detected, an
exception is raised. The programmer can provide an exception handler at runtime to
take care of this problem. If no such handler is available, an error message is printed and
program execution terminates. See Section 13 for more information on the COOL ex-
ception handling mechanism.

Number Classes

3-15

COOL User’s Manual

Name: Bignum — Infinite precision integers

Synopsis: #include <COOL/Bignum.h>

Base Classes: Generic

Friend Classes: None

Constructors: inline Bignum ();
Simple constructor to create a near-infinite precision integer object initialized to
zero.

Bignum (const char* str);
Constructor to create a near-infinite precision integer object from the character
string representation str.

Bignum (double d);
Constructor to create a near-infinite precision integer object from the double value
d.

Bignum (long l);
Constructor to create a near-infinite precision integer object from the long integer
value l.

Bignum (const Bignum& bn);
Constructor to create a near-infinite precision integer object from bn.

Member Functions: operator double ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in double type when appropriate.

operator float ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in float type when appropriate.

operator int ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in int type when appropriate.

operator long ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in long type when appropriate.

Bignum operator– () const;
Overloads the unary minus operator for the Bignum class and returns a new object
whose value is the negated value of the object. If the operation results in an arithme-
tic error of some type, the appropriate exception is raised.

Bignum& operator= (const char* str);
Overloads the assignment operator for the Bignum class and assigns the integer
representation from the character string str to the near-infinite precision integer
object. A reference to the updated object is returned.

Bignum& operator= (const Bignum& bn);
Overloads the assignment operator for the Bignum class and assigns bn to the near-
infinite precision integer object. A reference to the updated object is returned.

Number Classes

3-16

COOL User’s Manual

inline Boolean operator! () const;
Overloads the unary negation operator for the Bignum class. A new Bignum object
is returned as the result. If the operation results in an arithmetic error of some type,
the appropriate exception is raised.

Bignum operator~ () const;
Overloads the unary exclusive-or operator for the Bignum class. A new Bignum
object is returned as the result. If the operation results in an arithmetic error of some
type, the appropriate exception is raised.

Bignum& operator++ ();
Overloads the increment operator to provide an increment capability for the Big-
num class. A reference to the modified Bignum object is returned as the result. If
the operation results in an arithmetic error of some type, the appropriate exception
is raised.

Bignum& operator–– ();
Overloads the decrement operator to provide a decrement capability for the Big-
num class. A reference to the modified Bignum object is returned as the result. If
the operation results in an arithmetic error of some type, the appropriate exception
is raised.

void operator+= (const Bignum& bn);
Overloads the addition with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator–= (const Bignum& bn);
Overloads the subtraction with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

void operator*= (const Bignum& bn);
Overloads the multiplication with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

void operator/= (const Bignum& bn);
Overloads the division with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator%= (const Bignum& bn);
Overloads the modulus with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator&= (const Bignum& bn);
Overloads the logical AND with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

void operator^= (const Bignum& bn);
Overloads the exclusive-or with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

Number Classes

3-17

COOL User’s Manual

void operator|= (const Bignum& bn);
Overloads the logical OR with assignment operator for the Bignum class. If the
operation results in an arithmetic error of some type, the appropriate exception is
raised.

void operator>>= (const Bignum& bn);
Overloads the right shift with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

void operator<<= (const Bignum& bn);
Overloads the left shift with assignment operator for the Bignum class. If the op-
eration results in an arithmetic error of some type, the appropriate exception is
raised.

Boolean operator== (const Bignum& bn) const;
Overloads the equality operator for the Bignum class. This function returns TRUE
if the near-infinite precision integers have the same value; otherwise, this function
returns FALSE.

inline Boolean operator!= (const Bignum& bn) const;
Overloads the inequality operator for the Bignum class. This function returns
TRUE if the near-infinite precision integers have different values; otherwise, this
function returns FALSE.

Boolean operator< (const Bignum& bn) const;
Overloads the less than operator for the Bignum class and returns TRUE if the
object is less than the specified argument; otherwise, this function returns FALSE.

inline Boolean operator<= (const Bignum& bn) const;
Overloads the less than or equal operator for the Bignum class. This function re-
turns TRUE if the object is less than or equal to the value of the specified argument
; otherwise, this function returns FALSE.

Boolean operator> (const Bignum& bn) const;
Overloads the greater than operator for the Bignum class and returns TRUE if the
object is greater than the specified argument; otherwise, this function returns
FALSE.

inline Boolean operator>= (const Bignum& bn) const;
Overloads the greater than or equal operator for the Bignum class. This function
returns TRUE if the object is greater than or equal to the value of the specified
argument ; otherwise, this function returns FALSE.

operator short ();
Overloaded operator to provide implicit conversion between Bignum objects and
the built-in short type when appropriate.

inline N_Status status () const;
Returns the numerical exception state of the Bignum object.

Friend Functions: friend Bignum operator+ (const Bignum& bn1, const Bignum& bn2);
Overloads the addition operator to provide addition for the Bignum class. A new
Bignum object is returned as the result. If the operation results in an arithmetic er-
ror of some type, the appropriate exception is raised.

Number Classes

3-18

COOL User’s Manual

inline friend Bignum operator– (const Bignum& bn1,
const Bignum& bn2);

Overloads the subtraction operator to provide subtraction for the Bignum class. A
new Bignum object is returned as the result. If the operation results in an arithmetic
error of some type, the appropriate exception is raised.

friend Bignum operator* (const Bignum& bn1, const Bignum& bn2);
Overloads the multiplication operator to provide multiplication for the Bignum
class. A new Bignum object is returned as the result. If the operation results in an
arithmetic error of some type, the appropriate exception is raised.

friend Bignum operator/ (const Bignum& bn1, const Bignum& bn2);
Overloads the division operator for the Bignum class. A new Bignum object is re-
turned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend Bignum operator% (const Bignum& bn1, const Bignum& bn2);
Overloads the modulus operator for the Bignum class. A new Bignum object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend Bignum operator& (const Bignum& bn1, const Bignum& bn2);
Overloads the logical AND operator for the Bignum class. A new Bignum object
is returned as the result. If the operation results in an arithmetic error of some type,
the appropriate exception is raised.

friend Bignum operator^ (const Bignum& bn1, const Bignum& bn2);
Overloads the logical exclusive-or operator for the Bignum class. A new Bignum
object is returned as the result. If the operation results in an arithmetic error of some
type, the appropriate exception is raised.

friend Bignum operator| (const Bignum& bn1, const Bignum& bn2);
Overloads the logical OR operator for the Bignum class. A new Bignum object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend Bignum operator>> (const Bignum& bn1, const Bignum& bn2);
Overloads the right shift operator for the Bignum class. A new Bignum object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend Bignum operator<< (const Bignum& bn1, const Bignum& bn2);
Overloads the left shift operator for the Bignum class. A new Bignum object is
returned as the result. If the operation results in an arithmetic error of some type, the
appropriate exception is raised.

friend ostream& operator<< (ostream& os, const Bignum& bn);
Overloads the output operator for a reference to a Bignum object to provide a for-
matted output.

inline friend ostream& operator<< (ostream& os, const Bignum* bn);
Overloads the output operator for a pointer to a Bignum object to provide a format-
ted output.

Number Classes

3-19

COOL User’s Manual

Bignum Example 3.10 The following program uses the Bignum integer data type in a semantically
equivalent manner to the built-in int or long data types to perform arithmetic and logi-
cal operations. The only difference is that the values manipulated are larger than
MAX_INT or MAX_LONG would allow on a 32-bit computer.

 1 #include <COOL/Bignum.h> // Include Bignum class

 2 int main (void) {

 3 Bignum b1; // Create Bignum object

 4 Bignum b2 = ”0xFFFFFFFF”; // Create Bignum object

 5 Bignum b3 = ”1.2345e30”; // Create Bignum object

 6 cout << ”b2 = ” << b2 << ”\n”; // Display value of b2

 7 cout << ”b3 = ” << b3 << ”\n”; // Display value of b3

 8 b1 = b2 + b3; // Add b2 and b3

 9 cout << ”b2 + b3 = ” << b1 << ”\n”; // Display result

10 b1 = b2 – b3; // Subtract b3 from b2

11 cout << ”b2 – b3 = ” << b1 << ”\n”; // Display result

12 b1 = b2 * b3; // Multiply b2 and b3

13 cout << ”b2 * b3 = ” << b1 << ”\n”; // Display result

14 b1 = b3 / b2; // Divide b2 into b3

15 cout << ”b3 / b2 = ” << b1 << ”\n”; // Display result

16 b1 = b3 % b2; // Get b3 modulo b2

17 cout << ”b3 % b2 = ” << b1 << ”\n”; // Display result

18 return 0; // Exit with status code

19 }

Line 1 includes the COOL Bignum class header file. Line 3 creates a bignum object
initialized to zero. Lines 3 and 4 create Bignum objects initialized to very large integer
values. Lines 5 and 6 output these values on the standard output stream. Lines 8 through
17 compute the sum, difference, product, quotient, and remainder of various Bignum
values and output the answer. Finally, the program ends with a valid exit code.

The following shows the output from the program:

 1 b2 = 4294967295

 2 b3 = 1234500000000000000000000000000

 3 b2 + b3 = 1234500000000000000004294967295

 4 b2 – b3 = –1234499999999999999995705032705

 5 b2 * b3 = 5302137125674500000000000000000000000000

 6 b3 / b2 = 287429429657624435997

 7 b3 % b2 = 64281885

Number Classes

3-20

COOL User’s Manual

Range Class 3.11 The parameterized Range<Type,lbound,hbound> class enables arbitrary user-
defined ranges to be implemented in C++ classes. Typically, but not always, this is used
with other number classes to select a range of valid values for a particular numerical
type. Features and advantages of this class are discussed in this section. However, com-
plete details of parameterized templates are provided in Section 5.

The Range<Type,lbound,hbound> class is publicly derived from the Range class and
supports user-defined ranges for a type of object or built-in data type. This allows other
higher level data structures such as the Rational and Complex classes to be restricted to
a range of values. The programmer does not have to add bounds-checking code to the
application. A vector of positive integers, for example, would be easy to declare, facili-
tating bounds checking restricted to the code that implements the type, not the vector.

The inclusive low and high bounds for the range are specified as arguments to the
parameterized type declaration and implementation macro calls. They are declared as
C++ constants of the appropriate type. No storage is allocated, and all references are
compiled out by the compiler. Once declared, a Range<Type,lbound,hbound> object
cannot have its upper or lower bounds changed because maintenance of all instances
would require significant and unwarranted overhead.

Name: Range<Type,lbound,hbound> — A parameterized range

Synopsis: #include <COOL/Range.h>

Base Classes: Range

Friend Classes: None

Constructors: Range<Type,lbound,hbound> ();
Creates an empty range object of the specified type and ranges.

Range<Type,lbound,hbound> (const Type& value);
Creates a range object with the specified value. If value is outside of the lower and
upper bounds, an Error exception is raised.

Range<Type,lbound,hbound> (const Range<Type,lbound,hbound>& r);
Creates a new range object with the same value as the range object r.

Member Functions: inline const Type& high () const;
Returns a reference to the upper limit of the range.

inline const Type& low () const;
Returns a reference to the lower limit of the range.

inline Range<Type,lbound,hbound>& operator=
(const Range<Type,lbound,hbound>& r);

Overloads the assignment operator for the Range<Type,lbound,hbound> class and
assigns the range object the value of r. This function returns a reference to the up-
dated object.

inline void set (const Type& value);
Sets the value of the range object to value if within the lower and upper limits;
otherwise, this function raises an Error exception.

Number Classes

3-21

COOL User’s Manual

inline void set_compare (Range_Compare r_fcn);
Sets the compare function for this class of Range<Type,lbound,hbound>.
Range_Compare is a function of type int (*Function)(const Type&, const
Type&).

inline operator Type () const;
Overloads the implicit conversion operator for the parameterized type to facilitate
mixed-type expressions and statements.

Range Example 3.12 The following program declares two range-checking objects, one of type double
and one of type char*. Each has type-specific upper and lower bounds that, if violated,
result in a run-time exception. Values are assigned to each object and the implicit use of
the type conversion operator is demonstrated.

 1 #include <COOL/Range.h> // Include range header file

 2 #include <string.h> // C++ ANSI C string functions

 3 DECLARE Range<double,2.5,8.8>; // Declare range of doubles

 4 IMPLEMENT Range<double,2.5,8.8>; // Implement range of doubles

 5 DECLARE Range<char*,”D”, ”K”>; // Declare range of strings

 6 IMPLEMENT Range<char*, ”D”, ”K”>; // Implement range of strings

 7 int my_compare (const charP& s1, const charP& s2) {
 8 return (strcmp (s1, s2));
 9 }

10 int main (void) {
11 // Range–checked double

12 r1.set(4.3); // Assign value

13 cout << ”r1 has an inclusive low bound of ” << r1.low(); // Output low and
14 cout << ”an inclusive high bound of ” << r1.high() << ”,\n”; // High
15 cout << ”and a value of ” << (double)r1 << ”\n”; // Output value
16 double d1 = 1.9; // Declare a double

17 cout << (double)r1 << ” * ” << d1 << ” = ”; // Output equation

18 r1.set (d1 * r1); // Calculate value

19 cout << (double)r1 << ”\n”;// And display it
20 Range<charP,”D”,”K”> r2; // Range–checked string

21 r2.set_compare (&my_compare); // Set compare function

22 r2.set(”EFG”); // Assign value

23 cout << ”r2 has an inclusive low bound of ” << r2.low();
24 cout << ”an inclusive high bound of ” << r2.high() << ”,\n”;
25 cout << ”a value of ” << (char*)r2; // Output string value

26 cout << ”, and a length of ” << strlen (r2) << ”\n”; // Output length
27 return 0; // Exit with OK status

28 }

Line 1 includes the COOL Range.h class header file and line 2 includes the COOL
String.h class header file. Lines 3 through 6 declare and implement two kinds of
range-checking objects: one a double with a low bound of 2.5 and a high bound of 8.8,
and the other a character string object with a low bound of “D” and a high bound of “K”.
Lines 7 through 9 define a comparison function for the range-checked string object,
although in this program, it is not actually used. Line 11 declares a range object of type
double with upper and lower bounds as before and line 12 gives this object a value.
Lines 13 and 14 output the lower and upper bounds and line 15 displays the value of the
object via a cast. Lines 16 through 18 show the object used in an arithmetic expression
and line 19 prints the result.

Number Classes

3-22

COOL User’s Manual

Line 20 declares a range-checked string object and line 21 sets the default comparison
routine for this object, should one be needed. Line 22 initializes the object with a string
value. Lines 23 through 25 output the lower and upper bounds and the value. Line 26
displays the number of characters in the string by means of a system-supplied string
length function and the implicit type conversion operator for the Range class. Finally,
the program ends with a valid exit code.

The following shows the output from the program:

r1 has an inclusive low bound of 2.5, an inclusive high bound of 8.8,
and a value of 4.3
4.3 * 1.9 = 8.17
r2 has an inclusive low bound of D, an inclusive high bound of K,
a value of EFG, and a length of 3

4-1COOL User’s Manual

SYSTEM INTERFACE
CLASSES

Introduction 4.1 The COOL system interface classes encapsulate common system-specific func-
tionality such as date-and-time manipulation and timing facilities. These classes pro-
vide a single interface for an application program no matter which of the supported
platforms it is running on. This facilitates a single source base for an application de-
signed to run on several types of hardware. The following classes are discussed in this
section:

• Date_Time

• Timer

The Date_Time class implements time zone-independent date and time functions, in-
cluding time zone changes, calendar date manipulation, and complete input parsing and
output formatting capability for significant country or language formats. The Timer
class uses the system time(2) interface to provide time resolution between a reference
point and now. The accuracy of the time period reported is system-dependent, but will
generally be either at millisecond or microsecond granularity.

Requirements 4.2 This section discusses the system interface classes. It assumes you have a working
understanding of the C++ language and type system. In addition, you should under-
stand the distinction between overloaded operators and friend functions.

Date_Time Class 4.3 The Date_Time class executes time zone-independent date and time functions.
This class supports calendar operations and input and output based upon the value of an
environmental synonym, such as US_CENTRAL. This class supports all time zones in
the world, along with several special cases requiring alternate handling based upon po-
litical or daylight saving time differences. Unlike the ANSI C date and time functions,
this class supports dates before the epoch (January 1, 1970). Year values specified be-
tween 0 and 99 are assumed to be in the twentieth century.

Name: Date_Time — Time zone–independent date and time class

Synopsis: #include <COOL/Date_Time.h>

Base Classes: Generic

Friend Classes: None

Public Constructors: Date_Time ();
Allocates a date and time object with the default time zone and country. A Warning
exception is raised if the default country or the default time has not been set for the
class.

Date_Time (const Date_Time& dt);
Duplicates the size and entries of a date and time object dt.

System Interface Classes

4-2 COOL User’s Manual

Date_Time (time_zone tz, country c);
Allocates a date and time object with time zone tz and country code c.

Member Functions: const char* ascii_date () const;
Returns the date in ASCII format for the appropriate time zone and country.

const char* ascii_date_time () const;
Returns the date and time in ASCII format for the appropriate time zone and coun-
try.

const char* ascii_duration (const Date_Time& dt) const;
Returns the duration of time between the date/time object and dt in ASCII format.

const char* ascii_time () const;
Returns the time in ASCII format for the appropriate time zone and country.

inline void decr_day (int n = 1);
Decrements the time by the specified number of days. The default is one.

inline void decr_hour (int n = 1);
Decrements the time by the specified number of hours. The default is one.

inline void decr_min (int n = 1);
Decrements the time by specified number of minutes. The default is one.

void decr_month (int n = 1);
Decrements the time by specified number of months. The default is one.

inline void decr_sec (int n = 1);
Decrements the time by specified number of seconds. The default is one.

inline void decr_week (int n = 1);
Decrements the time by the specified number of weeks. The default is one.

void decr_year (int n = 1);
Decrements the time by the specified number of years. The default is one.

void end_day (int n = 1);
Advances the time by the specified number of days, setting the time to 23:59:59.
The default is one.

void end_hour (int n = 1);
Advances the time by the specified number of hours, setting the time to hh:59:59.
The default is one.

void end_min (int n = 1);
Advances the time by the specified number of minutes, setting the time to
hh:mm:59. The default is one.

void end_month (int n = 1);
Advances the time by the specified number of months, setting the time to 31/mm/
yyyy 23:59:59. The default is one.

void end_week (int n = 1);
Advances the time by the specified number of weeks, setting the time to Sunday
23:59:59. The default is one.

System Interface Classes

4-3COOL User’s Manual

void end_year (int n = 1);
Advances the time by the specified number of months, setting the time to
31/12/yyyy 23:59:59. The default is one.

inline const char* get_country () const;
Returns the country in ASCII format.

inline int get_hour () const;
Returns the value of the hour data member in the object (0–23).

inline int get_mday () const;
Returns the value of the day of the month data member in the object (1–31).

inline int get_min () const;
Returns the value of the minutes data member in the object (0–59).

inline int get_mon () const;
Returns the value of the months data member in the object (0–11).

inline int get_sec () const;
Returns the value of the seconds data member in the object (0–59).

inline const char* get_time_zone () const;
Returns the time zone in ASCII format.

inline int get_wday () const;
Returns the value of the day of the week data member in the object (Sunday=0).

inline int get_yday () const;
Returns the value of the day of the year data member in the object (0–365)

inline int get_year () const;
Returns the value of the year data member in the object.

void incr_day (int n = 1);
Increments the time by the specified number of days. The default is one.

void incr_hour (int n = 1);
Increments the time by the specified number of hours. The default is one.

void incr_min (int n = 1);
Increments the time by the specified number of minutes. The default is one.

void incr_month (int n = 1);
Increments the time by the specified number of months. The default is one.

void incr_sec (int n = 1);
Increments the time by the specified number of seconds. The default is one.

void incr_week (int n = 1);
Increments the time by the specified number of weeks. The default is one.

void incr_year (int n = 1);
Increments the time by the specified number of years. The default is one.

inline Boolean is_day_light_savings () const;
Returns TRUE if daylight saving time is in effect; otherwise, returns FALSE.

System Interface Classes

4-4 COOL User’s Manual

inline long operator– (const Date_Time& dt);
Computes the interval of time between the date and time object and dt.

Date_Time& operator= (const Date_Time& dt);
Overloads the assignment operator to replicate the value of one date and time ob-
ject to another.

Date_Time& operator+= (long seconds);
Performs interval addition and assignment.

Date_Time& operator–= (long seconds);
Performs interval subtraction and assignment.

inline Boolean operator== (const Date_Time& dt) const;
Overloads the equality operator for the Date_Time class. This function returns
TRUE if two objects represent the same time; otherwise, this function returns
FALSE.

inline Boolean operator!= (const Date_Time& dt) const;
Overloads the inequality operator for the Date_Time class. This function returns
FALSE if two objects represent the same time; otherwise, this function returns
TRUE.

inline Boolean operator< (const Date_Time& dt) const;
Overloads the less-than operator for the Date_Time class. This function returns
TRUE if the date and time object represents a date and time before dt; otherwise,
this function returns FALSE.

inline Boolean operator<= (const Date_Time& dt) const;
Overloads the less-than-or-equal operator for the Date_Time class. This function
returns TRUE if the date and time object represents a date and time before or equal
to dt; otherwise, this function returns FALSE.

inline Boolean operator> (const Date_Time& dt) const;
Overloads the greater-than operator for the Date_Time class. This function returns
TRUE if the date and time object represents a date and time after dt; otherwise, this
function returns FALSE.

inline Boolean operator>= (const Date_Time& dt) const;
Overloads the greater-than-or-equal operator for the Date_Time class. This
function returns TRUE if the date and time object represents a date and time equal
to or after dt; otherwise, this function returns FALSE.

void parse (char* str, int settz = 0);
Parses the character string str input and fills all appropriate data members of the
date and time object. If no value is provided for settz, the parsing algorithm does not
search for a time zone. The parser recognizes most valid input and always parses
relative to the time zone. Fields not specified are defaulted where appropriate. Ille-
gal input results in an Error exception being raised.

inline void set_country (country c);
Sets the country to the value c.

void set_gm_time ();
Sets the date and time to Greenwich mean time.

System Interface Classes

4-5COOL User’s Manual

void set_local_time ();
Sets the date and time to local time as determined by the time zone and country
code values.

inline void set_time_zone (time_zone tz);
Sets the time zone to the value tz.

void start_day (int n = 1);
Advances the time the specified number of days, setting the time to 00:00:00. The
default is one.

void start_hour (int n = 1);
Advances the time by the specified number of hours, setting the time to hh:00:00.
The default is one.

void start_min (int n = 1);
Advances the time by the specified number of minutes, setting the time to
hh:mm:00. The default is one.

void start_month (int n = 1);
Advances the time by the specified number of months, setting the time to 01/mm/
yyyy 00:00:00. The default is one.

void start_week (int n = 1);
Advances the time by the specified number of weeks, setting the time to Monday
00:00:00. The default is one.

void start_year (int n = 1);
Advances the time by the specified number of years, setting the time to 01/01/yyyy
00:00:00. The default is one.

Friend Functions: friend istream operator>> (istream& is, Date_Time& dt);
Overloads the input operator to read the input stream is, and parses the character
string containing the date and time information. The result is returned in the date
and time object dt.

friend ostream operator<< (ostream& os, const Date_Time* dt);
Overloads the output operator for a pointer to a date-and-time object. The object
writes the output stream os with a character string representing the date and time
object dt formatted for the appropriate country.

friend ostream operator<< (ostream& os, const Date_Time& dt);
Overloads the output operator for a reference to a date-and-time object. The object
writes the output stream os with a character string representing the date and time
object dt formatted for the appropriate country.

inline friend void set_default_country (country c);
Sets the default country for the class to the value c.

inline friend void set_default_time_zone (time_zone tz);
Sets the default time zone for the class to the value tz.

System Interface Classes

4-6 COOL User’s Manual

Time_zone.h File 4.4 The time_zone.h include file contains enumeration declarations for time zone
names of type time_zone. The file declares a static char* array of printable names. The
constants in the enumerated type can be used as indexes for these names. In the follow-
ing table, the enum declaration is on the left and the matching static char* string is on
the right.

Name: time_zone.h — Symbolic and string time zone names

Synopsis: #include <COOL/time_zone.h>

Enumeration Declaration Character String

UNKNOWN_TIME_ZONE “Unknown Time Zone”
US_EASTERN “US/Eastern”
US_CENTRAL “US/Central”
US_MOUNTAIN “US/Mountain”
US_PACIFIC “US/Pacific”
US_PACIFIC_NEW “US/Pacific–New”
US_YUKON “US/Yukon”
US_EAST_INDIANA “US/East–Indiana”
US_ARIZONA “US/Arizona”
US_HAWAII “US/Hawaii”
CANADA_NEWFOUNDLAND “Canada/Newfoundland”
CANADA_ATLANTIC “Canada/Atlantic”
CANADA_EASTERN “Canada/Eastern”
CANADA_CENTRAL “Canada/Central”
CANADA_EAST_SASKATCHEWAN “Canada/East–Saskatchewan”
CANADA_MOUNTAIN “Canada/Mountain”
CANADA_PACIFIC “Canada/Pacific”
CANADA_YUKON “Canada/Yukon”
GB_EIRE “GB–Eire”
WET “WET”
ICELAND “Iceland”
MET “MET”
POLAND “Poland”
EET “EET”
TURKEY “Turkey”
W_SU “W–SU”
PRC “PRC”
KOREA “Korea”
JAPAN “Japan”
SINGAPORE “Singapore”
HONGKONG “Hongkong”
ROC “ROC”
AUSTRALIA_TASMANIA “Australia/Tasmania”
AUSTRALIA_QUEENSLAND “Australia/Queensland”
AUSTRALIA_NORTH “Australia/North”
AUSTRALIA_WEST “Australia/West”
AUSTRALIA_SOUTH “Australia/South”
AUSTRALIA_VICTORIA “Australia/Victoria”
AUSTRALIA_NSW “Australia/NSW”
NZ “NZ”

System Interface Classes

4-7COOL User’s Manual

Country.h File 4.5 The country.h include file contains enumeration declarations for country names
of type country. The file declares a static char* array of printable country names. The
constants in the enumerated type can be used as indexes for these names. In the follow-
ing table, the enumeration declaration is on the left and the static char* string is on the
right.

Name: country.h — Symbolic and string country names

Synopsis: #include <COOL/country.h>

Enumeration Declaration Character String

UNKNOWN_COUNTRY “Unknown Country”
UNITED_STATES “United States”
FRENCH_CANADIAN “French Canadian”
LATIN_AMERICA “Latin America”
NETHERLANDS “Netherlands”
BELGIUM “Belgium”
FRANCE “France”
SPAIN “Spain”
ITALY “Italy”
SWITZERLAND “Switzerland”
UNITED_KINGDOM “United Kingdom”
DENMARK “Denmark”
SWEDEN “Sweden”
NORWAY “Norway”
GERMANY “Germany”
PORTUGAL “Portugal”
FINLAND “Finland”
ARABIC_COUNTRIES “Arabic Countries”
ISRAEL “Israel”

Calendar.h File 4.6 The calendar.h include file contains enumeration declarations for day and
month names of the types day_of_week and months. The file declares two static char*
arrays of printable day and month names. The constants in the enumerated types can be
used as indexes for these names. In addition, an array indexed by type month specifying
the number of days in the month is also provided. Finally, the file defines several macros
for typical date and time constants, along with a macro determining if a year is a leap
year. In the following tables, the enum declaration is on the left and the static char*
string is on the right.

Name: calendar.h — Symbolic and string calendar names

Synopsis: #include <COOL/calendar.h>

Enumeration Declaration Character String

System Interface Classes

4-8 COOL User’s Manual

SUNDAY “Sunday”
MONDAY “Monday”
TUESDAY “Tuesday”
WEDNESDAY “Wednesday”
THURSDAY “Thursday”
FRIDAY “Friday”
SATURDAY “Saturday”

Enumeration Declaration Character String

JANUARY “January”
FEBRUARY “February”
MARCH “March”
APRIL “April”
MAY “May”
JUNE “June”
JULY “July”
AUGUST “August”
SEPTEMBER “September”
OCTOBER “October”
NOVEMBER “November”
DECEMBER “December”

Date_Time Example 4.7 The following program creates two Date_Time objects and initializes one to the
current system date and time and the other to the date and time specified in a character
string. Several conversions between country formats and time zones are performed,
along with manipulating one of the dates by subtracting three months. Finally, the
length of time between the two objects is displayed.

System Interface Classes

4-9COOL User’s Manual

 1 #include <COOL/Date_Time.h> // Include Date_Time class

 2 int main (void) {

 3 set_default_country (UNITED_STATES); // Set default country code

 4 set_default_time_zone (US_CENTRAL); // Set default time zone

 5 Date_Time d1; // Create Date_Time object

 6 d1.set_local_time (); // Set current system time

 7 cout << ”Local date/time is: ” << d1 << ”\n”; // Output date in US format

 8 d1.set_country (UNITED_KINGDOM); // Set country to UK

 9 d1.set_time_zone (GB_EIRE); // Set Greenwich Mean Time

10 cout << ”GMT date/time is: ” << d1 << ”\n”; // Output date/time at GMT

11 d1.parse(”1 April 1890, 4:30pm”); // Parse some date in UK format

12 cout << ”Date/time parsed is: ” << d1 << ”\n”; // Output date/time parsed

13 d1.set_country (FRANCE); // Set country to France

14 d1.set_time_zone (WET); // Western European Time zone

15 cout << ”Date/time in France: ”<< d1 << ”\n”; // Output date/time in France

16 Date_Time d2; // Create another object

17 d2.set_local_time (); // Set current system time

18 cout << ”Date/time set is: ” << d2 << ”\n”; // Output date in US format

19 d2.decr_month (3); // Move back three months

20 cout << ”Date/time three months earlier: ” << d2 << ”\n”; // Output date

21 cout << ”Duration between dates is ”; //

22 cout << d1.ascii_duration (d2) << ”\n”; // Output time duration

23 return 0; // Return valid success code

24 }

Line 1 includes the COOL Date_Time class header file. Lines 3 and 4 establish the
default country and time zone for all Date_Time objects in this application to be
UNITED_STATES and US_CENTRAL, respectively. Line 5 instantiates an uninitialized ob-
ject, line 6 sets its value to be the local system date and time, and line 7 outputs this
value. Lines 8 and 9 change the country to UNITED_KINGDOM and the time zone to
GB_EIRE (Greenwich Mean Time). Line 10 outputs the time zone corrected date and
time values in English format. Line 11 sets the new value of the Date_Time object by
parsing a character string, and line 12 outputs the new setting. Lines 13 and 14 change
the country to FRANCE and the time zone to WET and output the value again. Note that the
time zone didn’t affect the value printed, but the format based on the country code
changed. Lines 16 through 18 output another Date_Time object for the UNITED_STATES
in US_MOUNTAIN time zone, and sets its value to the current system time. Line 19 decre-
ments the date by three months, and line 20 shows the resulting value. Lines 21 and 22
output in ASCII format the time difference between the two objects. Finally, line 23
exits the program with a valid successful completion code.

The following shows the output of the program:

Local date/time is: United States 02–13–1990 11:28:40 US/Central
GMT date/time is: United Kingdom 13–02–1990 17:28:40 GB–Eire
Date/time parsed is: United Kingdom 01–04–1890 16:30:00 GB–Eire
Date/time in France: France 01–01/1990 16:30:00 WET
Date/time set is: United States 02–13–1990 10:28:40 US/Mountain
Date/time three months earlier: United States 11–15–1989 10:28:40 US/Mountain
Duration between dates is 99 years, 35 weeks, 2 days, 0 hours, 58 minutes, 40 seconds

Timer Class 4.8 The Timer class is publicly derived from the Generic class and provides an inter-
face to system timing. It allows a C++ program to record the time between a reference
point (mark) and now. This class uses the system time(2) interface to provide time reso-
lution at either millisecond or microsecond granularity, depending upon operating sys-
tem support and features. Since the time duration is stored in a 32-bit word, the
maximum time period before rollover occurs is about 71 minutes.

System Interface Classes

4-10 COOL User’s Manual

Due to operating system dependencies, the accuracy of all member function results may
not be as documented. For example, some operating systems do not support timers with
microsecond resolution. In those cases, the values returned are provided to the nearest
millisecond or other unit of time as appropriate. See the Timer.h header file for system-
specific notes.

Name: Timer — A timing facility for C++

Synopsis: #include <COOL/Timer.h>

Base Classes: Generic

Friend Classes: None

Constructors: Timer ();
Creates an instance of the Timer class with the mark set to creation time.

Member Functions: long all();
Returns the number of milliseconds spent in the user process and the operating sys-
tem since the last reference point (mark).

long all_usec();
Returns the number of microseconds spent in the user process and the operating
system since the last reference point (mark).

void mark ();
Sets the reference time to now.

long real();
Returns the number of milliseconds of wall clock time since the last reference point
(mark).

long system();
Returns the number of milliseconds spent in the operating system since the last ref-
erence point (mark).

long system_usec();
Returns the number of microseconds spent in the operating system since the last
reference point (mark).

long user();
Returns the number of milliseconds spent in the user process since the last refer-
ence point (mark).

long user_usec();
Returns the number of microseconds spent in the user process since the last refer-
ence point (mark).

Timer Example 4.9 The following program uses the COOL Timer class to calculate the time for a
loop to sum up a sequence of integer values. Note that although this example reports
results in milliseconds, support timing granularity on your particular computer and op-
erating system may be different.

System Interface Classes

4-11COOL User’s Manual

 1 #include <COOL/Timer.h> // Includes COOL timer class

 2 int main (void) {

 3 Timer t1; // Create a timer object

 4 t1.mark (); // Set start reference point

 5 for (int i = 0, j = 0; i < 10000; i++) // Loop for 10000 times and

 6 j = j + i; // Sum up numbers

 7 cout << ”Summation of integers from 0 through 10000 took ”;
 8 cout << t1.real () << ” milliseconds\n”; // Output time since mark

 9 return 0; // Return valid completion code

10 }

Line 1 includes the COOL Timer header file. Line 3 creates a new timer object and line
4 establishes the starting point of the timing operation by setting the mark. Lines 5 and 6
implement a loop counting from 1 to 10000 that calculates the sum of these values. Line
8 contains an embedded call to the timer object to report the elapsed time from the mark
to now. Note that since this call is embedded in the output statements, the time reported
is not technically correct. A more accurate reading could be established by calling this
function and saving the value in a temporary variable for later use in the output state-
ment. Finally, line 9 returns a successful completion code.

The following shows the output of the program:

Summation of integers from 0 through 10000 took 20 milliseconds

System Interface Classes

4-12 COOL User’s Manual

5-1COOL User’s Manual

PARAMETERIZED
TEMPLATES

Introduction 5.1 Parameterized templates allow a programmer to design and implement a general
purpose class without specifying the exact type of object or data that is to be manipu-
lated. The user can then customize this general purpose class by specifying the object or
data type when it is used in a program. Several versions of the same parameterized tem-
plate (each implemented with a different type) can exist in a single application.
Parameterized templates can be thought of as metaclasses in that only one source base
needs to be maintained in order to support numerous variations of a type of class.

An important and useful type of parameterized template is known as a container class.
A container class is a special kind of parameterized template where you put objects of a
particular type. For example, the Vector, List, and Hash_Table classes are container
classes because they contain a set of programmer-defined data types. Since container
classes are so commonplace in many applications and programs, parameterized con-
tainer classes provide a mechanism to maintain one source base for several useful data
structures. COOL supplies several common container class data structures that can be
used by the programmer in many typical application scenarios.

Each of the COOL parameterized container classes supports the notion of a built-in
iterator that maintains a current position in the container and is updated by various
member functions. These member functions allow progression through the collection of
objects in some order. For example, a function might take a pointer to a generic object
that is a type of container object. The function can iterate through elements in the con-
tainer by using current position member functions without needing to know whether the
object is a vector, list, or queue.

In addition to this built-in iterator, you can also have multiple iterators over the same
class by using the Iterator class. For example, you may be moving through the ele-
ments of a container class and come to a point where you need to save the current posi-
tion and begin processing elements at another location. After a period of time, you
return to the previous stopping point and continue where you left off.

Requirements 5.2 This section assumes you have an understanding of the C++ language and its type
system. In addition, some familiarity with automated program build procedures such as
make is also necessary.

Parameterized Templates

5-2 COOL User’s Manual

Parameterized 5.3 A parameterized template is the mechanism that allows a programmer to
Templates define a metaclass representing a type–independent class. The class programmer uses

this facility to implement a class without knowing the specific type of data the user
might want to use. For example, a Vector class can be written by using parameterized
templates so that the user of the class can create vectors of integers, vectors of doubles,
and so on. This scheme allows the class programmer to maintain one source code base
for multiple implementations of the class.

Regardless of the type of object a parameterized template is to manipulate,the structure
and organization of the template and the implementation of the member functions are
the same for every version of the class. For example, a programmer providing a Vector
class knows that there will be several member functions such as insert, remove, print,
sort, and so on that apply to every version of the class. By parameterizing the arguments
and return values from the various member functions, the programmer provides only
one implementation of the Vector template. The user of the class then specifies the type
of vector at compile-time. The following parameterized templates are currently avail-
able in COOL:

Templates Description

Association An association list of pairs of objects
AVL_Tree Height-balanced binary tree
Binary_Tree Fast, efficient binary tree
Hash_Table Dynamic hash table
Iterator Container class iterators
List Dynamic Common Lisp style lists
Matrix Two-dimensional matrix
N_Tree N-ary tree
Pair Coupling of two objects
Queue Dynamic circular queue
Range User-specified type with limits
Set Unordered collection of objects
Stack Dynamic stack
Vector One-dimensional vector

The syntax of the COOL parameterized templates grammar is as specified by Bjarne
Stroustrup in his paper “Parameterized Types for C++” in the 1988 USENIX C++ Con-
ference Proceedings. COOL fully implements the specified syntax so there will be
minimal source code conversion necessary when this feature is finally implemented in
the C++ language.

The template keyword provides a means of defining parameterized templates. COOL
provides four variations of template for controlling the operation and generation of dif-
ferent parts of a class. Templates are expanded in two parts and each of the four vari-
ations is used in one of the two parts:

• The declarative part, which is needed by every program file that uses the
parameterized class

• The implementation part, which needs to be compiled once for the class in any ap-
plication that uses it

Parameterized Templates

5-3COOL User’s Manual

The declarative part of the template may occur many times in an application and is
analogous to including a header file for a class. Template variations here declare the
class interface and define the inline member functions.

The implementation part of the template is analogous to the C++ file that contains the
source code implementing the member functions of a class. Template variations here
define the member and friend functions that constitute the parameterized class.

Name: template — C++ parameterized template keyword

Synopsis: template<class parms> class name<parms> { class_description };
Defines a template for the declaration of class name.

template<parms> result name<parms>::function { ... };
Defines a member function for the implementation of class name.

template<class parms> inline result name<parms>::function { ... };
Defines an inline member function for the declaration of the class name .

template<class parms> name { anything };
Defines anything else you want associated with a template.

The first variation of template declares a parameterized template in a header file. Typi-
cally, such a declaration is very similar to that of a standard C++ class, except for the
appearance of the angle brackets and arguments. The second variation defines member
functions of a parameterized template. The third variation defines inline member func-
tions of a parameterized template. Again, these appear similar to that of a standard C++
class.

The last variation of template defines such miscellaneous items as a typedef or an over-
loaded friend function of a parameterized template. When this form is found before the
class template, the contents are expanded before the class declaration. When this form is
found after the class template, the contents are expanded as part of the class implemen-
tation. This has been used in several COOL container classes for defining predicate
types for the class (see paragraph 5.5 example below).

Each of the template forms allow one or more optional parameters to be supplied be-
tween the angle brackets. These are used to allow the programmer to specify the type
and other optional arguments to the template with the following syntax:

parms ::= type name [, parms]

where type is the type of the argument, for example, a class, an int, and so forth. Name is
the name of the parameter that is substituted when the template is expanded. For exam-
ple, an n-ary tree class might have the following template class declaration:

template <class Type, int nchild> class N_Tree<Type,nchild> {...};

In this example, class N_Tree<Type,nchild> is defined as a parameterized template
with two arguments. The first, Type, specifies the type over which N_Tree is
parameterized. The second, nchild, specifies the number of subtrees each node in the
n-tree may have.

Parameterized Templates

5-4 COOL User’s Manual

DECLARE and 5.4 As stated earlier, a parameterized template declares a metaclass that is
IMPLEMENT type-independent. To use the metaclass, a programmer must specify the actual type and

any other template arguments in order to use it in a program. This is accomplished in
two steps: the declarative step and the implementation step. The declarative step uses
DECLARE and the implementation step uses either IMPLEMENT or the Cool C++
Control program (CCC) discussed in paragraph 5.7.

Name: DECLARE — Declares a parameterized class
IMPLEMENT — Implements a parameterized class

Synopsis: #include <COOL/Name.h>
DECLARE Name<Type>;
IMPLEMENT Name<Type>;

Macros: DECLARE Name<Type>
Declares a parameterized class named Name of type Type.

IMPLEMENT Name<Type>
Implements a parameterized class named Name of type Type.

DECLARE instantiates a type-independent parameterized template for a user-speci-
fied type. DECLARE is analogous to using typedef to indicate a new valid type name
to the compiler, or including the header file for some standard C++ class declaration.
DECLARE must be used in every file that includes or makes use of a parameterized
template. Alternately, the DECLARE statement can be placed in a common header file
that is included as necessary. DECLARE must be followed by a valid parameterized
template name and a type name. Typically, this is done by including a header file with
common information and definitions.

IMPLEMENT defines the member functions of a parameterized template for a spe-
cific type. IMPLEMENT is analogous to the C++ file that contains the source code
implementing the member functions of a class. IMPLEMENT must be used only once
in an application for a specific instantiation of a parameterized template; otherwise, you
will receive errors from the linker about symbols being defined more than once. IM-
PLEMENT must be followed by a parameterized template name and a type
name.Typically, IMPLEMENT is done in one of the C++ source files making up part
of the application. The name and arguments must match those previously declared with
DECLARE.

NOTE: When you use IMPLEMENT, all the member functions for a particular
parameterized template are implemented in one source file. With the simple linkers
available on many operating systems today, an application will get all of these member
functions linked into the executable image even if only one or two are used. CCC pro-
vides a mechanism by which only member functions actually used in the application get
linked into the final program. See paragraph 5.6, COOL C++ Control program, for fur-
ther information.

Parameterized Templates

5-5COOL User’s Manual

DECLARE and 5.5 Declaration and implementation statements are flexible and can be
IMPLEMENT nested in a variety of operations, such as declaring a list of vectors of integers.
Example In addition, an argument passed as a type name at one level can itself be used as an

argument to be passed at a lower level. This is done in the COOL Associa-
tion<Ktype,Vtype> class in conjunction with the fourth variation of template dis-
cussed earlier. An abbreviated header file for this class contains the following
statements:

 1 template <class Ktype, class Vtype> Association {

 2 DECLARE Pair<Ktype, Vtype>; // Declare pair object type

 3 DECLARE Vector<Pair<Ktype,Vtype>>; // Declare vector of pairs

 4 }

 5 template <class Ktype,class Vtype>

 6 class Association : public Vector<Pair<Ktype,Vtype>> {

 7 /* Association class interface specification */

 8 };

 9 template <class Ktype, class Vtype> Association {

10 IMPLEMENT Pair<Ktype,Vtype>;

11 IMPLEMENT Vector<Pair<Ktype,Vtype>>;

12 }

Lines 1 through 4 are placed before the Association<Ktype,Vtype> class definition,
thus becoming linked with the declarative part of the template for the class. Lines 5
through 8 contain the actual class definition. Lines 9 through 12 are placed after the
class definition, thus becoming linked with the implementation part of the template for
the class. By using template in this manner, the DECLARE for the Associa-
tion<Ktype, Vtype> class also invokes DECLARE for the correct types for the
Pair<Ktype,Vtype> and Vector<Pair<Ktype,Vtype>> classes. Likewise, IMPLE-
MENT for the Association class invokes IMPLEMENT for the Pair<Ktype,Vtype>
and Vector<Pair<Ktype,Vtype>> classes.

Template Example 5.6 Suppose a class programmer wants to implement a generic vector class with a
simple, consistent interface for the application programmer, regardless of what object is
to be stored in the vector. In addition, he wants to avoid replication of code for each
specific type. He creates a parameterized vector template derived from a type-inde-
pendent base class, as in the following abbreviated example:

 1 class Vector { // Vector class

 2 private:

 3 int num_elements; // Element count

 4 int size; // Size of vector object

 5 public:

 6 inline int count (); // Number of elements

 7 ... // Other member functions ...

 8 };

 9 inline int Vector::count (int n) {

10 return this–>num_elements; // Return element count

11 }

12 ... // Other member functions ...

Parameterized Templates

5-6 COOL User’s Manual

13 #include <Base_Vector.h> // Type-independent base class

14 #include <COOL/misc.h> // COOL definitions

15 template<class Type> class Vector<Type> : public Vector {

16 private:

17 Type* v; // Vector of pointer to Type

18 public:

19 Vector<Type> (); // Empty constructor

20 Vector<Type> (int); // Constructor with size

21 Vector<Type> (Vector<Type>&); // Constructor with reference

22 ~Vector<Type> (); // Destructor

23 inline Type& operator[](int n); // Operator[] overload for Type

24 Type& element (int n); // Return element of type Type

25 ... // Other member functions ...

26 };

27 template<class Type> // Overload operator []

28 inline Type& Vector<Type>::operator[] (int n) {

29 return this–>v[n];

30 }

31 template <class Type> // Constructor with size

32 Vector<Type>::Vector<Type> (int n) {

33 this–>v = new Type[n];

34 this–>size = n;

35 this–>num_elements = 0;

36 }

37 ... // Other member functions ...

Lines 1 through 8 declare a class Vector representing the generic functionality of the
parameterized vector class. Data members such as object size and element count are in
the base class. Lines 9 through 11 implement one of the inline member functions of this
base class. Type-independent member functions like count() are provided in the public
interface. Other member functions of this base class can be defined. The class declara-
tion and the inline member functions (lines 1 through 11) are written to a file Base_Vec-
tor.h and the non-inline member functions (line 12) located in the file Base_Vector.C.

Line 13 includes the base Vector class and line 14 includes the COOL declarations and
definitions necessary for the use of parameterized templates. Line 15 is a template for
the class Vector<Type> that inherits the type-independent Vector base class. Lines 16
through 26 declare part of the interface for the class. A more complete class would have
many other member functions and include support for the current position functionality
discussed later. Lines 27 through 30 use a template for an inline member function, and
lines 31 through 36 use another template for a constructor for the class. Unlike a non-
parameterized class, the class declaration, the inline member functions, and the non-in-
line member functions are all located in the same file Vector.h.

This abbreviated example is exactly how the code is organized for the COOL Vec-
tor<Type> class. Lines 1 through 11 are located in the file ~COOL/Vector/Base_Vec-
tor.h and specify type-independent features. Line 12 (that is, the member functions of
the base class) is found in ~COOL/Vector/Base_Vector.C and contains member func-
tion implementation code for the base vector class. Finally, lines 13 through 37 are lo-
cated in ~COOL/Vector/Vector.h and specify the parameterized vector class.

Parameterized Templates

5-7COOL User’s Manual

To use this parameterized template, an application programmer includes the
parameterized vector header file and adds a DECLARE statement in every source file
that needs to know about the Vector<Type> class. In addition, an IMPLEMENT state-
ment must be added to only one source file. The following lines could be added to an
application program source file to use this parameterized vector class for type double:

1 #include <Vector.h> // Include parameterized class

2 DECLARE Vector<double>; // Declare vector of double

3 IMPLEMENT Vector<double>; // Implement vector of double

4 void print (Vector<double>& v) { // Function to print elements

5 for (i = 0; i < v.count(); i++) // For each element in vector

6 cout << v[i] << ”\n”; // Print the value

7 }

This simple function takes a single argument of a reference to a parameterized vector of
doubles object. It uses the count() member function inherited from the base class Vec-
tor to iterate through the elements of the object and print the value. An alternate proce-
dure for iterating through the elements of a parameterized container class is discussed in
paragraph 5.9.

NOTE: When IMPLEMENT is used in this manner, all the member functions of the
parameterized template are linked into the final executable image, even if they are never
referenced or used. To avoid this problem, use the CCC program as discussed below.

COOL C++ Control 5.7 Parameterized classes are compiled and manipulated by the COOL C++
Program Control program (CCC) which provides all functions of the original CC program and

also supports the COOL preprocessor and COOL macro language. CCC controls and
invokes the various components of the compilation process. In particular, it looks for
command line arguments specific to the parameterized template process and processes
them accordingly. Other options and arguments are passed onto the system C++ com-
piler control program.

When IMPLEMENT is used to expand a parameterized template, all the member func-
tions are placed in one source file. With the simple linkers available on many operating
systems today, a program links these member functions into the application executable
image, even if only one or two are actually used. The CCC program takes each
template specifying a member function, compiles it into a separate object module, and
adds it to an application-specific object library. As a result, only those member func-
tions actually used by the application get linked into the final program.

CCC takes the in-memory expanded code that implements a parameterized template
and fractures it along template boundaries. Each member function for a class is in its
own template. Each member function compiles into a separate object module named
(by default) the name of the source file with a number appended that is incremented
automatically for each member function. These separate object files are then added to
an application library. At link time, the system linker uses the symbols in this archive to
resolve external references. Since each member function is in its own object file in the
library archive, only those member functions used in the application are linked into the
final executable image.

Parameterized Templates

5-8 COOL User’s Manual

The user specifies one or more template files, a library archive name, and a specific
expansion type as command line arguments. Other arguments for the C++ compiler,
system linker, and so forth, are passed on unchanged to the various components of the
compilation process. A single invocation of CCC processes either a template or pro-
ceeds with the compilation of a regular C++ source file, but not both.

Several of the primary COOL classes use CCC to fracture an instance of one or more
parameterized classes. For example, the Symbol and Package classes (discussed in sec-
tion 11, Symbols and Packages) use only a few of the member functions of the Vec-
tor<Type> and Hash_Table<Type> classes to implement the runtime type checking
(discussed in section 12, Polymorphic Management). See the file ~COOL/Package/
Makefile for more information.

Name: CCC — The COOL C++ control program

Synopsis: CCC [–options REST: args] template library type

Options: –X“Name<Type>”
Expands the template for class Name with type Type. A template expansion must be
specified. The double quotation marks are required.

NOTE: The following options are used only in conjunction with the –X option;
otherwise, they are passed to the system C++ control program.

–o filename
Specifies the optional filename prefix to be used as the base name for each object
module. The default filename is the name of the class with an index appended to it
(for example, Vector5.o and Vector6.o). The filename must be unique inside the
library archive.

–l library
Places all resulting object files in the specified application library archive. A li-
brary archive must be specified.

–C
Keeps the fractured source files implementing each member function. This is use-
ful as a debugging aid when a template does not expand correctly due to some user
syntax error.

–I pathname
Searches the pathname for the specified header (template) source files.

Parameterized Templates

5-9COOL User’s Manual

CCC Example 5.8 Suppose you have an application where you require a Vector<Type> class tem-
plate parameterized over the built1-in int type. You could use DECLARE and
IMPLEMENT and get all of Vector<Type>’s member functions expanded and linked
into your application. Typically, however, you are going to use only a small percentage
of the member functions of the class. The remaining unused member functions get
linked in as overhead into the executable image, increasing program size and memory
requirements. Consider the following program example

1 #include <COOL/Vector.h> // Include parameterized class

2 DECLARE Vector<int>; // Declare vector of integers

3 int main (void) {

4 Vector<int> v1; // Declare vector object

5 for (i = 0; i < 10; i++) // Copy 10 elements into vector

6 v1.push (i); // Add value to vector

7 cout << v1; // Print the vector

8 }

Line 1 includes the Vector<Type> class header file. Line 2 declares the type so that the
compiler knows about vectors of integers. Lines 3 through 8 implement a trivial pro-
gram that adds 10 elements to the vector object and outputs the results. This program
makes use of a constructor, the push member function, and the overload operator<<. If
compiled and linked in the normal manner, all the other Vector<Type> member func-
tions would also be linked into the application, even though they aren’t used.

To resolve this problem, the following line can be used in your application make file (as
in done for this example in ~COOL/examples/Makefile):

$(CCC) $(CCFLAGS) $(INCLUDE) $(MY_LIB) COOL/Vector.h –oVecInt –X”Vector<int>”

This command line executes CCC with the usual options and include directory search
path. In addition, an application-specific library archive file MY_LIB is designated to
hold the fractured template object files. The Vector.h header file is given as the source
file. The –oVecInt option causes CCC to generate object files named VecInt0,
VecInt1, VecInt2, etc. Finally, the –X”Vector<int>” option indicates that CCC should
generate code to support a vector of integers. The resulting object files (one for each
member function) from the fractured template are stored in the library archive.

NOTE: As with any intermediate compilation step, the –c option must be specified as
part of CCFLAGS, since it is passed onto the compiler indicating that it should not con-
tinue with the link phase.

To insure that the linker searches in the correct library archive for the fractured template
object files, add the application-specific library archive to the final link step (as is done
for this example in ~COOL/examples/Makefile):

CCC –o $(PROGRAM) $(OBJECTS) –L$(LIB_DIR) –l$(MY_LIB) –lCOOL

This command line creates a final executable image named $(PROGRAM) from all object
files specified by $(OBJECTS) using the libraries $(MY_LIB) and libCOOL.a to resolve
any external references.

Parameterized Templates

5-10 COOL User’s Manual

Container Classes 5.9 A container class is a specialization of parameterized classes which contains ob-
jects of a particular type. For example, the Vector, List, and Hash_Table classes are
container classes because they contain a set of programmer-defined data types. On the
other hand, the Range and Iterator classes are parameterized classes, but not container
classes, because you do not put objects into them. As container classes are so common-
place in many applications and programs, the COOL parameterized container classes
provide a mechanism to maintain one source base for several versions of very useful
data structures. The following container classes are currently available in COOL:

Association An association list of pairs of objects
AVL_Tree Height-balanced binary tree
Binary_Tree Fast, efficient binary tree
Hash_Table Dynamic hash table
List Dynamic Common Lisp style lists
Matrix Two-dimensional matrix
N_Tree N-ary tree
Queue Dynamic circular queue
Set Unordered collection of objects
Stack Dynamic stack
Vector One dimensional vector

One of the convenient aspects of the container classes is ease from the programmer’s
point of view. A container class that is parameterized over an object does not require the
user to manage memory. However, if the class is parameterized over a pointer to an
object, the programmer must allocate and deallocate all storage for the objects.

Generally, there is no performance gain from parameterizing over a pointer to an object
rather than the object itself because all COOL container classes use C++ references. In
fact, doing so may be less efficient than parameterizing over the object itself. Construc-
tors and destructors for the objects pointed to may be called every time you change, add,
or remove an element in the container. If, on the other hand, you parameterize over the
object itself, the constructor is called only once when the container class is created. Up-
dates and changes are performed via the assignment and/or X(X&) constructor. A valid
reason for choosing a pointer is when the size of each object might be different and/or
unknown at compile-time.

Example:

1 #include <COOL/Vector.h> // Bring in the template

2 DECLARE Vector<int> // Define the type

3 static Vector<int> foo; // Use the type

4 IMPLEMENT Vector<int> // Support the type

In this example, line 1 includes the parameterized COOL container class Vec-
tor<Type>. Line 2 declares an instance of this class to contain integers. Any valid C++
statement containing a data type can now be used with this type. Line 3 shows a use of
this new type to define a static variable. Line 4 must appear only once in all the source
files in an application. Line 4 generates the type-specific code that implements the
member functions of class Vector<int>. At this time, any member function can now be
called for an object of this type.

Parameterized Templates

5-11COOL User’s Manual

In many cases, you may need to create a specialized container class that is customized
for a particular problem (for example, a BTree class for a database project). Paragraph
5.12, Making Your Own Container Classes, will discuss the requirements for such a
case. However, first read the documentation for current position and iterators in the fol-
lowing paragraphs.

Container Example 5.10 Each of the COOL parameterized container classes supports the notion
(Current Position) of a built-in iterator maintaining a current position in the container. When

a container object is created, the current position is invalidated. Various member func-
tions change the contents or order of elements in a container object, and update the cur-
rent position marker as necessary (including invalidating it if appropriate). This might
occur, for example, if the elements of a container object are sorted according to some
new predicate, thus removing any significance to the current position setting.

In addition to this automatic tracking of the current position, the following member
functions are common to all container classes and can be used in a generic manner re-
gardless of the specific container class. The programmer uses the following member
functions to move through and manipulate the collection of objects in the container:

Member Functions Description

reset Resets the current position
next Advances to the next element
prev Backs up to the previous element
value Gets the element at the current position
remove Removes the element at the current position
find Finds an element and sets the current position

These member functions work efficiently for each container class. In most cases, an
inline is all that is needed. Other classes have more efficient versions of a specific mem-
ber function (such as, next/prev in Vector, or find in Hash_Table), but all have the
same semantic meaning. These simple member functions combine to make powerful,
general purpose functions and macros.

For example, you might define a function that takes a pointer to a generic object that is a
type of container class (see the section titled Polymorphic Management later in this
manual for more information on polymorphic functionality). The function iterates
through the elements in the container by using the current position member functions
without needing to know whether the object is a vector, a list, or a queue, and so forth. A
complete and useful example of this feature is provided in the section titled Macros later
in this manual.

Parameterized Templates

5-12 COOL User’s Manual

Iterator Class 5.11 In addition to the built-in iterator previously described, you can also have multi-
ple iterators over the same class by using the Iterator<Type> class. This is useful when
you move through the elements of a container class, come to a point where you need to
save the current position, and process elements at another location. After a period of
time, you return to the previous stopping point and continue where you left off.

The Iterator<Type> class provides an independent mechanism for maintaining the
state associated with the current position of an instance of a container class. Multiple
iterators over the same instance of a class can be supported. Each container class sup-
porting the current position notion has a data structure representing the state. This may
be as simple as a type long, or more involved, such as with a union of bit fields or an-
other class instance. In addition, each container class has a current_position member
function to get or set the current position. This member function facilitates storage and
retrieval of the current position.

The container-specific data structure used to hold the current position state in all COOL
container classes is, by convention, named class_state, where class is the name of the
container class header file. Thus, a user including Vector.h declares an Iterator<Vec-
tor> class, and the internal data structure that is created automatically and maintains the
state is of type Vector_state. In this manner, the Iterator<Type> class parameterizes
over the container class name (that is, Bit_Set, Vector, and so on). This class allocates a
data member of the appropriate type by concatenating the Type name with the string
“_state”. The user need not know about internal implementation details.

Each container class has the current_position public member function that returns a
reference to the iterator state data structure. The member functions supporting current
position functionality always work on the current position as maintained in the private
data section of the container class instance. A programmer can, at any point, change the
current position state information by using this member function to get and/or set the
current position of the container class.

Each state data structure implemented in every container class must support the assign-
ment of INVALID (defined in COOL/misc.h). A state with this value will result in an
Error exception if used by one of the current position member functions. Alternately,
the user can specialize the Iterator<Type> class to behave differently for a specific
class. This alternate mechanism is used by the COOL List<Type> class in the file
COOL/Iterator.h.

Name: Iterator<Type> — A parameterized iterator class

Synopsis: #include <COOL/Iterator.h>

Base Classes: None

Friend Classes: None

Constructors: inline Iterator<Type> ();
Simple constructor that initializes to INVALID the state information representing
the current position for a specific Type of container class.

inline Iterator<Type> (Type ##_state& state);
Constructor that takes a reference to the container-Type current position state and
copies the value to the internal data member. This constructor calls the cur-
rent_position() member function of some container class.

Parameterized Templates

5-13COOL User’s Manual

Member Functions: inline Type ##_state operator Type ##_state ();
Overloaded operator required by the compiler. It implicitly converts the current
position state information contained in a type-specific iterator object to the data
type expected by an associated container class object.

Iterator Example 5.12 The following program excerpt shows the use of an instance of the
Iterator<Type> class with an instance of the Vector<Type> class to save and restore
the current position.

 1 #include <COOL/Vector.h> // Include Vector header file

 2 #include <COOL/Iterator.h> // Include Iterator header file

 3 DECLARE Iterator<Vector>; // Declare Iterator for vector

 4 DECLARE Vector<int>; // Declare Vector of ints

 5 Vector<int> v; // Declare a vector

 6 Iterator<Vector> iv; // Declare a vector iterator

 7 iv = v.current_position(); // Save current position

 8 ... /* go do something that may change current position*/

 9 v.current_position() = iv; // Restore previous position

10 ... /* some action continuing from old place, ie. remove */

Lines 1 and 2 include the COOL Vector<Type> and Iterator<Type> classes and lines
3 and 4 declare a vector of integers and an iterator for vectors. Lines 5 through 10 repre-
sent code that might be contained at a point in the source file. Line 5 creates a Vec-
tor<int> object and line 6 creates an Iterator<Vector> object. Line 7 saves the
current position of a vector object so that the vector can be altered in line 8. Line 9 re-
stores the previous position value and the program continues with processing in line 10.

Making Your Own 5.13 COOL supplies several common container class data structures that
Container Classes can be used by the programmer in many application scenarios. However,

there are many other cases where a specialized container class customized for a particu-
lar problem is needed (for example, a BTree class for a database project). To augment
the COOL container classes with other compatible classes, a few requirements must be
met:

• The class must contain a private data member maintaining the current position with
member functions that update or reset this position as appropriate.

• The member functions next(), prev(), reset(), value(), remove(), and find() must
be defined and supported.

• If the name of the container class is Foo defined in header file Foo.h, there must be
a data structure of type Foo_state defined in Foo.h for use by the Iterator<Type>
class.

• The member function current_position() must be defined to return a reference to
the Foo_state data structure to allow the Iterator<Type> class to work efficiently.

Parameterized Templates

5-14 COOL User’s Manual

Since a user may have declared several kinds of a type of container class, the final pro-
gram size can be significantly reduced if all type-independent code is placed in a base
class. For example, the COOL Vector<Type> class implements a parameterized vector
class. However, all member functions and data that are independent of the specific Type
are placed in the base class Vector. This results in common functionality shared by sev-
eral kinds of vector classes, thus reducing the needless code replication that would oth-
erwise occur.

If not designed properly, a parameterized class can result in excessive code-replication
when used in a single application many times. When you are designing your own
parameterized classes, you can avoid this problem by putting all type-independent code
in a base class from which the parameterized class is later derived. The COOL
parameterized classes reduce the amount of code that is generated by doing this.

For example, if an application has a Vector<int>, Vector<char*>, and Vec-
tor<String>, there could be potentially three “copies” of all the member functions that
implement these classes. However, the base Vector class implements many of the sim-
ple bookkeeping member functions and exception routines that do not require knowl-
edge of or access to the type. The Vector<Type> class is derived from Vector. As a
result, although an application may parameterize Vector<Type> with several different
types, there will only be one copy of many of the member functions.

Storing Objects In 5.14 The COOL container classes allow the programmer to specify the type
Container Classes of object that will be stored and manipulated by the class. The following member func-

tions must be defined for any user-defined object that is to be contained in any container
class (all built-in types already support these operations):

• Type& operator= (const Type&);

• Boolean operator== (const Type&);

• Boolean operator< (const Type&);

• Boolean operator> (const Type&);

• friend ostream& operator<< (ostream&, const Type&);

• inline friend ostream& operator<< (ostream&, const Type*);

These member functions are assumed to be available for the type of object over which
the class has been parameterized. If any are missing, a compile time error is generated.
Although the programmer may not use these directly, the container class uses them for
such operations as assigning element values and printing the contents.

6-1COOL User’s Manual

ORDERED
SEQUENCE CLASSES

Introduction 6.1 The ordered sequence classes are a collection of basic data structures that imple-
ment sequential access data structures as parameterized classes, thus allowing the user
to customize a generic template to create a specific user-defined class. The following
classes are discussed in this section:

• Vector<Type>

• Stack<Type>

• Queue<Type>

• Matrix<Type>

The Vector<Type> class implements dynamic, one-dimensional vectors supporting
such functions as insert, delete, replace, search, reverse, print, and sort. The
Stack<Type> class implements dynamic stacks with the functions push, pop, find, po-
sition, and empty. The Queue<Type> class implements a dynamic, circular buffer
queue with support for get, unget, put, and unput to access elements at either end of the
queue. The Matrix<Type> class implements static-sized, two-dimensional matrices
with support for the basic arithmetic operations. The Vector<Type> and Queue<Type>
classes support the notion of a current position. See Section 5, Parameterized Tem-
plates, for more information regarding the current position mechanism and the
Iterator<Type> class.

In order to achieve successful compilation and usage, certain operations must be sup-
ported by any user-specified type over which a sequence class is parameterized. The
member functions operator=, operator<, operator>, operator==, and operator<<
for both pointer and reference must be overloaded for any class object used as the type.
In addition, the Matrix<Type> class requires the supplied type to support operator+,
operator–, operator/, and operator*. Note that built-in types already have these func-
tions defined.

NOTE: The ordered sequence classes use operator= of the parameterized type when
copying elements. You should be careful when parameterizing an ordered sequence
class over a pointer to a type, since the default pointer assignment operator usually cop-
ies the pointer, not the value pointed at.

Requirements 6.2 This section discusses the parameterized ordered sequence container classes. It
assumes that you have read and understood Section 5, Parameterized Templates. In ad-
dition, no attempt is made to discuss the concepts and algorithms for the data structures
discussed. You should refer to a general data structures or computer science text for this
information.

Ordered Sequence Classes

6-2 COOL User’s Manual

Vector Class 6.3 The Vector<Type> class implements one-dimensional vectors of a user-specified
type. All memory management and initialization is encapsulated and performed by the
class constructors and member functions. Vector objects can be either static-sized or
dynamic. Vectors are, by default, dynamic in nature. A static-sized vector object is se-
lected by setting the growth allocation size to zero or by passing in a pointer to a block of
user-supplied storage to the constructor. If a vector is of static size and an operation is
performed that requires more storage, an Error exception is raised.

The Vector<Type> class implements the notion of a current position. This is useful for
iterating through the elements of a vector. The current position is maintained in a data
member of type Vector_state and is set or reset by all member functions affecting ele-
ments in the class. Member functions are provided to reset the current position, move to
the next and previous elements, find an element, and get the value at the current posi-
tion. The Iterator<Type> class provides a mechanism to save and restore the state asso-
ciated with the current position, thus allowing the programmer to use multiple iterators
over the same instance of a vector.

The Vector<Type> class follows conventional object-oriented programming tech-
niques and encapsulates the actual data elements from the user. The advantage of this
approach is that the class can automatically manage memory, maintain the element
count, and be aware of any changes made to the vector. The user of the class facilitates
this operation by using the insert, push, pop, and remove member functions and their
variants. However, the Vector<Type> class also overloads the operator[] and allows
the user to access a specific element directly. This is done partly for efficiency and
partly for compatibility with past usage.

The drawback of this approach, however, is that the object may not always know its
current state. For example, a newly declared vector object has no elements. Each use of
push to add an element will increment the element count by one. However, elements
added at random locations via the operator[] will not be counted. A user may get unex-
pected results by mixing these approaches. For this reason, the set_length() member
function allows the user to manually set the element count before use of operator[] for
random-access write operations.

Name: Vector<Type> — A dynamic, parameterized vector class

Synopsis: #include <COOL/Vector.h>

Base Classes: Vector, Generic

Friend Classes: None

Constructors: Vector<Type> ();
Creates an empty vector of the specified type.

Vector<Type> (unsigned long number);
Allocates enough storage for a vector of a specific type to hold number elements.
Elements are not initialized.

Vector<Type> (unsigned long number, const Type& value);
Allocates enough storage for a vector of a specific type to hold number elements,
each of which is initialized with value.

Ordered Sequence Classes

6-3COOL User’s Manual

Vector<Type> (unsigned long number, int init_num, ...);
Allocates enough storage for a vector of a specific type to hold number elements.
The second argument init_num specifies the number of optional initialization val-
ues provided for consecutive elements of the vector. Any remaining elements are
not initialized.

Vector<Type> (Vector<Type>& vec);
Duplicates the size and value of another vector object vec. Element values are cop-
ied by operator= for the type specified.

Vector<Type> (void* storeage, unsigned long number);
Creates a static-sized vector object for number elements whose storage storeage is
provided by the user. If a vector object created in this manner attempts to grow
dynamically or the resize member function is invoked, an Error exception is
raised.

Member Functions: Boolean append (const Vector<Type>& vec);
Adds the elements of vector vec to the end of a vector object. The current position in
the vector object is set to the position of the last element of vec. If required and not
prohibited, this function grows the destination vector and returns TRUE; other-
wise, this function returns FALSE.

inline long capacity () const;
Returns the maximum number of elements the vector can contain without growing.

void clear ()
Removes all elements in the object and invalidates the current position.

void copy (const Vector<Type>& vec, unsigned long start = 0,
long end = –1);

Copies the specified range (start inclusive and end exclusive) from the source vec-
tor vec to the vector object. The destination vector will grow if necessary and if
allowed. The current position is set to the last element copied into the destination. If
end is equal to minus one (the default), all elements from start to the end of the
vector are copied. If the start or end or both indexes are invalid or the vector needs
to grow dynamically and this is prohibited, an Error exception is raised.

inline Vector_state& current_position ();
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of vector.

void fill (const Type& value, unsigned long start = 0, long end = –1);
Sets all elements within the specified range (start inclusive and end exclusive) to
value and invalidates the current position. If end is equal to minus one (the default),
all elements from start to the end of the vector are filled. If the start or end or both
indexes are invalid, an Error exception is raised.

Boolean find (const Type& value, unsigned long start = 0);
Searches the vector for value beginning at the specified start index. If the element is
found, this function sets the current position and returns TRUE; otherwise, this
function invalidates the current position and returns FALSE.

inline Type& get (int n)
Returns a reference to the nth (zero-relative) element in the object. This function
sets the current position to this element. If the index is negative or out of range, an
Error exception is raised.

Ordered Sequence Classes

6-4 COOL User’s Manual

Boolean insert_after (const Type& value);
Inserts (not replaces) the element value after the current position and does not
change the current position. If the current position is invalid, this function returns
FALSE. If required and not prohibited, this function grows the target vector and
returns TRUE; otherwise, this function returns FALSE.

Boolean insert_after (const Type& value, long index);
Inserts (not replaces) the element value after the specified zero-relative index and
updates the current position to the specified index. If the index is out of range, this
function returns FALSE. If required and not prohibited, this function grows the
target vector and returns TRUE; otherwise, this function returns FALSE.

Boolean insert_before (const Type& value);
Inserts (not replaces) the element value before the current position and advances
the current position one element, thus leaving it pointing at the same element. If the
current position is invalid, this function returns FALSE. If required and not prohib-
ited, this function grows the target vector and returns TRUE; otherwise, this func-
tion returns FALSE.

Boolean insert_before (const Type& value, long index);
Inserts (not replaces) the element value before the specified zero-relative index and
updates the current position to the specified index. If the index is out of range, this
function returns FALSE. If required and not prohibited, this function grows the
target vector and returns TRUE; otherwise, this function returns FALSE.

inline Boolean is_empty ();
Returns TRUE if the vector contains no entries; otherwise, returns FALSE.

inline long length () const;
Returns the number of elements in the vector.

void merge (const Vector<Type>& vec, Predicate p);
Merges the elements of one vector into another by using the supplied predicate for
determining the collating sequence. The current position in the destination vector is
invalidated. Predicate is a user-defined function of type int (*Function) (const
Type&, const Type&) that returns –1 if the first argument should precede the sec-
ond, zero if they are equal, and 1 if the first argument should follow the second.

inline Boolean next ();
Advances the current position to the next element in the vector and returns TRUE.
If the current position is invalid, this function sets the current position to the first
element and returns TRUE. If the current position is the last element of the vector,
this function invalidates the current position and returns FALSE.

Vector<Type>& operator= (const Type& value);
Overloads the assignment operator for the Vector<Type> class and assigns all ele-
ments value. If dynamic growth of the vector is prohibited, an Error exception is
raised. If there is enough room, the current position is invalidated and a reference to
the vector is returned.

Vector<Type>& operator= (const Vector<Type>& vec);
Overloads the assignment operator for the Vector<Type> class and assigns vec to
the vector object, duplicating the size and element values. The current position in
the destination vector is invalidated. A reference to the vector object is returned.

Ordered Sequence Classes

6-5COOL User’s Manual

Boolean operator== (const Vector<Type>& vec) const;
Overloads the equality operator for the Vector<Type> class and returns TRUE if
the vector object has the same number of elements with the same values as vec;
otherwise, this function returns FALSE.

inline Boolean operator!= (const Vector<Type>& vec) const;
Overloads the inequality operator for the Vector<Type> class and returns TRUE if
the vector object does not have the same number of elements or the same values as
vec; otherwise, this function returns FALSE.

inline Type& operator[] (unsigned long index) const;
Overloads the brackets operator for the Vector<Type> class and returns a reference
to an individual element from the vector at the zero-relative index specified. If in-
dex is invalid or out of range, an Error exception is raised. You should be careful
when using operator[] because an index is out of range if it is greater than the num-
ber of elements in the vector. If random access to all allocated space is desired, first
use the set_length() function.

Type& pop ();
Returns a reference to the last element in the vector and invalidates the current posi-
tion.

inline long position () const;
Returns the current position as a zero-relative index into the vector that can be used
with the overloaded operator[].

inline long position (const Type& value) const;
Searches the vector for value. If the element is found, this function updates the cur-
rent position and returns the zero-relative index of the element; otherwise, this
function invalidates the current position and returns –1.

Boolean prepend (const Vector<Type>& vec);
Inserts the elements of one vector vec at the beginning of a the vector object. The
current position is set to the new position of the first element of the old destination
vector. If required and not prohibited, this function grows the destination vector
and returns TRUE; otherwise, this function returns FALSE.

inline Boolean prev ();
Moves the current position pointer to the previous element in the vector and returns
TRUE. If the current position is invalid, this function moves to the last element and
returns TRUE. If the current position is the first element in the vector, this function
invalidates the current position and returns FALSE.

Boolean push (const Type& value);
Adds value to the end of a vector. If required and not prohibited, this function
grows the vector object. This function returns TRUE if successful; otherwise, this
function returns FALSE. This function sets the current position to point to the new
element added.

Boolean push_new (const Type& value);
Adds value to the end of a vector if it is not already in the vector. If required and not
prohibited, this function grows the vector object. This function returns TRUE if
successful; otherwise, this function returns FALSE. This function sets the current
position to point to the new element added.

Ordered Sequence Classes

6-6 COOL User’s Manual

inline Boolean put (const Type& value, long n)
Replaces the nth (zero-relative) element in the object with value. This function re-
turns TRUE if the nth element exists; otherwise, this function returns FALSE. If
the index is negative, an Error exception is raised.

Type remove ();
Removes and returns the element at the current position. This function sets the cur-
rent position to the element immediately following the element removed. If the
element is found but at the end of the vector, this function invalidates the current
position.

Boolean remove (const Type& value);
Searches for value and, if found, this function removes and sets the current position
to the element immediately following the element removed, and then it returns
TRUE. If value is found but at the end of the vector, this function invalidates the
current position and returns TRUE. If value is not found, this function returns
FALSE.

Boolean remove_duplicates ();
Removes any duplicate elements from the vector and invalidates the current posi-
tion. This function returns TRUE if any elements were removed; otherwise, this
function returns FALSE.

Boolean replace (const Type& value1, const Type& value2);
Replaces the first occurrence of value2 with value1. If value2 is found, this func-
tion returns TRUE; otherwise, this function returns FALSE.

Boolean replace_all (const Type& value1, const Type& value2);
Replaces all occurrences of value2 with value1 and sets the current position to the
last replaced element. This function returns TRUE if any elements were replaced;
otherwise, this function returns FALSE.

inline void reset ();
Invalidates the current position.

void resize (unsigned long size);
Resizes the vector for at least size number of elements and invalidates the current
position. If a growth ratio has been selected and it satisfies the resize request, the
vector is grown by this ratio. If the new size is negative, an Error exception is
raised.

void reverse ();
Reverses the order of elements in a vector and invalidates the current position.

Boolean search (const Vector<Type>& vec, long start=0, long end=–1);
Searches within the specified range (start inclusive, end exclusive) of a vector ob-
ject for a sequence vec. If end is equal to minus one (the default), all elements from
start to the end of the vector are filled. If the sequence is found, this function sets
the current position in the destination vector to the start of the matched sequence
and returns TRUE; otherwise, this function returns FALSE.

inline void set_alloc_size (int size);
Updates the allocation growth size for all instances of the class to be used when the
growth ratio is zero. Default allocation growth size is 100 bytes. Setting the alloca-
tion growth size to zero results in a static-sized object. If the size specified is nega-
tive, an Error exception is raised.

Ordered Sequence Classes

6-7COOL User’s Manual

inline void set_compare (Vector_Compare = NULL);
Updates the compare function for this class of vector. Vector_Compare is a func-
tion of type Boolean (*Function)(const Type&, const Type&). If no argument is
provided, the operator== for the type over which the vector is parameterized is
used..

inline void set_growth_ratio (float ratio);
Updates the growth ratio for this instance of a vector to the specified value. When a
vector needs to grow, the current size is multiplied by the ratio to determine the new
size. If ratio is negative, an Error exception is raised.

inline long set_length (long);
Specifies the number of elements in a vector to allow random access via the over-
loaded operator[] member function. If the number requested is larger than the stor-
age allocated, this function truncates to the largest value that the allocated size will
support. This function returns the updated number of elements. If the length is
negative, an Error exception is raised.

void sort (Predicate p);
Sorts the elements of a vector by using the supplied predicate for determining the
collating sequence and invalidates the current position. Predicate is a user-defined
function of type int (*Function) (const Type&, const Type&) that returns –1 if the
first argument should precede the second, zero if they are equal, and 1 if the first
argument should follow the second.

inline Type& value ();
Returns a reference to the element at the current position. If the current position is
invalid, an Error exception is raised.

Friend Functions: friend ostream& operator<< (ostream& os, const Vector<Type>& vec);
Overloads the output operator for a reference to a Vector<Type> object to provide
a formatted output capability.

friend ostream& operator<< (ostream& os, const Vector<Type>* vec);
Overloads the output operator for a pointer to a Vector<Type> object to provide a
formatted output capability.

Ordered Sequence Classes

6-8 COOL User’s Manual

Vector Example 6.4 The following program declares a vector of five strings whose contents are initial-
ized with state names. The element values are first printed by using operator<<, then
sorted in reverse alphabetical order, and finally printed by iterating through the vector
by using the current position functions.

 1 #include <COOL/String.h> // COOL String class

 2 #include <COOL/Vector.h> // COOL Vector class

 3 DECLARE Vector<String>; // Declare vector of strings

 4 IMPLEMENT Vector<String>; // Implement vector of strings

 5 Boolean my_compare (const String& s1, const String& s2) {

 6 return ((s1 <= s2) ? FALSE : TRUE); // Reverse alphabetize

 7 }

 8 int main (void) {

 9 Vector<String> v1(5); // Declare vector of strings

10 v1.push (”Texas”); // Add “Texas”

11 v1.push (”Alaska”); // Add “Alaska”

12 v1.push (”New York”); // Add “New York”

13 v1.push (”Alabama”); // Add “Alabama”

14 v1.push (”North Dakota”); // Add “North Dakota”

15 cout << v1 << ”\n”; // Output the vector

16 v1.sort (my_compare); // Reverse sort the vector

17 for (v1.reset(); v1.next();) // For each element

18 cout << v1.value() << ”\n”; // Output the value

19 exit (0); // Exit with OK status

20 }

Lines 1 through 4 define the Vector and String classes. Lines 5 through 7 declare a
simple sort function that reverses the lexical comparison test performed by operator<=
in the String class. Line 9 defines a vector of strings with initial storage for five ele-
ments. Lines 10 through 14 push five literal character strings into the vector. Line 15
uses operator<< for the Vector class to output the element values. Line 16 sorts the
vector according to the predicate function provided. Finally, lines 17 and 18 use the
current position functions to iterate through the elements, printing each one.

The following shows the output for the program:

Texas Alaska New York Alabama North Dakota
Texas
North Dakota
New York
Alaska
Alabama

Ordered Sequence Classes

6-9COOL User’s Manual

Stack Class 6.5 The Stack<Type> class implements a conventional first-in, last-out data structure
that holds a user-specified data type. All memory management and initialization is en-
capsulated and performed by the class constructors and member functions. Stack ob-
jects can be either static-sized or dynamic. Stacks are, by default, dynamic in nature. A
static-sized stack object is selected by setting the growth allocation size to zero or by
passing in a pointer to a block of user-supplied storage to the constructor. If a stack is of
static size and an operation is performed that requires more storage, an Error exception
is raised.

Name: Stack<Type> — A dynamic, parameterized stack

Synopsis: #include <COOL/Stack.h>

Base Classes: Stack, Generic

Friend Classes: None

Constructors: Stack<Type> ();
Creates an empty stack of the specified type.

Stack<Type> (unsigned long number);
Allocates enough storage for a stack of a specific type to hold number of elements.

Stack<Type> (const Stack<Type>& stk);
Duplicates the size and value of a stack object stk.

Stack<Type> (void* storage, unsigned long number);
Creates a static-sized stack object for number of elements whose storage storage is
provided by the user. If an object of this type attempts to grow dynamically or the
programmer invokes the resize member function, an Error exception is raised.

Member Functions: inline long capacity () const;
Returns the maximum number of elements the stack can contain.

inline void clear ();
Sets the number of elements in the stack to zero.

Boolean find (const Type& value);
Searches the stack for value. If value is found, this function returns TRUE; other-
wise, this function returns FALSE.

inline Boolean is_empty () const;
Returns TRUE if the stack has no elements; otherwise, this function returns
FALSE.

inline long length () const;
Returns the number of elements in the stack.

Stack<Type>& operator= (const Stack<Type>& stk);
Overloads the assignment operator for the Stack<Type> class and assigns stk to the
stack object by duplicating the size and element values. If the stack object is prohib-
ited from dynamically growing, an Error exception is raised.

Ordered Sequence Classes

6-10 COOL User’s Manual

Boolean operator== (const Stack<Type>& stk) const;
Overloads the equality operator for the Stack<Type> class. Returns TRUE if the
stacks have an equal number of elements with the same values; otherwise this func-
tion returns FALSE.

inline Boolean operator!= (const Stack<Type>& stk) const;
Overloads the inequality operator for the Stack<Type> class. This function returns
TRUE if the stacks have a unequal number of elements or unequal values; other-
wise this function returns FALSE.

inline Type& operator[] (unsigned long number);
Overloads the index operator for the Stack<Type> class. This function returns a
reference to the element of the stack that is number of elements from the top of the
stack. If number is greater than the size of the stack, an Error exception is raised.

inline Type& pop ();
Removes and returns a reference to the top element on the stack. If the number of
elements (that is, length) has been set to a zero-relative index greater than the size
of the stack, an Error exception is raised.

Type& popn (long n);
Pops n elements off the stack, returning a reference to the last one popped off the
stack. With an argument of zero, this function returns the top item of the stack with-
out removing it. If the number of elements to pop is negative, an Error exception is
raised.

long position (const Type& value) const;
Searches the stack for value. If value is found, this function returns the zero-relative
index, from the top of the stack, of that element; otherwise, this function returns –1.

inline Boolean push (const Type& value);
Pushes value onto the top of a stack. If required and not prohibited, this function
grows the stack object. This function returns TRUE if successful; otherwise, this
function returns FALSE. If the stack is prohibited from growing dynamically, an
Error exception is raised.

Boolean pushn (const Type& value, long n);
Pushes n items onto the top of the stack, all of which have the specified value.
When n is zero, this function replaces the top item on the stack with value. If re-
quired and not prohibited, this function grows the stack object. This function re-
turns TRUE if successful; otherwise, this function returns FALSE. If the stack is
prohibited from growing dynamically, an Error exception is raised.

void resize (long number);
Resizes the stack for at least number of elements. If a growth ratio has been selected
and it satisfies the resize request, the stack is grown by this ratio. If the stack is
prohibited from dynamically growing, an Error exception is raised.

inline void set_alloc_size (int size);
Updates the allocation growth size to be used when the growth ratio is zero. Default
allocation growth size is 100 bytes. Setting the allocation growth size to zero results
in a static-sized object. If size is zero or negative, an Error exception is raised.

inline void set_compare (Stack_Compare = NULL);
Sets the compare function for this class of stack. Stack_Compare is a user-defined
function of type Boolean (*Function)(const Type&, const Type&). If no such
function is provided, the operator== for the type over which the class is
parameterized is used.

Ordered Sequence Classes

6-11COOL User’s Manual

inline void set_growth_ratio (float ratio);
Updates the growth ratio for this instance of a stack to ratio. When a stack needs to
grow, the current size is multiplied by the ratio to determine the new size. If ratio is
negative, an Error exception is raised.

inline long set_length (long number);
Specifies the number of elements in a stack to allow random access via the over-
loaded operator[] member function. If number is larger than the storage allocated,
this function truncates number to the largest value that the allocated size will sup-
port. This function returns the new element count. If number is negative, an Error
exception is raised.

inline Type& top ();
Returns (without removing) a reference to the top element of the stack. If the num-
ber of elements (that is, length) has been set to a zero-relative index greater than the
size of the stack, an Error exception is raised.

Friend Functions: friend ostream& operator<< (ostream& os, const Stack<Type>& stk);
Overloads the output operator for a reference to a Stack<Type> object to provide a
formatted output capability.

inline friend ostream& operator<< (ostream& os, const Stack<Type>* stk);
Overloads the output operator for a pointer to a Stack<Type> object to provide a
formatted output capability.

Ordered Sequence Classes

6-12 COOL User’s Manual

Stack Example 6.6 The following program declares a stack capable of initially holding 10 integers.
Integer values are pushed onto the stack in a loop. Notice that since more than 10 ele-
ments are pushed onto the stack, it must grow automatically and add storage capacity as
necessary to hold the extra elements. Finally, these elements are then popped from the
stack and printed.

 1 #include <COOL/Stack.h> // COOL Stack class

 2 DECLARE Stack<int>; // Declare stack of integers

 3 IMPLEMENT Stack<int>; // Implement stack of integers

 4 int main (void) {

 5 Stack<int> s1(3); // Declare stack of integers

 6 for (int i = 1; i <= 5; i++) // In a small loop, push “n”

 7 s1.pushn (i,i); // copies of an integer value

 8 for (i = 0; i < 5; i++) { // In another similar loop up to

 9 for (int j = 0; j < s1.top(); j++) // the top element value, get

10 cout << s1.pop(); // a value from stack and print

11 cout << ”\n”; // Output a newline and repeat

12 }

13 exit (0); // Exit with OK status

14 }

Lines 1 through 3 define the Stack class. Line 5 defines a stack of integers with initial
storage for 10 elements. Lines 6 and 7 loop from one through five and push the current
loop number on the stack. Thus, the first time through the loop, one element whose
value is one is pushed. The second time, two elements whose values are two are pushed,
and so on. Because more than 10 elements are added to the stack, an automatic resize is
performed by the stack object to accommodate more elements. Because no user-speci-
fied growth factor was given, enough storage is allocated to hold 100 elements. Lines 8
through 11 contain nested loops that read the top value on the stack, loop that many
times, pop off a value, and print it. After each inner loop completes, a newline character
is printed.

The following shows the output from the program:

55555
4444
333
22
1

Ordered Sequence Classes

6-13COOL User’s Manual

Queue Class 6.7 The Queue<Type> class implements a conventional first-in, first-out data struc-
ture that holds a user-specified data type. All memory management and initialization is
encapsulated and performed by the class constructors and member functions. Queue
objects can be either static-sized or dynamic. Queues are, by default, dynamic in nature.
A static-sized queue object is selected by setting the growth allocation size to zero or by
passing in a pointer to a block of user-supplied storage to the constructor. If a queue is of
static size and an operation is performed that requires more storage, an Error exception
is raised.

The Queue<Type> class implements the notion of a current position. This is useful for
iterating through the elements of a queue. The current position is maintained in a data
member of type Queue_state and is set or reset by all member functions affecting ele-
ments in the class. Member functions are provided to reset the current position, move to
the next and previous elements, find an element, and get the value at the current posi-
tion. The Iterator<Type> class provides a mechanism to save and restore the state asso-
ciated with the current position, thus allowing the programmer to use multiple iterators
over the same instance of a queue.

The Queue<Type> class allows the programmer to add and/or remove items from
either end of the queue. In addition, the current position and iterator functions allow the
programmer to examine other entries in the middle of the queue and remove or change
them. This would be useful in implementing a prioritized queue where the entries may
need to be rearranged at times.

Name: Queue<Type> — A dynamic, parameterized queue

Synopsis: #include <COOL/Queue.h>

Base Classes: Queue, Generic

Friend Classes: None

Constructors: Queue<Type> ();
Creates an empty queue of the specified type.

Queue<Type> (unsigned long number);
Allocates enough storage for a queue of a specific type to hold number of elements
specified by the argument.

Queue<Type> (const Queue<Type>& q);
Duplicates the size and value of a queue object q.

Queue<Type> (void* storage, unsigned long number);
Creates a static-sized queue object for number of elements whose storage storage is
provided by the user. If an object of this type attempts to grow dynamically or the
programmer invokes the resize member function, an Error exception is raised.

Member Functions: inline long capacity () const;
Returns the maximum number of elements the stack can contain.

void clear ();
Sets the number of items in the queue to zero. This function invalidates the current
position.

Ordered Sequence Classes

6-14 COOL User’s Manual

inline Queue_state& current_position ();
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of queue.

Boolean find (const Type& value);
Searches the queue for value. If value is found, this function sets the current posi-
tion and returns TRUE; otherwise, this function resets the current position and re-
turns FALSE.

Type& get ();
Removes and returns a reference to the first-in item on the queue. If there are no
elements in the queue, an Error exception is raised.

inline Boolean is_empty () const;
Returns TRUE if there are no items in the queue. Otherwise, this function returns
FALSE.

inline long length () const;
Returns the number of elements in the queue.

inline Type& look ();
Returns the first-in item on the queue. If there are no elements in the queue, an
Error exception is raised.

Boolean next ();
Advances the current position to the next element in the queue and returns TRUE.
If the current position is invalid, this function sets the current position to the first
element and returns TRUE. If the current position is the last element of the queue,
this function invalidates the current position and returns FALSE.

Queue<Type>& operator= (const Queue<Type>& q);
Overloads the assignment operator for the Queue class and assigns q to the queue
object by duplicating the size and element values. This function invalidates the cur-
rent position.

Boolean operator== (const Queue<Type>& q) const;
Overloads the equality operator for the Queue class. This function returns TRUE
if the queues have an equal number of elements with the same values; otherwise,
this function returns FALSE.

inline Boolean operator!= (const Queue<Type>& q) const;
Overloads the inequality operator for the Queue class. This function returns
TRUE if the queues have an unequal number of elements or unequal values.

Boolean prev ();
Moves the current position pointer to the previous element in the queue and returns
TRUE. If the current position is invalid, this function moves to the last element and
returns TRUE. If the current position is the first element in the queue, this function
invalidates the current position and returns FALSE.

Boolean put (const Type& value);
Puts value onto the back of the queue, making it the last-in item. If required and not
prohibited, this function grows the queue, puts the new last-in item on the queue,
and returns TRUE. Otherwise, this function returns FALSE.

Ordered Sequence Classes

6-15COOL User’s Manual

Boolean remove ();
Removes the element at the current position. This function returns FALSE if the
current position is invalid; otherwise, this function sets the current position to the
element immediately following the element removed (if not at end of queue) and
returns TRUE. If the current position is at the last element before removing, this
function invalidates the current position and returns TRUE after removing the ele-
ment.

Boolean remove (const Type& value);
Searches for value and, if found, this function removes and sets the current position
to the element immediately following the element removed, and then it returns
TRUE. If value is found but at the end of the queue, this function invalidates the
current position and returns TRUE. If the element is not found, this function re-
turns FALSE.

inline void reset ();
Invalidates the current position.

void resize (long number);
Resizes the queue for at least number of elements. If a growth ratio has been se-
lected and it satisfies the resize request, the queue is grown by this ratio, the current
position is invalidated, and TRUE is returned. Otherwise, this function returns
FALSE. If the size specified is zero or negative, an Error exception is raised.

inline void set_alloc_size (int size);
Updates the allocation growth size to be used when the growth ratio is zero. Default
allocation growth size is 100 bytes. If the size specified is negative, an Error ex-
ception is raised.

inline void set_compare (Queue_Compare = NULL);
Updates the compare function for this class of queue. Queue_Compare is a func-
tion of type Boolean (*Function)(const Type&, const Type&). If no argument is
provided, the operator== for the type over which the class is parameterized is
used.

inline void set_growth_ratio (float ratio);
Updates the growth ratio for this instance of a queue to ratio. When a queue needs
to grow, the current size is multiplied by the ratio to determine the new size. If ratio
is negative, an Error exception is raised.

Boolean unget (const Type& value);
Puts value onto the front of the queue. If required and not prohibited, this function
grows the queue, puts the first-in item on the queue, and returns TRUE. Otherwise,
this function returns FALSE. If there are no elements in the queue, an Error ex-
ception is raised.

Type& unput ();
Removes and returns a reference to the last-in item on the queue.

inline Type& value ();
Returns a reference to the element at the current position. If the current position is
invalid, an Error exception is raised.

Friend Functions: friend ostream& operator<< (ostream& os, const Queue<Type>& q);
Overloads the output operator for a reference to a Queue<Type> object to provide
a formatted output capability.

Ordered Sequence Classes

6-16 COOL User’s Manual

inline friend ostream& operator<< (ostream& os, const Queue<Type>* q);
Overloads the output operator for a pointer to a Queue<Type> object to provide a
formatted output capability.

Queue Example 6.8 The following program declares a queue of doubles. Random floating-point val-
ues are added to the queue in a loop. The elements added are then output. Next, a loop
iterates through the elements of the queue by using the current position functionality. If
any random number added to the queue is below some arbitrary tolerance, it is removed.
Finally, the remaining elements are printed.

 1 #include <COOL/Queue.h> // COOL Queue class

 2 #include <COOL/Random.h> // COOL Random number class

 3 DECLARE Queue<double>; // Declare a queue of doubles

 4 IMPLEMENT Queue<double>; // Implement a queue of doubles

 5 int main (void) {

 6 Queue<double> q1; // Create empty queue

 7 Random r (SIMPLE, 1, 3.0, 9.0); // Simple random generator

 8 for (int i = 0; i < 5; i++) // Put five random numbers

 9 q1.put (r.next ()); // into the queue

10 cout << q1; // Output queue elements

11 for (q1.reset(); q1.next();) // For each element in queue

12 if (q1.value() < 4.5) // If less than tolerance

13 q1.remove (); // Remove from queue

14 cout << ”\n” << q1; // Output queue elements

15 exit (0); // Exit with OK status

16 }

Lines 1 through 4 define the Queue<double> class, and line 6 declares an instance of this
class. Line 7 declares a random number generator whose values are guaranteed to be
within the range 3.0 to 9.0 inclusive (see Section 3, Number Classes, for a discussion
about the Random class). Lines 8 and 9 contain a simple loop that adds five random
numbers to the queue. Line 10 uses operator<< for the Queue class to output the ele-
ment values. Lines 11 through 13 use the current position functions to iterate through
the elements, removing any entry below an arbitrary tolerance. Finally, the remaining
elements are output.

The following shows the output from a sample run of the program:

<First in> 6.08322 4.05445 4.85191 6.2072 8.68577 <Last in>
<First in> 6.08322 4.85191 6.2072 8.68577 <Last in>

Matrix Class 6.9 The Matrix<Type> class implements two-dimensional arithmetic matrices for a
user-specified numeric data type. Using the parameterized types facility of C++, it is
possible, for example, for the user to create a matrix of rational numbers by
parameterizing the Matrix class over the Rational class (see Section 3, Number
Classes, for a discussion regarding the Rational class). The only requirement for the
type is that it support the basic arithmetic operators. Note that unlike the other sequence
classes, the Matrix<Type> class is fixed-size only (that is, it will not grow once the size
has been specified to the constructor).

Ordered Sequence Classes

6-17COOL User’s Manual

Name: Matrix<Type> — A parameterized matrix class

Synopsis: #include <COOL/Matrix.h>

Base Classes: Matrix, Generic

Friend Classes: None

Constructors: Matrix<Type> (unsigned int row, unsigned int col);
Allocates enough storage for a matrix of a specific type with the specified number
of rows and columns.

Matrix<Type> (unsigned int row, unsigned int col, int init_num, ...);
Allocates enough storage for a matrix of the specified type and size. The third argu-
ment init_num indicates the number of optional initialization values. Matrix ele-
ments are initialized in row-major order.

Matrix<Type> (unsigned int row, unsigned int col, const Type& value);
Allocates enough storage for a matrix of a specific type with the specified number
of rows and columns. In addition, each element of the matrix is initialized to value.

Matrix<Type> (const Matrix<Type>& m);
Duplicates the size and value of a Matrix<Type> object m.

Member Functions: inline int columns () const;
Returns the number of columns in the matrix.

void fill (const Type& value);
Sets all elements in the matrix to value.

inline Type get (unsigned int row, unsigned int col) const;
Returns the value of the element at the indicated row and column. If the row or
column specification is out of range, an Error exception is raised.

Matrix<Type> operator+ (const Matrix<Type>& m) const;
Overloads the addition operator to provide matrix addition for the Matrix<Type>
class. A new matrix is returned as the result. If the matrices are of a different size,
an Error exception is raised.

Matrix<Type> operator+ (const Type& value) const;
Overloads the addition operator to provide scalar addition for the Matrix<Type>
class. A new matrix is returned as the result.

Matrix<Type> operator* (const Matrix<Type>& m) const;
Overloads the multiplication operator to provide matrix multiplication for the Ma-
trix<Type> class. A new matrix is returned as the result. If the matrices are of a
different size, an Error exception is raised.

Matrix<Type> operator* (const Type& value) const;
Overloads the multiplication operator to provide scalar multiplication for the Ma-
trix<Type> class. A new matrix is returned as the result.

Matrix<Type>& operator= (const Type& value);
Overloads the assignment operator for the Matrix<Type> class and assigns all ele-
ments of a matrix to value.

Ordered Sequence Classes

6-18 COOL User’s Manual

Matrix<Type>& operator= (const Matrix<Type>& m);
Overloads the assignment operator for the Matrix<Type> class and assigns one
Matrix<Type> object to have the value of another by duplicating the size and ele-
ment values.

Matrix<Type>& operator+= (const Matrix<Type>& m);
Overloads the addition–with–assignment operator to provide matrix addition for
the Matrix<Type> class. The source is modified to contain the result. If the matri-
ces are of a different size, an Error exception is raised.

Matrix<Type>& operator+= (const Type& value);
Overloads the addition-with-assignment operator to provide scalar addition for the
Matrix<Type> class. The source is modified to contain the result. If the matrices
are of a different size, an Error exception is raised.

Matrix<Type>& operator*= (const Matrix<Type>& m);
Overloads the multiplication-with-assignment operator to provide matrix multipli-
cation for the Matrix<Type> class. The source is modified to contain the result. If
the matrices are of a different size, an Error exception is raised.

Matrix<Type>& operator*= (const Type& value);
Overloads the multiplication-with-assignment operator to provide scalar multipli-
cation for the Matrix<Type> class. The source is modified to contain the result

Boolean operator== (const Matrix<Type>& m) const;
Overloads the equality operator for the Matrix<Type> class. This function returns
TRUE if the matrices have the same number of elements with the same values;
otherwise, this function returns FALSE.

inline Boolean operator!= (const Matrix<Type>& m) const;
Overloads the inequality operator for the Matrix<Type> class. This function
returns TRUE if the matrices have a different number of elements or different val-
ues.

inline void put (unsigned int row, unsigned int col, Type value);
Assigns value to the element at the specified row and col. If the row or column
specification is out of range, an Error exception is raised.

inline int rows () const;
Returns the number of rows in the matrix.

inline void set_compare (Matrix_Compare = NULL);
Updates the compare function for this class of matrix. Matrix_Compare is a func-
tion of type Boolean (*Function)(const Type&, const Type&). If no argument is
provided, the operator== for the type over which the class is parameterized is
used.

Friend Functions: friend ostream& operator<< (ostream& os, const Matrix<Type>& m);
Overloads the output operator for a reference to a Matrix<Type> object m to pro-
vide a formatted output capability.

inline friend ostream& operator<< (ostream& os, const Matrix<Type>* m);
Overloads the output operator for a pointer to a Matrix<Type> object m to provide
a formatted output capability.

Ordered Sequence Classes

6-19COOL User’s Manual

Matrix Example 6.10 The following program declares two matrices of integers. The first matrix is
filled with a series of integral values computed in the nested loops, and the second ma-
trix is derived from the first. Several of the Matrix<Type> overloaded operators are
used, and the resulting matrices are printed.

 1 #include <COOL/Matrix.h> // COOL Matrix class

 2 DECLARE Matrix<int> // Declare a matrix of integers

 3 IMPLEMENT Matrix<int> // Implement matrix of integers

 4 int main (void) {

 5 Matrix<int> mc1(3,4), mc2(3,4); // Two 3x4 matrices of integers

 6 for (int i = 0; i < 3; i++) // For each row in matrix

 7 for (int j = 0; j < 4; j++) // For each column in matrix

 8 mc1.put(i,j,(i+2)*(j+3)); // Assign element value

 9 mc2 = mc1 + 5; // Copy matrix with added value

10 mc1 = mc1 + mc2; // Add the matrices together

11 cout << mc1 << ”\n” << mc2 << ”\n”; // Output the starting matrices

12 exit (0); // Exit with OK status

13 }

Line 1 includes the COOL Matrix.h class header file. Lines 2 and 3 declare and imple-
ment the Matrix<int> class. Line 5 declares two Matrix<int> variables, each of which
have three rows and four columns. Lines 6 through 8 generate a series of integral values
that are copied into the elements of the first matrix. Line 9 uses the overloaded addition
and assignment operators for the Matrix<Type> class and computes the value of the
second matrix. Line 10 uses the overloaded addition operator to add the two matrices
together. Line 11 uses the overloaded output operator to display the contents of each
matrix. Finally, the program ends with a valid exit code on line 12.

The following shows the output from the program:

17 21 25 29
23 29 35 41
29 37 45 53

11 13 15 17
14 17 20 23
17 21 25 29

Ordered Sequence Classes

6-20 COOL User’s Manual

7-1COOL User’s Manual

UNORDERED
SEQUENCE CLASSES

Introduction 7.1 The unordered sequence classes are a collection of basic data structures that im-
plement random-access data structures as parameterized classes, thus allowing the user
to customize a generic template to create a specific user-defined class. The following
classes are discussed in this section:

• List<Type>

• Pair<T1, T2>

• Association<Ktype, Vtype>

• Hash_Table<Ktype,Vtype>

The List<Type> class implements dynamic, Common Lisp-style lists supporting such
functions as insert, delete, replace, search, reverse, print, and sort. The Pair<T1,T2>
class implements a simple object that contains two other objects, primarily for use in the
Association<Ktype, Vtype> class. The Association<Ktype, Vtype> class maintains a
collection of associated objects. The Hash_Table<Ktype, Vtype> class implements dy-
namic hash tables with the option for user-defined hashing functions. The List<Type>,
Hash_Table<Ktype, Vtype>, and Association<Ktype, Vtype> classes support the no-
tion of a current position. The example programs in this section solve the same problem
using different data structures, allowing the reader to compare the different features of
each.

In order to achieve successful compilation and usage, certain operations must be sup-
ported by any user-specified type over which an unordered sequence class is
parameterized. The member functions operator=, operator<, operator>, operator<<,
and operator== must be overloaded for any class object used as the type. Note that
built-in types already have these functions defined.

NOTE: The unordered sequence classes use operator= of the parameterized type when
copying elements. You should be careful when parameterizing an unordered sequence
class over a pointer to a type, since the default pointer assignment operator usually cop-
ies the pointer, not the value pointed at.

Requirements 7.2 This section discusses the parameterized unordered sequence container classes. It
assumes that you have read and understood Section 5, Parameterized Templates. In ad-
dition, no attempt is made to discuss the concepts and algorithms for the data structures
discussed. You should refer to a general data structures or computer science text for this
information.

Unordered Sequence Classes

7-2 COOL User’s Manual

List Class 7.3 The List<Type> class implements Common Lisp-style lists that provide a rich
collection of member functions for list manipulation and management. A list consists
of a collection of nodes, each of which contains a reference count, a pointer to the next
node in the list, and a data element of a user-specified type. The List<Type> class uses
reference counting to allow more efficient sharing and reuse of list node objects. The
reference count indicates the number of list or node objects pointing to a node and en-
sures that the node and the data are deallocated when the node is no longer referenced.

Considerable attention has been paid to performance and efficiency concerns in the
List<Type> class. The Base_List class implements generic list functionality required
by the parameterized List class. The Base_List class is not usable as a stand-alone class,
but used to derive the List<Type> class. By providing generic operations in a base class,
the quantity of code generated for each implementation of a parameterized class is re-
duced considerably. Consequently, most member functions for List<Type> are inline
calls to the generic equivalent function in the base List class.

Name: List<Type> — A parameterized list

Synopsis: #include <COOL/List.h>

Base Classes: List, Generic

Friend Classes: None

Constructors: List<Type> ();
Creates an empty list of the specified type.

List<Type> (const Type& value);
Creates a list with one element of the specified type and value.

List<Type> (int number, Type&, ...);
Creates a list of number elements of the specified type initialized with the optional
values provided.

List<Type> (List<Type>& l);
Creates a list from l of the specified type.

List<Type> (const Type& value, List<Type>& l);
Creates a list of the specified type with value as the first element and l as the tail.

Member Functions: Boolean append (const List<Type>& l);
Adds the elements of l to the end of the object and returns TRUE. This function sets
the current position to the first element added. This function returns FALSE if a
new node cannot be created.

void but_last (List<Type>& l, int n = 1);
Sets l to point to all but the last n elements of the object. When no second argument
is specified, but_last sets l to point to all but the last element of the object. A second
argument whose value is zero sets l to point to all of the elements in the object. This
function sets l to NIL if the second argument is greater than or equal to the number
of elements in the object. This function invalidates the current position of l.

void clear ();
Removes all elements in the object and invalidates the current position.

Unordered Sequence Classes

7-3COOL User’s Manual

void copy (List<Type>& l) const;
Sets l to a copy of the object. This function invalidates the current position of l.

inline List_state& current_position () const;
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of list.

void describe (ostream& os);
Provides a formatted output capability for displaying the internal structure of the
list including reference counts and values for each node.

void difference (const List<Type>& l);
Removes from the object the elements that also appear in l. This function invali-
dates the current position of the list object.

void exclusive_or (const List<Type>& l);
Performs an exclusive-or operation by setting the object to contain all the elements
in the object that are not in l, and all the elements in l that are not in the object. This
function invalidates the current position of the list object.

inline Boolean find (const Type& value, List_state start = NULL);
Searches the object for value beginning at the current position specified. If a start-
ing point is not provided, this function begins the search at the head of the list. If
value is found, this function sets the current position to this element and returns
TRUE; otherwise, this function returns FALSE. If value is not found, this function
returns FALSE and resets the current position of the list object.

inline Type& get (int n = 0);
Returns a reference to the nth (zero-relative) element in the object. This function
sets the current position to this element. If the index is negative or is greater than the
number of nodes in the list, an Error exception is raised.

inline Boolean insert_after (const Type& value1, const Type& value2);
Inserts value1 after value2 in the object, sets the current position to this new ele-
ment, and returns TRUE. If value2 is not in the object, this function returns
FALSE.

inline Boolean insert_after (const Type& value);
Inserts value after the element at the current position in the object, sets the current
position to this new element, and returns TRUE. If the current position is invalid,
an Error exception is raised.

inline Boolean insert_before (const Type& value1, const Type& value2);
Inserts value1 before value2 in the object, sets the current position to this new ele-
ment, and returns TRUE. If value2 is not in the object, this function returns
FALSE.

inline Boolean insert_before (const Type& value);
Inserts value before the element at the current position in the object, sets the current
position to this new element, and returns TRUE. If the current position is invalid,
an Error exception is raised.

void intersection (const List<Type>& l);
Sets the object to contain only the elements that exist in both the object and l. This
function invalidates the current position of the list object.

Unordered Sequence Classes

7-4 COOL User’s Manual

inline Boolean is_empty ();
Returns TRUE if the object does not have any elements; otherwise, this function
returns FALSE.

 void last (List<Type>& l, int n = 1);
Sets l to point to the last n elements of the object. When it has no second arguments,
last sets l to point to the last element of the object. If n is equal to the number of
elements in the object, this function sets l to point to all the elements of the object. If
n is greater than the number of elements in the object or n is zero, this function sets l
to NIL, a list with no elements. This function sets the current position to the first of
the last n elements of the list object.

int length ();
Returns the number of elements in the object.

void lunion (const List<Type>& l);
Sets the object to contain everything that is an element of either the object or l. This
function invalidates the current position of the list object.

inline Boolean member (List<Type>& l, const Type& value);
Searches the object for value. If the element is found, this function sets the current
position to this element, sets l to the sublist within the object starting with the de-
sired element, and returns TRUE. If the value is not found, this function sets l to
NIL and returns FALSE.

inline void merge (const List<Type>& l, List_Predicate p);
Merges the elements of l into the object by using the supplied predicate p for deter-
mining the collating sequence. List_Predicate is a function of type Boolean
(*Function)(const Type&, const Type&).

inline Boolean next ();
Advances the current position to the next element in the object and returns TRUE.
If the current position is invalid, this function sets the current position to the first
element and returns TRUE. If the current position is the last element of the object,
this function invalidates the current position and returns FALSE.

Boolean next_difference (const List<Type>& l);
Sets the current position to the next element in the difference of the object and l and
returns TRUE. If there are no more elements in the difference, this function invali-
dates the current position and returns FALSE.

Boolean next_exclusive_or (const List<Type>& l);
Sets the current position to the next element in the exclusive-or of the object and l
and returns TRUE. If there are no more elements in the exclusive-or, this function
invalidates the current position and returns FALSE.

Boolean next_intersection (const List<Type>& l);
Sets the current position to the next element in the intersection of the object and l
and returns TRUE. If there are no more elements in the intersection, this function
invalidates the current position and returns FALSE.

Boolean next_lunion (const List<Type>& l);
Sets the current position to the next element in the union of the object and l and
returns TRUE. If there are no more elements in the union, this function invalidates
the current position and returns FALSE.

Unordered Sequence Classes

7-5COOL User’s Manual

inline List<Type>& operator+ (const List<Type>& l);
Returns a reference to a new list containing the concatenation of the object and l.
Since the new list is allocated from heap memory, you must delete its storage.

inline List<Type>& operator– (const List<Type>& l);
Returns a reference to a new list containing the difference of the object and l. Since
the new list is allocated from heap memory, you must delete its storage.

inline List<Type>& operator^ (const List<Type>& l);
Returns a reference to a new list containing the exclusive-or of the object and l.
Since the new list is allocated from heap memory, you must delete its storage.

inline List<Type>& operator& (const List<Type>& l);
Returns a reference to a new list containing the intersection of the object and l.
Since the new list is allocated from heap memory, you must delete its storage.

inline List<Type>& operator| (const List<Type>& l);
Returns a reference to a new list containing the union of the object and l. Since the
new list is allocated from heap memory, you must delete its storage.

inline List<Type>& operator= (List<Type>& l);
Assigns the object (the list on the left-hand side of the assignment) to point to the
same set of elements as l (on the right-hand side of the assignment) and returns a
reference to the updated object. Also, this function invalidates the current position.

inline List<Type>& operator+= (const List<Type>& l);
Sets the object (the list on the left-hand side of the operator) to the concatenation of
the object and l (the list on the right-hand side of the operator) and returns a refer-
ence to the updated object. Also, this function invalidates the current position.

inline List<Type>& operator–= (const List<Type>& l);
Returns a reference to the modified object containing the difference of the object
and l.

inline List<Type>& operator^= (const List<Type>& l);
Returns a reference to the modified object containing the exclusive-or of the object
and l.

inline List<Type>& operator&= (const List<Type>&);
Returns a reference to the modified object containing the intersection of the object
and l.

inline List<Type>& operator|= (const List<Type>&);
Returns a reference to the modified object containing the union of the object and l.

Boolean operator== (const List<Type>& l) const;
Returns TRUE if the elements of the two lists have the same values; otherwise, this
function returns FALSE.

inline Boolean operator!= (const List<Type>& l) const;
Returns TRUE if the elements of the two lists have different values; otherwise,
this function returns FALSE.

Type& operator[] (int n);
Returns a reference to the the nth (zero-relative) element in the object. This func-
tion sets the current position to this element. If the index is negative or is greater
than the number of nodes in the list, an Error exception is raised.

Unordered Sequence Classes

7-6 COOL User’s Manual

Type pop ();
Removes and returns the first element in the object. This function invalidates the
current position. If there is nothing in the object, an Error exception is raised.

Boolean pop (Type& value);
Copies the first element in the object to value and removes it from the object. This
function invalidates the current position. If there is nothing in the list, an Error
exception is raised.

int position ();
Returns the current position as a zero-relative index into the object that can be used
with the overloaded operator[].

int position (const Type& value);
Searches the object for value. If the element is found, this function sets the current
position to this element and returns the zero-relative index of this element; other-
wise, this function returns –1.

inline Boolean prepend (const List<Type>& l);
Adds the elements of l to the beginning of the object and returns TRUE. This func-
tion sets the current position to the first element added. This function returns
FALSE if the specified list argument is NIL.

Boolean prev ();
Moves the current position to the previous element in the object and returns TRUE.
If the current position is invalid, this function sets the current position to the last
element and returns TRUE. If the current position is the first element in the object,
this function invalidates the current position and returns FALSE.

Boolean push (const Type& value);
Adds value to the beginning of the object and returns TRUE. This function sets the
current position to the first element of the object. This function returns FALSE
when heap memory is exhausted.

inline Boolean push_end (const Type& value);
Adds value to the end of the object and returns TRUE. This function sets the cur-
rent position to the last element of the object. This function returns FALSE when
heap memory is exhausted.

inline Boolean push_end_new (const Type& value);
Adds value to the end of the object (if it is not already in the object) and sets the
current position to this element. This function returns TRUE if the element is
added to the object; otherwise, this function returns FALSE.

inline Boolean push_new (const Type& value);
Adds value to the beginning of the object (if it is not already in the object) and sets
the current position to this element. This function returns TRUE if the element is
added to the object; otherwise, this function returns FALSE.

Boolean put (const Type& value, int n = 0);
Replaces the nth (zero-relative) element in the object with value. This function re-
turns TRUE if the nth element exists; otherwise, this function returns FALSE. If n
is negative, an Error exception is raised.

Unordered Sequence Classes

7-7COOL User’s Manual

Type& remove ();
Removes the element at the current position in the object and returns a reference to
the element. This function sets the current position to the element immediately fol-
lowing the element removed. If the current position is invalid, an Error exception
is raised.

inline Boolean remove (const Type& value);
Removes the first occurrence of value in the object. If the element is found, this
function removes it from the object, sets the current position to the element imme-
diately following the element removed, and returns TRUE. If the element is not
found, this function returns FALSE.

Boolean remove_duplicates ();
Removes any duplicate elements from the object. This function returns TRUE if
any elements were removed; otherwise, this function returns FALSE. This func-
tion invalidates the current position.

inline Boolean replace (const Type& value1, const Type& value2);
Replaces the first occurrence of value1 in the object with value2 and sets the cur-
rent position to this element. If value1 is found, this function returns TRUE; other-
wise, this function returns FALSE.

inline Boolean replace_all (const Type& value1, const Type& value1);
Replaces all occurrences of value1 in the object with value2. This function returns
TRUE if any elements were replaced; otherwise, this function returns FALSE.
This function invalidates the current position.

inline void reset ();
Invalidates the current position in the object.

void reverse ();
Reverses the order of the elements in the object. This function invalidates the cur-
rent position.

Boolean search (const List<Type>& l);
Searches for the sublist l in the object. If l is a sublist in the object, this function sets
the current position in the object to the first element of the sublist and returns
TRUE; otherwise, this function returns FALSE.

inline void set_compare (List_Compare = NULL);
Updates the compare function for the object. List_Compare is a function of type
Boolean (*Function) (const Type&, const Type&). If no argument is provided, the
operator= for the type over which the class is parameterized is used.

Boolean set_tail (const List<Type>& l, int n = 1);
Sets the nth tail of the object to l. This function sets the current position of the object
to the first element of the nth tail. This function returns TRUE if the object has an
nth tail; otherwise, this function returns FALSE.

inline void sort (List_Predicate p);
Sorts the elements of the object by using p for determining the collating sequence.
List_Predicate is a function of type int (*Function) (const Type&, const Type&)
that returns –1 if the first argument should precede the second, zero if they are
equal, and 1 if the first argument should follow the second.

Unordered Sequence Classes

7-8 COOL User’s Manual

Boolean sublist (List<Type>& l1, const List<Type>& l2);
Searches for l2 in the object. If l2 is a sublist of the object, this function sets the
current position of the object to the first element of l2, sets l1 to the sublist within
the object (starting at the new current position), and returns TRUE; otherwise, this
function sets l1 list to NIL (an empty list) and returns FALSE.

void tail (List<Type>& l, int n = 1);
Sets l to point to the nth tail of the object. The nth tail is a list whose first element is
the nth (zero-relative) element of the object. When it has no second argument, tail
sets l to point to the first tail of the object. n=1 sets l to all of the elements in the
object. This function sets l to NIL if n is greater than or equal to the number of
elements in the object. This function sets the current position to the nth element of
the object.

inline Type& value ();
Returns the element at the current position in the object. An Error exception is
raised if the current position is invalid.

Friend Functions: friend ostream& operator<< (ostream& os, const List<Type>& l);
Provides a formatted output capability for a reference to a list.

inline friend ostream& operator<< (ostream& os, const List<Type>* l);
Provides a formatted output capability for a pointer to a list.

List Example 7.4 The following program declares a list of strings and stores the words in a para-
graph of text in individual nodes. The list of words is traversed using a parameterized
iterator, and the nodes are manipulated to determine the total number of words, the
number of unique words, and the most commonly used word in the paragraph. These
results are sent to the standard output, and the program then ends.

 1 #include <cool/List.h> // Include list header file

 2 #include <cool/Gen_String.h> // Include COOL String class

 3 #include <cool/Iterator.h> // Include COOL Iterator class

 4 #include ”paragraph.h” // Include Stroustrup text

 5 DECLARE List<Gen_String> // Declare list type

 6 IMPLEMENT List<Gen_String> // Implement list type

 7 DECLARE Iterator<List> // Declare list iterator type

 8 IMPLEMENT Iterator<List> // Implement list iterator type

 9 int main (void) {

10 List<Gen_String> l1; // Declare list variable

11 Gen_String s; // Temporary string variable

12 int max_count = 0; // Temporary counting variable

13 cout << text; // Output paragraph

14 text.compile (”[a–zA–Z]+”); // Match any alphabetical word

15 while (text.find ()) { // While still more words

16 text.sub_string (s, text.start (), text.end ()); // Get word

17 l1.push (s); // And add to list

18 }

19 l1.reset (); // Invalidate current position

20 while (l1.next ()) { // While there are still nodes

21 int counter = 0; // Initialize counter

22 Gen_String cur_word; // Temporary string variable

23 Iterator<List> i1 = l1.current_position (); // Save current position

24 cur_word = l1.value (); // Get word to be counted

25 l1.reset (); // Invalidate current position

Unordered Sequence Classes

7-9COOL User’s Manual

26 while (l1.next ()) // While there are still nodes

27 if (l1.value () == cur_word) // If word appears in list

28 counter++; // Increment usage count

29 if (counter > max_count) { // If most used word so far

30 max_count = counter; // Update maximum count

31 s = cur_word; // And save word

32 }

33 l1.current_position () = i1; // Restore old current position

34 }

35 cout << ”There are ” << l1.length () << ” words\n”;

36 l1.remove_duplicates (); // Remove duplicate words

37 cout << ”There are ” << l1.length () << ” unique words\n”;

38 cout << ”The most common word is ‘” << s << ”’ and is used ” <<
max_count << ” times\n”;

39 exit (0); // Exit with successful status

40 }

Lines 1 through 3 include the COOL List.h, Gen_String.h, and Iterator.h class
header files. Line 4 includes a statically allocated Gen_String object that contains a
paragraph of text to be scanned by the program. Lines 5 and 6 define a container class of
a list of strings and lines 7 through 8 define an iterator for the list class. Lines 10 through
13 declare various variables and print the complete paragraph. A regular expression to
match sequences of alphabetical characters (that is, words) is compiled in line 14. Lines
15 through 18 contain a loop that finds each word in the paragraph and pushes it onto the
list. Line 18 resets the internal current position iterator inside the list object.

Lines 20 through 34 are the heart of the program. The loop iterates through the elements
of the list, assigning each word to a current word variable and the current position to a
list iterator object. An inner loop uses the current position functionality to loop through
the elements of the list counting the number occurrences of the current word. If this
count is the largest so far, both the word and the count are saved. When the inner loop
terminates, the outer loop establishes the previous current position maintained by the
iterator object and the procedure is repeated again until all words have been scanned.
Lines 35 through 38 output the results of the word search and counting. Finally, the
program ends with a successful completion code.

The following shows the output for the program:

Unordered Sequence Classes

7-10 COOL User’s Manual

 A programming language serves two related purposes: it provides a
 vehicle for the programmer to specify actions to be executed and a
 set of concepts for the programmer to use when thinking about what
 can be done. The first aspect ideally requires a language that is
 ‘close to the machine’, so that all important aspects of a machine
 are handled simply and efficiently in a way that is reasonably
 obvious to the programmer. The C language was primarily designed with
 this in mind. The second aspect ideally requires a language that is
 ‘close to the problem to be solved’ so that the concepts of a
 solution can be expressed directly and concisely. The facilities
 added to C to create C++ were primarily designed with this in mind.

 –– Bjarne Stroustrup

 There are 129 words
 There are 71 unique words
 The most common word is ‘to’ and is used 9 times

Pair Class 7.5 The parameterized Pair<T1,T2> class implements an association between one
object and another. The objects may be of different types, with the first representing the
key of the pair and the second representing the value of the pair. The Pair<T1,T2> class
is used by the Association<Ktype,Vtype> class to implement an association list (that is,
a vector of pairs of associated values).

Name: Pair<T1,T2> — A parameterized pair

Synopsis: #include <COOL/Pair.h>

Base Classes: None

Friend Classes: None

Constructors: Pair<T1,T2> ();
Creates an empty pair of the specified types.

Pair<T1,T2> (const Pair<T1,T2>&);
Duplicates the size and value of a pair object.

Pair<T1,T2> (const T1&, const T2&);
Creates a pair from the two specified elements.

Member Functions: inline const T1& get_first () const;
Returns a constant reference to the first element of the pair.

inline const T2& get_second () const;
Returns a constant reference to the second element of the pair.

inline T1& first ();
Returns a reference to the first element of the pair.

Pair<T1,T2>& operator= (Pair<T1,T2>&);
Assigns one pair object to have the value of another by duplicating element values.

Boolean operator== (Pair<T1,T2>&) const;
Returns TRUE if the pairs have the same element values; otherwise, this function
returns FALSE.

Unordered Sequence Classes

7-11COOL User’s Manual

inline Boolean operator!= (Pair<T1,T2>&) const;
Returns TRUE if the pairs have different element values; otherwise, this function
returns FALSE .

inline T2& second ();
Returns a reference to the second element of the pair.

inline void set_compare (Pair_Compare = NULL);
Updates the compare function for this class of pair. Pair_Compare is a function of
type Boolean (*Function)(const Pair<T1,T2>&, const Pair<T1,T2>&). If no ar-
gument is provided, the operator== for the types over which the class is
parameterized are used.

inline void set_first (const T1&);
Sets the first element of the pair to the specified value.

inline void set_second (const T2&);
Sets the second element of the pair to the specified value.

Friend Functions: friend ostream& operator<< (ostream&, const Pair<T1,T2>&);
Provides a formatted output capability for reference to a Pair<T1,T2> object.

inline friend ostream& operator<< (ostream&, const Pair<T1,T2>*);
Provides a formatted output capability for a pointer to a Pair<T1,T2> object.

Association Class 7.6 The Association<Ktype,Vtype> class is privately derived from the
Vector<Type>class and implements a collection of pairs. The first of the pair is called
the key, and the second of the pair is called the value. The Association<Ktype,Vtype>
class implements a one-dimensional vector parameterized over a pair of objects. The
first type specifies the type of the key, and the second type specifies the type of the
value. Many of the member functions for Association<Ktype,Vtype> are inherited from
Vector<Type> and, consequently, are inline calls to the vector member function of the
same name.

The Association<Ktype,Vtype> class inherits the dynamic growth capability of the
Vector class. Vectors are, by default, dynamic in nature. A static-sized vector object is
selected by setting the growth allocation size to zero or by passing in a pointer to a block
of user-supplied storage to the constructor. If a vector is of static size and an operation is
performed that requires more storage, an Error exception is raised.

The Association<Ktype, Vtype> class implements the notion of a current position. This
is useful for iterating through the elements of a vector. The current position is main-
tained in a data member of type Association_state and is set or reset by all member
functions affecting elements in the class. Member functions are provided to reset the
current position, move to the next and previous elements, find an element, and get the
value at the current position. The Iterator<Type> class provides a mechanism to save
and restore the state associated with the current position, thus allowing the programmer
to use multiple iterators over the same instance of an association object.

Unordered Sequence Classes

7-12 COOL User’s Manual

Name: Association<Ktype,Vtype> — A dynamic, parameterized association

Synopsis: #include <COOL/Association.h>

Base Classes: Vector<Type>, Vector, Generic

Friend Classes: None

Constructors: Association<Ktype,Vtype> ();
Creates an empty association of the specified type.

Association<Ktype,Vtype> (const Association<Ktype,Vtype>& assoc);
Duplicates the size and value of an association object.

Association<Ktype,Vtype> (unsigned long number);
Allocates enough storage for an association of a specific type to hold number ele-
ments.

Association<Type> (void* storage, unsigned long number);
Creates a static-sized association object for number elements whose storage stor-
age is provided by the user. If an object of this type attempts to grow dynamically
or the programmer invokes the resize member function, an Error exception is
raised.

Member Functions: inline long capacity ();
Returns the maximum number of elements the association can contain.

inline void clear ()
Removes all elements in the object and invalidates the current position.

inline Association_state& current_position ();
Returns the state information associated with the current position. This function
should be used with the Iterator<Type> class to save and restore the current posi-
tion, thus facilitating multiple iterators over an instance of association.

Boolean find (const Ktype& key);
Searches the association for key. If found, this function sets the current position and
returns TRUE; otherwise, this function resets the current position and returns
FALSE.

Boolean get (const Ktype& key, Vtype& value);
Gets the associated value for key. This function returns TRUE and modifies value
to contain the associated value. If key is not found, this function returns FALSE
and does not modify value.

Boolean get_key (const Vtype& value, Ktype& key) const;
Gets the first associated key for value. This function returns TRUE and modifies
key to contain the associated key. If value is not found, this function returns
FALSE and does not modify key.

inline const Ktype& key () const;
Returns the key of the key/value pair at the current position.

inline long length ();
Returns the number of elements (pairs) in the association.

Unordered Sequence Classes

7-13COOL User’s Manual

inline Boolean next ();
Advances the current position pointer to the next element in the association and
returns TRUE. If the current position is invalid, this function advances to the first
element and returns TRUE. If advancing past the last element, this function invali-
dates the current position and returns FALSE.

Association<Ktype,Vtype>& operator= (const Association<Ktype,Vtype>&);
Overloads the assignment operator for the Association class and assigns one asso-
ciation object to have the value of another by duplicating the size and element val-
ues. This function invalidates the current position. If the association is prohibited
from dynamically growing as necessary, an Error exception is raised.

Boolean operator== (const Association<Ktype,Vtype>& assoc) const;
Overloads the equality operator for the Association class. This function returns
TRUE if the associations have the same number of elements with the same values;
otherwise, this function returns FALSE.

inline Boolean operator!= (const Association<Ktype,Vtype>& assoc) const;
Overloads the inequality operator for the Association class. This function returns
TRUE if the associations have a different number of elements or different values;
otherwise, this function returns FALSE.

inline Boolean prev ();
Moves the current position pointer to the previous element in the association and
returns TRUE. If the current position is invalid, this function moves to the last ele-
ment and returns TRUE. If moving to the previous element passes the first element
in the association, this function invalidates the current position and returns
FALSE.

Boolean put (const Ktype& key, const Vtype& value);
Puts the key/value pair into the association. If a pair already exists with the speci-
fied key, the value for that pair is replaced with value. If required and not prohib-
ited, the association is grown. If the new pair is successfully put into the
association, TRUE is returned; otherwise, FALSE is returned.

Vtype& remove ();
Removes and returns a reference to the element at the current position. This func-
tion sets the current position to the element immediately following the element re-
moved. If the element removed is at the end of the association, this function
invalidates the current position. If the current position is invalid, and Error excep-
tion is raised.

Boolean remove (const Ktype& key);
Searches for key and, if found, this function removes the pair associated with key
and sets the current position to the element immediately following the element re-
moved; then, the function returns TRUE. If key is found at the end of the associa-
tion, this function invalidates the current position and returns TRUE. If key is not
found, this function returns FALSE.

inline void reset ();
Invalidates the current position.

inline void resize (long number);
Resizes the association for at least number elements. If a growth ratio has been se-
lected and it satisfies the resize request, the association is grown by this ratio. This
function invalidates the current position. If the size specified is zero or negative, an
Error exception is raised.

Unordered Sequence Classes

7-14 COOL User’s Manual

inline void set_alloc_size (int size);
Updates the allocation growth size to be used when the growth ratio is zero. Default
allocation growth size is 100 bytes. If the size specified is negative, an Error ex-
ception is raised.

inline void set_growth_ratio (float ratio);
Updates the growth ratio for this instance of an association to the specified value.
When an association needs to grow, the current size is multiplied by the ratio to
determine the new size. If ratio is negative, an Error exception is raised.

inline void set_key_compare (Assoc_Key_Compare = NULL);
Updates the key compare function for this class of association. Assoc_Key_Com-
pare is a function of type Boolean (*Function)(const Type&, const Type&). If no
argument is provided, the operator== for Ktype over which the key for the associa-
tion class is parameterized is used.

inline long set_length (long number);
Specifies the number of elements in an association to allow random access via the
overloaded operator[] member function. If number is larger than the storage allo-
cated, this function truncates number to the largest value the allocated size will sup-
port. This function returns the updated number of elements.

inline void set_value_compare (Assoc_Value_Compare = NULL);
Updates the value compare function for this class of association.
Assoc_Value_Compare is a function of type Boolean (*Function)(const Ktype&,
const Vtype&). If no argument is provided, the operator== for Vtype over which
the value for the association class is parameterized is used.

inline Vtype& value ();
Returns a reference to the value of the key/value pair at the current position.

Friend Functions: friend ostream& operator<< (ostream os,
const Association<Ktype,Vtype>& assoc);

Provides a formatted output capability for reference to an Associa-
tion<Ktype,Vtype> object.

inline friend ostream& operator<< (ostream& os,
const Association<Ktype,Vtype>* assoc);

Provides a formatted output capability for a pointer to an Associa-
tion<Ktype,Vtype> object.

Association 7.7 The following program declares an association of strings and integers,
Example storing each word and its frequency of occurrence in a paragraph of text in individual

elements. The association of words is traversed using the current position functionality
of the class to determine the total the number of words and the most commonly used
word in the paragraph.

 1 #include <cool/Association.h> // Include Association class

 2 #include <cool/Gen_String.h> // Include COOL String class

 3 #include <cool/Iterator.h> // Include COOL Iterator class

 4 #include ”paragraph.h” // Include Stroustrup text

 5 DECLARE Association<Gen_String,int> // Declare association type

 6 IMPLEMENT Association<Gen_String,int> // Implement association type

 7 DECLARE Iterator<Association> // Declare assoc iterator

 8 IMPLEMENT Iterator<Association> // Implement assoc iterator

Unordered Sequence Classes

7-15COOL User’s Manual

 9 int main (void) {

10 Association<Gen_String,int> a1; // Declare Association variable

11 Gen_String s; // Temporary string variable

12 int counter = 0, max_count = 0; // Initialize word counters

13 cout << text; // Output paragraph

14 text.compile (”[a–zA–Z]+”); // Match any alphabetical word

15 while (text.find ()) { // While still more words

16 text.sub_string (s, text.start (), text.end ()); // Get word

17 if (a1.find (s)) // If word already found

18 ++a1.value (); // Increment use count

19 else a1.put (s, 1); // Else add word

20 }

21 a1.reset (); // Invalidate current position

22 Iterator<Association> i1; // Iterator object

23 while (a1.next ()) { // While there are still nodes

24 counter += a1.value (); // Sum number of words used

25 if (a1.value () > max_count) { // If most used word so far

26 i1 = a1.current_position (); // Save position in list

27 max_count = a1.value (); // And keep track of usage

28 }

29 }

30 cout << ”There are ” << counter << ” words\n”;

31 cout << ”There are ” << a1.length () << ” unique words\n”;

32 a1.current_position () = i1; // Set position of most used word

33 cout << ”The most common word is ‘” << a1.key () << ”’ and is used ” <<
a1.value () << ” times\n”;

34 exit (0); // Exit with successful status

35 }

Lines 1 through 3 include the COOL Association.h, Gen_String.h, and Iterator.h
class header files. Line 4 includes a statically allocated Gen_String object that contains
a paragraph of text to be scanned by the program. Lines 5 and 6 define a container class
of an association of strings and integers, and lines 7 and 8 define an iterator for the asso-
ciation class. Lines 10 through 13 declare various variables and print the complete para-
graph. A regular expression to match sequences of alphabetical characters (that is,
words) is compiled in line 14. Lines 15 through 20 contain a loop that finds each word in
the paragraph and adds it to the association if not already there. Otherwise, the current
frequency is incremented. Line 21 resets the internal current position iterator inside the
association object, and line 22 defines an iterator for an association object.

Lines 23 through 29 are the heart of the program. The loop iterates through the elements
of the association summing up the frequencies of all the words to get a total word count.
In addition, if the count for a given word is the largest so far, the position in the associa-
tion is saved in the iterator object. This procedure repeats until all words have been
scanned. Lines 30 through 33 output the results of the word search and counting. Fi-
nally, the program ends with a successful completion code.

Unordered Sequence Classes

7-16 COOL User’s Manual

The following shows the output for the program:

 A programming language serves two related purposes: it provides a
 vehicle for the programmer to specify actions to be executed and a
 set of concepts for the programmer to use when thinking about what
 can be done. The first aspect ideally requires a language that is
 ‘close to the machine’, so that all important aspects of a machine
 are handled simply and efficiently in a way that is reasonably
 obvious to the programmer. The C language was primarily designed with
 this in mind. The second aspect ideally requires a language that is
 ‘close to the problem to be solved’ so that the concepts of a
 solution can be expressed directly and concisely. The facilities
 added to C to create C++ were primarily designed with this in mind.

 –– Bjarne Stroustrup

 There are 129 words
 There are 71 unique words
 The most common word is ‘to’ and is used 9 times

Hash_Table Class 7.8 The Hash_Table<Ktype,VType> class is publicly derived from the Hash_Table
class and implements hash tables of user-specified types for both the key and the value.
This is accomplished by using the parameterized type capability of C++. The Hash_Ta-
ble class is dynamic in nature. Its size (that is, the number of buckets in the table) is
always a prime number. Each bucket holds eight items. No holes are left in a bucket; if a
key/value pair is removed from the middle of a bucket, the following entries are moved
up. When a hash on a key ends up in a bucket that is full, the table is enlarged.

Name: Hash_Table<Ktype,Vtype> — A dynamic, parameterized hash table

Synopsis: #include <COOL/Hash_Table.h>

Base Classes: Hash_Table, Generic

Friend Classes: None

Constructors: Hash_Table<Ktype,Vtype> ();
Allocates a hash table of the default size (three buckets).

Hash_Table<Ktype,Vtype> (unsigned long number);
Allocates a hash table with at least enough buckets for number entries.

Hash_Table<Ktype,Vtype> (const Hash_Table<Ktype,Vtype>& ht);
Duplicates the size and entries of another hash table object ht.

Member Functions: inline long capacity () const;
Returns the maximum number of entries that the hash table can hold.

void clear ();
Removes all entries from the hash table and adjusts the appropriate counts.

inline Hash_Table_state& current_position () const;
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of hash table.

Unordered Sequence Classes

7-17COOL User’s Manual

Boolean find (const Ktype& key);
Searches the hash table for key and returns TRUE if found; otherwise, this function
returns FALSE. If key is found, this function sets the current position to the key/
value entry; otherwise, this function invalidates the current position.

Boolean get (const Ktype& key, Vtype& value);
Calculates the hash value for key and returns the value associated with that key in
the table by copying it to value. This function sets the current position to the key/
value pair. If key is found, this function returns TRUE; otherwise, this function
returns FALSE.

inline long get_bucket_count () const;
Returns the prime number of buckets currently allocated for the hash table.

inline int get_count_in_bucket (long n) const;
Returns the number of keys currently hashed to the zero-relative nth bucket.

Boolean get_key (const Vtype& value, Ktype& key);
Searches the table for value. If found, this function copies the associated key into
key, sets the current position to the key/value pair, and returns TRUE. If value is
not found in the hash table, this function invalidates the current position and returns
FALSE.

inline Boolean is_empty () const;
Returns TRUE if the hash table contains no entries; otherwise, this function returns
FALSE.

const Ktype& key ();
Returns the key of the key/value pair at the current position. If the current position
is invalid, an Error exception is raised.

inline long length () const;
Returns the number of entries in the hash table.

Boolean next ();
Advances the current position pointer to the next entry in the hash table and returns
TRUE. If the current position is invalid, this function advances to the first entry
and returns TRUE. If advancing past the last entry in the hash table, this function
invalidates the current position and returns FALSE.

Hash_Table<Ktype,Vtype>& operator= (const
Hash_Table<Ktype,Vtype>& ht);

Overloads the assignment operator for the class and assigns one hash table object to
have the value of another by duplicating the size and entries. This function invali-
dates the current position of the object.

Boolean operator== (const Hash_Table<Ktype,Vtype>& ht);
Overloads the equality operator for the hash table class. This function returns
TRUE if the tables have the same number of buckets with the same key/value
pairs; otherwise, this function returns FALSE.

inline Boolean operator!= (const Hash_Table<Ktype,Vtype>& ht);
Overloads the inequality operator for the hash table class. This function returns
TRUE if the tables have a different number of buckets or different key/value pairs;
otherwise, this function returns FALSE.

Unordered Sequence Classes

7-18 COOL User’s Manual

Boolean prev ();
Moves the current position pointer to the previous entry in the hash table and re-
turns TRUE. If the current position is invalid, this function moves to the last entry
and returns TRUE. If moving to the previous entry passes the first entry in the hash
table, this function invalidates the current position and returns FALSE.

Boolean put (const Ktype& key, const Vtype& value);
Searches the hash table for key and puts the corresponding key/value pair into the
hash table. If key is not there, the key/value pair is added and TRUE is returned;
otherwise, if key is already there, this function updates the value with value and
returns FALSE. If the bucket determined by the hash is full, the table grows and the
key/value pairs are rehashed and inserted. This function sets the current position to
the key/value pair.

Boolean remove ();
Removes the key/value at the current position and returns TRUE. This function
sets the current position to the entry immediately following the entry removed if in
the same bucket; otherwise, this function invalidates the current position. If the cur-
rent position is invalid, an Error exception is raised and, if the handler returns, this
function returns FALSE.

Boolean remove (const Ktype& key);
Searches the hash table for key, removes the indicated key/value pair from the ta-
ble, sets the current position to the old location of the key/value pair, and returns
TRUE. If key is not found in the hash table, this function returns FALSE.

inline void reset ();
Invalidates the current position.

Boolean resize (long number);
Resizes the hash table for at least the indicated number of entries. If a growth ratio
has been selected and it satisfies the resize request, the table is grown by this ratio.
This function invalidates the current position. If the resize value is zero or negative,
an Error exception is raised.

inline void set_hash (Hash h);
Updates the hash function for this instance of hash table. Hash is a function of type
unsigned long (*Function) (const Ktype&). If the key is of type char*, the hash is
the result of successively exclusive-or-ing each byte with the current hash value
shifted left seven bits. If the key is not of type char*, the default hash function is the
computation of a 32-bit value shifted left three bits with the result then modulo the
prime number of buckets. If the size of (Ktype) is greater than four bytes, the 32-bit
value is computed by successively exclusive-or-ing 32-bit values for the length of
the key.

void set_key_compare (Hash_Key_Compare = NULL);
Updates the key compare function for this instance of hash table. Hash_Key_Com-
pare is a function of type Boolean (*Function)(const Ktype&, const Ktype&). If
no argument is provided, the operator== for Ktype, the key over which the class is
parameterized, is used. If the key is a char*, a String, or a Gen_String, the default
compare function is a string comparison.

inline void set_ratio (float);
Updates the growth ratio for this instance of the hash table to the specified value.
When a hash table needs to grow, the current size is multiplied by the ratio to deter-
mine the new size. If ratio is negative, an Error exception is raised.

Unordered Sequence Classes

7-19COOL User’s Manual

void set_value_compare (Hash_Value_Compare = NULL);
Updates the value compare function for this instance of hash table.
Hash_Value_Compare is a function of type Boolean (*Function)(const
Vtype&,const Vtype&). If no argument is provided, the operator== for Vtype, the
value over which the class is parameterized, is used.

const Vtype& value ();
Returns a reference to the value of the key/value pair at the current position. If the
current position is invalid, an Error exception is raised.

Friend Functions: friend ostream& operator<< (ostream& os,
const Hash_Table<Ktype,Vtype>& ht);

Overloads the output operator for a reference to a Hash_Table<Ktype,Vtype> ob-
ject. This function provides a formatted output with key/value pairs printed one per
line.

inline friend ostream& operator<< (ostream& os,
 const Hash_Table<Ktype,Vtype>* ht);

Overloads the output operator for a pointer to a Hash_Table<Ktype,Vtype> object.
This function provides a formatted output with key/value pairs printed one per line.

Hash Table 7.9 The following program declares a hash table of strings and integers,
Example storing each word as the key and its frequency of occurrence in a paragraph of text as the

value. The hash table is traversed using the current position function of the class to de-
termine the total number of words and the most commonly used word in the paragraph.

 1 #include <cool/Hash_Table.h> // Include Hash_Table class

 2 #include <cool/Gen_String.h> // Include COOL String class

 3 #include <cool/Iterator.h> // Include COOL Iterator class

 4 #include ”paragraph.h” // Include Stroustrup text

 5 DECLARE Hash_Table<Gen_String,int> // Declare Hash_Table type

 6 IMPLEMENT Hash_Table<Gen_String,int> // Implement Hash_Table type

 7 DECLARE Iterator<Hash_Table> // Declare Hash_Table iterator

 8 IMPLEMENT Iterator<Hash_Table> // Implement Hash_Table iterator

Unordered Sequence Classes

7-20 COOL User’s Manual

 9 int main (void) {

10 Hash_Table<Gen_String,int> a1; // Declare Hash_Table variable

11 Gen_String s; // Temporary string variable

12 int counter = 0, max_count = 0; // Initialize word counters

13 cout << text; // Output paragraph

14 text.compile (”[a–zA–Z]+”); // Match any alphabetical word

15 while (text.find ()) { // While still more words

16 text.sub_string (s, text.start (), text.end ()); // Get word

17 if (h1.find (s)) // If word already found

18 h1.put (h1.key (), h1.value ()+1); // Update use count

19 else h1.put (s, 1); // Else add word

20 }

21 h1.reset (); // Invalidate current position

22 Iterator<Hash_Table> i1; // Iterator object

23 while (h1.next ()) { // While there are still nodes

24 counter += h1.value (); // Sum number of words used

25 if (h1.value () > max_count) { // If most used word so far

26 i1 = h1.current_position (); // Save position in list

27 max_count = h1.value (); // And keep track of usage

28 }

29 }

30 cout << ”There are ” << counter << ” words in the paragraph\n”;

31 cout << ”There are ” << h1.length () << ” unique words in the paragraph\n”;

32 h1.current_position () = i1; // Set position of most used word

33 cout << ”The most common word is ‘” << h1.key () << ”’ and is used ” <<
h1.value () << ” times\n”;

34 exit (0); // Exit with successful status

35 }

Lines 1 through 3 include the COOL Hash_Table.h, Gen_String.h, and Iterator.h
class header files. Line 4 includes a statically allocated paragraph of text to be scanned
by the program. Lines 5 and 6 define a container class of a hash table whose key is a
string and whose value is an integer. Lines 7 and 8 define an iterator for the hash table
class. Lines 10 through 13 declare various variables and print the complete paragraph. A
regular expression to match sequences of alphabetical characters (that is, words) is
compiled in line 14. Lines 15 through 20 contain a loop that finds each word in the para-
graph and adds it to the hash table if not already there. Otherwise, the current frequency
is incremented and used as the new value for the key. Line 21 resets the internal current
position iterator inside the hash table object and line 22 defines an iterator for a hash
table object.

Lines 23 through 29 are the heart of the program. The loop iterates through the elements
of the hash table summing up the frequencies of all the words to get a total word count.
In addition, if the count for a given word is the largest so far, the position in the table is
saved in the iterator object. This procedure repeats until all words have been scanned.
Lines 30 through 33 output the results of the word search and count. Finally, the pro-
gram ends with a successful completion code.

Unordered Sequence Classes

7-21COOL User’s Manual

The following shows the output for the program:

 A programming language serves two related purposes: it provides a
 vehicle for the programmer to specify actions to be executed and a
 set of concepts for the programmer to use when thinking about what
 can be done. The first aspect ideally requires a language that is
 ‘close to the machine’, so that all important aspects of a machine
 are handled simply and efficiently in a way that is reasonably
 obvious to the programmer. The C language was primarily designed with
 this in mind. The second aspect ideally requires a language that is
 ‘close to the problem to be solved’ so that the concepts of a
 solution can be expressed directly and concisely. The facilities
 added to C to create C++ were primarily designed with this in mind.

 –– Bjarne Stroustrup

 There are 129 words
 There are 71 unique words
 The most common word is ‘to’ and is used 9 times

Unordered Sequence Classes

7-22 COOL User’s Manual

8-1COOL User’s Manual

SET CLASSES

Introduction 8.1 The set classes implement two basic data structures for random-access set opera-
tions.The following classes are discussed in this section:

• Set<Type>

• Bit_Set

The Set<Type> class implements random-access sets of objects of a user-specified
type. Classical set operations such as union, intersection, and difference are available.
In addition, the Set<Type> class supports the notion of a current position. See Section 5,
Parameterized Templates, for more information regarding the current position mecha-
nism and the Iterator<Type> class. The Bit_Set class implements efficient bit sets
stored in an arbitrary-length vector of bytes (unsigned char) large enough to represent
the specified number of elements. A bit set is indexed by integer values so elements can
be integers, enum values, constant symbols from the enumeration package (discussed in
Section 11, Symbols and Packages), or any other type of object or expression that re-
sults in an integral value.

In order to achieve successful compilation and usage, certain operations must be sup-
ported by any user-specified type over which the Set<Type> class is parameterized.
The member functions operator=, operator<, operator>, operator==, and opera-
tor<< for both pointer and reference must be overloaded for any class object used as the
type. Note that built-in types already have these functions defined.

NOTE: The Set class uses operator= of the parameterized type when copying ele-
ments. You should be careful when parameterizing a set over a pointer to a type, since
the default pointer assignment operator usually copies the pointer, not the value pointed
at.

Requirements 8.2 This section discusses set classes. It assumes that you have read and understood
Section 5, Parameterized Templates. In addition, no attempt is made to discuss the con-
cepts and algorithms for the data structures discussed. You should refer to a general
data structures or computer science text for this information.

Set Classes

8-2 COOL User’s Manual

Set Class 8.3 The Set<Type> class implements a set of elements of a user-specified type. The
Set<Type> class implements a simple one-element hash table where the key and the
value are the same. The type of the Set<Type> class is the key/value in the hash table.
The Set<Type> class is publicly derived from the Hash_Table class and is dynamic in
nature. Its size (that is, the number of buckets in the table) is always a prime number.
Each bucket holds eight items. No holes are left in a bucket; if a key/value is removed
from the middle of a bucket, the following entries are moved up. When a hash on a key
ends up in a bucket that is full, the table is enlarged. Growth of a specific instance of the
class can be controlled automatically by setting a growth ratio or manually by a resize
member function.

Name: Set — A dynamic, parameterized set

Synopsis: #include <COOL/Set.h>

Base Classes: Hash_Table, Generic

Friend Classes: None

Public Constructors: Set<Type> ();
Allocates a set of the default size (24 elements).

Set<Type> (unsigned long number);
Allocates a set with at least enough storage for number elements.

Set<Type> (const Set<Type>& st);
Duplicates the size and elements of another set object st.

Member Functions: Boolean find (const Type& value);
Searches the set for value. If the element is found, this function updates the current
position and returns TRUE; otherwise, this function invalidates the current posi-
tion and returns FALSE.

Boolean next_difference (Set<Type>& st);
Determines the next element in the difference of the set object and st. This function
sets the current position in the set object to that element and returns TRUE. If no
more elements are in the difference, this function invalidates the current position
and returns FALSE.

Boolean next_intersection (Set<Type>& st);
Determines the next element in the intersection of the set object and st. This func-
tion sets the current position in the set object to that element and returns TRUE. If
no more elements are in the intersection, this function invalidates the current posi-
tion and returns FALSE.

Boolean next_union (Set<Type>& st);
Determines the next element in the union of the set object and st. This function sets
the current position in the set object to that element and returns TRUE. If no more
elements are in the union, this function invalidates the current position and returns
FALSE.

Boolean next_xor (Set<Type>& st);
Determines the next element in the exclusive-or of the set object and st. This func-
tion sets the current position in the set object to that element and returns TRUE. If
no more elements are in the exclusive-or, this function invalidates the current posi-
tion and returns FALSE.

Set Classes

8-3COOL User’s Manual

Set<Type> operator– (Set<Type>& st);
Determines the logical difference of the set object and st and returns the result. This
function invalidates the current position.

Set<Type> operator^ (Set<Type>& st);
Determines the logical exclusive-or of two sets and returns the result. This function
invalidates the current position.

Set<Type> operator& (Set<Type>& st);
Determines the logical intersection of two sets and returns the result. This function
invalidates the current position.

Set<Type> operator| (Set<Type>& st);
Determines the logical union of two sets and returns the result. This function invali-
dates the current position.

Set<Type>& operator= (const Set<Type>& st);
Duplicates the size and elements of another set object st. This function invalidates
the current position of the set object and returns a reference to the modified object.

Set<Type>& operator–= (Set<Type>& st);
Determines the logical difference of two sets and returns the modified set object.
This function invalidates the current position of the set object and returns a refer-
ence to the modified object.

Set<Type>& operator^= (Set<Type>& st);
Determines the logical exclusive-or of two sets and returns the modified set object.
This function invalidates the current position of the set object and returns a refer-
ence to the modified object.

Set<Type>& operator&= (Set<Type>& st);
Determines the logical intersection of two sets and returns the modified set object.
This function invalidates the current position of the set object and returns a refer-
ence to the modified object.

Set<Type>& operator|= (Set<Type>& st);
Determines the logical union of two sets and returns the modified set object. The
current position is invalidated of the set object and returns a reference to the modi-
fied object.

Boolean operator== (const Set<Type>& st) const;
This function returns TRUE if the sets have an equal number of elements with the
same values; otherwise, this function returns FALSE.

inline Boolean operator!= (const Set<Type>& st) const;
This function returns TRUE if the sets have an unequal number of elements or val-
ues; otherwise, this function returns FALSE.

Boolean put (const Type& value);
Adds value to the set. If the set is not large enough and it can grow, this function
allocates enough storage, copies the old set elements, sets the current position to
value, and returns TRUE; otherwise, this function returns FALSE.

Set Classes

8-4 COOL User’s Manual

Boolean remove ();
Removes the element at the current position and returns TRUE. This function sets
the current position to the element immediately following the element removed if
not at end of the set; otherwise, this function invalidates the current position and
returns TRUE. If the current position is invalid, an Error exception is raised and
this function returns FALSE.

Boolean remove (const Type& value);
Searches for the specified element. If the element is found, this function removes
the element, sets the current position to the element immediately following the ele-
ment removed, and returns TRUE. If the element found is the last element in the
set, this function invalidates the current position and returns TRUE. Otherwise,
this function returns FALSE.

Boolean resize (long number);
Resizes the set for at least number elements. This function invalidates the current
position. If number is zero or negative, an Error exception is raised.

Boolean search (Set<Type>& st);
Determines if st is a subset of the set object. If found, this function sets the current
position to the start of the subset and returns TRUE; otherwise, this function re-
turns FALSE.

inline void set_compare (Set_Compare = NULL);
Updates the compare function for this instance of set. Set_Compare is a function of
type Boolean (*Function) (const Type&, const Type&). If no argument is pro-
vided, the operator== for the type over which the set is parameterized is used.

inline void set_difference (Set<Type>& st);
Determines the logical difference of two sets and modifies the source with the re-
sult. This function invalidates the current position in the set object.

inline void set_ratio (float ratio);
Updates the growth ratio for this instance of a set to ratio. When a set needs to
grow, the current size is multiplied by the ratio to determine the new size. If ratio is
negative, and Error exception is raised.

inline void set_hash (Set_Hash);
Updates the hash function for this instance of set. Set_Hash is a function of type
unsigned long (*Function) (const Type&). If the set object is parameterized over
the type char*, the default hash is the result of successively exclusive-or-ing each
byte with the current hash value shifted left seven bits. If the type is not char*, the
default hash function is the computation of a 32-bit value that is shifted left three
bits with the result then modulo the prime number of buckets. If the size of Type is
greater than four, the 32-bit value is computed by successively exclusive-or-ing
32-bit values for the length of the key.

inline void set_intersection (Set<Type>& st);
Determines the logical intersection of st and the set object, modifying the set object
with the result. This function invalidates the current position in the set object.

inline void set_union (Set<Type>& st);
Determines the logical union of st and the set object, modifying the set object with
the result. This function invalidates the current position in the set object.

inline void set_xor (Set<Type>& st);
Determines the logical exclusive-or of st and the set object, modifying the set ob-
ject with the result. This function invalidates the current position in the set object.

Set Classes

8-5COOL User’s Manual

Type& value ();
Returns the element at the current position. If the current position is invalid, an
Error exception is raised.

Friend Functions: friend ostream& operator<< (ostream& os, const Set<Type>& st);
Overloads the output operator for a reference to a Set<Type> object to provide a
formatted output capability.

inline friend ostream& operator<< (ostream& os, const Set<Type>* st);
Overloads the output operator for a pointer to a Set<Type> object to provide a for-
matted output capability.

Set Class Example 8.4 The following program manipulates sets of string objects representing the names
of various colors. Two sets with different elements are created and several set opera-
tions are then applied. The results of each operation are sent to the standard output via
the overloaded operator<< function.

 1 #include <COOL/String.h> // COOL String class

 2 #include <COOL/Set.h> // COOL Set class

 3 DECLARE Set<String>; // Declare set of strings

 4 IMPLEMENT Set<String>; // Implement set of strings

 5 Boolean my_compare (const String& s1, const String& s2) {

 6 return ((strcmp (s1, s2) == 0) ? TRUE : FALSE);

 7 }

 8 static String color_table[] = { ”RED”, ”YELLOW”, ”PINK”, ”GREEN”,

 ”ORANGE”, ”PURPLE”, ”BLUE” };

 9 int main (void) {

10 Set<String> a(5), b(5); // Declare two set objects

11 a.set_compare (my_compare); // Establish compare function

12 for (int i = 0; i < 5; i++) { // For each color defined

13 a.put (color_table[i]); // Add object to first set

14 b.put (color_table[6–i]); // Add end object to second set

15 }

16 cout << ”Set A contains: ” << a; // Elements of set 1

17 cout << ”Set B contains: ” << b; // Elements of set 2

18 cout << ”A | B: ” << (a | b); // Display union

19 cout << ”A & B: ” << (a & b); // Display intersection

20 cout << ”A ̂ B: ” << (a ̂ b); // Display exclusive-or

21 cout << ”A – B: ” << (a – b); // Display difference

22 exit (0); // Exit with OK status

23 }

Lines 1 through 4 include the COOL String.h and Set.h header files, and then declare
and implement a set of strings. Lines 5 through 7 define a string comparison routine to
be used by the set class. Line 8 defines a static array of strings whose values are the
names of colors to be used as element values in a set. Line 10 defines two objects each of
which is a set with initial storage for five elements. Line 11 establishes the comparison
routine to be used by the set objects. Lines 12 through 17 add some elements to each set
and output the resulting objects. Lines 18 through 21 perform four set operations and
display the results. The program ends with a successful completion code.

Set Classes

8-6 COOL User’s Manual

The following shows the output from the program:

Set A contains: [RED YELLOW ORANGE PINK GREEN]
Set B contains: [BLUE PURPLE ORANGE GREEN PINK]
A | B: [RED YELLOW BLUE PURPLE ORANGE PINK GREEN]
A & B: [ORANGE PINK GREEN]
A ̂ B: [RED YELLOW BLUE PURPLE]
A – B: [RED YELLOW]

Bit_Set Class 8.5 The Bit_Set class is publicly derived from the Generic class and implements effi-
cient bit sets. These bits are stored in an arbitrary-length vector of bytes (unsigned char)
large enough to represent the specified number of elements. A bit set is indexed by inte-
ger values: Zero represents the first bit, one the second, two the third, and so on with
each integer value actually indicating the zero-relative bit position in the bit vector. Ele-
ments can be integers, enum values, constant symbols from the enumeration package, or
any other type of object or expression that results in an integral value. All operations
involving bit shifting are performed in byte increments, giving the most efficient opera-
tion on common hardware architectures.

Name: Bit_Set — Efficient, dynamic bit sets

Synopsis: #include <COOL/Bit_Set.h>

Base Classes: None

Friend Classes: None

Public Constructors: Bit_Set ();
Allocates a bit set of the default size (1 byte).

Bit_Set (unsigned int number);
Allocates a bit set with at least enough storage for number elements.

Bit_Set (const Bit_Set& bs);
Duplicates the size and elements of another bit set object bs.

Member Functions: inline int capacity () const;
Returns the maximum number of elements that the bit set can hold.

void clear ();
Removes all elements from the bit set and adjusts the appropriate counts.

inline Bit_Set_state& current_position () const;
Returns the state information associated with the current position. This function
should be used with the Iterator<Type> class to save and restore the current posi-
tion, thus facilitating multiple iterators over an instance of bit set.

Boolean find (unsigned int n);
Searches the bit set for the nth zero-relative bit. If the bit is set, this function updates
the current position and returns TRUE; otherwise, this function invalidates the cur-
rent position and returns FALSE. If n is out of range, an Error exception is raised.

inline Boolean is_empty () const;
Returns TRUE if the bit set contains no elements; otherwise, this function returns
FALSE.

int length () const;
Returns the number of elements in the bit set.

Set Classes

8-7COOL User’s Manual

Boolean next ();
Advances the current position pointer to the next element in the bit set and returns
TRUE. If the current position is invalid, this function advances to the first element
and returns TRUE. If advancing past the last element in the bit set, this function
invalidates the current position and returns FALSE.

Boolean next_difference (const Bit_Set& bs);
Determines the next element in the difference of the set object and bs. This function
sets the current position in the set object to that element and returns TRUE. If no
more elements are in the different, this function invalidates the current position and
returns FALSE.

Boolean next_intersection (const Bit_Set& bs);
Determines the next element in the intersection of the set object and bs. This func-
tion sets the current position of the set object to that element and returns TRUE. If
no more elements are in the intersection, this function invalidates the current posi-
tion and returns FALSE.

Boolean next_union (const Bit_Set& bs);
Determines the next element in the union of the set object and bs. This function sets
the current position of the set object to that element and returns TRUE. If no more
elements are in the union, this function invalidates the current position and returns
FALSE.

Boolean next_xor (const Bit_Set& bs);
Determines the next element in the exclusive-or of the set object and bs. This func-
tion sets the current position of the set object to that element and returns TRUE. If
no more elements are in the exclusive-or, this function invalidates the current posi-
tion and returns FALSE.

Bit_Set operator– ();
Overloads the unary minus operator to return the complement bit set.

Bit_Set operator– (const Bit_Set& bs);
Determines the logical difference of the set object and bs and returns the result.
This function invalidates the current position of the set object.

inline Bit_Set operator~ ();
Returns the complement of a bit set.

Bit_Set operator^ (const Bit_Set& bs);
Determines the logical exclusive-or of the set object and bs and returns the result.
This function invalidates the current position of the set object.

Bit_Set operator& (const Bit_Set& bs);
Determines the logical intersection of the set object and bs and returns the result.
This function invalidates the current position of the set object.

Bit_Set operator| (const Bit_Set& bs);
Determines the logical union of the set object and bs and returns the result. This
function invalidates the current position of the set object.

Bit_Set& operator= (const Bit_Set& bs);
Duplicates the size and elements of another bit set. This function invalidates the
current position of the set object and returns a reference to the updated object.

Set Classes

8-8 COOL User’s Manual

Bit_Set& operator–= (const Bit_Set& bs);
Determines the logical difference of the set object and bs and modifies the source
with the result. This function returns a reference to the modified bit set and invali-
dates the current position of the set object.

Bit_Set& operator^= (const Bit_Set& bs);
Determines the logical exclusive-or of the set object and bs and modifies the source
with the result. This function returns a reference to the modified bit set and invali-
dates the current position of the set object.

Bit_Set& operator&= (const Bit_Set& bs);
Determines the logical intersection of the set object and bs and modifies the source
with the result. This function returns a reference to the modified bit set and invali-
dates the current position of the set object.

Bit_Set& operator|= (const Bit_Set& bs);
Determines the logical union of the set object and bs and modifies the source with
the result. This function returns a reference to the modified bit set and invalidates
the current position of the set object.

Boolean operator== (const Bit_Set& bs) const;
Overloads the equality operator for the Bit_Set class. This function returns TRUE
if the sets have an equal number of elements with the same values; otherwise, this
function returns FALSE.

inline Boolean operator!= (const Bit_Set& bs) const;
Overloads the inequality operator for the Bit_Set class. This function returns
TRUE if the sets have an unequal number of elements or unequal values otherwise,
this function returns FALSE.

inline Boolean operator[] (int n) const;
Returns TRUE or FALSE to indicate the setting of the zero-relative nth bit. If the
index is out of range, an Error exception is raised.

Boolean prev ();
Moves the current position pointer to the previous element in the bit set and returns
TRUE. If the current position is invalid, this function moves to the last element and
returns TRUE. If moving to the previous element passes the first element in the bit
set, this function invalidates the current position and returns FALSE.

Boolean put (int n);
Adds the zero-relative nth element to the bit set. If the bit vector is not large enough
and it can grow, this function allocates enough storage, copies the old bit set ele-
ments, updates the current position, and returns TRUE; otherwise, this function
returns FALSE. If the index is out of range, an Error exception is raised.

Boolean put (int start, int end);
Adds the specified range of elements (inclusive) to the bit set by setting the appro-
priate zero-relative bits. If the bit vector is not large enough and it can grow, this
function allocates enough storage, copies the old bit set elements, updates the cur-
rent position, and returns TRUE; otherwise, this function returns FALSE. If the
start or end are out of range, an Error exception is raised.

Set Classes

8-9COOL User’s Manual

Boolean remove ();
This function removes the element at the current position, sets the current position
to the element immediately following the element removed (if not at the end of the
vector), and returns TRUE. If the element is at the end of the bit vector, this func-
tion removes the element, invalidates the current position, and returns TRUE. Oth-
erwise, this function invalidates the current position and returns FALSE. If the
current position is invalid, an Error exception is raised and this function returns
FALSE.

Boolean remove (int n);
Searches for the zero-relative nth element. If the element is found, this function
removes the element, sets the current position to the element immediately follow-
ing the element removed, and returns TRUE. If the element is found but at the end
of the bit vector, this function removes the element, invalidates the current posi-
tion, and returns TRUE. Otherwise, this function returns FALSE. If the index is
out of range, an Error exception is raised.

Boolean remove (int start, int end);
Searches for the specified range of elements. If the range is found, this function
removes the range of elements, sets the current position to the starting element po-
sition, and returns TRUE. Otherwise, this function returns FALSE. If either index
is out of range, an Error exception is raised.

inline void reset ();
Invalidates the current position.

resize (int number);
Resizes the bit set for at least number elements. This function invalidates the cur-
rent position.

Boolean search (const Bit_Set& bs) const;
Determines if bs is a subset of the bit set object. If found, this function returns
TRUE; otherwise, this function returns FALSE.

inline void set_alloc_size (int number);
Sets the allocation growth size to number of bytes. The growth allocation size is
used when the growth ratio is zero. Default allocation growth size is four bytes.

inline void set_difference (const Bit_Set& bs);
Determines the logical difference of bs and the bit set object, modifying the source
with the result. This function invalidates the current position in the bit set object.

inline void set_growth_ratio (float ratio);
Updates the growth ratio for this instance of a bit set to ratio. When a bit set needs
to grow, the current size is multiplied by the ratio to determine the new size. If ratio
is negative, and Error exception is raised.

inline void set_intersection (const Bit_Set& bs);
Determines the logical intersection of bs and the bit set object, modifying the
source with the result. This function invalidates the current position of the bit set
object.

inline void set_union (const Bit_Set& bs);
Determines the logical union of bs and the bit set object, modifying the source with
the result. This function invalidates the current position of the bit set object.

Set Classes

8-10 COOL User’s Manual

inline void set_xor (const Bit_Set& bs);
Determines the logical exclusive-or of bs and the bit set object, modifying the
source with the result. This function invalidates the current position of the bit set
object.

inline int value ();
Returns the value (zero-relative bit position) of the bit at the current position. If the
current position is invalid, an Error exception is raised.

Friend Functions: friend ostream& operator<< (ostream& os, const Bit_Set& bs);
Overloads the output operator for a reference to a Bit_Set object to provide a for-
matted output capability for the class.

inline friend ostream& operator<< (ostream& os, const Bit_Set* bs);
Overloads the output operator for a reference to a Bit_Set object to provide a for-
matted output capability for the class.

Set Classes

8-11COOL User’s Manual

Bit_Set Class 8.6 The following program manipulates sets of objects representing the
Example names of various colors, similar to the previous Set example. However, this program

utilizes enumerated types and a bit vector to represent the objects. Two bit sets with
different elements are created and several set operations are then applied. The results of
each operation are sent to the standard output.

 1 #include <COOL/Bit_Set.h> // COOL Bit Set class

 2 enum colors { RED=1, YELLOW, PINK, GREEN, ORANGE, PURPLE, BLUE };

 3 static colors c_tbl[] = {RED, YELLOW, PINK, GREEN, ORANGE, PURPLE, BLUE};

 4 int main (void) {

 5 Bit_Set a, b; // Declare two bit set objects

 6 for (int i = 0; i < 5; i++) { // For each color defined

 7 a.put (c_tbl[i]); // Add object to first set

 8 b.put (c_tbl[6–i]); // Add end object to second set

 9 }

10 cout << ”Set A contains: ” << a; // Elements of set 1

11 cout << ”Set B contains: ” << b; // Elements of set 2

12 cout << ”A | B: ” << (a | b); // Display union

13 cout << ”A & B: ” << (a & b); // Display intersection

14 cout << ”A ̂ B: ” << (a ̂ b); // Display exclusive-or

15 cout << ”A – B: ” << (a – b); // Display difference

16 return (0); // Exit with OK status

17 }

Line 1 includes the COOL Bit_Set.h class header file. Line 2 defines an enumerated
color type and line 3 defines a static array of enumerated color values to be used as
elements in the bit sets in the main program. Notice that the enumerated color type de-
fined in line 2 begins with an initial value of 1. This insures that the bit set will behave
correctly when the bit representing RED is set. Line 5 defines two bit set objects with
default storage capacity. Lines 6 through 11 add some elements to each set and output
the resulting objects. Lines 12 through 15 perform four set operations and display the
results. Finally, the program ends with a successful completion code.

The following shows the output from the program:

Set A contains: [01111100]
Set B contains: [00011111]
A | B: [01111111]
A & B: [00011100]
A ̂ B: [01100011]
A – B: [01100000]

Set Classes

8-12 COOL User’s Manual

9-1COOL User’s Manual

NODE AND
TREE CLASSES

Introduction 9.1 The node and tree classes implement several tree data structures as parameterized
classes. The following classes are discussed in this section:

• Binary_Node<Type>

• Binary_Tree<Type>

• AVL_Tree<Type>

• N_Node<Type,nchild>

• D_Node<Type,nchild>

• N_Tree<Node,Type,nchild>

The Binary_Node<Type> class implements parameterized nodes for use by the Bi-
nary_Tree<Type> class, which in turn implements simple, dynamic, sorted sequences
in a tree where each node has two subtree pointers. The AVL_Tree<Type> class imple-
ments height-balanced binary trees. The N_Node<Type,nchild> class implements
static-size nodes for use by the n-ary tree class. The D_Node<Type,nchild> class im-
plements dynamic-sized nodes for use by the n-ary tree class. The
N_Tree<Node,Type,nchild> class implements n-ary trees, providing the organiza-
tional structure for a tree of nodes, but knowing nothing about the specific type of node
used. N_Tree<Node,Type,nchild> is parameterized over a node type, a data type, and
an initial subtree count. The Binary_Tree<Type>, AVL_Tree<Type>, and
N_Tree<Node, Type, nchild> classes support the notion of a current position. See Sec-
tion 5, Parameterized Templates, for more information regarding the current position
mechanism and the Iterator<Type> class.

In order to achieve successful compilation and usage, there are certain operations that
must be supported by any user-specified type over which a node or tree class is
parameterized. The member functions operator=, operator<, operator>, operator==,
and operator<< for both pointer and reference must be overloaded for any class object
used as the type. Note that built-in types already have these functions defined.

NOTE: The node and tree classes use operator= of the parameterized type when copy-
ing elements. You should be careful when parameterizing a node or tree class over a
pointer to a type, since the default pointer assignment operator usually copies the point-
er, not the value pointed at.

Requirements 9.2 This section discusses the parameterized tree container classes. It assumes that
you have read read and understood Section 5, Parameterized Templates. In addition, no
attempt is made to discuss the concepts and algorithms for the data structures discussed.
You should refer to a general data structures or computer science text for this informa-
tion.

Node and Tree Classes

9-2 COOL User’s Manual

Binary_Node Class 9.3 The Binary_Node<Type> class implements parameterized nodes for binary
trees. This class is privately derived from the Binary_Node class that contains left and
right subtree pointers. The Binary_Node<Type> class adds a data member of the re-
quired type in the private section. Since the Binary_Node<Type> class is intended for
use by the Binary_Tree<Type> class, the Binary_Tree<Type> class is declared a
friend class.

Name: Binary_Node<Type> — Parameterized binary node class

Synopsis: #include <COOL/Binary_Node.h>

Base Classes: Binary_Node

Friend Classes: Binary_Tree<Type>

Constructors: Binary_Node<Type> ();
Allocates a binary node with left and right subtree pointers set to NULL.

Binary_Node<Type> (const Binary_Node<Type>& bn);
Duplicates the value of another binary node object bn.

Binary_Node<Type> (const Type& value);
Allocates a binary node with left and right subtree pointers set to NULL and initial-
izes the value of the node to value.

Member Functions: Binary_Node<Type>& operator= (const Binary_Node<Type>& bn);
Overloads the assignment operator to assign the values of the left and right subtree
pointers and to assign the value in bn to the binary node object. This function re-
turns a reference to the updated node.

inline Type& get () const;
Returns a reference to the value of the data member.

inline Binary_Node<Type>* get_ltree () const;
Returns a pointer to the left subtree.

inline Binary_Node<Type>* get_rtree () const;
Returns a pointer to the right subtree.

inline Boolean is_leaf () const;
Determines if the node is a terminal node by evaluating the left and right subtree
pointers. If both are NULL, this function returns TRUE; otherwise, this function
returns FALSE.

inline void set (const Type& value);
Sets the value of the data member in the node to value.

inline void set_ltree (Binary_Node<Type>* bn);
Sets the value of the left subtree pointer of the binary node object to bn.

inline void set_rtree (Binary_Node<Type>* bn);
Sets the value of the right subtree pointer of the binary node object to bn.

Node and Tree Classes

9-3COOL User’s Manual

Binary_Tree Class 9.4 The Binary_Tree<Type> class implements simple, dynamic, sorted sequences.
Users requiring a data structure for unsorted sequences whose structure and organiza-
tion is more under the control of the programmer are referred to the N_Tree class. The
Binary_Tree<Type> class is derived from Binary_Tree and is a friend of the Bi-
nary_Node<Type> class, also parameterized over the same Type. There is no attempt
made to balance or prune the tree. Nodes are added to a particular subtree at the direc-
tion of the collating function. For example, a lopsided tree results if a tree is
parameterized for integers and the tree uses the default integer comparison operators
whose elements are added in increasing order. Likewise, a lopsided tree results after
many items have been added and removed.

The Binary_Tree<Type> class implements the notion of a current position. This is use-
ful for iterating through the nodes of a tree. The current position is maintained in a data
member of type Binary_Tree_state and is set or reset by all member functions affect-
ing elements in the class. Member functions are provided to reset the current position,
move to the next and previous elements, find an element, and get the value at the current
position. The Iterator<Type> class provides a mechanism to save and restore the state
associated with the current position, thus allowing the programmer to use multiple
iterators over the same instance of a tree.

Name: Binary_Tree<Type> — A parameterized binary tree class

Synopsis: #include <COOL/Binary_Tree.h>

Base Classes: Binary_Tree, Generic

Friend Classes: None

Public Constructors: Binary_Tree<Type> ();
Allocates a binary tree object with the root pointer set to NULL.

Binary_Tree<Type> (const Binary_Tree<Type>& bt);
Duplicates the structure of another binary tree object bt.

Member Functions: void balance ();
Builds a perfectly balanced binary tree from the existing tree structure and deletes
the old tree and storage.

void clear ();
Empties the tree and deallocates all memory for nodes and internal structures.

inline long count () const;
Returns the number of nodes in the tree structure.

inline Binary_Tree_state& current_position ();
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of binary tree.

Boolean find (const Type& value);
Searches for value in the tree structure. If found, this function updates the current
position and returns TRUE; otherwise, this function invalidates the current posi-
tion and returns FALSE.

Binary_Node<Type>* get_root () const;
Returns a pointer to the root node of the tree.

Node and Tree Classes

9-4 COOL User’s Manual

Boolean next ();
Advances the current position to the next element in the tree and returns TRUE. If
the current position is invalid, this function sets the current position to the first ele-
ment and returns TRUE. If the current position is the last element in the tree, this
function invalidates the current position and returns FALSE.

Binary_Node<Type>* node ();
Returns a pointer to the current node object.

Binary_Tree<Type>& operator= (Binary_Tree<Type>& bt);
Overloads the assignment operator to duplicate another binary tree object bt by
copying all nodes and value to the binary tree object. This function returns a refer-
ence to the updated binary tree object.

inline Boolean operator== (const Binary_Tree<Type>& bt) const;
Overloads the equality operator for the Binary_Tree<Type> class. This function
returns TRUE if bt is equal to the binary tree object; otherwise, this function re-
turns FALSE.

inline Boolean operator!= (const Binary_Tree<Type>& bt) const;
Overloads the inequality operator for the Binary_Tree<Type> class. This function
returns TRUE if bt is unequal to the binary tree object; otherwise, this function
returns FALSE.

Boolean prev ();
Moves the current position to the previous element in the tree and returns TRUE.
If the current position is invalid, this function sets the current position to the last
element and returns TRUE, thus facilitating reverse traversal through the tree. If
the current position is the first element in the tree, this function invalidates the cur-
rent position and returns FALSE.

inline Boolean put (const Type& value);
Adds value to the tree structure if not already present. This function returns TRUE
if the item is added; otherwise, this function returns FALSE. This function invali-
dates the current position.

inline Boolean remove ();
Removes the node at the current position from the tree structure and returns TRUE.
This function invalidates the current position of the binary tree object. If the current
position is out of range, an Error exception is raised and this function returns
FALSE.

inline Boolean remove (const Type& value);
Removes value from the tree structure if present. This function returns TRUE if the
specified argument is successfully removed; otherwise, this function returns
FALSE. This function invalidates the current position.

inline void reset ();
Invalidates the current position of the binary tree object.

inline void set_compare (Binary_Tree_Compare = NULL);
Sets the comparison function that is to be used in all logical comparison tests. Bi-
nary_Tree_Compare is a function of type Boolean (*Function)(const Type&,
const Type&). If no argument is provided, the operator== for the type over which
the class is parameterized is used.

Node and Tree Classes

9-5COOL User’s Manual

inline long tree_depth ();
Returns the zero-relative depth of the tree structure. Note that this function is po-
tentially very expensive, since the tree depth is calculated by traversing all nodes in
the tree.

Type& value ();
Returns a reference to the node value at the current position. If the current position
is invalid, an Error exception is raised.

Friend Functions: friend ostream& operator<< (ostream& os, const Binary_Tree<Type>& bt);
Accepts a binary tree reference and outputs the structure by printing it sideways,
where the root is printed at the left margin. To obtain the standard orientation, ro-
tate the output 90 degrees clockwise. This function returns a reference to the output
stream.

friend ostream& operator<< (ostream& os, const Binary_Tree<Type>* bt);
Accepts a binary tree pointer and outputs the structure by printing it sideways,
where the root is printed at the left margin. To obtain the standard orientation, ro-
tate the output 90 degrees clockwise. This function returns a reference to the output
stream.

Binary_Tree 9.5 The following program processes the words in a character string using
Example the regular expression feature of the Gen_String class as was done for the examples in

Section 7. Each unique word is then converted to uppercase and added to the binary tree.

 1 #include <COOL/Binary_Tree.h> // Include Binary tree class

 2 #include <COOL/String.h> // Include COOL String class

 3 #include <COOL/Gen_String.h> // Include COOL Gen_String class

 4 static Gen_String text (”\n\
A programming language serves two related purposes: it provides a\n\
vehicle for the programmer to specify actions to be executed and a\n\
set of concepts for the programmer to use when thinking about what\n\
can be done.”);

 5 DECLARE Binary_Tree<String> // Declare tree type

 6 IMPLEMENT Binary_Tree<String> // Implement tree type

 7 int main (void) {

 8 Binary_Tree<String> bt1; // Declare tree variable

 9 Gen_String s; // Temporary string variable

10 text.compile (”[a–zA–Z]+”); // Match any alphabetical word

11 while (text.find ()) { // While still more words

12 text.sub_string (s, text.start (), text.end ()); // Get word

13 bt1.put (*(new String(uppcase (s)))); // And add to tree

14 }

15 cout << bt1; // Output tree structure

16 exit (0); // Exit with successful status

17 }

Node and Tree Classes

9-6 COOL User’s Manual

Lines 1 through 3 include the COOL Binary_Tree.h, String.h, and Gen_String.h
header files. Line 4 defines a static character string containing the first sentence of the
paragraph in section 7 quoted from Stroustrup. Lines 5 and 6 declare and implement the
binary tree type containing String objects. Line 8 declares a Binary_Tree object and
line 9 declares a temporary string variable. A regular expression to match sequences of
alphabetical characters (that is, words) is compiled in line 10. Lines 11 through 14 con-
tain a loop that finds each word in the paragraph and adds it to the binary tree. Note the
use of operator new() to create a new String object for each item stored in the tree.
Line 15 outputs a representation of the structure of the Binary_tree object rotated 90∇
counter clockwise. Finally, the program ends with a valid exit code on line 16.

The following shows the output for the program:

 WHEN
 WHAT
 VEHICLE
 USE
 TWO
 TO
 THINKING
 THE
 SPECIFY
 SET
 SERVES
 RELATED
 PURPOSES
 PROVIDES
 PROGRAMMING
 PROGRAMMER
 OF
 LANGUAGE
 IT
 FOR
 EXECUTED
 DONE
 CONCEPTS
 CAN
 BE
 AND
 ACTIONS
 ABOUT
A

Each unique string added to the binary tree is inserted at a node such that all strings
contained in the left subtree of the node are lexically less than (that is, come before) the
string. All strings contained in the right subtree of the node are lexically greater than
(that is, come after) the string. Thus, the order in which items are added to the tree sig-
nificantly alter its internal structure.

AVL_Tree Class 9.6 The AVL_Tree<Type> class implements height-balanced, dynamic, binary trees.
The AVL_Tree<Type> class is publicly derived from the Binary_Tree<Type> class,
and both are parameterized over some Type. An AVL tree is a compromise between the
expense of a fully balanced binary tree and the desire for efficient search times for both
average and worst-case scenarios. As a result, an AVL tree maintains a binary tree that
is height-balanced, ensuring that the difference between the depth of the left subtree and
right subtree for every node is no more than one.

Node and Tree Classes

9-7COOL User’s Manual

The AVL_Tree<Type> class implements the notion of a current position. This is useful
for iterating through the nodes of a tree. The current position is maintained in a data
member of type AVL_Tree_state and is set or reset by all member functions affecting
elements in the class. Member functions are provided to reset the current position, move
to the next and previous elements, find an element, and get the value at the current posi-
tion. The Iterator<Type> class provides a mechanism to save and restore the state asso-
ciated with the current position, thus allowing the programmer to use multiple iterators
over the same instance of a tree.

The AVL_Tree<Type> class inherits all its member functions publicly from the Bi-
nary_Tree<Type> class. The only member functions that are overloaded are those that
affect the structure of the tree, thus potentially requiring one or more subtrees to be re-
structured.

Name: AVL_Tree<Type> — A parameterized, height-balanced binary tree class

Synopsis: #include <COOL/AVL_Tree.h>

Base Classes: Binary_Tree<Type>

Friend Classes: None

Public Constructors: AVL_Tree<Type> ()
Simple constructor to create an empty tree.

AVL_Tree<Type> (const Binary_Tree<Type>& bt);
Duplicates a Binary_Tree object bt, adjusting the organization and structure as
necessary to create an AVL tree.

AVL_Tree<Type> (const AVL_Tree<Type>& at);
Duplicates the structure of another AVL_Tree<Type> object at.

Member Functions: void balance ();
Builds a perfectly balanced binary tree from the existing tree structure and deletes
the old tree and storage.

void clear ();
Empties the tree and deallocates all memory for nodes and internal structures.

inline long count () const;
Returns the number of nodes in the tree structure.

inline AVL_Tree_state& current_position ();
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus allowing multiple iterators over an instance of a binary tree.

Boolean find (const Type& value);
Searches for value in the tree structure. If found, this function updates the current
position and returns TRUE; otherwise, this function invalidates the current posi-
tion and returns FALSE.

inline Binary_Node* get_root () const;
Accesses the root pointer for the tree structure.

Node and Tree Classes

9-8 COOL User’s Manual

Boolean next ();
Advances the current position to the next element in the tree and returns TRUE. If
the current position is invalid, this function sets the current position to the first ele-
ment and returns TRUE. If the current position is the last element of the tree, this
function invalidates the current position and returns FALSE.

Binary_Node<Type>* node ();
Returns a pointer to the current node object.

AVL_Tree<Type>& operator= (Binary_Tree<Type>& bt);
Overloads the assignment operator to create an AVL tree from a binary tree object
bt. This function returns a reference to the updated AVL tree object.

AVL_Tree<Type>& operator= (AVL_Tree<Type>& at);
Overloads the assignment operator to duplicate another AVL tree object at. This
function returns a reference to the updated AVL tree object.

inline Boolean operator== (const AVL_Tree<Type>& at) const;
Overloads the equality operator for the AVL_Tree<Type> class. This function re-
turns TRUE if at is equal to the AVL tree object; otherwise, this function returns
FALSE.

inline Boolean operator!= (const AVL_Tree<Type>& at) const;
Overloads the inequality operator for the AVL_Tree<Type> class. This function
returns TRUE if at is unequal to the AVL tree object; otherwise, this function re-
turns FALSE.

Boolean prev ();
Moves the current position to the previous element in the tree and returns TRUE.
If the current position is invalid, this function sets the current position to the last
element and returns TRUE, thus facilitating reverse traversal through the tree. If
the current position is the first element in the object, this function invalidates the
current position and returns FALSE.

Boolean put (const Type& value);
Adds the value passed to the tree structure if not already present. This function re-
turns TRUE if the item is added; otherwise, this function returns FALSE. This
function invalidates the current position and balances the tree structure if neces-
sary.

inline Boolean remove ();
Removes the node at the current position from the tree structure and returns TRUE.
This function invalidates the current position and balances the tree structure if nec-
essary. If the current position is out of range, an Error exception is raised and this
function returns FALSE.

Boolean remove (const Type& value);
Searches for the specified node. If the node is found, this function removes the
node and sets the current position to the node immediately following the node re-
moved; then the function returns TRUE. If the node is found at the end of the tree
structure, this function invalidates the current position, balances the tree structure if
necessary, and returns TRUE. If the node is not found, this function returns
FALSE.

inline void reset ();
Invalidates the current position pointer and deallocates the memory allocated for
the node cache.

Node and Tree Classes

9-9COOL User’s Manual

inline void set_compare (AVL_Tree_Compare = NULL);
Sets the comparison function that is to be used in all comparison tests.
AVL_Tree_Compare is a function of type Boolean (*Function)(const Type&,
const Type&). If no argument is provided, the operator== for the type over which
the class is parameterized is used.

inline Type& value ();
Returns a reference to the value of the node at the current position. If the current
position is invalid, an Error exception is raised.

inline long tree_depth ();
Returns the zero-relative depth of the tree structure. Note that this function is po-
tentially very expensive, since the tree depth is calculated by traversing all nodes in
the tree.

Friend Functions: friend ostream& operator<< (ostream& os, AVL_Tree<Type>& at);
Accepts an AVL tree reference and outputs the structure by printing it sideways,
where the root is printed at the left margin. To obtain the standard orientation, ro-
tate the output 90 degrees clockwise. This function returns a reference to the output
stream.

friend ostream& operator<< (ostream& os, AVL_Tree<Type>* at);
Accepts an AVL tree pointer and outputs the structure by printing it sideways,
where the root is printed at the left margin. To obtain the standard orientation, ro-
tate the output 90 degrees clockwise. This function returns a reference to the output
stream.

AVL Tree Example 9.7 The following program processes the words in a character string using the regular
expression features of the Gen_String class as was done for the examples in Section 7.
Each unique word is then converted to uppercase and added to the binary tree. This is
the same as the previous example except that an AVL tree is used, resulting in the crea-
tion of a height-balanced tree.

 1 #include <COOL/AVL_Tree.h> // Include AVL tree class

 2 #include <COOL/String.h> // Include COOL String class

 3 #include <COOL/Gen_String.h> // Include COOL Gen_String class

 4 static Gen_String text (”\n\
A programming language serves two related purposes: it provides a\n\
vehicle for the programmer to specify actions to be executed and a\n\
set of concepts for the programmer to use when thinking about what\n\
can be done.”);

 5 DECLARE AVL_Tree<String> // Declare tree type

 6 IMPLEMENT AVL_Tree<String> // Implement tree type

 7 int main (void) {

 8 AVL_Tree<String> avl1; // Declare tree variable

 9 Gen_String s; // Temporary string variable

10 text.compile (”[a–zA–Z]+”); // Match any alphabetical word

11 while (text.find ()) { // While still more words

12 text.sub_string (s, text.start (), text.end ()); // Get word

13 avl1.put (*(new String(uppcase (s)))); // And add to tree

14 }

15 cout << avl1; // Output tree structure

16 exit (0); // Exit with successful status

17 }

Node and Tree Classes

9-10 COOL User’s Manual

Lines 1 through 3 include the COOL AVL_Tree.h, String.h, and Gen_String.h header
files. Line 4 defines a static character string containing the first sentence of the para-
graph in section 7 quoted from Stroustrup. Lines 5 and 6 declare and implement the
AVL tree type containing String objects. Line 8 declares an AVL_Tree object and line
9 declares a temporary string variable. A regular expression to match sequences of al-
phabetical characters (that is, words) is compiled in line 10. Lines 11 through 14 contain
a loop that finds each word in the paragraph and adds it to the AVL tree. Note the use of
operator new() to create a new String object for each item stored in the tree. Line 15
outputs a representation of the structure of the AVL_tree object rotated 90∇ counter
clockwise. Finally, the program ends with a valid exit code on line 16.

The following shows the output for the program:

 WHEN
 WHAT
 VEHICLE
 USE
 TWO
 TO
 THINKING
 THE
 SPECIFY
 SET
 SERVES
 RELATED
 PURPOSES
 PROVIDES
PROGRAMMING
 PROGRAMMER
 OF
 LANGUAGE
 IT
 FOR
 EXECUTED
 DONE
 CONCEPTS
 CAN
 BE
 AND
 ACTIONS
 ABOUT
 A

Each unique string added to the AVL tree is inserted at a node such that all strings con-
tained in the left subtree of the node are lexically less than (that is, come before) the
string. All strings contained in the right subtree of the node are lexically greater than
(that is, come after) the string. However, unlike a binary tree, an AVL tree guarantees to
maintain a balanced structure. Consequently, the order in which items are added to the
tree has no bearing upon its internal structure.

N_Node Class 9.8 The N_Node<Type,nchild> class implements parameterized nodes of a static size
for n-ary trees. This node class is parameterized for both the type and some initial num-
ber of subtrees that each node may have. The constructors for the
N_Node<Type,nchild> class are declared in the public section to allow the user to cre-
ate nodes and control the building and structure of an n-ary tree where the ordering can
have a specific meaning, as with an expression tree.

Node and Tree Classes

9-11COOL User’s Manual

Name: N_Node<Type,nchild> — Parameterized static-sized n-ary node class

Synopsis: #include <COOL/N_Node.h>

Base Classes: None

Friend Classes: N_Tree<Node,Type,nchild>

Public Constructors: N_Node<Type,nchild> ();
Allocates an N-node with all subtree pointers set to NULL.

N_Node<Type,nchild> (const Type& value);
Allocates an N-node with all subtree pointers set to NULL and initializes the value
of the node to value.

N_Node<Type,nchild> (const N_Node<Type,nchild>& nn);
Duplicates the value of another N-node object nn.

Member Functions: inline Type& get () const;
Returns a reference to the value of the data member.

Boolean insert_after (N_Node<Type,nchild>& nn, int index);
Inserts a subtree pointer to nn after the zero-relative index given. This function re-
turns TRUE if successful; otherwise, this function returns FALSE. If index is
negative or out of range, an Error exception is raised.

Boolean insert_before (N_Node<Type,nchild>& nn, int index);
Inserts a subtree pointer to nn before the zero-relative index. This function returns
TRUE if successful; otherwise, this function returns FALSE. If index is negative
or out of range, an Error exception is raised.

Boolean is_leaf () const;
Determines if the node is a terminal node by evaluating the subtree pointers. If all
pointers are NULL, this function returns TRUE; otherwise, this function returns
FALSE.

inline int num_subtrees () const;
Returns the maximum number of subtrees possible for a node.

N_Node<Type,nchild>& operator= (N_Node<Type,nchild>& nn);
Overloads the assignment operator for the class to assign the values of the subtree
pointers and the value in nn to the node object. This function returns a reference to
the updated node.

N_Node<Type,nchild>& operator= (N_Node<Type,nchild>* nn);
Overloads the assignment operator for the class to assign the values of the subtree
pointers and the value in nn to the node object. This function returns a reference to
the updated node.

inline Boolean operator== (const Type& value) const;
Overloads the equality operator for the N_Node<Type> class. This function re-
turns TRUE if value is equal to the value of the node object; otherwise, this func-
tion returns FALSE.

inline Boolean operator!= (const Type& value) const;
Overloads the inequality operator for the N_Node<Type> class. This function re-
turns TRUE if value is not equal to the value of the node object; otherwise, this
function returns FALSE.

Node and Tree Classes

9-12 COOL User’s Manual

inline Boolean operator< (const Type& value) const;
Overloads the less-than operator for the N_Node<Type> class. This function re-
turns TRUE if value is less than the value of the node object; otherwise, this func-
tion returns FALSE.

inline Boolean operator<= (const Type& value) const;
Overloads the less-than-or-equal operator for the N_Node<Type> class. This func-
tion returns TRUE if value is less than or equal to the value of the node object;
otherwise, this function returns FALSE.

inline Boolean operator> (const Type& value) const;
Overloads the greater-than operator for the N_Node<Type> class. This function
returns TRUE if value is greater than the value of the node object; otherwise, this
function returns FALSE.

inline Boolean operator>= (const Type& value) const;
Overloads the greater-than-or-equal operator for the N_Node<Type> class. This
function returns TRUE if value is greater than or equal to the value of the node
object; otherwise, this function returns FALSE.

inline N_Node<Type,nchild>*& operator[] (int index);
Returns a reference to a pointer to the subtree at the zero-relative index. If index is
negative or out of range, an Error exception is raised.

inline void set (const Type& value);
Sets the value of the data member in the node to value.

inline void set_compare (N_Node_Compare = NULL);
Sets the comparison function that is to be used in all comparison tests.
N_Node_Compare is a function of type Boolean (*Function)(const Type&, const
Type&). If no argument is provided, the operator== for the type over which the
class is parameterized is used.

D_Node Class 9.9 The D_Node<Type,nchild> class implements parameterized nodes of a dynamic
size for n-ary trees. This node class is parameterized for the type and some initial num-
ber of subtrees that each node may have. The D_Node<Type,nchild> class is dynamic in
the sense that the number of subtrees allowed for each node is not fixed.
D_Node<Type,nchild> uses the Vector<Type> class, which supports run-time growth
characteristics. As a result, the D_Node<Type,nchild> class should be used as the node
type for the N_Tree<Node,Type,nchild> class when the number of subtrees is variable,
unknown at compile time, or needs to increase on a per-node basis at run-time. This
capability is suited for hierarchical trees such as may be used in an organization chart.
Also, specialization of the N_Tree<Node,Type,nchild> class would allow for relatively
easy implementation of a DAG class.

Name: D_Node<Type,nchild> — Parameterized, dynamic-size n-ary node class

Synopsis: #include <COOL/D_Node.h>

Base Classes: None

Friend Classes: N_Tree<Node,Type,nchild>

Public Constructors: D_Node<Type,nchild> ();
Allocates a D-node and a vector of subtree pointers of the initial size, all of which
are set to NULL.

Node and Tree Classes

9-13COOL User’s Manual

D_Node<Type,nchild> (const Type& value);
Allocates a D-node and a vector of subtree pointers of the initial size, all of which
are set to NULL, and initializes the value of the node to value.

D_Node<Type,nchild> (const D_Node<Type,nchild>& dn);
Duplicates the value of another D-node object dn.

Member Functions: inline Type& get () const;
Returns a reference to the value of the data member.

Boolean insert_after (D_Node<Type,nchild>& dn, int index);
Inserts a subtree pointer to dn after the zero-relative index. This function returns
TRUE if successful; otherwise, this function returns FALSE. If index is negative
or out of range, an Error exception is raised.

Boolean insert_before (D_Node<Type,nchild>& dn, int index);
Inserts a subtree pointer to dn before the zero-relative index. This function returns
TRUE if successful; otherwise, this function returns FALSE. If index is negative
or out of range, an Error exception is raised.

Boolean is_leaf () const;
Determines if the node is a terminal node by evaluating the subtree pointers. If all
pointers are NULL, this function returns TRUE; otherwise, this function returns
FALSE.

inline int num_subtrees () const;
Returns the number of subtrees for a node.

D_Node<Type,nchild>& operator= (D_Node<Type,nchild>& dn);
Overloads the assignment operator for the class to assign the values of the subtree
pointers and the value in dn to the node object. This function returns a reference to
the updated node.

D_Node<Type,nchild>& operator= (D_Node<Type,nchild>* dn);
Overloads the assignment operator for the class to assign the values of the subtree
pointers and the value in dn to the node object. This function returns a reference to
the updated node.

inline Boolean operator== (const Type& value) const;
Overloads the equality operator for the D_Node<Type> class. This function re-
turns TRUE if value is equal to the value of the node object; otherwise, this func-
tion returns FALSE.

inline Boolean operator!= (const Type& value) const;
Overloads the inequality operator for the D_Node<Type> class. This function re-
turns TRUE if value is not equal to the value of the node object; otherwise, this
function returns FALSE.

inline Boolean operator< (const Type& value) const;
Overloads the less-than operator for the D_Node<Type> class. This function re-
turns TRUE if value is less than the value of the node object; otherwise, this func-
tion returns FALSE.

inline Boolean operator<= (const Type& value) const;
Overloads the less-than-or-equal operator for the D_Node<Type> class. This func-
tion returns TRUE if value is less than or equal to the value of the node object;
otherwise, this function returns FALSE.

Node and Tree Classes

9-14 COOL User’s Manual

inline Boolean operator> (const Type& value) const;
Overloads the greater-than operator for the D_Node<Type> class. This function
returns TRUE if value is greater than the value of the node object; otherwise, this
function returns FALSE.

inline Boolean operator>= (const Type& value) const;
Overloads the greater-than-or-equal operator for the D_Node<Type> class. This
function returns TRUE if value is greater than or equal to the value of the node
object; otherwise, this function returns FALSE.

inline D_Node<Type,nchild>*& operator[] (int index);
Returns a reference to a pointer to the subtree at the zero-relative index. If index is
negative or out of range, an Error exception is raised.

inline void set (const Type& value);
Sets the value of the data member in the node to value.

inline void set_compare (D_Node_Compare = NULL);
Sets the comparison function that is to be used in all comparison tests.
D_Node_Compare is a function of type Boolean (*Function)(const Type&, const
Type&). If no argument is provided, the operator== for the type over which the
class is parameterized is used.

N_Tree Class 9.10 The N_Tree<Node,Type,nchild> class implements n-ary trees, providing the
organizational structure for a tree (collection) of nodes, but knowing nothing about the
specific type of node used. N_Tree<Node,Type,nchild> is parameterized over a node
type, a data type, and a subtree count, where the node specified must have a data mem-
ber of the same Type as the tree class and the subtree count indicates the number of
possible subtree pointers (children) from any given node. Two node classes are pro-
vided, but others could also be written. The N_Node<Type> class implements static-
sized nodes for some distinct number of subtrees, and the D_Node<Type> class
implements dynamic-sized nodes derived from the Vector<Type> class.

Since the organization of a tree is important (as with an expression tree), the user must
supervise the construction of the tree by directing specific node and subtree assignments
and layout. No attempt is made by the N_Tree<Node,Type,nchild> class to balance or
prune the tree.

The N_Tree<Node,Type,nchild> class implements the notion of a current position.
This is useful for iterating through the nodes of a tree. The current position is maintained
in a data member of type N_Tree_state and is set or reset by all member functions af-
fecting elements in the class. Member functions are provided to reset the current posi-
tion, move to the next and previous elements, find an element, and get the value at the
current position. The Iterator<Type> class provides a mechanism to save and restore
the state associated with the current position, thus allowing the programmer to use
multiple iterators over the same instance of a tree.

Traversal through an n-ary tree using the current position mechanism and the
Iterator<Type> class can be controlled by setting the traversal mode. An enumerated
type Traversal_Type is defined for the following values:

• PREORDER

• PREORDER_REVERSE

• INORDER

Node and Tree Classes

9-15COOL User’s Manual

• INORDER_REVERSE

• POSTORDER

• POSTORDER_REVERSE

Inorder traversal for an n-ary tree is defined to traverse the left-most subtree, visit the
node, then traverse all remaining subtrees from left to right. Postorder traversal of an
n-ary tree is defined to traverse all subtrees from left to right, then visit the node. Preor-
der traversal for an n-ary tree is defined to visit the node, then traverse all subtrees from
left to right. The reverse traversal modes are similar, except that they visit subtrees from
right to left.

Name: N_Tree<Node,Type,nchild> — A parameterized N-ary tree class

Synopsis: #include <COOL/N_Tree.h>

Base Classes: Generic

Friend Classes: None

Constructors: N_Tree<Node,Type,nchild> (Node<Type,nchild>& n);
Allocates an n-ary tree object with the root pointer set to n.

N_Tree<Node,Type,nchild> (Node<Type,nchild>* n);
Allocates an n-ary tree object with the root pointer set to n.

N_Tree<Node,Type,nchild> (const N_Tree<Node,Type,nchild>& nt);
Duplicates the structure of another n-ary tree object nt.

Member Functions: void clear ();
Empties the tree and deallocates the memory for all nodes and internal structures.

inline long count () const;
Returns the number of nodes in the tree structure. Note that this function is poten-
tially very expensive, since the tree depth is calculated by traversing all nodes in the
tree.

inline long current_depth ();
Returns the zero-relative depth in the n-ary tree object of the node at the current
position. If the current position is invalid, this function returns zero.

inline N_Tree_state& current_position ();
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of n-ary tree.

Boolean find (const Type& value);
Searches for value in the tree. If found, this function updates the current position
and returns TRUE; otherwise, this function invalidates the current position and
returns FALSE.

Node and Tree Classes

9-16 COOL User’s Manual

void inorder (Node_Apply_Function fn);
Performs an in-order traversal of the tree structure and applies the function fn to
each node. Inorder traversal for an n-ary tree is defined to traverse the left-most
subtree, visit the node, then traverse all remaining subtrees from left to right.
Node_Apply_Function is a function of type Boolean (*Function)(const Type&
value) where value is the value from each node visited that is substituted during the
traversal.

inline Boolean next ();
Advances the current position to the next element if there is one. This function re-
turns TRUE if successful. If the current position is invalid, this function sets the
current position to the first element and returns TRUE. If the current position is the
last element in the tree, this function invalidates the current position and returns
FALSE.

inline Node<Type,nchild>*& operator[] (int index);
Returns a reference to a pointer to the zero-relative indexed subtree. If index is
negative or out of range, an Error exception is raised.

inline operator Node<Type,nchild>();
Provides an implicit conversion operator from an n-ary tree object to the node over
which the class is parameterized.

void postorder (Node_Apply_Function fn);
Performs a post-order traversal of the tree structure and applies the function fn to
each node. Postorder traversal of an n-ary tree is defined to traverse all subtrees
from left to right, then visit the node. Node_Apply_Function is a function of type
Boolean (*Function)(const Type& value) where value is the value from each node
visited that is substituted during the traversal.

void preorder (Node_Apply_Function fn);
Performs a pre-order traversal of the tree structure and applies the function fn to
each node. Preorder traversal for an n-ary tree is defined to visit the node, then trav-
erse all subtrees from left to right. Node_Apply_Function is a function of type
Boolean (*Function)(const Type& value) where value is the value from each node
visited that is substituted during the traversal.

Boolean prev ();
Moves the current position to the previous element in the tree and returns TRUE.
If the current position is invalid, this function sets the current position to the last
element and returns TRUE. If the current position is the first element in the tree,
this function invalidates the current position and returns FALSE.

inline void reset ();
Invalidates the current position for the n-ary tree object.

inline Traversal_Type& traversal ();
Returns a reference to the traversal mode. This member function can be used to set
or get the current traversal mode.

Type& value ();
Returns a reference to the value of the node at the current position. If the current
position is invalid, an Error exception is raised.

Node and Tree Classes

9-17COOL User’s Manual

N_Tree Example 9.11 Unlike the Binary_Tree<Type> and AVL_Tree<Type> classes discussed ear-
lier in this section, the N_Tree<Node,Type,nchild> requires the user to direct the con-
struction and control the structure of the tree. The following program requires this
flexibility and uses dynamic nodes and the n-ary tree class to create, and then navigate
through a hypothetical organizational chart.

 1 #include <COOL/D_Node.h> // Include node class

 2 #include <COOL/N_Tree.h> // Include n-ary tree class

 3 #include <COOL/String.h> // Include string class

 4 DECLARE N_Tree<D_Node,String,3> // Declare tree type

 5 IMPLEMENT N_Tree<D_Node,String,3> // Implement tree type

 6 int main (void) {

 7 D_Node<String,3> president (String(”President”)); // Create president

 8 N_Tree<D_Node,String,3> org_chart (president); // Setup top of tree

 9 D_Node<String,3> sales (String(”Sales”)); // Create sales

10 D_Node<String,3> service (String(”Service”)); // Create service

11 D_Node<String,3> finance (String(”Finance”)); // Create finance

12 D_Node<String,3> legal (String(”Legal”)); // Create legal

13 president[0] = &sales; // Add sales to chart

14 president.insert_after(service, 0); // Add service to chart

15 president.insert_after(finance, 1); // Add finance to chart

16 president.insert_after(legal, 2); // Add legal to chart

17 sales[0] = new D_Node<String,3> (String(”Domestic”)); // Domestics sales

18 D_Node<String,3> international (String(”International”)); // International

19 sales.insert_after(international, 0);

20 international[0] = new D_Node<String,3> (String(”Asia”));

21 international.insert_after(*(new D_Node<String,3> (String(”Europe”))), 0);

22 international.insert_after(*(new D_Node<String,3> (String(”Africa”))), 1);

23 finance[0] = new D_Node<String,3> (String(”Short Term”));

24 finance.insert_after(*(new D_Node<String,3> (String(”Long Term”))), 0);

25 finance.insert_after(*(new D_Node<String,3> (String(”Collections”))), 1);

26 org_chart.traversal() = PREORDER; // Set traversal mode

27 for (org_chart.reset (); org_chart.next ();) { // For each node in tree

28 for (int i = 0; i < org_chart.current_depth (); i++) // Indent level

29 cout << ” ”;

30 cout << org_chart.value () << ”\n”; // Print value of node

31 }

32 return (0); // Return success

33 }

Lines 1 through 3 include the D_Node<Type>, N_Tree<Node,Type,nchild> and String
class header files. Lines 4 and 5 declare an n-ary tree class using dynamic nodes that
initially support three subtrees per node and whose value is a String. Line 7 creates the
top level node to represent the president in the organization. Line 8 creates the
org_chart tree object and establishes the president node as the root. Lines 9 through
12 create the four department nodes. Notice that the dynamic nature of D_Node is auto-
matically used since we add four departments, but initially parameterized the class for
three subtrees per node. Line 13 adds sales as the first node under president. Lines 14
through 16 then add the service, finance, and legal nodes. Lines 17 and 18 establish
the Domestic and International nodes under sales, and lines 19 through 22 setup the
international distribution nodes. Similarly, lines 23 through 25 setup the finance nodes.
Line 26 establishes the PREORDER traversal mode for the n-ary tree object.

Node and Tree Classes

9-18 COOL User’s Manual

Lines 27 through 31 contain a loop that uses the current position mechanism to iterate
through the nodes of the tree. For each node, the indentation for the output is determined
by its depth in the tree. After the indentation is printed on the output stream, the value of
the node (the String value) is also printed. Finally, when all nodes in the tree have been
visited, the program ends with a successful completion code.

The following shows the output for the program:

President
 Sales
 Domestic
 International
 Asia
 Europe
 Africa
 Service
 Finance
 Short Term
 Long Term
 Collections
 Legal

10-1COOL User’s Manual

MACROS

Introduction 10.1 The COOL macro facility is an extension to the standard ANSI C macro
preprocessing functions available with the #define statement. The COOL preprocessor
is a modified ANSI C preprocessor that allows a programmer to define powerful exten-
sions to the C++ language in an unobtrusive manner. This enhanced preprocessor is
portable and compiler-independent, and can execute arbitrary-filter programs or macro
expanders on C++ code fragments. It is important to note, however, that once a macro is
expanded, the resulting code is conventional C++ 2.0 syntax acceptable to any conform-
ing C++ translator or compiler.

The COOL macro facilities have many components. Macros such as those that support
parameterized templates are implementations of theoretical design papers published by
Bjarne Stroustrup. Others provide significant language features and enhanced power
for the programmer heretofore unavailable with conventional C++ implementations.

This section provides information on the COOL macro facility that forms the basis for
many of the advanced features covered in later sections. The following topics are dis-
cussed in this section:

• COOL preprocessor

• defmacro

• MACRO

• Example COOL macros

Requirements 10.2 This section discusses the macro facilities of COOL. It assumes that you have a
working knowledge of the C++ language and are familiar with the concept of macros
and macro expansion as found in the standard C preprocessor.

COOL 10.3 The COOL preprocessor is supplied as part of the library and is the
Preprocessor point at which all language and computing enhancements available in COOL are imple-

mented. The proposed draft ANSI C standard indicates that extensions and changes to
the language or features implemented in a preprocessor or compiler should be made by
using the #pragma statement. The COOL preprocessor follows this recommendation
and uses this to make all macro extensions. The #pragma defmacro statement is the
single hook through which features such as the class macro, parameterized templates,
and polymorphic enhancements have been implemented.

Porting COOL to a new platform or operating system starts with the preprocessor. The
preprocessor contains support for the defmacro statement and also implements several
important macros internally for efficiency and performance considerations. These in-
clude template, class, DEFPACKAGE, and DEFPACKAGE_SYMBOL.

Macros

10-2 COOL User’s Manual

The COOL preprocessor is derived from and based upon the DECUS ANSI C
preprocessor made available by the DEC User’s group in the public domain and sup-
plied on the X11R3 source tape from MIT. It complies with the draft ANSI C specifica-
tion with the exception that trigraph sequences are not implemented. In addition to
support for COOL macro processing discussed above, the preprocessor has several new
command line options to support C++ comments. These command line options also
have include-file debugging aids.

Name: ccpp — The COOL C/C++ preprocessor

Synopsis: ccpp [–options] [infile [outfile]]

Options: –B
Recognizes the C++ double slash (//) comment character and treats all characters
following up to the next newline character as commentary text.

–C
If set, source-file comments are written to the output file. This allows ccpp output
to be used as input to a program such as lint(1) that expects comments to be spe-
cially formatted.

–Dname[=value]
Defines name as if the programmer had defined it in the program. If no value is
provided, a default value of 1 is used.

–E
Always returns a successful status completion code to the operating system, even if
errors were detected.

–Idirectory
Adds the specified directory to the list of directories searched when looking for an
include file. Note that there is no space between the option letter and the directory
name.

–Uname
Undefines name as if the programmer had undefined it in the program.

–X[number]
Enables debugging output from the preprocessor. A value of 1 for number will
cause the pathname of each included file to be sent to the standard error stream. A
value of 2 for number will cause #control statements to be inserted as comments in
the output. A value of 3 for number will enable both debugging modes. If no value
for number is provided, a default value of 1 is used. Note that this option is designed
to be a debugging aid for use when the preprocessor is run as stand alone and not
when invoked by the control program. Other values for number are ignored.

Macros

10-3COOL User’s Manual

defmacro 10.4 The #pragma defmacro statement is implemented in the COOL preprocessor
and is the single hook through which features such as the class macro, parameterized
templates, and polymorphic enhancements have been implemented. The defmacro fa-
cility provides a way to execute arbitrary-filter programs on C++ code fragments pass-
ing through the preprocessor. When a defmacro style macro name is found, the name
and everything until the delimiter (including all matching {} [] () <> “” ‘’ and comments
found along the way) is piped onto the standard input stream of the indicated program or
filter procedure. The procedure’s standard output is scanned by the preprocessor for
further processing. The expansion replaces the macro call and is passed onto the com-
piler for parsing.

The implementation of a defmacro can be either external to the preprocessor (as in the
case of files and programs) or internal to the preprocessor. For example, the template,
declare, and implement macros that implement parameterized types is internal to the
preprocessor to provide a more efficient implementation. The defmacro facility first
searches for a file or program in the same search path as that used for include files. If a
match is not found, an internal preprocessor table is searched. If a match is still not
found, the error message “Error: Cannot open macro file [xxx]” is sent to the standard
error stream where xxx is the name as it appears in the source code. The fundamental
COOL macros are defined with defmacro in the header file <COOL/misc.h>, which is
included by all COOL C++ source files.

Name: defmacro — The COOL C/C++ preprocessor extension mechanism

Synopsis: #pragma defmacro name <file> options
#pragma defmacro name “file” options
#pragma defmacro name program options

name A character string identifying the macro

file The name of a file implementing the macro

program The name of a filter program implementing the macro

options One or more of the following space-separate parameters:

recursive
When present, the macro may be recursively expanded.

expanding
When present, input to the macro is macro-expanded.

delimiter=c
The default delimiter ‘;’ is replaced with c.

condition=c
When present, the macro will not be invoked unless followed by c.

REST: args
Other arguments are passed to the macro expander.

Macros

10-4 COOL User’s Manual

MACRO 10.5 MACRO provides a powerful and flexible macro language used to simplify
many of the features and functions contained in the library. The defmacro feature pre-
viously discussed is used to declare the MACRO keyword whose implementation is a
preprocessor-internal routine named macro. The terminating delimiter for a MACRO
is the closing brace character. MACRO implements an enhanced #define syntax that
supports multiple line, arbitrary length, nested macros, and preprocessor directives with
positional, optional, optional keyword, required keyword, rest, and body arguments.

Name: MACRO — Enhanced COOL macro language

Synopsis: MACRO name [expanding] (arglist) { body }

name The name of the macro

expanding Optional argument that, when present, indicates that argument names
themselves should be macro-expanded before passing onto and invoking
the name macro.

arglist A list of comma separated arguments

KEY: identifier [= value]
All ensuing arguments are taken to be keyword arguments that allow
the user to specify a particular value. Default values are supported by
an equal sign and value, and can be applied to both regular and key-
word arguments.

REST: name [= count]
Indicates that there are some number of arguments, all of which are
referenced by the one named identifier. An optional equal sign and
identifier contains the number of arguments remaining. This is typi-
cally used when an outer level macro must pass some number of argu-
ments to an inner level macro.

BODY: body
Indicates that body is to be expanded to include all text within the
braces after the macro call. This is useful for identifying a section of
code that implements some part of the macro or should be passed to
other nested macros.

body Statements substituted when the macro is expanded. These statements can
be any valid C++ statements terminated with a semicolon and surrounded
by curly-braces.

Macros

10-5COOL User’s Manual

MACRO Examples 10.6 Following are three examples of MACRO, each using various features and con-
cepts to highlight some of the COOL macro capabilities. More detailed and complex
examples follow in subsequent sections. It cannot be emphasized enough how impor-
tant the macro facility is to the implementation of COOL. Without it, many features and
functions would not be possible or would be more cumbersome and difficult to use. As
an example of this type of use, the aggressive reader is referred to the end of Section 11,
Symbols and Packages, for a detailed examination of the symbol_package macro.

Example 1: This is a simple use of MACRO to implement a wrapper to an initialization routine that
provides greater flexibility in passing arguments than is possible with straight C++ 2.0
syntax.

1 MACRO set_val (size, value=0, KEY: low = 0, high) {

2 init (size, value, low, high–low)}

Line 1 contains the function prototype for the macro set_val defined between the fol-
lowing braces. This macro takes four arguments:

• size is a required positional argument;

• value is an optional positional argument that if not specified in a particular call has
a default value of 0;

• low is an optional keyword argument with a default value of zero;

• high is a required keyword argument.

Line 2 contains the body of the macro which in this case involves a call to the init()
function. The following shows several legal invocations of the macro, along with the
resulting macro expansions:

set_val (0, high=20) –> init (0, 0, 0, 20–0);

set_val (0, low=5, high=15) –> init (0, 0, 5, 15–5);

set_val (1, 2, high=25) –> init (1, 2, 0, 25–0);

Example 2: The next example makes use of the REST: argument list modifier and recursive calls of
the macro defined. Note that there are two macros, the first calls the second to do most
of the work. The results of both are combined and placed on the standard output of the
preprocessor:

1 MACRO build_table (name, REST: rest) {

2 char* name[] = { build_table_internal (rest) NULL}

3 }

4 MACRO build_table_internal (first, REST: rest=count) {

5 #first,

6 #if count

7 build_table_internal (rest)

8 #endif

9 }

Macros

10-6 COOL User’s Manual

The macro build_table is defined on lines 1 through 3 and takes two arguments: a
name to associate with the table and a REST: argument called rest that refers to all
remaining arguments. A char* variable called name is defined on line 2 and contains an
embedded call to a second macro with the rest argument mentioned above. Note also
that the embedded call is within the initialization braces of the character string variable
and is followed by a NULL symbol.

The second macro defined in lines 4 through 9 loops through the rest argument values
and recursively calls itself. Line 4 contains the prototype with two arguments. The first
argument first is stripped from the incoming argument list and the remaining count
arguments are left alone in the rest argument. Line 5 uses the ANSI # character on an
argument to double quote the value. Then, a conditional clause tests count to see if there
are remaining arguments and, if so, recursively calls the macro. When there are no more
arguments, the build_table macro regains control and appends the NULL and closing
brace to the result of the second macro.

A sample use of this macro is shown below to illustrate the construction of a NULL-ter-
minated table containing character strings. Line 1 shows the macro call and line 2 shows
the resulting macro expansion:

1 build_table (table, 1,2,3,4,5,6,7);

2 char* table[] = {”1”, “2”, “3”, “4”, “5”, “6”, “7”, NULL};

Example 3: As a final example, here is a macro that uses the BODY: modifier. It takes advantage of
the current position feature found in the COOL container classes to implement a general
purpose LOOP macro similar to that found in Common Lisp. Since all COOL container
classes implement the current position iterator capability, this macro will work equally
well with List, Vector, Set, and so on:

1 MACRO LOOP (type, variable, container, BODY: body) {

2 { type variable;

3 for (container.reset(); container.next();) {

4 variable = container.value();

5 body

6 }

7 }

8 }

Line 1 contains the prototype of the macro LOOP that takes four arguments: a container
class element type; a variable name (of the type) to be declared; the name of a container
class instance; and a BODY: argument of code to be applied to each element. Line 2
declares an instance of the element type in the specified container class. Lines 3 through
6 implement a loop that iterates through the elements of the container. Line 4 assigns the
value of the element at the current position to the local variable declared on line 2. Line
5 expands the body argument specified.

Macros

10-7COOL User’s Manual

A specific example for the Vector<Type> class is shown below. Lines 1 and 2 show the
macro call and lines 3 through 8 show the resulting macro expansion:

1 Vector<int> v1;

2 LOOP (int, e, v1) { cout << e << ”, ”;}

3 { int e;

4 for (v1.reset(); v1.next();) {

5 e = v1.value();

6 cout << e << ”, ”;

7 }

8 }

This example contains an instance of Vector<int> called v1. The LOOP macro iterates
through the vector and assigns each element to a temporary variable e. This is then used
in the expanded body argument. The net result is to print all elements in the vector sepa-
rated by commas.

ISSAME 10.7 The ISSAME macro is used in the preprocessor to compare two strings to see if
they are the same. This macro is intended to be used in a similar manner as the
preprocessor #if directive, which allows a symbol to be compared to some integer value.
If the character strings are the same, ISSAME returns one; otherwise, it returns zero.

Name: ISSAME — Compares two character strings at compile time

Synopsis: ISSAME (arg1, arg2)

arg1 The first character string

arg2 The second character string

Example: This macro is used in the COOL Hash_Table<T1,T2> class to select the hash function
based on the key type. If the hash table is parameterized such that the key type is char*,
a specific hashing function suited for character strings is implemented as the default
hashing scheme. If not, an alternate hashing function is used. In the example below, line
1 compares the key type to several string type names. If a match is indicated, the
statements at line 2 will be used. If no match is indicated, the statements at line 4 will be
used.

1 #if ISSAME (T1, char*, String, Gen_String)

2 ...
3 #else
4
5 #endif

Macros

10-8 COOL User’s Manual

KEYARGS 10.8 The KEYARGS macro implements a keyword argument feature for standard
C++ functions similar to the KEY: modifier available with MACRO which supports
optional keyword arguments.

Name: KEYARGS — Provides keyword arguments for C++ functions

Synopsis: KEYARGS type name (arglist)

type Function return type

name Name of the function

arglist A C++ function argument list that supports keyword arguments:

[KEY:] identifier [= default] [, arglist]
All ensuing arguments are taken to be keyword arguments that allow
the user to specify a particular value. Default values are supported by
an equal sign and value, and can be applied to both regular and key-
word arguments.

Example: This example defines the function set that returns a Boolean value. The first argument
(size) is a required positional argument, while the second and third (low and high) are
optional keyword arguments. A skeleton implementation of this function is shown in
lines 1 through 3 below:

1 KEYARGS Boolean set (int size, KEY: int low=0, int high=100) {

2 ...

3 }

Lines 4 through 6 show a call to set with a value of 512 for the first argument and a
value 1024 for the key argument high. The value of the keyword argument low will
default to value 0. Lines 7 through 9 show the results of this macro expansion:

4 if (set (512, high=1024) == TRUE) {

5 ...

6 }

7 if (set (512, 0, 1024) == TRUE) {

8 ...

9 }

Macros

10-9COOL User’s Manual

ONCE_ONLY 10.9 The ONCE_ONLY macro allows an application to control the expansion or in-
sertion of a section of code or function. ONCE_ONLY creates a symbol in a package
whose value is the file name where the symbol was first encountered. If the current
value of the symbol is the same as the current file (available from the standard
preprocessor symbol __FILE__), the code is expanded and compiled. If not, nothing
happens. ONCE_ONLY uses symbol and package objects and is more completely dis-
cussed in Section 11, Symbols and Packages.

Name: ONCE_ONLY — A macro whose body is expanded only once

Synopsis: ONCE_ONLY (name) {body}

name Symbolic name given to this operation

body Statements substituted when the macro is expanded

Example: The C++ parameterized type macros generate two sets of code: a declaration that must
always be included and implemented code that only needs to be compiled once. This is
particularly important when the definition of the parameterized type is in a header file.
By using the ONCE_ONLY macro, all macros and expansion of code are controlled
and located in a single header file. The code implementing the parameterized type is
expanded by the first application source file that included the header file.

The DECLARE macro used to declare a specific type of parameterized class only de-
clares the class type and inline member functions. This could be changed to also imple-
ment the member functions by invoking the IMPLEMENT macro, if this is only done
once during compilation. The macro AUTO_DECLARE declared below would implement
the member functions one time only.

1 MACRO AUTO_DECLARE (name, REST: parms) {

2 DECLARE name<parms>;

3 ONCE_ONLY (Implement_##name<parms>) {

4 IMPLEMENT name<parms>;

5 }

6 }

Line 1 declares the macro AUTO_DECLARE with two arguments. The first argument speci-
fies the parameterized class name and the second specifies any necessary arguments,
including the type. Line 2 declares the parameterized class of the specified type. Lines
3-5 utilize ONCE_ONLY to implement the parameterized class if it has never been
implemented before. This mechanism is not the default mechanism used in COOL be-
cause it prevents the fracturing of the source code template to reduce program size. This
feature is available with CCC and is discussed in section 5, Parameterized Types.

EXPAND_ARGS 10.10 The EXPAND_ARGS macro is useful when one or more of the arguments to
some MACRO are themselves macros that must be expanded first. This feature is also
available via the expanding option in the MACRO syntax discussed earlier. The major
difference between the two is that EXPAND_ARGS allows this function to be added to
existing macros that may not have this already in place.

Macros

10-10 COOL User’s Manual

Name: EXPAND_ARGS — Expand macro arguments before invocation

Synopsis: EXPAND_ARGS (name, REST: args)

name Name of the macro to be invoked

args Arguments to be expanded and then passed to the macro

Example: The <stdarg.h> header file provides a set of preprocessor macros to allow the C++
compiler to accept a variable number of arguments in a function call. The syntax of one
of these macros is va_arg (argp, type), where type is the type of the arguments
expected. In the case of such things as COOL parameterized classes, however, a type
like Pair<Generic*, Symbol*> is not recognized as a valid type by va_arg because it
too is a macro that must be expanded first. The solution is to pass the name of the macro
and its arguments to the EXPAND_ARGS macro, as shown below in line 2, which
results in the type argument being expanded before being passed on, instead of the
standard call as in line 1.

1 va_arg (argp, type)
2 EXPAND_ARGS (va_arg, argp, type)

INITIALIZE 10.11 The INITIALIZE macro guarantees to execute a body of code before the main
program is called. This is often necessary in an application when a table or state infor-
mation needs to be initialized before constructors can be called. INITIALIZE works by
creating a static function containing the body of code to be executed. It initializes a
global static variable, For_Initialization_Only, with a pointer to this function.
For_Initialization_Only is a class whose constructor executes the function. The
C++ language guarantees to execute the constructors for all global and static class in-
stances before the main program is run. However, there is no mechanism by which the
user can control the ordering of global static constructors themselves.

Name: INITIALIZE — A MACRO whose body is executed once

Synopsis: INITIALIZE (name) { body }

name Name of the initialization sequence

body Statements substituted when the macro is expanded

Example: In the following example, a global instance of a hash table is created on line 1 where
both the key and the value are character strings. Lines 2 through 6 contain the
INITIALIZE macro invocation to initialize this hash table by invoking the put
member function of the Hash_Table class.

1 Hash_Table<char*, char*> capitals_g;

2 INITIALIZE (capitals_g) {

3 capitals_g.put (“Texas”, “Austin”);

4 capitals_g.put (“Arkansas”, “Little Rock”);

5 capitals_g.put (“Michigan”, “Lansing”);

6 }

Macros

10-11COOL User’s Manual

IGNORE MACRO 10.12 The IGNORE macro silences warnings from the compiler relating to unused
variables or function arguments. An application often has no control over the interface
to a function and does not require all of the arguments. In other situations, an object
might be created so that a friend function can access some private static data member.
Without this macro, warnings of the type “Warning: variable <foo> declared but not
used” appear. The IGNORE macro suppresses these warning messages.

Name: IGNORE — Silences compiler warnings from unused variables

Synopsis: IGNORE (name)

name The name of the argument/variable not used

Example: The following example shows the main function of a program with its two standard
arguments. However, in this example, these arguments are unused. By using the
IGNORE macro, the warning error messages are never generated by the compiler.

1 main (int argc, char** argv) {

2 IGNORE (argc); // Don’t use argument

3 IGNORE (argv); // Don’t use argument

4

5 }

Macros

10-12 COOL User’s Manual

11-1COOL User’s Manual

SYMBOLS AND PACKAGES

Introduction 11.1 A package provides a relatively isolated namespace for various COOL compo-
nents called symbols. Those symbols grouped into a particular package are said to be
owned by that package. A symbol that is owned by a particular package is said to be
interned in that package. In general, the term interned means that a particular object is
uniquely identifiable in some context. When a symbol is interned, it becomes uniquely
identifiable by the symbol name within a namespace context. The package system pro-
vides logical groupings of symbols supporting relationships established between named
objects and the values they contain. Although the notion of symbols being grouped into
packages is fairly straightforward, the nature of the relationships that can exist between
packages and the way in which they establish a namespace can be quite complex. COOL
provides several kinds of macros discussed later in this section to simplify the usage and
manipulation of symbols and packages.

A symbol is a data object that defines a relationship between a name, a package, a value,
and a property list. The name is a character string used to identify the symbol. Once a
name is established for a symbol, you are not allowed to change it. The value field is
used to refer to some C++ object. Property lists are lists of alternating names and values.
The property list allows you to associate supplemental attributes with a symbol. In-
itially, the property list for a symbol is empty. This section discusses the symbolic com-
puting facilities provided with COOL. The following items are covered:

• Symbol

• Package

• DEFPACKAGE and DEFPACKAGE_SYMBOL

• Package macros

The Symbol and Package classes implement the basic symbolic computing support.
DEFPACKAGE and DEFPACKAGE_SYMBOL are flexible, low-level macros
used to create and manipulate symbols and packages at both compile time and run time.
Finally, the package macros discussed in the latter portion of this section provide a flex-
ible and easy interface to the symbol and package features and allow a programmer to
quickly use powerful constructs and features.

NOTE: The symbol and package classes use operator= when copying names and val-
ues. You should be careful when reusing memory, since the default pointer assignment
operator copies the pointer, not the value pointed at.

Requirements 11.2 This section discusses the symbol and package facilities of COOL. It assumes that
you have a working knowledge of the C++ language and have read and understood Sec-
tion 10, Macros.

Symbols and Packages

11-2 COOL User’s Manual

Symbol and 11.3 COOL supports efficient and flexible symbolic computing by providing
Package Classes symbolic constants and run time symbol objects. You can create symbolic constants at

compile time and dynamically create and manipulate symbol objects in a package at run
time by using any of several simple macros or by directly manipulating the objects.

The Symbol class implements the notion of a symbol that has a name with an optional
value and property list. Symbols are interned into a package, which is merely a mecha-
nism for establishing separate name spaces. The Package class implements a package
as a hash table of symbols and includes public member functions for adding, retrieving,
updating, and removing symbols.

Symbols and packages in COOL manage error message textual descriptions, provide
polymorphic extensions to C++ for object type and contents queries, and support so-
phisticated symbolic computing not normally available in conventional languages.

Symbol Class 11.4 The Symbol class implements the notion of a symbol that has a name with an
optional value and property list. The Symbol class is publicly derived from the Generic
class. Symbols are interned in a package, which is merely a mechanism for establishing
a namespace whereby there is only one symbol with a given name in a given package.
Packages are implemented as hash tables by the COOL Package class, which is a friend
of the Symbol class. Because each named symbol is unique within its own package, the
symbol can be used as a dynamic enumeration type and as a run time variable.

The name of a symbol is specified by a character string. The value of a symbol is speci-
fied as a pointer to a Generic object. The property list of a symbol is specified by an
Association<Symbol*,Generic*>, where the name of the property is a pointer to a
Symbol object and the value of the named property is a pointer to a Generic object.

Name: Symbol — Named, interned objects with a value and property list

Synopsis: #include <COOL/Symbol.h>

Base Classes: Generic

Friend Classes: Package

Protected
Constructors: inline Symbol (const char* name);

Creates a symbol object with the name name. This member function is for use by
the Package::intern member function. An application program should only create
symbols interned and associated with a specific package.

Public Constructors: inline Symbol ();
Applications should use the Package::intern member function to create symbols.
The public constructor is provided for use by COOL macros to create and initialize
constant symbols used for run time type query.

Member Functions: Boolean get (const Symbol* name, Generic* value);
Looks up the named property name on the property list of the symbol object. If
found, this member function copies the associated value into value and returns
TRUE; otherwise, this member function returns FALSE.

inline const char* name () const;
Returns a constant pointer to the name associated with a symbol object.

Symbols and Packages

11-3COOL User’s Manual

inline Properties* plist ();
Returns a pointer to the property list associated with a symbol. Properties is an
object of type Association<Symbol*, Generic*>.

void put (const Symbol* name, Generic* value);
Looks up the named property name on the property list of the symbol object. If
found, this member function updates the value of the property with value; other-
wise, this member function adds a new property name with the value value. If this
is the first property added to the list, enough storage for four properties is allocated.

Boolean remove (const Symbol* name);
Looks up the named property name on the property list of the symbol object. If
found, this member function removes the property and returns TRUE; otherwise,
this member function returns FALSE.

inline Generic* set (Generic* value);
Sets the value associated with the symbol object to value and returns the new value.
The destructor for the old value is not called automatically.

inline Generic* value ();
Returns a pointer to the value associated with the symbol object.

Friend Functions: friend ostream& operator<< (const ostream& os,
const Symbol* name);

Overloads the output operator to provide a formatted output capability for a pointer
to a symbol object name.

friend ostream& operator<< (const ostream& os,
const Symbol& name);

Overloads the output operator to provide a formatted output capability for a refer-
ence to a symbol object name.

Package Class 11.5 The Package class acts as a symbol table for a collection of Symbol objects. It is
publicly derived from the Hash_Table<char*, Symbol*> class and implements a hash
table of symbols. The Package class includes public member functions for adding, re-
trieving, updating, and removing symbols. It also provides completion and spelling
correction on a symbol name (see the example programs later in this section).

Name: Package — A namespace for a collection of symbols

Synopsis: #include <COOL/Package.h>

Base Classes: Hash_Table<char*, Symbol*>, Generic

Friend Classes: Symbol

Constructors: inline Package ();
Creates a package object of default size to hold 24 entries.

inline Package (unsigned long number);
Creates a package to hold at least number entries.

Symbols and Packages

11-4 COOL User’s Manual

Package (unsigned long number, Package_Initializer fn);
Creates a package of constant symbols to hold at least number entries. Package_In-
itializer is a function of type void (Package_Initializer)(Package*) that allows the
programmer to perform an operation initializing a package object. This constructor
is primarily for use by the package macros. A detailed explanation of the macros
and construction of the symbol_package macro is provided in the paragraph enti-
tled, Symbol Package Implementation, at the end of this section below.

inline Package (Package& pkg);
Creates a new package, duplicating the size and values of another package object
pkg.

Member Functions: inline long capacity () const;
Returns the maximum number of entries the package can hold.

void clear ();
Removes all entries from the package and adjusts the appropriate counts.

inline Package_state& current_position () const;
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of package.

Boolean find (const char*& name);
Searches the package for a symbol whose name matches name. If found, this func-
tion sets the current position to the symbol matching the character string and re-
turns TRUE; otherwise, this function invalidates the current position and returns
FALSE.

Boolean get (const char*& name, Symbol& sym);
Searches the package for a symbol whose name matches name. If found, this func-
tion sets the current position to the symbol matching the character string, updates
sym with the symbol object found, and returns TRUE; otherwise, this function in-
validates the current position and returns FALSE.

inline Boolean get_key (const Symbol* sym, char*& name);
Searches the package for the name associated with the symbol sym. If found, this
function sets the current position to the symbol entry, updates name with name of
the symbol object found, and returns TRUE; otherwise, this function invalidates
the current position and returns FALSE.

Symbol* intern (const char* name);
Creates a new symbol object with the name name, or returns an existing symbol
with the same name. This function updates the current position to the new or exist-
ing entry.

inline Boolean is_empty () const;
Returns TRUE if the package contains no entries; otherwise, this function returns
FALSE.

const char*& key ();
Returns a reference to the character string name of the symbol at the current posi-
tion. If the current position is invalid, an Error exception is raised.

inline long length () const;
Returns the number of entries in the package.

Symbols and Packages

11-5COOL User’s Manual

Boolean next ();
Advances the current position pointer to the next entry in the package and returns
TRUE. If the current position is invalid, this function advances to the first entry
and returns TRUE. If advancing past the last entry in the package, this function
invalidates the current position and returns FALSE.

Package& operator= (const Package& pkg);
Overloads the assignment operator for the class and assigns the package object to
have the value of pkg by duplicating the size and entries. This function invalidates
the current position of the package object.

Boolean operator== (const Package& pkg);
This function returns TRUE if the package object has the same symbol entries as
pkg; otherwise, this function returns FALSE.

inline Boolean operator!= (const Package& pkg);
This function returns TRUE if the package object has different symbol entries as
pkg; otherwise, this function returns FALSE.

Boolean prev ();
Moves the current position pointer to the previous entry in the package and returns
TRUE. If the current position is invalid, this function moves to the last entry and
returns TRUE. If moving to the previous entry passes the first entry in the package,
this function invalidates the current position and returns FALSE.

Boolean put (const char* name, Symbol& sym);
Searched for the symbol associated with name name and, if found, updates with the
new symbol sym. This function returns TRUE if successful; otherwise, this func-
tion returns FALSE. The current position is updated to the added entry sym.

Boolean remove ();
Removes the symbol at the current position, deallocates its storage, and returns
TRUE. This function sets the current position to the entry immediately following
the entry removed if in the same bucket; otherwise, this function invalidates the
current position. If the current position is invalid, an Error exception is raised and,
if the handler returns, this function returns FALSE.

inline Boolean remove (char* name);
Searches the package for the symbol name. If the symbol is found, this function
removes the symbol, deallocates its storage, sets the current position to the old lo-
cation of the symbol, and returns TRUE; otherwise, this function returns FALSE.

Boolean remove (Symbol* sym);
Searches the package for the symbol entry sym. If found, this function removes the
symbol, deallocates its storage, sets the current position to the old location of the
symbol, and returns TRUE; otherwise, this function returns FALSE.

inline void reset ();
Invalidates the current position.

void resize (long number);
Resizes the package for at least number entries. If a growth ratio has been selected
and it satisfies the resize request, the package grows by this ratio. This function
invalidates the current position. If the resize value is zero or negative, an Error
exception is raised.

Symbols and Packages

11-6 COOL User’s Manual

inline void set_ratio (float ratio);
Updates the growth ratio for this instance of a package to ratio. When a package
needs to grow, the current size is multiplied by the ratio to determine the new size.
If the ratio is negative, an Error exception is raised.

const Symbol& value ();
Returns a reference to the symbol at the current position. If the current position is
invalid, an Error exception is raised.

Friend Functions: Boolean apropos (Package& pkg, const char* name);
Finds the next symbol from the current position in the package pkg whose name is
name. If the symbol is found, this function returns TRUE and sets the new current
position; otherwise, this function returns FALSE.

int complete (Package& pkg, String& name,
Boolean sensitive = FALSE);

Provides completion on name. If sensitive is TRUE, a case-sensitive character
comparison is made; otherwise, a case-insensitive comparison is performed. This
function modifies name to the completed value, returns the count of possible
matches, and sets the current position of the package to the last match found.

Boolean completions (Package& pkg, const char* name,
Boolean sensitive = FALSE);

Finds the next symbol in the package pkg after the current position whose name
starts with name. If sensitive is TRUE, a case-sensitive character comparison is
made; otherwise, a case-insensitive comparison is performed. If the symbol is
found, this function returns TRUE and sets the new current position; otherwise,
this function returns FALSE.

int correct (Package& pkg, const char* name,
Boolean sensitive = FALSE, int* errors = NULL);

Performs spelling correction on a symbol whose name is name in the package pkg.
If sensitive is TRUE, a case-sensitive character comparison is made; otherwise, a
case-insensitive comparison is performed. This function returns the number of
matches and sets the current position of pkg to the best match found. The number of
corrections is provided in the optional errors argument.

friend ostream& operator<< (ostream& os, const Package& pkg);
Overloads the output operator for a reference to a package pkg to provide a format-
ted output capability for the Package class. This function returns a reference to the
output stream.

inline friend ostream& operator<< (ostream& os, const Package* pkg);
Overloads the output operator for a pointer to a package pkg to provide a formatted
output capability for the Package class. This function returns a reference to the
output stream.

DEFPACKAGE 11.6 The DEFPACKAGE macro enables a programmer to declare a program-wide
database of constant symbols with associated default values and properties. This is use-
ful when the programmer needs to set up a table of symbols and knows all instances and
requirements at compile time, as with the COOL ERR_MSG package discussed later in
this section. Under such circumstances, the run time overhead associated with the Pack-
age class is avoided. The package database (that is, the place where the constant sym-
bols are kept) is stored in a file on the include path. This file contains macro calls that
can be used in an application to associate data with compile-time symbols.

Symbols and Packages

11-7COOL User’s Manual

Name: DEFPACKAGE — Symbolic C++ constant symbol mechanism

Synopsis: DEFPACKAGE name <path> options

name A character string to be used as a symbol prefix

path The name of an include file where symbol definitions are kept

options One or more of the following comma-separate parameters:

count = identifier
The package file should define the specified preprocessor identifier
whose value is the number of symbols defined in the package.

use_first = int
When nonzero, the value used is the first definition. Redefinition at-
tempts are ignored. This option is used by the ONCE_ONLY macro.

noblank = int
When nonzero, removes all whitespace from symbol names.

case = upper
Converts all symbol name alphabetic characters to uppercase.

case = lower
Converts all symbol name alphabetic characters to lowercase.

case = cap
Capitalizes the first letter of each symbol name, and converts remain-
ing letters to lowercase.

case = sensitive
Preserves the case of the symbol name as used. This is the default
behavior.

start = int
Uses the provided value as the first (that is, starting) point for each
enumerated symbol index. The default is zero.

increment = int
Increments symbol index values by the specified value. The default is
one.

template = int
The value is inclusive-or’ed with the index every symbol value. The
default is zero.

max = int
Generates an error when the number of constant symbols in the pack-
age exceeds the specified value.

While the DEFPACKAGE macro provides great flexibility and versatility in creating a
package of constant symbols for an application, the creation of the most common types
of packages likely to be needed by the programmer is made easier by the following mac-
ros:

Symbols and Packages

11-8 COOL User’s Manual

• MACRO enumeration_package (name, file, REST: options)

• MACRO text_package (name, file, REST: options)

• MACRO symbol_package (name, file, REST: options)

• MACRO once_only (name, file, REST: options)

The first three allow the programmer to easily create packages of symbols with varying
levels of sophistication. The fourth is used by the various COOL components to ensure
that certain functions are performed only once during the compilation phase. Complete
information and usage of these macros is discussed later in this section.

Adding Symbols To 11.7 The DEFPACKAGE_SYMBOL macro adds, updates, and retrieves
A Package constant symbols, their values, and properties from a package created with the

DEFPACKAGE macro. DEFPACKAGE_SYMBOL updates the program-wide da-
tabase of constant symbols stored in a file with macro definitions and calls that can be
used in an application to associate data and property lists with compile time symbols. As
with the DEFPACKAGE macro, DEFPACKAGE_SYMBOL is a flexible, low-level
function. The most common types of packages and constant symbol manipulation re-
quirements are made easier by the four macros mentioned above and discussed later in
this section.

Name: DEFPACKAGE_SYMBOL — Symbolic C++ constant symbol manipulation

Synopsis: DEFPACKAGE_SYMBOL (package, symbol, type, value, property,
expander)

package The name of a package to access. Note that the package must have already
been defined with DEFPACKAGE

symbol The name of the symbol to be added, updated, or retrieved

type The optional type of the value

value The optional value of the symbol or property

property The optional name of the property

expander When present, replaces the DEFPACKAGE_SYMBOL invocation with
the result of calling the specified macro expander (index, symbol, type,
value) where:

expander
The expander macro to be called and specified in the invocation of
DEFPACKAGE_SYMBOL.

index
The symbol’s index number.

symbol
The name of the symbol.

type
The optional type of the value.

Symbols and Packages

11-9COOL User’s Manual

value
The optional type of the symbol or property.

If you use DEFPACKAGE to create your own specialized package, you will probably
want to write simple macros that expand into calls to manipulate the constant symbol
entries. DEFPACKAGE_SYMBOL writes three other macro definitions to the pack-
age’s definition file for use in a user-application. Each use of the DEF-
PACKAGE_SYMBOL macro generates another macro.
<Package>_DEFINITIONS. This macro expands to use the three macros mentioned
above to define the symbol, set the symbol value, and set the symbol properties. It is
invoked at compile time to create the constant symbol package.

Name: <Package>_DEFINITIONS — Create symbolic C++ constant symbol values

Synopsis: <Package>_DEFINITIONS (define, value, property);

define Macro to be used to create the constant symbol of the form:

define_macro (index, name)

value Macro to be used to set the value of the constant symbol of the form:

value_macro (index, type, value)

property Macro to be used to set a property of the constant symbol of the form:

define_macro (index, property, type, value)

Under most circumstances, the programmer will never have the need to use these mac-
ros. However, for those interested, further information about these macros and their use
in constructing a constant symbol package is available in the documentation and exam-
ples in the ~COOL/Package/defpackage.h header file and the COOL SYM and ERR_MSG
package files in the COOL include subdirectory. Finally, a detailed explanation of the
macros and construction of the symbol_package macro is provided in the paragraph
entitled, Symbol Package Implementation, at the end of this section.

NOTE: Constant symbol packages defined and manipulated by the macros discussed in
this section must have storage allocated for them and code to initialize them at program
startup time. This is managed by the COOL file symbols.C that should be compiled and
linked with every application that uses COOL components. This file does not need to be
changed unless you create your own symbol packages, in which case you should add the
appropriate include and initialization statements (see the examples later in this section).
An automated method for ensuring correct package setup and symbol initialization is
shown in the make file for the example programs for this manual in the COOL/examples
subdirectory.

Symbols and Packages

11-10 COOL User’s Manual

Enumeration 11.8 The enumeration_package macro is for use in applications that need
Package to create a collection of constant symbols. Enumeration symbols can be used anywhere

that an enumeration type can be used. One reason for selecting symbols in an enumera-
tion package over the standard enum type is that it is easier to add new symbols. The
enumeration package macro automatically collects them from across the source base
and maintains a single database in the specified header file.

NOTE: An enumeration package is stored in a file located somewhere on the include
directory search path. This header file must initially be created as an empty file by the
programmer, since the macro does not know which subdirectory on the include file
search path to select. A convenient mechanism for creating this file on UNIX systems is
the touch(1) command.

Once an enumeration package has been created, symbols can be added and retrieved by
using the package name with the symbol name surrounded by parentheses. If the symbol
contained between parentheses has not already been added to the package, it is added
and the new value is returned. If the symbol is already present in the package, the exist-
ing value is returned.

Name: enumeration_package — Enumerated constant symbol package macro

Synopsis: enumeration_package (name, file, REST: options)

name Specifies the name of the package.

file The file located somewhere on the include file directory search path that
acts as a database for the symbols across the application source base.

options Any other valid DEFPACKAGE options.

Macros: name (sym)
Defines the symbol sym in the package name if it is undefined, and returns a pointer
to the symbol entry.

Enumeration 11.9 The following program declares an enumeration package of constant
Package Example symbols that are dynamically added in the program text. The enumerated symbol ob-

jects behave exactly like the built-in enum type in that there is no storage allocated.
However, they have the added benefit that they can be created or added at any time in
any source file in the program. The enumeration package macro ensures that they are
collected in a single database.

 1 #include <COOL/Package.h> //Include COOL Package header

 2 enumeration_package (MY_ENUM, ”my_enum.p”); //Create enum package

 3 int main (void) {

 4 cout << ”MY_ENUM (Red) has a value of ” << MY_ENUM (Red) << ”\n”;

 5 cout << ”MY_ENUM (Yellow) has a value of ” << MY_ENUM (Yellow) << ”\n”;

 6 cout << ”MY_ENUM (Green) has a value of ” << MY_ENUM (Green) << ”\n”;

 7 return 0; //Return valid success code

 8 }

Symbols and Packages

11-11COOL User’s Manual

Line 1 includes the COOL Package.h class header file. Line 2 creates an enumeration
package MY_ENUM whose database is kept in the file my_enum.p somewhere on the in-
clude file search path. This file must initially be created as an empty file by the program-
mer, since the macro does not know which subdirectory on the include file search path
to select. A convenient mechanism for creating this file on UNIX systems is the
touch(1) command. Lines 4 through 6 add the enumerated symbols Red, Yellow, and
Green to the package and display their respective values. Finally, line 7 returns a valid
successful completion code.

The following shows the output from the program:

MY_ENUM (Red) has a value of 0
MY_ENUM (Yellow) has a value of 1
MY_ENUM (Green) has a value of 2

At first glance, this example doesn’t seem interesting because this is a simple three-line,
one-source file program. However, imagine an application that solves a complex com-
munications problem and requires many flags. A programmer could use the dynamic
COOL Bit_Set class and use an enumerated package of symbols defined across many
files to index the bits in the vector. This will result in a very flexible and efficient (1
bit/flag) implementation that can easily be altered and extended.

Text Package 11.10 The text_package macro is for use in applications that need to create a collec-
tion of symbols with values the same as the symbol name. This is useful for the manipu-
lation of error messages in an application, since the symbol definition file contains a
summary of all the messages. In addition, the message text may be substituted in an-
other language at run time. The text package macro automatically collects text symbols
from across the source base and maintains a single database in the specified header file.

NOTE: A text package is stored in a file located somewhere on the include directory
search path. This header file must initially be created as an empty file by the program-
mer, since the macro does not know which subdirectory on the include file search path
to select. A convenient mechanism for creating this file on UNIX systems is the
touch(1) command.

Once a package has been created, symbols can be added and retrieved by using the
macro whose name is the same as the package name and whose single argument is the
symbol name. After creating a package, add and retrieve symbols with the package and
symbol names in parentheses. If the symbol in parentheses has not already been added
to the package, it is added and a pointer to the new value returned. If the symbol is al-
ready present in the package, the existing value returns.

The ERR_MSG text package is the COOL global error message package. It stores the
text to all error messages in the COOL class and macro library. The text_package
macro creates the ERR_MSG package. As exceptions are added to the program, a cor-
responding entry is automatically made into the error message package at compile time.
The error message package loads into the symbols.C file and is always the last file com-
piled in an application that uses COOL components. This ensures that all symbol values
have been collected up over the source base.

Symbols and Packages

11-12 COOL User’s Manual

An application that uses a text package to store all textual information can support mul-
tiple languages through the language property field. All such messages are collected
together in one file by the symbol and package macros. This one file can be edited by the
programmer to change or add alternate translations for each message. The only change
required of the application source code is an initial statement to set the program execu-
tion language. All error messages in COOL are implemented this way to facilitate ports
to other language environments.

Name: text_package — Resource text symbol package macro

Synopsis: text_package (name, file, REST: options)

name Specifies the name of the package.

file The file located somewhere on the include file directory search path that
acts as a database for the symbols across the application source base.

options Any other valid DEFPACKAGE options

Macros: name (sym)
Defines the symbol sym in the package name if it is undefined and returns a pointer
to the symbol entry.

Friend Functions: int set_text_language (Symbol* language = NULL,
text_package_entry* package = NULL);

Sets a new language for a text package. The first argument is a symbol representing
the name of the new language, and the second argument is the starting entry in the
package from which to begin language translation. If the language symbol is not
specified, the default language is the original from the program. If the entry point is
not specified, the default is the first symbol in the package. When a package entry
does not have a translation for the specified language, a Warning exception is
raised. This function returns the number of entries in the package for which a trans-
lation does not exist.

Text Package 11.11 The following program uses the text_package macro to create a text
Example resource file that can be maintained across all source files in an application. This exam-

ple is split into two parts. In the first example, two symbols are added to the text pack-
age. The value of a symbol in a text package is identical to the name. Alternate
languages can be supported by adding the appropriate property. An attempt is made to
set the text language property to an unsupported language symbol. Warning exceptions
are raised as a result.

Symbols and Packages

11-13COOL User’s Manual

 1 #include <COOL/Package.h> // Include COOL Package header

 2 text_package (MY_TEXT, ”my_text.p”); // Create text package

 3 int main (void) {

 4 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

 5 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

 6 set_text_language (SYM (Southern), &MY_TEXT_entries[0]);

 7 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

 8 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

 9 set_text_language (NULL, &MY_TEXT_entries[0]);

10 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

11 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

12 return 0; // Return valid success code

13 }

Line 1 includes the COOL package header file. Line 2 uses text_package to create a
package whose name is MY_TEXT and whose values are stored in the file my_text.p
somewhere on the include search path for this application. Note that this file must be
initially created by the programmer, since the COOL package system cannot know in
which directory the file should be placed. Lines 4 and 5 add two symbols to the text
package. Line 6 attempts to set the language for the text package to Southern, a symbol
interned in the global COOL symbol package SYM (discussed below in the paragraph,
Symbol Package). Lines 7 and 8 print the values of the two symbols for the newly set
language property. Line 9 restores the language property back to its initial value, hacker
english. Lines 10 and 11 output the values of the symbols back in the default language.
Finally, line 12 ends the program with a valid success code.

The following shows the output from the program:

 1 1st message: Hi! What’s up?

 2 2nd message: See you later

 3 Warning: No Southern translation for ”Hi! What’s up?”

 4 Warning: No Southern translation for ”See you later”

 5 1st message: Hi! What’s up?

 6 2nd message: See you later

 7 1st message: Hi! What’s up?

 8 2nd message: See you later

Lines 1 and 2 contain the values of the two symbols as they are added to the text pack-
age. Lines 3 and 4 are warning exceptions raised when the language property for the
package was set to Southern, indicating that the two symbols do not have translations
for this property. As a result, lines 5 and 6 output the same values for the two symbols.
Lines 7 and 8 output the same values with the switch back to the default language. The
COOL package system creates and maintains the text package symbol file my_text.p
shown below:

 1 /*

 2 * DEFPACKAGE MY_TEXT definitions file.

 3 *

 4 * This file is automatically generated by the cpp DEFPACKAGE facility

 5 * DO NOT EDIT THIS FILE, because it may be re–written the next time CPP

 6 * is run.

 7 *

 8 * This file is for:

 9 * DEFPACKAGE MY_TEXT <MY_TEXT> name=my_text.p,

10 * count=MY_TEXT_count, case=sensitive,

11 * start=0, increment=1, template=0, max=0

12 */

Symbols and Packages

11-14 COOL User’s Manual

13 /* WARNING: Do not remove this line */

14 #define MY_TEXT_count 2

15 MACRO MY_TEXT_DEFINITIONS(define_macro, value_macro, property_macro) {

16 define_macro (0, ”Hi! What’s up?”)

17 define_macro (1, ”See you later”)

18 }

Lines 1 through 12 contain the standard header commentary information, including the
package creation specifications placed at the top of every symbol file. Line 13 is impor-
tant in that the package and symbol macros use this as a marker for placement in the file.
Line 14 is a preprocessor constant reflecting the number of symbols in the package.
Line 15 contains a MACRO to create the text package. Lines 16 and 17 contain two
macros defining the two symbols added in the program.

The following textual insertion shows the customized contents of the generic sym-
bols.C file which is always the last file to be compiled in any application using COOL
components. This file is responsible for including any package definition files created
during the compilation of other program source files. It must always be last to ensure
that all symbols have been added to the package before it is implemented. The program-
mer need never alter the contents of this file unless an application-specific package has
been created, as is the case with this example program.

// This file must be compiled and linked with every application utilizing the
// COOL library. The sample makefile shows the procedure for compilation order.
// It is important that this be the last file compiled before the link process
// begins. The constant symbols in the SYM package and ERR_MSG package are
// initialized by invoking the implement macros defined in <COOL/defpackage.h>

 1 #include <COOL/String.h>

 2 #include <COOL/Package.h>

 3 #include <COOL/Properties.h>

 4 implement_symbol_package (SYM, ”sym_package.p”)

 5 implement_text_package (ERR_MSG, ”err_package.p”)

// The next three lines are added to insure that the text and symbol packages
// manipulated by examples 11.11a.C, 11.11b.C, and 11.13.C are allocated and
// initialized, respectively.

 6 implement_text_package (MY_TEXT, ”my_text.p”)

 7 //implement_text_package (MY_TEXT, ”my_text2.p”)

 8 //implement_symbol_package (MY_SYM, ”my_sym.p”)

Lines 1 through 3 include the necessary COOL header files to enable the package and
symbol system to be implemented. Lines 4 and 5 are the default contents of this file and
implement the COOL global symbol and error message packages through two macros.
An application that uses any COOL components must have these two lines compiled in
the last file in the compilation process. Lines 6 through 8 have been added for this and
the next two examples to implement the packages created. Note that lines 7 and 8 are
commented out. The next two examples will create the text and symbol packages re-
ferred to here and will also uncomment the appropriate line.

The second part of this example continues below. In the first example, the attempt to set
the language property for the package to Southern caused two Warning exceptions to
be raised. The continuation of this example will add translations for the Southern lan-
guage property to the text package. The program below is identical to the previous one
except for the name of the file in which the package is stored. Line 2 contains the macro
to create the package, and the file this time is specified as my_text2.p.

Symbols and Packages

11-15COOL User’s Manual

 1 #include <cool/Package.h> // Include COOL Package header

 2 text_package (MY_TEXT, ”my_text2.p”); // Create text package

 3 int main (void) {

 4 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

 5 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

 6 set_text_language (SYM (Southern), &MY_TEXT_entries[0]);

 7 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

 8 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

 9 set_text_language (NULL, &MY_TEXT_entries[0]);

10 cout << ”1st message: ” << MY_TEXT (”Hi! What’s up?”) << ”\n”;

11 cout << ”2nd message: ” << MY_TEXT (”See you later”) << ”\n”;

12 return 0; // Return valid success code

13 }

The text package contained in the file my_text2.p is a copy of the previous example
with the addition of a Southern property for each symbol. To add such properties, the
programmer must edit the file and add the appropriate translation for each symbol entry,
as shown below.

 1 /*

 2 * DEFPACKAGE MY_TEXT definitions file.

 3 *

 4 * This file is automatically generated by the cpp DEFPACKAGE facility

 5 * DO NOT EDIT THIS FILE, because it may be re–written the next time CPP

 6 * is run.

 7 *

 8 * This file is for:

 9 * DEFPACKAGE MY_TEXT <MY_TEXT> name=my_text.p,

10 * count=MY_TEXT_count, case=sensitive,

11 * start=0, increment=1, template=0, max=0

12 */

13 /* WARNING: Do not remove this line */

14 #define MY_TEXT_count 2

15 MACRO MY_TEXT_DEFINITIONS(define_macro, value_macro, property_macro) {

16 define_macro (0, ”Hi! What’s up?”)

17 property_macro(0, Southern, char*, ”Howdy! What y’all up to?”)

18 define_macro (1, ”See you later”)

19 property_macro(1, Southern, char*, ”Y’all come back now, ya’ heah?”)

20 }

Lines 1 through 14 are identical to the previous package file. Lines 15 through 20 define
the symbols contained in this package. Lines 16 and 18 are the same as before and con-
tain macros to create the two text symbols. Lines 17 and 19 have been added by the
programmer to establish a Southern property for each text symbol. Note that the first
value of each definition and property macro is an integer. These must match to ensure
correct package setup.

NOTE: A package file is recreated every time the compilation process is performed.
Any changes made to support translations should be kept in a separate file and merged
into the package file after the compilation is complete.

Symbols and Packages

11-16 COOL User’s Manual

To complete this example, the symbols.C file must be changed slightly to implement
the text package contained in the file my_text2.p with the new properties. The follow-
ing shows the output of the program:

 1 1st message: Hi! What’s up?

 2 2nd message: See you later

 3 1st message: Howdy! What y’all up to?

 4 2nd message: Y’all come back now, ya’ heah?

 5 1st message: Hi! What’s up?

 6 2nd message: See you later

Lines 1 and 2 output the value of the two text symbols added to the package. Lines 3 and
4 output the value of the Southern property for each symbol. Note, however, that the
symbols used in the program did not have to be changed to support a different language.
Lines 5 and 6 output the value of the symbols back in the default language.

Symbol 11.12 The symbol_package macro creates and accesses a Package object
Package containing symbols whose values can be assigned at run time. Symbols in the sym-

bol_package are pointers to Symbol objects. Symbols known and declared at compile
time are interned in a table. The symbol package macro automatically collects these
symbols from across the source base and maintains a single database in the specified
header file. Additional symbols can be added at run time. Symbols have values and
properties whose initial values can be declared. If not specified, the values and proper-
ties are nonexistent; that is, no space other than storage for a NULL pointer is allocated
for them. The global Package object created has the name name_package_g, where
name is the name of the package specified in the macro invocation.

NOTE: A symbol package is stored in a file located somewhere on the include directory
search path. This header file must initially be created as an empty file by the program-
mer, since the macro does not know which subdirectory on the include file search path
to select. A convenient mechanism for creating this file on UNIX systems is the
touch(1) command.

The symbol_package macro defines three macros for adding, updating, and retrieving
symbols in the package. The first adds new symbols or retrieves existing symbols. The
second adds a value of a specified type to an existing symbol entry. The third adds a
named property of the specified type to an existing symbol entry.

The SYM symbol package is created with the symbol_package macro and is the COOL
global type package. It stores the type and inheritance hierarchy for all classes that in-
herit from the Generic class to support run time type and object query. Each such class
is represented by a symbol that may have various values and properties. All type infor-
mation is accessed and manipulated by the macros and functions discussed in Section
12, Polymorphic Management.

Symbols and Packages

11-17COOL User’s Manual

Name: symbol_package — Constant symbol package macro with run time update

Synopsis: symbol_package (name, file, REST: options)

name Specifies the name of the package.

file The file located somewhere on the include file directory search path that
acts as a database for the symbols across the application source base.

options Any other valid DEFPACKAGE options

Macros: name (sym)
Defines the symbol sym in the package name if it is undefined and returns a pointer
to the symbol entry.

DEF_name (sym, type, value)
Defines a value of the specified type to the symbol sym in the package name.

DEF_name_PROPERTY (sym, property, type, value)
Defines a property of the specified type and value to the symbol sym in the package
name.

Symbol Package 11.13 The following program uses the symbol_package macro to create a
Example symbol package. This example shows the manipulation of symbols, their associated

values, and properties in a symbol package at both compile time and run time. Two
symbols are added at compile time. One of these has a value and property specified at
compile time. The other has its value and property fields assigned at run time.

 1 #include <COOL/Date_Time.h> // Include COOL Date/Time header

 2 #include <COOL/Package.h> // Include COOL Package header

 3 symbol_package (MY_SYM, ”my_sym.p”); // Create symbol package

 4 DEF_MY_SYM (sym1, String, new String(”Greetings!”));

 5 DEF_MY_SYM_PROPERTY (sym1, MY_SYM (Prop. example), Symbol, MY_SYM (String));

 6 int main (void) {

 7 Symbol *s1 = MY_SYM (sym1); // Lookup first symbol

 8 cout << ”First symbol is ” << s1–>name() << ”\n”; // Output symbol name

 9 cout << ”Also available via MY_SYM(sym1): ” << MY_SYM(sym1)–>name()<<”\n”;

10 cout << s1 << ”\n”; // Output value/property list

11 s1–>set (new String (”Goodbye!”)); // Add new value

12 cout << ”sym1 value is now ” << s1–>value () << ”\n”; // Output value

13 Date_Time d1 (US_CENTRAL, UNITED_STATES); // Create date/time object

14 d1.set_local_time (); // Set to current date/time

15 Symbol* s2 = MY_SYM (sym2); // Create new symbol object

16 cout << ”Second symbol is ” << s2–>name() << ”\n”;// Output symbol name

17 cout << ”Also available via MY_SYM(sym2): ” << MY_SYM(sym2)–>name()<<”\n”;

18 s2–>put (MY_SYM (Creation Time), &d1); // Add property

19 cout << s2 << ”\n”; // Output runtime symbol

20 return 0; // Return valid code

21 }

Symbols and Packages

11-18 COOL User’s Manual

Lines 1 and 2 include the COOL Date_Time.h and Package.h header files. Line 3 uses
the symbol_package macro to create a package whose name is MY_SYM and whose val-
ues are stored in the file my_sym.p somewhere on the include search path for this appli-
cation. Note that this file must be initially created by the programmer, since the COOL
package system cannot know which directory the file should be placed. Line 4 adds a
value to the first symbol in the package with the DEF_MY_SYM macro. Note that this
macro has the name of the package concatenated to form a package-specific macro. This
was created by the macro in line 3. Similarly, line 5 adds a property to the first symbol in
the package with the DEF_MY_SYM_PROPERTY macro. Line 7 adds a new symbol
to the package. Lines 8-10 output the name and value of the first symbol in the package.
Line 11 changes the value added at compile time to a new string added at run time and
line 12 outputs this new value.

Lines 13 and 14 create a date/time object initialized with the local time. Line 15 creates
a second symbol for the package and lines 16 and 17 output its name. Line 18 adds the
named property Creation Time with a value of a pointer to the date/time object instan-
tiated in line 13 to the second symbol sym2 in the package. Line 19 outputs the newly
updated symbol and line 20 ends the program with a successful completion code.

The following shows the output from the program:

 1 First symbol is sym1

 2 Also available via MY_SYM(sym1): sym1

 3 sym1 Greetings! [value–type String]

 4 sym1 value is now Goodbye!

 5 Second symbol is sym2

 6 Also available via MY_SYM(sym2): sym2

 7 sym2 [Creation Time United States 01–19–1990 07:46:07 US/Central]

Lines 1 and 2 output the name of the first symbol in the package. Lines 3 and 4 output
the initial and new value and property lists for this symbol. Lines 5 and 6 output the
name of the newly created second symbol object, and line 7 outputs the name, value, and
property list of this symbol.

The COOL package system creates and maintains the symbol package file my_sym.p
shown below:

 1 /*

 2 * DEFPACKAGE MY_SYM definitions file.

 3 *

 4 * This file is automatically generated by the cpp DEFPACKAGE facility

 5 * DO NOT EDIT THIS FILE, because it may be re–written the next time CPP

 6 * is run.

 7 *

 8 * This file is for:

 9 * DEFPACKAGE MY_SYM <MY_SYM> name=my_sym.p,

10 * count=MY_SYM_count, case=sensitive,

11 * start=0, increment=1, template=0, max=0

12 */

13 /* WARNING: Do not remove this line */

14 #define MY_SYM_count 6

Symbols and Packages

11-19COOL User’s Manual

15 MACRO MY_SYM_DEFINITIONS(define_macro, value_macro, property_macro) {

16 define_macro (0, ”sym1”)

17 value_macro (0, String, new String(”Greetings!”))

18 property_macro(0, (&MY_SYM_symbols[5]), Symbol, (&MY_SYM_symbols[2]))

19 property_macro(0, (&MY_SYM_symbols[1]), Symbol, (&MY_SYM_symbols[2]))

20 define_macro (1, ”value–type”)

21 define_macro (2, ”String”)

22 define_macro (3, ”sym2”)

23 define_macro (4, ”Creation Time”)

24 define_macro (5, ”Property example”)

25 }

Lines 1 through 12 contain the standard header commentary information, including the
package creation specifications placed at the top of every symbol file. Line 13 is impor-
tant in that the package and symbol macros use this as a marker for placement in the file.
Line 14 is a preprocessor constant reflecting the number of symbols in the package.
Line 15 contains a MACRO to create the symbol package. Lines 16 through 25 contain
macros defining the symbols and their values and properties added in the program.

Under most circumstances, the programmer need never examine this file. It is presented
here merely as an aid in understanding the COOL symbol and package system. Al-
though not included here, the customized symbols.C file (always the last file to compile
in any COOL application) must include an implement macro for the MY_SYM package, as
was shown earlier for the text package example. This file (symbols4.C) can be found in
the COOL/examples subdirectory.

ONCE_ONLY 11.14 The ONCE_ONLY macro (discussed in Section 10, Macros) allows
Package an application to control the expansion of a section of code. This might be useful, for

example, when a table needs to be initialized once and once only when a constructor for
some class is first called. This could be accomplished by having a static flag for the
class set on the first call, with later calls checking the flag and skipping the initialization.
The ONCE_ONLY macro, however, provides an intelligent and more efficient condi-
tional compilation feature. It uses the Once_Only_Package to control the expansion and
compilation of code only once in a program.

When a ONCE_ONLY macro invocation is encountered for the first time, a symbol is
created with a name related to the macro call. A value is created that is a character string
representing the file name where the symbol is first defined. This symbol is added to the
Once_Only_Package and the body of code expanded. The next time the same
ONCE_ONLY macro is encountered, a symbol name is created and looked up in the
Once_Only_Package object. If the value is the same as the current file (available from
__FILE__ in the preprocessor), the body of code is expanded, and ready to be compiled.
However, if the symbol has a different value (that is, the macro invocation is in a differ-
ent file), the code is not expanded and thus, not compiled.

The symbol name specified in the macro ensures that a specified body of code expands
and compiles only once across an entire source base. These symbol names and the
Once_Only_Package are not available for general use other than through this macro. It is
included here to provide you with another example of the use and flexibility of COOL
symbols and package objects.

Symbols and Packages

11-20 COOL User’s Manual

Interfacing to the 11.15 Under some circumstances, it might be necessary for an application
SYM Package to interface to the global COOL symbol package SYM to reference type information

automatically created and stored there by various macros. This could be the case in an
application-specific library that must have certain knowledge about all the possible
types available in an application, such as an inference engine where certain user-defined
objects can implement specific firing rules. The default firing rule for each type of ob-
ject could be represented as the value of the symbol representing the object type.

In the following code fragment, a function is defined that processes a list of string names
containing the names of all the rule types in a particular rules-based inference engine.
These names came from a rules grammar file generated by a translator that runs over the
user’s knowledge-base-specific rules. The character string names match class names
defined within the user’s application and so have a corresponding symbol entry in the
COOL global symbol package. This function finds a matching symbol for each name
and attaches a default firing rule as the value of the symbol and returns the number of
rules processed. Other rules may be added to the property list of the symbol at run time.

 1 #include<COOL/Package.h> // COOL Package header file

 2 #include<COOL/List.h> // COOL List header file

 3 #include<COOL/String.h> // COOL String header file

 4
 5 DECLARE List<String>; // Declare list of strings

 6 extern Package* SYM_package_g; // Pointer to global SYM

 7 int process_rules (List<String>& names, Generic* default_rule) {
 8 int i; // Counter

 9 Symbol* temp; // Temporary variable

10 for (i=0, names.reset(); names.next(); i++) { // For each rule name

11 temp = SYM_package_g–>get (names.value ()); // Get symbol for type

12 temp–>set (default_rule); // Set default firing rule

13 }
14 return i; // Return rule count

15 }

Lines 1 through 3 include the COOL header files for the Package, List, and String
classes. Line 5 declares the type of a list of string objects. Line 6 contains an external
reference to the pointer to the global SYM package object. Lines 7 through 12 define the
function process_rules that takes two arguments: a reference to a list of strings that are
the names of all rule types in the inference engine and a pointer to a default firing rule
object. Lines 8 and 9 define two temporary variables. Lines 10-13 contain a loop that
uses the current position iterator of the list object to move through all the strings in the
list.

Line 11 gets the value of the string at the current position and uses the get member func-
tion of the package object to look up the character string name and return a pointer to the
corresponding symbol object. Line 12 uses the set member function of the symbol ob-
ject to set the value to a pointer to the default firing rule function. This loop continues
until all names have been scanned and line 14 returns the number found.

Symbol Package 11.16 The symbol_package macro discussed previously is implemented
Implementation with the DEFPACKAGE and DEFPACKAGE_SYMBOL macros and the COOL

MACRO facility. This section discusses the implementation details of the sym-
bol_package macro and should be of interest to programmers who wish to create their
own specialized packages or more fully understand the macro capabilities. Others may
skip these details.

Symbols and Packages

11-21COOL User’s Manual

The symbol_package macro is implemented with the COOL macro facilities and can
be found in the ~COOL/Package/defpackage.h header file. The relevant portion of this
file is shown below:

 1 MACRO symbol_package (name, file, REST: options) {

 2 DEFPACKAGE name file length = name##_count, options

 3 #define expand_##name(index, symbol, type, value) \

 4 (&name##_symbols[index])

 5 MACRO name (symbol) {

 6 DEFPACKAGE_SYMBOL (name, #symbol,,,, expand_##name) }

 7 MACRO EXPANDING DEF_##name (symbol, type, value) {

 8 DEFPACKAGE_SYMBOL (name, #symbol, type, value,,) }

 9 MACRO EXPANDING DEF_##name##_PROPERTY (symbol, property, type, value) {

10 DEFPACKAGE_SYMBOL (name, #symbol, type, value, property,) }

11 extern struct Package* name##_package_g;

12 extern Symbol name##_symbols[];

13 }

14 /* Runtime initialization of a symbol_package */

15 MACRO implement_symbol_package (name, file) {

16 #include file

17 #if name##_count > 0

18 Symbol name##_symbols[name##_count];

19 #endif

20 #define MAKE_##name##_SYMBOL (index, symbol) \
21 pkg–>put (symbol, name##_symbols[index]);

22 MACRO SET_##name##_VALUE (index, type, val) {

23 name##_symbols[index].set ((Generic*) val);}

24 MACRO SET_##name##_PROPERTY (index, prop, type, value) {

25 name##_symbols[index].put(prop, (Generic*) value);}

26 void name##_package_initializer (Package* pkg) {

27 name##_DEFINITIONS (MAKE_##name##_SYMBOL, SET_##name##_VALUE,
SET_##name##_PROPERTY)

28 }

29 static Package name##_package_s(name##_count*2,name##_package_initializer);

30 Package* name##_package_g = &name##_package_s;

31 }

A symbol package is created and implemented with two macros analogous to the decla-
ration and implementation parts of a parameterized template. The symbol_package
macro creates macros for adding and manipulating symbol objects. The imple-
ment_symbol_package macro is used in the symbols.C file and actually creates the
package object. Lines 1 through 13 contain the declarative macro and lines 14 through
31 contain the implementation macro.

Line 1 starts the declarative macro and takes three arguments. The first, name, specifies
the name of the package. The second, file, specifies the file in which the symbols for
the package are to be maintained. The third is a REST: argument and may contain any
number of options for DEFPACKAGE. Line 2 invokes DEFPACKAGE with the
package name and file arguments, and maintains the number of symbols in the package
in the preprocessor symbol name##_count, where the package name name is used as a
prefix to the identifier _count.

Symbols and Packages

11-22 COOL User’s Manual

Lines 3 and 4 define a standard preprocessor macro that, given an index, a symbol name,
a type, and a value, returns an offset into a table of symbol objects. Line 5 implements a
macro to create or return a symbol object in the package by using DEF-
PACKAGE_SYMBOL. Lines 7-10 implement macros to add or return the value and
named property from a symbol in the package. Note that these are EXPANDING mac-
ros, which means their arguments are first expanded before being passed to DEF-
PACKAGE_SYMBOL. Finally, lines 11 and 12 declare two external objects, a pointer
to the global package object name##_package_g, and an array of symbol objects
name##_symbols[].

Line 15 starts the implementation macro that takes two arguments: the first, name, speci-
fies the name of the package; the second, file, specifies the file in which the symbols
for the package are to be maintained. Line 16 includes the symbol file specified. Line 17
determines if any symbols are actually defined for the package using name##_count
previously discussed. If there are symbols defined, an array of symbols is created. Lines
20-25 define macros to create and update a symbol object and its value and property list
in the package at run time.

Lines 26-28 define a package initializer function. Line 29 creates a global static package
object name##_package_s whose constructor takes a size and a pointer to a package
initializer function. The C++ 2.0 language specification guarantees that the constructor
of a global static object will be invoked before calling main. The package constructor
calls the package initializer function to create and initialize the symbol objects. Finally,
line 30 creates a global pointer name##_package_g pointing to the newly created pack-
age object.

The COOL symbol and package facilities provide an efficient and flexible programmer
interface to the slightly more complicated DEFPACKAGE and DEF-
PACKAGE_SYMBOL macros. The COOL macro capabilities, combined with the
features of C++ and the rules for static object constructor invocation, allow for a direct,
although slightly complicated, implementation. The once_only_package, enumera-
tion_package, and text_package macros are implemented in a similar manner. Under
most circumstances, a programmer should be able to make use of these interfaces and
never need to delve into the details discussed above. However, should a custom package
macro be necessary for a specific application, a similar approach is appropriate.

12-1COOL User’s Manual

POLYMORPHIC MANAGEMENT

Introduction 12.1 The C++ language version 2.0, as specified in the AT&T language reference
manual, implements virtual member functions. This delays the binding of an object to a
specific function implementation until run time. This delayed (or dynamic) binding is
useful where the type of object might be one of several kinds, all derived from some
common base class but requiring a specialized implementation of a function. The clas-
sic example is that of a graphics editor where, given a base class graphic_object from
which square, circle, and triangle are derived, specialized virtual member functions to
calculate the area are provided. A programmer can then write a function that takes a
graphic_object argument and determines its area without knowing which of all the
possible kinds of graphical objects the argument really is.

While powerful and more flexible than most other conventional programming lan-
guages, this dynamic binding capability of C++ is still not enough. Highly dynamic lan-
guages such as SmallTalk and Lisp allow the programmer to delay almost all decisions
until run time. In addition, facilities are often present for querying an object at run time
to determine its type or to request a list of all possible member functions available.
These kinds of features are commonly used in many symbolic computing problems
tackled today.

COOL supports enhanced polymorphic management capabilities with a programmer-
selectable collection of macros, classes, symbolic constants, run time symbolic objects,
and dynamic packages. Many of these individual concepts have been discussed in previ-
ous sections. This section discusses the Generic class that – combined with macros,
symbols, and packages – provides efficient run time object type checking, object query,
and enhanced polymorphic functionality unavailable in the C++ language. In this sec-
tion, the following macros, queries, and classes are discussed:

• Generic class

• run time type checking

• TYPE_CASE macro

• heterogeneous container classes

• class macro

Requirements 12.2 This section discusses the Generic class and extended polymorphic manage-
ment facilities of COOL. It assumes that you have a working knowledge of the C++
language and have read and understood Section 10, Macros, and Section 11, Symbols
and Packages.

Polymorphic Management

12-2 COOL User’s Manual

Generic Class 12.3 The Generic class is inherited by most other COOL classes and manipulates lists
of symbols to manage type information. Generic adds to any derived class run-time
type checking and object queries, formatted print capabilities, and a describe mecha-
nism. The COOL class macro (discussed in paragraph 12.7) automatically generates the
necessary implementation code for these member functions in the derived classes. A
significant benefit of this common base class is the ability to declare heterogeneous con-
tainer classes parameterized over the Generic* type. These classes, combined with the
current position and parameterized iterator class, allow the programmer to manipulate
collections of objects of different types in a simple, efficient manner.

The member functions added by Generic and the class macro to derived COOL classes
manipulate symbols stored in the global SYM package. These symbols reflect the in-
heritance tree for a specific class. They may have optional property lists containing in-
formation that associates supported member functions with their respective argument
lists. User-defined classes derived from Generic are also automatically supported in an
identical fashion, resulting in additional symbols in the global symbol package. As dis-
cussed earlier, these symbols must have storage allocated for them and code to initialize
the package at program startup time. This is managed by the COOL file symbols.C that
should be compiled and linked with every application that uses COOL. An automated
method for ensuring correct package setup and symbol initialization is shown in the
make files associated with the example programs for this manual.

NOTE: All applications using COOL must have a copy of symbols.C linked into the
final executable program. See the make file in the ~COOL/examples subdirectory for a
mechanism to automate this procedure.

Name: Generic — Base class supporting run time object typing and query

Synopsis: #include <COOL/Generic.h>

Base Classes: None

Friend Classes: None

Protected
Constructors: Generic ();

There are no public constructors for a Generic object. You can only create a pointer
to a Generic object. Since Generic has no private or public data (as a pure virtual
base class), it is actually used as an implementation requirements guide for derived
classes.

Protected
Member Functions: virtual void print (ostream& os) const;

Utility member function used by the overloaded output operator to provide a de-
fault print capability for all classes derived from Generic. This intermediate func-
tion is required since friend functions cannot be virtual.

int select_type_of (const Symbol** sym_list) const;
Supports an efficient type-case macro (discusses later) by examining the NULL-
terminated sym_list of symbols passed as an argument (from type_list) and returns
an integer index of the matching type symbol if found; otherwise, this function re-
turns –1.

Polymorphic Management

12-3COOL User’s Manual

virtual Symbol** type_list() const;
Returns a NULL-terminated array whose first element is a pointer to a symbol rep-
resenting the type of object. The remaining elements of the array are pointers to the
symbol type lists of the base classes.

Member Functions virtual void describe (ostream& os);
Uses the map_over_slots member function to display the data members and their
types of the object on the specified stream os.

Boolean is_type_of (Symbol* sym) const;
Type checking predicate that returns TRUE if the object is of type sym or inherits
from that type somewhere in the class hierarchy; otherwise, this predicate returns
FALSE.

virtual Boolean map_over_slots (Slot_Mapper sm, void* rock=NULL);
Calls the mapping function sm on every data member in the object and returns
TRUE if all calls return TRUE; otherwise, this function returns FALSE. The rock
argument is a pointer to some arbitrary piece of data for optional use by the mapper
function. sn is a function of type Boolean (Slot_Mapper)(Generic*, char*, void*,
Symbol*, void*), where Generic* is a pointer to the object, char* is a character
string representation of the data member name, void* is a pointer to the data mem-
ber value, Symbol* is a symbol table entry for the data member type, and void* is
the miscellaneous programmer-defined optional data value.

inline Symbol* type_of () const;
Returns a pointer to the type symbol associated with an object.

Friend Functions: Boolean compare_types (Symbol** type_list, Symbol* sym);
Searches type_list for sym and returns TRUE if found; otherwise, this function re-
turns FALSE. This function is used by the is_type_of member function.

int compare_multiple_types (Symbol** sym_list1, Symbol** sym_list2);
Searches sym_list1 for any symbol match against sym_list2 and returns TRUE if
found; otherwise, this function returns FALSE. This function is used by the se-
lect_type_of member function.

friend ostream& operator<< (ostream& os, const Generic& g);
Overloads the output operator for a reference to a generic object and calls the pro-
tected virtual print member function to provide a default output capability for all
classes derived from Generic.

friend ostream& operator<< (ostream& os, const Generic* g);
Overloads the output operator for a pointer to a generic object and calls the pro-
tected virtual print member function to provide a default output capability for all
classes derived from Generic.

Polymorphic Management

12-4 COOL User’s Manual

Run Time Type 12.4 One of the simplest and most useful features facilitated by Generic
Checking Example is the run-time type checking capability. The type_of and is_type_of virtual member

functions accomplish this. The following code fragment provides an example of the
kind of run time type query available for an object that is derived at some point from the
COOL Generic class. A more complete example is in the discussion on heterogeneous
container classes.

The parameterized Vector<Type> class is derived from the type-independent Vector
class, which is in turn derived from Generic. Similarly, the List<Type> class is derived
from List, which is derived from Generic. Suppose a general-purpose function in an
application is written that at some point needs to determine the type of the object being
manipulated and respond appropriately. If there are many possibilities, the
TYPE_CASE macro discussed later might be appropriate. If there are few, the follow-
ing mechanism can be used:

 1 void foo (Generic* g) {

 2 // Some processing

 3 if (g–>is_type_of(SYM(Vector))) // If derived from Vector

 4 // Go do something

 5 else if (g–>is_type_of(SYM(List))) // Else if from List

 6 // Go do something

 7 else { // Else something else

 8 // Do something else

 9 }

10 ... // Sometime later

11 cout << ”Object is a ” << g–>type_of(); // Output type

12 }

Lines 1 through 12 contain a code fragment that queries the type of object pointed to by
a Generic* argument. Lines 3 and 5 are similar and use the virtual is_type_of member
function that takes a Symbol as an argument to determine if the object is an instance of a
class or is derived at some point from that class. Note that since Vector<Type> is de-
rived from the Vector class, the application merely queries to see if this object is of type
Vector, not of Vector<int>. The more specified version could also be used as the sym-
bol representing the class. Presumably, the programmer will perform some type-spe-
cific operation on lines 4 and 6 as appropriate. If the object is neither a vector or a list,
some default action is performed. Similarly, line 11 uses the type_of member function
and the overloaded output operator to send the class type name of the object (that is, the
symbol name for the class) to the standard output stream. In all cases, the function bind-
ings for theses operations are determined at run time, not compile time.

Polymorphic Management

12-5COOL User’s Manual

TYPE_CASE 12.5 Type determination and function dispatch can become quite tedious if
Macro there are many types of objects. Ideally, each would be derived from a common base

and include a virtual member function for each important operation that might be re-
quired. However, it is sometimes not feasible to have such a situation, especially with a
high number of objects or member functions. The TYPE_CASE macro provides an
alternate scheme to do this.

The following code fragment shows an abbreviated function that takes a single argu-
ment of a pointer to a Generic object. This function uses the TYPE_CASE statement to
dispatch some particular member function call based upon the type of the object. This
might be useful in a situation where every object that inherits from Generic does not
implement the same functions, but rather has a specialized subset appropriate for that
object only. For example, foo might want to modify the elements of the COOL Vector
and List classes in a different manner.

 1 void foo (Generic* g) {

 2 TYPE_CASE (g) {

 3 case Vector: // If the object is a vector

 4 // Do something for Vector

 5 break;

 6 case List: // If the object is a list

 7 // Do something for List

 8 break;
 9 default: // Else do the rest

10 }
11 cout << ”Object is a ” << g–>type_of(); // Output type

12 }

Lines 1 through 12 implement the same operation as the previous example but this time
use the TYPE_CASE macro instead of is_type_of and type_of. Line 2 begins a macro
analogous to the C++ switch statement. It gathers all possible cases and allows the user
to symbolically dispatch on the type of object represented by the case statements. This
automates some of the symbol collection and manipulation required with the earlier ex-
ample. Yet another variation is discussed later using hooks available to the programmer
with the class macro.

Heterogeneous 12.6 As a final example, the polymorphic capabilities available with Generic
Container and its associated functions and macros can implement heterogeneous con-
Example tainer classes. A heterogeneous container class can contain many types of objects. For

example, the graphics editor mentioned earlier might store all instances of graphic ob-
jects in a list, regardless of whether they are circles, squares, or dodecahedrons. The
example below creates a list of pointers to Generic objects and uses the virtual member
functions associated with both the derived classes and the COOL Symbol class to ac-
complish what would otherwise be a relatively difficult task:

Polymorphic Management

12-6 COOL User’s Manual

 1 #include <COOL/String.h> // COOL String class

 2 #include <COOL/Date_Time.h> // COOL DateTime class

 3 #include <COOL/List.h> // COOL List class

 4 DECLARE List<Generic*>; // Define list of Generic*

 5 IMPLEMENT List<Generic*>; // Implement list of Generic*

 6 class my_class : public Generic {

 7 private:

 8 int i;

 9 public:

10 my_class (int value) {

11 this–>i = value;

12 }

13 int& get() {

14 return this–>i;

15 }

16 friend ostream& operator<< (ostream& os, my_class* m) {

17 os << m–>get();

18 return os;

19 }

20 friend ostream& operator<< (ostream& os, my_class& m) {

21 os << m.get();

22 return os;

23 }

24 };

25 void process_list (List<Generic*>& g) {

26 for (g.reset(); g.next();) {

27 cout << ”Item is a ‘” << ((g.value())–>type_of())–>name() << ”’ ”;

28 cout << ”and its value is: ” << g.value() << ”\n”;

29 }

30 }

31 int main () {

32 String s1 (”This is a string object”); // Initialize string object

33 set_default_country(SWEDEN); // Set Sweden country code

34 set_default_time_zone(WET); // Western Europe time zone

35 Date_Time d1; // Declare DateTime object

36 d1.parse(”5:44pm 86–10–15”); // Parse a date/time string

37 my_class m1(3); // Initialize my_class object

38 List<Generic*> lg (3, &s1, &d1, &m1); // List with 3 generic objects

39 process_list (lg); // Iterate through list

40 return 0; // Exit with valid return code

41 }

Lines 1-3 include three COOL classes, and lines 4 and 5 implement a list of pointers to
generic objects. Lines 6-24 declare and implement a new simple class my_class, de-
rived from the Generic class. Lines 25-30 are the heart of this polymorphic example. A
function, process_list, is declared that takes one argument, a reference to a list of
pointers to generic objects. Lines 26-29 implement a loop using the current position
iterator built into the COOL List<Type> class to access all elements of the list. Line 27
uses the type_of member function to return a pointer to the Symbol object representing
the type of the value of the object at the current position in the list. The name function of
Symbol is used to return the name so it can be printed. Line 28 outputs the value of the
object at the current position in the list.

Polymorphic Management

12-7COOL User’s Manual

Lines 31 through 41 constitute the main body of the program. Line 32 declares a String
object and initializes it with a character string value. Lines 33 through 36 declare a
Date_Time object whose value is set to the local system time formatted for Sweden in
Western European Time. Line 37 declares an instance of my_class with an integral
value of three. Line 38 declares an instance of the list of pointers to a generic object with
three values, the address of the string, date/time, and my_class objects. Line 39 calls the
process_list function to output the types and values of the objects in the list. Finally,
line 41 ends the program with a valid exit code.

The output of this program is shown below:

 1 Item is a ‘String’ and its value is: This is a string object

 2 Item is a ‘Date_Time’ and its value is: Sweden 1986–15–10 17.44.00 WET

 3 Item is a ‘my_class’ and its value is: 3

As can be seen from the preceding output, this program was successful in querying each
object in the list for its type, printing the name of that type, and outputting the value to
the standard output stream. Line 1 shows the type and value of the String object, line 2
shows the type and value of the Date_Time object, and line 3 shows the type and value
of the application-specific object.

Class Macro 12.7 The class keyword is implemented as a COOL macro to add symbolic comput-
ing abilities to class definitions. It takes a standard C++ class definition and, if the class
contains Generic somewhere in its inheritance hierarchy, it generates member func-
tions for support of run time type checking and query. In addition, a symbol for the
derived Generic class type is added to the COOL global symbol package SYM. The class
macro also has two hooks, allowing a programmer to customize the results. The actual
code, which is expanded in a class definition and after a class definition, is controlled by
the classmac macro that class calls.

The classmac macro allows data member and member function hooks to be specified by
user-defined macros. There may be more than one classmac macro hook specified by
the programmer. COOL has several, and other user-defined macros are simply chained
together in a calling sequence ordered according to order of definition. Each classmac
macro defines how the class macro should expand the class definition. The class macro
does not actually generate the code itself. This is defined in user-modifiable header files
that specify a classmac macro. For example, a general-purpose mechanism that auto-
matically creates accessor member functions to get and set each data member can be
created by defining a classmac macro that is attached to the data member hook of the
class macro (see the following example). No changes to the COOL preprocessor are
required.

A user-defined combination of data members and member functions of a class defini-
tion are passed as arguments to macros that can be changed or customized by the appli-
cation programmer. The virtual map_over_slots member function takes a pointer to a
function as one of its arguments. Each data member selected is passed to this procedure,
providing the customization point for the user. The COOL Generic class uses the data
member hook to implement the map_over_slots member function.

Name: classmac — User-definable class macro

Synopsis: classmac (name, REST: args);

name Name of macro to call

Polymorphic Management

12-8 COOL User’s Manual

args One or more of the following comma-separated arguments:

arg = macro_name
Calls macro_name on the preceding type of argument

inside
Expands the macro inside the class definition

outside
Expands the macro outside the class definition

slots
Evaluates the macro for data members in the class

methods
Evaluates the macro for member functions in the class

virtual
Evaluates the macro for virtual member functions only

inline
Evaluates the macro for inline member functions only

normal
Evaluates the macro for non-inline, non-virtual member functions
only

private
Evaluates the macro for private data members or private member
functions only

protected
Evaluates the macro for protected data or protected member functions
only

public
Evaluates the macro for public data or public member functions only

The arg=macro_name option allows the programmer to specify the name of a macro to
call on arguments of the preceding type. This is typically used to specify the name of the
macro to call for either the data members or member functions, as in the following ex-
ample. If neither the inside nor outside arguments are specified, the macro will be ex-
panded outside and after the class definition. Either the slots or methods keyword must
be specified, but not both. If neither the virtual, inline, nor normal keywords are speci-
fied, all member functions in the class are used. If neither the private, protected, nor
public keywords are specified, all data members and member functions in the class are
used.

Polymorphic Management

12-9COOL User’s Manual

Class Macro 12.8 The following example shows a mechanism to automatically generate a
Example member function accessor for each private data member in a class. This is performed for

any class that inherits from Generic in its inheritance tree and in an environment where
the classmac data member hook macro shown has been defined. This operation is not
performed by default for COOL, but rather requires explicit programmer action. The
following lines contain several macros and a skeleton class definition to pass through
the preprocessor:

 1 #pragma defmacro classmac ”classmac” delimiter=)

 2 classmac (generate_slot_accessors, inside, slots=slot_accessor)

 3 MACRO generate_slot_accessors (class_name, base_class, BODY: methods) {

 4 methods }

 5 MACRO slot_accessor (type, name, value) {

 6 const type& get_##name() { return name }

 7 }

 8 class foo: public Generic {

 9 private:

10 int* data; // Pointer to allocated storage

11 char *a, *b, c; // Three miscellaneous variables

12 int size; // Size of foo object

13 void grow (int new_size); // Private function to grow foo

14 public:

15 foo (int); // Constructor with size

16 ~foo (); // Destructor

17 int& operator[] (int); // Operator[] overload for Type

18 Boolean find (const int&); // Find element in foo

19 };

Line 1 instructs the preprocessor to recognize the COOL macro classmac and to call the
internal preprocessor macro classmac. The terminating delimiter of this macro is a clos-
ing parentheses, which means that all input from the classmac keyword up to and in-
cluding a matched, right parenthesis will be passed to and processed by the macro. Line
2 tells the classmac macro to call the generate_slot_accessors macro for each data
member in the class definition and place the expanded macro results inside the defini-
tion. Note the slots=slot_accessor argument that ensures that each data member will
be processed by the named macro passed through the BODY: argument.

Lines 3 and 4 define the generate_slot_accessors macro. classmac passes this macro
the class name, the base class name, and the BODY: argument slot_accessor as speci-
fied by the slots option on line 2. Lines 5 through 7 define a macro slot_accessor of
type (Symbol*, Symbol*, char*) where the first argument is a symbol representing the
type, the second argument is a symbol representing the name, and the third argument is a
character string of the arguments or initial values. These arguments and their order are
always passed by the classmac macro to all data member and member function macros
specified by the user. Line 6 contains the line of code that gets generated for the accessor
function with argument names substituted appropriately. Lines 8 through 19 declare a
simple class with several data members.

Polymorphic Management

12-10 COOL User’s Manual

The preprocessor expands the macros and generates the following:

 1 class foo :public Generic{

 2 private:

 3 int* data; // Pointer to allocated storage

 4 char *a, *b, c; // Three miscellaneous variables

 5 int size; // Size of foo object

 6 void grow (int new_size); // Private function to grow foo

 7 public:

 8 foo (int); // Constructor with size

 9 ~foo (); // Destructor

10 int& operator[] (int); // Operator[] overload for Type

11 Boolean find (const int&); // Find element in foo

12 const int*& get_data() { return data }

13 const char*& get_a() { return a }

14 const char*& get_b() { return b }

15 const char*& get_c() { return c }

16 const int& get_size() { return size }

17 };

Lines 1 through 11 are the same as before entering the preprocessor and contain the
class definition as specified by the programmer. Lines 12 through 16 contain inline ac-
cessor member functions generated by the macros specified. These were added inline as
a result of the inside specifier on the classmac macro directive for generate_slot_ac-
cessors.

13-1COOL User’s Manual

EXCEPTION HANDLING

Introduction 13.1 The Exception class, its derived classes, Excp_Handler class, and the exception
interface macros offer programmers an easy means of reporting and handling excep-
tions in an application. This section discusses the base Exception and Excp_Handler
classes. It also covers predefined exceptions and exception handlers, referencing excep-
tions as symbols in a package, exception group names (aliases), the report message text
package, and user-defined exceptions.

Requirements 13.2 This section assumes that you have a working knowledge of C++ and have read
and understood Section 10, Macros, and Section 11, Symbols and Packages.

Exceptions 13.3 In COOL, program anomalies are known as exceptions. An exception can be an
error, but it can also be a problem such as impossible division or information overflow.
Exceptions can impede the development of object-oriented libraries. Exception han-
dling offers a solution by providing a mechanism to manage such anomalies and sim-
plify program code.

The C++ exception handling scheme is a raise, handle, and proceed mechanism similar
to the Common Lisp Condition Handling system. When a program encounters an anom-
aly that is often (but not necessarily) an error, it has the following options:

• Represent the anomaly in an object called an exception

• Announce the anomaly by raising the exception

• Provide solutions to the anomaly by defining and establishing handlers

• Proceed from the anomaly by invoking a handler function

The COOL exception handling facility provides an exception class (Exception), an ex-
ception handler class (Excp_Handler), a set of predefined exception subclasses
(Warning, Error, Fatal, and so on), and a set of predefined exception handler func-
tions. In addition, the macros EXCEPTION, RAISE, STOP, and VERIFY allow the
programmer to easily create and raise an exception at any point in a program.

When an exception is raised (through macros RAISE or STOP, for example), a search
begins for an exception handler that handles this type of exception. An exception han-
dler, if found, deals with the exception by calling its exception handler function. The
exception handler function can correct the exception and continue execution, ignore the
exception and resume execution, or end the program. In COOL, an exception handler
for each of the predefined exception types exists on the global exception handler stack.

An exception handler invokes a specific exception handler function for a specific type
of exception or group of exceptions. Handling an exception means proceeding from the
exception. An exception handler function could report the exception to standard error
and end the program, or drop a core image for further debugging by the programmer.
Another way of proceeding is to query the user for a fix, store the fix in the exception
object, and return to where the exception was raised.

Exception Handling

13-2 COOL User’s Manual

When an exception handler object is declared, it is placed on the top of a global excep-
tion handler stack. When an exception is raised, a search is made for an exception han-
dler. The handler search starts at the top of the exception handler stack, with the most
recently defined exception handler at the top of the stack. An exception handler func-
tion is called if a match is found between the exception type or group name of the excep-
tion raised, and a handler function on the exception handler stack.

The COOL exception handling facility provides several macros that simplify the proc-
ess of creating, raising, and manipulating exceptions. These macros are implemented
with the COOL macro facility discussed in Section 10, Macros. The EXCEPTION
macro simplifies the process of creating an instance of a particular type of exception
object. The RAISE macro allows the programmer to easily raise an exception and
search for an exception handler. The STOP macro is similar to the RAISE macro, ex-
cept that it guarantees to end the program if the exception is not handled. The VERIFY
macro raises an exception if an assertion for some particular expression evaluates to
FALSE. Finally, the IGNORE_ERRORS macro provides a mechanism to ignore an
exception raised while executing a body of statements.

The COOL exception handling mechanism supports the concept of group names or ali-
ases for classes of exceptions that require no specialization of the exception object, but
do require a distinct name to provide a specific exception handler. For example, an in-
dex exception class to handle indexing range errors in a vector class could be defined
with aliases established for get and set operations. The appropriate get and set member
functions set the alias of the exception object as necessary, and provide a specialized
exception handler. If an indexing exception is detected at some point by one of these
member functions, the appropriate handler function can be invoked. As a result, two
different exception handlers can be used while only one type of index exception object
is required.

Exception Class 13.4 The Exception class reports exceptions through a message prefix and a format
string. Both are implemented as public data members in the exception object. An excep-
tion handled status data member is also used to determine if the exception was handled.
All of these are implemented as public data members, which makes access easier by the
exception handler functions and the EXCEPTION macro. In addition, a list of excep-
tion types is maintained in a group names data member to support aliasing and subclass-
ing of exception types. The Exception class includes member functions for reporting a
message (using the message prefix and format string) on a specified output stream, de-
termining if the exception object is of a particular type or group, and setting the excep-
tion handled status. Finally, it also includes a member function that searches for a
handler to invoke on this exception type.

Classes derived from the Exception class save the state of the situation and communi-
cate this information to exception handlers. When an exception can be fixed and pro-
ceeding from the exception is possible, information on how the exception handler
proceeded from the exception is also stored in the exception object by the invoked ex-
ception handler function.

Note: The excp_type arguments in the Exception class constructors and member func-
tions are pointers to Symbol objects. These arguments control the relationship of an
exception object with one or more exception handlers. They can be the symbol repre-
senting the name of a class (as with Error or Warning) that is created automatically for
any class derived from Exception through the Generic class and the class macro. The
arguments can also be symbol aliases created in the COOL SYM package, or some appli-
cation-specific package. This is discussed in the next paragraph, Excp_Handler Class,

Exception Handling

13-3COOL User’s Manual

and illustrated in the example in paragraph 13.6, Excp_Handler Example. See section
11, Symbols and Packages, for more information.

Name: Exception — The base class for building exception objects.

Synopsis: #include <COOL/Exception.h>

Base Class: Generic

Friend Classes: None

Constructors: Exception ();
Creates an exception object, initializes the format message and message prefix data
members to NULL, and sets the exception handled flag to FALSE.

Exception (Symbol* excp_type);
Creates an exception object, creates a group name excp_type if necessary, associ-
ates this exception object with the excp_type group name, initializes the format
message and message prefix message data members to NULL, and sets the excep-
tion handled flag to FALSE.

Exception (int number, Symbol* excp_type1, Symbol* excp_type2, ...);
Creates an exception object, creates number group names excp_type1, excp_type2,
and so on if necessary, associates this exception object with group names
excp_type1, excp_type2, and so on, sets the format and message prefix data mem-
bers to NULL, and sets the exception handled flag to FALSE.

 Member Functions: virtual void default_handler ();
Default exception handler called when this type of exception is raised if no user-
specified exception handler is found. This function does not set the exception han-
dled flag in the exception object.

inline void handled (Boolean handled);
Sets the exception handled flag to handled.

inline Boolean is_handled () const;
Returns TRUE if the exception was handled; otherwise, return FALSE.

Boolean match (Symbol* excp_type);
Returns TRUE if this exception object is in the group name excp_type; otherwise,
this function returns FALSE.

const char* message_prefix () const;
Returns the message prefix.

virtual void raise ();
Invoked to search for an exception handler when an exception is raised. If found,
the associated handler function is called and the exception handled flag is set to
TRUE; otherwise, this function sets the exception handled flag to FALSE. If the
exception handler function returns or no exception handler is found, the program
resumes execution at the point at which the exception was raised.

virtual void report (ostream& os) const;
Reports the exception message on the output stream os. The exception handler
functions and the output operator function of Exception call this member function.

Exception Handling

13-4 COOL User’s Manual

void set_group_names (Symbol* excp_type);
Creates a group name excp_type in the COOL SYM package if necessary, and associ-
ates this exception object with the excp_type group name.

void set_group_names (int number, Symbol* excp_type1, Symbol*
excp_type2, ...);

Creates number group names excp_type1, excp_type2, and so on in the COOL SYM
package if necessary, and associates this exception object with group names
excp_type1, excp_type2.

virtual void stop ();
Invoked to search for an exception handler when an exception is raised. If found,
the associated handler function is called and the exception handled flag is set to
TRUE; otherwise, this function sets the exception handled flag to FALSE. This
function is identical to raise except that if the exception handler function returns or
no exception handler is found, program execution is terminated.

Friend Functions: friend ostream& operator<<(ostream& os, const Exception* excp)
Overloads the output operator to provide a formatted output capability for a pointer
to an exception object excp.

friend ostream& operator<< (ostream& os, const Exception& excp);
Overloads the output operator to provide a formatted output capability for a refer-
ence to an exception object excp.

Exception Handling

13-5COOL User’s Manual

Excp_Handler Class 13.5 An exception handler provides a way to proceed from a particular
type of exception by calling its exception handler function. An exception handler func-
tion could handle the exception by reporting the exception to standard error and ending
the program, or dropping a core image for further debugging by the programmer. An-
other way of proceeding is to query the user for a fix, store the fix in the exception ob-
ject, and return to the point where the exception was raised.

An instance of the Excp_Handler class is specified for a particular type of exception or
one or more exception group names with an associated exception handler function.
Such an instance invokes the specific exception handler function when an exception of
the appropriate type is raised. The Excp_Handler class also contains data members that
point to the top exception handler on the global exception handler stack and the next
exception handler after itself. When an exception handler object is instantiated, it is
placed at the top of the exception handler stack. When an exception is raised, the excep-
tion stack is searched from the top for an appropriate handler. When one is found, it is
invoked and the exception object is passed as an argument. What action the exception
handler function takes is determined by the type of exception and is discussed in para-
graph 13.7, Predefined Exception Types and Handlers.

Name: Excp_Handler — The class for handling exceptions.

Synopsis: #include <COOL/Exception.h>

Base Class: Generic

Friend Class: Exception

Constructors: Excp_Handler ()
Creates an exception handler object with defaults for the exception type and excep-
tion handler function and pushes itself on top of the global exception handler stack.
The default exception type is Error and the default exception handler function is
void exit_handler(Exception*).

Excp_Handler (Excp_Handler_Function fn, Symbol* excp_type)
Creates an exception handler object associated with the exception type excp_type,
initializes the exception handler function data member to fn, and pushes itself on
top of the global exception handler stack. The exception handler function is of type
void (Excp_Handler_Function)(Exception*).

Excp_Handler (Excp_Handler_Function fn, int number,
Symbol* excp_type1, Symbol* excp_type2, ...);

Creates an exception handler object, creates number group names excp_type1,
excp_type2, and so on if necessary, associates this exception handler object with
number group names excp_type1, excp_type2, and so on, initializes the exception
handler function data member to fn, and pushes itself on top of the global exception
handler stack. The exception handler function is of type void (Excp_Han-
dler_Function)(Exception*).

 Member Functions: virtual Boolean invoke_handler (Exception* excp)
Returns TRUE if the exception handler function was invoked for excp; otherwise,
this function returns FALSE.

Exception Handling

13-6 COOL User’s Manual

Excp_Handler 13.6 The following example shows a function that establishes an exception
Example handler function for exceptions associated with a group name File_Error of type

My_Exceptions. It then attempts to open each file indicated in an array of pointers to file
name character strings.

 1 #include <COOL/Exception.h> // Include header

 2 #include <My_Exceptions.h> // My exception types

 3 extern void my_file_handler (My_Exceptions* excp); // Exception handler

 4 FILE* open_f (char* file, char* mode) {

 5 FILE* temp; // Temp variable

 6 if ((temp = fopen (file, mode)) == NULL) { // File open OK?

 7 My_Excp1 (SYM(File_Error)) excp; // Create exception

 8 excp–>fname = file; // Set file name

 9 excp_>fmode = mode; // Set file mode

10 excp–>raise (); // Raise exception

11 }

12 }

13 Boolean open_files (char** file_names, char** modes, FILE** f_handles) {

14 Excp_Handler eh (my_file_handler, SYM(File_Error)); // Setup handler

15 for (int i = 0; file_names[i] != NULL; i++) // For each file

16 f_handles[i] = open_f (file_names[i], modes[i]); // Open file

17 }

Line 1 includes the COOL Exception header file. Line 2 includes an application-spe-
cific header file that defines exception types derived from Exception. Line 3 is an exter-
nal reference to some user-defined function to be called for exceptions of type
My_Exceptions. For example, this function might prompt the user for a new file name
and perform a retry operation. Lines 4 through 12 implement a function that attempts to
open file in mode with the system function fopen. If the open fails, an exception
My_Excp1 associated with group name File_Error is created and raised. Line 7 uses the
COOL SYM package in which to store the group name symbol. In a typical application,
all application-specific symbols should be located in an application-specific package.
Lines 8 and 9 set two public data member slots in the exception object, and line 10 raises
the exception.

Lines 13 through 17 contain a function open_files that loops through an array of
file_names and attempts to open each file in the function open_f. Line 14 is the heart of
this function, where an exception handler object eh is created with a pointer to the func-
tion my_file_handler for exceptions of group name File_Error. This symbol is lo-
cated in the COOL SYM package and would be referenced when an exception of type
My_Excp1 is raised, as in lines 7 through 10. See section 11, Symbols and Packages, for
more information on the COOL symbol and package mechanism.

In this example, the exception handler my_file_handler is associated with the excep-
tion handler object eh created locally on line 14. When the constructor for eh is exe-
cuted, a pointer to the exception handler object is placed on the global exception handler
stack. While this object is in scope and not pre-empted by a more specific handler, any
exception raised asssociated with the group name File_Error will be handled. When
function open_files completes and destructor for eh called, the handler is removed
from the global exception handler stack.

Exception Handling

13-7COOL User’s Manual

Predefined 13.7 COOL provides six predefined exception classes and five default
Exception Types exception handlers. Each of the predefined exception types has a default
and Handlers exception handler member function. The following rules apply in determining which

handler function should be invoked for a particular type of exception:

• If no exception handler is found and the exception is of type Error or Fatal, its
error message reports on the standard error stream and the program ends.

• If the exception is of type Warning, the warning message reports on the standard
error stream and the program resumes at the point where the exception was raised.

• If the exception is of type System_Error, the system error message reports on the
standard error stream and the program ends.

• If the exception is of type System_Signal, the signal error message reports on the
standard error stream and the program resumes at the point where the system func-
tion signal() was called.

• If the exception is of type Verify_Error, the expression that failed assertion re-
ports on the standard error stream and the program ends.

Exception is the base exception class and from it are derived Warning, System_Sig-
nal, Fatal, and Error. The System_Error and Verify_Error classes are derived from
the Error class. The default exception handlers are called only if no other exception
handler is established and available when an exception is raised.

For exceptions of type Error and Fatal, the exception handler reports the error message
of the exception on standard error and ends the program. Exceptions of the type Warn-
ing report a warning message on standard error and return to the point at which the ex-
ception was raised. Exceptions of type System_Error report an error message on
standard error and end the program. Finally, exceptions of type System_Signal report
an error message on standard error and the program resumes execution at the point at
which the system function signal was called. The following functions report exceptions
and deal with them:

void Fatal::default_handler ();
This member function reports the exception message on the standard error stream
and ends the program with a call to abort(), generating a core image that can be
used for further debugging purposes.

void Error::default_handler ();
This member function reports the exception message on the standard error stream
and ends the program normally with a call of exit(1).

void System_Error::default_handler ();
This member function reports the exception message on the standard error stream,
sets the global system errno variable appropriately, and ends the program with a
call to abort(), generating a core dump that can be used for further debugging pur-
poses.

void System_Signal::default_handler ();
This function reports the exception message on the standard error stream and re-
turns to the point at which a call to the system signal() function was made.

Exception Handling

13-8 COOL User’s Manual

void Warning::default_handler ();
This function reports the exception message on the standard error stream and re-
turns to the point at which the exception was raised.

EXCEPTION 13.8 The EXCEPTION macro simplifies the process of creating an instance of a par-
ticular type of exception object. It provides an interface for the application programmer
to create an exception object using the specified arguments to indicate group name(s),
initialize data members, or generate a format message. There are many variations of
EXCEPTION that provide flexible and efficient means of customizing the exception
object. In particular, the variable number of group name arguments should reduce the
need for many types of exception classes whose only difference is the type name.

NOTE: The EXCEPTION macro takes some arguments that are actually pointers to
Symbol objects. These arguments control the relationship of an exception object with
one or more exception handlers. They can be the symbol representing the name of a
class (as with Error or Warning) that is created automatically for any class derived
from Exception through the Generic class and the class macro. The arguments can also
be symbol aliases created in the COOL SYM and ERR_MSG packages, or some application-
specific package. See section 11, Symbols and Packages, for more information.

Name: EXCEPTION — A COOL macro for constructing an exception object

Synopsis: EXCEPTION (Symbol* excp_type, REST: args);

excp_type A symbol representing the Exception class type (that is, Error,
Warning, and so forth)

args One or more of the following comma-separated arguments or val-
ues:

Symbol* group_name
One or more comma-separated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key_value_args
The name(s) and value(s) of any public data members in the
exception object

Exception Handling

13-9COOL User’s Manual

EXCEPTION 13.9 Here are three examples of the use of the EXCEPTION macro.
Examples Each makes use of a different form of the macro to show alternate features and usage.

Exception_g is a global exception object pointer. hprintf() is a variation of the printf
function which returns a format string allocated on the heap. Both of these are provided
as part of the COOL exception handling facility. In addition, notice that the ordering of
the format_args and key_value_args arguments in example two depends on the control
characters in the format string. Finally, the code resulting from the macro expansion
makes heavy use of the comma operator and is standard C++, although this might look a
little confusing at first.

Example 1: This is a simple use of EXCEPTION that specifies the exception type, a group name,
and a format string:

 1 EXCEPTION (Error, SYM(Serious_Error), “Serious problem here”);

Line 1 contains an invocation of the EXCEPTION macro for an exception of type Error
aliased with the group name Serious_Error. This group name symbol is reference
through the COOL SYM package. The message text follows as the third argument. When
expanded, this macro call generates:

 2 (Exception_g = new Error(),

 3 Exception_g.set_group_name (SYM(Serious_Error)),

 4 Exception_g–>format_msg = hprintf(ERR_MSG(“Serious problem here.”)),

 5 Exception_g);

Line 2 assigns the global pointer Exception_g to point to a new instance of an Error
exception object. Line 3 associates this exception object with the group name Seri-
ous_Error. Line 4 initializes the format message field to the message argument passed.
Note that this message is actually a symbol in the COOL ERR_MSG package, thus facili-
tating collection of all error messages in one location, and affording the ability to have
multiple translations of text for a single application. Line 5 returns a pointer to the new
exception object.

An exception handler on the global exception handler stack that is associated with the
group name Serious_Error will be called if this exception object is raised. This can be
done through the virtual Exception::raise member function, or more conveniently with
the RAISE macro discussed in paragraph 13.10 below.

Example 2: In this example, a new exception class is derived containing two data members whose
values are filled in when the exception object is created. EXCEPTION is invoked with
an exception type, a format string, and a mix of data member arguments and format
arguments.

1 Class Bad_Argument_Error : public Fatal {

2 public:

3 char* arg_name;

4 int arg_value;

5 Bad_Argument_Error ();

6 };

7 EXCEPTION (Bad_Argument_Error,

8 ERR_MSG(“Argument %s has value %d that is out of range for vector %s ”),

9 arg_name=”foo”, arg_value=x, vec1);

Exception Handling

13-10 COOL User’s Manual

Lines 1 through 6 define a new exception class, Bad_Argument_Error, derived from
the COOL Fatal class. This new exception type has two public data members,
arg_name and arg_value, whose values will be provided when creating an instance of
this type. Line 7 invokes EXCEPTION, specifying the exception type Bad_Argu-
ment_Error as the first argument. Notice there are no group names in this invocation.
As a result, only an exception handler specifically created for exceptions of type
Bad_Argument_Error can be called if a Bad_Argument_Error exception is raised. Line
8 contains the second argument, which is the error message control string, in standard
printf format. Line 9 contains intermixed format string arguments and data member
initialization arguments. When expanded, this macro generates:

1 (Exception_g = new Bad_Argument_Error(),

2 Exception_g–>arg_name = “foo”,

3 Exception_g–>arg_value = x,

4 Exception_g–>format_msg = hprintf(ERR_MSG(“Argument %s has value %d\

5 which is out of range for vector %s.”), “foo”, x, vec1),

6 Exception_g);

Line 1 assigns the global pointer Exception_g to point to a new instance of a Bad_Argu-
ment_Error exception object. Lines 2 and 3 initialize the public data members of the
exception object. Lines 4 and 5 initialize the format message field to the message argu-
ment passed, with the appropriate argument values inserted. Note that this message is
actually a symbol in the COOL ERR_MSG package. Line 6 returns a pointer to the new
exception object.

An exception handler for a Bad_Argument_Error exception could prompt the user for a
new value for the named argument and return it in arg_value field if this exception
object is raised. This can be done through the virtual Exception::raise member func-
tion or more conveniently with the RAISE macro discussed in paragraph 13.10 below.

Example 3: This example is similar to the previous one, except that the constructor for the new
exception type object initializes the format message field. This is a general-purpose
exception type for any container class derived from the COOL Generic class as
discussed in Section 12, Polymorphic Management. Providing a local report member
function supercedes the virtual default implementation in the base Exception class.

 1 Class Out_of_Range : public Fatal {

 2 public:

 3 int value;

 4 Generic* container;

 5 Out_of_Range() {

 6 format_msg = “Value %d is out of range for container %s.”

 7 }

 8 void report(ostream& os) {

 9 Fatal::report (os);

10 os << form (format_msg, this–>value, this–>container–>type_of());

11 }

12 };

Exception Handling

13-11COOL User’s Manual

Lines 1 through 12 define a new exception class Out_of_Range derived from the COOL
Fatal class. This new exception type has two public data members, value and con-
tainer, whose values will be provided when creating an instance of this type. Lines 5
through 7 define the constructor for the new exception type that initializes the format
message data member. Lines 8 through 11 implement a specialized report member
function. It uses the polymorphic type_of member function of the container class inher-
ited from Generic.

 1 EXCEPTION(Out_of_Range, value=n, container=c1);

At some point in an application, line 1 invokes EXCEPTION, specifying the exception
type Out_Of_Range as the first argument and intermixed format string arguments and
data member initialization arguments of value and container. When expanded, this
macro generates:

 1 (Exception_g = new Out_of_Range(),

 2 Exception_g–>value = n,

 3 Exception_g–>container = c1,

 4 Exception_g);

Line 1 assigns the global pointer Exception_g to point to a new instance of an
Out_of_Range exception object. Lines 2 and 3 initialize the public data members of the
exception object. Line 4 returns a pointer to the new exception object that can be raised
as appropriate.

This example provides an interesting look at a general-purpose exception object that
uses the polymorphic runtime type determination provided by the Generic class and the
class macro. The exception type Out_of_Range could be used in many types of con-
tainer classes (Vector<Type>, List<Type>, and so on) where a reference or index for
some element is out of range. Any of these classes could raise this exception to display
the error message and appropriate type-specific information without the need for a spe-
cialized exception type for each class.

RAISE 13.10 The RAISE macro allows an application program to create and raise an excep-
tion. RAISE uses EXCEPTION to construct the exception object and then calls its
member function raise, defined as a friend function of the exception class, to raise the
exception. This function searches for an exception handler of the appropriate type to
handle the exception and, if found, invokes the exception handler function. It returns
the exception object if the exception handler returns or if no exception handler is found.
The exception object may be examined to determine if the exception was handled and if
any alternate values were returned. There are many variations of RAISE that provide
flexible and efficient means of customizing the exception object and raising the excep-
tion. In particular, the variable number of group name arguments should reduce the need
for many different types of exception classes whose only difference is the type name.

NOTE: The RAISE macro takes some arguments that are actually pointers to Symbol
objects. These arguments control the relationship of an exception object with one or
more exception handlers. They can be the symbol representing the name of a class (as
with Error or Warning) that is created automatically for any class derived from Ex-
ception through the Generic class and the class macro. The arguments can also be sym-
bol aliases created in the COOL SYM and ERR_MSG packages, or some
application-specific package. See section 11, Symbols and Packages, for more informa-
tion.

Exception Handling

13-12 COOL User’s Manual

Name: RAISE — A COOL macro for constructing and raising an exception

Synopsis: RAISE (Symbol* excp_type, REST: args);

excp_type A symbol representing the Exception class type (that is, Error,
Warning, and so forth)

args One or more of the following comma-separated arguments or val-
ues:

Symbol* group_name
One or more comma-separated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key_value_args
The name(s) and value(s) of any public data members in the
exception object

RAISE Example 13.11 In this example RAISE creates an Error exception object and raises the excep-
tion when the index for operator[] of a vector class is out of range.

1 inline int Vector::operator[] (int n) {

2 if (n >= 0 && n < this–>number_elements

3 return this–>data[n];

4 else

5 RAISE (Error, “vector::operator[](): %d out of range”, n);

6 }

Lines 1 through 6 implement the code necessary for a typical operator[] member func-
tion of a class for vector of integers. However, when the index provided is out of range,
the RAISE macro invocation in line 5 creates an exception object and raises the excep-
tion to report the error.

Exception Handling

13-13COOL User’s Manual

STOP 13.12 The STOP macro raises an exception and ends program execution with exit if
the exception is not handled. By default in COOL, only exceptions of type Error will
exit and exceptions of type Fatal will abort. STOP is similar to RAISE in that it uses
EXCEPTION to construct the exception object and then calls its member function
raise to raise the exception. This function searches for an exception handler of the ap-
propriate type to handle the exception and, if found, invokes the exception handler func-
tion and returns the exception object. If no exception handler is found, however,
program execution ends. There are many variations of STOP that provide flexible and
efficient means of customizing the exception object and raising the exception. In par-
ticular, the variable number of group name arguments should reduce the need for many
different types of exception classes whose only difference is the type name.

NOTE: The STOP macro takes some arguments that are actually pointers to Symbol
objects. These arguments control the relationship of an exception object with one or
more exception handlers. They can be the symbol representing the name of a class (as
with Error or Warning) that is created automatically for any class derived from Ex-
ception through the Generic class and the class macro. The arguments can also be
symbol aliases created in the COOL SYM and ERR_MSG packages, or some application-
specific package. See section 11, Symbols and Packages, for more information.

Name: STOP — Raise an exception and end the program if not handled

Synopsis: STOP (Symbol* excp_type, REST: args);

excp_type A symbol representing the Exception class type (that is, Error,
Warning, and so forth)

args One or more of the following comma-separated arguments or val-
ues:

Symbol* group_name
One or more comma-separated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key_value_args
The name(s) and value(s) of any public data members in the
exception object

Exception Handling

13-14 COOL User’s Manual

STOP Example 13.13 In this example, STOP creates an Error exception object and raises the excep-
tion when the index for operator[] of a vector class is out of range.

1 inline int vector::operator[] (int n) {

2 if (n >=0 && n < this–>number_elements)

3 return this–>data[n];

4 else

5 STOP (Error, “vector::operator[](): %d out of range”, n);

6 }

Lines 1 through 6 implement the code necessary for a typical operator[] member func-
tion of a class for a vector of integers. However, when the index provided is out of range,
the STOP macro invocation in line 5 creates an exception object and raises the excep-
tion to report the error. A handler for this exception could prompt the user for a new
index and retry the operation. The distinction between the use of STOP and RAISE is
that STOP guarantees to end the program if the exception is not handled, whereas
RAISE will return.

VERIFY 13.14 The VERIFY macro asserts that an expression is TRUE by raising an excep-
tion of the appropriate type if it is FALSE. The exception type is optional, but if speci-
fied, is the group name or alias of the VERIFY_ERROR object created. This is
because the macro assumes that a public data member named test is defined. If the
exception type is not specified, no other arguments can be provided. VERIFY is similar
to RAISE in that it uses EXCEPTION to construct the exception object and then calls
the function raise to raise the exception. This function searches for an exception handler
of the appropriate type to handle the exception and, if found, invokes the exception han-
dler function and returns the exception object. If no exception handler is found, program
execution ends.

NOTE: The VERIFY macro takes some arguments that are actually pointers to Sym-
bol objects. These arguments control the relationship of an exception object with one or
more exception handlers. They can be the symbol representing the name of a class (as
with Error or Warning) that is created automatically for any class derived from Ex-
ception through the Generic class and the class macro. The arguments can also be
symbol aliases created in the COOL SYM and ERR_MSG packages, or some application-
specific package. See section 11, Symbols and Packages, for more information.

Exception Handling

13-15COOL User’s Manual

Name: VERIFY — Verify that an expression evaluates to non-zero

Synopsis: VERIFY (test_expression, REST: args);

test_expression Any valid C++ expression to be verified

args One or more of the following comma-separated arguments or val-
ues:

Symbol* group_name
One or more comma-separated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key_value_args
The name(s) and value(s) of any public data members in the
exception object

VERIFY Example 13.15 This example is another variation of the previous two examples.
VERIFY_ERROR asserts that the index specified for a vector element is within range.
It creates a Verify_Error exception object and raises the exception when the index for
operator[] of a vector class is out of range.

1 inline int vector::operator[] (int n) {

2 VERIFY ((n >= 0 && n < this–>number_elements),

3 Error, “vector::operator[](): %d out of range”, n);

4 return this–>data[n];

5 }

Lines 1 through 5 implement the code necessary for a typical operator[] member func-
tion of a class for a vector of integers. However, before the indexed element is looked up
and returned, the VERIFY macro invocation on lines 2 and 3 insures that the given
index is within range. When the index provided is out of range, VERIFY creates an
exception object and raises the exception to report the error. A handler for this exception
could prompt the user for a new index and retry the operation. If no exception handler is
found, program execution ends.

Exception Handling

13-16 COOL User’s Manual

Jump_Handler 13.16 The Jump_Handler class is derived from the Excp_Handler class. It
Class saves the current environment and also the exception object when an exception is raised.

Instances of this class are used by the IGNORE_ERRORS macro discussed below. An
exception handler function saves a pointer to the exception raised in the Jump_Han-
dler exception object and then calls the system function longjmp, passing the environ-
ment that was saved in the Jump_Handler object by setjmp.

Note: The excp_type arguments in the Jump_Handler class constructors and member
functions are pointers to Symbol objects. These arguments control the relationship of
an exception object with one or more exception handlers. They can be the symbol repre-
senting the name of a class (as with Error or Warning) that is created automatically for
any class derived from Exception through the Generic class and the class macro. The
arguments can also be symbol aliases created in the COOL SYM package, or some appli-
cation-specific package. See section 11, Symbols and Packages, for more information.

Name: Jump_Handler — An exception handler class for ignoring exceptions.

Synopsis: #include <COOL/Exception.h>

Base Class: Excp_Handler

Friend Classes: None

Constructors: Jump_Handler (Jump_Handler_Function fn, Symbol* excp_type)
Creates an jump handler object associated with the exception type excp_type, in-
itializes the jump handler function data member to fn, and pushes itself on top of the
global exception handler stack. The jump handler function is of type void
(Jump_Handler_Function)(Exception*, Excp_Handler*).

Jump_Handler (Jump_Handler_Function fn, int number,
Symbol* excp_type1, Symbol* excp_type2, ...);

Creates an jump handler object, creates number group names excp_type1,
excp_type2, and so on if necessary, associates this jump handler object with num-
ber group names excp_type1, excp_type2, and so on, initializes the jump handler
function data member to fn, and pushes itself on top of the global exception handler
stack. The jump handler function is of type void (Jump_Handler_Function)(Ex-
ception*, Excp_Handler).

 Member Functions: virtual Boolean invoke_handler (Exception* excp)
Returns TRUE if the exception handler function was invoked for excp; otherwise,
this function returns FALSE.

Friend Functions: void ignore_errors_handler (Exception* excp, Excp_Handler* fn);
This exception handler function ignores exceptions raised through the macros
RAISE and STOP. When invoked, this function saves a pointer to the exception
object excp in the jump handler fn. It then calls longjmp, passing the environment
saved in Jump_Handler. The program returns to the point after the call of setjmp
in the macro IGNORE_ERRORS discussed below.

Exception Handling

13-17COOL User’s Manual

IGNORE_ERRORS 13.17 The IGNORE_ERRORS macro ignores an exception raised while executing a
body of statements. If an exception is raised while executing these statements, the
Jump_Handler created by the surrounding IGNORE_ERRORS macro saves a
pointer to the exception object. Program control returns to the statement following IG-
NORE_ERRORS macro. This macro eliminates the return value of the last statement
within the body if no exception was raised. In addition, IGNORE_ERRORS works
only for exceptions raised with the macros RAISE and STOP. The default exception
type is Error, if no exception type or group name is specified.

NOTE: IGNORE_ERRORS uses the system functions setjmp and longjmp. If an
exception occurs while executing statements within the body argument of the macro,
causing program control to be redirected, objects falling out of scope will not have their
destructor called. This is because the ANSI C setjmp/longjmp mechanism does not
support a mechanism for unwinding the stack.

Name: IGNORE_ERRORS — Ignores a raised exception within a body of code

Synopsis: IGNORE_ERRORS (Exception* excp, Symbol* excp_type = Error,
 REST: args) { body}

excp Pointer that is set to the exception object if one is raised while exe-
cuting the statements in body; otherwise, this pointer is set to
NULL

excp_type A symbol representing the Exception class type of excp (that is,
Error, Warning, and so forth)

args One or more of the following comma-separated arguments or val-
ues:

group_name
One or more comma-separated pointers to Symbol objects
representing aliases for this exception class type

body Any valid C++ statements to be executed under the protection of
the IGNORE_ERRORS macro

Exception Handling

13-18 COOL User’s Manual

IGNORE_ERRORS 13.18 In this example, IGNORE_ERRORS checks for an exception of type
Example Error raised while summing up a vector of integers. In this simplistic example, the size

of the vector is unknown. If during the loop, an exception is raised, an error message
prints, and the function continues execution after the body of statements. If IG-
NORE_ERRORS were not used and an exception of type Error was raised, the pro-
gram would end.

 1 int sum_up (vector& v) {

 2 int sum = 0;

 3 Error* excp;

 4 IGNORE_ERRORS (excp) {

 5 for (int i = 0; i < NUM_ELEMENTS; i++)

 6 sum += data[n];

 7 }

 8 if (excp != NULL)

 9 cerr << excp;

10 return sum;

11 }

Lines 1 through 11 implement a function that calculates the sum of the element values of
a vector of integers. Line 2 initializes a variable to hold the running total. Line 3 declares
a pointer to an exception of type Error. Line 4 begins the IGNORE_ERRORS invoca-
tion. The pointer to the exception object is passed as an argument, along with the body
of statements between the braces. At the end of the body, the variable excp is checked to
see if it contains an address. If so, an exception must have been raised, so the exception
object is output to the standard error stream. If its value is NULL, the loop ends success-
fully. Finally, line 10 returns the sum of the element values.

Exceptions as 13.19 The exception handling facility uses the COOL symbolic computing
Symbols and capability. Exception (along with most other COOL classes) is derived from
Package the Generic class, which eases run-time type checking and object query. The in-

voke_handler member function of the exception handler takes advantage of this fea-
ture. It calls is_type_of on the raised exception object to determine if it is of the desired
exception type. The exception name specified in the exception macros and the excep-
tion handler constructor are pointers to Symbol objects. All classes inheriting from
Generic are represented as type symbols in the COOL global symbol package, SYM.

When the exception macros are expanded in the program, the formatted error message
constructed and stored in the exception object is also added as a symbol to the COOL
global error message package, ERR_MSG. This package is created with the
text_package macro which contains symbols whose values are the same as the symbol
names. All error messages in a COOL application are implemented as text symbols, and
a symbol definition file is automatically created that contains a summary of all the error
messages. These error message symbols can be represented in other languages by es-
tablishing a property list with the appropriate translation. See Section 11, Symbols and
Packages, for more information on the COOL symbolic computing capabilities.

Exception Handling

13-19COOL User’s Manual

User-Defined 13.20 The COOL exception mechanism detects and raises an exception and
Exception Types finds the appropriate exception handler. To define a user-specific exception class, you

must derive from the Exception class or one of the predefined exception types Error,
Fatal, System_Error, System_Signal, or Verify_Error. All new data members
should be public. The report member function will need to be changed to reflect the
nature of the newly created type of exception.

NOTE: Derived exception classes should have public data members. Initialize these
data members with an assignment statement in the EXCEPTION macro invocation,
and access the data members by exception handler functions.

To handle a specific type of exception, define an exception handler function that takes
as its first argument a pointer to the exception object and returns void. An exception
handler object is passed a pointer to this function through its constructor. The exception
handler function can be defined with more than one argument, but a new exception han-
dler class must be defined with a new version of the virtual invoke_handler member
function. For example, the Jump_Handler class modifies the invoke_handler mem-
ber function to call a function with two arguments: a pointer to the exception object and
a pointer to the exception handler object.

Other user-derived exception classes can include data members for saving the wrong
values detected by a program. These values report the problem to the exception handler
and are often used when reporting the exception or error message to an output stream.
Data members can also be included in an exception class so the signaler (the exception
raiser) can indicate to an exception handler ways of proceeding from the exception.

For example, if an exception occurs because a variable has a wrong value, an exception
object is first created and then raised. The exception object defined for this problem
would have a data member with the wrong value and a data member for a new value. An
exception handler resolves this problem by supplying a new value (usually by inform-
ing the user about the wrong value and querying the user for a new value). The handler
stores this new value in the exception object and returns that object to the signaler. The
signaler then assigns this new value to the variable.

Exception Handling

13-20 COOL User’s Manual

14-1COOL User’s Manual

COOL METHODOLOGY

Introduction 14.1 The C++ Object-Oriented Library (COOL) is a collection of classes, templates,
and macros for use by C++ programmers writing complex applications. It raises the
level of abstraction and allows the programmer to concentrate on the problem domain,
not on implementing base data structures, macros, and classes. In addition to raising the
level of abstraction, COOL also provides a system-independent software platform on
top of which applications are built, since COOL encapsulates system-specific function-
ality such as date/time and exception handling. This section discusses the following top-
ics:

• Preprocessor and macros

• Parameterized templates

• Symbols and packages

• Polymorphic management

• Exception handling

• Coding style and conventions

• Class hierarchy

COOL is an ever changing and growing C++ class library. As such, some constraints
will be necessary in order to achieve compatible and seamless integration of new or
modified features. This section outlines the major technologies and conventions that
should be used and followed.

Requirements 14.2 This section discusses COOL methodology and should be used as an aid in un-
derstanding the COOL library, its organization, structure, and layout. It assumes you
have a working knowledge of C++. For more detailed information and examples on
each topic, you should refer to the appropriate section of this manual.

Preprocessor and 14.3 The COOL macro facility is an extension to the standard ANSI C
Macros macro preprocessing functions available with the #define statement. The COOL

preprocessor is a modified ANSI C preprocessor that allows a programmer to unobtru-
sively define powerful extensions to the C++ language.

This enhanced preprocessor is portable, compiler independent, and can execute arbi-
trary filter programs or macro expanders on C++ code fragments. Macros that support
parameterized templates are implementations of theoretical design papers published by
Bjarne Stroustrup. Other macros provide significant language features and enhanced
power for the programmer previously unavailable with conventional C++ implementa-
tions. It is important to note, however, that once a macro is expanded, the resulting code
is conventional C++ 2.0 syntax acceptable to any conforming C++ translator or
compiler.

Cool Methodology

14-2 COOL User’s Manual

The COOL preprocessor is supplied as part of the library and is the implementation
point for all language and computing enhancements available in COOL. The draft-pro-
posed ANSI C standard indicates that extensions and changes to the language or fea-
tures implemented in a preprocessor or compiler should be made by using the #pragma
statement. The COOL preprocessor follows this recommendation and uses this for all
macro extensions.

The COOL preprocessor is derived from and based upon the DECUS ANSI C
preprocessor made available by the DEC User’s group in the public domain and sup-
plied on the X11R3 source tape from MIT. It complies with the draft ANSI C specifica-
tion with the exception that trigraph sequences are not implemented. In addition to
support for COOL macro processing discussed previously, the preprocessor has several
new command line options to support C++ comments and includes file debugging aids.

The #pragma defmacro statement is implemented in the COOL C/C++ preprocessor
and is the single hook through which features such as the class macro, parameterized
templates, and polymorphic enhancements have been implemented. The defmacro fa-
cility provides a way to execute arbitrary filter programs on C++ code fragments pass-
ing through the preprocessor. When a defmacro style macro name is found, the name
and contents up to the delimiter (including all matching {} [] () <> “” ‘’ and comments
found along the way) pipes onto the standard input stream of the indicated program or
filter procedure. The preprocessor scans the procedure’s standard output for further
processing. The expansion replaces the macro call and is passed onto the compiler for
parsing.

The implementation of a defmacro can be either external to the preprocessor (as in the
case of files and programs) or internal to the preprocessor. For example, the template,
declare, and implement macros that implement parameterized types are internal to the
preprocessor, providing a more efficient implementation. The defmacro facility first
searches for a file or program in the same search path used for include files. If a match is
not found in the preprocessor table, an internal preprocessor table is searched. If a
match is still not found, the error message is sent to the standard error stream: “Error:
Cannot open macro file [xxx]”, where xxx is the name as it appears in the source code.
The fundamental COOL macros are defined with defmacro in the header file <COOL/
misc.h> that is included in all COOL C++ source files.

Porting COOL to a new platform or operating system starts with the preprocessor. The
preprocessor contains support for the defmacro statement and also implements several
important macros internally for efficiency and performance considerations. In addition,
a powerful macro language that simplifies many library functions is available via the
MACRO keyword (discussed in detail in Section 10). MACRO implements an en-
hanced #define syntax that supports multiple-line, arbitrary-length, nested macros, and
preprocessor directives with positional, optional, optional keyword, required keyword,
rest, and body arguments. Many of the COOL features would be very difficult, if not
impossible, to implement without this enhanced macro language.

Parameterized 14.4 The development and successful deployment of application libraries
Templates such as COOL is made easier and more useful by a language feature called

parameterization. Parameterized templates allow a programmer to design and imple-
ment a class template without specifying the data type. The user customizes the tem-
plate to produce a specific class by indicating the type in a program. Several versions of
the same parameterized template (each with a different type) can exist in a single appli-
cation. Parameterized templates can be thought of as metaclasses in that only one source
base needs to be maintained to support numerous variations of a type of class.

Cool Methodology

14-3COOL User’s Manual

Regardless of the type of object a parameterized class is to manipulate, the structure and
organization of the class and the implementation of the member functions are the same
for every version of the class. For example, a programmer providing a vector class
knows that there will be several member functions such as insert, remove, print, sort,
and so on that apply to every version of the class. By parameterizing the arguments and
return values from the various member functions, the programmer provides only one
implementation of the vector class. The user of the class then specifies the type of vector
at compile time.

An important and useful type of parameterized template is known as a container class. A
container class is a special kind of parameterized class where you put objects of a par-
ticular type. For example, the Vector<Type>, List<Type>, and Hash_Ta-
ble<KType,Vtype> classes (discussed in Sections 6 and 7) are container classes because
they contain a set of programmer-defined data types. Since container classes are so
commonplace in many applications and programs, parameterized container classes pro-
vide a mechanism to maintain one source base for several versions of very useful data
structures. COOL supplies several common container class data structures that can be
used in many typical application scenarios.

Each of the COOL parameterized container classes support the notion of a built-in
iterator that maintains a current position in the container and is updated by various
member functions. These member functions allow you to move through the collection
of objects in some order and manipulate the element value at that position. This might
be used, for example, in a function that takes a pointer to a generic object that is a type of
container object. The function can iterate through the elements in the container by using
the current position member functions without needing to know whether the object is a
vector, a list, or a queue.

In addition to this built-in current position mechanism, COOL provides support for
multiple iterators over the same class by using the Iterator<Type> class (discussed in
detail in Section 5). For example, a programmer may need to write a function that
moves through the elements of a container class and, at some point, needs to save the
current position and begin processing elements at another location. After a period of
time, the secondary processing ends, at which point flow of control returns to the previ-
ous stopping point. The current position is restored from the iterator object, and proc-
essing continues.

A programmer uses the COOL C++ Control program (CCC), instead of the normal CC
procedure, to control the compilation process. This program provides all of the capabili-
ties of the original CC program with additional support for the COOL preprocessor,
parameterized types, and the COOL macro language. CCC controls and invokes the
various components of the compilation process. In particular, it looks for command line
arguments specific to the parameterized template process and processes them accord-
ingly. Other options and arguments are passed on to the system C++ compiler control
program.

Cool Methodology

14-4 COOL User’s Manual

Symbols and 14.5 A package provides a relatively isolated namespace for various COOL
Packages components called symbols. A symbol that is owned by a particular package is said to

be interned in that package. In general, the term interned means that a particular object
is uniquely identifiable in some context. When a symbol is interned, it becomes
uniquely identifiable by the symbol name within a namespace context. The package
system provides logical groupings of symbols supporting relationships established be-
tween named objects and the values they contain. Although the notion of symbols being
grouped into packages is fairly straightforward, the nature of the relationships that can
exist between packages and the way in which they establish a namespace can be quite
complex. COOL provides several kinds of macros to simplify the usage and manipula-
tion of symbols and packages.

A symbol is a data object that defines a relationship between a name, a package, a value,
and a property list. The name is a character string used to identify the symbol. Once a
name is established for a symbol, it may not be changed. The value field is used to refer
to some C++ object. Property lists are lists of alternating names and values. The prop-
erty list allows the programmer to associate supplemental attributes with a symbol.
Initially, the property list for a symbol is empty.

The Symbol and Package classes implement the fundamental COOL symbolic com-
puting support as standard C++ classes. The Symbol class implements the notion of a
symbol that has a name with an optional value and property list. Symbols are interned
into a package, which is merely a mechanism for establishing separate namespaces.
The Package class implements a package as a hash table of symbols and includes public
member functions for adding, retrieving, updating, and removing symbols.

COOL supports efficient and flexible symbolic computing by providing symbolic con-
stants and run time symbol objects. You can create symbolic constants at compile time
and dynamically create and manipulate symbol objects in a package at run time by using
any of several simple macros or by directly manipulating the objects. Symbols and
packages in COOL manage error message textual descriptions with translations, pro-
vide polymorphic extensions to C++ for object type and contents queries, and support
sophisticated symbolic computing normally unavailable in conventional languages.

Polymorphic 14.6 C++ version 2.0 as specified in the AT&T language reference manual
Management implements virtual member functions that delay the binding of an object to a specific

function implementation until run time. This delayed (or dynamic) binding is useful
where the type of object might be one of several kinds, all derived from some common
base class but requiring a specialized implementation of a function. The classic example
is that of a graphics editor where, given a base class graphic_object from which
square, circle, and triangle are derived, specialized virtual member functions to calcu-
late the area are provided. In such a system, a programmer can write a function that takes
a graphic_object argument and determine its area without knowing which of all the
possible kinds of graphical objects the argument really is.

This dynamic binding capability of C++, while powerful and providing greater flexibil-
ity than most other conventional programming languages, is still not enough for some
types of problems. Highly dynamic languages such as SmallTalk and Lisp allow the
programmer to delay almost all decisions until run time. In addition, facilities are often
present for querying an object at run time to determine its type or request a list of all
available member functions. These kinds of features are commonly used in many sym-
bolic computing and complex, knowledge-intensive operations management areas
tackled today.

Cool Methodology

14-5COOL User’s Manual

COOL supports enhanced polymorphic management capabilities with a programmer-
selectable collection of macros, classes, symbolic constants, run time symbolic objects,
and dynamic packages. This is facilitated by the Generic class that, combined with
macros, symbols, and packages, provides efficient run-time object type checking, ob-
ject query, and enhanced polymorphic management unavailable in the C++ language.

The Generic class is inherited by most other COOL classes and manipulates lists of
symbols to manage type information. Generic adds run-time type checking and object
queries, formatted print capabilities, and a describe mechanism to any derived class.
The COOL class macro (discussed below) automatically generates the necessary imple-
mentation code for these member functions in the derived classes. A significant benefit
of this common base class is the ability to declare heterogeneous container classes
parameterized over the Generic* type. These classes, combined with the current posi-
tion and parameterized iterator class, lets the programmer manipulate collections of ob-
jects of different types in a simple, efficient manner.

One of the simplest and most useful features facilitated by Generic is the runtime type
checking capability. The type_of and is_type_of virtual member functions provide this
kind of run-time type query for an object that is derived (at some point) from the COOL
Generic class. Type determination and function dispatch can become quite tedious,
however, if there are many types of objects. Ideally, each would be derived from a com-
mon base and include support for a virtual member function for each important opera-
tion that might be required. This is not always feasible, however, especially with a high
number of objects obtained from several sources. An alternate scheme similar to the one
mentioned above is the type_case macro, analogous to the C++ switch statement. It
gathers all possible type cases and allows the user to symbolically dispatch on the type
of object represented by the case statements. This automates some of the symbol collec-
tion and manipulation required with the earlier mechanism.

The class keyword is implemented as a COOL macro to add symbolic computing abili-
ties to class definitions. It takes a standard C++ class definition and, if the class contains
Generic somewhere in its inheritance hierarchy, it generates member functions for sup-
port of run time type checking and query. In addition, a symbol for the derived Generic
class type is added to the COOL global symbol package SYM. The actual code which is
expanded in a class definition and after a class definition is controlled by the classmac
macro.

The classmac macro provides two hooks as a customization point by user-defined mac-
ros. A combination of data members and member functions of a class definition are
passed as arguments to macros that can be changed or customized by the application
programmer. The COOL Generic class uses the data member hook to implement the
map_over_slots member function. There may be more than one classmac macro hook
specified by the programmer. COOL has several, and other user-defined macros are
simply chained together in a calling sequence ordered according to the order of defini-
tion. Each classmac macro defines how the class macro should expand the class defini-
tion. The class macro does not actually generate the code itself. This is defined in
user-modifiable header files that specify a classmac macro. For example, a general-
purpose mechanism that automatically creates accessor member functions to get and set
each data member can be created by defining a classmac macro that is attached to the
data member hook of the class macro. No changes to the COOL preprocessor are re-
quired.

Cool Methodology

14-6 COOL User’s Manual

The member functions added by Generic and the class macro to derived COOL classes
manipulate symbols stored in the global SYM package. These symbols reflect the inheri-
tance tree for a specific class. They may have optional property lists containing infor-
mation associating supported member functions and their respective argument lists.
User-defined classes derived from Generic are also automatically supported in an iden-
tical fashion, resulting in additional symbols in the global symbol package. As dis-
cussed earlier, these symbols must have storage allocated for them and code to initialize
the package at program startup time. This is managed by the COOL file symbols.C
which should be compiled and linked with every application that uses COOL. An auto-
mated method for ensuring correct package setup and symbol initialization is accom-
plished by establishing the correct dependency in an application make file.

Exceptions 14.7 In COOL, program anomalies are known as exceptions. An exception can be an
error, but it can also be a problem such as impossible division or information overflow.
Exceptions can impede the development of object-oriented libraries. Exception han-
dling offers a solution by providing a mechanism to manage such anomalies and sim-
plify program code. The COOL exception handling scheme is a raise, handle, and
proceed mechanism similar to the Common Lisp Condition Handling system. When a
program encounters an anomaly that is often (but not necessarily) an error, it can:

• Represent the anomaly in an object called an exception

• Announce the anomaly by raising the exception

• Provide solutions to the anomaly by defining and establishing handlers

• Proceed from the anomaly by invoking a handler function

The COOL exception handling facility provides an exception class (Exception), an ex-
ception handler class (Excp_Handler), a set of predefined exception subclasses
(Warning, Error, Fatal, System_Error, System_Signal, and Verify_Error), and a
set of predefined exception handler functions. In addition, the macros EXCEPTION,
RAISE, STOP, and VERIFY allow the programmer to easily create and raise an ex-
ception at any point in a program.

When an exception is raised (through macros RAISE or STOP, for example), a search
begins for an exception handler that handles this type of exception. An exception han-
dler, if found, deals with the exception by calling its exception handler function. The
exception handler function can correct the exception and continue execution, ignore the
exception and resume execution, or end the program. In COOL, an exception handler
for each of the predefined exception types exists on the global exception handler stack.

An exception handler invokes a specific exception handler function for a specific type
of exception. Handling an exception means proceeding from the exception. An excep-
tion handler function could report the exception to standard error and end the program,
or drop a core image for further debugging by the programmer. Another way of pro-
ceeding is to query the user for a fix, store the fix in the exception object, and return to
where the exception was raised. When an exception handler object is declared, is is
placed on the top of a global exception handler stack. When an exception is raised, a call
searches for a handler. The handler search starts at the top of the exception handler
stack.

Cool Methodology

14-7COOL User’s Manual

There are six predefined exception type classes provided as part of COOL. The excep-
tion class is the base class from which specialized exception subclasses are derived. De-
rived from Exception are Warning, System_Signal, Fatal and Error. From the
Error class, the System_Error and Verify_ Error classes are derived. The default
exception handlers are called only if no other exception handler is established and avail-
able when an exception is raised. COOL offers users the option of defining their own
exception types. Such types can be derived from the Exception class of one of the de-
rived exception types. All user-defined exception classes should have public data slots.
For more detailed information on creating your own exception types, refer to Section
13, Exception Handling.

The COOL exception handling facility provides several macros that simplify the proc-
ess of creating, raising, and manipulating exceptions. These macros are implemented
with the COOL macro facility discussed in Section 10, Macros. The EXCEPTION
macro simplifies the process of creating an instance of a particular type of exception
object. The RAISE macro allows the programmer to easily raise an exception and
search for an exception handler. The STOP macro is similar to the RAISE macro, ex-
cept that it guarantees to end the program if the exception is not handled. The VERIFY
macro raises an exception if an assertion for some particular expression evaluates to
FALSE. Finally, the IGNORE_ERRORS macro provides a mechanism to ignore an
exception raised while executing a body of statements.

Coding Style and 14.8 A standard source code style allows several programmers to easily
Conventions maintain and understand each other’s code because additional semantic information can

be inferred from the source code’s format and style. In addition, a single style presents a
more coherent, professional software package for potential source code users. This is
particularly important for COOL, since parameterized templates require complete ac-
cess to all source code. Finally, one of the foundations of object-oriented programming
is code reuse. This is much easier if a programmer is able to browse through source code
and understand its organization and layout. The COOL source code adopts the follow-
ing C++ coding style convention:

• Variable and class naming conventions — A proposed definition for naming con-
ventions for variables and classes and a coding style for writing C++ class defini-
tions.

• Organization and contents of class header files — An ordering for all of the ele-
ments in a C++ class library. A uniform organization for C++ class definition ele-
ments will simplify a user’s task in learning the interface of a class and in locating
information when making later references to the class.

• Private/Protected/Public data members — Recommended usage for scoping data
members in a class with respect to encapsulation, derivation, and an object-ori-
ented data base (OODB).

• Source code documentation — Minimum standards and requirements consisting of
at least an introductory, high-level algorithmic discussion and input/output docu-
mentation for each function.

• Source code indentation and layout — A flexible and easy to follow indentation
and layout proposal, facilitated in part by a C++ mode distributed with COOL
source code for the popular GNU Emacs editor.

• Error message text resource package — Use of the COOL exception handling
mechanism provide a package containing all error messages in an application that
eases internationalization of text message strings.

Cool Methodology

14-8 COOL User’s Manual

• Regression test suite — All modified and new C++ classes added to the COOL
library should contain a complete, stand-alone test program that exercises all major
features of the component and reports successes and failures via the test macros
contained in the ~COOL/include/test.h header file.

• Source code system independence — COOL places great importance upon system-
independent code and features. As such, system-specific functions should be sur-
rounded with preprocessor directives where appropriate.

• Build procedure — COOL contains a modified imake utility from the MIT X11R3
source tape that implements a system-independent build procedure. This should be
used for all new classes and source code. It also provides configuration and rules
files for localization or customization of system build utilities and commands to
port to other operating systems and hardware platforms.

Naming 14.8.1 A prime objective for a naming convention is to allow programmers
Conventions to recognize what sort of component a name refers to. Another goal is using meaningful

names, which has not typically been done in C applications. The following naming con-
ventions are used throughout the COOL source code. The reader is strongly encouraged
to follow the same guidelines:

• Directory, .C, and .h filenames should be the same or close to the class being de-
fined, and the declaration and implement files should be in a single directory. For
example, the String class is defined and implemented in the files String.h and
String.C and contained in the ~COOL/String subdirectory.

• Class, struct, and typedef names should be capitalized with the words separated
by underscores:

class Generic_Window { ... };
struct String_Layout { ... };
typedef int Boolean;

• All function names should be lowercase with each word separated by an underscore
character:

void my_fun (int foo);
char* get_name (ostream&);

• Predicate functions should begin with is_:

Boolean is_type_of (int);

• Variable and data member names should be lowercase with words separated by
underscores:

int ref_count;
char* name;

• Global and static variables should be appended with _g or _s, respectively:

int node_count_g;
static char* version_s;

• Preprocessor statements and MACRO names should be uppercase:

#define ABS ((x < 0) ? (–x) : x)

Cool Methodology

14-9COOL User’s Manual

• Constants (const) declarations should be uppercase:

const int FALSE=0;
const int TRUE=!FALSE;

Class Header 14.8.2 All header files defining the structure of a class or parameterized
File Organization template should be organized into sections in the following order:

• Included files and typedefs necessary for the class.

• Definition of private data members.

• Declaration of private member functions and friends.

• Definition of protected data members.

• Declaration of protected member functions and friends.

• Declaration of public member functions and friends.

• Inline member functions of the class follow the class definition.

• Other member and friend function definitions are located in a separate source code
file.

In general, only the data member definitions and function prototypes of the member
functions and friend functions should appear in the class construct. This separates the
implementation from the specification and reduces clutter. Define inline functions after
the class {...}; statements. In addition, the keyword inline should appear in both the
class definition and in the actual implementation as a documentation aid. The optional
private keyword should be explicitly stated. Finally, avoid multiple instances of
scoped sections. There should be no more than one each of the private, protected, and
public labels.

Cool Methodology

14-10 COOL User’s Manual

Private, Protected, 14.8.3 In general, class data should be encapsulated in either the private
and Public or protected sections. Data specific to a particular class with no use for possible derived

classes should be located in the private section. Data located in the protected section
might include configuration or adjustment data members that a derived class might
want to monitor or change. No COOL classes contain public data, and the user should
not declare such data. Aside from being bad object-oriented programming style, classes
with public data may be difficult to make persistent and stored in an OODB. The one
exception to this standard are the derived exception classes, which may require public
data members in order to allow query or update of alternate values.

Documentation 14.8.4 Documentation of all files is very important. Terseness should be the general
rule for all header files, and completeness the rule for all code files. Parameterized tem-
plates have a single header/source file and all documentation should be located there. If
in doubt, more documentation is better than less documentation. A high-level abstract at
the top of each file should provide a description of the file’s functionality. Class header
files should also contain a brief description of the public interface.

Each function in a source code file should have a preceding block comment specifying
the input and output parameters as well as giving a brief synopsis of the functionality.
For complex inline definitions in header files, a block comment of this type should only
be used when the purpose is not obvious because these comments do not appear in the
code file. Since most inline functions contain trivial code (usually providing an accessor
to some private data member), comment requirements for inline function can be re-
laxed.

All source code should be commented every few source lines. Specifically, large block
comments every 100 lines is unacceptable. No comment should contain operating sys-
tem specific names or terms unless that section of code is truly specific. When this is
necessary, the code should be surrounded by conditional compilation constructs. These
are handled by the preprocessor relative to that specific operating system.

Finally, documentation in the form of a man page should be written for every class.
Layout and organization will be as that with the –man macro package available for
nroff(1)/troff(1). Section names and requirements for a class man page include Name,
Synopsis, Base Class, Friend Classes, Description, Constructors (public or protected as
necessary), Protected Member Functions (when appropriate), Public Member Func-
tions, Files, See Also, and Bugs (when necessary). Introductory and high-level material
should also be documented.

Source Code 14.8.5 Indentation and source code structure is relaxed, but it is suggested
Indentation that the programmer use the C++ mode available for GNU Emacs and supplied with

COOL. In general, statements should be restricted to one line with indentation reflect-
ing block and scoping visibility. Location of such items as braces, spacing around pa-
rentheses, and so on is left up to the programmer. If the C++ mode is used, whole
regions can be marked and indented appropriately, providing a simple means by which
all source code can be brought into the same format.

Error Message 14.8.6 All error message text strings in an application should use the
Resource Package ERR_MSG package available in COOL. The COOL exception handling scheme auto-

matically uses this package ensuring that all text strings associated with error messages
are stored as the value of a symbol (see Section 13). All error message symbols are auto-
matically processed and located in one file, thus facilitating easy update or configura-
tion. In particular, a language translation can be added to the property list of each

Cool Methodology

14-11COOL User’s Manual

symbol entry, providing an efficient and convenient means for internationalizing the
text messages in an application.

Regression Test 14.8.7 Each new or modified class contained in or added to COOL
Suite must also include a stand-alone test program. This should fully exercise all features and

functions and report success or failure through the test macros contained in the ~COOL/
include/test.h header file. This test program is used in regression tests for new re-
leases and ports to other software platforms to ensure a complete and working
implementation.

Source Code 14.8.8 COOL places great importance upon system-independent code
System Independence and features. As such, system-specific functions should be surrounded with #if

preprocessor directives where appropriate. In general, small performance sacrifices in
implementation are preferred if system independence and portability is improved.

Build Procedure 14.8.9 COOL contains a modified imake utility from the MIT X11R3 source tape that
implements a system-independent build procedure. This should be used for all new
classes and source code. imake provides configuration and rules files for localization or
customization of system build utilities and commands to aid in porting activities to
other operating systems and hardware platforms.

Class Hierarchy 14.9 The COOL class hierarchy implements a flat inheritance tree, as opposed to the
nested SmallTalk model. Most COOL classes are derived from Generic to facilitate run
time type checking and object query. Simple classes are not derived from Generic due
to memory-space efficiency concerns. All parameterized container classes inherit from
a base class that results in shared type-independent code. This reduces code replication
when a particular type of container is parameterized several times for different objects
in a single application. The COOL hierarchy is:

Pair<T1,T2>
Range

Range<Type>
Rational
Complex
Bignum
Generic

String
Gen_String
Regexp
Vector

Vector<Type>
Association<T1,T2>

List_Node
List_Node<Type>

List
List<Type>

Date_Time
Timer
Bit_Set
Exception

Warning

Cool Methodology

14-12 COOL User’s Manual

Error
Verify_Error
System_Error

Fatal
System_Signal

Excp_Handler
Jump_Handler

Hash_Table
Set
Hash_Table<Key,Value>

Package
Matrix

Matrix<Type>
Queue

Queue<Type>
Random
Stack

Stack<Type>
Symbol
Binary_Node

Binary_Node<Type>
Binary_Tree

Binary_Tree<Type>
AVL_Tree<Type>

N_Node<Type>
D_Node<Type>
N_Tree<Type,Node,nchild>

Glossary-1COOL User’s Manual

GLOSSARY

a

abstract data type A set of values and a set of operations that can be applied to the new type.

accessor 1. A trivial inline function that gets or sets the value of a private or protected slot of a
class.

2. A function designed to access (that is, read, write, or modify) the value(s) of a private
or protected slot of a class.

array A collection of objects of a single data type.

assignment statement A programming language statement that gives a value to a variable.

association list A data structure consisting of a list of pairs where each pair represents an association
between its objects. The first element of the pair is the key and the second element is
associated data. This is also referred to as an alist.

b

base class The class from which subclasses are derived and inherit their properties.

c

class The basic building blocks of an application, where each individual aspect of structure
and behavior is defined separately.

constructors Member functions with the same name as the class in which they are defined that pro-
vide for the automatic initialization of objects at their point of declaration.

container class A class such as Vector, List, and Hash_Table that contains a set of application pro-
grammer defined data types. The COOL library contains a number of container classes.

d

DECLARE A macro that expands to the declaration of a class.

#define Preprocessor directive that defines a name and (optionally) the value that follows it.

derivation The process by which one class is built on top of (specialized) from one or more base
classes. For example, the Bit_Set class is derived from the Generic class, whereas the
Generic class is the base class of Bit_Set.

Glossary

Glossary-2 COOL User’s Manual

derived class A class that inherits from a base class.

destructors Member functions providing for the automatic deallocation of the storage occupied by
an object when the block containing the object is exited.

dymanic enumeration type
A modifiable data type used to define a set of named integral constants and to declare
variables of that type.

e

encapsulation A special type of form that surrounds another form and enhances the other form’s opera-
tion without changing its basic functionality. A trace, for example, is an encapsulation.

enum Keyword for declaring an enumeration.

enumeration A set of symbolic integral constants.

environmental synonym
A variable contained in the operating system environment in which an application pro-
gram runs and provides a specific value or customization directive to the program.

exception Some noteworthy event that can occur during the execution of a program, such as an
error or anomaly.

exception handling A mechanism for managing program anomalies and errors.

extensibility A language feature that allows programmers to create new types that can be endowed
with specific properties and whose behavior is characterized in a class definition.

f

friend A nonmember of a class that is given access to the nonpublic members of the class. Can
be a nonmember function, a member function, or an entire other class.

g

Generic class The class that is inherited by most COOL classes. It is used as a base class that adds
run-time type checking and basic print capabilities to any derived class.

Glossary

Glossary-3COOL User’s Manual

h

hash table A table that derives a numeric index from some data key to index a specific value.

header file A file containing information needed by several program modules. During compila-
tion, the text of the header file becomes part of the program text that the compiler ana-
lyzes.

heterogeneous The condition in which several objects are of different types.

homogeneous The condition in which several objects are of the same type.

i

IMPLEMENT A macro that expands into the function definitions of a class.

#include A simple text manipulation mechanism for gathering source program fragments to-
gether into a single file for compilation.

inheritance 1. The ability of a class to use properties of another class. Enables the programmer to
define an organization of classes that models the relationships among the various kinds
of objects.

2. The capability for distinguishing between the generic properties of some class of
object and the more specialized properties that only certain objects will share.

interned symbol A symbol that belongs to a specific package.

iterator A mechanism that automatically repeats the same series of steps until a predetermined
stop is reached.

m

macro A simple, symbolic programming-language statement that, when expanded, results in a
series of more complex statements.

member function The set of operations defined to manipulate an object within a class.

n

NULL An empty or nonexistent or non-specified value.

Glossary

Glossary-4 COOL User’s Manual

o

object A variable declared to be of a specific class. An object is not just passive data, but also
the procedures which manipulate it. Objects are the modular building blocks for an
object-oriented programming system.

object-oriented programming
A programming approach for designing and implementing software systems, centering
around the concepts of abstract data types and classes, hierarchies, inheritance, and
polymorphism. Noted primarily for its advantages of code reuse, extensibility, com-
plexity control, and much closer linkage between software design and implementation.

operator A symbol specifying an arithmetic, logical, or other manipulation of its operands.

ordered sequence class A collection of basic data structures that implement sequential-access data structures as
parameterized classes.

overloaded operator An operator with an additional meaning assigned to it. When an operator is overloaded,
its meaning is usually inferred from the types of their operands.

p

package A collection of symbols that serves as a namespace. See also package system.

package system A facility that establishes a mapping from names to symbols and helps prevent name-
space conflicts. The package system allows different programs to use the same name for
objects so that the programs and objects can coexist in the same environment.

parameterized class A class in which one or more types can be declared at compile time.

pointer A data type that holds the address of an object in memory.

polymorphic The ability of different objects to respond differently to the same message at run time.

private Information that cannot be manipulated by the programmer.

procedures The operations or behaviors that the object can perform.

property list A component of a symbol that effectively provides the symbol with many modifiable,
named components. The property list has zero or more entries, with each entry consist-
ing of a pair of elements. The first element of the pair is called the indicator and is used
to name a particular property. Each indicator must be unique within that property list.
The second element can be any object that represents the value of that property. Func-
tions are available tomanipulate a symbol’s property list.

protected Information that can be manipulated in a limited manner by the programmer.

public Information that can be manipulated by the programmer.

r

raise To announce an exception.

Glossary

Glossary-5COOL User’s Manual

s

scope The spatial or textual region of a program or form within which it is possible to refer to
an object.

standard error A predefined I/O stream used to alert the user to some exceptional condition in the pro-
gram during execution.

symbol An object used as an identifier to specify a relationship between a name and other ob-
jects and variables. Internally, each symbol is represented as a structure with the follow-
ing components:

⎪ Value

⎪ Property list

These contain information about the symbol, and functions are provided to manipulate
this information, as well as the symbol itself.

t

template Provides a means of defining a complex macro that supports parameterized classes.

typedef A storage class that is used to create new data types from existing data types.

u

unordered sequence class
A collection of basic data structures that implement random-access data structures as
parameterized classes.

v

value A constant or quantity assigned to a variable.

void A data type that is used when declaring a function to indicate that the function does not
return a value or that the function does not take any arguments.

Glossary

Glossary-6 COOL User’s Manual

Index-1COOL User’s Manual

INDEX

Symbols
#pragma defmacro

description, 10-1
implementation. See defmacro
overview, 1-2

A
Association class

See also Pair class
base classes, 7-12
constructors, 7-12
description, 7-12
example, 7-15—7-17
friend functions, 7-15
member functions, 7-12—7-15
requirements for parameterized type, 7-1
use of operator=, 7-1

AVL_Tree class
See also Binary_Tree class; N_Tree class
base class, 9-7
description, 9-6—9-7
example, 9-9—9-10
friend functions, 9-9
member functions, 9-7—9-9
public constructors, 9-7
requirements for parameterized type, 9-1
use of operator=, 9-1

B
Bignum class

base class, 3-15
constructors, 3-15
description, 3-14
example, 3-19
friend functions, 3-17—3-18
maximum value, 3-14
member functions, 3-15—3-17
parsing of character string representations, 3-14

Binary_Node class
See also Binary_Tree class; N_Node class;

D_Node class
base class, 9-2
constructors, 9-2
description, 9-2
friend class, 9-2
member functions, 9-2
requirements for parameterized type, 9-1

Binary_Tree class

See also Binary_Node class; AVL_Tree class;
N_Tree class

base classes, 9-3
description, 9-3
example, 9-5—9-6
friend functions, 9-5
member functions, 9-3—9-5
public constructors, 9-3
requirements for parameterized type, 9-1
use of operator=, 9-1

Bit_Set class
See also Set class; enumeration_package
base classes, 8-6
description, 8-6
example, 8-11
friend functions, 8-10
member functions, 8-6—8-10
public constructors, 8-6

C
Calendar.h File

See also Date_Time class
description, 4-8

CCC
See also IMPLEMENT macro; Parameterized

templates
definition, 1-2, 5-7
description, 5-7—5-8, 14-4
example, 5-9
options, 5-8

char* functions
See also String class; Gen_String class
description, 2-8
friend functions, 2-8—2-10

class macro
See also Generic class; MACRO
definition, 1-4
description, 12-7, 14-6

classmac macro
See also Generic class; MACRO
arguments, 12-8
description, 12-7, 14-6
example, 12-9—12-10
interaction with class macro, 12-7
synopsis, 12-8

Coding style
build procedure, 14-8, 14-11
class header file organization, 14-9—14-10

Index

Index-2 COOL User’s Manual

data members, 14-8
description, 14-8—14-11
error message package, 14-8, 14-11
naming conventions

class, struct, typedef names, 14-9
constant declarations, 14-9
directory names, 14-9
function names, 14-9
global and static variables, 14-9
predicate function names, 14-9
preprocessor and macro names, 14-9
variable and data member names, 14-9

organization and contents of class header files,
14-8

private, protected, and public data, 14-10
regression test suite, 14-8, 14-11

source code documentation, 14-8
guidelines, 14-10—14-11

source code indentation, 14-11
source code layout, 14-8
source code system dependence, 14-8
source code system independence, 14-11
variable and class naming conventions, 14-8

Complex class
base class, 3-4
constructors, 3-4
description, 3-4
example, 3-7—3-8
friend functions, 3-6—3-7
member functions, 3-4—3-6

Container class
See also Parameterized templates; Ordered

sequence classes; Unordered sequence
classes

available in COOL, 5-10
current position, 5-11
definition, 1-2
description, 5-10
making your own, 5-13
member functions, 5-11
requirements for parameterized type, 5-14
storing objects in, 5-14

COOL
audience, 1-1
class hierarchy, 1-7, 14-12
constants, defined in misc.h, 1-4
definition, 1-1
description of classes, 1-4—1-7
features, 1-1—1-7
introduction, 1-1
macros, 1-2
major features, 1-1
methodology, 14-1
porting to a new platform, 10-1
preprocessor

derived from, 1-2, 10-2
description, 10-1, 14-1—14-2

options, 10-2
synopsis, 10-2

symbolic computing capabilities, 14-4
TRUE and FALSE constants, 1-4

Country.h File
See also Date_Time class
description, 4-7

Current position
See also Iterator class
description of, 5-11
example, 10-6
member functions, 5-11
state information, 5-12

D
D_Node class

See also N_Node class; N_Tree class
base class, 9-13
description, 9-13
friend classes, 9-13
member functions, 9-13—9-14
public constructors, 9-13
requirements for parameterized type, 9-1

Date_Time class
base class, 4-1
constructors, 4-1—4-2
description, 4-1
example, 4-8—4-9
friend functions, 4-5—4-6
member functions, 4-2—4-5

DECLARE macro
See also IMPLEMENT macro; Parameterized

Templates
description, 5-4
example, 5-5
synopsis, 5-4

defmacro
description, 10-3
implementation, 10-3
options, 10-3
synopsis, 10-3

DEFPACKAGE macro
See also DEFPACKAGE_SYMBOL macro;

MACRO; enumeration_package,
text_package; symbol_package; once_only
package

allocation of storage, 11-10
creating specialized packages, 11-10
definition, 1-3
description, 11-7
importance of symbols.C file, 11-10
options, 11-7—11-8
synopsis, 11-7

DEFPACKAGE_SYMBOL macro
See also DEFPACKAGE macro
adding symbols to a package, 11-9

Index

Index-3COOL User’s Manual

description, 11-9
synopsis, 11-9

E
enumeration_package macro

creation of storage file, 11-11
description, 11-11
example, 11-11—11-12
synopsis, 11-11
use as dynamic enumeration types, 11-11

ERR_MSG text package
See also text package macro
creation of, 11-12
error messages in exceptions, 13-9, 13-18

Exception class, 13-7
as symbols in a package, 13-18
base class, 13-3
constructors, 13-3
description, 13-3—13-4
Error, 13-7
Error, default handler, 13-7
Fatal, default handler, 13-7
friend functions, 13-4
predefined types, 13-7
public data members in, 13-19
public methods, 13-4
System_Error, 13-7
System_Error, default handler, 13-7
System_Signal, 13-7
System_Signal, default handler, 13-8
Verify_Error, 13-7
Warning, 13-7
Warning, default handler, 13-8

Exception handling
See also Excp_Handler class
definition, 1-4
description, 13-1—13-2, 14-7
macros, 14-7
overview, 1-4

EXCEPTION macro
See also RAISE macro; STOP macro; VERIFY

macro; IGNORE_ERRORS macro
description, 13-8
examples, 13-9—13-11
group names as symbols, 13-8
synopsis, 13-8

Exceptions
See also MACRO; Excp_Handler class; Symbol

class; Package class
description, 13-1—13-2
description of COOL macros, 13-2
group names (aliases), 13-2
group names as symbols, 13-3
group names, example of, 13-9
overview, 14-6—14-7
predefined types, description, 14-7

public data members in user–defined exceptions,
13-19

user–defined types, 13-19
Excp_Handler class

See also Exception class; MACRO; Symbol class;
Package class

as symbols in a package, 13-18
base class, 13-5
constructors, 13-5
dealing with exceptions, 13-5
description, 13-5
example, 13-6
friend class, 13-5
global exception handler stack, 13-2
group names, example of, 13-6
predefined types, 13-7
public methods, 13-5

EXPAND_ARGS macro
See also MACRO
description, 10-10
example, 10-10
synopsis, 10-10

G
Gen_String class

See also Regexp class; char* functions; String
class

base class, 2-14
constructors, 2-14
definition, 2-14
example, 2-20
friend functions, 2-18—2-20
member functions, 2-14—2-18
operator char*, 2-14

Generic class
See also class macro; SYM package; Symbol

class; Package class; class macro
addition of member functions, 12-2
base class, 12-2
definition, 1-3
description, 12-2, 14-5
example of runtime type checking. See Generic

class
friend functions, 12-3
member functions, 12-3
overview, 1-7
protected constructors, 12-2
protected member functions, 12-2
relationship to SYM package, 12-2
symbols.C file, 12-2

H
Hash_Table class

base classes, 7-17
constructors, 7-17

Index

Index-4 COOL User’s Manual

description, 7-17
example, 7-20—7-22
friend functions, 7-20
member functions, 7-17—7-20
requirements for parameterized type, 7-1
use of operator=, 7-1

heterogeneous containers
See also Generic class
example, 12-5—12-7

I
IGNORE macro

See also MACRO
description, 10-11
example, 10-11
synopsis, 10-11

IGNORE_ERRORS macro
See also EXCEPTION macro; RAISE macro;

STOP macro; VERIFY macro
description, 13-17
destructors not called, 13-17
example, 13-18
synopsis, 13-17

IMPLEMENT macro
See also CCC; DECLARE macro; Parameterized

templates
description, 5-4
example, 5-5
synopsis, 5-4

INITIALIZE macro
See also MACRO
description, 10-10
example, 10-11
synopsis, 10-10

is_type_of
See also Generic class
example, 12-4

ISSAME macro
See also MACRO
description, 10-7
example, 10-7
synopsis, 10-7

Iterator class
base class, 5-12
constructors, 5-12
description, 5-12
example, 5-13
member functions, 5-13
provision of multiple iterators, 1-2
state information, 5-12

J
Jump_Handler class

See also Excp_Handler class; IGNORE_ERRORS
macro

base class, 13-16
constructors, 13-16

description, 13-16
friend functions, 13-16
group names as symbols, 13-16
public methods, 13-16

K
KEYARGS macro

See also MACRO
description, 10-8
example, 10-8
synopsis, 10-8

L
List class

base classes, 7-2
constructors, 7-2
description, 7-2
example, 7-9—7-10
friend functions, 7-8
member functions, 7-2—7-8
requirements for parameterized type, 7-1
use of operator=, 7-1

M
MACRO

description, 10-4
examples, 10-5—10-7
implementation, 14-2
synopsis, 10-4

Matrix class
base classes, 6-17
constructors, 6-17
description, 6-17
example, 6-19
friend functions, 6-19
member functions, 6-17—6-19
requirements for parameterized type, 6-1
use of operator=, 6-1

misc.h, fundamental COOL constants, 1-4

N
N_Node class

See also D_Node class; N_Tree class
base class, 9-11
description, 9-11
friend classes, 9-11
member functions, 9-11—9-12
public constructors, 9-11
requirements for parameterized type, 9-1

N_Tree class
See also Binary_Tree class; AVL_Tree class;

D_Node class; N_Node class
base class, 9-16
description, 9-15
example, 9-18—9-19
member functions, 9-16—9-17

Index

Index-5COOL User’s Manual

public constructors, 9-16
requirements for parameterized type, 9-1
traversal modes, 9-15
use of operator=, 9-1

Node and tree classes
See also Ordered sequence classes; Unordered

sequence classes
overview, 1-6

Node classes. See Binary_Node class; N_Node class;
D_Node class

Number classes
See also Random class; Complex class; Rational

class; Bignum class; Range class
definition, 3-1
overview, 1-5

O
ONCE_ONLY macro

See also MACRO; once_only package
description, 10-9
example, 10-9
synopsis, 10-9

once_only package, description. See ONCE_ONLY
macro

Ordered sequence classes
See also Parameterized templates; Unordered

sequence classes; Vector class; Stack class;
Queue class; Matrix class

overview, 1-5
requirements for parameterized type, 6-1
use of operator=, 6-1

P
Package class

See also Symbol class; Generic class; Macro
base classes, 11-4
constructors, 11-4
definition of a package, 1-3, 11-1
description, 11-3, 14-4
friend class, 11-4
friend functions, 11-6—11-7
member functions, 11-4—11-6
overview, 1-7
use of operator=, 11-1

Pair class
See also Association class
base class, 7-10
constructors, 7-10—7-11
description, 7-10
friend functions, 7-11
member functions, 7-11
use of operator=, 7-1

Parameterized classes. See Parameterized templates
Parameterized templates

See also Container classes
COOL, list of, 5-2
container class, description, 14-3

definition, 1-2
description, 5-1—5-3, 14-3—14-4
example of DECLARE and IMPLEMENT, 5-5
template example, 5-5—5-7
use of DECLARE and IMPLEMENT, 5-4

Polymorphic management
description, 12-1, 14-5
relationship with Generic and class macro,

14-5—14-6

Q
Queue class

base classes, 6-13
constructors, 6-13
description, 6-13
example, 6-16
friend functions, 6-16
member functions, 6-13—6-16
requirements for parameterized type, 6-1
use of operator=, 6-1

R
RAISE macro

See also EXCEPTION macro; STOP macro;
VERIFY macro; IGNORE_ERRORS macro

description, 13-11—13-12
example, 13-12—13-13
group names as symbols, 13-12
synopsis, 13-12

Random class
base class, 3-2
Constructor, 3-2
description, 3-1
example, 3-3
member functions, 3-2
ONE_CONGRUENTIAL random generator, 3-2
SHUFFLE random generator, 3-2
SIMPLE random generator, 3-2
SUBTRACTIVE (Knuth) random generator, 3-2
THREE_CONGRUENTIAL random generator,

3-2
Range class

base class, 3-20
constructors, 3-20
description, 3-20
example, 3-21—3-22
member functions, 3-20—3-21

Rational class
base class, 3-9
constructors, 3-9
description, 3-9
example, 3-13
friend functions, 3-12
member functions, 3-9—3-11

Regexp class
See also Gen_String class
base class, 2-11

Index

Index-6 COOL User’s Manual

constructors, 2-11
description, 2-11
example, 2-12—2-14
member functions, 2-11

S
Set class

See also Hash_Table class; List class; Bit_Set
class; Parameterized templates

base classes, 8-2
description, 8-2
example, 8-5—8-6
friend functions, 8-5
member functions, 8-2—8-5
public constructors, 8-2
requirements for parameterized type, 8-1
use of operator=, 8-1

Stack class
base classes, 6-9
constructors, 6-9
description, 6-9
example, 6-12
friend functions, 6-11
member functions, 6-9—6-11
requirements for parameterized class, 6-1
use of operator=, 6-1

STOP macro
See also EXCEPTION macro; RAISE macro;

VERIFY macro; IGNORE_ERRORS macro
description, 13-13
example, 13-14
group names as symbols, 13-13
synopsis, 13-13

String class
See also Gen_String class; char* functions;

Regexp class
base class, 2-2
constructors, 2-2
definition, 2-1
example, 2-7—2-8
friend functions, 2-5—2-7
member functions, 2-2—2-5
operator char*, 2-1
overview, 1-4

Stroustrup, Bjarne, 1-2, 10-1
SYM package

See also symbol_package macro
description, 11-21
example of interface to, 11-21
interface with, 11-21—11-22

Symbol class
See also Package class; Generic class
base class, 11-2
definition of a symbol, 1-3, 11-1
definition of property list, 11-1
description, 11-2, 14-4
friend class, 11-2

friend functions, 11-3
member functions, 11-3
overview, 1-7, 14-4
protected constructors, 11-2
public constructors, 11-2
use of operator=, 11-1

symbol_package macro
See also DEFPACKAGE macro;

DEFPACKAGE_SYMBOL macro
contents of symbol package file, 11-20
creation of SYM symbol package, 11-18
creation of storage file, 11-18
definition of additional macros, 11-18
description, 11-17
example, 11-18—11-20
implementation details, 11-22—11-24
implementation of package in symbols.C, 11-20
synopsis, 11-18

Symbolic computing
See also Symbol class; Package class
COOL capabilities, 1-3

System interface classes
See also Date_Time class; Timer class
overview, 1-5

T
template

See also Parameterized templates; container class
syntax, 5-3

text_package macro
adding translations for other languates, 11-17
contents of symbol package file, 11-15
creation of storage file, 11-12
description, 11-12—11-13
example, 11-13—11-17
friend functions, 11-13
implementation of package in symbols.C, 11-15
support for multiple language translations, 11-13
synopsis, 11-13

Time zone.h File
See also Date_Time class
description, 4-6

Timer class
accuracy, 4-10
constructors, 4-10
description, 4-10
example, 4-11
member functions, 4-10

Tree classes
See also Binary_Tree class; AVL_Tree class;

N_Tree class; Node classes
use of operator=, 9-1

TYPE_CASE macro
See also Generic class
description, 12-5
example, 12-5

type_of

Index

Index-7COOL User’s Manual

See also Generic class
example, 12-4

U
Unordered sequence classes

See also List class, Pair class, Association class,
Hash_Table class; Ordered sequence
classes; Parameterized templates

overview, 1-5
requirements for parameterized type, 7-1
use of operator=, 7-1

V
Vector class

base classes, 6-2

constructors, 6-2—6-3
description, 6-2
example, 6-8
friend functions, 6-7
member functions, 6-3—6-7
requirements for parameterized type, 6-1
use of operator=, 6-1

VERIFY macro
See also EXCEPTION macro; RAISE macro;

STOP macro; IGNORE_ERRORS macro
description, 13-14
example, 13-15
group names as symbols, 13-14
synopsis, 13-15

Index

Index-8 COOL User’s Manual

	Contents
	About This Manual
	1. Overview of COOL
	2. String Classes
	3. Number Classes
	4. System Interface Classes
	5. Parameterized Templates
	6. Ordered Sequence Classes
	7. Unordered Sequence Classes
	8. Set Classes
	9. Node and Tree Classes
	10. Macros
	11. Symbols and Packages
	12. Polymorphic Management
	13. Exception Handling
	14. Cool Methodology
	Glossary
	Index

