
Composing User Interfaces with InterViews

Mark A. Linton, John M. Vlissides, and Paul R. Calder
Stanford University

Abstract

In this paper we show how to compose user interfaces
with InterViews, a user interface toolkit we have de-
veloped at Stanford. InterViews provides a library of
predefined objects and a set of protocols for composing
them. A user interface is created by composing simple
primitives in a hierarchical fashion, allowing complex
user interfaces to be implemented easily. InterViews
supports the composition of interactive objects (such
as scroll bars and menus), text objects (such as words
and whitespace), and graphics objects (such as circles
and polygons). To illustrate how InterViews composi-
tion mechanisms facilitate the implementation of user
interfaces, we present three simple applications: a di-
alog box built from interactive objects, a drawing edi-
tor using a hierarchy of graphical objects, and a class
browser using a hierarchy of text objects. We also
describe how InterViews supports consistency across
applications as well as end-user customization.

1 Introduction

Graphical user interfaces for workstation applications
are inherently difficult to build without abstractions
that simplify the implementation process. To help pro-
grammers create such interfaces, we considered the
following questions: What sort of interfaces should
be supported? What constitutes a good set of pro-
gramming abstractions for building such interfaces?
How does a programmer go about building an inter-
face given these abstractions? Our efforts to develop
user interface tools that address these questions have
been guided by practical experience. We make the
following observations:

All user interfaces need not look alike. It is de-
sirable to maintain a consistent “look and feel”
across applications, but users often have different
preferences. For example, one user may prefer
pop-up menus, while another insists on pull-down
menus. Our tools must therefore allow a broad
range of interface styles and must be customiz-
able on a per-user basis.

User interfaces need not be purely graphical.
Many application designers prefer iconic inter-

faces because they believe novices understand
pictures more readily than text. However, recent
work [15] suggests that excessive use of icons
can confuse the user with unfamiliar symbolism.
A textual interface may be more appropriate in a
given context. The choice of graphical or textual
representation should favor the clearest alterna-
tive.

User interface code should be object-oriented.
Objects are natural for representing the elements
of a user interface and for supporting their direct
manipulation. Objects provide a good abstraction
mechanism, encapsulating state and operations,
and inheritance makes extension easy. Our ex-
perience is that, compared to a procedural imple-
mentation, user interfaces are significantly easier
to develop and maintain when they are written in
an object-oriented language.

Interactive and abstract objects should be sep-
arate. Separating user interface and application
code makes it possible to change the interface
without modifying the underlying functionality
and vice versa. This separation also facilitates
customization by allowing several interfaces to
the same application. It is important to distin-
guish between interactive objects, which imple-
ment the interface, and abstract objects, which
implement operations on the data underlying the
interface.

An effective way to support these principles is to
equip programmers with a toolkit of primitive user
interface objects that use a common protocol to de-
fine their behavior. The protocol allows user interface
objects to be treated uniformly, enabling in turn the
introduction of objects that compose primitives into
complete interfaces. Different classes of composition
objects can provide different sorts of composition. For
example, one class of composition object may arrange
its components in abutting or tiled layouts, while an-
other allows them to overlap in prescribed ways. A
rich set of primitive and composition objects promotes
flexibility, while composition itself represents a power-
ful way to specify sophisticated and diverse interfaces.

Composition mechanisms are central to the design
of InterViews, a graphical user interface toolkit we

- 2 -

primitive
object(s)

composition
object(s)

InterViews
Library
Declarations

Application
Code

Object Code
InterViews
Library
Object Code

Executable

compile

link

Figure 1: Incorporating InterViews objects into an application

InterViews

Window System

Operating System

Application

Figure 2: Layers of software underlying an application

- 3 -

have developed at Stanford. InterViews is a library
of C++ [20] classes that define common interactive
objects and common composition strategies. Figure 1
depicts how objects from the InterViews library are
incorporated into an application, and Figure 2 shows
the relationship between the various layers of software
that support the application. Primitive and composi-
tion objects from the InterViews library are linked into
application code. The window system is entirely ab-
stracted from the application; the application’s user in-
terface is defined in terms of InterViews objects, which
communicate with the window and operating systems.

InterViews supports composition of three categories
of object. Each category is implemented as a hierarchy
of object classes derived from a common base class.
Composition subclasses within each class hierarchy al-
low hierarchical composition of object instances.

1. Interactive objects such as buttons and menus are
derived from the interactor base class. Interac-
tors are composed by scenes; scene subclasses de-
fine specific composition semantics such as tiling
or overlapping.

2. Structured graphics objects such as circles and
polygons are derived from the graphic base class.
Graphic objects are composed by pictures, which
provide a common coordinate system and graph-
ical context for their components.

3. Structured text objects such as words and whites-
pace are derived from the text base class. Text
objects are composed by clauses; clause sub-
classes define common strategies for arranging
components to fill available space.

The base classes define the communication protocol
for all objects in the hierarchy. The composition
classes define the additional protocol needed by the el-
ements in a composition, such as operations for insert-
ing and removing elements and operations for propa-
gating information through the composition (see Ap-
pendix A, Primitive and Composition Protocols).

Hierarchical composition gives the programmer
considerable flexibility. Complex behavior can be
specified by building compositions that combine sim-
ple behavior. The composition protocol facilitates the
task of both the designer of a user interface toolkit and
the implementor of a particular user interface. The
toolkit designer can concentrate on implementing the
behavior of a specific component in isolation; the in-
terface designer is free to combine components in any
way that suits the application.

In this paper we focus on using InterViews to build
user interfaces. We present several simple applications

Figure 3: A simple dialog box

and show how InterViews objects can be used to im-
plement their interfaces. We also illustrate the benefits
of separating interactive behavior and abstract data in
several different contexts. Finally, we discuss Inter-
Views support for end-user customization as well as
the status of the current implementation.

2 Interactor Composition

An interactor manages some area of potential input
and output on a workstation display. A scene com-
poses a collection of one or more interactors. Because
a scene is itself an interactor, it must distribute its in-
put and output area among its components. In this
section, we discuss the various InterViews scene sub-
classes that provide tiling, overlapping, stacking, and
encapsulation of components. We concentrate on how
these scenes are used rather than giving their precise
definitions.

2.1 Boxes and Glue

Consider the simple dialog box shown in Figure 3. It
consists of a string of text, a button containing text, and
a white rectangular background surrounded by a black
outline. Pushing the button will cause the dialog box to
disappear. The dialog box will maintain a reasonable
appearance when it is resized by a window manager.
If parts of the dialog box previously covered by other
windows are exposed, then the newly exposed regions
will be redrawn.

InterViews provides abstractions that closely model
the elements, semantics, and behavior of the dialog
box. A user interface programmer can express the
implementation of the interface in the same terms as
its specification. The InterViews library contains a
variety of predefined interface components; we will
use the following components in the dialog box:

message, an interactor that contains a string of
text

- 4 -

push button, an interactor that responds to the
press of a mouse button

box, a scene that tiles its components

glue, variable-sized space between interactors in
a box

frame, a scene that puts an outline around a single
component

Boxes and glue are used to compose the other ele-
ments of the dialog box. The composition model we
use is a simplified version of the TEX[7] boxes and
glue model. This model makes it unnecessary to spec-
ify the exact placement of elements in the interface,
and it eliminates the need to implement resize behav-
ior explicitly.

Two types of box are used: an hbox tiles its compo-
nents horizontally, while a vbox tiles them vertically.
Glue is used between interactors in a box to provide
space between components. Hglue (horizontal glue)
is used in hboxes, while vglue (vertical glue) is used
in vboxes.

Each interactor defines a preferred or natural size
and the amount by which it is willing to stretch or
shrink to fill available space. Glue of various natural
sizes, shrinkabilities, and stretchabilities can be used to
describe a wide variety of interface layouts and resize
behaviors.

Figure 4 depicts schematically how the elements of
the dialog box are composed using boxes and glue.
The corresponding object structure is shown in Fig-
ure 5, and the C++ code that implements the dialog
box appears in Figure 6. The message and button in-
teractors are each placed in an hbox with hglue on ei-
ther side of them. The hglue to the left of the message
has a natural size of a quarter of an inch and cannot
stretch, while the glue on the right has a natural size
of zero and can stretch infinitely (as specified by the
constant hfil). If the dialog box is resized (Figure 7),
the margin to the left of the message will not exceed
a quarter of an inch, while the space to the right can
grow arbitrarily. Similarly, the button has infinitely
stretchable hglue to its left and fixed size hglue to its
right, so that the margin to the right of the button will
not exceed a quarter of an inch.

The hboxes are composed vertically within a vbox,
separated by pieces of vglue. The pieces of vglue
above the message and below the button have a natural
size of a quarter of an inch, while the vglue between
the message and the button has a natural size of half
an inch. The inner vglue can stretch twice as much
as the outer two pieces of vglue. On resize, therefore,

message object

hglue vglue hbox vbox

button object

Figure 4: Schematic of dialog box composition using
boxes and glue

message pushbutton

vbox

vglue hbox vglue hbox vglue

hglue hglue hglue hglue

Figure 5: Object structure of dialog box composition

Figure 7: The dialog box after resizing

- 5 -

const int space = round(.25*inches);
ButtonState* status;

Frame* frame = new Frame(
new VBox(

new VGlue(space, vfil), /* (natural size, stretchability) */
new HBox(

new HGlue(space, 0),
new Message("hello world"),
new HGlue(0, hfil)

),
new VGlue(2*space, 2*vfil),
new HBox(

new HGlue(0, hfil),
new PushButton("goodbye world", status, false),
new HGlue(space, 0)

),
new VGlue(space, vfil)

)
);

Figure 6: C++ code for composing the dialog box interface

the message and button interactors will remain twice
as far apart from each other as they are from the edge
of the dialog box.

2.2 Tray

Suppose we want a dialog box centered atop another
interactor, perhaps to notify the user of an error condi-
tion. Furthermore, we want the dialog box to remain
centered if the interactor is resized or repositioned.
Boxes and glue are inappropriate for this type of non-
tiled composition.

The tray scene subclass provides a natural way to
describe layouts in which components “float” in front
of a background. A tray typically contains a back-
ground interactor and several other components whose
positions are determined by a set of alignments. For
example, the background interactor might display the
text in a document; other components could include
various messages, buttons, and menus.

Each alignment of a tray component is to some other
target interactor, which can be another component of
the tray or the tray itself. The alignment specifies a
point on the target, a point on the component, and the
characteristics of the glue that connects the alignment
points. An alignment point can be a corner of the in-
teractor, the midpoint of a side, or the center. The

Figure 8: An interface using a tray

tray will arrange the components to satisfy all align-
ments as far as possible. If necessary, the components
and the connecting glue will be stretched or shrunk to
satisfy the alignments.

Figure 8 shows a simple application in which a tray
composes a textual interface and a dialog box. The
interactor containing text and a scroll bar are com-
posed with an hbox and placed into the tray as its
background. When the dialog box is required it is
inserted into the tray with its upper left and lower
right corners aligned to the corresponding corners of
the tray. Figure 9 shows the arrangement of compo-
nents, and Figure 10 gives the code that implements

- 6 -

const int space = round(.125*inches);
TGlue* g1 = new TGlue(space, space, 0, hfil, 0, vfil);
TGlue* g2 = new TGlue(space, space, 0, hfil, 0, vfil);

/* (width, height, hshrink, hstretch, vshrink, vstretch) */

Tray* tray = new Tray(
new HBox(

view,
new VBorder(1),
new VScroller(view)

)
);

tray->Insert(dialog);
tray->Align(TopLeft, dialog, g1);
tray->Align(BottomRight, dialog, g2);

Figure 10: C++ code for composing the tray interface

background
interactor

tray

tray component
(dialog box)

tray alignments (using glue)

Figure 9: Schematic of tray interface

Figure 11: Tray interface after resizing

deck

top component
interactor

other
components

Figure 12: Composition using a deck

the interface. The alignments interpose stretchable but
non-shrinkable glue with a natural size of an eighth of
an inch to maintain a minimum spacing between the
edges of the tray and the dialog box. These alignments
guarantee that the dialog box will remain centered atop
the background interactor after resizing (Figure 11).
Note how the tray shrank the dialog box to satisfy the
alignment constraints once the glue reached its mini-
mum size.

2.3 Deck

Another common interface is one in which the user
flips (rather than scrolls) through “pages” of text or
graphics as through a book. Such an interface can
be built in InterViews by composing interactors with

- 7 -

a deck. The interactors in a deck are conceptually
stacked on top of each other so that only the topmost
interactor is visible (Figure 12). The deck’s natural
size is determined by the natural size of its largest
component. A set of operations allow “shuffling” the
deck to bring the desired component to the top.

Decks can be used in other contexts as well. A
set of color or pattern options in a dialog box could
be composed with a deck, allowing the user to flip
through them until the desired choice is reached. Al-
ternate menu entries could be stored in a deck and
inserted into a menu to allow changes in the menu’s
appearance without having to rebuild it each time.

2.4 Single Component Scenes

Boxes, trays, and decks are examples of scenes with
arbitrary numbers of components. InterViews also pro-
vides several scenes that can have only one compo-
nent. Such scenes are derived from the scene subclass
monoscene and serve two purposes.

Some monoscenes serve as containers that surround
another interactor. The frame used to place a border
around the dialog box in Section 2.1 is one example.
Other examples include shadow frame, which adds a
drop shadow to its component, and title frame, which
adds a banner. A viewport is a monoscene that scrolls
an interactor larger than the available space. Viewports
are useful for providing a scrolling interface to non-
scrolling interactors.

Other monoscenes provide abstraction; they are
used to hide the internal structure of an interactor that
is implemented as a composition. For example, the
class menu is derived from monoscene. A menu is
implemented as a box containing the interactors that
represent the menu items. However, the box composi-
tion should not be visible to a programmer who wants
to use the menu in a user interface. The monoscene
hides the implementation of menus, making them eas-
ier to understand and allowing their structure to change
without affecting other interface code.

3 Graphic Composition

Direct manipulation editors allow the user to manip-
ulate graphical representations of familiar objects di-
rectly. A drawing editor lets an artist draw a circle
and drag it to a new location. A music editor lets a
composer write music by arranging notes on staves. A
schematic editor lets an engineer “wire up” graphical
representations of circuits.

The programmer of such systems must provide un-
derlying representations for the graphical objects and
define the operations they perform. InterViews pro-
vides a collection of structured graphics objects that
simplifies the programmer’s task.

3.1 A Simple Drawing Editor

Figure 13 depicts a simple drawing editor application
in which the user can draw, move, and rotate rectangles
and scroll and zoom the drawing area. To draw a rect-
angle, the user presses the rect button and drags out
a rectangle in the drawing area. An existing rectangle
can be moved or rotated by pressing the appropriate
button and dragging the rectangle.

In each of these operations, the drawing editor pro-
vides animated feedback as the user creates and ma-
nipulates rectangles. Animation reinforces the user’s
belief that he is manipulating real objects. As a rect-
angle is moved, for instance, its outline follows the
mouse; during rotation, the outline revolves about the
rectangle’s center. Such dynamic feedback is charac-
teristic of a direct manipulation editor.

3.2 Implementing the Drawing
Editor

The elements of the user interface can be composed
using InterViews interactor and graphic subclasses as
shown in Figure 14. The buttons are instances of ra-
dio button, a predefined subclass of the button class.
The interface to scrolling and zooming is provided by
a panner, the two-dimensional scroller in the lower
right of the interface. The drawing area in which the
rectangles appear is a graphic block, an interactor that
displays structured graphics objects. These elements
are composed using boxes and glue. The editor’s pop-
up command menu, appearing in the center-right of
Figure 13, is an instance of the menu class.

Each rectangle in the drawing is an instance of the
rectangle class, a subclass of graphic. The rectangles
are composed in a picture, and the picture is placed
in the graphic block. The graphic block translates and
scales the picture to implement scrolling and zooming.
Rectangles are moved and rotated by calling transfor-
mation operations on the rectangle objects. The picture
performs hit detection by returning the component that
corresponds to a coordinate pair.

- 8 -

Figure 13: A simple drawing editor application

interactor
composition

graphic
composition

frame

graphic
 block

picture

rect 1 rect 2 rect n

vborder vbox

button button button vglue hborder panner

hbox

Figure 14: Drawing editor object structure

- 9 -

3.3 Semantics of Graphic
Composition

The drawing editor demonstrates simple composition
of graphics. In this example, the hierarchy of graph-
ical objects is only one level deep; all the rectangles
are children of a single parent picture. Of course,
more complex hierarchies are common in a practical
drawing editor. However, even the simple one-level
hierarchy demonstrates the semantics of graphic com-
position. For example, when the graphic block applies
a transformation to the picture to scroll or zoom it,
the transformation affects all the rectangles in the pic-
ture. Furthermore, altering any of the picture’s graph-
ics state attributes would affect its children as well. For
example, changing the picture’s brush width attribute
would also change the brush widths of its children.

The composition mechanism defines how the pic-
ture’s graphics state information affects its compo-
nents. A picture draws itself by drawing each compo-
nent recursively with a graphics state formed by con-
catenating the component’s state with its own. The de-
fault semantics for concatenation are that the attributes
defined by a graphic’s parent override the graphic’s
own attributes. If a parent does not define a particular
attribute, then the child graphic’s attribute is used. Co-
ordinate transformations are concatenated so that the
child’s transformation precedes the parent’s.

These semantics represent a kind of reverse inheri-
tance of graphics attributes, since parents can override
their children. This mechanism is useful in editors
where operations performed on interior nodes of the
graphic hierarchy affect the leaf graphics uniformly.
Classes derived from the graphic class can redefine the
semantics of concatenation if the default semantics are
inappropriate.

3.4 Immediate Mode Graphics

Structured graphics objects are not normally used to
draw scroll bars, menus, or other user interface compo-
nents that are simple to draw procedurally. Interactors
use painter objects for this purpose. Painters provide
immediate mode drawing operations (including oper-
ations for drawing lines, filled and open shapes, and
text), and operations for setting the current fill pat-
tern, font, and other graphics state. The results of a
painter drawing operation appear on the display im-
mediately after the operation is performed. The dif-
ference between painter-generated graphics and struc-
tured graphics is that painters do not maintain state or
structure that reflects what has been drawn, so there
is no way to access and manipulate the graphics. In

contrast, structured graphics objects maintain geomet-
ric and graphical state and can be manipulated before
and after they are drawn.

Structured graphics is most appropriate in contexts
where an indefinite number and variety of graphi-
cal objects are manipulated directly. It is a power-
ful tool for constructing graphics editors that provide
an object-oriented editing metaphor because structured
graphics objects embody the same metaphor. These
objects typically represent the data managed by the
editor. Painters should be used to draw simple, un-
changing elements of the interface that do not justify
the storage overhead of graphics objects.

4 Text Composition

Direct manipulation textual interfaces require special
support to handle the problems that arise in the pre-
sentation of text, such as line and page breaking and
arranging text to reflect the logical structure of a doc-
ument. InterViews structured text objects simplify the
implementation of direct manipulation textual inter-
faces.

4.1 A Simple Class Browser
Application

Figure 15 shows the interface to a class browser, a
simple application for perusing C++ class declarations.
The browser displays a class declaration with the class
name underlined and member functions in bold. Click-
ing on the class name opens a window showing doc-
umentation for the class, and clicking on a member
function opens a window showing the function’s def-
inition. The arrangement of the text is maintained by
text composition objects. As Figure 16 shows, resiz-
ing the window reformats the text to make good use
of available space.

4.2 Implementing the Class
Browser

Text and clause subclasses are used to compose the
text displayed in the browser. Objects of class word
(a string of characters) and whitespace (blank space of
a given size) are assembled using various composition
objects so that the lines of code will fill available space
in an appropriate manner. The entire composition is
placed in a text block (an interactor that displays struc-
tured text objects), and the text block is inserted into
a frame.

- 10 -

Figure 15: A simple class browser application

Figure 16: The class browser after resizing

phrase

displayInteractor();

text list

whitespace Painter* out = stdpaintSensor* in = stdsensor,

Figure 17: Object structure of the text composition for
the Interactor constructor

4.3 Semantics of Text Composition

Subclasses of clause specify the way their components
will be arranged. Different clauses use different strate-
gies for using available space:

A phrase formats its components without regard
to space. The components are simply placed end-
to-end on a single line.

A text list can arrange its components either hori-
zontally or vertically. If there is not enough space
for the whole list to fit in a horizontal format, then
the list will place each component on a separate
line. Text lists are used in the browser for com-
posing the member function parameter lists.

A display defines an indented layout. If the dis-
play will not fit on the current line, then it is
placed on the following line with a specified in-
dentation. The browser composes class and mem-
ber function declarations using displays.

A sentence will place as many components as
possible on the current line and will begin a new
line if necessary. The browser uses sentences for
comments.

To illustrate how text composition can be used,
consider the composition of the Interactor con-
structor in the browser (Figure 17). The declara-
tion is composed as a phrase with three components:
the first component is a word representing the string
Interactor(, the second is a display that contains
a text list of the formal parameters, and the third is
a word representing the string);. Figure 18 shows
that the constructor declaration will appear in one of
several layouts depending on the available space. In
the top example all the text can fit on a single line. In
the middle example the available space has been re-
duced so that there is not enough room for the display
containing the parameter list; the display is placed on
a separate, indented line. In the bottom example the
available space has been reduced further, causing the
text list to display vertically instead of horizontally.

Text composition is most useful when the inter-
face requires direct manipulation of text, when the
text should reflect the structural characteristics of the
document, or when the text layout should automati-
cally make good use of available space. Painters are
more appropriate for embellishing interfaces with sim-
ple, non-interactive text.

- 11 -

Interactor(Sensor* in = stdsensor, Painter* out = stdpaint);

Interactor(
Sensor* in = stdsensor, Painter* out = stdpaint

);

Interactor(
Sensor* in = stdsensor,
Painter* out = stdpaint

);

Figure 18: Possible layouts of the Interactor constructor

5 Subjects and Views

In InterViews we distinguish between interactive ob-
jects, which implement a user interface, and abstract
objects, which encapsulate the underlying data. We
refer to interactive and abstract objects as views and
subjects, respectively. This separation is important in
many aspects of user interface design. It is a vehicle
for customization, allowing programmers to present
different, independently customizable interfaces to the
same data. It is a useful structuring mechanism that
separates user interface code from application code. It
permits different representations of the same data to
be displayed simultaneously such that changes to the
data made through one representation are immediately
reflected in the others. Several other user interface
packages support this separation, including the An-
drew Toolkit [14], Smalltalk MVC [8], GROW [3],
and MacApp [2].

Views in InterViews are typically implemented with
compositions of interactors, graphics, and text objects.
Subjects are often (but need not be) derived from the
subject class. A subject maintains a list of its views.
Views define an Update operation that is responsible
for reconciling the view’s appearance with the cur-
rent state of the subject. Calling Notify on a sub-
ject in turn calls Update on its views, thus enabling
the views to update their appearance in response to a
change in the subject.

In practice it is inconvenient to force every user in-
terface concept into the subject/view model. For exam-
ple, it is unnecessary to associate a subject with every
menu because interfaces seldom require multiple views
of the same menu. However, many InterViews library
components do use the subjects and views paradigm.

Two examples relate to the implementation of scrolling
and buttons.

5.1 Scrolling and Perspectives

An interactor that supports scrolling and zooming
maintains a perspective. The perspective is a sub-
ject that defines a range of coordinates representing
the total extent of the interactor’s output space and a
subrange for the portion of the total range that is cur-
rently visible. For example, in the drawing editor of
Section 3.1 the total extent of the graphic block’s per-
spective is obtained from the picture’s bounding box;
its subrange is the space the graphic block occupies on
the screen. In a text editor the vertical range might be
the total number of lines in a file; the subrange would
be the number of lines displayed by the editor on the
screen.

Scrolling and zooming are performed by modifying
the interactor’s perspective. An interactor can modify
its own perspective (when the text editor adds a line
to the file, for example), or the perspective can be
modified by the user manipulating one of its views.

The panner in the drawing editor is a view of the
perspective associated with the editor’s graphic block.
The panner is really a composition of several other
perspective views: a slider, a set of four movers, and
two zoomers. Each of these elements views the same
perspective; the slider scrolls the drawing in both
and dimensions, each mover provides incremental
scrolling in one of four directions, and the zoomers
respectively enlarge and reduce the drawing. There is
no limit to the number of views on the same perspec-
tive; a change made through one view of a perspective
will be reflected in all its views.

- 12 -

1. User presses mover.
2. Mover requests graphic block to change its perspective.
3. Graphic block modifies its perspective.
4. Perspective notifies its views:
 a) Zoomers, movers do nothing;
 b) Slider updates its appearance to reflect visibility.
5. Graphic block translates and redraws graphic.

Scrolling a graphic block using a perspective

graphic block

total width Wt

visible width Wv

to
ta

l h
ei

gh
t H

t

vi
si

bl
e

he
ig

ht
 H

v

Wv, Wt, Hv, Ht

perspective

graphic block movers zoomers slider

perspective views

Figure 19: How a perspective coordinates scrolling of a graphic block

The advantage of this organization is that one view
of a perspective need not know about other views of
the same perspective. Whenever the perspective is
changed, either by the interactor or by a view, all the
views are notified. Each view of the perspective is
responsible for updating its appearance appropriately
in response to the change. For example, when a mover
or zoomer is pressed, the perspective is updated and
the slider is notified automatically. The slider can then
redraw itself to reflect the new perspective.

Figure 19 shows how a graphic block’s perspec-
tive coordinates the scrolling operation when the user
presses one of the panner’s movers. The graphic block
modifies its perspective on behalf of the mover be-
cause the graphic block may want to limit the amount
of scrolling. In this instance the perspective and the in-
teractor are considered together as the subject to which
views such as panners are attached.

5.2 Buttons and Button States

The dialog box in Section 2.1 uses a button for dis-
missal. In InterViews, a button is a view of a button
state subject. When the user presses a button, the but-
ton sets its button state to a particular value. Several
buttons can view a single button state; like any sub-
ject, a button state notifies all its views (buttons) when
it changes.

To illustrate, consider how InterViews radio buttons
are implemented. A radio button acts like a tuning
button on a car radio; only one button in a group of
radio buttons can be “on” at a time. Radio buttons are
provided when the user should select an option from
several mutually-exclusive choices. A single button
state is used as the subject for a group of radio buttons.
Pressing one of the radio buttons sets the button state
to a particular value. The button will stay pressed until
the button state is changed to a different value, usually
by pressing another radio button in the group.

6 Customization

InterViews adopts the X Toolkit [10] model to support
customization of interactors. Users can define a hier-
archy of attribute names and values. An interactor can
retrieve the value of an attribute by name; it interprets
the value to customize some aspect of its appearance or
behavior. Attribute lookup involves a search through
parts of the attribute hierarchy that match the interac-
tor’s position in the object instance hierarchy. Each
interactor can have an instance name; interactors not
explicitly named inherit a class name. The name given
the interactor at the root of the instance hierarchy is
usually the name of the application.

- 13 -

For example, suppose the application containing the
example dialog box of Section 2.1 was called “hello”,
and the push button in the dialog box had the in-
stance name “bye.” The full name of the attribute
that specifies the font for the button label would then
be hello.Frame.VBox.HBox.bye.font. At-
tribute names can include “wildcard” specifications so
that one attribute can apply to several interactors. The
font of the push button in the example dialog box
is more likely to be specified by an attribute named
hello*PushButton.font, which would apply to
any push button in the application, or even *font,
which would apply to any font in any application. The
mechanism for accessing attributes ensures that the at-
tribute with the most specific name is the one used to
satisfy a query. The InterViews library automatically
handles standard attributes such as “font” and “color”.

The designer of an application chooses names for
interactors that users can customize. Users specify
these names to refer to interactors they want to cus-
tomize. Consistency across a range of applications is
achieved by a consistent choice of instance and at-
tribute names. For example, all confirmation buttons
in all “quit” dialog boxes will be red if the user lists
the attribute *quit*OK.background:red, if all
quit dialog boxes are given the instance name “quit”,
and if all confirmation buttons are named “OK.”

7 Current Status

InterViews currently runs on MicroVAX, Sun, HP, and
Apollo workstations on top of the X Window System
[17] versions 10 and 11. The library is roughly 30,000
lines of C++ source code, of which about 2,000 lines
are X-dependent. InterViews applications do not call
X routines directly and are thus isolated from the un-
derlying window system.

We have implemented several applications on top
of the library, including a scalable digital clock, a load
monitor, a drawing editor, a reminder service, a win-
dow manager, and a display of incoming mail. The ap-
plications have been used daily by about 20 researchers
for nearly two years, and the library is being used in
many development efforts at Stanford, at other univer-
sities, and in industry. We are currently using Inter-
Views in the development of a more general drawing
system, a program editor, a visual command shell, and
a visual debugger.

8 Conclusion

Our experience with InterViews has convinced us of
the importance of object-oriented design, subject/view
separation, and composition in facilitating the imple-
mentation of user interfaces. Composition is particu-
larly important. Providing one or two ways to combine
interface elements is not enough. To really help the
programmer, a user interface toolkit must offer a rich
set of composition mechanisms along with a variety
of predefined objects to use. The programmer should
be able to pick and choose from among the prede-
fined components for the bulk of the interface, and the
toolkit should make it easy to synthesize those compo-
nents that are unique to the application. The compo-
sition mechanisms in InterViews make this possible.

Acknowledgments

Several people have contributed to the design and im-
plementation of InterViews. Craig Dunwoody and
Paul Hegarty participated in the design of the ba-
sic protocols. Paul also developed the window man-
ager application, and John Interrante implemented the
drawing editor. We are grateful to the growing Inter-
Views user community for their encouragement and
support. This work was funded by the Quantum
project through a gift from Digital Equipment Cor-
poration.

- 14 -

Appendix A
Primitive and Composition
Protocols

The set of operations defined on an object can be
thought of as a communication protocol that the ob-
ject understands. Since objects cannot access the in-
ternal state of other objects, inter-object dependencies
are limited by the semantics of the protocol. Objects
are thus isolated from one another, promoting mod-
ularity and reusability. Furthermore, objects derived
from a common base class (thus obeying a common
protocol) can be used without knowledge of their spe-
cific class; operations redefined by the subclass are
automatically invoked on the objects instead of the
corresponding base class operations (a form of dy-
namic binding). A common protocol makes it possible
for composition objects to treat their components uni-
formly. Dynamic binding lets composition objects take
advantage of subclass-specific behavior without mod-
ification. Together, these attributes make composition
possible.

Interactor Protocol

The protocol for interactors includes the following op-
erations:

void Draw();
void Redraw(

Coord left, Coord bottom,
Coord right, Coord top

);
void Resize();
void Update();
void Handle(Event&);
void Read(Event&);

The Draw operation defines the appearance of the in-
teractor. A call to Draw causes the interactor to draw
itself in its entirety. Redraw is called whenever a part
of an interactor needs to be redrawn, perhaps because
it had been obscured but is now visible. A call to
Resize notifies the interactor that the screen space
it occupies has changed size. The interactor can then
take whatever action is appropriate. Draw, Redraw,
and Resize are automatically called by InterViews
library code in response to window system requests.
The Update operation indicates that some state on
which the interactor depends may have changed; the
interactor will usually Draw itself in response to an
Update call. Typically, when a subject changes it
will call Update on its views.

Interactors handle input events with the Handle
operation. Each event is targetted to a particular inter-
actor. Any interactor can Read the next event from
the global event queue. Handle and Read can be
used to create event-driven input handling, in which
only one interactor is responsible for reading events
and forwarding them to their target.

Scene Protocol

Scenes add several operations for component manage-
ment to the basic interactor protocol:

void Insert(Interactor*);
void Insert(

Interactor*,
Coord x, Coord y, Alignment

);
void Remove(Interactor*);
void Raise(Interactor*);
void Move(

Interactor*,
Coord x, Coord y, Alignment

);
void Change(Interactor*);
void Propagate(boolean);

Insert and Remove are used to specify a scene’s
components. Raise modifies the front-to-back order-
ing of components within a scene to bring the specified
component to the top. Move suggests a change in the
position of a component within the scene. Not all
scenes implement all these operations. For instance, it
does not make sense to call Raise on a monoscene
since it can have only one component.

The Change operation tells a scene that one of
its components has changed. A scene can do one of
two things in response to a Change: it can propa-
gate the change by calling Change on its parent, or
it can simply reallocate its components’ screen space.
The Propagate operation specifies which behavior
is required for a particular instance.

Graphic Protocol

The graphic base class defines the protocol for drawing
objects, manipulating graphics state, and hit detection.
Operations include:

- 15 -

void Draw(Canvas*);
void DrawClipped(

Canvas*, Coord, Coord, Coord, Coord
);
void Erase(Canvas*);
void EraseClipped(

Canvas*, Coord, Coord, Coord, Coord
);

void SetColors(PColor* f, PColor* b);
void SetPattern(PPattern*);
void SetBrush(PBrush*);
void SetFont(PFont*);

void Translate(float dx, float dy);
void Scale(

float sx, float sy,
float ctrx =0.0, float ctry =0.0

);
void Rotate(

float angle,
float ctrx =0.0, float ctry =0.0

);
void SetTransformer(Transformer*);

void GetBounds(
float&, float&, float&, float&

);
boolean Contains(PointObj&);
boolean Intersects(BoxObj&);

In addition to the operations for setting graphics
state attributes and coordinate transformations, there
are complementary operations for obtaining the cur-
rent values of these parameters. The Contains and
Intersects operations are often used to determine
whether a user clicked on a graphic. PointObj and
BoxObj specify a point and a rectangular region, re-
spectively. Contains can be used to detect an exact
hit on a graphic; Intersects can be used to detect
a hit within a certain tolerance.

Picture Protocol

Each picture maintains a list of component graphics. A
picture draws itself by drawing each component with
a graphics state formed by concatenating the compo-
nent’s state with its own. Pictures define default se-
mantics for concatenation; subclasses of picture can
redefine the semantics or can rely on their components
to do the concatenation.
Contains, Intersects, and bounding box op-

erations defined in the graphic base class are redefined
in the picture class to consider all the components rel-
ative to the picture’s coordinate system. The picture

class defines operations for editing and traversing its
list of components. Pictures also define operations for
selecting graphics they compose based on position:

Graphic* FirstGraphicContaining(
PointObj&

);
Graphic* FirstGraphicIntersecting(

BoxObj&
);
Graphic* FirstGraphicWithin(BoxObj&);

Graphic* LastGraphicContaining(PointObj&);
Graphic* LastGraphicIntersecting(BoxObj&);
Graphic* LastGraphicWithin(BoxObj&);

int GraphicsContaining(
PointObj&, Graphic**&

);
int GraphicsIntersecting(

BoxObj&, Graphic**&
);
int GraphicsWithin(BoxObj&, Graphic**&);

The ...Containing operations return the
graphic(s) containing a point; ...Intersecting
operations return the graphic(s) intersecting a rect-
angle; ...Within operations return the graphic(s)
falling completely within a rectangle.

Pictures draw their components starting from the
first component in the list. The Last... opera-
tions can be used to select the “topmost” graphic in
the picture, while First... operations select the
“bottommost.”

Text Protocol

The Text object protocol includes the following oper-
ations:

void Draw(Layout*);
void Locate(

Coord &x1, Coord &y1,
Coord &x2, Coord &y2

);
void Reshape();

Draw defines the appearance of an object in a given
layout. A Layout object defines the area of the
screen into which a hierarchy of text objects will be
composed. Locate is used for hit detection on text
objects. Reshape calculates geometric information
about an object for use in implementing composition
strategies.

- 16 -

Clause Protocol

Clauses add operations for stepping through compo-
nents and for modifying the list of components:

Text* First();
Text* Succ(Text*);
Text* Pred(Text*);
boolean Follows(Text*, Text*);

void Append(Text*);
void Prepend(Text*);
void InsertAfter(Text* old, Text*);
void InsertBefore(Text* old, Text*);
void Replace(Text* old, Text*);
void Remove(Text*);

First returns the leftmost or topmost component.
Succ and Pred return the successor or predecessor
of a component. Follows can be used to determine
if one component comes before or after another.

To Probe Further

We have only considered the basic elements of the
various protocols in this discussion. A more detailed
look at these protocols and the implementations behind
them can be found elsewhere [9, 22].

- 17 -

Appendix B
Making User Interface
Development Easier

Many software systems have been developed to fa-
cilitate the construction of graphical user interfaces.
Such systems can be divided into two broad cate-
gories: toolkits and user interface management sys-
tems (UIMSs).

Toolkits

A user interface toolkit provides programming abstrac-
tions for building user interfaces. InterViews, the X
Toolkit, and the Andrew Toolkit (ATK) are good ex-
amples. The X Toolkit defines widget and composite
classes analogous to interactors and scenes in Inter-
Views. Tiling composites include box and vpaned,
and the form composite allows its components to over-
lap. Composite objects maintain a pointer to a geome-
try manager function that is responsible for the proper
layout of components. The geometry manager can be
replaced at runtime to change the layout strategy. ATK
includes objects that comprise the data to be edited,
such as text, bitmaps, and more sophisticated objects
such as spreadsheets and animation editors. ATK’s
composition mechanism allows these objects to be em-
bedded into multimedia documents.

In addition to standard toolkit functionality, GROW
allows the programmer to specify constraints between
objects. Constraints can enforce dependencies between
individual pieces of data. For example, the program-
mer can specify that a value stored in one object is
a function of a value in another object. GROW also
has graphical constraints for confining and connect-
ing graphical objects. Such constraints can guarantee
that a graphical object stays within a prescribed area
or that two visually connected objects stay connected
when one or the other is translated.

Smalltalk MVC and its descendant, Apple’s
MacApp, are among the earliest and best known
object-oriented toolkits. MacApp is different from
newer toolkits in that it implements a particular “look
and feel,” namely that of Macintosh applications.
MVC is unique in that it divides interface compo-
nents into model, view, and controller. Models are
similar to subjects in InterViews, controllers are re-
sponsible for input handing, and views are responsible
solely for output. In contrast, other toolkits that dis-
tinguish between interactive and abstract objects put
the functionality of MVC controllers and views into
a single object (corresponding to an InterViews view)

that handles input and output. This consolidation re-
flects the tight coupling between input and output in
direct-manipulation interfaces. Placing responsibility
for input and output in the same object reduces the to-
tal number of objects and the communication overhead
between them, simplifying the toolkit and potentially
increasing its efficiency.

UIMSs

UIMSs are generally characterized by

1. complete separation of code that implements the
user interface to an application and the code for
the application itself, and

2. support for specifying the user interface at a
higher level of abstraction than general-purpose
programming languages.

UIMSs separate interface and application for some
of the same reasons that many toolkits separate sub-
jects and views, namely to isolate application code
and interface specification and to allow different in-
terfaces to the same application. However, UIMSs
do not implement any application code, whereas sub-
jects usually do. Moreover, UIMSs minimize the in-
teraction between the application and the interface to
maximize their independence. UIMSs generally con-
centrate on abstracting the syntax and semantics of
the user interface. Their main goal is to let inter-
face designers and even end users design and modify
the interface quickly without requiring extensive pro-
gramming skills or knowledge of the application. To
avoid conventional programming, UIMSs use special-
purpose languages or other formalisms such as finite
state transition diagrams to describe the appearance of
the interface and the kinds of interaction it supports.
In most UIMSs the specification is interpreted by a
runtime system that is incorporated into the applica-
tion.

A widely known and used UIMS is Apollo Com-
puter’s Domain/Dialog [18]. The package consists of
a compiler and a run-time library. The compiler reads
a declarative description of the user interface and how
it connects to the underlying application. It then gen-
erates a more compact description that is interpreted
by the runtime library.

The user interface is specified in terms of interac-
tion techniques, which correspond to primitive inter-
face components, and structuring techniques, which
are the composition mechanisms for the primitives.
Domain/Dialog defines structuring techniques for ar-
ranging components into rows and columns and a

- 18 -

“oneof” technique that displays only a single compo-
nent. These structuring techniques allocate space for
their components in a manner similar to InterViews
boxes and glue; they request a minimum, maximum,
and optimal size from their components and distribute
the available space among them.

Domain/Dialog places greater emphasis on compo-
sition than most UIMSs, which center more on how
to specify the input and output behavior of a user in-
terface without conventional programming. Sassafras
[6], a prototype UIMS developed at the University of
Toronto, focuses on supporting concurrent user input
from multiple devices and on efficient communication
and synchronization between the modules that support
user interaction. Syngraph [13] takes a description of
a user interface written in a formal grammar and gen-
erates Pascal code that implements it. Recent work
by Foley et al. [5] uses a knowledge base describing
the interface to raise the level of abstraction beyond
detailed assembly of components.

Another class of UIMS lets designers create a user
interface by direct manipulation instead of textual
specification. Research systems such as Cardelli’s di-
alog editor [4] and Myers’ Peridot [11] and commer-
cial systems such as SmethersBarnes’ Prototyper [19]
let designers draw the user interface using a draw-
ing editor-like metaphor. The system then generates
routines that must be incorporated into the applica-
tion. Cardelli’s system lets designers specify the re-
size semantics using attachment points; an edge of
a component can be attached to an arbitrary point in
the interface. The component will stretch or shrink if
necessary to maintain the attachment. Peridot allows
the designer to specify many aspects of the interface
by demonstration, inferring the proper semantics of
the interface from the designer’s actions. Prototyper
provides a drawing editor interface to building Macin-
tosh applications and is one of the few commercially-
available direct manipulation interface editors.

Toolkits, UIMSs, and InterViews

Currently there is a growing interest in toolkits, while
many have begun to question whether UIMSs really
help [16]. Early non-object-oriented toolkits [1, 21]
were criticized as being too low-level and difficult
to use, thus widening interest in UIMSs. Yet today
few UIMSs have gained wide acceptance. Researchers
[12] have identified several shortcomings of existing
UIMSs:

Limited range of interfaces. Since UIMSs allow
interface specification at a high level, they neces-

sarily limit the range of interfaces they can cre-
ate. This is especially true of direct manipulation
interface editors, which must rely on graphical
or demonstrational specification of the interface’s
semantics.

Reliance on an interpreted specification lan-
guage. The special purpose language used by a
traditional UIMS is likely to be unfamiliar to pro-
grammer and interface designer alike. Moreover,
the language is usually inferior in quality to es-
tablished general-purpose languages, debugging
tools are primitive or non-existent, and run-time
overhead associated with interpreting the speci-
fication often degrades performance compared to
conventional implementations.

Inadequacy for direct manipulation interfaces.
The strict separation of application and interface
code usually results in a low-bandwidth connec-
tion between the two. Thus, most UIMSs do not
support interfaces requiring real-time response to
user input, such as those using rubberbanding or
other animated effects.

Difficulty in adapting to change. The time it takes
to produce UIMSs makes it difficult to keep them
in step with the latest interface designs. The prob-
lem only gets worse as interfaces become more
complex.

Because InterViews is a toolkit, it avoids the prob-
lems associated with UIMSs. InterViews is distin-
guished from other toolkits in its variety of compo-
sition mechanisms (tiled, overlapped, stacked, con-
strained, and encapsulated), its support for nonlinear
deformation (independent stretching and shrinking) of
interactors, and its object-oriented approach to struc-
tured graphics and text. InterViews simplifies the cre-
ation of both the controlling elements of the interface
(buttons and menus) and the data to be manipulated
(text and graphics objects). InterViews thus offers
comprehensive support for building user interfaces.

- 19 -

Appendix C
Glossary

box, hbox, vbox scenes that support tiled composi-
tion of interactors.

button state a subject that maintains state associated
with one or more buttons.

button, push button, radio button the button base
class defines the interface to generic button inter-
faces; push buttons provide a momentary contact
interface, radio buttons allow the user to select
from one of several mutually-exclusive choices.

clause base class for structured text composition ob-
jects.

deck a scene that stacks interactors.

display a clause that defines an indented text layout.

frame, shadow frame, title frame monoscenes that
embellish their component; frames add a simple
border, shadow frames add a drop shadow, and
title frames add a banner.

glue, hglue, vglue interactors that act as spacers be-
tween components of a scene.

graphic base class for structured graphics objects.

graphic block an interactor that displays a structured
graphics object.

immediate mode graphics a graphics model in
which individual geometric shapes are drawn by
routines that simply modify pixels on the screen
as they are called.

interactor base class for interactive objects such as
menus and buttons.

message an interactor that displays a string of charac-
ters.

mover an interactor that scrolls another interactor by
some increment.

painter an object providing immediate-mode graph-
ics operations and operations for setting graphics
state parameters.

panner an interactor that supports continuous two-
dimensional scrolling and incremental scrolling
and zooming.

perspective a subject that maintains scrolling and
zooming information, including the total size of
a view and how much is currently visible.

phrase a clause that places its components end-to-end
on a single line.

picture base class for structured graphics composition
objects.

rectangle a graphic that represents and draws a rect-
angle.

scene, monoscene scene is the base class for objects
that compose interactors; monoscenes are scenes
that contain only one component.

sentence a clause that places as many of its compo-
nents as possible on the same line and begins a
new line if necessary.

slider a two-dimensional scroll bar.

structured graphics a graphics model that supports
hierarchical composition of graphical elements;
support is usually provided for coordinate trans-
formations, hit detection, and automatic screen
update.

structured text a graphics model that allows hierar-
chical composition of textual elements, empha-
sizing the arrangement of elements to make use
of available space.

subject an object that maintains state and operations
that underlie a user interface; a subject maintains
a list of views to be notified when the subject’s
state changes.

text base class for structured text objects.

text block an interactor that displays a structured text
object.

text list a clause that arranges its components either
horizontally or vertically depending on available
space.

tray a scene that maintains constraints on the place-
ment of potentially overlapping components.

view an object that provides the user interface to a
subject.

viewport a monoscene that can scroll and zoom its
component.

whitespace a text object used to introduce space be-
tween other text objects in a clause.

- 20 -

word a text object that represents and draws a string
of characters.

zoomer an interactor that magnifies or reduces an-
other interactor.

- 21 -

References

[1] Apple Computer, Inc. Inside Macintosh, Volume
I, 1985. Published by Addison-Wesley, Reading,
MA.

[2] Apple Programmer’s & Developer’s Association.
MacApp: The Expandable Macintosh Applica-
tion, 1987.

[3] P.S. Barth. An object-oriented approach to graph-
ical interfaces. ACM Transactions on Graphics,
5(2):142–172, April 1986.

[4] Luca Cardelli. Building user interfaces by di-
rect manipulation. Technical Report 22, Digital
Equipment Corp. Systems Research Center, Oc-
tober 1987.

[5] J. Foley et al. A knowledge-based user inter-
face management system. In ACM CHI ’88 Con-
ference Proceedings, pages 67–72, Washington,
D.C., May 1988.

[6] Ralph D. Hill. Supporting concurrency, commu-
nication, and synchronization in human-computer
interaction—the Sassafras UIMS. ACM Transac-
tions on Graphics, 5(3):179–210, July 1986.

[7] Donald E. Knuth. The TEXbook. Addison-Wesley,
Reading, MA, 1984.

[8] Glenn E. Krasner and Stephen T. Pope. A cook-
book for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of
Object-Oriented Programming, 1(3):26–49, Au-
gust/September 1988.

[9] Mark A. Linton, Paul R. Calder, and John M.
Vlissides. InterViews: A C++ graphical inter-
face toolkit. Technical Report CSL–TR–88–358,
Stanford University, July 1988.

[10] Joel McCormack, Paul Asente, and Ralph R.
Swick. X Toolkit Intrinsics—C Language In-
terface. Digital Equipment Corporation, March
1988. Part of the documentation provided with
X Window System Version 11, Release 2.

[11] B.A. Myers. Creating User Interfaces by Demon-
stration. PhD thesis, University of Toronto, 1987.

[12] B.A. Myers. Tools for creating user interfaces:
An introduction and survey. Technical Report
CMU–CS–88–107, Carnegie Mellon University,
January 1988.

[13] D.R. Olsen and E.P. Dempsey. Syngraph: A
graphical user interface generator. In ACM SIG-
GRAPH ’83 Conference Proceedings, pages 43–
50, Detroit, MI, July 1983.

[14] Andrew J. Palay et al. The Andrew Toolkit: An
overview. In Proceedings of the 1988 Winter
USENIX Technical Conference, pages 9–21, Dal-
las, Texas, February 1988.

[15] Kathleen Potosnak. Do icons make user inter-
faces easier to use? IEEE Software, 5(3):97–99,
May 1988.

[16] J. Rosenberg et al. UIMSs: Threat or menace?
In ACM CHI ’88 Conference Proceedings, pages
197–200, Washington, D.C., May 1988.

[17] Robert W. Scheifler and Jim Gettys. The X win-
dow system. ACM Transactions on Graphics,
5(2):79–109, April 1986.

[18] A. Schulert et al. ADM—a dialog manager. In
ACM CHI ’85 Conference Proceedings, pages
177–183, San Francisco, CA, April 1985.

[19] SmethersBarnes. Prototyper Manual, 1987.

[20] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, Reading, MA, 1986.

[21] Sun Microsystems, Inc. SunWindows Program-
mers’ Guide, 1984.

[22] John M. Vlissides and Mark A. Linton. Applying
object-oriented design to structured graphics. In
Proceedings of the 1988 USENIX C++ Confer-
ence, pages 81–94, October 1988.

