
BIM-PROLOG

Joint Project between
BIM
and

Department of Computer Science
Katholi eke Universiteit LEUVEN

Sponsored by DPWB/SPPS
under grant nr KBAR/SOFT/1

Tc PU/ IC tV./ /(. IJIT.

Interface betv.>eeri Prolog and
a General Iatabase Server

* BIM
Kwikstraat 4
B-3078 Everberg Belgium
tel. +32 2 759 59 25

by
Jose CXJITA *
Raf VENKEN *

Internal Rep:,rt
BIM-prolog IRS

NOii ember 1984

** Katholieke Uriversiteit I.euven
Department of Canµlter Science
Celestijnenlaan 200A
B-3030 Beverlee Belgium
tel. +32 16 20 06 56

DPWB = Diensten van de eerste minister: Progranmatie van
het Wetenschapsbeleid.

SPPS = Services du premier ministre : Progranmation de la
Politique Scientifique.

\

JRElfAC£ IEIIIEEII nat.O& Ma A &Ea:IAL DATUASE SEffE•

by

Jose Cotta
Raf Venken

Belgian Institute of Management
Kwikstraat 4

3078 Everberg
Belgium

Content •

1 . Introduction

2. Syntax of database questions and answers

2. 1 Request
2.2 Reply

3 . Description of the several database questions

3. 1 Opendb
3.2 Closedb
3.J Retrieve
3 . 4 Createrelation
3.5 Insert
J.6 Delete
J . 7 Deleterelation
3. 8 FurthertupleR
3 . 9 FurthertupleD

4. Bibliography

•

1111:erface Prol.o9 - •• November 1984 Page 2

1 _ Jnt:roduc:tioa

In this report we specify the interface between the Prolog
system and a general le l.at:iona1 htab••• S•n•r-

As it is stated in <Ven84> there are three different levels
of interface, namely an higher level where the database system
has to answer to joins of database calls, a middle level where
it answers to individual relation calls, and a lower level where
Prolog accesses the database tuple by tuple by means of •seek·,
·getnext· and similar procedures.

As far as this report is concerned we shall only specify
the middle level of interface. The higher and the lower levels
will soon have their own specification reports.

This middle level interface is based on the following
principles:

1) There exists a pipe-1.ille communication channel between Prolog
and the Database Server, ie between the processes running
Prolog and the Database Server:

-------------- ---------- -----
I I database questions I I
I I ---------------> I I
I I (requests) I I
I I I I
I Prolo9 I database answers I " Sen n I
I I <--------------- I I
I I (replies) I I
I I I I
I I I I
-------------- ---------------

The Database Server will manage the database in a completely
transparent way from the Prolog point of vue.

2) To the Prolog system, it only matters that it sends a
databa se q-•tioa through the pipe-line and that it gets back
a database ••.-r through the same pipe-line.

There are nine different database questions:
closedb, retrieve, createrelation, insert,
deleterelation, furthertupleR and furthertupleD that
described in this report.

opendb,
delete,

will be

3) The filosophy of the interface is based on an uniform type of
communication through the pipe-line, ie, Prolog sends a

1111:erfaca PreJ.og - N November 1984 Page 3

database question accordingly to a well defined syntax, we
will call it the req•st from now on, and receives a database
answer also accordingly to a well defined syntax, we will
call it rep 1y from now on.

Therefore, the aim of this paper is, on one hand, to
specify the syntax of the request and reply and, on the other
hand, to describe the actions that must be performed for each of
the database questions.

November 1984 Page 4

z .. Synta x of datalta •• q ... tiolls allld ••...r•

Z .. 1 Request

All the database questions will be sent by the Prolog
system accordingly to the following syntax, stated in BNF form,
where the terminals are bold-printed:

<request> ::= •<operation name> [[<arguments>] J <nl>

<operation name> ::= .,..ad b I
cl.o s41db I
retrieve I
cr eat ere l.atioa
insert l
delete I
det.ter el.ati•
furthertapl.el
furttae rtu pleD

<arguments> ::= <argument> [• <arguments>

<argument> ::= <predicate definition>
<identifier> I
int-..r

<predicate definition>

<predicate arguments>

<identifier>
[<predicate arguments> l

<void variable>
<variable> I
<string> I
int ... r

<variable> ::= <identifier>

<void variable> ::= -_

<identifier> ::= ••tri.119 of dlar

<string> ••tr ial of ctaar•

<nl> ::= <ca> <lF>

This syntax suggests the following comments:

1) All the identifiers must be preceeded by a with the
exceptions of st~ings of characters that must be single
quoted and integers that don't need any kind of quotation.

November 1984 Page 5

2) For example:

·retrievec·address['Raf' ,·_]]<CR> <LF>

is a valid request and represents the Prolog query:

?-address(Raf,_).

which can be read as: · Has Raf an address?· .

In section 3 we will give examples of the requests
generated by the several database questions.

All the database answers will be sent by the Database
Server to the Prolog system, through the pipe-line, accordingly
to the following syntax, stated also in BNF form with the
terminals bold-printed:

<reply> • <operation name> C <tuple> •
<pointer list>.
<return code> J <nl>

<operation name> opetldb I
cl.osedb I
retrieve I
createrelation
insert
del.ete

I
I

del.etere1ation
furtttertupl.el
furtbertupleD

<tuple> ::= C [<arguments>] J

<pointer list> :: = [(<pointers> J]

<return code> ::=II _.tiv• i.ntes,er

<nl> ::= <CR) <LF>

<arguments> ::= <argument> [• <arguments> J

<pointers>

<argument>

.. - <pointer> C • <pointers>]

·st rill9 of char• I i.nt ... r

<pointer> ::= •str i .. of char

l llterfac:e Pro.lotl- N November 1984 Page 6

This syntax suggests the following comments:

1) <return code> can be O meaning successful
error code represented by a negative
unsuccessful operation.

operation or an
integer in case of

2) Note that the <tuple> may be empty and the operation
successful if there is no need of passing information back
for the Prolog system. In the same way the <pointer list>
may also be empty and the operation successful if there are
no further tuples admissible as solutions to that particular
query. We will go back to this subject when describing the
different database questions in detail.

In the next section we will give examples of the replies
expected by the Prolog system as answers to the several database
questions.

November 1984 Page 7

Each of the database questions generates a request with
different arguments. The replies to these requests have also
different arguments, accordingly to the information that is sent
back to the Prolog system. Therefore, in this section we will
describe in detail all the database questions and the operations
that must be executed by the database management system for each
of them. We will also give a lot of examples to illustrate the
description.

This question opens a specified database for further use.
Therefore, it must be called always in the beginning of the
session, either if we want to create a new database or to use an
already existing one.

Its actual req .. st has the following format:

•opendb['<name>' ,<options>l<CR><LF>

where <name> is a character string specifying the name of the
database to be opened and <options> is a list of options for
that operation.

Its actual rep1y has the following format:

"opendb((],[),<return>l<CR><LF>

where <return> is O if the operation is sucessful and a negative
integer otherwise. The first two arguments are CJ because there
is no <tuple> and no <pointer list> to send to Prolog.

Let's see how this operation is called through some
examples.

f~n s1• J.1.1: (New database)

Suppose that we want to create a new database called
"mydata". The request for this operation would be:

"opendb["mydata' ,[...]l<CR<LF>

Assuming that the operation was sucessful the reply sent to
Prolog would be:

"opendb[[],[J,O]<CR><LF>

1.-terf a ce Prol.o9 - N November 1984 Page 8

Ex,....ie l-1-2= (Already existing database)

Let's now suppose that the database ·mydata· already
existed . The request to call such an opening would be:

• opendb['mydata' , [.. .]] <CR> <LF>

Assuming that the -0peration was sucessful the reply sent to
Prolog would be:

•opendb[[J , (],O]<CR><LF>

1) This operation must preceed any of the other operations.

2) When .the operation is sucessful the database is opened
accordingly to the list of options.

3) The operation is not sucessful, and therefore the database is
not opened, when it 'is already opened or when the list of
options can not be satisfied. In this case the error code
will be transmited in <return>.

l-2 Cl.os..Sb

This question closes the currently opened database.
Therefore, it must be the last call of the session. If a
·c1osedb. is called before the end of the session, the other
existing questions can't be executed, with the exception of
·opendb •.

If the Prolog system wants to close the currently opened
database it will send the following request:

·c1osedb[]<CR><LF>

Assuming that the operation was sucessful, the reply of the
Database Server would be:

•c1osedb((],[],O]<CR><LF>

~ alNNlt t.lN clo....., ..-n tto.:

1) This operation must be called in the end of the session.

2) This operation is not sucessful if there is no database

Jat.rfaa h'olott - N November 1984 Page 9

currently opened. Otherwise it is always sucessful.

3_3 1.-trieY•

This operation is used either to validate a tuple over the
database or to fetch information in order to complete a certain
tuple. In the first case there will be no variables in the
request and in the second case the fields to be retrieved will
be represented by variables. The actual format of its req-•t
is the following:

·retrieve[·name[arg1, ... ,argn]]<CR><LF>

must specify, when
list of pointers

the return code,

The rep1y to this query
tuple that was found, the
solutions, when they e~ist, and
format will be the following:

needed. the
to the other

therefore its

•retrieve([tuple],[pointers],return]<CR><LF>

Exaaple 3-3-1::: (Retrieve without variables)

Let us suppose that we have a database with facts about
persons and their addresses, thus the following table:

ADDRESS

I NAME I PLACE I
l------------+-----------------1
I Raf I Leuven I
I I I
I Jose I Heverlee I

Which is represented, in Prolog, by:

address(Raf,Leuven).
address(Jose,Heverlee).

The Prolog query: ?-address(Raf,Leuven). (is Leuven the
address of Raf?) would generate a database question, and the
following request would be sent to the Database Server, through
the pipe-line:

·retrieve[·address['Raf'. 'Leuven']]<CR><LF>

November 1984 Page 10

This request . is succesful because in fact the address of
Raf is stated in the table of the relation ·address· as beeing
Leuven so the following reply would be sent to Prolog:

"retrieve((],[J,Ol<CR><LF>

where the two [l's state that there is no need of sending
information back to Prolog (the first), and that there are no
further solutions to this query (the second).

&aapi. 3.3.Z: (Retrieve with one variable)

In the same database, the Prolog query:
·?-address(Jose,_X).· (where does Jose live?) would generate the
following request to be sent to the Database Server:

The last
variable
the query.

·retrieve(· address[· Jose• , • -1] 1 <CR> <LF>

argument of the relation address represents the
X of the Prolog query. It's value is thus the aim of

The reply for this query would be:

"retrieve(['Jose·. 'Heverlee'],[],O]<CR><LF>

where the Cl specifies that there are no further solutions to
this query.

EXMlp1- 3.3.3: (retrieve with a void variable)

Let us now suppose that in the former query Prolog was not
interested in the value of the variable X. This means that the
query would be: has Jose an address? and it could be written
in Prolog syntax: "?-address(Jose,_)."

This difference would generate a request just like the
previous one but with a difference in the representation of the
variable which is now void:

·retrieve(" address (·Jose · , • _]] <CR><LF>

As the variable is now void Prolog just needs an yes-no
answer, therefore the reply will have two (l's, in the tuple and
in the pointer list. The return will be O because the operation
is sucessful.

"retrieve[[],[],O]<CR><LF>

November 1984 Page 11

Exaaple 3_3_,: (Retrieve with backtracking points)

Let us now suppose that our previous database table for the
relation "address· was the following:

ADDRESS

I NAME I PL.ACE I
l------------+----------------- 1
I Raf I Leuven I
I I I
I Jose I Heverlee I
I I I
I Yves I Heverlee I
I I I

Bart I Heverlee I

The Prolog query: "?-address(_X,Heverlee)." (who lives in
Heverlee?) would generate the following request:

"retrieve("addressc·-1, 'Heverlee']]<CR><LF>

In this case,
['Jose·, 'Heverlee'J

the
and

first solution is the
are 2 other solutions.
"PNT1 and "PNT2. The

there
suppose that they have pointers
would be:

tuple
Let's
reply

"retrieve[('Jose'. 'Heverlee'],["PNT1,"PNT2],0]<CR><LF>

If the Prolog system needs to backtrack on this query then
it will send a "furthertupleR" query with "PNT1 or "PNT2. We
will come back to this subject in paragraph 3.8.

Nous aboat. UN retrie1te operatioa:

1) The contents of the database remains
retrieve operation. This operation
information stored in the database.

unchanged after a
just accesses the

2) The reply only contains explicitly the first solution to the
database query. The other solutions are sent in the form of
pointers directly to the tuples and will eventually be used
with the question "furthertupleR" when the Prolog system
backtracks. We will discuss this subject in paragraph 3.8.

JI When a query only contains void variables the database system
doesn't have to retrieve their values. Therefore the reply
will have (l's in the tuple and in the pointer list.

J~f •ce Pro J.ot - N November 1984 Page 12

l-4 Create:re1a tiota

This question adds the specification of a database relation
to the schema of the database.

This operation sends to the Database Server the description
of the relation in terms of its name, its arity and some
characteristics of its arguments.

For the moment, the Prolog system will only send to the
Database Server, as characteristics of the relation arguments,
its uniqueness types.

Those uniqueness types can be used by the Database Server
to determine which argument or combination of arguments
constitutes the primary key and what type of indexing, if any,
is needed for the other arguments. On the other hand the
combination of the uniqueness types of the several arguments can
be used to determine if there is the possibility of having
duplicate records in that relation, or not.

Other characterics like the field names, field synonyms and
field types must, for the moment, be settled by default by the
Database Server.

The format of this request is the following:

"createrelation["name('UniqType1' , ... , 'UniqTypen'll<CR><LF>

where UniqTypei = NonKey. Key, KeyPart or OptionalKey.

Suppose that we want to create a relation with name
person , with four fields, with the key composed by the first

and the second fields, an optional key on the fourth field and
no key on the third field. The request for such a creation
would be:

·createrelation("person['KeyPart', "KeyPart·.
"NonKey', ·optionalKey']]<CR><LF>

Assuming that the operation was sucessful the reply would
be:

·createrelation([],(],0]<CR><LF>

•t.e• about t M craure1atioll opera t.ioll:

1) The effect of this . operation
ditionary, a definition of
characteristics.

is to create, in the data
a relation with the specified

Jllterface Prol.o9 - N November 1984 Page 13

21 This operation is unsucessful when there already exists a
definition for that relation in the data ditionary or when an
internal error occurs. In these cases the error code is
transmited to the Prolog system in <return>.

31 Remark that this operation changes the
adding a new definition to it.
information in the table of a relation
entry in the data ditionary.

data
We can
after

ditionary by
only insert

creating its

41 In the future, characteristics like the argument types and
argument names will also be provided by the Prolog system to
the Database Server .

l-5 Insert

This is one of the simplest database queries because it has
no variables. The format of its request is the following:

·insertc·name(tuple]J<CR><LF>

Note that this operation will only add records to previous
existing tables. The role of creating new relations belongs to
the operation ·createrelation· (des€ribed in the last paragraph)
and not to •insert·.

ExaapJ.e J_5.1:

Suppose that. in the context of the previous examples, we
want to add to the database relation ·address• the Prolog unit
ground clause: ·address(Pol,Brussels).• which can be read as:
·the address of Pol is Brussels·.

The request that the Prolog system would sent to the
Oatabase Server would be:

·insert[·address['Po1·, 'Brussels']]<CR><LF>

Assuming that the operation was successful the reply that
Prolog would get as answer would be:

·insert([],(],D]<CR><LF>

because there is no need for sending the tuple back to Prolog
and because there are no other solutions to this query.

1) The contents of the database is changed if the insertion is

J•t.erf•ce Pr•l.o9 - H November 1984 Page 14

sucessful. Depending on the definition of the relation this
operation is successful or not if the record already exists
in the database. If an internal error occurs then its code
will be returned to Prolog.

2) In the request for insertion there
because in Prolog the external database
ground clauses.

are never variables
can only contain unit

3) The arguments of the relations are, for the moment, always
atoms, ie, there can be no functors with arity greater than 0

inside those arguments. Later this restriction will be
removed and the arguments of the relations will have the
possibility to be any Prolog term.

This operation is used to delete a record in a database
table. When it is called the record may or may not be
completely specified. In the later case the values of the
fields that were not specified must be returned to the Prolog
system. In both cases the pointer to the record must be
returned to Prolog together with the pointers for the,
eventually existing, other solutions. This pointers will be
used with the operation "furthertupleD" (see 3.9) when the
Prolog system backtracks. The format of the request for this
operation is the following:

"delete["name(tuplell<CR><LF>

Note that as far as Prolog is concerned it makes no
difference if we are deleting the last record of the relation,
and its table will be empty from then on, or if we are deleting
one of its records and there will remain more others.

In fact, when the last record of a table is deleted, the
table remains existing. The role of deleting a table is
performed by "deleterelation" as we will see in the next
paragraph.

Exaapl.e 3.1 .. 1:

Suppose that, in the context of the previous examples, we
want to delete the information about the address of Raf but we
don't know what it is.

The request that would be sent to the Database Server would
be:

"delete["address['Raf ' ,"-1]]<CR><LF>

l •t:er fa ce h'ol.o9 - H November 1984 Page 15

Assuming that the operation was sucessful and that only one
solution was found, the reply that Prolog would get as answer
would be:

"delete[['Raf', 'Leuven'], [" PNT1], O] <CR><LF>

If the Prolog system was not interested in the value of
variable -1, that means, if the Prolog query was: delete the
address of Raf whatever it is, then the request for this query
would be very similar to the one presented above with the only
excep~ion that the representation of the variable would change:

"delete["address['Raf' ,"_]]<CR><LF>

The reason for this is that the variable is now void so it
doesn't matter what value it has. Therefore the reply doesn't
need to mention the tuple, however the pointer has extrem
importance:

.. te• about: UNI del.etioo operatioo:

11 The contents of the database is changed if the deletion is
sucessful. This operation is not sucessful if the record
doesn't exist in the database. If an internal error occurs
its code will be returned to Prolog.

21 In the reply of
depending on the
transmitted before.

this operation
existance of

there may
variables

exist tuples
in the request

31 Remark also that, although n pointers are returned to the
Prolog system, only the tuple corresponding to the first one
is in fact deleted.

J - l 0.1.et.erel.at:ioll

This operation is used to delete completely a database
relation (table and definition). In the answer of this query
only the return is important because the tuple and the pointer
list are [l's. When this query is performed Prolog has the
warranty that it can be done in order to prevent user's
mistakes. The format of its requett is the following:

"deleterelation['name']<CR><LF>

1111:erface Pr•lotl - H November 1984 Page 16

Let's suppose that we have the previous database with the
table for the relation ·ADDREss· and ~hat we want to delete it.
The request for this question would be the following:

·deleterelation('address']<CR><LF>

Assuming that the operation was sucessful, the answer would
be the following reply:

·deleterelation[[],[],O]<CR><Lf>

And from then on neither the table nor the definition of
·address· will exist.

1) The contents of the database is deeply changed if the
deleterelation is sucessful. This operation is not sucessful
if the relation doesn't exist in the database or if the user
has unsufficient priviledge (in Unix sense) for the
operation. If an error occurs its code will be returned to
Prolog.

3) Remark the difference between •delete· and ·deleterelation•.
In the former case just a record is deleted and in the later
case the whole relation is deleted (both the table and the
entry in the data ditionary). Even when we delete the last
record of a certain relation with ·delete·. the table
continues to exist, ie, the relation is not deleted from the
database schema. However, when we use ·deleterelation· the
table and the name of the relation no longer exist, ie, the
relation is deleted from the database schema .

l-1 furthrttlplel

As we have seen in the retrieve operation, its reply only
contains explicitly the first solution to the query. However,
when there exists more solutions, the Database Server sends, in
the pointer list, all the pointers that point directly to them.
When Prolog backtracks this information is all what it needs in
order to get the further solutions.

This primitive •furthertupleR· is the one
Database Server a certain pointer and gets
which it points. So when Prolog wants another
previous ·retrieve· query it sends to the
request of ·furthertupleR• with the pointer as
gets back the tuple.

that sends to the
back the tuple to
solution for a

Database Server a
argument and it

l llter f ace Prol.oa - DI November 1984

The format of its reqN• t is the following:

·furthertupleR[·pointer}<Ck><LF>

Let's see how it works through an example.

Page 17

Let's now go back to example 3.3.4 and supose that the
Pro log system needs to backtrack the query
(?-address(_X,Heverlee).). Remember that, as answer to the
first ·retrieve· it got a pointer list consisting of the
pointers •PNT1 and •pNT2. In order to get the other solutions
the Prolog system just has to request:

•furthertupleR[.PNT1)<CR><LF>

and it will get as reply:

·furthertupleR(['Yves', 'Heverlee'],[),O)<CR><LF>

whose tuple is another solution to the initial query. If it
needs to backtrack again, it will send to the Database Server:

•furthertupleR(.PNT2]<CR><LF>

and it will receive back:

·furthertupleR[('Bart'. 'Heverlee'],[],O)<CR><LF>

which is the last solution to the initial query.

-.U s abotlt tN f urtJtertelplelt operation:

1) The only operation which is backtrackable using
"furthertupleR· is the •retrieve·. The operation ·delete· is
backtracked using ·furthertupleo· that will be discussed in
the next paragraph.

2) Prolog stores the pointer list it receives in the reply of
the initial •retrieve· in a stack that will be consumed
pointer by pointer in backtracking. Each pointer is used to
call "furthertupleR·.

3) The pointer list of this operation is always
Prolog already has the pointers to the
solutions.

l- t Furtlwrtapl.el

empty
other

because
possible

1111:erf ace Prol.o9 - N November 1984 Page 18

This operation is the equivalent for ·delete• of
·furthertupleR·. As we have seen in paragraph 3.6, the reply of
a ·delete· request contains a pointer list with pointers to all
its possible solutions.

When the Prolog system needs to backtrack that •delete•
operation it calls ·furthertupleo· and sends the pointer for the
tuple that will be deleted.

The format of its r ~ues t is the following:

"furthertupleo[·pointerl<CR><LF>

and the format of the rep1y is:

"furthertupleO[[tuple],[],return]<CR><LF>

Let's see an example of how it works.

Suppose we have the relation ·address· with the table of
example 3.3.4 and that we want to delete the Prolog clause:

address(_X,Heverlee).

The request for this ·delete· would be:

•delete[•address[•-1, 'Heverlee'l]<CR><LF>

As answer to this delete the Prolog system would receive
the reply:

•delete[['Jose', 'Heverlee'],[.PNT1,"PNT2,"PNT3],0]<CR><LF>

With this reply Prolog knows that the further solutions of
this delete are pointed by ·PNT2 and "PNT3. Therefore if it
needs to backtrack the initial ·delete• it will send the
request:

•furthertuple0[.PNT2]<CR><LF>

The reply to this request would be:

·furthertupleD[['Yves·, 'Heverlee'],[],O]<CR><LF>

If the Prolog system needs to backtrack again the
"delete•. it will call •furthertupleo· again, but
pointer • PNTJ.

initial
for the

November 1984 Page 19

t) This operation is used ta backtrack the ·delete· operation.
Therefore there are two different operations ·furthertupleR·
and ·furthertupleo· to backtrack the only two operations that
it is possible to backtrack, ·retrieve• and ·delete•.

2) Prolog stores in a stack the pointer list it receives in the
reply of the initial ·delete• and consumes this stack in
bascktracking.

3) The pointer list of this operation is always
Prolog already has the pointers to the
solutions.

empty
other

because
possible

I•t.e rface Pro.log - N November 1984 Page 20

,_ l ibliograplly

<Ven84> Venken, R.
interaction
system,

and Adler, H. 0., Report 081 and 082: the
between Prolog and a relational database

internal LOKI report (ESPRIT pp 107), feb 1984.

