A Platform Independent Source Code Engineering System

Martin Neath
neath@itg.ti.com

Texas Instruments Incorporated
Information Technology Group
Austin, TX

ABSTRACT

The Platform Independent Source Code Engineering System (PISCES) is an easy to use
source code revision control, configuration, and automated make file system for use in large
software projects. PISCES is a collection of several public domain utilities modified to work
closely together to provide the software engineer with tools to simplify the process of rapidly
porting and maintaining a C/C++ source code base across heterogenous hardware platforms
and software environments. This paper describes PISCES, presents a software methodology
development model for structuring and maintaining a source code base, discusses the major
components and how they have been modified to closely cooperate with each other, and pro-
vides an introduction to its use through several annotated examples.

1. Introduction

The Platform Independent Source Code Engineering System (PISCES) is a collection of utilities providing a
platform-independent source code revision control, configuration, and automated make file system. It is designed
to be used by engineers on large software projects to control the complexities of source file dependencies and
make file systems across heterogenous hardware platforms and operating system environments. PISCES is built
upon the Revision Control System (RCS), the macro-make file facility (imake), an automatic file dependency list
generator (mkdepend), the DECUS ANSI C preprocessor (cpp), and the GNU file differentiator program (diff).

The immediate impetus for creating PISCES was to ease the process of porting and maintaining a large software
project written in C and C++ running on SPARC work stations, a MIPS Ultrix file server, a large VAX VMS
system, and PS/2 (TM) personal computers running either SCO UNIXO or IBMO OS2 (TM) Extended Edition.
Our software methodology regquirements established the need for a revision control system with support for ver-
sioning and dtrict file locking, a make facility to control the build procedure that gives us a high degree of
confidence in file dependency detection and automatic updates, and an easy means for recursively performing
maintenance tasks and rebuilding and running regression test suites. We examined the native tools available on
each target platform and found varying levels of support for each of these tasks. No single platform, however,
provided al the desired functionality and no two systems were consistent in either the programmer or command
line interface.

As a result, we developed PISCES to allow the programmer to have a consistent interface to a common suite of
tools providing powerful source code manipulation and configuration functions across very different platforms.
These tools are all written in C and "glued” together through a single software methodology with an expected
behavior utilizing machine independent macros and machine-specific command names and arguments. The

PS/2 is a trademark of International Business Machines Corporation.

UNIX is aregistered trademark of AT&T.

IBM is aregistered trademark of International Business Machines Corporation.
0S/2 is a trademark of International Business Machines Corporation.



modifications made to the public domain utilities are largely centered around removing any operating system
bias towards UNIX, completely parameterizing all pathname determination and construction, and allowing for
the joint development of both C and C++ object files in a single environment.

PISCES does not have infinite flexibility or the capability to solve very complex configuration problems. Rather,
it is a simple-to-use collection of tools ideal for the 90% of configuration and build operations centered around
congtruction of C and C++ object files, libraries, and programs on diverse hardware and software platforms. This
paper describes PISCES, presents a software methodology development model for structuring and maintaining a
source code base, briefly discusses the major components and the modifications made to each, examines the sup-
ported rules and actions for program development, provides an introduction to its use through several annotated
examples, and lists the requirements and procedure for adding support for a new hardware platform or operating
system.

2. Supported Hardwar e Platforms, Operating Systems, and Compilers

In order to be a useful and valueable tool, PISCES must run on several magjor hardware platforms and software
environments. Since our immediate goal was to enable the development and configuration of a large C and C++
project on several different machines, we identified the following six hardware platforms and associated operat-
ing systems and language facilities as the minimal required environments on which PISCES should be available
and supported:

» SUN SPARC supporting SunOS(TM) C and the AT&T C++ trandator

DEC VAX/VMS supporting VAX C and the Oasys C++ language system

DEC MIPS/UItrix supporting Ultrix C and the AT& T C++ trandator

T1 S1500 supporting GNU C and the AT& T C++ trandator

IBM PS/2 running OS2 EE with IBM C/2(TM) or Microsoftl] C, and Glockenspiel C++
Intel 386/486 platforms supporting SCO UNIX/C and Glockenspiel C++

The various UNIX environments are fairly similar and represent relatively easy platforms to support. The VMS
and OS/2 systems, however, are quite different in nature and organization and, in places, were difficult to sup-
port. Since portability and identical functionality are important PISCES attributes, we have restricted or limited
those operations and features that cannot be easily supported on all environments in an identical way. Adding
support for another hardware platform or operating system and identifying the operations and functionality
required is discussed later in this paper in the section, Extending PISCES to Additional Platforms and Environ-
ments.

3. The PISCES Source Code Engineering M ethodology

The source code engineering methodology behind PISCES is nothing fundamentally new or revolutionary.
Rather, it is a combination of common sense and ideas based upon the experience of many people in building
real-world applications on several different types of hardware platforms. We identified the most important
features and typical problem areas common in large software projects in order to try to put together a system to
efficiently handle them. As engineers, we did not want to be hampered by a large and aobtrusive mechanism that
would be bypassed and ultimately wither except for the dictate of a manager. On the other hand, having seen
many of the problems first hand, we realized that a solution would probably require the imposition of some
structure and organization. Thus, the PISCES source code engineering methodology addresses the following
points:

* Directory structure and organization

* Source code control and revision system

* Isolation of machine and operating system dependencies
» Unit and system level regression test code

SunOS is a trademark of Sun Microsystems, Inc.
Microsoft is a registered trademark of the Microsoft Corporation.
C/2 is atrademark of International Business Machines Corporation.



3.1. Directory Structure and Organization

A large software product can typically have hundreds of header and source files. As a result, nested subdirec-
tories should be used to organize the files and ssimplify the understanding of related components through associa-
tion in the same module. PISCES supports nested and recursive subdirectory make file invocation for all
development activities though a single statement. A build activity can be activated at the top of the source tree,
in which case all subdirectories will be affected. Alternately, a single subdirectory at some intermediate point in
the source tree can be worked with independently. Finally, an operation can be performed on the files in the
current directory, with subdirectories below subsequently processed for the same operation.

3.2. Source Code Control and Revision System

We strongly believe that all software systems should be developed and maintained within the structure of a
source code control and revision system. PISCES uses RCS and automatically generates rules and dependency
lists to support this system. As engineers, however, we strongly recognize the way in which such a system can
hamper the productivity of a programmer who is forced to go through bureaucratic approval measures just to
change a comment or make a minor change. As a result, PISCES makes use of the distinction between major
and minor revision numbers supported by RCS. A major revision number precedes the decimal point; a minor
revision number follows the decimal point. Thus, a file with revision 3.27 would indicate minor revision 27 after
the third major revision level starting source base.

Major revision numbers should mirror significant functionality changes, completion of milestones, or releases to
beta sites and customers. These can and should be strictly controlled by a project manager or leader. Minor revi-
sion numbers, on the other hand, should identify intermediate check points for source code modifications made
by the engineering team between major revision levels. This offers the benefit of a frequent and traceable
change history without the burdens and overhead of approval cycles and paperwork. When a source code base is
"reved-up” to the next major revision number, all files in the system are automatically incremented to the next
revision, whether or not there has been a change. PISCES generates rules in the make file to allow past major
revision levels to be built, thus allowing a single source base to be used for both supporting older versions of
software as well as maintaining the current version.

3.3. Isolation of Machine and Operating System Dependencies

The key motivation for PISCES is portability across heterogenous hardware and software platforms. As a result,
we assume that a large portion of the source code for this system is machine independent. Thus, most source
code files are located in the main module subdirectories. Nevertheless, the necessity for machine and operating
system specific code is a common requirement for efficient, complex applications. However, the use of many
#ifdef statements to handle such machine dependencies is strongly cautioned against. It is our belief that #ifdef
statements should be used to identify and handle very minor differences across platforms, for example the inclu-
sion of function prototypes for ANSI C compliant compilers or the identification of a missing function in a stan-
dard header file for a particular operating system. Significant differences, such as pathname construction/parsing
or memory allocation schemes, should be isolated in a machine-specific subdirectory whose name is the same as
that used in PISCES. The following platform names are currently defined:

mips -- DEC/MIPS workstation running Ultrix
sparc -- Sun SPARC workstation running SunOS
vms -- DEC VAX machine running VMS
sco386 -- Intel 80386 platform running SCO Unix
0s2 -- PS/2 running IBM OS/2 extended edition
ti1500 -- T1 S1500 running Tl System V

Thus, a software subdirectory structure would have at or near the top level a machine subdirectory that con-
tained an Imakefile and subdirectories whose name is the name of a particular PISCES-supported platform.
When a software system is built, only that subdirectory whose name matches the system-type name defined in
the top level Imakefile is built. Other platform subdirectories remain untouched. This isolation organization has
two benefits. First, when porting a software source base to a new platform, most if not all machine-specific



functionality is already identified. Second, the remaining source code is relatively uncluttered with #ifdef state-
ments, thus making for a more readable and understandable source code base.

3.4. Unit and System Level Regression Test Code

We believe the importance of unit-level and system regression test code cannot be stated strongly enough. Indi-
vidual members of a project should spend a significant portion of their time writing unit-level test code for the
areas and modules for which they are responsible. System level test code should be coordinated by a full time
software quality engineer and every project member should participate in its design and development. The
PISCES rules and actions support a system-level test code subdirectory and unit-level test code subdirectories
below each module subdirectory. Specific rules to build the test code and run regression tests are directly sup-
ported and automatically inserted into a generated make file.

4. The PISCES Components

PISCES consists of the following five components. the Revision Control System (RCS), the macro-make file
facility (imake), an automatic file dependency list generator (mkdepend), the DECUS ANSI C preprocessor, and
the GNU diff program. All components are available in the public domain with no fees or royalities attached.
In addition, all are written in C and of exceptional high quality. Although some of these components are typi-
cally available on an individual system, we decided to use the PISCES versions in all cases so as to assure the
same interface, functionality, and features across all platforms. We believe that PISCES should be made avail-
able in the public domain for others who might find it useful. The following sections briefly discuss each com-
ponent and identify modifications and changes made to implement PISCES on al platforms.

4.1. The Macro Make Facility (imake)

Imake is a tool available on many UNIX platforms that assists with the task of building a software system con-
sisting of many files with a large number of dependencies. Imake was originally developed by Todd Brunhoff
for the MIT X11 source distribution as a utility to simplify the process of configuring and building the X win-
dow system on various flavors of UNIX[1]. Imake uses the C preprocessor on a macro-makefile (the Imake file)
to generate a make file for a particular system. Imake uses a predefined template file for default values and
commands, a site file for system-specific pathnames and idiosyncracies, a project file for project-specific com-
mand names and procedures, and a set of support macros for tying everything together. An Imake file is
system-independent; support for a new operating system or platform requires only the addition of a template file
for that system. The Imake file specifying the dependencies and relationships between files in the software sys-
tem to be built does not change. This allows machine dependencies (such has compiler options, alternate com-
mand names, and special make rules) to be kept separate from the descriptions of the various items to be built.

As available on the X11R4 source tape, Imake provides support for a number of UNIX-based platforms and
environments to ease the building of X on a particular system[2]. However, Imake makes several assumptions
about the platform on which it is being run, the most obvious of which are pathname construction/manipul ation,
the existence of a named pipes facility, and the availability and location of a C preprocessor. In addition, the
collection of macros provided is both X- and UNIX-specific in nature and confusing to the novice user. As such,
it is unsuitable for use on such platforms as OS/2 and VMS or in situations where the programmer is not an
expert on the intricacies of a C preprocessor and the UNIX operating system. The PISCES version of Imake
makes no such assumptions and has been rewritten to use "plain vanilla® C code that can be compiled and exe-
cuted on most systems with a C compiler. In addition, the macros used by a programmer in an Imakefile have
been simplified and restructured to provide support for simultaneous development of both C and C++ object
files, parameterized pathname syntax and construction, and removal of operating system and X-specific features
such as shared libraries and server/client operations.

Two other significant modification made to Imake for PISCES are the addition of several special characters used
to represent certain behavior and the shortened file names of the various imake configuration files. Due to the
behavior and idiosyncracies of the C preprocessor, Imake uses the character strings "@@\" to indicate a con-
tinuation line in an Imake rule, "@+" and "@-" to indicate that Imake should increment or decrement,



-5-

respectively, the immediately following number, "@!" to indicate that a string should be quoted as appropriate
for a particular operating system, and "@#" to indicate that a line is a make file comment line. The names of the
Imake configuration files have been modified to make them portable to non-UNIX platforms. The file names are
listed below, with the modified name shown on the left and the original X11R4 file name given on the right:

copyrite.imk <no equivalent file>
platform.cf <platform configuration file>
site.imk Site.def

project.imk Project.tmpl

imake.imk Imake.tmpl

imake.rul Imake.rules

The first file inserts a company-specific copyright notice into each generated make file. The second file is the
platform-specific configuration file to override default PISCES commands and macros. The third file allows for
specification of any site parameters, such as the location of the standard C and C++ header files. The fourth con-
tains file names, pathnames, and other application-specific information. The fifth is the generic Imake template
that controls the order and type of information used to create a make file. The last contains the default Imake
rules and macros. When Imake is run, it searches for these files along the include path search directories, look-
ing first in the top level project subdirectory and then in the main PISCES configuration directory.

4.2. The Automatic File Dependency Generator (mkdepend)

The make depend utility on the X11R4 source tape is associated with Imake and follows the include statements
through each source file to determine al other files in the system that each is dependent upon. This dependency
list is then appended to the generated make file so that if one or more dependent files are modified, the affected
source file can be recompiled accordingly. As with Imake, however, there are a number of assumptions about
the system and the nature of the dependencies, particularly concerning pathname construction, file name exten-
sions, and the structure of the dependency list.

The PISCES version of mkdepend performs the same operation as the origina version, but does so in a more
platform independent manner. In addition to changes necessary to allow for compilation and execution on all
hardware platforms and software environments, the most significant modification made is the manner in which
pathnames are constructed and manipulated. In particular, several additional command line options provide for
specification of starting and ending pathname strings, support for generation of RCS dependencies, and the path-
name separator character. Finally, assumptions and changes to file name extensions are made to allow depen-
dency lists to be created for RCS, header, C source, C++ source, and object files. Control and invocation of
mkdepend is handled by Imake and is completely hidden from the programmer.

4.3. The DECUS ANSI C Preprocessor (cpp)

Many C and C++ language implementations separate the preprocessor and compiler functions. Others, (such as
the Glockenspiel C++ language system or the IBM C/2 compiler), combine the preprocessor and compiler into
one step. Since we needed a portable utility to massage macro make files that works under both scenarios, we
decided to select an ANSI C-preprocessor that could be included as part of the PISCES tool set. Thus, the
PISCES preprocessor is derived from and based upon a public domain C-preprocessor (the DECUS C preproces-
sor) made available by the DEC User's group and supplied on the X11R3 source tape from MIT. It has been
modified to run on each of the target platforms and to comply with the draft ANSI C specification[3] with the
exception that trigraph sequences are not supported.

4.4. The Revision Control System and File Differentiator (RCS and diff)

The Revision Control System (RCS) is a software tool written by Walter F. Tichy at the Department of Com-
puter Sciences at Purdue University available on a wide variety of UNIX systems that assists with the task of
keeping a software system consisting of many versions and configurations well organized[4]. Widely considered
to be an efficient next-generation source control system to the popular SCCS, RCS manages revisions of text
documents, in particular source programs, documentation, and test data in a space and time efficient manner. It



-6-

automates the storing, retrieval, logging and identification of revisions, and it provides selection mechanisms for
composing configurations. For conserving space, RCS stores deltas, i.e., differences between successive revi-
sions. The RCS file format is ASCII text, portable from one system to another. Thus, an RCS file containing
versions of afile created and edited on a UNIX system can be used on a VMS system with no conversion.

Version control is the task of keeping software systems consisting of many versions and configurations well
organized. RCS is a set of commands that assist with that task. RCS' primary function is to manage revision
groups. A revision group is a set of text documents, called revisions, that evolved from each other. A new
revision is created by manualy editing an existing one. RCS organizes the revisions into an ancestral tree. The
initial revision is the root of the tree, and the tree edges indicate from which revision a given one evolved.
Besides managing individual revision groups, RCS provides flexible selection functions for composing
configurations. RCS supports both major and minor revision levels. Typically, major revision numbers are for
significant changes/updates or release versions. Minor revision numbers are used when making incremental
changes that are limited in scope and nature.

RCS dso offers facilities for merging divergent versions of a common file and for automatic identification.
Identification is the ‘stamping’ of revisions and configurations with unique markers. These markers are akin to
serial numbers, telling software maintainers unambiguously which configuration is before them. The merge capa-
bility allows two different but ancestorally related versions of a file to be merged so long as there are no com-
peting changes and conflicts. This allows two engineers to each modify a different function in a source file
implementing two functions. When each has finished modifying their respective function, the files can be
merged to restore the single source file reflecting the changes made by each. The RCS merge capability requires
a file differentiator tool for identifying the differences between two files. The GNU diff program is used as a
portable and efficient tool for this purpose.

The PISCES versions of RCS and diff are functionally unaltered from their origina UNIX implementations.
Changes necessary to each were largely restrained to file names and extensions, examination of date/time
stamps, and file reading and writing operations.

5. Installing and Bootstrapping PISCES

When first installed on a new system, the PISCES components must be bootstrapped by a system administrator
or programmer. This typically requires access to system subdirectories and knowledge of system configuration,
compilation, and installation procedures. The minimal PISCES components require no special compilation pro-
cedure. Each component is in its own subdirectory, with source and header files are under RCS control. A
checked out version of each file is provided for bootstrapping purposes. The components should be built in the
following order: cpp, imake, and mkdepend. Once complete, the minimal required components are available
with which to build the trickier RCS and diff utilities. Finally, rebuild all PISCES components with themselves
using the supplied Imake files to insure that everything is working correctly. Complete documentation and
details for each platform can be found in the README file in the top level PISCES subdirectory.

6. PISCES Rules and Variables

A programmer controls the actions to be taken in an Imake file by using the PISCES rules defined as preproces-
sor macros in the Imake project, site, template, and configuration files. There are approximately 60 such macros
defined, of which only a small number are actually used by the end-user programmer. Most are macros used
internally for breaking down and structuring the actions supported by other higher-levels macros. An Imakefile
contains calls to several of these higher-level macros to define the following items:

« optional top level and subdirectory specifications
» arequired main or top level target/action

» arequired list of header, source, and object files
* one or more required compilation rules

* one or more required program or library targets
» optional header and regression test operations



The most commonly used macros control basic operations such as selecting the type of object file to produce,
specifying library, program, and directory names, and building programs. The best way to become familliar with
these macros is to look at the examples in the tutorial below and study the results in the generated make file.
The following list of macros identifies the main rules used by most engineers using PISCES:

All() - Simple target

All[1-24]() - Simple target
LinkIncludes(files) - Link headers to $(INCDIR)
Normal CObject() - Normal C compile rule
Normal CPlusObject() - Normal C++ compile rule
DebugCObject() - Debug C compile rule
DebugCPlusObject() - Debug C++ compile rule
TestCObject() - Test code C compile rule
TestCPlusObject() - Test code C++ compile rule

OptimizeCObject()
OptimizeCPlusObject()
LibraryName(name)

- Optimize C compile rule
- Optimize C++ compile rule
- Add/Update $(OBJS) to library

QuoteName(name) - Add quotes around file name
VersionName() - Generate RCS version name

Clobber() - Remove object/scratch files

Clean() - Delete objects

RCSCheckOut() - Checkout files from RCS

Test() - Compile and run regression tests
Test[1-24]() - Compile and run regression tests

CL exScanner(scanner) - User-level LEX rule (C compatible)
CY accParser(parser) - User-level YACC rule (C compatible
CPlusL exScanner(scanner) - User-level LEX rule (C++ compatible)
CPlusY accParser(parser) - User-level YACC rule (C++ compatible
CProgram(program) - Link objects into C program

CProgram[1-24](program)
AuxillaryCProgram(program)
CPlusProgram(program)
CPlusProgram[1-24](program)
AuxillaryCPlusProgram(program)

TopLevelBootStrap()

- Link objects into C program

- Additional C program rule

- Link objects into C++ program

- Link objects into C++ program

- Additional C++ program rule

- Bootstrap Imake from top level directory

Each macro performs an operation or set of functions for a given target. When an operation is complete in the
current directory level, the same operation is recursively performed on subdirectories if appropriate. The versions
of macros with the number one through twenty four enclosed with brackets allow for the specification of up to
24 separate programs in a single Imake file. If there are three related C++ programs in a single Imake file, the
programmer would use the AllI3() and CPlusProgram3() macros with the appropriate arguments. See example
two below for more details. If you wish to add rules or procedures of your own for a specific project file to the
collection of Imake rules, examine the macro definitions and the use of the special Imake command characters
in the Imake rules file imake.rul located in the PISCES configuration subdirectory.

In addition to using PISCES rules, a programmer often needs to set or override system, project, or local values
for preprocessor definitions, include search directory paths, and libraries. The following list of variables
identifies the common variables most often needed by engineers using PISCES:



STD_C_INCS - Standard C include search directories
STD_C DEFS - Standard C command line symbol definitions
STD _C LIBS - Standard C archive libraries

STD_C LIBDIRS - Standard C library search directories
STD_CPLUS INCS - Standard C++ include search directories
STD_CPLUS DEFS - Standard C++ command line symbol definitions
STD_CPLUS LIBS - Standard C++ archive libraries

STD_CPLUS LIBDIRS - Standard C++ library search directories
PROJECT_C_INCS - Project C include search directories
PROJECT_C DEFS - Project C command line symbol definitions
PROJECT_C LIBS - Project C archive libraries

PROJECT_C LIBDIRS - Project C library search directories
PROJECT_CPLUS INCS - Project C++ include search directories
PROJECT_CPLUS DEFS - Project C++ command line symbol definitions
PROJECT_CPLUS LIBS - Project C++ archive libraries
PROJECT_CPLUS LIBDIRS - Project C++ library search directories
LOCAL_C_INCS - Local C include search directories
LOCAL_C DEFS - Local C command line symbol definitions
LOCAL_C LIBS - Local C archive libraries

LOCAL_C LIBDIRS - Local C library search directories
LOCAL_CPLUS INCS - Local C++ include search directories
LOCAL_CPLUS DEFS - Local C++ command line symbol definitions
LOCAL_CPLUS LIBS - Local C++ archive libraries

LOCAL_CPLUS LIBDIRS - Local C++ library search directories

Each variable controls the value of a specific option at compile or link time. Note that there exists a version of
each variable for both C and C++ for the standard, project, and local values. The PISCES macros and variables
are more fully explained in the following section, A PISCES Tutorial.

7. A PISCES Tutorial

Most source code configuration problems follow one of a few patterns. compiling one or more source code files
to be linked together to create a program; compiling one or more source code files to be archived in a library;
creating one or more programs comprised of source code in one or more subdirectory modules; various mainte-
nance activites such as cleaning up work files, running regression tests, or removing al object files and execut-
ables. This tutorial looks at several of these cases and discusses the flexibility and ordering of PISCES rules in
an Imake file.

7.1. Example 1: A Simple C Program

Suppose you want to make the C program prog by compiling the three three source files filel.c, file2.c, and
file3.c and linking the resulting object files together with the standard C runtime library. The following PISCES
Imake file could be used:

HDRS =

SRCS = filel.c file2.c file3.c
OBJS = filel.o file2.o file3.0
All(prog)

OptimizeCObject()
CProgram(prog)

Lines one through three identify the header, source, and object files for the program. Notice that although there
are no program-specific header files, we nevertheless include an empty definition. Line four identifies the main
or top-level target. For historical reasons, this is given the label ‘all’ in the generated make file. Line five indi-
cates that we want Imake to generate commands to create optimized C object files. Other possible choices are
for standard and debug versions of C abject files, in addition to the three analagous C++ object files. The last



-9-

line generates commands to check out source code from RCS, compile, link, clean, and install the program. All
program names, command line options, and procedures for the various phases of this process are hidden in the
generic template file, optional project and site files, and the machine-specific configuration file.

7.2. Example 2: Multiple C++ Programs

In this dightly more complicated example, there are two C++ programs each comprised of several source files.
The second program has an associated header file and all source files are compiled with a command line
definition for a symbol. The first program, foo, is made from the source files filel.C, file2.C, and file3.C. The
second program is made from the source files file3.C and filed.C. The following PISCES Imake file controls
their construction:

HDRSL =

HDRS2 = foo.h

SRCSL1 = filel.C file2.C file3.C
SRCS2 = file3.C filed.C
OBJS1 = filel.o file2.0 file3.0
OBJs2 = file3.o filed.o
STD_CPLUS DEFS = $(DFLAG)COMPANY =$(QUOTE)ABC Plumbing$(QUOTE)
All2(foo,bar)
OptimizeCPlusObject()
CPlusProgrami(foo)
CPlusProgram?2(bar)

Lines one through six list the header, source, and object files for each program. There is one header file used by
the second program and there are four C++ source files, one of which is used in both programs. Line seven
defines a command line preprocessor symbol whose value is the character string "ABC Plumbing”. Note that
due to operating system differences, the command line "define" option and the mechanism for quoting the string
are themselves macros. Line eight identifies the main targets, foo and bar, for the ‘all’ 1abel. Line nine specifies
that the program should be built from optimized C++ object files. Finaly, lines ten and eleven generate the
commands to checkout out source code from RCS, compile, link, clean, and ingtall the two programs. As
currently implemented, PISCES will alow a single Imake file to contain targets for upto 24 independent pro-
grams. This is accomplished by using the HDRS, SRCS, OBJS, All, CProgram, and CPlusProgram rules
appended with the program number. In addition, library archives and/or program specifications can intermix C
and C++ source and object files as necessary.

7.3. Example 3: A Library Archive With Yacc/Lex Dependents

In this last example, two C++ source files filel.C and file2.C are compiled with debug flags on and added to an
application library. In addition, scanner and parser object files are also added to the library. The following
PISCES Imake file controls this operation:

HDRS = program.h

SRCS = filel.C file2.C

OBJS = filel.o file2.0 my_lex.o my_yacc.o
LEXSRC = lexerl. lexer2.
YACCSRC = decl.y tokens.y rulesy
All($(LIBRARY))
DebugCPlusObject()
OptimizeCObject()
LinkIncludes($(HDRS))
Library($(LIBRARY),$(OBJS))
CLexScanner(my_lex)

CY accParser(my_yacc)

Lines one through three list the header, source, and object files. Lines four and five list the scanner and parser
modules that, when concatenated together, processed, and compiled, produce the my lex.o and my_yacc.o



-10 -

object files. Line six specifies that the application library is the main make file target. The variable LIBRARY is
specified in the project Imake file. Lines seven and eight indicate that the C compiler should generate optimized
object files and the C++ compiler generate object files with the debug flag and symbols enabled. Line nine states
that the header file(s) specified should be linked to the main application include subdirectory. Line ten controls
the creation and update of the local library should any of the object files be changed. Finally, lines eleven and
twelve control the generation of the scanner and parser modules with C-linkage using the public domain pro-
grams flex and byacc*.

7.4. Example 4: A Custom Imakefile For a Work Directory

So far, the discusion and examples in this paper have centered around project Imake files most often used in a
batch mode or when rebuilding entire modules of a software system. Another common requirement is as a local
Imake file in an engineers working subdirectory. Under this scenario, a programmer has severa files that are
undergoing modification. What is needed is a personalized Imake procedure that will allow for locally overriden
values and alternatives to the default project and system variables. The following PISCES Imake file could con-
trol construction of severa files in this manner:

HDRS = foo.h

SRCS = f00.C bar.C

OBJS = fo0.0 bar.o

RCSDEP =

LOCAL_INCS=$(IFLAG)$(HOME)
LOCAL_CPLUS LIBS=$(LIBSFLAG)my_lib
LOCAL_CPLUS LIBDIRS=$(LDIRFLAG)$(HOME)
All(hacker)

DebugCPlusObject()

CPlusProgram(hacker)

As in the previous examples, the first three lines establish the names of the header, source, and object files that
comprise the program. Lines four through seven is the heart of this example. By default, PISCES assumes all
source and header files are kept under RCS and automatically generates rules to examine such dependencies and
check out files accordingly. For local working directories where a file is still under development, this is probably
not convenient. By overriding the value of the RCSDEP symbol as in line four, PISCES does not look for RCS
files to examine dependencies and check out the latest version. Lines five through seven set values for the local
variables controlling include search directory, library, and library search directory. As a result, PISCES generates
a Makefile that will check for include files first in the directory specified by $(HOME) before checking the pro-
ject and standard include search directories. In addition, references for unresolved symbols at link time will be
first searched for in the my_lib library archive before the project and system archives are searched.

By default, the values of the local and project variables are empty. A project leader edits the project file in the
top level project directory to establish default values for the project variables. An individual engineer can pro-
vide his’lher own values for these variables in a local Imake file by setting appropriate values as in the example
above. In this manner, each engineer can configure Imake to work on Imake files while in a local development
environment without affecting all other engineers on the project.

8. Using PISCES in the Softwar e Development Process

After an Imake file is specified, the PISCES components can be used to create the machine-specific make file.
Imake, the main program, requires four command line arguments: a preprocessor symbol identifying the machine
type, another preprocessor symbol indicating the absolute pathname of the top level source directory for the
software system being built, a revision number indicating the latest RCS major version number, and the include

* Flex is a public domain fast lexical analyzer generator compatible with lex(1). It was written by Vern Paxson of
Lawrence Berkeley Laboratory and placed in the public domain. Byacc is a public domain yacc(1) compatible parser
generator from the USC Berkeley Computer Science Department. Both programs are supplied in source format in the
PISCES subdirectory and compile/execute on the PISCES-supported platforms.



-11 -

file search directory path in which to look for the Imake configuration files. On a UNIX platform, a typical
startup command might be:

% imake -Dsparc -DTOPDIR=/home/neath -DREV =1 -I/usr/local/bin/pisces

The machine name is used to select the appropriate command names and machine specific actions in the various
configuration files. The RCS major revision number controls the number and type of rules generated for building
previous versions of the software. Once an initial top level make file has been bootstrapped, the remaining sys-
tem make files and dependency lists must be created by specifying the ‘bootstrap’ target to the make program.
On a UNIX platform, this command would be:

% make bootstrap

Note that this is a special top level command available available only if the statement ‘#define TopLevel-
ImakeFile' is contained in the Imake file. After this step, the user need never use the Imake command again. All
updates and modifications should be made to the Imake file, not the automatically generated make file. A new
up-to-date make file can be created at anytime by specifying the ‘makefile’ target to the make program. On a
UNIX platform, this command would be;

% make makefile

If the Imake file contains the statement ‘#define IHaveSubdirs' indicating the presence of subdirectories, new
make files for all subdirectories can be generated by specifying the ‘makefiles’ target. Other supported actions
for a generated make file include al, checkout, install, clean, clobber, revup, test, and depend. Examine a
PISCES-generated make file or refer to the example Imake files in the PISCES subdirectory for further details.

9. Extending PISCES to Additional Platforms and Environments

PISCES is intended to be a portable and dependable source code engineering system. As such, any system to
which PISCES is ported should fully support al rules, actions, and behavior as on other existing platforms. This
is necessary in order to insure that Imake files do not have to be altered from one platform to the next. To add
support for another platform to those listed above, first compile and build the PISCES components. Next, add a
machine-specific configuration file containing command names and/or equivalent functions as defined in the
standard imake.imk template and imakerul rules files. Since these files are included by Imake after this
configuration file, platform-specific macros and command names can override the default PISCES values.
Finally, modify the imake.imk template file to recognize the new machine type symbol and define the appropri-
ate MacroFile symbol. Now rebuild the PISCES components using Imake to regenerate the make files and con-
trol the compilation process.

The difficulty of adding support for PISCES on additional operating systems and hardware platforms varies and
cannot be predicted. Many UNIX-like operating systems should be fairly easy to support, but others may be
quite difficult or even impossible. PISCES assumes that the system has a make facility with similar capabilities
to the UNIX make(1) command. In addition, commands for compiling, copying and deleting files, and maintain-
ing library archives are also necessary. Finally, memory availability may affect performance and even determine
sucess or failure, particularly for operating systems with limited or non-virtual memory subsystems.

10. Conclusion

Texas Instruments is currently using PISCES on several large internal software projects that require multi-
platform deliverables. We have found it to be a great aid in rapidly porting and maintaining a source code base
from one platform to another. In addition, we have found that the use of PISCES reduces the need for a pro-
grammer to be an "expert" on the use of system-specific utilities on several platforms, not to mention the
avoidance of peculiarities and idiosyncracies of particular utilities, ie. the nature of space characters versus tab
characters in make(1).



-12 -

11. Status of PISCES

PISCES is currently up and running on a Sun SPARCstation 1 (TM) running SunOS 4.x and a VAX 5400 MIPS
machine running Ultrix release 3.1. The ports for a VAX 8600 running VMS version 5.1 and a PS/2 model
70/486 running OS/2 1.2 Extended Edition are currently in progress. Ports for the TI S1500 running Tl System
V and a PS/2 model 70/486 running SCO UNIX 2.3 will begin shortly. The SPARC and MIPS ports support the
AT&T C++ trandator (cfront) version 2.0 and the native C compiler, the SCO UNIX and OS/2 ports support the
Glockenspiel trandator version 2.0 with the IBM C/2 or Microsoft C compiler version 6.0, and the VAX VMS
port supports the Oasys C++ trandlator version 2.0 and the native VAX C compiler.

12. References
[1] MIT X Consortium, Imake Configuration Guide, X11R4 Release Tape Documentation Notes
[2] Mark Moraes, An Imake Tutorial, Computer Systems Research Ingtitute, University of Toronto.

[3] Brian Kernighan and Dennis Richie, The C Programming Language, Second Edition, Prentice-Hill, Engle-
wood Cliffs, NJ, 1988.

[4] Walter F. Tichy, RCS - A System for Version Control, Department of Computer Sciences, Purdue Univer-
sity, West Lafayette, Indiana.

SPARCsdtation 1 is a trademark of Sun Microsystems, Inc.



