
Applying Object-Oriented Design to Structured Graphics

John M. Vlissides and Mark A. Linton
Stanford University

Abstract

Structured graphics is useful for building applications
that use a direct manipulation metaphor. Object-
oriented languages offer inheritance, encapsulation,
and runtime binding of operations to objects. Unfor-
tunately, standard structured graphics packages do not
use an object-oriented model, and object-oriented sys-
tems do not provide general-purpose structured graph-
ics, relying instead on low-level graphics primitives.
An object-oriented approach to structured graphics
can give application programmers the benefits of both
paradigms.

We have implemented a two-dimensional structured
graphics library in C++ that presents an object-oriented
model to the programmer. The graphic class defines
a general graphical object from which all others are
derived. The picture subclass supports hierarchical
composition of graphics. Programmers can define new
graphical objects either statically by subclassing or dy-
namically by composing instances of existing classes.
We have used both this library and an earlier, non-
object-oriented library to implement a MacDraw-like
drawing editor. We discuss the fundamentals of the
object-oriented design and its advantages based on our
experiences with both libraries.

1 Introduction

Many software packages have been developed that
support device-independent interactive graphics [11, 3,
4, 6, 7]. These packages provide various ways to pro-
duce graphical output. In immediate-mode, a graphical
element such as a line appears on the screen as soon
as it is specified. Several packages provide procedures
for adding graphical elements to a display list; the el-
ements appear on the screen after an explicit call to
draw the display list. Graphical elements in the list
can be stored as data or as procedural specifications.
Structured graphics packages allow elements in a dis-
play list to be lists themselves, making it possible to
compose hierarchies of graphical elements.

Application programs designed for workstations
make extensive use of graphics in their user interfaces.

0To appear in the Proceedings of the USENIX C++ Conference,
Denver, Colorado, October 1988.

Many programs such as drawing and schematics edi-
tors let the user manipulate graphical representations
of familiar objects. Structured graphics can simplify
the implementation of such applications because much
of the functionality required is already implemented in
the graphics package. For example, drawing editor op-
erations for translating and scaling geometric shapes,
enlarging and reducing the drawing, and storing its
representation are supported by most structured graph-
ics packages. Graphical hierarchies could be used to
compose and manipulate groups of notes on staves in
a music editor. A project management system could
define the elements of bubble charts using graphical
primitives and allow structural changes to be made in-
teractively using display list editing operations.

However, there are drawbacks to using structured
graphics. The library of procedures that comprises
such packages is often large and monolithic, rich in
functionality but difficult for the programmer to ex-
tend. Extensibility usually requires access to and ma-
nipulation of internal data structures, but such access
is dangerous and can compromise the reliability of the
system. Also, it is often difficult to edit and manip-
ulate the display list, particularly when its elements
are represented procedurally, because there is no way
to refer to graphic and geometric attributes directly.
Editing the display list may be inefficient as well. For
example, if the display list is compiled into a more
quickly executed form, then the list must be recom-
piled following editing before it can be drawn. These
deficiencies make it likely that the structure provided
by the package will not map well to that required by
the application, forcing the programmer to define data
structures and procedures that parallel the library’s.

An object-oriented design offers solutions to these
problems. Intrinsic to object-oriented languages are
facilities for data hiding and protection, extensibil-
ity and code sharing through inheritance, and flexibil-
ity through runtime binding of operations to objects.
However, existing object-oriented programming envi-
ronments [5, 9] rely on immediate-mode graphics, and
object-oriented user interface packages [2, 1] do not
support general-purpose structured graphics. Ida [15]
uses an object-oriented framework that decomposes
structured graphics into a set of building blocks that
communicate via message passing. Ida supports high-

- 2 -

level functionality such as scrolling, though it does
not provide some graphical capabilities that structured
graphics systems usually have, such as rotations and
composite transformations.

We have developed a C++ [12] library of graphical
objects that can be composed to form two-dimensional
pictures. The library is a part of the InterViews graph-
ical interface toolkit [8] and runs on top of the X win-
dow system [10]. Our aim was to learn how inheri-
tance and encapsulation could be used in the design of
a structured graphics library. A base class graphic is
defined from which all other structured graphics ob-
jects are derived. We show how a hierarchy of these
primitives can be composed to form more complex
graphics and how features such as hit detection and
incremental screen update are incorporated into the
model. We also compare this library to an earlier,
non-object-oriented structured graphics library imple-
mented in Modula-2, relating experiences we had in
using each library to implement a MacDraw-like draw-
ing editor.

2 Class Organization

The graphic class and derived classes collectively form
the Graphic library. The class hierarchy is shown in
Figure 1. Its design was guided by the desire to share
code as much as possible without compromising the
logical relationships between the classes.

The derived classes define the following graphical
objects:

Point, Line, MultiLine: a point, a line, and a
number of connected lines

Rect, FillRect: open and filled rectangles

Ellipse, FillEllipse: open and filled ellipses

Circle, FillCircle: open and filled circles

Polygon, FillPolygon: open and filled polygons

BSpline, ClosedBSpline, FillBSpline: open,
closed and filled B-splines

Label: a string of text

Picture: a collection of graphics

Instance: a reference to another graphic

All graphics maintain graphics state and geometry
information. Graphics state parameters are defined
in separate base classes. These include transformer

(transformation matrix), color, pattern (for stippled
area fills), brush (for line drawing), and font. Each
graphics state class implements operations for defin-
ing and modifying its attributes. For example, trans-
formers have translation, scaling, rotation, and matrix
multiplication operations, and colors allow their com-
ponent intensities to be varied.

A structured graphics package should be able to
transfer its graphical representations to and from disk.
GKS uses “metafiles” for this purpose. The files
PHIGS uses are called “archives.” Both packages pro-
vide procedures for saving and retrieving structures,
for querying structures by name, and for deleting struc-
tures from the file.

The approach used by these packages requires the
programmer to save and retrieve structures explicitly.
The Graphic library uses persistent objects to auto-
matically manage the storage of graphics. The graphic
class and graphics state classes are derived from a per-
sistent class that provides transparent access to objects
whether they are in memory or on disk. Persistent ob-
jects are faulted in from disk when they are first ref-
erenced, and “dirty” objects are written to disk when
the client program exits.

3 Graphic

The graphic base class contains a minimal set of
graphics state including a transformer and fore-
ground/background colors. Derived classes maintain
additional graphics state according to their individual
semantics. For example, the label class includes a font
in addition to inherited state, filled objects maintain a
pattern, and outline objects include a brush.

3.1 Operations

All graphics implement a set of operations defined in
the base class. These include operations for

drawing and erasing, optionally clipped to a rect-
angle,

setting and retrieving graphics state values,

translating, scaling, and rotating,

obtaining a bounding box, and

ascertaining whether the graphic contains a point
or intersects a rectangle.

The Contains and Intersects operations are
useful for hit detection. Their definitions are shown

- 3 -

GraphicGraphic

LabelLabel PointPointEllipseEllipse LineLine MultiLineMultiLine RectRect InstanceInstancePicturePicture

FillEllipseFillEllipse CircleCircle BSplineBSpline PolygonPolygon FillRectFillRect

FillCircleFillCircle ClosedBSplineClosedBSpline FillPolygonFillPolygon

FillBSplineFillBSpline

Figure 1: Graphic library class hierarchy

virtual boolean Contains(PointObj&);
virtual boolean Intersects(BoxObj&);

Figure 2: Interface to operations supporting hit detection

- 4 -

in Figure 2. PointObj and BoxObj are classes that
serve as shorthand for specifying a point and a rect-
angular region, respectively. Contains can be used
to detect an exact hit on a graphic; Intersects can
be used to detect a hit within a certain tolerance.

3.2 Drawing Operations

Figure 3 lists the set of drawing and erasing opera-
tions defined on graphics. InterViews defines canvas
objects and the coord type. A canvas represents a re-
gion of the display in which to draw. Canvases are
rectangular and may overlap. A coord is a integer
coordinate.

The graphic base class implements each erasing op-
eration in terms of the corresponding drawing opera-
tion. An erase operation first sets the foreground color
to the background color, then calls the drawing op-
eration, and finally resets the foreground color to its
original value.

The operations taking a single parameter draw and
erase the graphic in its entirety. The coordinate param-
eters are used to specify a rectangular region. Bounded
Draw and Erase operations use the rectangular re-
gion as a hint to the graphic’s visibility. Graphics
may perform optimizations based on this information.
For example, because canvases do not permit drawing
outside their boundaries, bounded draw and erase op-
erations can cull parts of the graphic that fall outside
the canvas.1

DrawClipped and EraseClipped clip during
drawing or erasing. They are useful when drawing
must be strictly limited to a portion of the canvas.
For example, DrawClipped is often used to redraw
portions of a graphic that had been obscured by an
overlapping canvas.

4 Composite Graphics

Picture and instance are composite graphics. A pic-
ture composes other graphics into a single object,
while an instance is a reference to another graphic.
Both rely on a notion of graphics state concatenation
to define how they are drawn.

4.1 Graphics State Concatenation

Composite graphics are like other graphics in that they
maintain their own graphics state information, but they

1The bounded operation could obtain the rectangular region di-
rectly from the canvas. For generality, however, the region is spec-
ified explicitly.

do not have their own geometric information. Com-
position allows us to define how the composite’s state
information affects its components. The graphic base
class implements a mechanism for combining, or con-
catenating, graphics state information. The default
behavior for concatenation is described below. De-
rived classes redefine the concatenation operations as
needed.

Given two graphics states and , we can write
their concatenation as , where is the re-
sultant graphics state. Concatenation associates but is
not commutative; is considered “dominant.” re-
ceives attributes defined by . Attributes that does
not define are obtained from . An exception is the
transformation matrix; ’s transformer is defined by
postmultiplying ’s transformer by ’s. thus dom-
inates in that inherits ’s attributes over ’s, and

’s coordinate system is defined by ’s transformation
with respect to ’s.

A graphic might not define a particular attribute ei-
ther because it is not meaningful for the graphic to
do so (a filled rectangle does not maintain a font,
for instance) or because the value of the attribute has
been set to nil explicitly. Defined attributes propa-
gate through successive concatenations without being
overridden or modified by undefined attributes. For
example, suppose graphics state defines a font but

does not. Moreover, maintains a font but its value
has been set to nil. Then will receive

’s font attribute. If ’s transformer is nil but and
’s are non-nil, then will receive a transformer that

is the product of ’s and ’s. If ,
then will receive a transformer that is the product
of ’s and ’s.

The semantics for concatenation as defined in the
base class are useful for describing how composite
graphics are drawn, but derived graphics can imple-
ment their own concatenation mechanism. This cre-
ates the potential for concatenation semantics that are
more powerful than the default precedence relation-
ship. For example, the concatenation operation could
be redefined so that concatenating two colors would
yield a third that is the sum or difference of the two.
Two patterns could combine to form a pattern corre-
sponding to an overlay of the two. This behavior could
be used to define how to draw overlapping parts of a
VLSI layout.

The ability to redefine concatenation semantics
demonstrates how inheritance lets the programmer ex-
tend the graphics library easily. Flexibility is thus
achieved without complicating or changing the library.

- 5 -

virtual void Draw(Canvas*);
virtual void Draw(Canvas*, Coord, Coord, Coord, Coord);
virtual void DrawClipped(Canvas*, Coord, Coord, Coord, Coord);

virtual void Erase(Canvas*);
virtual void Erase(Canvas*, Coord, Coord, Coord, Coord);
virtual void EraseClipped(Canvas*, Coord, Coord, Coord, Coord);

Figure 3: Interface to drawing operations

4.2 Picture

Pictures are the basic mechanism for building hier-
archies of graphics. Each picture maintains a list of
component graphics. A picture draws itself by drawing
each component with a graphics state formed by con-
catenating the component’s state with its own. Thus,
operations on a picture affect all of its components
as a unit. Contains, Intersects, and bounding
box operations are redefined to consider all the compo-
nents relative to the picture’s coordinate system. The
picture class defines the operations shown in Figure 4
for editing and traversing its list of components. Pic-
tures have a notion of a “current” component, which
aids in the traversal by acting as a position marker in
the list of components.

Pictures also define operations for selecting graph-
ics they compose based on position. These opera-
tions are shown in Figure 5. The ...Containing
operations return the graphic(s) containing a point;
...Intersecting operations return the graphic(s)
intersecting a rectangle; ...Within operations re-
turn the graphic(s) falling completely within a rectan-
gle.

Pictures draw their components starting from the
first component in the list. The Last... operations
can be used to select the “topmost” graphic in the
picture, while First... operations select the “bot-
tommost.” The Graphics... operations return as
a side-effect an array of all the graphics that satisfy
the hit criterion. These operations also return the size
of the array.

The following example demonstrates how concate-
nation can be used and extended using pictures. Con-
sider a what-you-see-is-what-you get text editor that
implements paragraphs using a subclass of picture
called paragraph and words using a subclass of label
called word. Both pictures and labels maintain a font
attribute. Thus, each word can define its own appear-
ance, and the paragraph can override the appearance

of all the words through concatenation. For instance,
defining a font attribute on the paragraph would cause
all words to appear in that font independent of their
individual attributes.

By deriving paragraph from picture, we can change
the concatenation semantics; for example, the concate-
nation of an italic font with a bold font could yield a
bold italic font. Defining an italic font attribute on
the paragraph would thus italicize the paragraph with-
out ignoring the font of individual words. Alterna-
tively, paragraphs could rely on words to define the
concatenation semantics. Thus, instances of different
word subclasses could respond differently to format-
ting changes within the same paragraph.

4.3 Instance

An instance is a reference to another graphic (the tar-
get). Graphic library instances are functionally equiva-
lent to instances in Sketchpad [14]. The concatenation
of the instance’s and target’s graphics states is used
when the instance is drawn or erased. An instance can
thus redefine any aspect of the target’s graphics state,
but it cannot change the target’s geometric informa-
tion.

Instances are useful for replicating “prototype”
graphics. Once the prototype is defined, it can ap-
pear at several places in a drawing without copying.
Also, structural and graphics state modifications made
to the prototype will affect its instances, thus avoiding
the need to change instances individually.

5 Incremental Update

Structured graphics can be used to represent and
draw arbitrarily complicated images. Many images
(and most interesting ones) cannot be drawn instanta-
neously. Incremental techniques can be used to speed
the process of keeping the screen image consistent with

- 6 -

void Append(Graphic*);
void Prepend(Graphic*);
void Remove(Graphic*);

void InsertAfterCur(Graphic*);
void InsertBeforeCur(Graphic*);
void RemoveCur();
void SetCurrent(Graphic*);
Graphic* GetCurrent();

Graphic* First();
Graphic* Last();
Graphic* Next();
Graphic* Prev();
boolean IsEmpty();
boolean AtEnd()

Figure 4: Picture editing operations

Graphic* FirstGraphicContaining(PointObj&);
Graphic* FirstGraphicIntersecting(BoxObj&);
Graphic* FirstGraphicWithin(BoxObj&);

Graphic* LastGraphicContaining(PointObj&);
Graphic* LastGraphicIntersecting(BoxObj&);
Graphic* LastGraphicWithin(BoxObj&);

int GraphicsContaining(PointObj&, Graphic**&);
int GraphicsIntersecting(BoxObj&, Graphic**&);
int GraphicsWithin(BoxObj&, Graphic**&);

Figure 5: Picture operations for selection

- 7 -

changes in the underlying graphical structure. Such
techniques will be effective if the user makes small
changes most of the time, and experience with inter-
active graphics editors shows this to be the case.

To support incremental update, the Graphic library
includes a damage base class. A damage object is used
to keep the appearance of graphics consistent with their
representation. Damage objects try to minimize the
work required to redraw corrupted parts of a graphic.
The base class implements a simple incremental al-
gorithm that is effective for many applications. The
algorithm can be replaced with a more sophisticated
one by deriving from the base class.

5.1 Interface

The interface to the damage class appears in Figure 6.
When a damage object is created it is passed a graphic
(usually a picture) for which it is responsible. The
Incur operation is called by the client program when-
ever the graphic is “damaged.” The graphic is incre-
mentally updated when Repair is called. Reset
discards accumulated damage without updating the
graphic. Clients can determine whether any damage
has been incurred using the Incurred operation.

5.2 Implementation

The damage class implements a simple algorithm for
incremental update. Each damage object maintains
zero, one, or two non-overlapping rectangles. A dam-
age object must be notified whenever the graphic’s
appearance changes by calling the Incur operation
with either a region of the canvas or a graphic as a
parameter. If a graphic is supplied, its bounding box
determines the extent of the damaged region.
Incur either stores the new rectangle represent-

ing the damaged region or merges it with one or both
of the rectangles it has stored. Merging replaces a
stored rectangle with the smallest rectangle circum-
scribing the rectangles being merged. Repair calls
DrawClipped on the graphic for each stored rectan-
gle.

The number of rectangles maintained by damage
objects is limited to two because successive increases
in the number of rectangles bring diminishing returns.
This is a result of the overhead associated with draw-
ing a graphic clipped; for complicated graphics this
involves significant computation. We found that the
limiting value of two yielded subjectively the quickest
screen update on average in an object-oriented drawing
editor based on the Graphic library. Typically the user
either transforms an object in place (producing a single

damaged rectangle) or moves an object (producing one
or two rectangles). Assuming that drawing editors rep-
resent a fair benchmark for interactive graphics appli-
cations, the two-rectangle limitation offers advantages
in both performance and implementation simplicity.

6 Experience

The design of the Graphic library was based on ex-
perience with an earlier structured graphics library we
implemented in Modula-2. The Modula-2 design em-
phasized high drawing speed over low latency. It also
tried to handle incremental update completely auto-
matically; that is, it had no operation comparable to
Incur. The extent of damage was inferred from
the operations performed on each graphical object.
Though the package attempted to provide an object-
oriented interface, the implementation language’s lack
of inheritance resulted in a monolithic library that
could not be extended easily.

We have developed two versions of an object-
oriented drawing editor called idraw, shown in Fig-
ures 7 and 8. The first version uses the Modula-2
graphic library, while the second version uses the C++
Graphic library. This gives us a good opportunity for
comparing the two libraries based on actual usage.

6.1 Graphics State Propagation versus
Concatenation

A difference between the Graphic and Modula-2 li-
braries is in the way they manage graphics state.
Modula-2 graphical elements propagate their graph-
ics state to the leaves of the graphics hierarchy as part
of the modification operation. Graphic library objects
defer the propagation until they are drawn, relying on
the concatenation mechanism to do the job. The ratio-
nale behind propagation was to make drawing as fast
as possible. It was believed that on-the-fly concate-
nation would slow drawing unnecessarily. Thus, as
much work as possible was done before the drawing
routine was called.

We realized that propagation was a mistake as we
used the Modula-2 library to implement idraw. Prop-
agating graphics state each time an operation is called
precludes amortizing many changes over a few draws.
That is, if several state-modifying operations are made
before the graphic is drawn, we can avoid traversing
the structure if we defer propagation to draw time,
when we must traverse it anyway.

Having made propagation an integral part of the
Modula-2 library, there was no practical way for users

- 8 -

void Incur(Graphic*);
void Incur(BoxObj&);
void Repair();
void Reset();
boolean Incurred();

Figure 6: Interface to damage class

Figure 7: The idraw drawing editor, Modula-2 version

- 9 -

Figure 8: The idraw drawing editor, C++ version

to modify the library to use concatenation. An object-
oriented design would have used inheritance to facil-
itate the modification of the library to use concatena-
tion. In comparison, it would be straightforward to de-
rive a new sort of picture and redefine its graphic state
modification operations to propagate attributes imme-
diately.

6.2 Incremental Update

The Modula-2 graphics library implemented an auto-
matic incremental update feature. The library kept
track of changes to objects by storing lists of rectan-
gles with each object. Newly-added rectangles were
merged with any rectangles in the list they intersected.
The list of rectangles was ultimately limited by the
object’s bounding box; when a rectangle in the list be-
came large enough to subsume the bounding box, the
incremental update mechanism was disabled and the
object would be drawn in its entirety.

The Redraw procedure was used to initiate incre-
mental redraw of a graphical object. Redraw erased
the regions defined by the rectangles in the object
and redrew the object clipped to each rectangle. Any
nested objects would be redrawn recursively.

This approach worked—the screen was never left in
an inconsistent state following incremental redraw—
but it did not always perform the update in an efficient

way. The generality of the algorithm coupled with the
lack of a way for the programmer to influence the re-
draw mechanism often rendered the facility useless;
the programmer would bypass the mechanism and re-
draw damaged objects explicitly.

To illustrate, consider the case where a drawing is
restructured so that an object obscured by other objects
is brought to the top. A simple way to update the
screen is simply to draw the object; nothing else need
be redrawn. However, the incremental algorithm did
not consider this optimization, and Redraw proceeded
to redraw all the obscured objects as well.

The more serious problem arose because damaged
rectangle information was always accumulated, since
Redraw could be called at any time. This added over-
head to every appearance-modifying operation. The
overhead remained even if the programmer decided
to bypass automatic redraw and perform the update
manually. The addition of a Disable procedure that
turned off rectangle accumulation complicated the use
of the package and presented problems of its own:
What should happen when automatic redraw is enabled
again? Should old damage information be eliminated?
How do we know the screen is still consistent?

The lesson we learned was that it is important not
to exclude the programmer from the update process.
Damage objects do not in any way interfere with the
normal operation of graphics. They incur no overhead

- 10 -

unless they are used, and they encapsulate the incre-
mental update algorithm, making it easy to enhance or
replace. In contrast, the update mechanism pervaded
the older library. Damage objects give programmers
the option of performing tricks of their own when up-
dating the screen without paying for mechanisms they
do not use.

6.3 Persistence

We have mixed feelings about having used persistent
objects in the Graphic library. On one hand they are
convenient because they free the programmer from
worrying about storage. On the other hand, objects
created by a program live in their own world analo-
gous to the address space in which they were created.
Thus, objects cannot communicate across program or
machine boundaries easily, nor is there provision for
moving objects from one world to another.

Persistent objects are useful for preserving the state
of a program transparently across executions, but they
are not suitable for communicating the state between
processes. We expect that a later version of the
Graphic library will incorporate a more conventional
storage mechanism.

6.4 Cached Bounding Boxes

To improve performance, the more complex graph-
ics such as multilines, polygons, splines, and pic-
tures cache their bounding box once it is calculated.
Caching can save substantial time, especially for large
pictures, because the bounding box is needed when-
ever a graphic is drawn clipped or bounded.

The object-oriented approach makes it easy to add
this optimization to classes that can use it without pe-
nalizing other classes. The graphic base class declares
operations for caching, invalidating, and retrieving a
bounding box. These are null operations by default;
derived classes can redefine them if they use caching.
Thus, individual graphics can define their own caching
and invalidation criteria. Furthermore, since the base
class does not allocate storage for the bounding box,
no overhead is incurred on subclasses that do not re-
quire caching.

6.5 Quantitative and Qualitative Com-
parisons

This section presents quantitative and qualitative com-
parisons of the Modula-2 and C++ structured graphics
libraries and versions of idraw. Note that any direct

comparisons are necessarily crude because of differ-
ences in design criteria, in our experience level at the
start of each library’s implementation, and in the im-
plementation languages themselves. Nevertheless, we
offer these comparisons to add insight into the relative
merits of the Modula-2 and C++ implementations.

Table 1 shows the source code sizes for both li-
braries and both versions of idraw. The library code
is divided into five components: common code (that is,
code that implements the same functionality in both li-
braries), code for incremental update, code for storing
graphical objects on disk, code for hit detection, and
comments. The idraw code is divided into common
code, user interface code, and comments.

This partitioning lets us take into account differ-
ent capabilities and levels of commenting when com-
paring code sizes. For example, the Graphic library
has a general persistent object facility, whereas the
Modula-2 library supports only manual read/write of
graphical objects. Graphic subclasses implement fine-
grain hit detection, while the Modula-2 library can de-
tect hits only within an object’s bounding box. The
Modula-2 library uses a more complicated incremen-
tal update mechanism and is commented more heav-
ily than the Graphic library. Modula-2 idraw imple-
ments scroll bars, pull-down menus, and rubberbands
explicitly, while InterViews provides this functionality
in the C++ version.

From the information in Table 1, we conclude only
that the C++ and Modula-2 code is comparable in size.
The amount of common code in the structured graphics
libraries is about the same, and the C++ version has
proportionally more code to implement added func-
tionality. The Modula-2 idraw is somewhat smaller
than the C++ version, taking into account that C++
idraw relies on InterViews to implement its user in-
terface. However, C++ idraw provides more func-
tionality, including arbitrary-level undo (versus single-
level for Modula-2 idraw), more sophisticated text
editing, and user customizability.

A possible disadvantage of an object-oriented imple-
mentation is a runtime performance penality because
of overhead such as method lookup. In the imple-
mentation of C++ we used, the overhead amounts to
three or four extra memory references per virtual func-
tion call [13]. To see whether this overhead has a
significant impact on the performance of idraw, we
measured how long it took each version of idraw
to do three different operations on two different draw-
ings, car.6 (shown in Figure 7) and multidriver
(shown in Figure 8). These are representative of two
common types of drawings: artistic drawings with

- 11 -

Modula-2 C++
structured common code 3600 3500
graphics incremental update 500 100
library hit detection 400 1500

persistence 600 1300
comments 700 300
total lines 5800 6700

idraw common code 13000 14000
user interface 2000 0
comments 1000 2000
total lines 16000 16000

Table 1: Comparison of Modula-2 and C++ source code (in lines)

many complex, overlapping polygons and splines, and
technical drawings consisting mainly of rectangles,
lines, and text with little or no overlap. We timed
the following operations:

1. In the “zoom #1” test, the drawing is zoomed
from half size to quarter size and back. The draw-
ing is fully visible throughout the test.

2. In “zoom #2,” the drawing is zoomed from half
size to full size and back. The drawing is clipped
when drawn at full size so that only half is visible.

3. In “rotation,” the (top-level) object in the drawing
is rotated 90 .

Table 2 shows the average of ten trials for each test.
The C++ version outperforms the Modula-2 version in
every test. The difference in speed is greatest for the
rotation test on car.6, but this difference is exagger-
ated because of a bug in the Modula-2 library’s incre-
mental update routine that caused redundant redraws
of two subcomponents. In general, the Modula-2 li-
brary is handicapped by the extra traversals associ-
ated with graphic state propagation and incremental
update. The results would be more comparable if the
Modula-2 library were modified to use concatenation
and the simpler incremental update algorithm of the
damage class.

The last quantitative comparison involves the object
code sizes for each library and idraw version. These
values are shown in Table 3. The C++ sizes are larger
mainly because of the added functionality of both the
Graphic library and C++ idraw, constructor, destruc-
tor, and inline code, and the overhead associated with
virtual pointer tables.

From a qualitative standpoint, the Graphic library
and the corresponding version of idraw are both

significantly better structured, more understandable,
and “cleaner” overall than their Modula-2 counter-
parts. One could argue that the lessons learned in the
Modula-2 implementation efforts led to superior C++
versions. However, the versions of idraw were de-
veloped by two different people. In fact, the Modula-2
version was its author’s second attempt at a drawing
editor, while the C++ version was its author’s first at-
tempt. The object-oriented paradigm simply invites
good program structuring through inheritance, encap-
sulation, and late binding, all of which promote mod-
ularity and flexibility.

7 Conclusion

A striking aspect of graphics packages such as CORE,
GKS, and PHIGS is their size and complexity. These
packages are intended as standards that provide ma-
chine independence, extensive functionality, and gen-
erality, and they largely succeed in these respects.
However, all reflect their procedural implementation
in their interface. Programmers cannot extend prim-
itives through inheritance to modify their semantics.
The result is a substantial complexity penalty for ev-
ery increase in flexibility.

For example, some packages bind graphics state at-
tributes statically to graphical objects when the ob-
jects are created. Others provide a simple form of
state inheritance by allowing graphics to reference
other graphics in a manner similar to instances in the
Graphic library. These facilities are significantly less
flexible than the graphics state concatenation mech-
anism, the semantics of which can be changed on a
per-class basis. In an object-oriented package, gener-
ality can be achieved through class inheritance instead
of supporting a broad range of behaviors explicitly.

- 12 -

Drawing Test Modula-2 C++
car.6 zoom #1 18 8.3
(82 objects) zoom #2 12 6.3

rotation 15 4.5
multidriver zoom #1 24 12
(361 objects) zoom #2 18 8.3

rotation 11 6.7

Table 2: Comparison of Modula-2 and C++ idraw drawing performance (in seconds)

Modula-2 C++
structured graphics library 40 110
idraw 130 280

Table 3: Comparison of Modula-2 and C++ object code sizes (in kilobytes)

Another advantage of the object-oriented approach
is the ability to treat graphical objects generically, re-
lying on the runtime system to determine the correct
method for a particular object. The virtual mech-
anism accomplishes this in C++. Thus, functionality
such as hit detection can be implemented in a simple
way without identifying objects with element point-
ers and labels. Furthermore, escape mechanisms for
exploiting special hardware facilities are unnecessary;
subclasses can be derived that reimplement key op-
erations such as Draw to take advantage of unique
capabilities.

In our experience, structured graphics is useful for
applications that allow the user to manipulate graph-
ical objects interactively. Structured graphics is less
useful for implementing the appearance of the user in-
terface. It is unnecessary to define scroll bars, menus,
and buttons using structured graphics because they are
simple to draw procedurally and their structure rarely
changes. Thus, structured graphics is not a replace-
ment for immediate-mode graphics.

We are interested in using the Graphic library for
animating graphics. Structured graphics is appropri-
ate for animation if the hardware is fast enough to
support it. Also, the current implementation does not
provide three-dimensional capabilities. Extending the
library to support three dimensional graphics would
require significant additions to base class functional-
ity, for example, to incorporate operations governing
lighting models and point of view, three-dimensional
analogs of Contains and Intersects, and addi-
tional information when clipping.

Of more immediate interest is the introduction of
version 2.0 of C++ [13] with multiple inheritance,
among other enhancements. Though single inheritance
is very useful, it often forces the programmer to derive
from one of two equally attractive classes. This limits
the applicability of predefined classes, often making
it necessary to duplicate code. For example, there is
no way to derive a graphic that is both a circle and
a picture; one must derive from one or the other and
reimplement the functionality of the class that was ex-
cluded.

The availability of multiple inheritance will un-
doubtedly change the class hierarchy shown in Fig-
ure 1. Classes such as filled and open could be de-
fined to simplify the relationships between filled and
non-filled graphics, which are currently derived as they
are to maximize code sharing. Persistence could be
implemented as a separate class from which to inherit.
Thus, non-persistent classes can avoid the small space
overhead caused by deriving graphic from a persistent
class.

Acknowledgments

This work was supported by the Quantum project
through a gift from Digital Equipment Corporation.
John Interrante implemented the C++ version of
idraw. Paul Calder and Craig Dunwoody provided
helpful comments on earlier drafts of this paper.

- 13 -

References

[1] Apple Programmer’s & Developer’s Association.
MacApp: The Expandable Macintosh Applica-
tion, 1987.

[2] P.S. Barth. An object-oriented approach to graph-
ical interfaces. ACM Transactions on Graphics,
5(2):142–172, April 1986.

[3] P. Bono et al. GKS: The first graphics stan-
dard. IEEE Computer Graphics & Applications,
2(5):9–23, July 1982.

[4] Status report of the graphics standards plan-
ning committee of ACM/SIGGRAPH. Computer
Graphics, 13(3), Fall 1979.

[5] Adele J. Goldberg. Smalltalk-80: The Interactive
Programming Environment. Addison-Wesley,
Reading, MA, 1984.

[6] W.T. Hewitt. Programmers Hierarchical Interac-
tive Graphics System (PHIGS). In G. Enderle
et al., editors, Advances in Computer Graphics I.
Springer-Verlag, 1986.

[7] Keith A. Lantz and William Nowicki. Structured
graphics for distributed systems. ACM Transac-
tions on Graphics, 3(1):23–51, January 1984.

[8] Mark A. Linton, Paul R. Calder, and John M.
Vlissides. InterViews: A C++ graphical inter-
face toolkit. Technical Report CSL–TR–88–358,
Stanford University, July 1988.

[9] Patrick D. O’Brien, D.C. Halbert, and Mike F.
Kilian. The Trellis programming environment.
In ACM OOPSLA ’87 Conference Proceedings,
pages 91–102, Orlando, FL, October 1987.

[10] Robert W. Scheifler and Jim Gettys. The X win-
dow system. ACM Transactions on Graphics,
5(2):79–109, April 1986.

[11] Silicon Graphics, Inc. IRIS User’s Guide, 1984.

[12] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, Reading, MA, 1986.

[13] Bjarne Stroustrup. The evolution of C++: 1985
to 1987. In Proceedings of the USENIX C++
Workshop, pages 1–21, Santa Fe, NM, November
1987.

[14] I.E. Sutherland. Sketchpad: A Man-Machine
Graphical Communication System. PhD thesis,
MIT, 1963.

[15] Robert L. Young. An object-oriented framework
for interactive data graphics. In ACM OOPSLA
’87 Conference Proceedings, pages 78–90, Or-
lando, FL, October 1987.

