
ANL-7621 ANL-7621

gfgonn~£ Rational1Cabofatol1!

GEDANKEN: A Simple Typeless Language

Which Permits Functional Data Structures

and Coroutines

by

John C. Reynolds

The facilities of Argonne National Laboratory are owned by the United States Govern
ment. Under the terms of a contract (W-3l-l09-Eng - 38) between the U. S. Atomic Energy
Commission, Argonne Universities Association and The University of Chicago , the University
employs the staff and operates the Laboratory in accordance with policies and programs formu
lated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie -Mellon Univer sity
Case Western Reserve University
The University of Chicago
Unive r sity of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa

Kansas State University
The University of Kansas
Loyola University
Marquette Univer sity
Michigan State University
The University of Michigan
University of Minnesota
Univer sity of Mis souri
Northwestern University
University of Notre Dame

LEGAL NOTICE

The Ohio State University
Ohio Univer sity
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
Unive rsity of Texas
Washington University
Wayne State University
The Univer sity of Wisconsin

This r eport was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on behalf
of the Commis sion:

A. Makes any warranty or representation, expressed or implied, w ith r e
spect to the accuracy, completeness, or usefulness of the information contained
in this r epor t, or that the use of any information, apparatus, method, or process
disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages re
sulting from the use of any information, apparatus, method, or process disclosed
in this report .

As used in the above , "person acting on behalf of the Commission" in
clude s any employee or contractor of the Commis sion, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access to,
any information pursuant to his employment or contract with the Commission,
or his employment with such contractor.

Printed in the United States of America
Available from

Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U . S. Department of Commerce

Springfi e ld, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.65

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, Illinois 60439

GEDANKEN: A Simple Typeless Language
Which Permits Functional Data Structures

and Coroutines

by

John C. Reynolds

Applied Mathematics Division

September 1969

ANL-762l
Mathematics and
Computers

TABLE OF CONTENTS

ABSTRACT •

10 INTRODUCTION.

II. AN INFORMAL DESCRIPTION OF GEDANKEN.

The Universal Value Set •

Syntaxo

Applicative Semantics of GEDANKEN •

Data Structures in Applicative GEDANKEN •

References.

Data Structures with Imbedded References.

Implicit References 0

Label Values.

Coroutineso

Nondeterministic Algorithms •

III. A FORMAL DEFINITION OF GEDANKEN.

Abstract Syntax Definition.

Abstract Syntax of GEDANKEN •

Concrete Syntax of GEDANKEN •

Translation into Abstract Form.

Semi-Basic Functions.

The Interpreter •

A Direct Interpreter.

IV. POSSIBLE EXTENSIONS AND MODIFICATIONS •

Type Declarations •

Open Functions.

Label Value Difficulties.

APPENDIX: Basic Functions in GEDANKEN •

ACKNOWLEDGMENTS.

REFERENCES •

Page

5

6

8

8

10

12

16

20

23

26

28

29

30

32

33

38

40

44

47

48

60

63

63

64

65

67

68

69

3

GEDANKEN - A SIMPLE TYPELESS LANGUAGE WHICH PERMITS

FUNCTIONAL DATA STRUCTURES AND COROUTINES

by

John C. Reynolds

ABSTRACT

GEDANKEN is a simple, idealized programming language with the

following characteristics: (1) Any value which is permitted in some

context of the language is permissible in any other meaningful con

text. In particular, procedures and labels are permissible results

of functions and values of variables. (2) Assignment and indirect

addressing are formalized by introducing values, called references,

which in turn possess other values. The assignment operation always

affects the relation between some reference and its value. (3) All

compound data structures are treated as functions. (4) Type declara

tions are not permitted.

The functional approach to data structures and the use of refer

ences insure that any process which accepts some data structure will

accept any logically equivalent structure, regardless of its internal

representation. More generally, any data structure may be implicit,

i.e., it may be specified by giving an arbitrary algorithm for comput

ing or accessing its components. The existence of label variables

permits the construction of coroutines, quasi-parallel processes, and

other unorthodox control mechanisms.

A variety of programming examples illustrates the generality of

the language. Its simplicity is demonstrated by a concise formal

definition, in which abstract programs are treated as GEDANKEN data

structures, and an interpreter for these structures is given in

GEDANKEN itself.

A portion of this material has been submitted to the Communications

of the ACM.

5

6

10 INTRODUCTION

Even a cursory acquaintance with modern programming languages suggests

that the simultaneous achievement of simplicity and generality in language

design is a seripus unsolved research problemo This paper describes a simple

and somewhat idealized language, called GEDANKEN, which has developed out of

an attempt to attack this problemo

It must be emphasized that GEDANKEN is not intended to be a generally

useful programming language, although it could be effective in situations

where a#fair degree of object program inefficiency is tolerable 0 Its major

purpose is to illustrate two basic principles which the author believes may

be valid for the design of more complex and practical languages 0 This motiva=

tion is reflected in its name, which is meant as an analogy to gedanken e~peri=

ments in physicso

The two principles underlying the design of GEDANKEN are the following~

(1) Completeness 0 Any value which is permitted in some context of the

language is permissible in any other meaningful contexto In particular~ pro=

cedures and labels are permitted to be results of functions or values of

references (eogo s variables)5 without imposing restrictions in order to main=

tain a stack discipline for run-time storage allocationo

(2) The Reference Concepto To formalize the mechanisms of indirect

addressing and assignment$ a concept of reference is introduced which is

somewhat similar to that used in the Amsterdam proposal for ALGOL 68 0 (1)

Specifically, among the possible values which may occur in a GEDANKEN program

are objects called references t which in turn possess other valueso The assign=

ment operation always affects the relation between some reference and its

value 0

We will show that these design principles have the following consequencesg

(1) The existence of function-returning and reference-returning functions

allows all compound data structures to be treated as functions. Thus, for

examples a one-dimensional ALGOL-like array would be treated as a function

whose domain was a finite consecutive set of integers and which mapped each

element of this domain into a unique reference. This approach insures that any

process which accepts some data structure will accept any logically equivalent

structure a regardless of its internal representation. More generallYi any

data structure may be implicit, i.e. t it may be specified by giving an arbitrary

algorithm for computing or accessing its components.

(2) The existence of label variables permits the construction of co-

routines, quasi-parallel processes, and other unorthodox control mechanisms.

This is a direct consequence of not imposing a stack discipline on the program

control information.

Some further design decisions have been made to achieve simplicity and

theoretical tractability at the expense of efficiency and practicality. In

particular:

(1) Declarations are not allowed to restrict the value range of iden=

tifiers t references 9 or function results. Languages with this property are

usually called "typeless," although the types of values may be tested during

execution 0

(2) GEDANKEN does not provide a variety of common features which enhance

the conciseness of a language without expanding the range of programs which can

be expressedo Thus for example, infix arithmetic operators, for statements.
~

and factored declarations are not providedo

(3) For brevity, floating-point values and operations have been omitted

from the version of GEDANKEN described in this papero

Items (2) and (3) are not conceptually serious deficiencies~ since they

can be overcome by extending the language in an obvious and well-understood

7

8

manner 0 However. item (1) is indicative of a serious theoretical problem~

ho~ to develop a facility for type declaration which will permit concise and

efficient data representations without destroying the generality of the

language 0

The design of GEDANKEN has obviously been influenced by a number of earlier

languages, including ALGOL 60,(2) LISP,(3) EULER,(4) and ALGOL 680 (1) There

is also an unusually close relation between GEDANKEN and the language PAL,

(5)
described by Ao Evans. . The similarities of these languages are largely the

result of convergent independent evolution, but the existence of sequence

expressions and their use in treating all functions as functions of a single

variable are direct borrowings from PALo (However, PAL does not treat sequences

as special cases of functions, nor does it utilize the reference concepto)

In the sequel. we give both an informal description of GEDANKEN and a

formal definition. The generality of the language will be demonstrated by a

variety of examples; its simplicity is evident from the conciseness of the

formal definition.

110 AN INFORMAL DESCRIPTION OF GEDANKEN

The Universal Value Set

The principle of completeness and the absence of type declarations in

GEDANKEN implies that the values of all identifiers and references, as well

as the results of all functions, may range freely over a single universal set.

This set contains the following types of data~

Primitive Data: Integers, Booleans, Characters, Atoms

Nonprimitive Data: Functions i References, Label values

A complete set of basic predicate functions is available for testing the type

of a datumo

Among the primitive data only atoms are unusual. They are similar to atoms

in LISP, except that they lack property lists and print names. There is a basic

function ATOM which produces a new distinct atom each time it is executed, and

atoms may be tested for equality. Two particular atoms, denoted by the pre

defined identifiers LL and UL, playa special role in the language 0

All functions accept a single argument and produce a single result~ with

possible side effects. Proper procedures are treated a~ functions which exe

cute side effects but produce an irrelevant result. A number of basic functions

are provided which may be used without being defined (see Appendix); additional

user-defined functions are created by the evaluation of various expressions.

The functional approach to data structures gives special importance to

functions called vectors, whose domain is a finite set of consecutive integers.

Given a vector, it is useful to be able to determine the limits of its domain.

In several languages, these limits are obtained by applying certain basic func

tions to the vectors, but this approach destroys the pure functionality of the

vectors. Thus in GEDANKEN, the limits are obtained by applying the vector to

two special arguments, the atoms LL and ULo

More precisely. a function F is called a vector if: (1) Its domain (the

set of arguments for which the function terminates without an error stop)

includes the atoms LL and UL, (2) The values of F(LL) and F(UL) are integers

such that F(UL) ~ F(LL) - 1. (3) The domain includes all integers I such that

F(LL) ~ I ~ F(UL)o

If F is a vector, then the integer F(UL) - F(LL) + 1 is called the

length of F j and. for each F(LL) ~ I ~ F(UL), the value of F{I) is called the

Ith component of F. If F is a vector and F(LL) = 1 then F is called a sequenceo

It should be emphasized that any function satisfying the above definition

is a legitimate vector, regardless of the method by which it computes its

9

10

components or limits 0 Indeed, there is no basic predicate function which

tests whether an arbitrary function is a vector, since such a predicate would

be noncomputableo However, the language provides certain operations whose

result will always 'be a vector which does not cause side effects.

Sequences are used to reduce functions of several arguments to functions

of a single argumento Thus a function of k arguments is treated as a f~nction

of a single argument that is a sequence of length ko

References and label values will be discussed latero

Syntax

A GEDANKEN program is a sequence of tokens separated by zero or more

blanks, with at least one blank used as a separator whenever the juxtaposition

of two tokens would otherwise be ambiguous. The tokens themselves are sequences

of characters classified as follows:

Constants~ digit strings (denoting integers), quoted strings

Reserved Words: AND, OR, IF, THEN, ELSE, CASE, OF, IS, ISR

Identifiers: All other alphanumeric strings beginning with a letter

Punctuation Tokens: A ~ = : () , :=

Certain identifiers, called predefined, have standard meaningso These

include TRUE, FALSE~ LL, UL, and QUOTECHAR, which denote fixed items of primi

tive data, ERROR. which denotes a basic label value causing program termination,

and the names of all basic functionso The meanings of predefined identifiers~

but not reserved words, may be overridden by declarations 0

The syntax of GEDANKEN is specified by a context-free grammar over an

infinite vocabulary of tokens rather than a finite vocabulary of characters.

We state this grammar in an extension of BNF in which the notation {a}* is used

to indicate an arbitrary number (including zero) of occurrences of the string a:

<expo> :~= <constant> I <identifier> I «block»

<exPl> :~= <exPO> I <function designator>

<function designator> ::= <exPO><exPl >

<exP2> o .-
o .- <exPl > <exPl > = <exP2>

<exP3> · .-• 0- <exP 2> <exP 2> AND <exP3>

<exp >
4

• 0-· .- <exP3> <exP 3> OR <exP 4>

<exPS> • 0-· .- <exP4> <conditional exp> I <lambda exp> I <exP 4>

<conditional exp> .. -, .- IF <exP6> THEN <exP6> ELSE <exPS>

<lambda exp> ::= A <pformo><exps>

<exP6> ::= <exPS> I <sequence exp> <case exp>

<sequence exp> ::= <empty> I <exPS>t <exPS> {, <exps>}*

<case exp> ::= CASE <exP6> OF <expS> {, <exps>}*

<pformo> ::= <identifier> I «pforml »

<pforml > ::= <pformo> I <sequence pform>

.-,-

<sequence pform> ::= <empty> I <pformo>, <pformO> {, <pformo>}*

<decl> :~= <pforml > IS <exP6>

<recursive decl> ::= <identifier> ISR <lambda exp>

<label> ::= <identifier> :

<statement> ::= {<label>}* <exP6>

<exPS>

<block> ::= {<decl>;}* {<recursive decl>;}* {<statement>;}* <statement>

<program> ::= <block>

Phrases of the classes exPO' .0' , eXP6 are all called expressions; the

subscripts serve only to distinguish levels of precedence. Similarly both

pformo and pforml are called parameter forms. It should be noted that a

block can consist of a single expression, so that any expression can be

parenthesized (without changing its semantics).

11

12

Applicative Semantics of GEDANKEN

Following Evans,(S) we divide the semantics of GEDANKEN into an applica-

tive part. involving the evaluation of expressions and the creation and

application of functions, and an imperative part, involving references,

assignments, labels, and jumps. We first consider the applicative part~

which is a complete and nontrivial language in itself.

The application of a function to an argument is performed by evaluating

a function designator~

<function designator> .. -.. - <exp >
\ 0,.,

function
part

<exp >
. 1, .

argument
part

Such an expression is evaluated by first evaluating its function part and its

argument part to obtain values vf (which must be a function) and va' and then

applying the function vf to the argument Vat taking the result of vf to be the

value of the function designator.

The syntax allows the usual composition of functions to be written without

parentheses, e.g., SIN(SQRT(X» may be written as SIN SQRT XO On the other

hand, parentheses are needed to apply a function which is the result of another

function, e.g., (X 3) 4 causes the function X to be applied to 3 and then the

result of X to be applied to 4.

Functions are created by evaluating lambda expressions:

<lambda exp> ~:= A <pformo> <exPS>
~
body

For the moment we limit ourselves to the case where the parameter form is a

single identifier. Then the value of a lambda expression is the function

whose result is obtained by evaluating the body after binding the (identifier

which is the) parameter form to the argument of the function. To complete

13

this definition we must specify the binding of any free identifiers which occur

in the body but not in the parameter form. Such identifiers are bound to the

values which they possess when the lambda expression is evaluated (which may

not be the same as their values later when the resulting function is applied)o

This type of binding is called FUNARG binding in LISP and is similar to the

binding of free identifiers in ALGOLo

Functions which are sequences may also be created by evaluating sequence

expressions~

<sequence exp> ::= <empty> I <exPS> , <exPS> {, <exPS>}*

Let n be the number of subexpressions. Then the sequence expression is

evaluated by first evaluating its subexpressions to obtain values vI' 000 , v
n

and then creating a sequence of length n whose ith component (for 1 ~ i ~ n)

is v .•
l.

Because of their low precedence, sequence expressions are often parenthe-

sized, but the parentheses themselves do not indicate the construction of a

sequence. Thus the expressions () and (X, y) both create sequences, but (X)

has the same value as X. There is no sequence expression which produces a

sequence of length one, but such sequences can be produced by the basic function

UNITSEQ, which returns a sequence whose only component is the value of its

argument 0

As noted earlier, a function of n variables (n # 1) is treated in GEDANKEN

as a function of a sequence of length n. However, the syntax is arranged to

preserve conventional notation. Thus, for example, ADD(X, Y) has its usual

effect, but this effect is achieved by creating a sequence out of the values

of X and Y and then giving this sequence to ADD as its single argument 0

14

This situation suggests that when a function created by a lambda expression

expects to receive a sequence as its argument, the parameter form within th~

lambda expression should be able to bind several different identifiers to the

components of the' sequence. Such a capability is provided by sequence parameter

forms:

<sequence pform> :~= <empty> I <pform
O

>' <pformo> {, <pformo>}*

In general Q if a is any value and p is any parameter form, then the binding of

p to a is defined recursively as follows:

(1) If p is an identifier, then p is bound to ao

(2) If P has the form (pt), then p' is bound to a.

(3) If p is a sequence parameter form, PI' 000 , Pn(n ¢ 1), then at

which must be a function, is applied to each integer from 1 to n,

and each p. is bound to the value of a(i).
~

The combined syntax of sequence expressions and sequence parameter forms

is designed to preserved conventional notation for functions of several

arguments. Thus in the evaluation of (A(X, Y) body)(3, 4), X is bound to 3

and Y is bound to 40 However, the sequence argument approach also provides

useful unconventional capabilities, eog., (A(X, Y) body)(IF P THEN (3, 4)

ELSE (5 i 6». More importantly, the ability to bind a single identifier to

an entire sequence provides the equivalent of a function with an indefinite

number of arguments, e.g., (AX body)(IF P THEN (3, 4) ELSE (5, 6, 7».

GEDANKEN is similar to EULER(4) in treating all types of unlabelled state-

ments as expressions (some of which are evaluated for their side effects rather

than their values). In particular, a (parenthesized) block is a type of

expression with a meaningful value:

<block> ::= {<decl>;}* {<recursive decl>;}* {<statement>;}* <statement>

It is evaluated by first carrying out the bindings indicated by its declara

tions, recursive declarations, and labels, and then evaluating the statements

in order from left to right. If no jumps out of the block occur, the value

of the block is the value of the rightmost statement (the values of preceding

statements are ignored).

A declaration~

<decl> ~~= <pforml > IS <exP6>

is executed by evaluating the expression on its right and then binding the

parameter form to the value of this expression. A sequence of declarations

is executed from left to right, so that the expression in each declaration

"feels" only the bindings caused by preceding declarations on the left.

Unfortunately, since a declaration does not bind its own right side, it

cannot be used easily to define a recursive function. Thus for example,

FACT IS AN IF N = 0 THEN 1 ELSE MULTIPLY(N, FACT SUBTRACT(N,l»

does not define a recursive function since the occurrence of FACT on the right

side is not bound to the value of the lambda expression containing it. To

overcome this problem, recursive declarations are provided:

<recursive decl> ~:= <identifier> ISR <lambda exp>

A recursive declaration binds the identifier on its left to the value of the

lambda expression on its right, but in computing this value, the free identi

fiers in the lambda expression are not bound to their values at the time the

lambda expression is evaluated. Instead, these free identifiers are bound to

their values after all bindings (including label bindings) in the block con

taining the recursive declaration have been completed. This allows the use of

several recursive declarations to define a family of recursive functions which

call each other. It also allows a recursive function to jump to some statement

in the block in which it is defined.

15

16

Conditional expressions have the same meaning as in ALGOL. A case

expression of the form CASE eO OF e l , .00 , en is executed by first evaluat

ing eO to obtain a value i; if i is an integer satisfying 1 ~ i ~ n, the

result of the case expression is obtained by evaluating e.; if i is LL or UL
1.

the result is 1 or n; all other values of i give an error 0 The remaining

forms of expressions can all be regarded as abbreviations (except for coercion)~

e l = e 2 :> EQUAL(e l , e 2)

e l AND e2~(IF el THEN e 2 ELSE FALSE)

e l OR e2 =.;:::. (IF e l THEN TRUE ELSE e 2)

e 1 : = e 2 ::2=> SE T (e l' e 2)

where EQUAL denotes a basic equality function and SET denotes a basic assign-

ment function (to be defined later)o EQUAL tests the equality of primitive

data, but if either component of its argument is a function or a label, it

will return FALSE o Its action on references will be described later.

The meaning of constant tokens which are quoted strings requires some

explanation 0 A single quoted character denotes the corresponding primitive

datum, but a string of any other length denotes a sequence whose components

are the characters of the string (with quotation marks deleted)o

Data Structures in Applicative GEDANKEN

Even the applicative part of GEDANKEN is sufficient to demonstrate the

power and flexibility which are obtained by treating compound data structures

as functionso

As a first example, consider LISP-like list structureso We wish to define

functions in GEDANKEN which are equivalent to the LISP functions CONS~ CAR,

and CDRo The two-field list cell produced by CONS can be considered to be

a function whose domain contains two elements (e.g., 1 and 2) and which maps

these elements into the values of its CAR and CDR fields. This viewpoint leads

directly to the definitions:

CONS IS A(X, Y) AZ IF Z = 1 THEN X ELSE Y;

CAR IS AX X 1;

CDR IS AX X 2;

These definitions imply an ability to do list processing without the use

of special basic functionso In a conventional language (e.go, compiled

LISP 105(3) or various extensions of ALGOL(1,6» user-defined functions are

restricted so that storage for the values of their identifiers obeys a stack

discipline 0 In this situation list structures, which do not obey a stack

discipline, must be allocated in a separate storage area, and basic functions

or operations must be provided for accessing this area. But in GEDANKEN, the

user may develop list-processing by defining function-returning functions (such

as CONS above) which violate a stack discipline. In effect, all storage is

potentially list-structured.

Although the above approach is workable and theoretically attractive, it

is more convenient to use sequence expressions to create list elements, i.eo,

to write (X, Y) instead of CONS(X, Y), X 1 instead of CAR X, and X 2 instead

of CDR X. Following this approach, we introduce lists into GEDANKEN by first

creating an atom to denote the empty list:

NIL IS ATOM();

and then defining a list to be either the atom NIL or a sequence of length

two whose second component is a list. Then the following functions will

produce the length of a list, find the ith element of a list, and append one

list to another:

17

18

LISTLENGTH ISR AL IF L = NIL THEN 0 ELSE INC LISTLENGTH L 2;

LISTELEM ISR A(I, L) IF L = NIL THEN GOTO ERROR

ELSE IF I = 1 THEN L 1 ELSE LISTELEM(DEC It L 2);

APPEND ISR A(X, Y) IF X = NIL THEN Y ELSE (X 1, APPEND(X 2, Y»;

Here INC and DEC are basic functions which increase or decrease an integer

by oneo

As a second example, we consider one-dimensional arrays. We have already

defined a type of function called a vector which is the analogue of a one

dimensional array. and we have introduced sequence expressions for creating

vectors 0 But a sequence expression can only produce a vector which is a

sequence, and it is inconvenient for producing very long vectors. What is

needed is a function which will produce a vector from a functional specifica

tion of its components.

Thus we wish to define a function, called VECTOR, which will accept

another function, tabulate its values over a finite range, and return a lookup

function for the resulting table. More precisely, VECTOR accepts an argument

(L, U, F) t where Land U are integers and F is a function. If U < L, VECTOR

produces an empty vector V such that V(LL) = Land V(UL) = L - 10 Otherwise~

VECTOR evaluates F(I) for each integer I between Land U inclusive, and pro

duces a vector V such that V(LL) = L, V(UL) = U and for L ~ I S u, V(I) is

the value of F(I). The following definition meets this specification:

VECTOR ISR A(L, u, F)

IF GREATER(L, U) THEN

A I IF I = LL THEN L ELSE IF I = UL THEN DEC L ELSE GOTO ERROR

ELSE (V IS VECTOR(L, DEC U, F); T IS F U;

A I IF I = UL THEN U ELSE IF I = U THEN T ELSE V I);

It is evident that this function, although theoretically correct, will

be extremely inefficient in any reasonable implementation. For this reason,

a basic function VECTOR is provided which is defined to be equivalent to the

function above (except for coercion)o

19

To clarify this question of efficiency it is necessary to consider possible

implementations of GEDANKEN, without going into unnecessary detailo In a simple

implementation i functions will possess two distinct internal representations:

If a function is created by evaluating a lambda expression, it will be repre

sented by a "lambda record" containing a pointer to code which was compiled

from the lambda expression, plus values for each free identifier in the lambda

expression 0 On the other hand, if a function is created by evaluating a

sequence expression or by the application of VECTOR, it will be represented

by a "vector record" containing range limit and indexing information, plus a

contiguous array of component values (or perhaps a pointer to such an array)o

It is evident that the above definition of VECTOR (as opposed to the basic

function) would yield a vector whose internal representation was a linked list

of lambda records (each containing one component value) rather than a contiguous

array 0

We may now illustrate our assertion that any process which accepts some

data structure will accept any logically equivalent structureo Suppose that

P is a function which expects a sequence as its argument, and that we wish to

give it a sequence whose ith component is the ith element of a list Lo This

can be done in a conventional manner by evaluating P VECTOR(l, LIST LENGTH Lj

A I LISTELEM(I j L», which copies the elements of L into a contiguous arrayo

But it is also possible to evaluate P MAKESEQFROMLIST L, where

MAKESEQFROMLIST IS A L

A I IF I = LL THEN 1 ELSE IF I = UL THEN LISTLENGTH L ELSE LISTELEM(I i L);

20

MAKESEQFROMLIST does not copy the components of L; instead, it produces an

implicit sequence which will look up the appropriate element of L each time

one of its components is accessed.

It is equally possible to produce an implicit list from a sequence~

MAKELISTFROMSEQ ISR A S MLFS1(l, S);

MLFSl ISR A(I, S) IF GREATER(I, S UL) THEN NIL

ELSE A K (CASE K OF S I, MLFS1(INC I, S»;

(Here MLFSl is a subsidiary function which produces an implicit list from the

subsequence of S that begins with the Ith componento)

So far, the data structures we have shown all have the limitation that

once a structure has been created, its components or elements cannot be

altered o To overcome this limitation we must introduce the imperative aspects

of GEDANKEN.

References

It is well known that the introduction of assignment into an applicative '

language requires a careful distinction between values and objects which

possess values (variously called addresses, pointers, references, or names).

In GEDANKEN we have chosen to formalize this distinction by introducing a •

concept of a reference which is rather similar to that used in ALGOL 68. (1)

It is not clear that this is the best approach, but it is flexible and con

ceptually simple, and it combines cleanly with the principle of completenesso

In applicative GEDANKEN the only entities which possess values are

identifiers; an identifier is said to be bound to its value 0 It would be

possible to define assignment as an operation which changes the binding of

an identifier, but this would destroy the "nesting" property of bindingo

Moreover, if assignment is considered as a function (with side effects), then

the principle of completeness would be violated, since an identifier would be

a possible argument for the assignment function but would not be a permissible

value in any other context.

Thus we introduce a second type of entity, called a references which

possesses a valueo But unlike an identifier, a reference can also be a value,

possessed by either an identifier or a reference. The assignment operation is

then defined to alter the relation between a reference and its value rather

than an identifier and its value.

Basically. references are manipulated by three basic functions: REF, SET,

and VAL. REF X returns a new distinct reference which is initialized to

possess the value X. SET(R, X} (which can be abbreviated R := X) causes R

{which must be a reference} to possess the value X and then returns X. VAL R

returns the value possessed by R (which must be a reference).

The following illustrates the reference concept: Under the scope of the

declaration X IS 3, the identifier X is bound to the integer 3, and this bind

ing cannot be altered by assignment. Indeed, evaluation of the expression

X := 4 would give an error, since 3 is not a reference. Analogously, under

the scope of the declaration X IS REF 3, the identifier X is bound to the

reference created by REF, and this binding cannot be changed by assignment.

But now evaluation of X := 4 is legitimate, and causes the value possessed by

the reference bound to X to change from 3 to 4. Thus, in the execution of

the block

(X IS REF 3; VAL X = 3; X := 4; VAL X = 4)

both equality predicates will be true.

The major difficulty with references is the frequent necessity for using

the function VAL. Thus under the scope of the declarations X IS REF 3;

21

22

Y IS REF 4; one must write ADD(VAL X, VAL Y) rather than ADD(X, Y), since ADD

acts upon integers rather than references. To alleviate this difficulty, we

adopt a coercion convention, in which references are automatically replaced

by their values in contexts in which they would otherwise be meaningless.

Specifically, we define the function

COERCE ISR A X IF ISREF X THEN COERCE VAL X ELSE X;

(which is available as a basic function), and define the phrase "to coerce X"

to mean the replacement of X by COERCE X. Then the following conventions

are established:

(1) All basic functions which would otherwise be meaningless coerce

their argument or the appropriate components of their arguments. For example,

ADD(X, Y) is equivalent to ADD(COERCE X, COERCE Y), but ISREF X is not

equivalent to ISREF COERCE X, nor VAL X to VAL COERCE X.

(2) REF X coerces X, SET(R, X) (and therefore R := X) coerces X, and

EQUAL(X, Y) (and therefore X = Y) coerces both X and Y. Since these functions

would each be meaningful for references without coercion, analogous noncoercing

functions, named NCREF, NCSET, and NCEQUAL, are also provided. NCREF and

NCSET permit references to possess values which are also references. (Note

that COERCE NCSET(R, R) never terminates.} NCEQUAL can be used to determine

whether two values are the same reference.

(3) Conditional and case expressions coerce the values of their leftmost

subexpressions.

(4) Expressions involving AND and OR coerce the values of both of

their subexpressions.

(5) A function designator coerces the value of its function part.

(6) When a sequence parameter form PI' ••• , Pn is bound to a value a~

each p. will be bound to (COERCE a)(i).
~

23

(7) Vectors which are created by evaluating sequence expressions or by

application of the basic functions VECTOR or UNITSEQ will coerce their

argument.

Data Structures with Imbedded References

The utility of the reference concept becomes apparent when reference-

returning functions are used to imbed references within data structures,

yielding structures which can be altered by assignment.

This approach provides precise control over the ways in which data

structures can be altered. Thus the GEDANKEN equivalent of an ALGOL-like

one-dimensional array is a vector whose components are references, e.g.,

X IS VECTOR(l, 100, A I REF 0);

Under the scope of this declaration, assignment can be made to the components

of X, e.g •• X(7) := la, but not to X itself. In particular, the subscript

limits X LL and X UL are fixed by the declaration.

On the other hand, the equivalent of a string variable is provided by a

reference whose value is a vector:

S IS REF VECTOR(l, 100, F);

Here assignment can be made to S itself (possibly changing the subscript

limits) but not to the components.

A second consequence of the reference concept is the ability to define

data structures or sets of data structures which share elements, in the sense

that assignment to one element will affect another. Suppose we wish to define

a square matrix M. We could define M as a vector of vectors, i.e.,

M IS VECTOR(l, la, A I VECTOR(l, la, A J REF 0»;

but this leads to the inconvenience of referring to an element of M by (M I) J.

24

It is more natural to define M as a reference~returning function of pairs

of integers~

M IS(Ml IS VECTOR(l, 10, A I VECTOR(l, 10, A J REF 0»;

A(I~ J) (Ml I) J);

so that an element is referred to as M(I, J). Now consider the additional

declarations:

MT IS A(I, J) M(J, I); MD IS A I M(I, I);

Here MT and MD denote the transpose and diagonal of M, in the sense that

assignment to an element of one matrix affects the corresponding elements of

the others.

Elements may also be shared within the same data structure. For example,

S IS (Sl IS VECTOR(l, 10, A I VECTOR(l, I, A J REF 0»;

A(I, J) IF NOT GREATER(J, I) THEN (Sl I) J ELSE (Sl J) I);

defines a symmetric matrix in which assignment to SCI, J) also alters S(J, 1)0

The imbedding of references in list structures also provides control over

the ways in which these structures may be alteredo This is in contrast with

a language such as LISP, where one must choose between using a purely applica

tive language (pure LISP) in which list structures can never be altered i and

a language (full LISP 1.5) in which every field of every list cell can be

alteredo

As an example, consider a property list, which is a list of property

value pairs subject to two operations: The value paired with a given property

may be looked up, or the value paired with a given property may be changed,

adding a new pair to the list if the property is not already presento It is

evident that references must occur in the property list at two points: Each

value must be a reference, so that it can be changed, and the entire list must

be a reference, so that new pairs can be added.

The following function manipulates such property lists. Given a

property P and a (reference to a) property list L, PROPVAL(P, L) search L

for an occurrence of P. If P is found, the reference paired with P is

returned. Otherwise, a pair consisting of P and a new reference (initialized

to zero) is added to L, and the new reference is returned. The argument P is

coerced.

PROPVAL IS A(P, L)

(P IS COERCE P;

SEARCHL ISR A X

IF X = NIL THEN

(NEWV IS REF 0; L := «P, NEWV) , VAL L); NEWV)

ELSE IF (X 1) 1 = P THEN (X 1) 2 ELSE SEARCHL X 2;

SEARCHL VAL L);

A call of this function can occur on either side of an assignment operation;

on the right side it will act to look up a value, on the left side it will

act to alter a value.

A further step can be taken by viewing the property list itself as a

reference-returning function which accepts a property and produces a reference

to the corresponding value. The following function (of no arguments) creates

such functional property lists:

MAKEPROPLIST IS A() (L IS REF NIL; A P PROPVAL(P, L»;

EssentiallYt each execution of MAKEPROPLIST creates a new instance of PROPVAL,

with L bound to a private "own variable." Since a property can be any primi

tive datum~ a functional property list is similar to a reference-valued vector,

except that it has an indefinite domain. Indeed, functional property lists can

be used to provide an efficient implementation of sparse vectors.

25

26

As a final example of the use of references, suppose that READ is a

function such that each execution of READ produces the next item of data from

some input stream, and that we wish to produce an implicit list of the succes-

sive items in the stream. The following function (of no arguments) produces

such a list:

MAKERLIST ISR A()

(B IS REF 0; A I

(IF B = 0 THEN B := (READ(), MAKERLIST(» ELSE (); B I»;

The result of MAKERLIST is an implicit list (whose implicit length is infinite)

which only calls READ as items of data are actually needed, and only stores

previously read items which are still accessible&

Implicit References

The utility of implicit data structures suggests the introduction of an

analogous facility for references. Thus we extend the concept of a reference

to include an implicit reference, which may carry out an arbitrary computation

each time it is set or evaluated.

An implicit reference is created by executing the basic function

IMPREF(SETF, VALF), where SETF and VALF must be functions of one and zero

arguments respectively. Each execution of IMPREF creates a distinct implicit

\

reference, and these implicit references satisfy the predicate ISREF and are

coerced in the same manner as conventional references. But the effect of SET

or VAL on an implicit reference is to execute SETF or VALF. Specifically, if

R is the result of IMPREF(SETF, VALF) then

NCSET(R, X) = (SETF X; X)

SET(R, X) = (X IS COERCE X; SETF X; X)

" A T n _ 'tT AT l'" (\

To illustrate the use of implicit references, we consider the problem of

protecting a reference-valued vector. Suppose that P is a function which

accepts a vector whose components are references. We wish to apply P to

such a vector V, but to protect the components of V from being affected by

P, ioe., we want these components to revert to their original values after

the execution of P is finished o The simplest approach is to copy V by execut

ing P VECTOR(V LL, V UL, A I REF V I), but this will be inefficient if V is

large and only a few components are reset by P. An alternative approach is

to maintain a "change list" of the components of V which have been altered

by Po This may be done by executing P PSEUDOCOPY V, where

PSEUDOCOPY IS A V

(CL IS REF NIL;

SEARCHCL ISR A(X, I, F, G) IF X = NIL THEN G()

27

ELSE IF (X 1) 1 = I THEN F (X 1) 2 ELSE SEARCHCL(X 2, I, F, G);

A I (I IS COERCE I;

IF I = LL THEN V LL ELSE IF I = UL THEN V UL

ELSE IF NOT ISINTEGER I OR GREATER(V LL, I) OR GREATER(I, V UL)

THEN GOTO ERROR

ELSE IMPREF(

A X SEARCHCL(VAL CL, I, A R NCSET(R, X),

A() CL := «I, NCREF X), VAL CL»,

A() SEARCHCL(VAL CL, It VAL, A() VAL V I»»;

CL is a reference to the change list, which is a list of pairs, each containing

an integer argument of some altered component and a reference to the current

value of that componento SEARCHCL is a subsidiary function which searches a

change list X for a pair beginning with the integer I. If such a pair is found,

2B

SEARCHCL returns the value of F applied to the reference paired with I;

otherwise SEARCHCL returns the value of G, which is a function of no argu=

mentso The noncoercing functions NCSET and NCREF are used to allow P to set

a component of 'V to a reference o

Label Values

The final type of data used in GEDANKEN is the label valueo These values

are created during execution of a block containing labelled statements, and are

used as arguments to the basic function GOTO, which never returns but instead

causes a transfer of control to the computational state represented by the

label value o

During the execution of a block, immediately before the first statement of

the block is executed, each identifier that labels a statement in the block is

bound to a label value, which contains two items of information~ the sequence

of statements beginning with the labelled statement, and the current status

of the computation 0 The informal notion of current status will be made more

precise in the next chapter 0 For the present, we note that it contains the

identifier bindings appropriate for executing statements in the block (includ

ing label bindings), plus all information necessary to complete the computation

after the block has exitedo However, it does not include the mapping of

references into their valueso

Execution of the basic function GOTO, whose argument must be a label

value. causes the current status of the computation to be replaced by the status

stored in the label value, and then causes execution to continue with the state

ment sequence stored in the label valueo

As in ALGOL, this approach permits jumps within the same block or to

higher-level blockso But the fact that label values can be possessed by

references or returned by functions provides additional capabilities, including

the ability to jump back into a block after it has been exited from. It is

this capability which allows the construction of coroutines.

Coroutines

A coroutine is a procedure which can relinquish control to its calling

program and later be reactivated to continue computation. The simplest situa

tion is that of two procedures, each of which treats the other as a subroutine.

As an example. suppose that COMPILE is a procedure which produces a

succession of data items called instructions, outputting each instruction by

applying a function OUT, and that ASSEMBLE is a procedure which accepts a

succession of instructions, inputting each instruction by applying a function

IN. If OUT and IN are arguments to COMPILE and ASSEMBLE respectively, we have

COMPILE ISR A OUT (OUT X •••);

ASSEMBLE ISR A IN (•• 0 X : = IN()) ;

We now want to couple these procedures so that ASSEMBLE receives the

output of COMPILE. Specifically, we want to run ASSEMBLE until it requests

input i then run COMPILE until it produces the required output, then run

ASSEMBLE again, etc. The necessary program can be written by using label

valued references which are global to both IN and OUT~

(LC IS REF 0; LA IS REF 0; INST IS REF 0;

29

LC := LCI; ASSEMBLE(A() (LA := LAI; GOTO LC; LAI: VAL INST»; GOTO DONE;

LCI: COMPILE (A X (LC ~ = LC2; INST : = X; GOTO LA; LC2:»; GOTO ERROR;

DONE ~);

Here LA and LC are label-valued references saving the current states of ASSEMBLE

and COMPILE. and INST is a third reference used to hold the instruction being

transmitted from COMPILE to ASSEMBLE. If COMPILE finishes while ASSEMBLE is

still waiting for another instruction, an error stop occurs.

30

Nondeterministic Algorithms

Label values in GEDANKEN are closely related to "processes" in simulation

languages such as SIMULA;(7) both are mechanisms which allow the state of a

suspended comp~tation to be saved as an item of datao The essential difference

is that further execution of a computation which was saved as a process causes

the process to be updated, while further execution of a computation saved as a

label value leaves the label value unchangedo Thus label values can be used

to repeatedly initiate execution from the same stateo

This capability can be used to program a mode of execution for nondeter-

.. • 19 . h (8). h' hI· h d tl m1n1st1c a or1t ms 1n w 1C a ternat1ve pat s are pursue concurren yo

A simple example is nondeterministic parsingo It is fairly straightforward

to convert a context-free grammar into a recursive parsing functiono Unfor~

tunatelYt for many grammars this function will contain nondeterministic

branches 9 ioec, points at which a conditional branch must be performed

although the current state of the parse is insufficient to determine this

branch 0

When nondeterministic branches occurj parsing can be accomplished by

simulating a finite set of independent parsers, all accepting the same input

string and obeying the same program, but with different control stateso When

a parser encounters a nondeterministic branch, it expands into two separate

parsers; when a parser reads an input character which is inconsistent with

its control state, it is deletedo

Specifically, we assume that PARSE(IN s AMB, FAIL) is a function which

accepts two functions IN and AMB, and a label value FAIL, and returns some

representation of a successful parseo The function IN~ of no arguments, is

called by PARSE to read each character of the input stringo The function

AMB. whose argument is a label value, is called to execute a nondeterministic

branch; one side of the branch returns from AMB while the other jumps to the

label-valued argumento PARSE jumps to the label value FAIL when it encounters

an inconsistent character. We assume that PARSE does not set any references,

or at least that it does not expect the value of any reference to be pre

served across a call of IN or AMB.

The following program carries out the concurrent execution of PARSE,

synchronizing the independent parsers by their reading of characters:

(C IS REF NIL; W IS REF NIL; R IS REF NIL; CHAR IS REF NIL;

C := (PARSE (A() (W := (Ll, VAL W); GOTO CaNT; Ll: VAL CHAR),

A L2 (R := (L2, VAL R», CaNT),

VAL C);

CaNT: IF R = NIL AND W = NIL THEN GOTO DONE

ELSE IF R = NIL THEN (CHAR := READCHAR(); R := W; W := NIL)

ELSE ();

(L IS R 1; R ~= R 2; GOTO L);

DONE: VAL C)

Each independent parser is represented by a label value if it has not completed

its parse, or by its result if it has completed its parse. The finite set of

parsers is maintained by the values of the references C, W, and R. C gives a

list of the results of completed parses, W gives a list of label values repre

senting the parsers which are waiting for the next character, and R gives a

similar list for the parsers which are ready for execution before reading the

next character. The reference CHAR keeps track of the current character, and

is updated by the basic function READCHARo The label CaNT is reached whenever

execution is to be switched from one parser to another. The final value of the

31

32

block is the list of completed parses; the input string is ill-formed, well-

formed, or ambiguous depending upon whether this list has zero, one, or more

than one element.

This approach to parsing is basically the same as that used in the COGENT

programming system. (9) It is presented here as an illustration of the generality

of GEDANKEN, but it does not represent a significant advance in the field of

parsing techniques. Although it is reasonably efficient for a large class of

unambiguous grammars (at least if the function PARSE is carefully constructed),

certain ambiguous grammars will cause an exponential growth in the number of

(10)
parsers, and are better treated by other methods, such as that of Earley.

III. A FORMAL DEFINITION OF GEDANKEN

Our approach to the formal definition of GEDANKEN is based on the work

f h IBM v, (11) h" h " . f k b L dO (12) d o t e ~enna group, w ~c ~s an extens~on 0 wor y an ~n an

(13) McCarthy. We will define an abstract syntax for GEDANKEN, show how to

translate concrete GEDANKEN programs into abstract programs which satisfy

this syntax. and then define the semantics of the language by giving an

interpreter which accepts abstract programs. However, we will deNiate from

the Vienna approach in two particulars:

(1) A definite order of evaluation will be specified for all phrases

of abstract programs.

(2) Rather than introducing a special notation for abstract programs or

the functions that manipulate them, we will treat abstract programs as GEDANKEN

data structures and use GEDANKEN itself to define the functions. To minimize

the dangers of circularity inherent in this approachi we will avoid using

features of GEDANKEN which are novel or potentially ambiguous~ such as label-

valued references or the imbedding of references in data structures. Overall,

simplicity and clarity will be emphasized at the expense of efficiency.

33

Abstract Syntax Definition

An abstract program will be a GEDANKEN data structure which is a comb ina-

tion of sequences and recordso In conventional languages, a record is a finite

collection of fields, each of which is identified by a field name. In GEDANKEN

we will use atoms as field names and consider a record to be a function whose

domain is a finite set of such atoms and which maps each atom into the corre-

sponding field valueo

(6)
Following Wirth and Hoare, we assume that the set of all records is

partitioned into a finite number of disjoint subsets called classes, and that

all records in the same class have the same set of fields. To insure this we

require that: (1) The domain of every record contains the atom TYPE,

(2) Each record maps TYPE into an atom called its class~, (3) If Rl and

R2 are records such that Rl TYPE = R2 TYPE, then Rl and R2 have the same domain 0

Moreover we ~ssume that, for a particular field of records in a particular

class. the range of possible field values may be restrictedo To describe such

restrictions we use an expression called a class definition, with the form:

<class definition> .. -.. -
(CLASS, <class name> {, «field name>, <range descriptor»}*)

where

<range descriptor> ::= <set name> I SEQ, <set name>

The class definition (CLASS, c, (f
l

, r l), ••• , (fn , rn» implies that for

every record R in class c (i.eo, such that R TYPE = c): (1) The domain of

R is the set of atoms {TYPE, f
l

, 000 , f };
n

(2) If r i is a ~~ s, then

the value of R fi is a member of the set denoted by s; (3) If ri has the form

SEQt s. then the value of R f. is a sequence whose components are all members
1

of the set denoted by so

34

A set name may be any of the following: (1) INTCLASS, BOOLCLASS, and

CHARCLASS, denoting the sets of integers, boolean values, and characters

respectively; (2) UNIVERSAL, denoting the universal value set; (3) A class

name t den'oting a class of records; (4) A union ~, denoting the union of

sets denoted by other set nameso The meaning of union names is described by

expressions called union definitions, with the form:

<union definition> , ,, ,- (UNION, <set name> {~ <set name>}*)

The union definition (UNION, sO' sli 000 ~ sn) implies that the set name So

denotes the union of the sets denoted by sl' 000

tions, eogo, (UNION, X, X) are not permittedo

~ s 0

n
Circular union defini-

A collection of interrelated class and union definitions, defining various

record classes and other sets, is called an abstract syntax definition 0 As an

example, the following abstract syntax definition specifies a set of data

structures which might be used to represent algebraic expressions involving

addition and multiplication:

(CLASS, CONSTANT, (VALUE, INTCLASS»,

(CLASS, VARIABLE, (STRING ,SEQ, CHARCLASS»,

(CLASS, SUM, (LEFT, EXP), (RIGHT, EXP»,

(CLASS, PRODUCT, (LEFT, EXP), (RIGHT, EXP»,

(UNION, EXP, CONSTANT, VARIABLE, SUM, PRODUCT)

Now suppose that dl , 000 , dn is an abstract syntax definition, and that

each identifier in this definition has been declared to denote a distinct atom.

Then

D IS (dl , 000 , dn);

is a GEDANKEN declaration binding D to a data structure which is an encoding

of the abstract syntax definition. We now proceed to define GEDANKEN functions

using the value of D, for creating records and testing set membershipo

As a preliminarYt we define the following generally useful functions

for manipulating sequences:

CONC IS A(X, Y) VECTOR(l, ADD(X UL, Y UL),

AI IF GREATER(I~ X UL) THEN Y SUBTRACT(I, X UL) ELSE X I);

CONS IS A(X, Y) CONC(UNITSEQ X, y);

AUG IS A(X, Y) CONC(X, UNITSEQ Y);

SUBSEQ IS A(L, U, X) VECTOR(l, INC SUBTRACT(U, L), AI X DEC ADD(I, L»;

HEAD IS AX SUBSEQ(l, DEC X UL, X);

TAIL IS AX SUBSEQ(2, X UL, X);

REPLACE IS A(I, V, X) VECTOR(l, X UL, AJ IF J = I THEN V ELSE X J);

SEARCH ISR A(N, P, F, G)

35

IF NOT GREATER(N, 0) THEN GO ELSE IF P N THEN F N ELSE SEARCH(DEC N, P, F, G);

STREQUAL ISR A(X, Y)

X UL = Y UL AND SEARCH(X UL, AI NOT(X I = Y I), AI FALSE, A() TRUE);

The function CONC concatenates two sequences. CONS (or AUG) adds a component

to the beginning (or end) of a sequence. SUBSEQ(L, U, X) produces the subse

quence of X which begins with the Lth component and ends with the Uth component 0

HEAD (or TAIL) reproduces its argument with the last (or first) component deleted.

REPLACE(I~ V, X) reproduces the sequence X with the Ith component replaced by V.

The function SEARCH(N, P, F, G) is used for searching through a sequenceo

It successively tests the predicate P I for the integers I = N, N-l, 0 •• , 10

If P I is true, it evaluates F I and returns the result. If all tests of Pare

false, it evaluates G () and returns the result. The function STREQUAL uses

SEARCH to determine if two sequences of primitive data are equal.

In the sequel, we will frequently use sequences which obey a stack dis

ciplineo In such cases, the first sequence component will be the most recently

added stack element, so that stack elements will be added by using the function

CONS and deleted by TAlLo

36

We now define functions which use the value of D to test and create

records 0 The following functions test set membership:

IF S,= INTCLASS THEN ISINTEGER X ELSE IF S = BOOLCLASS THEN ISBOOLEAN X

ELSE IF S = CHARCLASS THEN ISCHAR X ELSE IF S = UNIVERSAL THEN TRUE

ELSE SEARCH(D UL, A I (D I) 2 = S,

AI IF (D I) 1 = CLASS THEN ISFUNCTION X AND X TYPE = S

ELSE TUNION(X, TAIL TAIL D I),

A() GOTO ERROR);

TUNION ISR A(X, U)

SEARCH(U UL, AI T(X, U I), AI TRUE, A() FALSE);

TSEQ ISR A(X, S)

X LL = 1 AND SEARCH(X UL, AI NOT T(X I, S), AI FALSE, A() TRUE);

T(X, S) accepts a record or primitive datum X and a set name S, and tests

whether X is a member of the set denoted by So TUNION(X, U) accepts a sequence

U of set names, and tests whether the record or primitive datum X is a member

of any of the sets denoted by the components of U. TSEQ(X, S) accepts a

vector X whose components are records or primitive data, and tests whether X

is a sequence in which every component is a member of the set denoted by the

set name S.

The following function creates records:

M ISR AX

(~, V) IS IF ISATOM X THEN X, (; ELSE (X 1, TAIL X);

SEARCH(D UL, AI (D I) 1 = CLASS AND (D I) 2 = C,

AI Ml(C, V, TAIL TAIL D I), A() GOTO ERROR»;

37

Ml ISR A(C, V, F)

IF v UL = F UL AND SEARCH(V UL,

AI NOT(IF (F I) 2 = SEQ THEN TSEQ(V I, (F I) 3) ELSE T(V I, (F I) 2»,

AI FALSE, A() TRUE)

THEN AX IF X = TYPE THEN C ELSE SEARCH(V UL, AI X = (F I) 1, V,

A() GOTO ERROR)

ELSE GOTO ERROR;

M accepts an argument (C, vl ' ••• , vn), where C is a class name and the Vi

are field values, which may be primitive data, records, or sequences thereof.

The special case n = 0 (corresponding to a record with no fields) is treated

differently, so that one may write M C instead of M UNITSEQ C. If C has the

class definition (CLASS, C, (fl , r l), ••• , (fn , rn» then M produces a record

R in class C such that R f. = v .• Checks are performed to insure that the
1 1

number of field values is correct, and that each v. satisfies the range
1

descriptor r.o
1

In manipulating records, we will use the functions T(X, S) and

M(C, VI' •• 0 , vn) only in function designators in which Sand C are constant

atoms. There is a serious inefficiency in this situation, since each time a

particular function designator is executed it will perform a search over the

value of D whose outcome will always be the same. This inefficiency is irrele-

vant to our present purpose of using GEDANKEN as a vehicle for formal definition,

but it is symptomatic of a limitation of the language, which might be overcome

by introducing macro-definitional facilities.

As a simple example of the use of T and M, the following function will

produce the (unsimplified) derivative of an expression X by a variable Y,

using the abstract syntax for algebraic expressions given above:

38

DERV ISR A(X, Y)

IF T(X, CONSTANT) THEN M(CONSTANT, 0)

ELSE IF T(X, VARIABLE) THEN M(CONSTANT,

IF STREQUAL(X STRING, Y STRING) THEN I ELSE 0)

ELSE IF T(X, SUM) THEN M(SUM, DERV(X LEFT, Y), DERV(X RIGHT, Y»

ELSE M(SUM, M(PRODUCT, DERV(X LEFT, Y), X RIGHT),

M(PRODUCT, X LEFT, DERV(X RIGHT, Y»);

Abstract Syntax of GEDANKEN

We now give an abstract syntax definition specifying the set of GEDANKEN

data structures which will be used to represent GEDANKEN programs. It is evi

dent that this abstract syntax will be considerably simpler than the concrete

(BNF) syntax of GEDANKEN, e.go, the distinction between different precedence

levels for expressions and parameter forms will disappearo Further simplifica

tion is obtained by deleting various language constructions which can be

treated as abbreviations:

(UNION, EXP, CONSTANT, IDENT~ FUNCTDES, LAMBDAEXP, CONDEXP~ CASEEXP, BLOCK)

(CLASS, CONSTANT, (VALUE, VALUEDEN»,

(UNION, IDENT, PROGIDENT, INTRIDENT),

(CLASS, PROGIDENT, (STRING, SEQ, CHARCLASS»,

(CLASS, INTRIDENT, (NAME, INTCLASS»,

(CLASS, FUNCTDES, (FUNCTPART, EXP), (ARGPART, EXP»,

(CLASS, LAMBDAEXP, (PARAMPART, IDENT), (BODY, EXP»,

(CLASS, CONDEXP, (PREMISS, EXP), (CONCLUSION, EXP), (ALTERNATIVE, EXP»,

(CLASS, CASEEXP, (INDEX, EXP), (BODY, SEQ, EXP»,

(CLASS, BLOCK, (RDECLPART, SEQ, RDECL), (LDECLPART, SEQ, LDECL)5

(BODY, SEQ, EXP»,

(CLASS, RDECL, (LEFT, IDENT), (RIGHT, LAMBDAEXP»,

(CLASS, LDECL, (LEFT, IDENT), (RIGHT, SEQ, EXP»,

(UNION, PFORM, IDENT, SEQPFORM),

(CLASS, SEQPFORM, (BODY, SEQ, PFORM»

The following comments pertain to the above definition:

(1) We postpone defining the set named VALUEDEN (value denotations) until

the discussion of the interpreter. In general, value denotations will be data

structures used in the interpreter to represent values computed by the program

which is being interpreted. For the moment, we only specify that there is a

distinct value denotation for every member of the universal value set, and that

the set of value denotations includes integers, boolean values, and characters.

which all denote themselves.

(2) A variety of forms occurring in the concrete syntax do not occur in

the abstract syntax, e.g., expressions involving =, AND, OR, or :=, sequence

expressions, sequence parameter forms, and nonrecursive declarations. Each of

these forms can be regarded as an abbreviation, and is eliminated during the

conversion of a concrete program into an abstract program. (Note that sequence

parameter forms are still defined in the abstract syntax, but are not allowed

to occur in any type of expression. This reflects the fact that these forms

will be used as temporary quantities during the concrete-abstract conversion,

but will not occur in the final result of this conversion.)

(3) Abstract programs will contain two classes of identifiers: program

identifiers (PROGIDENT), which are images of identifiers occurring in the

original concrete program; and internal identifiers (INTRIDENT), which are

introduced during the conversion process. Different internal identifiers are

distinguished by their integer-valued NAME fields.

39

40

(4) The implicit declaration of labels is made explicit in the abstract

syntax. Labels no longer appear in the body of a block, which is simply a

sequence of unlabelled statements (i.e., expressions). Instead, each identifier

used as a label occurs in a label declaration, in which it is paired with the

sequence of unlabelled statements to be executed after a jump to the label

has occurred.

Concrete Syntax of GEDANKEN

The syntax of concrete programs is defined in two stagesg (1) A unique

partitioning of the program into a sequence of character strings called tokens

is specified, and then (2) The set of well-formed programs is defined by a

grammar over the infinite vocabulary of tokens.

The tokens themselves satisfy the following grammar:

<character> : ~ = " I <quotable character>

<quotable character>'::= <letter or digit> I A I , I =

u I <extra character>

<letter or digit> ::= <letter> <digit>

<letter> ::= A I B I C I DIE I FIG I H I I I J I K I LIM I N I 0 I

s T u v w x y z

<digit> g:= 0 1 2 3 5 6 7 8 9

<token> ::= <integer token> <quoted string token> I <word token> I

<punctuation token> ,

<integer token> :g= <digit> { <digit>}*

<quoted string token> ::= "{<quotable character>}*"

<word token> ::= <letter> { <letter or digit>}*

<punctuation token> ::= A , I = I I (I) I ; I :=

Here the symbol u denotes a blank and the undefined class <extra character>

denotes the set of all input-representable characters not occurring elsewhere

in the syntax.

A concrete GEDANKEN program must be a sequence of tokens separated by

zero or more blanks, with at least one blank used to separate any of the

following pairs:

Left Token

<integer token>

<word token>

<word token>

Right Token

<integer token>

<integer token>

<word token>

=
This separation condition is sufficient to insure the unique partitioning of

any program.

The class of <word token>'s is subdivided into <reserved word token>'s,

which are the strings AND, OR, IF, THEN, ELSE, CASE, OF, IS, and ISR, and

<identifier token>'s, which are all other <word token>'s.

Once a program has been partitioned into tokens, and the separating blanks

have been deleted, it is parsed according to the grammar given on the lefthand

side of Table I. (This grammar is equivalent to that given in Chapter II, but

has been altered somewhat to simplify the conversion to abstract syntax.)

In the productions of this grammar, reserved word and punctuation tokens appear

as terminal objects, while identifier, integer, and quoted string tokens

appear as undefined syntactic classes.

Parsing methods are well-understood, and will not be described here. We

simply assert that a well-formed GEDANKEN program can be transformed into a

derivation ~ with the following properties:

(1) Each node is associated with either a token or a production of the

grammar in Table I.

(2) A node associated with a token is a terminal node.

41

Productions

<identifier> g~= <identifier token>

<expo> g~= <integer token>

<quoted string token>

<identifier>

«block2»

<exPl > ~:= <exPO>

I <exPO><exPl >

<exP2> ~g= <exPl >

I <exP1> = <exP2>

<exP3> gg: <exP
2
>

I <exP2> AND <exP3>

<exP4> :;= <exP3>

I <exP3> OR <exP4>

<exps> g~= <exP4>

I IF <exP6> THEN <exP6> ELSE <exPS>

I). <pforlnO><exPS>

I <exP4> := <exPS>

Associated Translation Functions

AX M(PROGIDENT, X)

AX M(CONSTANT, CONVERTINT X)

AX TRANSTRING HEAD TAIL X

AX X

AX X

AX X

A(X, Y) M(FUNCTDES, M(FUNCTDES, COERCECON, X), Y)

AX X

A(X, Y) M(FUNCTDES, EQUALCON, TRANSEQEXP(X, Y»

AX X

A(X 9 Y) M(CONDEXP, M(FUNCTDES, COERCECON, X),

M(FUNCTDES, COERCECON, Y), M(CONSTANT, FALSE»

AX X

A(X,Y). M(CONDEXP, M(FUNCTDES, COERCEON, X),

M (CONSTANT 9 TRUE), M (FUNCTDES 9 COERCECON 9' Y»

AX X

A(X, Y, Z) M(CONDEXP, M(FUNCTDES, COERCECON~ X), Y,. Z)

TRANSLAMBDA

A(X, Y) M(FUNCTDES, SETCON ~ TRANSEQEXP(X, Y»

TABLE 10

+"
tV

Productions

<exP6> ::= <exPS>

<empty>

<exPS> , <exPS> {, <exps>}*

CASE <exP6> OF <exPS> {, <exPS>}*

<pformo> I:: <identifier>

I «pforrol »

<pforml > I:: <pformo>

<empty>

<pforroO> t <pformo> {, <pformo>}*

<blocko> ::= <exP6
>

<exP6> • <blocko>

<identifier> : <blocko>

<blockl > :;= <blockO>

I <identifier> ISR. ~ <pformo><exps>; <blockl >

<blOCk2>t'. ~blockl>

I <pforml > IS cexP6>' cblock2>

<p~ogram> ::= ~block2>

Associated Translation Functions

AX X

TRANSEQEXP

TRANSEQEXP

AX M(CASEEXP, M(FUNCTDES, COERCECON, X 1), TAIL X)

AX X

AX X

AX X

AX M(SEQPFORM, X)

AX M(SEQPFORM, X)

AX M(BLOCK, (), (), UNITSEQ X)

A(X, y) M(BLOCK, (), Y LDECLPART, CONS(X, Y ~ODY).)

A(X, Y).M(BLOCK, (),

CONS(M(LDECL, X, Y ~ODY)., Y ~DECLPART), Y BODY)

AX X

A(X, Y" Z, W) M(BLOCK~-CONS(M(RDECL, X, TRANSLAMBDA(Y,. Z»,

W RDECLPART), W LDECLPART, W BODY)

AX X

TRAHSDECL

AX X

TABLE I {continued} ~
w

44

(3) If a node is associated with a production which has n items on its

right side i then the node has n subnodeso If the ith item on the right side

of the production is a specific token (token class, syntactic class), then the

ith subnode is associated with the specific token (some member of the token

class i some production whose left side is the syntactic class)o

Translation into Abstract Form

The conversion of a derivation tree into an abstract program is an instance

f d ' d 1· (14,9) o syntax- ~recte trans at~ono With each production of the grammar in

Table Ii we associate a GEDANKEN function which expresses the translation of

any phrase which is an instance of that production in terms of the translations

of its subphraseso

This process can be described more precisely as follows~ The nodes of the

derivation tree are translated in some order such that no node is translated

until after all of its subnodes have been translated o If a node is associated

with a token~ its translation is a sequence whose components are the characters

of the tokeno If a node is associated with a production j its translation is

obtained by applying the corresponding translation function to a sequence whose

components are the translations of the immediate subnodes~ excepting those sub-

nodes which are associated with reserved word or punctuation tokenso In the

special case where this sequence has a single component, the component itself~

rather than the one-component sequence, is used as the argument to the transla-

tion functiono

A compound production containing the metasymbol I is regarded as an

abbrevia'tion for a set of productions with the same left side; each of these

productions may have a distinct associated translation function 0 A production

containing the metasymbols {}* is regarded as an abbreviation for the infinite

set of productions whose members are formed by replicating the bracketed

elements k times. for each k ~ 0; all of these productions will have the s~

associated translation function. When the right side of a production is

<empty>. the associated translation function receives an empty sequence as

its argument 0 The following subsidiary functions and other values are Used by

the translation functions:

IICOUNT IS REF 0;

CRIDENT IS A() (IICOUNT := INC IICOUNT; M(INTRIDENT, VAL IICOUNT»;

EQUALCON IS M(CONSTANT, GETVALPREDEF M(PROGIDENT, "EQUAL"»;

SETCON IS M(CONSTANT, GETVALPREDEF M(PROGIDENT, "SET"»;

COERCECON IS M(CONSTANT, GETVALPREDEF M(PROGIDENT, "COERCE"»;

CONVERTINT ISR AX IF X UL = 0 THEN 0 ELSE

ADD(DIGITTOINT X X UL, MULTIPLY(IO, CONVERTINT HEAD X»;

TRANSTRING IS AX IF X UL = 1 THEN M(CONSTANT, X 1) ELSE

(I IS CRIDENT(); M(LAMBDAEXP, I, M(CASEEXP, M(FUNCTDES, COERCECON, I),

VECTOR(l, X UL, AJ M(CONSTANT, X J»»);

TRANSDECL ISR A(P, E, B) M(FUNCTDES, TRANSLAMBDA(P, B), E);

TRANSLAMBDA ISR A(P, B) IF T(P, IDENT) THEN M(LAMBDAEXP, P, B)

ELSE (I IS CRIDENT(); K IS REF (P BODY) UL; R IS REF B;

LOOP: IF K = 0 THEN GOTO DONE ELSE

R := TRANSDECL«P BODY) VAL K, M(FUNCTDES,

M(FUNCTDES, COERCECON, I), M(CONSTANT, VAL K», VAL R);

K := DEC K; GOTO LOOP;

DONE: M(LAMBDAEXP, I, VAL R»;

TRANSEQEXP ISR AX

(S IS VECTOR(l, X UL, AJ CRIDENT(»; I IS CRIDENT(); K IS REF X UL;

R IS REF M(LAMBDAEXP, I~ M(CASEEXP, M(FUNCTDES, COERCECON, I), S»;

45

46

LOOP: IF K = 0 THEN GOTO DONE ELSE

R ~= TRANSDECL(S VAL K, X VAL K, VAL R);

K := DEC K; GOTO LOOP;

DONE: VAL R);

The global reference IICOUNT maintains a count of the number of internal

identifiers which have been created during the translation processo It is used

by the function CRIDENT(). which returns a distinct internal identifier each

time it is executed 0

The values of EQUALCON, SETCON, and COERCECON are constants denoting the

basic functions EQUAL, SET, and COERCE. The value fields of these constants

are obtained from the function GETVALPREDEF (to be defined later), which pro-

duces the value denotations of predefined identifiers. The use of these constants

instead of the corresponding identifiers insures that redeclaration of the iden-

tifiers will not affect implicit coercion or the meaning of the operations = and

CONVERTINT converts a sequence of digits into the corresponding integer.

TRANSTRING translates quoted string tokens (after deletion of the enclosing

quote characters)o If n # 1, the token "c
l

000 cn" is translated into the

abstract equivalent of Ai (CASE 1 OF "cl ", 000 , "cn")o

The three interconnected functions TRANSDECL, TRANSLAMBDA, AND TRANSEQEXP

eliminate declarations, sequence parameter forms, and sequence expressions.

Their effect is essentially equivalent to repeated application of the following

equivalences:

P IS e; b=? o.(p)(b»)(e)

A(Plt •• 0 t P) b (when n # 1) n

=9Ai (PI IS i 1; • 0 • Pn IS i n i; b)

eli o 0 • , e (when n # 1) n

=P (i l IS e l ; o 0 0 ; i IS e n' Ai (CASE i OF iI' o 0 0 , i))
n n

where ~t is an integer constant whose value is n, and i, iI'

unique internal identifiers.

• •• ,i are
n

A final effect of the translation process is to insert explicit calls of

COERCE for the implicit coercion performed by AND-, OR-, conditional, and case

expressions. function designators, sequence parameter forms, and the functions

produced by sequence expressions.

Semi-Basic Functions

Some of the basic functions in GEDANKEN have been introduced for reasons

of convenience or efficiency, and are not basic in a theoretical sense. Rather

than including these functions in the abstract language accepted by our inter-

preter function, we will eliminate them by defining them in terms of lambda-

expressions involving the remaining basic functions.

Thus we assume that a concrete GEDANKEN program, before being parsed, will

be enclosed in parentheses and preceded by the following standard declarations:

UNITSEQ IS AX AI (CASE I OF X);

NOT IS AX IF X THEN FALSE ELSE TRUE;

INTTODIGIT IS AX

(CASE INC X OF "0", "1", "2", "3", "4", "5", "6", "7", "8", "9");

DIGITTOINT IS AX (X IS COERCE X;

IF X = "0" THEN 0 ELSE IF X = "1" THEN 1 ELSE IF X = "2" THEN 2 ELSE

IF X = "3" THEN 3 ELSE IF X = "4" THEN 4 ELSE IF X = "5" THEN 5 ELSE

IF X = "6" THEN 6 ELSE IF X = "7" THEN 7 ELSE IF X = "8" THEN 8 ELSE

IF X = "9" THEN 9 ELSE GOTO ERROR);

VECTOR ISR A(L, U, F) (L IS COERCE L; U IS COERCE U; F IS COERCE F;

IF GREATER(L, U) THEN AI (I IS COERCE I;

IF I = LL THEN L ELSE IF I = UL THEN DEC L ELSE GOTO ERROR)

ELSE (V IS VECTOR(L, DEC U, F); T IS F U; AI (I IS COERCE I;

IF I = UL THEN U ELSE IF I = U THEN T ELSE V I)));

48

NEG ISR AX (X IS COERCE X; IF NOT ISINTEGER X THEN GOTO ERROR

ELSE IF X = 0 THEN 0 ELSE IF GREATER(X, 0) THEN DEC NEG DEC X

ELSE INC NEG INC X);

ADD ISR A(X, Y) (X IS COERCE X; Y IS COERCE Y;

IF NOT ISINTEGER X OR NOT ISINTEGER Y THEN GOTO ERROR

ELSE IF X = 0 THEN Y ELSE IF GREATER(X t 0) THEN INC ADD(DEC X, Y)

ELSE DEC ADD(INC X~ Y»;

SUBTRACT ISR A(X, Y) (X IS COERCE X; Y IS COERCE Y; ADD(X, NEG Y»;

MULTIPLY ISR A(X, Y) (X IS COERCE X; Y IS COERCE Y;

IF NOT ISINTEGER X OR NOT ISINTEGER Y THEN GOTO ERROR

ELSE IF X = 0 THEN 0 ELSE IF GREATER(X, 0) THEN ADD(MULTIPLY(DEC X, Y), Y)

ELSE SUBTRACT(MULTIPLY(INC X, Y), Y»;

DIVIDE ISR A(X, Y) (X IS COERCE X; Y IS COERCE Y;

IF NOT ISINTEGER X OR NOT ISINTEGER Y OR Y = 0 THEN GOTO ERROR

ELSE IF GREATER(O~ Y) THEN NEG(DIVIDE(X, NEG Y»

ELSE IF NOT GREATER(Y, X) THEN INC DIVIDE(SUBTRACT(X j Y), Y)

ELSE IF NOT GREATER(Y, NEG X) THEN DEC DIVIDE(ADD(X, Y), Y) ELSE 0),

REMAINDER ISR A(X, Y) (X IS COERCE X; Y IS COERCE Y;

SUBTRACT (X, MULTIPLY(Y, DIVIDE(X, Y»»;

For the remainder of this chapter, we will no longer consider the above

defined functions to be basic.

The Interpreter

We now develop the definition of a function, called INTERPRET~ which accepts

an abstract program (i.e., a data structure belonging to the set named EXP) and

produces (the denotation of) its value. Essentially~ this function simulates

a machine which passes through a succession of states. Each state is obtained

from the preceding state by applying the function TRANSITION. Certain terminal

states, which satisfy the predicate ISt&RMSTATE, cause the machine to stop and

return a value. Thus we have:

INTERPRET ISR AP INTERPRETl INITIALSTATE P;

INTERPRETl ISR AS IF ISTERMSTATE S THEN FINALVALUE S

ELSE INTERPRETl TRANSITION S;

where S is always bound to a record in the class named STATE.

Before defining the subsidiary functions of INTERPRET, we must specify

the abstract syntax of states. A STATE is a record with six fields:

(CLASS, STATE, (CONTROL, SEQ, INST), (STACK, SEQ, VALUEDEN),

(ENVR, SEQi ENVELEM), (DUMP, SEQ, DUMPELEM),

(MEMORY, SEQ, VALUEDEN), (ATOMCOUNT, INTCLASS»

The control is a sequence of instructions to be executed. They are similar

49

to the instructions of a conventional computer, except that certain instructions,

when executed, may expand into several simpler instructions instead of being

deleted from the sequence. The stack is a sequence of value denotations which

is used to store intermediate results during the evaluation of compound expressions.

The environment is a sequence of environment elements, each of which specifies

the current binding of an identifier (except for environment marks, which are

described below).

The dump is a sequence of dump elements, with the syntax

(CLASS i DUMPELEM, (CONTROL, SEQ, INST), (STACK, SEQ, VALUEDEN),

(ENVR, SEQ, ENVELEM»~

which are used to save the control, stack, and environment portions of the state

whenever a new block or lambda-expression body is evaluated. A new element is

added to the dump whenever such evaluation begins, and the appropriate fields

of the state are restored from this element when the evaluation is completed.

50

The memory is a sequence of value denotations which specifies the values

of references. Each (nonimplici t) reference denotation will contain an

integer-valued field named ADDRESS; if the value of this field is i, then the

value of the denoted r~ference will be the ith component of the memory. The

~ count is an integer giving the total number of atoms which have been

created during the execution of the program.

Value denotations have the following abstract syntax:

(UNION, VALUEDEN i INTCLASS, BOOLCLASS, CHARCLASS, ATOMDEN, FUNCTDEN i

REFDEN i LABELDEN),

(UNION, ATOMDEN, LLDEN, ULDEN, PROGATOMDEN),

(CLASS, LLDEN),

(CLASS, ULDEN),

(CLASS~ PROGATOMDEN, (NAME, INTCLASS»,

(CLASS, FUNCTDEN, (CONTROL, SEQ, INST), (ENVR, SEQ, ENVELEM»,

(UNION, REFDEN ~ EXP.REFDEN 9 I MPREFDEN),

(CLASS, EXPREFDEN~ (ADDRESS 9 INTCLASS»,

(CLASS, IMPREFDEN, (SETF, FUNCTDEN), (VALF, FUNCTDEN»,

(UNION, LABELDEN~ ERRORDEN, PROGLABELDEN),

(CLASS, ERRORDEN),

(CLASS, PROGLABELDEN, (BODY, SEQ, EXP)~ (ENVR, SEQ, ENVELEM),

(DUMP, SEQ, DUMPELEM»

Fieldless record classes, such as LLDEN and ULDEN, each contain a single record

which is only applicable to the argument TYPE. The records in LLDEN and ULDEN

denote the atoms LL and UL. All other atoms are denoted by records in the class

PROGATOMDEN, and are distinguished by the integer values of their name fieldso

Records in the class FUNCTDEN denote functions; their CONTROL field gives a

sequence of instructions for evaluating the function, and their ENVR field gives

an initial environment to be used during the execution of these instructions.

51

Explicit references are denoted by the class EXPREFDEN; the integer-valued

ADDRESS field distinguishes distinct references and specifies the component of

the memory which is the value of the reference. Implicit references are denoted

by the class IMPREFDEN; the fields SETF and VALF give denotations of the func

tions for setting and evaluating the reference.

The single record in the class ERRORDEN denotes the label ERROR. All other

labels are denoted by the class PROGLABELDEN, in which the field BODY gives a

sequence of expressions to be executed when a jump to the label occurs, ENVR

gives the identifier bindings for these expressions, and DUMP gives a sequence

of dump elements indicating the computation to be carried out after the expres

sions in BODY have been evaluated. The values of ENVR and DUMP constitute the

"current status" discussed in the previous chapter.

We next consider the syntax of environments. An environment element is

normally a pair, consisting of an identifier and the denotation of the value

to which it is bound. Thus, except for the difficulties discussed below, we

would have the syntax:

(CLASS, ENVELEM, (LEFT, IDENT), (RIGHT, VALUEDEN»

But this form of environment is incapable of describing the effects of recursive

declarations and label declarations. These declarations must bind identifiers

to function and label denotations whose ENVR field specifies an environment

containing the new binding. Unfortunately, this type of explicit circularity

cannot be represented by abstract syntactic data structures (which cannot be

implicit data structures nor contain imbedded references).

To avoid this difficulty, we use the following subterfuge: recursive

declarations and label declarations will bind identifiers to special recursive

denotations which do not contain ENVR fields. During the execution of each

block i immediately after all declarations have been executed, an element called

an environment mark will be added to the environment. Then, whenever a search

52

of the environment yields a recursive denotation, an ENVR field will be added

to the denotation which specifies the portion of the searched environment

beginning at the last-encountered marko

Thus environment ~lements have the following syntax~

(UNION, ENVELEM~ ENVMARK, ENVPAIR),

(CLASS, ENVMARK),

(CLASS~ ENVPAIR, (LEFT, IDENT), (RIGHT, ENVVALUEDEN»,

(UNION, ENVVALUEDEN, VALUEDEN, RECFUNCTDEN t RECLABELDEN),

(CLASS, RECFUNCTDEN, (CONTROL, SEQ, INST»,

(CLASS, RECLABELDEN, (BODY, SEQ, EXP), (DUMP, SEQ, DUMPELEM»

The function.GETVAL(X, E) searches an environment E (in increasing order of

components) to obtain the denotation of the value bound to an identifier X:

GETVAL ISR A(X, E) GETVALl(X, E, (»;

GETVALI ISR A(X, E, EM)

IF E UL = 0 THEN GETVALPREDEF X

ELSE IF T(E 1, ENVMARK) THEN GETVALl(X, TAIL E, E)

ELSE IF IDEQUAL(X, (E 1) LEFT) THEN

(V IS (E 1) RIGHT;

IF T(V t RECFUNCTDEN) THEN M(FUNCTDEN, V CONTROL, EM)

ELSE IF T(V, RECLABELDEN) THEN M(PROGLABELDEN, V BODY, EM, V DUMP)

ELSE V)

ELSE GETVALl(X s TAIL E, EM);

IDEQUAL ISR A(X, Y)

T(X, PROGIDENT) AND T(Y~ PROGIDENT) AND STREQUAL(X STRING, Y STRING)

OR T(X, INTRIDENT) AND T(Y, INTRIDENT) AND X NAME = Y NAME;

GETVALPREDEF ISR AX

SEARCH(30, AI T(X, PROGIDENT) AND STREQUAL(X STRING, PREDEFIDSTRS I),

PREDEFVDENS, A() GOTO ERROR);

The subsidiary function IDEQUAL determines if two identifiers are equal.

The function GETVALPREDEF, which produces the va~ue denotations of predefined

identifiers, uses two parallel sequences PREDEFIDSTRS and PREDEFVDENS, whose

components are the identifier string fields and value denotations of the pre

defined identifiers. The values of these sequences will be given later.

The final set for which we must give an abstract syntax is the set of

instructions~

(UNION, INST, EXP, RDECL, LDECL, EXEC, BRANCH, SELECT, BIND, APPLY,

MARKEN V , DELETE, BASICFUNCTINST),

(CLASS, EXEC, (BODY, SEQ, EXP»,

(CLASS, BRANCH, (CONCLUSION, EXP), (ALTERNATIVE, EXP»,

(CLASS, SELECT, (BODY, SEQ, EXP»,

(CLASS, BIND, (BODY, IDENT»,

(CLASS, APPLY),

(CLASS, MARKENV),

(CLASS, DELETE),

(CLASS, BASICFUNCTINST, (STRING, SEQ, CHARCLASS»

The following is an informal description of the effect of each class of

instructions. Certain instructions, such as compound expressions, require

repeated applications of TRANSITION to be completed; a single application of

TRANSITION will cause such an instruction to be replaced by a sequence of

simpler instruction$.

EXP: The expression is evaluated and its value is added to the stack.

RDECLg A recursive function denotation is created from the lambda

expression on the right of the declaration, and the environment is extended

by binding the identifier on the left to this denotation.

53

54

LDECL: A recursive label denotation is created from the expression

sequence on the right of the declaration and the current value of the dump,

and then the environment is extended by binding the identifier on the left

to this denotation.

EXEC: The sequence of expressions in the instruction body is evaluated g

and the value of the last expression is added to the stack.

BRANCH~ If the first stack component is TRUE (or FALSE)t then the

CONCLUSION (or ALTERNATIVE) is evaluated and its value replaces the first

stack component 0

SELECT: If the first stack component is an integer i, then the ith

component of the instruction body is evaluated and its value replaces the

first stack component. If the first stack component is the atom LL (or UL),

then it is replaced by 1 (or the length of the instruction body).

BIND: The environment is extended by binding the identifier in the

instruction body to the first stack component, which is deleted from the stack.

APPLY: The second stack component~ which must be a function denotation~

is applied to the first stack components and the result of this application

replaces the first two stack components.

MARKENV: A mark is added to the environment.

DELETE: The first stack component is deleted.

BASICFUNCTINST: A basic function instruction denotes the basic function

whose predefined identifier has the same STRING field. Prior to the execution

of the basic function instruction, the following actions will have occurred:

(1) The arguments will be "spread," Le., if the function expects a sequence

of n arguments, the components of this sequence will be placed in the first

n stack positions (with the last component in the first stack position).

(2) The arguments will have been coerced appropriately. Then the effect of

the basic function instruction is to evaluate the corresponding basic function

and replace the first n stack components with its result.

We may now define the Subsidiary functions of INTERPRET. In the initial

state t the control contains the program to be interpreted, the atom count is

zero, and the remaining state fields are empty. A state is terminal if its

control and dump are both empty; the resulting value is the first (and only)

component of the stack. Thus we have:

INITIALSTATE IS AP M(STATE, UNITSEQ P, (), (), (), (), 0);

ISTERMSTATE IS AS (S CONTROL) UL = 0 AND (S DUMP) UL = O.
FINALVALUE IS AS (S STACK) 1.

The heart of the interpreter is the function TRANSITION. If the control

is empty, TRANSITION replenishes the control, stack, and environment from the

dump, saving the first component of the stack, which will be the value of the

block or function designator whose evaluation has just been completed. Other

wise. a massive branch on the class of the current instruction is executed,

55

and various fields of the state are updated in accordance with this instruction.

Since a particular instruction will normally affect only a few state

fields, it is inconvenient to show the unchanged fields explicitly for each

instruction. Thus we proceed in the following manner: (1) Before the instruc

tion branch, references are created to each field value (after deleting the

current instruction from the control field). (2) Each instruction resets the

references to the fields which are updated. (3) After the branch, a new state

is constructed from the reference values.

TRANSITION is defined so that it will always terminate, even when used to

interpret a nonterminating GEDANKEN program. Such programs will cause the

interpreter to repeatedly apply TRANSITION without ever obtaining a terminal

state 0

56

TRANSITION IS AS

(STV, ENV, DMV, MRV, ACV IS S STACK, S ENVR, S DUMP, S MEMORY, S ATOMCOUNT;

IF (S CONTROL) UL = 0 THEN

M(STATE, (DMV 1) CONTROL, CONS(STV 1, (DMV 1) STACK),

(DMV 1) ENVR, TAIL DMV, MRV, ACV)

ELSE

(X IS (S CONTROL) 1; CNV IS TAIL S CONTROL;

CN, ST, EN, DM, MR, AC IS REF CNV, REF STY, REF ENV, REF DMV, REF MRV, REF ACV;

Sl, T1 t S2, T2 IS IF STY UL = 0 THEN ()~ (), (), ()

ELSE IF STY UL = 1 THEN STY 1, TAIL STY, (), ()

ELSE STY 1, TAIL STY, STY 2, TAIL TAIL STY;

IF T(X, CONSTANT) THEN ST ~= CONS(X VALUE, STY)

ELSE IF T(X, IDENT) THEN ST := CONS(GETVAL(X, ENV), STY)

ELSE IF T(X, FUNCTDES) THEN CN := CONC«X FUNCTPART, X ARGPART, M APPLY), CNV)

ELSE IF T(X, LAMBDAEXP) THEN

ST ~= CONS(M(FUNCTDEN, (M(BIND, X PARAMPART), X BODY), ENV), STY)

ELSE IF T(X, CONDEXP) THEN

CN ~= CONC«X PREMISS, M(BRANCH, X CONCLUSION, X ALTERNATIVE», CNV)

ELSE IF T(X~ CASEEXP) THEN CN := CONC«X INDEX, M(SELECT, X BODY», CNV)

ELSE IF T(X, BLOCK) THEN

(DM ~= CONS(M(DUMPELEM, CNV, STY, ENV), DMV); ST := ();

CN ~= CONC(X RDECLPART, CONC(X LDECLPART, (M MARKENV, M(EXEC, X BODY»»)

ELSE IF T(X, RDECL) THEN

EN ~= CONS(M(ENVPAIR, X LEFT,

M(RECFUNCTDEN, (M(BIND, (X RIGHT) PARAMPART), (X RIGHT) BODY»), ENV)

ELSE IF T(X, LDECL) THEN

EN ~= CONS(M(ENVPAIR, X LEFT, M(RECLABELDEN, X RIGHT, DMV», ENV)

ELSE IF T(X, EXEC) THEN

(B IS X BODY; CN g= IF B UL = 1 THEN CONS(B 1, CNV)

ELSE CONC«B 1, M DELETE, M(EXEC, TAIL B», CNV»

ELSE IF T(X, BRANCH) THEN

IF T(Sl, BOOLCLASS) THEN

(CN := CONS(X (IF Sl THEN CONCLUSION ELSE ALTERNATIVE), CNV);

ST := T1)

ELSE GOTO ERROR

ELSE IF T(X, SELECT) THEN

IF T(Sl, INTCLASS) AND NOT GREATER(l, Sl) AND NOT GREATER(Sl, (X BODY) UL)

THEN (CN := CONS«X BODY) Sl, CNV); ST := T1)

ELSE IF T(Sl, LLDEN) THEN ST := CONS(l, T1)

ELSE IF T(Sl. ULDEN) THEN ST := CONS«X BODY) UL, T1)

ELSE GOTO ERROR

ELSE IF T(X, BIND) THEN

(EN g= CONS(M(ENVPAIR, X BODY, Sl), ENV); ST := T1)

ELSE IF T(X, APPLY) THEN

IF T(S2, FUNCTDEN) THEN

(DM := CONS(M(DUMPELEM, CNV, T2, ENV), DMV);

CN := S2 CONTROL; EN := S2 ENVR; ST := UNITSEQ Sl)

ELSE GOTO ERROR

ELSE IF T(X, MARKENV) THEN EN := CONS(M ENVMARK, ENV)

ELSE IF T(X, DELETE) THEN ST := T1

ELSE (Q IS AY STREQUAL(X STRING, Y);

IF Q "ATOM" THEN

(AC := INC ACV; ST := CONS(M(PROGATOMDEN, INC ACV), STY»~

57

58

ELSE IF Q "REF" OR Q "NCREF'>'J'HEN

(MR ~= AUG(MRV, SI); ST := CONS(M(EXPREFDEN, INC MRV UL), Tl»

ELSE IF (Q "SET" OR Q "NCSET") AND T(S2, REFDEN) THEN

IF T(S2, EXPREF~EN) THEN

(MR := REPLACE(S2 ADDRESS, SI, MRV); ST := CONS(SI, T2»

ELSE (CN := CONC«M APPLY, M DELETE), CNV);

ST ~= CONC«SI, S2 SETF, SI)~ T2»

ELSE IF Q "VAL" AND T(SI, REFDEN) THEN

IF T(SI, EXPREFDEN) THEN ST := CONS(MRV SI ADDRESS, Tl)

ELSE (CN := CONS(M APPLY, CNV); ST := CONC«M ERRORDEN, SI VALF), Tl»

ELSE IF Q "COERCE" THEN

IF T(SI$ REFDEN) THEN CN := CONC«M(BASICFUNCTINST, "VAL"),

M(BASICFUNCTINST, "COERCE"», CNV)

ELSE ()

ELSE IF Q "GOTO" AND T(SI, LABELDEN) THEN

IF T(SI, PROGLABELDEN) THEN (CN := UNITSEQ M(EXEC, SI BODY);

ST := (); EN := SI ENVR; DM := SI DUMP)

ELSE GOTO ERROR

ELSE ST : = CONS (

IF Q " ISINTEGER" THEN T(SI, INTCLASS), Tl

ELSE IF Q "ISBOOLEAN" THEN T(Sl, BOOLCLASS), Tl

ELSE IF Q "ISCHAR" THEN T(SI, CHARCLASS), Tl

ELSE IF Q "ISATOM" THEN T(Sl, ATOMDEN), Tl

ELSE IF Q "ISFUNCTION" THEN T(SI, FUNCTDEN), Tl

ELSE IF Q "ISREF" THEN T(SI, REFDEN), Tl

ELSE IF Q "ISLABEL" THEN T(Sl, LABELDEN), Tl
'.

ELSE IF Q "IMPREF" AND T(S2, FUNCTDEN) AND T(Sl, FUNCTDEN) THEN

M(IMPREFDEN, S2, Sl). T2

ELSE IF Q "EQUAL" OR Q "NCEQUAL" THEN

T(S2 9 INTCLASS) AND T(Sl, INTCLASS) AND S2 = Sl

OR T(S2, BOOLCLASS) AND T(Sl, BOOLCLASS) AND S2 = Sl

OR T(S2$ CHARCLASS) AND T(Sl, CHARCLASS) AND S2 = Sl

OR T(S2, LLDEN) AND T(Sl, LLDEN) OR T(S2, ULDEN) AND T(Sl~ ULDEN)

OR T(S2, PROGATOMDEN) AND T(Sl, PROGATOMDEN) AND S2 NAME = Sl NAME

OR T(S2, EXPREFDEN) AND T(Sl, EXPREFDEN) AND S2 ADDRESS = Sl ADDRESS, T2

ELSE IF Q "GREATER" AND T(S2, INTCLASS) AND T(Sl, INTCLASS) THEN

GREATER(S2, Sl), T2

ELSE IF Q "CHARGREATER" AND T(S2 it CHARCLASS) AND T(Sl, CHARCLASS) THEN

CHARGREATER(S2, Sl), T2

ELSE IF Q "INC" AND T(Sl, INTCLASS) THEN INC Sl, Tl

ELSE IF Q "DEC" AND T(Sl, INTCLASS) THEN DEC 51, Tl

ELSE IF Q "READCHAR" THEN READCHAR(), STV

ELSE IF Q "WRITECHAR" AND T(Sl, CHARCLASS) THEN (WRITECHAR 51; 51, Tl)

ELSE GOTO ERROR»;

M(STATE, VAL CN, VAL ST, VAL EN, VAL DM9 VAL MR, VAL AC»);

To complete the definition of the interpreter, we must give the sequences

of predefined identifier strings and value denotations which are used by

GETVALPREDEF:

59

PREDEFIDSTRS IS ("ISINTEGER", "ISBOOLEAN", "ISCHAR", "ISATOM", "ISFUNCTION",

"ISREF" ~ "ISLABEL", "ATOM", "NCREF", "REF", "IMPREF", "NCSET" ~ "SET", "VAL",

"COERCE", "GOTO", "NCEQUAL", "EQUAL", "GREATER", "CHARGREATER", "INC", "DEC" $

"READCHAR", "WRITECHAR", "TRUE" ~ "FALSE", "QUOTECHAR", "LL", "UL", "ERROR");

60

Since the value of PREDEFVDENS is fairly complex, we give an expression for

computing it rather than an explicit value:

PREDEFVDENS IS (X IS CRIDENT(); C IS M(BASICFUNCTINST, "COERCE");

ONE IS M(CONSTANT., 1); TWO IS M(CONSTANT, 2);

Pl IS UNITSEQ M DELETE; P2 IS (); P3 IS UNITSEQ C;

P4 IS (M(BIND, X), X, C, ONE, M APPLY, X, C, TWO, M APPLY);

P5 IS (M(BIND, X) , X, C, ONE, M APPLY, X, C, TWO, M APPLY, C);

P6 IS (M(BIND, X) , X, C, ONE, M APPLY, C, X, C, TWO, M APPLY, C);

PLIST IS(P3, P3, P3, P3, P3, P2, P3, Pl, P2, P3, P6, P4, P5, P2, P2,

P4, P6, P6, P6, P3, P3, Pl, P3) ;

D IS (TRUE, FALSE, QUOTECHAR~ M LLDEN, M ULDEN, M ERRORDEN);

CONC(VECTOR(l. 24, AI M(FUNCTDEN,

AUG(PLIST I, M(BASICFUNCTINST, PREDEFIDSTRS I», (»), D));

P3,

The denotation of each basic function has an empty environment field and a

control field consisting of the appropriate basic function instruction preceded

by an instruction sequence called a prelude, whose purpose is to spread and

coerce the function arguments. The six preludes shown above handle the follow

ing cases:

Pl - no arguments, P2 - one noncoerced argument, P3 - one coerced argument,

P4 - two noncoerced arguments. P5 - two arguments, the second of which is coerced,

. P6 - two coerced arguments.

A Direct Interpreter

In the preceding definition of an interpreter for GEDANKEN, we have largely

avoided the type of definitional circularity in which some language feature is

defined by using the same feature in the interpreter itself. In the few cases

where such circularity occurs, the feature involved either has a commonly

accepted unambiguous meaning (eogo t integer or boolean arithmetic), or has a

machine-dependent aspect whose precise definition we wish to avoid (eogo,

character arithmetic or the input-output facilities provided by READCHAR and

WRITECHAR) 0

In this section we present a second interpreter, called DINTERPRET, which

has been designed to maximize, rather than minimize, definitional circularityo

It must be emphasized that DINTERPRET is not a definition of GEDANKEN; indeed

a surprising variety of changes in the semantics of the language leave the

validity of DINTERPRET unchangedo Nevertheless, DINTERPRET can be regarded

as an important (albeit unproved) theorem about GEDANKEN, and its brevity is

a measure of the simplicity of the language 0

The transition from INTERPRET to DINTERPRET is based on two changes~

(1) Instead of defining an abstract syntax for value denotations, we

assume that the denotation of any member of the universal value set is an

equivalent value of the same typeo Thus, for example, a function or label

61

value of the program being interpreted will be denoted by an equivalent function

or label value of the interpreter itself. To effect this change, we must replace

the class definition of constants by

(CLASS s CONSTANT, (VALUE, UNIVERSAL»

and replace the list of value denotations for predefined identifiers by

PREDEFVDENS IS (ISINTEGER, ISBOOLEAN, ISCHAR, ISATOM j ISFUNCTION~

ISREF, ISLABEL, ATOM, NCREF, REF, IMPREF, NCSET, SET, VAL,

COERCE, GOTO, NCEQUAL, EQUAL, GREATER, CHARGREATER, INC, DEC,

READCHAR, WRITECHAR, TRUE, FALSE, QUOTECHAR, LL, UL~ ERROR);

62

(2) Instead of treating an environment as a sequence of marks and

identifier-value pairs, we will take the more direct approach of defining an

environment to be a function which maps identifiers into the denotations of

the values to which they are bound.

Then

DINTERPRET ISR AX EVAL(X, GETVALPREDEF);

where EVAL(X, E) computes the value of the expression X in the environment E~

EVAL ISR A(X, E)

IF T(X, CONSTANT) THEN X VALUE

ELSE IF T(X i IDENT) THEN E X

ELSE IF T(X, FUNCTDES) THEN (EVAL(X FUNCTPART, E» EVAL(X ARGPART, E)

ELSE IF T(X, LAMBDAEXP) THEN

AA EVAL(X BODY, AK IF IDEQUAL(K, X PARAMPART) THEN A ELSE E K)
\

ELSE IF T(X, CONDEXP) THEN

IF EVAL(X PREMISS, E) THEN EVAL(X CONCLUSION, E) ELSE EVAL(X ALTERNATIVE, E)

ELSE IF T(X, CASEEXP) THEN (I IS EVAL(X INDEX, E),

IF ISATOM I THEN (X BODY) I ELSE EVAL((X BODY) I, E»

ELSE (R IS X RDECLPART; L IS X LDECLPART; S IS REF X BODY;

NE ISR AK SEARCH(L UL, AI IDEQUAL(K, (L I) LEFT),

AI (GOTO L2; Ll: S := (L I) RIGHT; GOTO L3; L2: Ll),

A() SEARCH(R UL, AI IDEQUAL(K, (R I) LEFT),

AI AA EVAL«(R I) RIGHT) BODY,

AK IF IDEQUAL(K, «R I) RIGHT) PARAMPART) THEN A ELSE NE K),

A() E K»;

L3: EVALSEQ(VAL S, NE»;

EVALSEQ ISR A(X, E)

IF X UL = 1 THEN EVAL(X It E) ELSE (EVAL(X 1, E); EVALSEQ(TAIL X, E»;

IV. POSSIBLE EXTENSIONS AND MODIFICATIONS

Hopefully, the basic principles underlying GEDANKEN will eventually be

applicable to the design of an efficient and practically useful programming

language. We conclude by discussing some of the research problems that must

be solved to reach this goal.

Type Declarations

63

To achieve efficient data representations the programmer must be able to

define sets of values, and specify that the range of various identifiers~

function results, and references are to be limited to such sets. Such informa

tion also allows a variety of programming errors to be detected during

compilation.

Probably the most natural approach is an extension of Hoare's concept of

record classes.(6) The programmer would be able to declare an arbitrary

number of disjoint function, reference i and label classes. He would then be

required to specify the range of each identifier, function result~ or reference

to be some union of such classes (and/or predefined classes of primitive data).

Presumably, all functions in the same class would have the same argument and

result ranges, and all references in the same class would have the same value

range.

Class declarations would be permitted in the head of any block. If these

declarations are assumed to define a distinct class each time the block is

executed, then the language can be arranged so that all values in a given class

must become inaccessible when the block activation in which the class was

defined becomes inaccessible. Hopefully, this situation can be exploited to

increase the efficiency of storage allocation.

The functional approach to data structures used in GEDANKEN places special

requirements on a type declaration facility. In particular, if an inhQmogeneous

64

~,

data structure such as a record is to be treated as a function, then in

declaring the range of such a function it must be possible to specify a

dependency on the function argument 0 Thus, for example, the set of lists

of integers would be the union of the set {NIL} with a class of functions

with domain {I, 2} which mapped I into an integer and 2 into a list of integerso

A final problem is the need for a more flexible set specification than

unions of classeso For example~ if "matrix" is a function class and ADDMAT(X, Y)

is a function which adds matrices, then it should be possible to specify, not

only that X, Y and the result of ADDMAT are matrices, but also that these

matrices must have the same row and column dimensions.

Open Functions

An efficient compilation of GEDANKEN programs which manipulate complex

data structures will require that certain function designators should be re-

placed by modified copies of the corresponding function body, and that these

copies should then be simplified to take advantage of constant argumentso

Typical examples are the record-manipulation functions T and M defined in the

preceding chapter.

The ability to produce open code of this sort could be provided by adding

a macro-definitional facility to the language 0 A second approach, more in

keeping with the spirit of the language, would be to permit certain lambda

expressions to be given an OPEN attribute.

This raises the question of whether a compiler could determine automatically

when a designator of a lambda-defined function should be replaced by a copy of

the function body. Until recently, the author believed that such an expansion

could be performed for any function which was defined by a nonrecursive

declaration. Unfortunately, this conjecture is disproved by the existence of

the following nonrecursive fixed-point function:

65

Y IS AG (U IS AV G(AX (V V) X); U U);

which can be used to convert any simply recursive function (i.e., a function

which calls itself directly but not indirectly via other functions) into an

, 1 . f . (15)
equ~va ent nonrecurs~ve unct~ono

Thus suppose a recursive function F is defined by F ISR b, where F is the

only identifier which occurs free in b. Let Fl be the nonrecursive function

defined by Fl IS Af' (b). Then the function (y Fl) can be shown to be equivalent

to F, with the same domain of termination. Moreover i the expansion of a function

designator such as (Y Fl) X by repeated substitution of the definitions of Y

and Fl will never terminate.

Label Value Difficulties

The pr"operties of label values in GEDANKEN have certain potentially

unfortunate consequences.

The use of label-valued references can frequently cause the preservation

of data which will no longer be accessed by a computation. If L is a label-

valued reference, then GOTO L will cause execution to proceed from the control

status denoted by L. But the unchanged control status (i.e., environment and

dump) must also be saved in case GOTO L is executed again before the value of

L is changed. If, in fact, such a repeated jump cannot occur, then informa-

tion will be saved unnecessarily unless the programmer goes to the trouble of

resetting L immediately after the original jump. (As an example, the program

given in Chapter II for linking the coroutines COMPILE and ASSEMBLE will pre~

serve the control status of these routines unnecessarily.)

PresumablYi it would be better to force the programmer to extra trouble in

order to preserve. rather than discard, a reactivated control status. This

might be accomplished by adapting the concept of "process" used in simulation

languages, and providing a basic function for copying processes. However t it

66

is not clear how to combine the process concept with an ALGOL-like use of

label values in a clean manner which does not violate the principle of

completeness.

A second difficulty is the inability of a label value to preserve the

values of references as part of its control status. In the nondeterministic

parser described in Chapter II, the restriction on the use of references in

the function PARSE arises from this problem.

Finally, the use of label values introduces serious problems if a strict

order of evaluation is not imposed on a GEDANKEN program. To permit code

optimization, it is desirable to allow the independent subexpressions of a

compound expression (such as a sequence expression) to be evaluated in any order,

or even to have the steps of their evaluation intermixed. This can be done in

the applicative subset of GEDANKEN without affecting the results of any program.

The introduction of references makes the results indeterminate if expressions

with interfering side effects are executed in parallel.

But when label values are introduced, the number of times various expres

sions are evaluated also becomes indeterminate. Even the simple program

(X IS REF 0; (X := INC X, GOTO L); L: VAL X)

could produce either zero or one. The use of label-valued references leads to

more paradoxical programs, such as

(X IS REF 0; L IS REF 0; M IS REF 0; L := Ll;

(X ~= INC X, (M := Ml; Ml: GOT a L));

Ll: L ~= L2; GOTO M; L2: VAL X)

which might produce zero, one, or two.

67

APPENDIX: BASIC FUNCTIONS IN GEDANKEN

Predefined Defined in Number of Argument Types of Type of
Identifier Interpreter Arguments Coercion . Arguments Result

ISINTEGER yes 1 yes any Boolean
ISBOOLEAN yes 1 yes any Boolean
ISCHAR yes 1 yes any Boolean
ISATOM yes 1 yes any Boolean
ISFUNCTION yes 1 yes any Boolean
ISREF yes 1 no any Boolean
ISLABEL yes 1 yes any Boolean

ATOM yes 0 atom
UNITSEQ no 1 no any function
VECTOR no 3 yes integer, integer, function

function
NCREF yes 1 no any reference
REF yes 1 yes any reference
IMPREF yes 2 yes function, function reference
NCSET yes 2 no reference, any any
SET yes 2 2nd arg reference, any any
VAL yes 1 no reference any
COERCE yes 1 any any except

reference
GOTO yes 1 yes label value

NCEQUAL yes 2 no any, any Boolean
EQUAL yes 2 yes any, any Boolean
GREATER yes 2 yes integer, integer Boolean
CHARGREATER yes 2 yes character, character Boolean

INC yes 1 yes integer integer
DEC yes 1 yes integer integer
NEG no 1 yes integer integer
ADD no 2 yes integer, integer integer
SUBTRACT no 2 yes integer, integer integer
MULTIPLY no 2 yes integer, integer integer
DIVIDE no 2 yes integer~ integer # 0 integer
REMAINDER no 2 yes integer, integer # 0 integer

NOT no 1 yes Boolean Boolean
INTTODIGIT no 1 yes o :S integer :s 9 character
DIGITTOINT no 1 yes character integer
READCHAR yes 0 character
WRITECHAR yes 1 yes character charq,cter

68

ACKNOWLEDGEMENTS

The author wishes to thank Dr. M. Do MacLaren of Argonne National Labora

tory and Professor Arthur Evans j Jro, of MIT for their stimulating discussions

and helpful suggestions.

69

REFERENCES

10 van Wijngaarden, Ao (Edo), Mailloux, B.Jo, Peck, JoEoLo, and Koster~ CoHoAo

Draft report on the algorithmic language ALGOL 68. MR 93, Mathematisch

Centrum, Amsterdam, January, 19680

2. Naur, P. (Edo) Revised report on the algorithmic language ALGOL 60 0

Comm. ACM, ~ (January, 1963), 1-170

3. McCarthy. J. Recursive functions of symbolic expressions and their

computation by machine, Part 10 Commo ACM, ! (April, 1960)j 184-195.

McCarthY9 J. et alo LISP 1.5 programmers manual 0 MIT Press,

Cambridge, Mass., 1962.

4. Wirth, N., and Weber, H. EULER - a generalization of ALGOL, and its formal

definition: Part I, Part II. Commo ACM, 9 (January, February, 1966), l3-25~

89-99.

5. Evans, Ao PAL - a language designed for teaching programming linguistics.

Proc. ACM 23rd Natlo Conf. 1968, ppo 395-4030

6. Wirth, N., and Hoare, C.AoR. A contribution to the development of ALGOLo

Commo ACM, 1 (June~ 1966), 413-432.

7. Dahl, O.J., and Nygaard K. SIMULA - An ALGOL-based simulation language.

Commo ACM, ~ (September, 1966), 671-678 0

Dahl~ OoJ., Myhrhaug, Bo, and Nygaard, Ko SIMULA 67 common base language 0

Publ. No. S-2, Norwegian Computing Center, Oslo~ May, 19680

80 Floyd, RoW. Nondeterministic algorithms. Jo ACM~ ~ (October, 1967), 636-644.

90 Reynolds, JoCo An introduction to the COGENT programming system. Proc. ACM

20th Natl. Conf., 1965, ppo 422-436.

ReynOlds, J.C. COGENT programming manual. ANL-7022, Argonne National

Laboratory, Argonne, Illinois, March, 19650

10. EarleYt JoC. An efficient context-free parsing algorithm. Carnegie-Mellon

University, Pittsburgh, Pa., August, 19680

70

II. Lucas, P., Lauer, P., and Stigleitner, H. Method and notation for the

formal definition of programming languages. TR 25.087, IBM Laboratory

Vienna, June, 1968.

12. Landin, P. J. A correspondence between ALGOL 60 and Church's

lambda-notation, Part I, Part II. Comm. ACM, 8 (February, March, 1965),

89-101, 158-165.

13. McCarthy, J. Towards a mathematical science of computation. Information

Processing 62 (IFIP Congress), Popplewell, C. M. (Ed.), North-Holland

Publishing Co., Amsterdam, 1963, pp. 21-28.

14. Irons, E. T. A syntax directed compiler for ALGOL 60. Comm ACM, ~,

(January, 1961), 51-55.

15. Evans, A. Private communication.

Morris, J. H. Lambda-calculus models of programming languages.

MAC-TR-57, Project MAC, MIT, Cambridge, Mass., December, 1968.

	Table of Contents
	Abstract
	I Introduction
	II An Informal Description of GEDANKEN
	III A Formal Definition of GEDANKEN
	IV Possible Extensions and Modifications
	Appendix: Basic Functions in GEDANKEN
	Acknowledgements
	References

