** DRAFT **
A Runtime Type Checking and Query Mechanism for C++
** DRAFT **

Mary Fontana
LaMott Oren

Texas Instruments Incorporated
Computer Science Center
Dallas, TX

Martin Neath

Texas Instruments Incorporated
Information Technology Group
Austin, TX

ABSTRACT

The Texas Instruments C++ Object-Oriented Library (COOL) is a collection of classes,
templates and macros for use by C++ programmers writing complex applications. Symbolic
computing in COOL is one component of this library that substantially improves the develop-
ment capabilities available to the programmer by providing symbol and package manipulation
and runtime type checking and type query. This paper will focus on the implementation of
runtime type checking and query.

1. Introduction

The Texas Instruments C++ Object-Oriented Library (COOL) is a collection of classes, templates and macros for
use by C++ programmers writing complex applications. An important feature of this library is the symbolic
computing capability which provides symbol and package manipulation and runtime type checking and query.
This paper will describe the runtime type checking capability. For details on symbols and packages in COOL,
see the paper, Symbols and Packages in C++ [4]. For an overview of the COOL class library, see the paper,
COOL - A C++ Object-Oriented Library [1]. For complete details, see the reference document, COOL User’s
Guide [5].

The ability to query an object at runtime to determine its type is commonly used in many symbolic computing
and complex knowledge-intensive operations management applications. Such capability is found in highly
dynamic languages such as SmallTalk [7] and Common LISP [8], but the C++ language does not support this.
COOL facilitates a runtime type checking and query capability for C++ classes with the Generic class, the Sym-
bol class, the SYM macro and the class macro. The Generic class provides the type of and is type of
member functions for runtime type checking and query. type of returns the class type of the object and
is type_of determines whether the class type of the object inherits from a specified class type. The Symbol class
is used to represent the type information of a class object. The SYM macro stores symbol names in the
"sym_package.p" file which is used to automatically create symbol objects at program startup. Finaly, the
COOL class macro generates the class hierarchy structure and the type list virtual member function for classes
singly or multiply derived at some point from the Generic class.

2. Symbols

COOL supports symbolic constants and runtime symbolic objects. The Symboal class implements the notion of a
symbol object that has a name, value and property list (see Figure 1). Symbol objects can be created and
interned into a package, which is merely a mechanism for establishing separate name spaces for groups of sym-
bols [4]. Symbol objects are also utilized by the Generic runtime type checking and query member functions as
a way of representing the type information of a class object. A Symbol object is automatically created at pro-
gram starup for each class derived from Generic with name set to the class name and value and property list set
to NULL.

The SYM and class macros are implemented with the COOL macro facility [2] which gives special directives to
the COOL preprocessor. The class macro (discussed below) uses SYM to create Symbol objects for Generic-
derived classes. SYM (name) is replaced in the source code with the address of the Symbol object for name. At
the same time, "name" is added to the file "sym_package.p". The total humber of symbols and the names of all
the symbols in an application are saved in "sym _package.p". The file "symbols.C" initializes a global array of
symbols objects with the names stored in "sym_package.p" and is compiled and linked with the rest of the
application files.

The application uses the COOL C++ Control program (CCC), instead of the normal CC procedure, to control the
compilation process. This program provides al of the capabilities of the original CC program with additional
support for the COOL preprocessor. Figure 2 shows the flow of the COOL compilation process using CCC and
"symbols.C".

Example

Foo.C Foo.i
class Generic; class Generic;
Generic* obj; Generic* obj;
if (obj->is type of(SYM(foo)) { if (obj->is type of(&SYM_symbolg[Q])) {
} }

Bar.C Bar.i
class Generic; class Generic;
Generic* obj; Generic* obj;
if (obj->is type of(SYM(bar) if (obj->is type of(&SYM_symbolg1])

|| obj->is type of(SYM(baz)) | obj->is type of(&SYM_symbolg[2]))

} }

/I from sym_package.p

#define SYM_count 2
MACRO SYM_DEFINITIONS(define_name) {
define_name(0,"foo");
define_name(1,"bar");
define_name(2,"baz");
}

#define MAKE_SYM(index, symbol) SYM_symbolgindex].name = symboal;

[/l from Symbols.C

#include "sym_package.p"
Symbol SYM_symbolg2]; // SYM_count
void SYM_package initializer() {

/I SYM_DEFINITIONS(MAKE_SYM);
SYM_symbolg0].name = "foo";
SYM_symbolg[1].name = "bar";
SYM_symbolg[2].name = "baz";

}

static Package SYM_package s(SYM_package initializer);

3. Generic class

The Generic class is inherited by all COOL classes. For a complete definition of this class see Figure 3. It pro-
vides runtime type checking capabilities for any class that uses it as a base class. This information is accessed
with the following member functions:

Symbol* Generic::type of ();
Returns the symbol type associated with the object.

Boolean Generic::is type of (Symbol* type);
Returns TRUE if the object is the specified type or inherits from that type somewhere in its class hierar-
chy, otherwise returns FAL SE.

int Generic::select_type of (Symbol** type vector);
If the object’s symboal type is found in the specified array of pointers to symbols, returns the integer index
of the matching symbol type, otherwise returns -1. The TYPE_CASE macro (discussed later) uses this
member function with the switch statement to select an appropriate execution path based upon the symbol
type of the object.

virtual Symbol** Generic::type list();
Returns a NULL-terminated array whose first element is a pointer to the symbol for the class being
defined. The rest of the array elements are pointers to the type lists of the base classes.

The type list member function represents the class hierarchy of the Generic-derived class. Note that the
type list member function is virtual. Each class derived from Generic has a type list member function which is
generated automatically by the class macro. The type of, is type of and select_type of member functions use
the virtual type list member function to access the class hierarchy of the class object.

Example

The following example shows runtime type checking operations on the variable n which is of type Long. Long
is derived from Generic. In this example, SYM(Long) is a pointer to a Symbol object, & SYM _entry[13].

extern Generic* n = Long(123);
static Symbol* sym_list[4] = { SYM(long), SYM(Long), SYM(Integer), NULL };

n->type of (); Il returns & SYM_entry[13]
n->is type of (SYM(Long); /l returns TRUE
n->is_type of (SYM(long)); /I returns FALSE
n->select_type of (sym_list); /l returns 1

4. Class macro
The keyword class is a COOL macro which takes a C++ class description and generates code to support the
runtime type checking and query mechanism. The class macro adds the following lines into the class definition.

protected:
virtual Symbol** type list ();

The definition of the type list member function and the array of symbol pointers representing the class hierarchy
of the class are added after the class definition.

Example

The following example shows how the class Long which is derived from class Generic is expanded by the
COOL class macro. The additional code generated is highlighted in bold. Note that Long_types is a NULL-
terminated array of symbol pointers whose first element is a pointer to the Long symbol and second element is a
pointer to Generic_types which contains the Generic symbol pointer.

class Long : public Generic {

private:
long num;
public:
Long (long value) { num = value; }; /l Make a long
long operator long () { return this->num; }; /I Get the value out
H
expands to:
class Long : Generic {
private:
long num;
protected:
virtual Symbol** type list ();
public:
Long (long value) { num = value; }; /l Make a long
long operator long () { return this->num; }; /I Get the value out
h
extern Symbol* Generic_typed[]; /l initialized to {SYM (Generic), NULL }

Symbol* Long_types[] = { SYM (Long), (Symbol*) Generic_types, NULL };

Symbol** Long::type list () { return Long_types, }

4.1. Classmac macro

The actual code which is expanded in a class definition and after a class definition is controlled by the classmac
macro. Each classmac macro defines how the class macro should expand the class definition. The class macro
does not actually generate the code itself. This is defined in user-modifiable header files that specify classmac
macros. Thus no changes to the COOL preprocessor are required.

In the following example, the type list member function for the Generic-derived class is generated by defining
two classmac macros. The DECLARE_GENERIC macro expands the type list member function declaration
inside the class definition and the IMPLEMENT_GENERIC macro expands after the class the definition for
type list. The GENERATE macro is used to generate block code for multiple base classes of a class
definition.

Example

classmac (DECLARE_GENERIC, inside)
classmac (IMPLEMENT_GENERIC)

MACRO DECLARE_Generic(class, REST: bases) {
WHEN_GENERIC_CLASS(class, bases) {
protected:
virtual Symbol** type list() CONST;
}

}

MACRO IMPLEMENT _Generic(class, REST: bases, BODY: dots) {
WHEN_GENERIC_CLASS(class, bases) {
GENERATE(base, bases)
{ extern Symbol* base## typed]; }
Symbol* class# typeq[] =
{ SYM(class), GENERATE(base, bases) { (Symbol*) baset## types, } NULL };
Symbol** classt##::type list() CONST { return classt# types,; }
}
}

The classmac macro provides two hooks as a point of customization by user defined macros. A combination of
data members and member functions of a class definition are passed as arguments to the macros that can be
changed or customized by the application programmer. There may be more than one classmac macro hook
specified by the programmer. COOL has severa and other user-defined macros are simply chained together in a
calling sequence ordered according to the order of definition. For example, in COOL there is the
map_over_dots virtual member function which calls a specified function on al of the data members in the
class. (The describe member function would use map_over_dots to display the name, value, and type of each
data member). The definition of map_over_dots is automatically generated for each Generic-derived class by
defining classmac with the data member hook. The send_if_handles member function which supports the run-
time query of objects for member function availability is generated by utilizing the member function hook in
classmac.

5. TYPE_CASE

The TYPE_CASE macro is analogous to the C++ switch statment. It gathers all possible type cases and allows
the user to symbolically dispatch on the type of object represented by the case statements. It uses the
Generic::select_type of member function as shown in the following macro expansion of TYPECASE.

Example

Generic* g;
TYPE_CASE (g) {
case Vector: /' 1f the object is a vector
/I Do something for Vector
break;
case List: /I 1f the object isalist
// Do something for List
break;
default: /I Else do the rest
}
expands to:
Generic* g;

static Symbol* switch_symbols g[3] = {SYM(Vector), SYM(List), NULL};
switch (g->select_type of(switch_symbols_g)) {
case O: /I' If the object is a vector
/I Do something for Vector
break;

case 1: /I If the object isalist
/I Do something for List
break;

default: /I Else do the rest

6. Comparison with Dossiers

The COOL runtime type checking and query capability is very similar to the Dossier interface proposed in the
paper by Interrante and Linton, Runtime Access to Type Information in C++ [6]. Both the Dossier class and the
COOL Symboal class represent the type information of a class object. Both the mkdossier tool and the COOL
preprocessor (running the class macro) generate a C++ source file ("__dossier.h" and "sym_package.p") to con-
tain the type information. The Dossier interface generates type information for all classes, but COOL generates
runtime type member functions only on classes derived singly or multiply at some point from the Generic class.
This is done automatically by the COOL preprocessor and the code actually generated can be customization by
the user. This next table attempts to show more comparisons between the two runtime type information
mechamisms.

DOSSIER
extern Dossier** classes()
Boolean Dossier::isA(Dossier*)
Dossier* class::GetClassld()
Dossierltr Dossier::parents()
Dossierltr Dossier::children()

Class Foo foo;
class Bar bar;
extern Dossier* FOOQ,;
extern Dossier* BAR,;

foo.GetClassld() returns FOO
foo.GetClassld()->isA(BAR)

extern Symbol SYM_symbolg[]
Boolean Generic::is_type of (Symbol*)

Symbol* Generic::type_of()

Symbol** class::type_list()

none

class Foo foo; // :public Generic
class Bar bar; // :public Generic
SYM(Foo); Il &SYM_symbol[0]
SYM(Bar); /I &SYM_symbol[1]

foo.type_of() returns SY M(Foo)
foo.is_type of(SYM(Bar))

7. Conclusions

Texas Instruments has been using the symbolic computing capability in COOL for the last two year. Applica
tions have utilized COOL symbols, packages, and runtime type checking and type query of Generic-derived
class objects. Most COOL classes contain Generic base class. A significant benefit of this common base class
is the ability to declare heterogenous container classes parameterized over the Generic* type. In addition, the
COOL exception handling facility [3] takes advantage of the runtime type checking of exception objects. An
automated method for generating the symbols objects for type information is accomplished with the COOL
macro facility [2].

COOL is currently running on a Sun SPARCstation 1 running SunOS 4.Xx, a PS/2 model 70 running SCO
XENIX[O 2.3, a PS/2 model 70 running OS2 1.2, and a MIPS running RISC/os 4.0. The SPARC and MIPS
ports utilize the AT& T C++ trandator (cfront) version 2.x and the XENIX and OS/2 ports utilize the Glocken-
spiel C++ trandator with the Microsoft C compiler.

8. References

[1] Mary Fontana, Martin Neath and Lamott Oren, COOL - A C++ Object-Oriented Library, Information
Technology Group, Austin, TX, Internal Original Issue January 1990.

[2] Mary Fontana, Martin Neath and Lamott Oren, A Portable Implementation of Parameterized Templates
Using A Sophisticated C++ Macro Facility, Information Technology Group, Austin, TX, Internal Origina
Issue January 1990.

[3] Mary Fontana, Martin Neath and Lamott Oren, A Portable Exception Handling Mechanism for C++,
Information Technology Group, Austin, TX, Internal Original Issue January 1990.

[4] Mary Fontana, Martin Neath and Lamott Oren, Symbols and Packages in C++, Information Technology
Group, Austin, TX, Internal Original Issue January 1990.

[5] Texas Instruments Incorporated, COOL User’s Guide, Information Technology Group, Austin, TX, Internal
Original Issue January 1990.

SunOS and SPARCstation 1 are trademarks of Sun Microsystems, Inc.
PS/2 is a trademark of International Business Machines Corporation.
XENIX is aregistered trademark of Microsoft Corporation.

0S/2 is atrademark of International Business Machines Corporation.

6]

8]

-8-

John Interrante and Mark Linton, Runtime Access to Type Information in C++, Proceedings of the
USENIX C++ Conference, San Francisco, CA, April 9-11, 1990.

Adele Goldberg and David Robson, SmallTalk-80: The Language and its | mplementation, 1983.
Guy L. Steele Jr, Common LISP: The Language, Second Edition, 1990.

Figure 1: The Symbol class

class Symbol : public Generic { /I Define the Symbol class
friend class Package; /I Package class needs access
protected:
const char* pname; /I Symbol name
Generic* val; /I Symbol value
Association<Symbol*, Generic*>* proplist; // Property list
inline Symbol (const char* name); Il Use Package::intern()
public:
Symbol (); I/l Used for constant symbol[]
[Bymbol(); /I Destructor
Boolean get (const Symbol*, Symbol_GenericP&); // Lookup value
void put (const Symbol*, Generic*); I set plist value
Boolean remove (const Symbol*); // Remove value from plist
inline const char* name () CONST; Il Accessor for pname
inline Generic* value (); Il Accessor for value
inline Generic* set (Generic*); Il Set new value

inline Association<Symbol*, Generic*>* plist(); // Accessor for properties
friend ostream& operator<< (ostreamé&, const Symbol*);// Print symbol
friend ostream& operator<< (ostreamé&, const Symbol&);// Print symbol

1

Figure 2. CCC Foo.C and Bar.C

Foo.C Bar.C
COOLcpp sym_package.p COOLcpp
Symbols.C
Foo.i Symbols.i Bar.i
CcC CcC
Foo.o Symbols.o Bar.o

a.out

-10 -

Figure 3: The Generic class

class Generic {

protected:
Generic(){}; /I Abstract class's have Protected constructors
virtual Symbol** type list();
public:
virtual CGeneric(); /l Virtua destructor
inline Symbol* type of(); /I Return the type symbol

Boolean is _type of(Symbol* type); /I Type checking predicate

int select_type_of(const Symbol** type_vector);

virtual Boolean map_over_dots(Slot_Mapper procedure, void* rock = NULL);

virtual void describe(ostream&); // Display all slots in some "raw" format

friend ostream& operator<< (ostreamé&, const Generic&); // Overload output operator
friend ostream& operator<< (ostreamé&, const Generic*); // Overload output operator
void print(ostream&); /I terse print

H
Symbol* Generic_typeq] = {SYM (Generic), NULL};

Symbol** Generic::type list() CONST {
return Generic_types,
}

inline Symbol* Generic::type_of() {
return *(this->type list());
}

extern Boolean compare_types(Symbol** typelist, Symbol* type);

inline Boolean Generic::is type of(Symbol* type) CONST {
return compare_types(this->type list(), type);

}

extern int compare_multiple_types(Symbol** type list, const Symbol** test_types);
inline int Generic::select_type of(const Symbol** test_types) CONST {

return compare_multiple_types(this->type list(), test_types);
}

