
ET++ Introduction and Installation 1

ET++2.2 -Introduction and Installation

Erich Gamma
André Weinand

UBILAB
Union Bank of Switzerland

 December 21, 1990

ET++ is a homogeneous object-oriented class library integrating user interface building blocks, basic
data structures, and support for object input/output with high level application framework components.
ET++ is implemented in C++ and runs under UNIX™ and either SunWindows™, NeWS™, or the X11
window system.

1. Introduction
This paper is intended for programmers who are familiar with the basics of object-oriented
programming and the C++ programming language. It should provide enough information to start
developing applications with ET++. The paper is not intended to replace studying the ET++ example

ET++ Introduction and Installation 2

applications and their source code. Emphasis is put on the description of conventions and mechanisms
which are not immediately understood by reading source.

ET++ papers/documentation:
1.1. A. Weinand, E. Gamma, and R. Marty, “ET++ – An Object Oriented Application Framework in

C++,” In OOPSLA'88 Conference Proceedings (September 25-30, San Diego, CA), published as
OOPSLA'88, Special Issue of SIGPLAN Notices, Vol. 23, No. 11, November 1988.

1.2. E. Gamma, A. Weinand, and R. Marty, “Integration of a Programming Environment into ET++ –
A Case Study,” In ECOOP 89, Proc. of the Third European Conference on Object-Oriented
Programming, (Nottingham, UK), S. Cook, ed. Cambridge University Press, Cambridge, 1989.

1.3. A. Weinand, E. Gamma, and R. Marty, “Design and Implementation of ET++, a Seamless
Object–Oriented Application Framework,” Structured Programming, Vol. 10, No. 2, June 1989.

This is the most recent paper about ET++ and describes the basic architecture, the imaging model and
the built-in programming environment.(a copy of this paper in postscript is included in this
distribution).
1.4. E. Gamma, A. Weinand, “ET++: A Portable C++ Class Library for UNIX(TM) Environment”

OOPSLA’90 Tutorial notes.
1.5. Bryan Boreham, "ET++ Review", C++ Report, Vol. 2, No. 4, April 1990

In addition the following books may be of help:
1.6. K. J. Schmucker, Object Oriented Programming for the Macintosh, Hayden, Hasbrouck Heights,

New Jersey, 1986.

This book describes the MacApp application framework. The basic architecture of ET++ is close to
MacApp and the concepts of Views, Documents and Commands are similar enough to get a basic
understanding of the functionality of these classes.
1.7. A. Goldberg and D. Robson, Smalltalk-80, The Language and its Implementation, Addison-

Wesley, Reading, MA, 1983.

The ET++'s collection classes use the terminology of the Smalltalk-80 collection classes.

2. Installation
The distribution is organized hierarchically as follows:

ET++ Introduction and Installation 3

et
 .cshrc example profile (mandatory environment variables)
 CSHRC same as above
 src source code of ET++ class library
 MALLOC extended malloc
 SUNWINDOW interface for SunView/SunWindows
 SERVER a window server running under SunView (not supported in this release)
 XSERVER interface for X11R4
 NEWS interface for the NeWS window system (not supported in this release)
 PIC interface for producing pic output (experimental)
 POSTSCRIPT interface for producing postscript output
 SUNOS interface for SUNOS (or other BSD based Unix systems)
 PROGENV ET++'s programming environment
 images bitmap images
 applications example applications developed with ET++
 postscript postscript libraries
 IO stream classes
 doc this installation guide

ET++-Introduction Paper
GNU's regular expressions syntax

 fonts fonts in bdf format
 sunfonts vfonts for SunWindow (initially empty)
 xfonts snf fonts for X11 (initially empty)
 owfonts fonts for OpenWindows
 bin utility programs for ET++
 dyn.sparc *.o files for dynamic loading/linking with "app" (initially empty)
 util
 makedepend public domain makefile dependency generator
 makemap utility to extract informations about member functions in a source file

2.1. Hardware and Software Requirements

Reading the ET++ tape requires about 10 MB of diskspace. A full ET++ installation requires about 40
MB of disk space. The following table gives some numbers for the sizes of the directories after all the
fonts and example applications are compiled:

src 2.1.1. MB
sunfonts 2.1.2. MB
xfonts 2.1.3. MB
applications 2.1.4. MB

Supported C++ Compilers:

ET++ Introduction and Installation 4

– AT&T C++ 2.0, SUN C++2.0:
ET++2.2 is 2.0 “friendly” but does neither use nor support multiple inheritance!

– g++1.37.1:
If g++ is used with ET++ do not use the libg++ version of malloc. An application using this
malloc will immediately crash with "malloc/free/realloc: clobbered space
detected". To avoid the inclusion of the libg++ version of malloc in libg++.a build it with:

 XTRAFLAGS = -DNO_LIBGXX_MALLOC

Supported Hardware and OS:

– Sun OS 4.x (680xx, Sparc), SunWindows, X11R4, X11R3
– Sony News 1850, X11R3

The ET++ collection classes are window system independent and can be used on all platforms.

2.2. Installation Procedure

The ET++ software is location independent, i.e.. it can be installed at any place in the file system.
Choose the directory where ET++ should be installed, for example /local. Extract the files:

tar -xvfb /dev/rst0 126

The standard location for ET++ is /local/et. If the standard location is not used the environment
variable ET_DIR has to be set accordingly. For example, if ET++ is installed in /home/oolibs/et,
ET_DIR has to be set to /home/oolibs/et. The installation directory is referred to as ET_DIR in the
following explanations.

2.2.1. Configuring ET++ for your C++ Compiler

All compiler dependencies of ET++ are now located in the etCC script located in ET_DIR/bin. Adapt
this script to your site specific C++ installation.

At the end of this script the utility makemap is called. Makemap extracts information about member-
functions wich is used by the source browser. Makemap generates an output file with the same name
as the source file and the suffix “.map”. The file is stored in a directory “.MAP”. If this directory does
not exist no map-files will be generated. Instead of using map-files you can set the environment
variable ET_NO_MAPFILES and the source browser will extract the member functions on the fly (this
approach is slower than using map-files).

2.2.2. Configuring the ET++ library in /src/makefile

ET++ class library includes support for several different window systems and printing devices. The
makefile in /C++/src includes under the section entitled “configuration” some macros to tailor ET++
to a specific environment.

ET++ Introduction and Installation 5

2.2.2.1. Selecting the Window System Interfaces

By default, all supported window system interfaces are included.

WS_OFILES = $(XSERVER) $(SUNWINDOW)
WS_IFDEFS = -DWS_X -DWS_SUNWINDOW
WS_DIRS = SUN XSERVER

To remove a window system interface, delete the corresponding entry from these lines. The macro
names stand for:

SUNSERVER interface to a server for the sunwindow system

NEWSSERVER interface for NeWS 1.1, this interface is only experimental

XSERVER interface for X11.3(BETA)

SUNWINDOW interface for sunwindow/sunview

The following example shows the definition of the macros for a version of ET++ which includes only
the X interface

WS_OFILES = $(XSERVER)
WS_IFDEFS = -DWS_X
WS_DIRS = XSERVER

2.2.2.2. Selecting the Printers

ET++ supports generating either postscript or pic output. By default, both formats are included. To
remove a printer interface, adapt the macros as described above.

PR_OFILES = $(POSTSCRIPT) $(PIC)
PR_IFDEFS = -DPR_POSTSCRIPT -DPR_PIC
PR_DIRS = POSTSCRIPT PIC

2.2.2.3. Operating System Interface

Currently, only an interface for SunOS — or similar BSD systems — is supported.

2.2.2.4. Programming Environment

By default the ET++ library and therefore all the ET++ applications linked with it include a
programming environment (an inspector, and a browser). These tools add 40KB to an ET++
application but have no influence on the execution speed. In order to remove this inspecting and
browsing code in a final version of an application modify the macros as shown below:

PE_OFILES = # $(ET_PROGENV)
PE_IFDEFS = # -DET_PROGENV
PE_DIRS = # PROGENV

ET++ Introduction and Installation 6

Recompile the class library with make config and relink your application. make config should
be called whenever the PE_ or the WS_ macros are changed.

2.2.3. Select the Fonts for your Environment

The ET++ distribution includes fonts for X11 and SunWindow in bdf format. By default, the ET++
installation will generate binary versions of these fonts for sunwindow, X11 and OpenWindows. The
compiled fonts are stored in:

sunfonts fonts for sunwindow

xfonts fonts for X11

owfonts fonts for OpenWindows

For which window systems the binary versions of the fonts have to be generated can be defined in
ET_DIR/makefile. To avoid the creation of binary fonts for a specific window system remove the
corresponding directory name from the DIRS macro:

DIRS = util src applications examples sunfonts xfonts owfonts.

If you are running ET++ applications under OpenWindows or X11 do not forget to set the font path
with

xset +fp $ET_DIR/???fonts.

2.2.3.1. Build the ET++ Library and the Example Application "hello"

Execute make in ET_DIR which will compile the ET++ library, the example application "hello"
(ET_DIR/applications/hello), and the fonts. After this step you should be able to verify the installation
by executing the hello application.

The ET++ Library is not generated as archive including the ET++ object files but as a relocatable
object file with the name et.o. Experience has shown that this approach speeds up linking of an ET++
application. An ET++ application linked with an archive is not significantly smaller than an application
linked with a relocatable object file containing all the object files.

2.2.3.2. Compile the ET++ Example Applications

Now you are ready to build the ET++ example applications. They are compiled by calling make in the
directory ET_DIR/applications. More information about these example applications can be found in
"ET++ Introduction".

2.2.4. Compiling ET++ Support Applications

In order to support cut/copy/paste operations among different application processes under SunWindow,
a special clipboard server is required. If the clipboard server is not running applications, can only

ET++ Introduction and Installation 7

execute cut/copy/paste operations between their own windows. Make clipboard compiles the
SunWindow clipboard server. The clipboard is started by calling clipboard.

The application app generated with make app starts up any ET++ application and dynamically links
the missing classes for this application. App is called with the name of the application as argument, e.g.
app micky, after dynamically linking all the classes required by this application micky will start up
as usual. The search path to be used to find object files can be set in the environment variable
ET_DYN_PATH. ET_DIR/dyn.sparc contains all the necessary .o files to dynamically load
applications micky, vobedit, miniedit, and layout.

Notice: app is (still) not completely finished yet. We are waiting for better support for
dynamic C++ loading and linking from the operating system.

The command make install moves these additional applications to /bin.

2.3. Streams

In order to be independent from the stream-classes provided with C++ compilers ET++ includes now in
the directory ET_DIR/src/IO its own implementation of stream classes. This classes are modelled after
the stream classes of AT&T cfront 1.2.

2.4. Hardcopy Documentation

The /doc directory includes this document and the paper “Design and Implementation of ET++, a
Seamless Object–Oriented Application Framework” as compressed postscript files.

2.5. Environment Variables

The following environment variables control the behaviour of ET++:

ET++ Introduction and Installation 8

ET_DIR The root directory for ET++ files.

ET_FONT_SIZE The font size used by the Inspector.

ET_SRC_PATH The directories to search for source code.

ET_DYN_PATH The directories to search for object files.

ET_NO_STYLEDCODE Set to prevent pretty-printing of source code.

ET_NO_MAPFILES Do not use map-files

ET_DISPLAY For the SunWindow server system.

3. Generic Behaviour of ET++ Based Applications
This section describes the generic behaviour of ET++ based applications.

3.1. The User Interface of ET++ applications

The assignment of the mouse buttons is:

LEFT selects an entry from a permanent menu, a button, or a range of text

MIDDLE application specific

RIGHT displays a pop-up menu

3.1.1. Manipulating windows

Commands to change the state of a window can be invoked while the cursor is in the title bar or in the
border surrounding a window. To bring a window on top of all other windows or to change its position
use the left mouse button. The commands displayed in the pop-up menu of a window are self
explanatory. A window can be resized with the little stretch icons in every corner. The boxes on the left
of the title bar can be used to collapse a window to an icon. An icon can be expanded either by a
double-clicking with the left mouse button or by selecting expand form the menu. The right box will
bring the window below of all other windows.

Most ET++ applications provide scrollbars to control the visible portion of a document. Moving the
thumb in the scrollbar updates the visible portion of the window concurrently. Windows which can be
subdivided into several panes showing disconnected portions of a view have fence markers in their
lower right corner. They can be dragged with the left mouse button to adjust the size of the different
panes. A double click on these markers moves them back to their initial position.

Every ET++ application has an associated application window. This window is used to create new, to
open existing documents and to quit the application. There is a button for each of the above
operations. Applications working with several documents types, typically add a button to create a new

ET++ Introduction and Installation 9

document for each type. The menu item application window of the file submenu displayed in the
interior of a window can be used to bring the application window on top whenever it is obscured.

3.1.2. The Main Menu

The standard pop-up menu displayed in the content area of a window contains the generic editing
commands cut, copy, paste and in a pullright menu the file and printing commands. To display a
pullright menu move the mouse a few pixels to the right while the item is selected. Menu items with a
pull right menu are marked with an arrow. The commands of the file submenu are:

load replace the contents of a window with another document. (the open button from the
application window always creates a new window)

import import the contents of another document or file (only applications which can import
anything include this command)

save save the document

save as save the document under a different name

revert revert the document to the latest version stored on disk

close closes the document

print command to choose a printer and define the print options.

Every application is free to add additional pullright menus after the file entry.

3.1.3. Dialog Boxes:

ET++ applications use several styles of dialog boxes:

Alerts
for short confirmations and messages, alerts grab all input events and block other applications
from receiving input

Process-Modal Dialogs
block all windows of one application. Input in windows of other applications is still possible and
the dialog window can be moved around. An example is the file dialog described below. The
windows of Process-Modal Dialogs do not have close boxes.

Modeless Dialogs
behave like ordinary windows.

All dialogs provide a pop-up menu with the standard editing commands (cut, copy, paste). The TAB
key can be used to jump to each text item from top to bottom in sequence. Some dialogs have a default
button marked with a double border; typing a carriage return has the same effect as selecting it with the
mouse.

ET++ Introduction and Installation 10

3.1.4. File Dialog

Whenever a filename has to be entered during a save, load, open, or import command a file dialog
box is displayed. This dialog box displays a list of the files from the current directory. The filename
can be selected either from this scrollable list or entered directly into the text field at the bottom.

The file name entered in the text field may include shell meta characters. A double click in the file list
opens the document, if the name corresponds to a file; if it is a directory the working directory will be
changed accordingly.

Notice: All ET++ applications displaying a list of items support to scroll with the cursor
and home, end, page up, page down keys or to type in a letter to jump to the first entry
starting with this letter while the cursor is over the list.

Clicking on the pop-up item on top of the dialog displays a horizontal menu with the names of the
parent directories. To change the current working directory to a parent directory the corresponding item
can be selected.

3.1.5. Editing Text

All ET++ applications provide the same user interface to manipulate text in dialog boxes or text
editors. The LEFT mouse button is used to select a range of text. A double click selects words and a
triple click lines or paragraphs. A selection can be extended by clicking the left mouse button while the
SHIFT key is depressed. The cursor keys can be used to move the caret from the keyboard. Beside the
common cut/copy/paste operations a quick paste and a CTRL click command are available. Quick
paste can be used to copy some text and insert it at the current position in one step. For a quick paste
the text has to be selected while the CTRL and SHIFT keys are depressed. A CTRL click (eg. a click
while the CTRL key is depressed with the left mouse button) inserts the selected text at this position.

Some ET++ applications use a standard find/change dialog to search for a text pattern. This pattern can
be specified with a regular expression with the same syntax as in GNU-Emacs. Refer to the file
/doc/regex.doc for a description of their syntax.

3.1.6. Interrupting and Aborting Applications

If an ET++ application performs a complex, lengthy task, you can interrupt the calculation in
SunWindows and X11 with the L1 function key on the SUN keyboard.

This brings up a modefull dialog giving you the name of the interrupted operation and the choice of
aborting or continuing.

Whenever ET++ applications hang (e.g because of sending output to stdout or stderr while in
fullscreen mode) press the L1 function key on a sun keyboard three times. This will exit your
application with a core dump but without saving anything.

ET++ Introduction and Installation 11

Notice: Pressing the interrupt key in the startup shell window will bring up the inspector.

3.1.7. Printing

Printing is initiated with the print-entry of the main menu or with the key combination META-CTRL-
SHIFT-p. The former selects a document's view for printing while the latter selects the current window
for a screen dump. In both cases a modefull dialog is opened for selecting a printing device, and setting
various printing options. The printing device is selected by clicking on an item in the top left printer
list. Currently PostScript™, Pic and Pict devices are supported. If the selected printer has options
available the option button is enabled.

Apply
dismisses the print dialog and applies the selected options (e.g. the paper format) to the current
view or the current window without printing anything.

Print
prints the view or window to the specified printing device. Printing can be aborted with the L1
function key.

Save as ...
opens a file dialog where you can specify a file for collecting the printing output.

The check box show pages enables drawing page breaks. Currently page breaks are displayed for
each and every view of an application. This is considered a bug not a feature.

3.1.7.1. PostScript options

The options Resolution and Orientation are self-explanatory.

PS-prolog
If set, the PS-prolog option includes the PostScript prolog /postscript/ET.ps in the output.
Otherwise a non-standard PostScript structuring comment "%%Include: ET" is used.

smooth
The smooth check box enables smoothing of bitmaps and bitmap fonts. This option is only
applicable if you are using a LaserWriter and your spooler supports encrypted PostScript files (as
our spooler does). Then the file /postscript/smooth.ps is downloaded to the printer to
implement the non-standard smooth command.

printer name
The editable text line Printer name specifies the name of the printer used with the lpr -Pname
command.

ET++ Introduction and Installation 12

3.1.8. Command Line Arguments

All ET++ based applications can be invoked with the following command line arguments:

–Eb turn double buffering off

–Ei start the inspector together with the application

–Ee start the source code browser together with the application

–EE show the palette of ET++PE

–Em gather and display memory statistics

–Epx,y specify the position of the top left corner of the application window (micky -Ep400,500)

–Ew enable warning messages

–Ec simulate a monochrom screen on a color display

–Ed set debugging mode

Trailing command line arguments without a “-” prefix are interpreted as the names of documents that
should be loaded initially.

3.2. The Built-in Programming Environment (ET++PE)

If the ET++ library has been configured to include the programming environment all applications
linked with this library have built-in an inspector, object structure browser, source code browser, and a
class hierarchy browser.

Upon activating ET++PE a window with a palette of buttons for each of the above browsers is
displayed.

– The inspector is used to view the state of the objects of a running application.
– The object structure browser displays the part-of and other relationships among the objects of an

ET++ application.
– The source browser gives access to the source code and member functions of a class.
– The class hierarchy browser shows a graphical display of the class hierarchy.

The entry point to ET++PE is the inspector. There are several ways to invoke the ET++ inspector:

– Hit the interrupt key in the window (control terminal) the application was started from. The
inspector initially shows the only instance of the application object (including the global
variables).

– Invoke the application with the –Ei option.
– Execute a so called inspect-click over the object to be inspected. An inspect click consists of a

click with the left mouse button while the META and SHIFT keys are depressed (in a previous

ET++ Introduction and Installation 13

realease an inspect click was initiated by depressing META/SHIFT and the CTRL key). This
method cannot only be used to start the inspector but also to select any visible object for
inspection. An inspect-click is a convenient feature to explore the structure and objects of a
running application.

The inspector window is subdivided into 4 panes. The top right pane displays an alphabetically sorted
list of all classes of the running application (abstract classes are shown in italic). Together with the
class name the number of instances of this class is displayed in parenthesis. The menu provides the
commands:

update
update the list of classes and the instance count

hide/show empty classes
show or hide classes with no instances

Clicking on a class name shows all its instances in the pane to the right. On top of the top middle pane
the current number of instances of this class is indicated. The instances are identified by their
hexadecimal address. Some classes provide some additional identification for their objects, for
example, instances of the class Document display the name of the document or collections display
their size and the class name of their first entry. The menu of this subview consists of the entry all
instances. This command expands the list of instances with the indirect members of the currently
selected class, e.g. instances of its subclasses. This feature is convenient when the exact class of an
instance to be inspected is not known. The desired instance can be found by clicking on one of its
superclasses followed by the menu selection all instances. Clicking on a member of a class displays
the values of its instance variables in the left of the bottom panes.

Together with the values of the instance variables the name of the classes where the variables are
inherited from are shown. If an instance variable is a pointer to another object the hexadecimal value
together with the static type of the pointer is displayed. If the dynamic type of the pointer differs from
the static type then the dynamic type will be displayed enclosed “<>“ brackets. To dereference the
pointer click on the instance variable and the corresponding object is displayed in the bottom right pane
of the inspector. A shift-click on a pointer instance variable spawns another instance of the inspector.

The buttons in the middle of the inspector support to navigate along the path of visited objects.

From the inspector there is instant access to the source code of the inspected object. The menu items
edit definition or edit implementation from the menu displayed in the bottom pane pop-up the ET++
source code browser (see below) with the code of the definition or implementation of the
corresponding class.

The menu item references fills the top right pane of the inspector with a list of all other objects
pointing to the currently viewed object. Clicking on an item in this list shows the corresponding object
in the bottom left pane. This feature is particularly helpful to explore the relationships among the
objects of an application. In addition this function helps to find garbage objects, e.g. objects that are not
referenced by any other objects.

ET++ Introduction and Installation 14

The inspector provides special views for several data structures. ET++ uses trees of VObjects for the
layout of dialog items or the window contents. If a VObject is inspected, which is part of such a
VObject tree the menu item VObject Tree is enabled. After selecting this command the inspector
displays the corresponding VObject tree graphically in a separate window. An object is selected for
inspection in this representation by clicking on the corresponding node in the tree. If the inspected
object is a Collection the menu includes the item Collection Table. This command shows the
contents of a collection in a tabular form in a separate window and clicking on an object loads it into
the inspector.

3.2.1. The Source Code Browser

The source browser consists of 4 panes. The top-left pane shows the list of the classes of the running
application. This pane provides a pop-up menu with the following commands:

implementation/definition
a toggle to choose whether the definition or implementation of a class should be edited

super class
edit the super class

spawn
spawn another instance of the source code browser

show in hierarchy
selects the currently edited class in the class hierarchy browser.

show inheritance path
displays in the so called flat inheritance view all classes in a sorted table together with a list of
their superclasses.

previous class
switch back to the previously edited class

The top middle pane display a flattened view of all methods of the class. Clicking on a method shows
its implementation in the text pane below. This pane includes a menu with the commands:

inherited
displays all the inherited methods with the same name as the currently selected method in the top
right pane.

overrides
displays a list of methods which override the selected method in the top right pane

implementors
displays a list of the implementors of method in the top right pane.

references
to be implemented.

ET++ Introduction and Installation 15

filter
shows a dialog box and provides for entering a regular expression. The regular expression filters
all those methods from the middle pane which do not match.

The top left pane displays the results from a query of the menu described above. Methods to be
displayed in the text pane below can also be selected from this list.

The bottom text pane shows the pretty printed source code and provides the usual text editing
commands. The editor uses the convention to display comments in italic and the names of classes and
the headers of methods or functions in a bold face. It is possible to turn the usage of different faces off
by defining the environment variable ET_NO_STYLEDCODE. This reduces the loading time of large
source files. To reformat the source code after some changes use the reformat menu item.

The source browser uses the following searching order to locate the source files:

3.2.1.1. the current directory

3.2.1.2. ET++'s source directory /src
3.2.1.3. any other directory as specified in the environment variable ET_SRC_PATH.

The editor gives some support for finding matching brackets, a double click near a delimiter (,), ", {,
} sets the selection up to the matching delimiter.

3.2.2. The Class Hierarchy Browser

The class hierarchy browser provides a graphical display of the class hierarchy. A class can be selected
with the left mouse button. The class hierarchy browser’s menu includes the commands:

clients
displays a connection to the other classes which use the selected class in an instance variable.

members
displays a connections to the classes which are used as members of the selected class

collapse/expand
collapses/expand the subtree below the currently selected class..

show source
shows the source code of the currently selected class in the source browser.

inspect some instance
shows an instance of the selected class in the inspector.

At the bottom of the class hierarchy browser there is a pop-up item which provides for replacing all
concrete classes with a small place holder. Clicking on this place holder displays the full class name.

ET++ Introduction and Installation 16

3.2.3. The Object Structure Browser

The object structure browser shows the part-of hierarchy of an object as a graph. The layout of the
graph can be changed with the middle mouse button. A node of the graph displays the identifier of the
object together with its class name. A double click on a node shows the corresponding instance in the
inspector. From a pop-up menu a display of other relationships between the selected and the other
displayed objects can be requested.

4. Implementing an ET++ Application

4.1. Coding Conventions

This section describes the coding conventions or idioms used for developing applications with ET++.

4.1.1. Run-time Information about Classes

4.1.1.1.+ does not provide information about the class hierarchy and the instance variables of objects at
run-time. ET++ requires this information for the object input/output facility and the programming
environment. In order to preserve enough information until run-time a few conventions have to be
followed. The basic idea is to call a macro in the definition and implementation part of a class. The
following example shows a class conforming the ET++ coding conventions.

// file Example.h
class Example: public Object {
 class Collection *col;
 int size;
 char *name;
public:
 MetaDef(Example);
 Example();
 //...
};

// file Example.c
 MetaImpl0(Example);
 Example::Example()
 {
 //...
 }

In the simplest form both macros just take the name of the class as argument. Information about the
instance variables can be specified with the MetaImpl macro. Hint: under C++2.0 if there is a
MetaDef without a matching MetaImpl macro C++2.0 will not generate the vtbl. In the MetaImpl
macro the instance variable's type and name are enumerated:

MetaImpl(example, (TP(col), T(size), TP(name), 0));

ET++ Introduction and Installation 17

Notice: the list of instance variables has to be 0 terminated!

The symbols T? are used to specify the type of an instance variable. Their meaning is described in the
following table:

T any simple predefined types (int, char, Point, Rectangle) or Object
TP Pointer to ... (including strings)
TA fixed sized array of ... , TA(contents, 20)
TAP fixed sized array of Pointers to ...
TV dynamically growing array of ..., TAV(contents,size)
TVP dynamically growing array of Pointers to ...

Notice: The old ET++1.0 I_? Macros can still be used, but the list must now be 0-
terminated!

Instance variables that are structures have to be described by enumerating their individual fields:

struct sv {
 int iv1;
 int iv2;
};

class X: public Object {
 iv sv;
 //...
};
MetaImpl(X, (T(sv.iv1), T(sv.iv2)));

The order of the instance variable declarations in the MetaImpl macro is irrelevant. Misspelled
instance variable names are detected by the compiler.

For abstract classes the macro AbstractMetaImpl should be used. This macro has the same calling
conventions as MetaImpl. The information whether a class is abstract or not is used only in the
programming environment to highlight them with an italic faced font.

These macros declare an instance of a so called meta class for a class. The term metaclass is used in
ET++ to refer to a class that stores information about another class. Metaclasses are instances of the
class Class which is itself a subclass of Object. Inspecting an instance of Class illustrates what
kind of information is stored in a meta class. In order to get access from an instance of a class to its
corresponding meta class the macros generate a method called IsA returning the meta class instance.
Another generated method called Members enumerates all instance variables of an object and
provides information about their types and offsets.

The consequences of not conforming these conventions and not calling these two macros are:
– the fields of an instance cannot be inspected in the inspector

ET++ Introduction and Installation 18

– the type of an instance refers not to the class itself but to a superclass
– it is not possible to test the dynamic type of an Object with the IsKindOf method
– it is not possible to store a pointer to such an object with the ET++ object input/output facility
– the source code is not accessible from the browser

Because MetaDef introduces a constructor for a class, you must define at least one constructor for your
own use, even if it does nothing.

4.1.2. Providing additional Information for ET++PE

The two top right panes in the inspector are used to browse the instances of a class. Instances of a class
are displayed with their hexadecimal address. In order to give some additional information to identify
an object the method InspectorId can be overridden. This method typically uses the value of an
instance variable and fills a buffer given as argument with a string. For example, documents use their
name as illustrated below:

void Document::InspectorId(char *buf, int size)
{
 strncpy(buf, docName, size);
}

4.1.3. Header Files

To protect header files against multiple includes ET++ uses #ifndef, #endif preprocessor
directives:

--- File Object.h ---
#ifndef Object_First
#define Object_First

// class definition

#endif Object_First

The number of included files in a header file should always be minimized, otherwise cpp will soon
reach its limits. For this reason only the superclass of a class should be included in a header file
whenever possible. Consequently pointer instance variables are declared as shown below:

#include "Collection.h"

class ObjArray;

class OrdCollection: public Collection {
 ObjArray *contents;
 //...
};

The header file of ObjArray is only included in the implementation file of the class.

ET++ Introduction and Installation 19

4.1.4. Naming Conventions

The implementation of ET++ uses the following naming conventions:

– Class names and methods start with a capital letter
– Instance and local variables start with a lower case letter
– The constants of an enumeration type start with an “e”

enum Direction { eHor, eVert };

– Global variables start with a “g” (gApplication)
– Constants start with a “c”
– Constants for command codes start with a “c” and the rest of the identifier is capitalized

(“cCUT”).

4.1.5. Deleting Objects

An object should never by deleted by calling the delete operator directly it is preferable to use the
macro SafeDelete. This macro tests if the pointer is 0 (under cfront 1.2), and if not calls the delete
operator and sets the pointer to 0.

This and some other useful macros, inline functions and basic types functions are defined in the file
Types.h.

4.1.6. Static Constructors/Destructors

Implementations of C++ typically have some problems with correct calling order of static constructors.
This results in some nasty bugs when there are dependencies among the different constructors.

The best way to circumvent this problem is to avoid static objects completely. Wherever possible try to
use delayed creation of global objects as illustrated below:

PrintDialog *gPrintDialog= 0;

Class::AnyMethod()
{
 if (gPrintDialog == 0)
 gPrintDialog= new PrintDialog;
}

A global object created in this way can be freed with the help of the ONEXIT macro. The statements
defined with this macro will be executed when the application terminates. The only argument of
ONEXIT is a unique name, typically the name of class implemented in this file.

ET++ Introduction and Installation 20

ONEXIT(PrintDialog)
{
 SafeDelete(gPrintDialog);
 // any other statement that should be executed upon exiting
}

The counter part to ONEXIT is ONENTRY providing for the execution of code when the application is
started.

4.1.7. Secure Casts

The Guard construct provides for explicit secure type conversions between subclasses of Object.
Example:

int TextItem::Compare(Object *op)
{
 return strcmp(text, Guard(op, TextItem)->text);
}

op is casted to a TextItem if its dynamic type is TextItem otherwise an error will be signaled.

4.1.8. Using the +e2 Compiler Option

If you are not using cfront 1.2.1 with the patches provided in this distribution skip this section. The
ET++ distribution includes a patch to AT&T's cfront which adds a +e2 option. The intend of this
option is to reduce the binary size of an application by minimizing the number of generated vtbls. This
new option is comparable with cfront's standard options +e0, +e1 but is easier to use. When cfront is
called with the +e2 option a vtbl for a class is only generated in those files including a special
comment. This comment consists of a list of class names indicating that a vtbl for such a class has to be
included in the generated object file. The convention for using this comment is to add it in the file
implementing the corresponding class. For the file Set.c which implements the classes SetIter and
Set the +e2-comment is shown below:

//$Set, SetIter$

The error message of the loader:

4.1.8.1. __Set_vtbl undefined

indicates that the +e2 option is used but a corresponding +e2-comment is missing.

4.1.9. ET++ Makefiles

When compiling a new application start with copying an existing makefile and use it as a template.
/applications/micky/makefile is a good example.

The only macro that has to be set for ET++ is “CC” (ET_DIR/bin has to be included in the search
path).

ET++ Introduction and Installation 21

CC = etCC CCFlags

The makefile dependencies are maintained with a public domain makefile generator. The source for
this tool is distributed with ET++ in the /util/makedepend directory. The dependencies are
automatically stored in the makefile by calling make depend. The original makefile becomes
makefile.bak. Because makedepend generates absolute filenames for standard include files this release
contains no dependencies.

4.2. Other built-in Utilities

ET++ applications have built-in some utilities which can be invoked from the keyboard. In order to use
them depress the SHIFT, CTRL, META keys together with one of the following characters:

s display on the standard output the actual number of instances (sorted by class name)

i display the actual number of instances (sorted by the number of instances)

p produce hardcopy output of the window contents

a abort with a core dump

q close this window (if the window blocks and you can’t find a menu)

w enable warning messages

5. An Overview of the ET++ Class Library

5.1. ET++'s Foundation

The ET++ foundation are the root class of the class library the class Object and the class Class,
together with an object input/output facility.

5.1.1. The Class Object

All objects that should be managed by the collection classes described below have to be derived from
the class Object. The most important methods of Object are:

Object(int f= eObjDefault)
The standard Object constructor sets up the flags to those passed as an argument, plus
cObjNonDeleted, and adds the object to the global object table.

virtual ~Object()
The destructor removes the object from the global object table, and informs any observers that it has
died.

ET++ Introduction and Installation 22

virtual void FreeAll()
"Deep free", i.e. delete recursively all the objects refered to by instance variables.

5.1.1.1. Inquiries about an Object

virtual Class *IsA()
Returns the instance of class Class that contains the information about this class. This method is
generated by the MetaDef-macro. See Class, for more information.

virtual void Members()
This method calls a function for each of the object's instance variables. This is used by the Inspector to
display all the values of the instance variables.

char *ClassName()
Returns the class's name, as given to the MetaDef macro.

bool IsKindOf(className)
IsKindOf is a macro returning TRUE if the object is an instance of the same or of a subclass of
className. Example:

Object *op;
if (op->IsKindOf(Collection))
 //...

5.1.1.2. Comparing Objects

To compare two objects for equality the method IsEqual should be used. The collection classes
described below use this method to perform comparisons.

bool IsEqual(Object *anotherObject)
The class TextItem implements the IsEqual test as shown below.

bool TextItem::IsEqual(Object *op)
{
 return (op->IsKindOf(TextItem) &&
 strcmp(text, ((String*)op)->text) == 0);
}

This method takes a pointer to any object as argument, for this reason the dynamic type of the object
has to be checked before performing the equality test.

int Compare(Object *op)
Compare op with this, this method should return a negative result if this < op, zero if this ==
op, and a positive result if this > op.

int Hash()
Return a hash value of an object used as probe in the ET++ collection classes based on hashing (Set,
Dictionary). Hash should always be overridden when a class overrides IsEqual.

ET++ Introduction and Installation 23

5.1.1.3. Object Input/Output

Input/Output of an object structure of arbitrary complexity is based on the two methods:

ostream& PrintOn(ostream &s)

istream& ReadFrom(istream &s)
These methods have to be overridden to write or read the object's instance variables to or from a C++
stream. Example:

class Foo: public Object {
 int i;
 ObjList *ol;
public:
 ostream& PrintOn(ostream &s)
 { Object::PrintOn(s);
 return s << i SP << ol SP;
 }
 istream& ReadFrom(istream &s)
 { Object::ReadFrom(s);
 return s >> i >> ol;
 }
};

Instance variables that are pointers to other objects, ol in the example above, can be treated as all the
other instance variables.

Notice: In order to correctly store a pointer to an object it is necessary that the
corresponding class conforms the ET++ coding conventions, e.g. it defines MetaDef
and MetaImpl macro.

ET++ takes care of linearizing (even circular) pointer structures. Both methods should always start
with a call to the inherited method to store or read the instance variables of the superclass. Instance
variables written to a stream have to be separated with some white space characters. As a shorthand
notation for << " " the macro SP can be used (NL can be used for << "\n"). In addition to reading
the instance variables of an object the ReadFrom method should initialize variables that have not been
written out in the PrintOn method. If an instance variable is of one of the types enum, bool or
char* it has to be treated specially. How to handle those instance variables is illustrated in the
following example:

ET++ Introduction and Installation 24

enum Flags {
 eflag1,
 eflag2
};

class Foo2: public Object {
 char *str;
 bool b;
 Flags f;
public:
 //...
 ostream& PrintOn(ostream &s)
 { Object::PrintOn(s);
 PrintString(s, str);
 return s << b SP << f SP;
 }
 istream& ReadFrom(istream &s)
 { Object::ReadFrom(s);
 ReadString(s, &str);
 return s >> Bool(b) >> Enum(f);
 }
};

The functions PrintString/ReadString take care of quoting characters which would conflict
with the ET++ file format for objects.

5.1.1.4. Copying Objects

There are two different methods to produce a copy of an object.

Object *Clone()
Returns a copy of this object without copying the references to other objects. All pointers point to the
same objects as before.

Object *DeepClone()
DeepClone returns a copy of an object and recursively copies the references to other objects, e.g. a
deep clone object does not share any pointer instance variables with the original object. The
implementation of DeepClone in the class Object is based on the ET++ object input/output facility
described in the next section. This method currently can’t be overridden.

Object *New()
Returns a new (uninitialized) instance of the same class as this.

virtual void InitNew()
This is called when an object is created from the meta-class New method. It is overridden in subclasses
to initialize variables as appropriate.

5.1.1.5. Change Propagation

The class Object defines the framework to synchronize the state of different objects.

ET++ Introduction and Installation 25

void AddObserver(Object*);
Object* RemoveObserver(Object*);
void Send(int id, int part, void *data);
void DoObserve(int id, int part, void *data, Object *);

This so called change propagation mechanism is modelled after the Smalltalk-80 changed and update
principle. An object can announce its changes by calling the Send method. Send triggers a call to
DoObserve for all objects that have been registered as dependent of this with AddObserver.

Send can be called with arguments to specify the reason for the change which will be passed to the
DoObserve method. Refer to the file CmdNo.h for some predifined constansts which are used by
ET++. DoObserve is implemented as an empty method in the class Object. In order to react on a
change DoObserve has to be overridden.

bool PrintOnWhenDependent(Object *anObject)
This method is a hook that allows to control whether a dependency relationship of an object should be
stored during a call to PrintOn. By default this method returns TRUE indicating that the dependency
relationship between this and anObject should be stored.

5.1.1.6. Programming Environment Support

The class Object defines several methods to be used in conjunction with the ET++ programming
environment.

void Inspect()
Inspect starts the Inspector and displays the state of this.

void EditSource(bool definition)
Brings up an editor with the source code of this object; either the definition or the implementation,
according to the parameter. It uses the information from the MetaDef and MetaImpl macros to find out
where the file is.

virtual void InspectorId(char *buf, int bufSize)
This method can be overridden to give the Inspector more information about the object. A short
description (e.g. the title of a window) should copied into buf, subject to the maximum size bufSize.

5.1.1.7. Flags

The class Object provides some space to associate with each object a set of flags. These flags can be
used instead of boolean valued instance variables.

The flags used by the Object class are:

ET++ Introduction and Installation 26

eObjDefault Default state; no flags set.

eObjIsDeleted Indicates that this object is one that has been deleted from a collection, but is
still ``there'' in the collection for the benefit of iterators, etc.

cObjNonDeleted The object has not been deleted from memory.

cObjDelayChanges Changes to this object (indicated by calls to Send()) will be delayed until
FlushChanges() is called.

cObjVisited Used by the ObjectTable to indicate that this object has been visited on a
traversal of the table.

cObjIsProto Indicates that the object is one used by the metaclass system of ET++, and has
been created by the MetaImpl macro.

Apart from eObjIsDeleted, these flags are private to Object, and can be tested but not set by
sub-classes. Many sub-classes add their own flags, which are stored in the same member variable.

Various methods to test and set flags.

void SetFlag(int f)
void ResetFlag(int f)
bool TestFlag(int f)
void InvertFlag(int f)
void MarkAsDeleted()
bool IsDeleted()
void SetVisited()
void ClearVisited()

void SetFlag(int f, bool b)
Sets the flag if b is TRUE; otherwise resets it.

ET++ uses the convention as shown below to avoid a conflict with a superclass that uses the same flag.
For example the flags for the class Class a subclass of Object are:

enum ObjFlags {
 eObjIsDeleted = BIT(1),
 eObjLast = 1
};
 // class Class a subclass of Object
enum ClassFlags {
 eClassAbstract = BIT(eObjLast + 1),
 eClassLast = eObjLast + 1
};

BIT(n) is a macro defined in Types.h which returns a mask with bit n set.

5.1.1.8. Error Handling

ET++ allows a client to register a procedure to be called whenever a fatal or non-fatal error occurs.
This facility is intended for error reporting and logging but not for error correction or recovery. An
error handler is of the type:

void (*ErrorHandlerFunc)(int level, bool abort, char *location, char *msg);

ET++ Introduction and Installation 27

Level indicates the severity of the error. Errors are categorized into:

warning 5.1.1.8.1.

error 5.1.1.8.2.

system errors 5.1.1.8.3.

fatal errors > 3000

If abort is set to TRUE the application aborts after reporting the error. location indicates the
method or function where the error occurred and msg stands for the corresponding error message. If
only the collection classes are used without the application framework classes the function to be called
on error conditions is set with SetErrorHandler. Otherwise the method DoOnError of
Application can be overridden to report the error. The default implementation of this method
shows an alert box with the options to ignore, abort, or to invoke the ET++ inspector. To call the
installed error handler, use either:

void Warning(char *location, char *msgfmt, ...)
void Error(char *location, char *msgfmt, ...)
void SysError(char *location, char *msgfmt, ...)
void Fatal(char *location, char *msgfmt, ...)

All these functions provide a printf like interface to format the message. The class Object
overloads these functions and prepends the class name to location.

The location should be the name of the method or function where the error was detected, and the
following parameters provide a printf-like interface to format messages. For example:

Error("Open", "Cannot find %s.", fileName)

The class-name will be added to the location, so in this case the error message might read
File::Open: Cannot find xyz.c.

virtual void DoError(int level, char *location, va_list va)
This is used by the above error functions.

void AbstractMethod(char* method)
This is used in abstract classes, where an interface to a method is defined, but the method should be
implemented by a subclass. The abstract method just calls this function, with the name of the method,
so if it is not overridden, an error will be generated.

void MayNotUse(char* method)
This generates a warning message that this object is not allowed to use method.

The functions below allow to set at which error level the application should be aborted
(SetAbortLevel) and which messages should be ignored (SetIgnoreLevel). Both methods
return the old level.

int SetAbortLevel(int newlevel); int SetIgnoreLevel(int newlevel);

ET++ Introduction and Installation 28

5.1.2. The Collection Classes

The ET++ collection classes are modelled after the Smalltalk-80 collection classes. The inheritance
relationship among the different classes is shown in the following table.

Object
 Collection abstract superclass for all collection classes
 Set hash table
 IdSet hash table based on the address of an object
 Dictionary data structure for storing key value pairs
 IdDictionary same as above, but the address of an object will be used as key
 ObjArray array of object pointers, with range checking and the possibility to grow or

shrink
 SeqCollection abstract superclass for collections preserving the the order in which the

objects were added
 ObjList doubly linked lists
 SortedObjList sorted list based on Object::Compare()
 OrdCollection Ordered Collection - array based implementation of a list

The collection classes are written to work on instances of class Object. Some of the methods
supported by all collections come in pairs, e.g. Remove, RemovePtr. The difference between these
methods is that Remove uses IsEqual in comparisons and RemovePtr uses pointer identity. This
distinction is important for collections with duplicate entries like ObjLists or OrdCollections,
because IsEqual does not uniquely identify an object.

Object* Add(Object*)
Adds an Object to a collection and returns a pointer to an object actually in the collection.

Object* Remove(Object*)

Object* RemovePtr(Object*)
Remove an Object.

Object* Find(Object*)

Object* FindPtr(Object*)
Find an Object in a collection, returns 0 when the Object is not found

bool Contains(Object*)

bool ContainsPtr(Object*)
Test whether an Object is contained in a collection.

The elements of a sequenced collection are accessed by the At() method, and run foo->At(0),
foo->At(1), ..., so the last entry is numbered one less than the value given by Size().

ET++ Introduction and Installation 29

5.1.2.1. Memory Management

The collection classes are implemented by storing pointers to the objects and not the objects itself. Due
to the possibility that an object is shared among several collections, the collection itself cannot decide
when an object should be freed. For this reason all collections use the policy to manage only the
storage for the collection data structures but not for the objects stored in the collection. The decision
when to delete an object is up to the client of a collection. The destructor of a collection does not free
the objects stored in the collection. The method FreeAll can be used to free the contents of a
collection.

5.1.2.2. Iterating over a Collection

The ET++ collection classes use the notion of an iterator to visit all the objects of a collection. An
iterator is responsible to store the state of the traversal and to provide the method operator()() to
skip to the next object of the collection. When all the objects of a collection have been visited
operator()() returns 0. Every collection class provides an implementation of an Iterator. The
abstract interface of all these iterators is defined in the class Iterator.

The class hierarchy for iterators:

Iterator abstract superclass for iterators
 SetIter iterator for Sets
 DictIter iterator for Dictionaries
 ObjListIter iterator for ObjLists
 RevObjListIter reverse iterator for ObjLists
 OrdCollectionIter iterator for OrdCollections
 RevOrdCollectionIter reverse iterator for OrdCollections

Iterators are used as shown below:

ObjList shapes;
shapes.Add(new BoxShape);
//...
ObjListIter next(Shapes);
Shape *s;
Rectangle r;

while (s= (Shape*)next())
 s->Draw(r);

The type of the object returned from operator()() is Object*. For this reason it typically has to
be casted to a more specific type before an operation can be executed.

An algorithm implemented to work for all kinds of collections which needs an iterator can request an
instance of an iterator with the method MakeIterator from a collection. The returned instance is
dynamically allocated and has to be freed by the programmer (to reduce the memory allocation
overhead ET++ uses its own memory management for iterators). An example for such an algorithm is

ET++ Introduction and Installation 30

Collection::Contains which is implemented only in terms of the abstract interfaces of
Collection and Iterator and is therefore applicable to any collection.

bool Collection::Contains(Object *anObject)
{
 Iterator *next= MakeIterator ();
 Object *op;
 bool found= FALSE;

 while (op= (*next)())
 if (op->IsEqual(anObject)) {
 Found= TRUE;
 break;
 }
 delete next;
 return found;
}

It is error prone and results in ugly code to delete dynamically allocated iterators manually. For this
reason ET++ provides as a kind of syntactic sugar an additional class Iter which takes care of freeing
a dynamically allocated iterator object instance in its destructor.

bool Collection::Contains(Object *anObject)
{
 Iter next(this); // or: Iter next(GetIterator());
 Object *op;

 while (op= next())
 if (op->IsEqual(anObject))
 return TRUE;
 return FALSE;
}

A method can be applied to all objects of a collection with the macro:

void ForEach(itemType,method)(arguments,...)

Example:

Collection *col;
bool on, redraw;

col->ForEach(VObject,Enable)(on, redraw);

In this case col is a collection of VObjects and the method Enable is called for all its members
with the arguments on and redraw.

ForEach is a macro which expands into several statements without scope delimiters {
}. Enclose ForEach with { } where it becomes necessary.

In addition ForEach constructs two variables by concatenating the itemType and
method parameters. So don't use any whitespace in ForEach's parameter list.

ET++ Introduction and Installation 31

In order to assert that all items of a collection are of a certain type AssertClass(ClassName) can
be used.

5.1.3. Built-in Types and Collections

The collection classes can only manage instances of classes derived from Object. In order to store
the built-in types float or int, ET++ provides the classes ObjInt and ObjFloat. These classes have
as instance variable a number of the corresponding type and implement the abstract methods defined in
Object.

5.1.4. Strings

The current version of ET++ does not include a class String for string manipulation and only offers
some utility functions (/src/String.h).

5.1.5. Point and Rectangles

The classes Point and Rectangle should be used whenever coordinates have to be manipulated.
Predefined Points and Rectangles are:

const Point gPoint0(0,0),
 gPoint1(1,1),
 gPoint_1(-1,-1),
 gPoint2(2,2),
 gPoint4(4,4),

const Rectangle gRect0(gPoint0, gPoint0)

Using this constants reduces the binary size of an application.

6. Interaction Classes

6.1. EvtHandler

This is the abstract superclass for all objects that handle events such as input from the user.

Each EvtHandler may have a pointer to another EvtHandler which is to handle all the events that
this one is not interested in. So, a shape on the screen might be dragged around with the left mouse
button, but pass the right mouse button on to the Document object, which would pop up the application
menu.

This table describes the meaning of each of the member functions of EvtHandler; most of the
implementations simply pass the call on to the next handler, if there is one.

ET++ Introduction and Installation 32

virtual EvtHandler *GetNextHandler()
Return the next EvtHandler, which will handle any events this one does not handle.

virtual Menu *GetMenu()
Return the menu for this EvtHandler. This call will get passed out to the next enclosing VObject
that has a menu to pop up.

virtual void DoCreateMenu(Menu*)
Called once, when the menu is first popped-up. This method is to allow menu items to be inserted by
successive EvtHandlers in a chain;for example most application Views will first call the superclass
method, then add a few items of their own.

virtual void DoSetupMenu(Menu*)
Called each time the menu is popped up, so that menu items can be enabled or disabled according to
the circumstances when the mouse is pressed.

virtual Command *DoMenuCommand(int)
Called when an item on the menu is selected by the user. The parameter is the number assigned to the
menu item when it was created.

virtual void PerformCommand(Command*)
This is the method that applies undo-able Commands. Usually, it is passed along the nextHandler
chain to the Document, which does the work.

EvtHandlers that want to react to particular mouse buttons should override these, returning a
Command object of the appropriate type. For example, a shape in a drawing program might return a
VObjectMover when the left button is pressed. See Command for more information.

virtual Command *DoKeyCommand(int, Point, Token)
virtual Command *DoCursorKeyCommand(EvtCursorDir, Point, Token)
virtual Command *DoFunctionKeyCommand(int, Point, Token)

Similar to the mouse-button functions, but for keyboard events.

virtual Command *DoIdleCommand()
This is called when the system is idle, so that deferred updates can be flushed. For example,
TextViews don't re-format until the system is idle.

virtual Command *DoOtherEventCommand(Point, Token)
Anything else not covered above.

virtual void Control(int id, int part, void *val)
This is used by things such as buttons and check-boxes to tell the parent (most often a Dialog) that it
has been changed.

virtual Command *DispatchEvents(Point, Token, Clipper*)
This examines the Token that comes from the system, and calls one of the Do...Command routines.

ET++ Introduction and Installation 33

It can be overridden in order to catch particular events, such as pressing the Return key, so that a
subclass of EvtHandler can do something special.

6.2. VObject

VObject is an abstract superclass for all objects that are displayed on the screen.

6.2.1. Alignment

Many VObject subclasses use the VObjAlign enumeration to specify how objects should be
aligned with respect to each other. Possible alignment specifications are:

eVObjHLeft flush left

eVObjHCenter centered horizontally

eVObjHRight flush right

eVObjHExpand expand horizontally as required

eVObjVTop at the top

eVObjVBase align the bases of the objects

eVObjVCenter centered vertically

eVObjVBottom at the bottom

eVObjVExpand expand vertically as required

6.2.2. Instance Variables

short frameId;
This is a unique identifier, used to identify each VObject to other parts of the system. For instance, a
Dialog will give each of its component parts (push-buttons, text, etc) a number, so that when the user
does something, it can find out which element was involved.

If a VObject is not given a specific frameId, it is set to cIdNone = -1.

VObject *container;
The containing VObject, such as the Window, or Cluster that this VObject is part of.

Rectangle contentRect;
The enclosing rectangle of this VObject.

6.2.3. Public Methods

VObject(EvtHandler *next, Rectangle r, int id= cIdNone)
VObject(Rectangle r, int id= cIdNone)
VObject(int id= cIdNone)

ET++ Introduction and Installation 34

Constructors to set up various of the nextHandler (which is in the EvtHandler superclass),
contentRect and frameId member variables.

BlankWin *GetWindow()
This recurses up the chain of containers, until it finds a VObject that has no container, which must be
the containing window.

Point GetPortPoint(Point p)
This transforms a point into the coordinate system of the port, by recursively calling
ContainerPoint until there are no more containers.

virtual Rectangle GetViewedRect()
Return the rectangle which this VObject occupies. This is the contentRect, except for
Clippers.

EvtHandler *GetNextHandler()
This overrides EvtHandler's nextHandler variable, and returns the container.

virtual void SetContainer(VObject*)
Set the container member variable.

virtual VObject *GetContainer()
The GetContainer method returns the container.

virtual void AddToClipper(Clipper*)
This is called when a VObject is placed inside a Clipper, to set the view and container, and to set
the VObject's origin to zero.

virtual void RemoveFromClipper(Clipper*)
This is called when a VObject is removed from a Clipper.

int GetId()
void SetId(int id)

Get and set the frameId member variable.

virtual void Enable(bool b= TRUE, bool redraw= TRUE)
void Disable(bool redraw= TRUE)

Enable or disable the VObject, and re-draw it if redraw is TRUE. Disable calls Enable with b set
to FALSE. Enable can be overridden to do things like greying-out selections when disactivated.

bool Enabled()
bool IsOpen()

Test if the VObject is enabled or open.

virtual Metric GetMinSize()
Return the minimum size of the VObject. See Metric, for more information.

ET++ Introduction and Installation 35

Rectangle ContentRect()
Point GetExtent()
Point GetOrigin()
int Width()
int Height()
void SetContentRect(Rectangle, bool)
virtual void SetExtent(Point)
virtual void SetOrigin(Point)
void SetWidth(int w)
void SetHeight(int h)

Methods to access the contentRect member variable.

virtual int Base()
Return the base of the VObject, for alignment purposes. For simple VObjects, this is the y-
coordinate of the contentRect, whilst for text, this is the baseline, below which letters like 'y'
descend.

void Move(Point delta, bool redraw= TRUE)
Move the VObject a distance of delta, by adding this to the contentRect. Force re-drawing of
both the old and new positions if redraw is TRUE.

void CalcExtent()
In VObject, this just sets the extent to the minimum size, but it can be over-ridden to do more
interesting things if necessary. It is called by composite VObjects such as Dialog and
CollectionView.

virtual void Open(bool mode= TRUE)
Open or close the VObject, depending on the value of mode. In VObject, this just changes the
setting of the eVobjOpen flag.

void Close()
This just calls Open(FALSE).

void Align(Point at, Metric m, VObjAlign a)
Move the origin of the VObject to align with the given point, according to the alignment
specification a and metric m. See Metric, for more information.

virtual bool ContainsPoint(Point p)
Returns TRUE if the rectangle of the VObject contains the point, otherwise return FALSE

virtual void SetFocus(Rectangle r, Point p)
Set the drawing port to the one for this VObject, set its origin to p and clip drawing commands to the
r. This gets passed out along the container chain to the enclosing Window, which does the work.

void Focus(Rectangle r)
This calls SetFocus with the Point(0,0).

void Focus()
This calls SetFocus(GetViewedRect(), gPoint0).

ET++ Introduction and Installation 36

void Print()
This puts up a print dialog which will let the user print out this VObject to disk or to the printer, or
cancel the print operation.

virtual void DrawAll(Rectangle)
virtual void DrawHighlight(Rectangle)
virtual void Draw(Rectangle)

Various methods which can be overridden to provide the drawing behaviour of VObject subclasses.

virtual void Outline2(Point p1, Point p2)
Draws the outline of a rectangle between p1} and p2}.

void Outline(Point delta)
Draws the outline of the contentRect offset by delta.

void OutlineRect(Rectangle r)
Draws the outline of r.

void Feedback(Rectangle r, bool on, bool b)
This is called continuously as a VObject is dragged around the screen or re-sized. It moves the
VObject to the position of the rectangle r, and updates the screen by erasing the old position and
calling DrawAll in the new position.

virtual void Highlight(HighlightState)
Highlight the VObject. The default action is to invert the whole of the content rectangle.
HighlightState can be either Off or On, but it is ignored in the default implementation.

virtual void InvalidateRect(Rectangle r)
State that the given rectangle is invalid, and that it will have to be re-drawn. This is passed out to the
enclosing window, which passes it to the WindowPort. Invalid rectangles are accumulated until the
window gets an Update event.

void ForceRedraw()
This invalidates the content rectangle, forcing the contents to be re-drawn at the next update.

virtual void UpdateEvent(bool batch= gBatch)
This is passed out to the window, which will do any updating that is pending. Update events are
generated after each input token is processed by a window, or they can be called directly.

virtual GrCursor GetCursor(Point p)
This returns the appropriate cursor for this VObject. The default is an arrow pointing north-west;
things like scrollbars override this to change the cursor to other shapes as it enters their content
rectangle.

virtual Command *Input(Point lp, Token t, Clipper *vf)
This passes an input Token to the DispatchEvents method if the VObject is enabled.

ET++ Introduction and Installation 37

Command *DispatchEvents(Point, Token, Clipper*)
This extends the EvtHandler behaviour by changing the mouse cursor shape on entry and exit
events, and calling up the Inspector when the control, left and shift buttons are held down during a
mouse click.

virtual Point ContainerPoint(Point)
This transforms a point into the co-ordinate system of the container. For most EvtHandlers, this just
returns the point itself, but for a Clipper, it returns the point plus the Clipper's offset.

virtual Command *DoLeftButtonDownCommand(Point, Token, int)
virtual Command *DoMiddleButtonDownCommand(Point, Token, int)

Command *DoRightButtonDownCommand(Point, Token, int, Clipper*)
Puts up the menu returned by GetMenu, if any.

virtual Command *TrackInContent(Point, Token, Command*)
EvtHandler just returns the Command passed to it; Clipper does more complex things.

virtual VObject *Detect(BoolFun f, void *arg)
Return the first entry where f returns TRUE. For single VObjects, this is either the object itself, or
NULL, but for composite VObjects it iterates over the collection.

VObject *FindItem(int id)
Find a VObject with a frame Id of id, using Detect.

VObject *FindItem(Point p)
Find a VObject which contains the point p.

VObject *FindItem(VObject* g)
Find a VObject which IsEqual to g.

VObject *FindItemPtr(VObject* g)
Find a VObject based on pointer identity.

bool WantsInputFocus()
Tests if the VObject wants the input focus.

virtual Command *GetMover()
Returns a VObjectMover command that will allow the user to drag the VObject around with the
mouse. If the VObject is in a View, the dragging is constrained to the View's rectangle.

virtual Command *GetStretcher()
Returns a VObjectStretcher command that lets the user stretch the shape of the VObject with
the mouse, constrained to the rectangle of the View, if there is one.

char *AsString()
Returns a tilde sign “~” (tilde).

ET++ Introduction and Installation 38

int Compare (Object*)
Calls strcmp on the AsString result of the two objects.

6.3. CompositeVObject

CompositeVObject is a VObject that contains a Collection of other VObjects. Mostly, the
methods of VObject are applied in turn to each of the contained VObjects.

CompositeVObject also implements a number of Collection methods, to make it easier to
access the contained VObjects.

6.3.1. Instance Variables

bool modified
Set to TRUE whenever the list of VObjects changes. This is used by Cluster to tell if it should re-
calculate its dimensions.

Collection *list
The list of contained VObjects.

6.3.2. Public member functions

CompositeVObject(int id= cIdNone, Collection *cp= 0)
CompositeVObject(int id, VObject*, ...)
CompositeVObject(int id, va_list ap)

Constructors that set the frameId, and may pass a a collection or a zero-terminated argument list of
VObjects to put in the list.

void SetModified()
Set the modified member variable to TRUE.

Collection *GetList()
Return a pointer to the collection of contained VObjects.

Iterator *MakeIterator()
Return an Iterator for the collection of contained VObjects.

int Size()
virtual void Add(VObject*)
VObject *Detect(BoolFun, void *arg)
VObject *At(int n)

Various Collection methods that are passed straight through to the list. See Collection, for more
information.

void FreeAll()
This deletes all the contained VObjects in the list, then deletes the list.

ET++ Introduction and Installation 39

Command *DispatchEvents(Point, Token, Clipper*)
Tries each VObject in the list in reverse order to see if it is interested in this Token; otherwise calls
VObject::DispatchEvents.

void SetItems(va_list ap)
Add the arguments passed (which should be VObjects) to the list of items contained by this
CompositeVObject.

void Open(bool mode= TRUE)
void Enable(bool b= TRUE, bool redraw= TRUE)
void Draw(Rectangle)
void SetContainer(VObject*)
void SetOrigin(Point)
void SetExtent(Point e)

These are all methods of VObject, implemented here by calling the VObject version and then
calling the method on all of the contained VObjects in turn.

Metric GetMinSize()
Merges together the minimum sizes of all the contained VObjects.

void InspectorId(char *buf, int sz)
Calls InspectorId on the first VObject in the list, if there is one; otherwise calls
VObject::InspectorId.

6.4. Cluster

The constructors all take an identifying number, and an alignment specification. The alignment
specifications are explained in VObject. In the next release the Cluster will be merged with the
Expander.

6.5. Scroller

ScrollDir is an enumeration that controls the way scrollbars appear on the sides of Scrollers.

ET++ Introduction and Installation 40

eScrollNone no scrollbars

eScrollRight left-right

eScrollDown up-down

eScrollLeft left-right

eScrollUp up-down

eScrollHideScrolls hide the scrollbars

eScrollDefault left-right and up-down

6.6. Menus

Menus are maintained with the following methods of class EvtHandler:

virtual Menu *GetMenu();
virtual void DoCreateMenu(Menu*);
virtual void DoSetupMenu(Menu*);
virtual Command *DoMenuCommand(int);

Menu *GetMenu()
is called whenever the right mouse button is pressed in order to bring up a menu. When overridden
GetMenu should return a menu pointer held in an instance variable of EvtHandler or a subclass
thereof. The default implementation calls GetNextHandler()->GetMenu().

void DoCreateMenu(Menu*)
is called once for a new menu returned from GetMenu. When overridden it should call the inherited
DoCreateMenu and then install its own new menu entries in the menu given as parameter. The
following code fragment is a typical example:

void aSubClass::DoCreateMenu(Menu *menu)
{
 aBaseClass::DoCreateMenu(menu);
 menu->Append(new MenuLineItem);
 menu->Append(new TextItem(cMENUCMD1, "command 1"));
 menu->Append(new TextItem(cMENUCMD2, "command 2"));
}

In this example a MenuLineItem and two TextItems are appended to the menu (it is possible to
append any VObject to a menu). The following code shows a shorter notation for this common case:

void aSubClass::DoCreateMenu(Menu *menu)
{
 aBaseClass::DoCreateMenu(menu);
 menu->AppendItems("-",
 "command 1", cMENUCMD1,
 "command 2", cMENUCMD2,
 0);
}

ET++ Introduction and Installation 41

Command *DoMenuCommand(int id)
Every menu item should have a unique id which is given to DoMenuCommand when a menu
command is selected. Standard ids can be found in CmdNo.h. Application ids should start with id
cUSERCMD.

Example:

Command aSubClass::DoMenuCommand(int id)
{
 switch (id) {
 case cMENUCMD1:
 return new MenuCmd1;
 case cMENUCMD2:
 return new MenuCmd2;
 default:
 return aBaseClass::DoMenuCommand(id):
 }
}

void DoSetupMenu(Menu *m)
Initially all menu items are disabled (greyed out). You must override DoSetupMenu in order to
enable all currently selectable menu items. DoSetupMenu is called whenever a menu is going to be
opened.

void aSubClass::DoSetupMenu(Menu *m) {
 aBaseClass::DoSetupMenu(m);
 if (possible to choose cmd 1)
 m->EnableItem(cMENUCMD1);
 if (possible to choose cmd 2)
 m->EnableItem(cMENUCMD2);
}

6.6.1. DialogViews and Dialogs

A DialogView implements a standard behavior for a View dealing with different dialog items. It
maintains an active text and allows to cycle through all editable text items with the TAB key. In
addition it identifies a default item (a special ActionButton) which can be activated with the
RETURN key.

VObject *DoCreateDialog()
This method is called once to create and return the tree of dialog items (VObjects,
CompositeVObjects) making up the dialog. Output only dialog items like TextItems and
ImageItems can be found in VObject.h. Grouping of several items can be achieved with Clusters
or Expanders. Various input sensitive items like ToggleButtons, ImageButtons,
ActionButtons, and RadioButtons are defined in DialogItems.h. In addition DialogItems.h
contains the specialized clusters OneOfCluster and ManyOfCluster to implement a one of and a
many of behavior of several buttons.

More complex dialog items can be build by installing a View in a Clipper, in a Scroller, or even
in a Splitter. For example to implement a scrollable list of arbitrary VObjects it is only necessary

ET++ Introduction and Installation 42

to build a Collection of VObjects, install the Collection in a CollectionView and put
the View in a Scroller.

Another example is a TextView inside a small Clipper to implement an editable text line. The
predefined class EditTextItem implements this often used abstraction and can be found in
DialogItems.h.

Every dialog item must have a unique identifier (id) in order to be able to identify any actions
performed on it. Items with a standard behavior (e.g. ok-, cancel-, and default-buttons) should have one
of the predefined ids found in CmdNo.h. User defined items should use ids above cIdFirstUser.
Output only items like Clusters or Expanders should have id cIdNone.

void Control(int id, int part, void *data)
Whenever an action is performed on a dialog item Control is called giving the items's id (id), a so
called part code (part) and any additional information (data). The part code identifies the action
performed on the item. For example when single clicking in a CollectionView Control is called
with parameter part == cPartCollSelect. In this case data is a pointer to a Rectangle,
which gives the selected item or a range of selected items. Other predefined part codes can be found in
CmdNo.h. The inherited Control method should be called whenever an action dismisses the
Dialog, e.g. for ids cIdOk, cIdYes, cIdNo, cIdCancel, cIdDefault.

A subclass of DialogView, Dialog automatically creates and installs itself in a window, thereby
implementing modal and modeless dialog boxes. In addition it implements the behavior to close the
window whenever an ActionButton is pressed and it factors out the behavior for undoable dialog
boxes by overriding Control.

void DoSetDefaults()
is called after the dialog tree is created the first time or an ActionButton returns the id
cIdDefault. In the latter case the dialog remains opened even if the inherited Control is called.

void DoSetup()
must be overridden to enable and disable dialog items according to other selected options. It is called
whenever the dialog is opened.

void DoSave()
must be overridden to save the state of all dialog items in order to be able to undo all settings when the
Cancel button is pressed or an item returns id cIdCancel.

void DoRestore()
is called whenever the Cancel button is pressed to restore the dialog items to their previous state.

void DoStore()
is called whenever the OK button is pressed.

You find examples for implementing dialogs in FileDialog.C, PrintDialog.C, FindDialog.C,
GotoDialog.C, and POSTSCRIPT/PostScript.C.

ET++ Introduction and Installation 43

6.7. EditTextItem

This is a DialogItem that allows some text to be edited. It uses a TextView to do the displaying.

6.7.1. Public member functions

EditTextItem(int id, char* initText, int width, int lines)
This constructs an EditTextItem with initText as the initial contents, of size width by lines.

EditTextItem(int id, TextView *tv, int w, int l)
This is the constructor for when you have a TextView already.

void Init(TextView *tv, int width, int lines, char *it)
Metric GetMinSize()
int Base()
void SetNoSelection()
void SetSelection(int from= 0, int to= cMaxInt, bool redraw = TRUE)

Text *GetText()
Return the current text displayed. In order to get the string, call GetText()->AsString().

int GetTextSize()
virtual bool Validate()

Prepare to take input from the keyboard, by re-setting the selection.

7. Window System Interface
The graphic primitives and the corresponding constants can be found in the following files in /src

Drawing/Cursors (Port.h):
This file exports constants for patterns, rasterops, linecaps, polygon types and cursors together
with all the drawing primitives.

Fonts (Font.h)
This file exports the definitions and constants related to font management. The meaning of some
standard fonts defined in this file are:

gSysFont font to be used in menus, titlebars etc.

gApplFont default font of an application

gFixedFont a fixedwidth font

The size of these fonts is can be set in the environment variable ET_FONT_SIZE. 12 point fonts will
be used by default. A font is created with function new_Font(fontid, size, face).

ET++ Introduction and Installation 44

Bitmaps (Bitmap.h)
The example below illustrates how to create a static bitmap:

static short UpArrowBits[]= {
include "images/UpArrow.image"
};
static Bitmap ArrowUp(Point(16,16), UpArrowBits);

The file images/UpArrow.image contains a list shorts and is typically generated on SUNs with
iconedit(1). Iconedit allows only to create either 16x16 or 64x64 bitmaps, in order to extract a
subregion of such a bitmap the utility bmcut (/util/bmcut) can be used.

Events (Token.h):
This file contains the definition of a class Token, which used to describe window system events.

7.1. Drawing on the screen

The methods used to actually draw things on the screen are declared in Port.h. The kinds of things that
can be drawn are: lines, rectangles, rounded rectangles, ovals, wedges, bitmaps, polygons, text and
pictures.

Each kind of object can be filled and stroked with a so called Ink. Ink is the common superclass of
Colors (RGBColor), Pattern (Bitmaps). Four static instances of Ink represent the special “colors” None,
Xor, Black and White. All Inks can be used for all graphic primitives.

The ET++ color model is very new and not very well implemented. But it works and its interface will
not change dramatically in coming versions.

To use colors in an application build a palette like the following example:

OrdCollection *pal= new OrdCollection;
pal->Add(gInkNone); // transparent
pal->Add(gInkWhite); // white
 // (more efficient than RGBColor(1.0)
pal->Add(gInkBlack); // black
 // (more efficient than RGBColor(0.0)
pal->Add(new RGBColor(0.25)); // dark grey
pal->Add(new RGBColor(0.50)); // medium grey
pal->Add(new RGBColor(0.75)); // light grey
pal->Add(new RGBColor(255, 0, 0)); // red
pal->Add(new RGBColor(0, 255, 0)); // blue
pal->Add(new RGBColor(0, 0, 255)); // green

Using a color:

GrPaintRect(r, pal->At(8));

The fourth optional parameter of RGBColor specifies the “precision” of the color. 0 gives you the
nearest matching color without allocating new color cells. 255 gives you an exact match (if possible).

ET++ Introduction and Installation 45

These values are a hack! In the next version the precision factor will specify the tolerated distance
between the requested and returned color. So the meaning of 0 and 255 will swap!

Exact colors can be changed dynamically with the method SetRGB(r,g,b). If the method returns TRUE
the change failed and you must redraw the part of your image (possible on screen without color map or
monochrome screens). On monochrome screens colors are approximated by halftoning (ordered
dither). Look at the example application “color”. Try the application on a monochrome screen!

For compatibility reasons the following symbols are still supported in this release (but they are Ink,
RGBColor and Bitmap pointers, not enums!):

ePatNone
ePatWhite
ePatBlack

ePatGrey87 ← percentage of blackness in the grey.
ePatGrey75
ePatGrey60
ePatGrey50
ePatGrey40
ePatGrey25
ePatGrey12

and ePat00 to ePat15, which are 16 useful patterns.

The current pattern is set with:

GrSetPattern(GrPattern p)

The current text attributes are set with these functions:

GrSetFont(Font *fp)
GrSetFamily(GrFont f)
GrSetSize(int s)
GrSetFace(GrFace f)
GrSetTextPattern(Ink *)

Text is drawn with these functions:

GrDrawChar(byte c)
GrDrawString(byte *s, int l= -1)
GrShowString(FontPtr fd, GrPattern pat, GrMode mode,
 Point pos, byte *text, int l= -1)

GrDrawChar and GrDrawString draw from the current text position, which is accessed with these
functions:

GrTextMoveto(Point p)
GrTextAdvance(int h)
Point GrGetTextPos()

ET++ Introduction and Installation 46

There is also a drawing current position, which can be changed with GrMoveto(Point p). Lines
can be drawn from the current position with GrLineto(Point p), or lines can be drawn between
two points with GrLine(Point p1, Point p2).

Other drawing commands:

Rectangles GrFillRect(Rectangle r)
Round rectangles GrFillRoundRect(Rectangle r, Point dia)
Ovals GrFillOval(Rectangle r)
Wedges GrFillWedge(Rectangle r, int s, int e)
Bitmaps GrShowBitMap(Rectangle r, Bitmap *bmp)
Polygons GrFillPolygon(Point at, Point *pts, int npts, GrPolyType t)
Pictures GrShowPicture(Rectangle *r, Picture *pic)

8. Application Framework Classes
The following discussion of the basic application framework classes Application, Document,
View, Window, and Command is intended as a conceptual introduction to the most important aspects
of ET++ and of an application framework (e.g. MacApp) in general. Some of these classes originate
from MacApp and therefore have a similar behavior and interface.

Upon starting an ET++ application the main program creates an Application object and calls the
Run method for that object in order to hand control to ET++. When the user wants to create a new
document or open an existing one ET++ puts up the appropriate dialogs and calls a method of the
application object to create a new Document object.

A Document object contains an applications's data and provides methods to save the data on disk and
read it back into memory. In addition it creates Windows, and defines the window layout by creating
Expanders, Clippers, or Scrollers and installs the corresponding Views. View objects
provide drawing surfaces on which the document's data or other information is displayed. It also
forwards input events to interaction objects within the View and knows how to print its surface onto a
printer.

A Clipper is a rectangular area of the window that shows part of a VObject (a View is a subclass
of VObject) and knows how to scroll that part of a VObject.

A Window object controls the document's window on the screen and manages all operations pertaining
to windows including opening, closing, resizing, moving, and redrawing. All the classes mentioned
above are subclasses of the class EvtHandler which defines abstract methods to react on input
events. The default implementation forwards them to another EvtHandler.

The Command class provides a convenient framework for implementing undoable commands. It is
subclassed for every command of an application to add fields that will maintain the state necessary to
do, undo and redo the command, and to implement the corresponding methods DoIt, UndoIt and
RedoIt. Calling these methods is done completely under the control of ET++.

The following sections describe some mechanisms related to the application framework classes.

ET++ Introduction and Installation 47

8.1. Storing/Loading Documents

To store or load the contents of a document in a file the methods DoRead and DoWrite have to be
overridden in a subclass of Document.

void DoRead(istream &, FileType *ft); void DoWrite(ostream &, int option);

The implementation of these methods typically uses the object input/output facility to transfer the
contents of a document to a C++ stream (FileType is explained below). If the standard ET++ format is
used to store a document both methods should first call the inherited DoRead/DoWrite methods.
These inherited methods take care of writing and reading an additional header line stored together with
the document. The header line consists of the external document type (e.g. DRAW, VOBTEXT) and the
name of the application which generated the document. If a document has to be stored as a pure ASCII
document without the header line the calls of the inherited method have to be omitted. The external
document type is associated with a document in the class Document's constructor:

Document(const char *extDocType)
This external document type is used whenever ET++ has to decide whether an application can handle
the contents of a file. A set of predefined external document or file types can be found in FileType.h.

An application handling only a single type of documents hands their external type name over to ET++
in the constructor of the class Application.

Application(int argc, char *argv, const char *mainDocType, char
*opts)
Every application that handles several document types must override the method:

bool CanOpenDocument(FileType *ft)
ET++ calls this method to test whether an application can handle the contents of a file. Filetype is a
class giving access to status information about a file. Its member functions are:

const char *Type()
returns the external document type associated with the file

char *Creator()
returns the name of the ET++ application which generated the file, 0 indicates that the creator is
unknown.

long SizeHint()
returns the size of the file in bytes (-1 indicates that no information about the size available)

bool IsAscii()
returns whether the file is an ASCII file or not.

The following example shows how CanOpenDocument is implemented for an application handling
ASCII files and files with the external type DRAW.

ET++ Introduction and Installation 48

bool myApplication::CanOpenDocument(FileType *ft)
{
 return strismember(ft->Type(), "DRAW", cDocTypeAscii, 0);
}

Strismember is a utility function which checks whether the first argument is in the set of strings
specified in the following zero terminated argument list.

The method Document::CanLoadDocument can be overridden to specify which subset of the
external file types specified in CanOpenDocument an already open document can handle, e.g. can
replace its current contents.

A Document class which can read its contents from a file stored in different formats uses the
additional FileType parameter passed by ET++ to the DoRead method in order to perform the
necessary conversions. Example:

void myDocument::DoRead(istream &s, FileType *ft)
{
 if (strcmp(ft->Type(), "DRAW") == 0)
 // read document stored in DRAW format
 else if (ft->IsAscii())
 // read the contents from an ordinary ascii file
 else Error("Cannot Read files of type %s", ft->Type());
}

The mechanism to import the contents of another document or a file is based on the two methods:

bool CanImportDocument(FileType *ft);
Command *DoImport(istream &s, FileType *ft);

ET++ calls CanImportDocument for the first time with ft set to zero, only if this call returns
TRUE the import command will be inserted into the pop-up menu. Import returns a command object
which can be used to provide undoable import commands.

8.1.1. Creating the Initial Window Layout

In addition to storing the data of an application on disk, the class Document is responsible to create an
initial window layout for a document.

Window *DoMakeWindows()
This method has to be overridden in subclasses of Document to create the Window and to install a
document's views therein.

A View is typically not installed directly into a Window but combined with one of the following
classes:

Clipper
instances of Clipper show a rectangular cutout of a View and establish a clipping boundary

ET++ Introduction and Installation 49

Scroller
in addition to the functionality provided by the class Clipper instances of Scroller
surround a View with scrollbars.

Splitter
instances of Splitters allow to split a View in up to four panes, showing disconnected
portions of the View.

In the simplest case a Window shows only one View through a Scroller as illustrated in the
following example:

Window *myDoc::DoMakeWindows()
{
 myView *view= new myView(this, /* ... */);
 return new Window(this, Point(560, 400), eBWinDefault,
 new Scroller(view)
);
}

The first argument of the class Window's constructor is the object which will receive events not
handled by the window itself, eg. the next event handler. The Point parameter specifies the window's
extent. The third argument is used to specify the desired behaviour of the window. The set of flags that
can be specified are:

eBWinOverlay used in menus or alerts to give a hint to the underlying window system to optimize

the damage handling of a window.

eBWinBlock used for modefull dialogs, setting this flags preempts any input in another window
of this process

eBWinFixed the extent of the window cannot be changed by the user

eWinDestroy clicking on the close box will destroy the window

eWinCanClose clicking on the close box will hide the window; this option is typically for windows
of modeless dialogs

eBWinDefault used for application windows

The last argument is the VObject representing the window's contents. In this case a new Scroller
is created and the View is passed as first argument to the Scroller. To exchange the Scroller
with a Clipper or a Splitter only the call new Scroller has to be replaced with the
corresponding class name.

The class Expander is used to describe more complex window layouts. Expanders distribute the
available space evenly among their contained VObjects. The following example illustrates how an
Expander is used to show two Scrollers side by side in one window. When this window is
resized the layout is recalculated and each Scroller will be assigned the same extent.

ET++ Introduction and Installation 50

Window *TwoViewDoc::DoMakeWindows()
{
 myView *view1= new TextView(/*...*/);
 myView *view2= new TextView(/*...*/);

 return new Window(this, Point(700, 400), eBWinDefault,
 new Expander(eHor, gPoint2,
 new Scroller(view1),
 new Scroller(view2),
 0)
);
}

The first argument of the Expander's constructor specifies whether the available space should be
subdivided either in the horizontal (eHor) or vertical (eVert) direction. The Point argument
defines the gap to be used between the VObjects following in the zero terminated variable argument
list.

A VObject can further control the layout mechanism of Expanders by setting the flags
eVObjHFixed or eVObjVFixed. If one of these flags are set an Expander will not change the
size of the VObject in the corresponding direction. Expanders can be nested to arbitrary depth.

A document using several windows can create them in DoMakeWindows(). Each of them is added to
the list of a document's windows with a call to AddWindow(). The window returned from
DoMakeWindows is considered as the base window of the document. ET++ automatically updates the
base window's title bar with the document name and the initial position of the icon is set to its top left
corner.

8.1.2. Commands

Every Command objects returned from an event handler method is assigned a name and an numerical
identifier. The name is used in the undo menu entry to show which command can be undone. The
name, identifier and some flags are associated with a command in its constructor.

Never assign the id 0 to an undoable command.

The following flags can be set in the constructor of commands:

ET++ Introduction and Installation 51

eCmdCanUndo command is undoable (default)

eCmdCausesChange command modifies the contents of a document (default)

eCmdMoveEvents provides for mouse up drawing, e.g. TrackMouse !will be called until this
flag is reset

eCmdIdleEvents call TrackMouse even when there is no mouse activity

eCmdFullScreen allows tracking and drawing on the full screen

eCmdDoDelete the command object will be deleted by ET++ (default)

The predefined command object gNoChanges is returned when an EvtHandler method (e.g.
DoKeyCommand, DoMenuCommand) does not modify the contents of a Document.

8.1.3. Text handling

The ET++ classes to handle text can be subdivided in classes storing the text and classes which render
the text on the screen. The classes storing the text contents are all derived from Text, the
corresponding class hierarchy is shown in the following table:

Text abstract superclass for text storage

 CheapText for smaller texts without font attributes

 GapText for larger texts

 StyledText for texts with font attributes

 VObjectText for texts including graphic objects

The text classes have constructors to set either their initial size or their initial contents. The class
StyledText has an additional constructor to specify a string using different font faces.

StyledText(Font fd, char* format, ...);
format contains a format specification a la printf. In addition the face of the font fd can be
changed with the notation @P (plain), @B (bold), @I (italic), @O (outline), @S (shadowshadow), @U
(underline). Example:

StyledText message("File @B%s@B does not exist", filename);

The same notation is used in Alerts to specify the format of the message string.

The contents of the text is modified with methods modelled after the cut/copy/paste operations:

void Cut(int from,int to);
void Paste(TextPtr t,int from,int to);
void Copy(Text* save,int from, int to);
void Insert(byte c, int from,int to);
void Append(byte c);
void Copy(Text* save,int from, int to);

ET++ Introduction and Installation 52

The arguments from and to specify the range characters affected by an operation.

The text classes give support to attach a so called mark to a range of text. Marks are instances of the
class Mark and can be considered as a robust pointer to a text range which remains valid in the face of
insertions and deletions in the text.

In addition the text classes include the pattern matching method Search based on regular expressions.
The class RegularExpr uses the syntax described in doc/regex.doc. In order to create an editable
text on the screen instance of a text storage class is created and handed over to any text rendering class.
Text classes and Views can be freely combined. An exception are VObjectTexts, they should
always be used together with a VObjectTextView. A VObjectTextView takes care of
dispatching events among the contained VObjects and allows to resize them interactively. The class
hierarchy for the text rendering classes is shown below:

StaticTextView readonly textview without a selection

 TextView textview with a selection

 CodeTextView adds features to edit source code

 ShellTextView a textview connected with a UNIX shell, providing a fancier
interface to the shell

 VObjectTextView a textview adding some support to manipulate graphical objects
stored in a VObjectText

 RestrTextView restricts the input from the user, input is only accepted if the
resulting text matches a client specified regular expression

The properties of a TextView can be set in its constructor:

TextView(EvtHandler *eh, Rectangle r, Text *cont, eTextJust just,
 eSpacing sp, bool wrap, TextViewFlags tf, Point border)

next TextView next event handler

r dimensions of the view. If r.extent.width or r.extent.height is set to cFit, the
corresponding dimension is always adapted to the size of the text.

cont install the given text in the view

just text justification (eLeft, eRight, eCenter, eJustified)

sp line spacing (eOne, eOneHalf, eTwo)

wrap lines wrap around at right margin?

tf flags of a TextView see below

border border around the text

Except for the first three arguments default values are provided in all constructors of TextViews.
Further characteristics are specified in tf with the following flags:

ET++ Introduction and Installation 53

eTextViewReadOnly text is read only

eTextFormPreempt preempt formatting when there is user input and resume when the
application is idle

eTextNoFind do not add the find/change menu entry in TextViews

TextViews batch incoming input from the keyboard and insert the new text in one batch. A side
effect of this optimization is that, if DoKeyCommand is overridden in order to handle some input
characters especially, it will not always be called for these characters. This case can be handled
properly by calling SetStopChars with a string specifying the characters which may not be batched.

Whenever a TextView's dimension or contents changes it notifies its observers by calling Send with
some predefined part codes as definded in CmdNo.h. These change notifications are typically used to
adapt the size of graphical boxes keeping text to the text's extent.

9. Clipboard
Class ClipBoard is the basic abstraction for the ET++ clipboard. The basic idea is to hide all details
of maintaining a local and global clipboard completely from the application. But currently this
abstraction exists only in a very rudimentary implementation. The local clipboard works under all
window systems; the global clipboard only under SunWindows and X11.

In order to make clipboard support available between different ET++ applications under SunWindow it
is necessary to start a separate process clipboard, a prototypic implementation of a simple minded
clipboard server process. At start up time every ET++ application automatically connects to this server
process, thereby making the clipboard data available to other ET++ applications. Currently it is not
possible to cut and paste between the SunView clipboard and ET++ applications.

The ClipBoard class is not directly accessed in an application, but used through four methods of
class View. In order to make a selection available for the clipboard, the following methods of class
View must be overridden.

Command *PasteData(char *type, istream &is)
PasteData is called after selecting the paste menu command. The clipboards data is accessible via
the stream parameter.

bool CanPaste(char *type)
This method is called whenever the View's popup menu is displayed. The View must check if it is
possible to paste the clipboard's data into it's data structure. The paste menu entry is only enabled if
CanPaste returns TRUE.

void SelectionToClipboard(char *type, ostream &os)
Whenever an application want to paste the clipboard, this method is called for the current selection

ET++ Introduction and Installation 54

holder. The selection holder must write the selection in the ET++ standard input/output format to the
stream os.

But remember: the ET++ clipboard mechanism is not yet finished! But it works between most
applications dealing with text. It is for example possible to copy a text containing different VObjects
from vobedit into the draw application even if the draw application does not contain the code to
support the selection's data. Dynamic loading “automagically” loads the necessary “.o”-files into the
running application (try to copy an annotation from vobedit into a text object in draw).

10. Learning by Example
We currently do not provide manual pages or a lot of documentation about ET++ classes.

A full fledged documentation for ET++ is in preparation

The best way to learn ET++ is to study the example applications included in this distribution. The
following table lists in order of increasing complexity the features illustrated by the example
applications.

Hello:
The famous “hello world” example

Micky:
The almost empty application

TwoShapes:
An application for moving and stretching two simple shapes and includes a menu to modify the
fill pattern of one shape.
– Undoable commands
– Handling menus, including graphical menu entries
– Generic stretchers and movers
– Handling the type of a document
– Alert boxes

MultiUndo:
The same as TwoShapes but with n-level undo. The only implementation difference is the use of
CmdHistDocument instead of Document.

ThreeShapes:
An extension of two shapes with a boxed editable text shape. A shape's fill pattern can be
changed with a menu while the cursor is over the shape.

ET++ Introduction and Installation 55

– TextViews and their change propagation protocol
– Redirecting input events to an arbitrary object

FileBrowser:
A simple filebrowser. Presented at the OOPSLA ´90 Tutorial.

FileBrowserII:
A full-fledged filebrowser with integrated typescript. Clicking on an icon above the file list boxes
brings up a shell window in the current directory. Later clicking synchronizes shell and viewed
directory. The small icon above the right scrollbar brings up a menu showing all functions of the
current C/C++ file. Select an item to quickly select (highlight) a method. Start a make by
selecting the make-entry in the editors utilities menu. In case of C++ error messages place the
caret into the error line and select the menu command “Find Error”. The browser will load the
corresponding file and selected the line containing the error.

Miniedit:
A simple text editor for ascii files.
– Handling pure ASCII files
– Using CodeTextViews

TwoViews:
An application displaying two TextViews in the same window. Both TextViews show the
same text and are updated automatically due to the delayed update mechanism used in the text
classes.
– Two views in one window

Typescript:
An interface to a unix shell providing the text editing functions for the current command line as
found in all ET++ applications. Output from the shell is read only and is not editable a reverted
caret marks the fence between output from the shell and the current command line. Input of the
user is shown in a bold styled font. Typescript emulates only a dumb terminal, e.g. more can be
used but more demanding full screen applications a la vi are not supported.
– Using ShellTextViews

PolyDocApp:
A merge of miniedit and twoshapes, illustrating how different document types can be handled
within one application. Miniedit documents have an additional entry import in the file submenu.
Import allows to include another text file into the document.
– Extending the application window
– Handling different document types in one application
– Importing files

ET++ Introduction and Installation 56

Dialog:
The intend of this application is not to show how to create dialogs but to present all the different
dialog items of ET++ in a window.

Calculator:
A simple infix calculator.
– Advanced usage of event distribution mechanism
– Layout of a two dimensional cluster

Tree:
A tree browser. Trees can be stored either in the standard ET++ or pure ASCII format. The
ASCII format uses indenting by two blanks to define the levels of the hierarchy. Clicking on a
node invokes the source code editor if the name of the node corresponds a class name. An
example of an ASCII file is import. This file was generated with makehier provided in the /bin
directory. makehier is a awk script that analyzes all *.[cCh] files and determines the inheritance
relationship among the different classes.

– Extending the save dialog with additional options
– Storing a document in different formats
– Using TreeViews
– Building up a tree for a TreeView
– Loading documents of different types with automatic conversion
– Using a DialogView as a palette

Vobedit:
A text editor with the ability to integrate arbitrary graphical objects (instances of VObject).
These objects behave as ordinary characters and flow with the text when characters are inserted.
Some graphical objects are provided in the submenu vobjects. Selecting an entry from this menu
inserts the corresponding object into the text. Examples are Buttons, TextViews, a window
with a running shell, or recursively another instance of a VObjectTextView that can be
scrolled independently of the rest of the text. The inserted objects still behave as expected, e.g.
they respond to mouse clicks and keyboard input. The currently active VObject receiving the
keyboard input is highlighted with a grey border. Once inserted the size of a graphical object can
be changed by stretching the bottom left corner with the left mouse button.
– Using the classes VObjectText/VObjectTextView

Layout:
This application allows to study and to verify the layout management of the ET++ dialog classes.
– Generic stretchers, movers
– Layout management of clusters

ET++ Introduction and Installation 57

Trofftool:
A previewer for ditroff output. Open document demo.f. You can flip pages by menu commands
or the page up and down keys. The applications shows how to convert ditroff output to a compact
Picture object. In addition an abstract Parser class with several simple subclasses is used for
scanning, finding pages, searching, and converting to ASCII text (by saving the document). I
think this is the shortest troff-previewer on the market :-)

Color:
The document's window shows 16 grey rectangles. Clicking on a color starts a color picker
dialog for changing the color. The application illustrates the usage of animated colors and double
buffering of complicated view backgrounds. Drag the small circle on the colorwheel! It’s
implemented without Xor but with invalidation. It’s fast because the colorwheel is updated from
a so called “Form”.

Draw:
A full fledged drawing editor with the possibility to dynamically link new shape types while the
application is running. Examples are the shapes defined in DynShape.c. The file dynshapedoc
is a draw document including a DynShape shape. When this document is loaded the
corresponding classes are dynamically linked and the palette is updated accordingly.

 Draw can maintain connections among different shapes. A connection between two shapes is
established by selecting the shapes (a selection can be extended with a shift click) and then
choosing the menu entry connect. Text entered while a shape is selected is attached to this shape,
e.g. when the shape is moved the text will be moved accordingly. SUN rasterfiles can be
imported with import from the file submenu (works only under SunView). Shapes can not only
be moved with the mouse but with the cursor keys as well.

– Change propagation to maintain the connectivity among shapes (Connection.[ch])
– TextViews as shapes (TextShape.[ch])
– Dynamic linking of classes
– Using a collection class to manage the shapes
– Using pull down menus
– Adding submenus to the main menu
– Using the clipboard

Sources of other code examples can be found in the ET++ class library itself.

FindDialog/ChangeDialog.[Ch]:
A modeless dialog.
– Aborting a lengthy operation (change all command)

PrintDialog.[Ch]:
A modefull dialog

ET++ Introduction and Installation 58

ShellTextView.C
Dispatching input from other sources than the window system, e.g. a pseudo tty.
– Using StyledText
– Using robust pointers to text positions with Marks

PROGENV/Inspector.C
The inspector window itself is an example of a more complex layout of a window with several
panes.

