
BIM-PROLOG

Joint Project between
BIM
and

Department of Computer Science
Katholi eke Universiteit LEUVEN

Sponsored by DPWB/SPPS
under grant nr KBAR/SOFT/1

Tc PU/ IC tV./ /(. IJIT.

Interface between Prolog and
unify: Higher Level

* BIM
Kwikstraat 4
B-3078 Everberg Belgium
tel. +32 2 759 59 25

by
Jose corrA *
Raf VENKEN ·*

Internal Rep:>rt
BIM-prolog IR7

October 1984

** Katholieke universiteit Leuven
Department of Canp.1ter Science
Celestijnenlaan 200A
B-3030 Heverlee Belgium
tel. +32 16 20 06 56

DPWB = Diensten van de eerste minister: Progranmatie van
het Wetenschapsbeleid.

SPPS = Services du premier ministre: Prograrrmation de la
Politique Scientifique.

INTERFACE BETWEEN PROLOG AND UNIFY: HIGHER LEVEL

by

Jose Cotta
Raf Venken

Belgian Institute of Management
Kwikstraat 4

3078 Everberg
Belgium

Contents

1. Introduction

2. Syntax of database questions and answers

2. 1 ibuffer
2.2 obuffer

3 . Description of the several database questions

3. 1 Opendb
3.2 Closedb
3.3 Retrieve
3.4 Createrelation
3.5 Insert
3.6 Delete
3.7 Oeleterelation
3.8 Backtracking
3.9 Cut

4. Bibliography

Interface Prolog-Unify October 1984 Page 2

1. Introduction

In this report we specify the interface between the Prolog
system and the relational database management system Unify.

As it is stated in <Ven84> there are different levels of
interface, namely an higher level where the database system has
to answer to joins of database calls and to individual relation
calls. and a lower level where Prolog accesses the database
tuple by tuple by means of "seek~, "getnext· and similar
procedures.

As far as this report is concerned we shall only specify
the higher level of interface. The lower level will soon have
its own specification report.

This higher level interface is based on the following
principles:

1) There exists a pipe-line communication channel between Prolog
and a Scheduler of the database accesses:

database calls
--------------->

Prolog database answers
<---------------

I
I
I
I Scheduler
I
I
I

The scheduler will control the database system in a
completely transparent way from the Prolog point of vue.

2) To the Prolog system, it only matters that it sends a
database question through the pipe-line to the Seheduler and
that it gets · back a database answer through the same
pipe-line.

There are nine different database questions:
closedb, retrieve, createrelation, insert,
deleterelation, backtracking and cut that will be
in this report.

opendb,
delete,

described

3) The filosophy of the interface is based on an uniform type of
communication through the pipe-line, ie, Prolog sends a
database question accordingly to a well defined syntax. we
will call it the ibuffer from now on, and receives a database

Interface Prolog-Unify October 1984 Page 3

answer also accordingly to a well defined syntax, we will
call it obuffer from now on.

Therefore, the aim of this paper is, on one hand, to
specify the syntax of the ibuffer and obuffer and, on the other
hand, to describe the actions that must be performed for each of
the database questions.

Interface Prolog-Unify October 1984

2. Syntax of database questions and answers

2.1 ibuffer

All the database questions will be sent
system to the Scheduler, through the pipe-line,
the following syntax, stated in BNF form:

Page 4

by the Prolog
accordingly to

<ibuffer> ::= <code> <arity of the code> [<iblock sequence> J

<code> ::= 1 I 2 I J I 4 I 5 I 6 I 7 I 8 9

<arity of the code> ::= 0 I positive integer

<iblock sequence> ::= <iblock> [<iblock sequence>]

<iblock> ::= <arity of the iblock> <smallblock sequence>

<arity of the iblock>

<smallblock sequence>

.. - positive integer

: : = <smallblock> [<smallblock sequence>]

<smallblock> ::= <length> <type of sequence> <byte sequence>

<length> ::= positive integer

<type of sequence> ::= 1 I 2 I 3 I 4

<byte sequence> ::= byte [<byte sequence>]

This syntax suggests the following comments:

1) <code> represents the code of the action to be performed;
the <arity of the code> is the number of <iblock>'s that are
inside its <iblock sequence>.

21 Each <iblock> has also
specifies the number of
<small block sequence>.

an <arity of the iblock> that
<small block>'s that are inside its

J) Each <small block> has a certain <length> in bytes, a certain
<type of sequence> and ?:-a <byte sequence>; the <type of
sequence> has the value ~for ___ character strings, {~ for
integer numbers. (TJ for_ v~riabl~s, and @_f_ox: .. ~-Cl~_i:!_v~r1ables
(which are variables whose values are not important for the
Prolog system).

4) Therefore an <iblock sequence> can only be empty when the
<arity of the code> is 0. At present, as we will see in
section 3, only one code has arity 0.

lnterface Prolog-Unify October 1984 Page S

, !

5) A <smallblock sequence> and a <byte sequence>
empty.

l
can never be

In section 3 we will give examples of the ibuffers
generated by the several database questions.

2.2 obuffer

All the database answers will be sent by the Scheduler to
the Prolog system, through the ~ipe-line, accordingly to the
following syntax, stated also in BNF form:

<obuffer> <result> <relative identification>
<last solution> <number of oblocks>
C <oblock sequence>]

<result> ::= 0 I negative integer

<relative identification> positive integer

<last solution> ::= 0 I 1

<number of blocks> ::= 0 I positive integer

<oblock sequence> ::= <oblock> C <oblock sequence>)

<oblock> ::= <length> <variable number> <type of sequence>
<byte sequence>

<length> ::= positive integer

<variable number> ::= negative integer

<type of sequence> ::= 1 2

<byte sequence> ::= byte [<byte sequence>]

This syntax suggests the following comments:

1) <result> can be O meaning successful operation or
code represented by a negative integer in
unsuccessful operation.

an error
case of

2) <relative identification> is a number that identifies
biunivocally the operation performed. It may be needed later
for the backtracking of Prolog.

Interface Prolog-Unify October 1984 Page 6

3) <last solution> is O if there are other solutions to the
query or 1 if the Scheduler is sure that the present solution
is the last one.

4) The <number of blocks> can be O if there is no need to send
information back to the Prolog system (for example in an
insert operation).

5) Each <oblock> represents a variable, in the Prolog sense,
that has been instantiated during the operation, therefore it
must have its <variable number>.

6) The <type of sequence> can be 1 or 2 if the sequence is a
string or an integer number, respectively.

Note that the <oblock> and the
different syntax rules. In the
examples of the obuffers expected

<iblock> have completely
next section we will give
by the Prolog system as

answers to the several database questions.

Interface Prolog-Unify October 1984 Page 7

l. Description of the several database questions

Each of the database questions generates a different
ibuffer and Prolog expects, also different obuffers as answers
to them. Therefore, in this section we will describe in detail
all the database questions and the operations that must be
executed by the database management system for each of them. We
will also give a lot of examples to illustrate the description.

3.1 Opendb

This question opens a specified database for further use.
Therefore, it must be called always in the beginning of the
session, whether we want to create a new database or to use an
already existing one. Its syntax is the following:

<code>= 1;
<arity of the code> = 2;
the first <iblock> specifies the name of the database that is
going to be used; and
the second <iblock> contains a list of options for the database
opening.

The list of options is a four digit integer nnnn composed
in the following way:

the first digit represents read field names (1=yes ; O=no);
the second digit represents read field synonyms (l=yes : O=no);
the third digit represents read record names (1=yes ; O=nol: and
the fourth digit represents read record synonyms (l=yes ; o~no) .

Let's see how this operation is called through some
examples .

Exaaple 3.1.1: (New database)

Suppose that we want to create a database called ·mydataN .
The ibuffer for this question would be:

I 1 I code
l-----•------------------------
1 2 I arity of the code
l-----+------------------------
1 1 I arity of the iblock
l----- +-- -------- ---- --- ----
1 7 I length
l- ----+--------
1 1 I type
l-----•--------
1 m I
I Y I

Interface Pro1og-Unify

I d I
I a I
I t I
I a I
l-----•------------------------
1 1 I arity of the iblock
l-----•---------------------
1 2 I length
l-----•--------
1 2 I type
l-----•-------
1 o I

October 1984 Page 8

In this example the last O stands for 0000 because it is a
new database. Assuming that the operation was sucessful and
that its relative identification number was 1, the obuffer sent
to Prolog would be:

I O I result
l-----•--------------------------
1 1 I relative identification
l-----•--------------------------
1 1 I last solution
l-----•---- -- ------ ------ ------ --
1 0 I number of oblocl<s

Exaaple 3.1.2: {Already existing database)

Let's now suppose that the database ·mydata• already exists
and that its schema has record and field names. The ibuffer to
call such an opening would be:

I 1 I code
l-----+------------------------
1 2 I arity of the code
l-----•------------------------
1 1 I arity of the iblock
l-----•---------------------
1 7 I length
l-----•--------
1 1 I type
l-----+--------
1 m I
I Y I
I d I

Interface Pro1og-Unify

I a I
I t I
I a I
l-----•------------------------
1 1 I arity of the iblock
l-----•---------------------
1 2 I length
l-----+--------
1 2 I type
l-----•--------
1 1 o 1 o I

October 1984 Page 9

Assuming that the operation was sucessful and that its
relative identification number was 1, the obuffer sent to Prolog
would be:

I O result
l-----•--------------------------
1 t I relative identification
l-----•--------------------------
1 1 I last solution
l-----•--------------------------
1 O I number of oblocks

Notes about the opendb operation:

1) This operation must preceed any of the other operations.

2) When the operation is sucessful the database is opened
accordingly to the list of options.

3) The operation is not sucessful, and therefore the database is
not opened, when it is already opened or when the list of
options can not be satisfied. In this case the error code
will be transmited in <result>.

3.2 C1osedb

This question closes the currently opened database .
Therefore, it must be the last call of the session. If a
"closedb" is called before the end of the session, the other
existing questions can't be executed. Its syntax is the
following:

<code> = 2; and
<arity of the code> = 0.

Interface Prol09-Unify October 1984 Page 10

fxaaple l.2.1:

If the Prolog system wants to close the currently opened
database it will send the following ibuffer:

I 2 I code
1-----+----------------------
1 O I arity of the code

Assuming that the operation was
relative identification number was
Scheduler would be:

I O I result
l-----+----------------------------
1 1 I relative identification
l-----+----------------------------
1 1 I last solution
l-----+----------------------------
1 0 I number of oblocks

Notes about the c1osedb operation:

sucessful and that
1, the answer of

1) This operation must be called in the end of the session.

its
the

2) This operation is not sucessful if there is no database
currently opened. Otherwise it is always sucessful.

l.l Retrieve

There are two types of retrieve: in the first one we want
to retrieve a certain relation table and in the second one we
want to access a tuple of a join of relations.

The syntax of this database question is the same in the two
above cases:

<code> : 3;
<arity of the code>: 2:
the first <iblock> specifies the names of the relations that are
involved in the database question; and
the second <iblock> contains the information supplied by Prolog
in order that the operation might be performed.

Interface Prolog-Unify October 1984 Page 11

Exaaple 3.3.1: (Retrieve without variables)

let us suppose that we have a database with facts about
persons and their addresses, thus the following table:

ADDRESS/2

I NAME I PLACE I
l------------+-----------------1
I Raf I Leuven I
I I I
I Jose I Heverlee I

Which is represented, in Prolog, by:

address(Raf,Leuven).
address(Jose,Heverlee).

The Prolog query: ?-address(Raf,Leuven). (is Leuven the
address of Raf?) would generate a database question, and the
following ibuffer would be sent to the Scheduler, through the
pipe-line:

I 3 I code
l---- -•------------------------
1 2 I arity of the code
l-- ---•------------------------
1 1 I arity of the iblock
l-----+---------------------
1 1 D I length
l-- ---•--------
1 1 I type
l-----+--------
1 a I
I d I
I d I
I r I
I e I
I s I
I s I
I / I
I 2 I
l-----+------------------------
1 2 I arity of the iblock
l-----+---------------------
1 4 I length
l--- --+--------
1 , I type
1-----+--------

Interface Pro1og-Unify

R I
a I

I f I
l-----•--------------------
1 1 I length
l-----•--------
1 1 I type
l-----•--------
1 L I
I e I
I u I
I V I
I e I
I n I

October 1984 Page 12

Assuming that the relative identification of this operation
was 1, the obuffer that Prolog would _e)6>ect, would be:

I O I result
l-----•-------------------------
1 1 I relative identification
l-----•-------------------------
1 1 I last solution
l-----•-------------------------
1 O I number of oblocks

Exa■p1e 3.3.2: (Retrieve with one variable)

In the same database, the Prolog query:
-?-address(Jose,_X).• (where does Jose live?) would generate the
following ibuffer to be sent to the Scheduler:

I 3 I code
l-----•---------------------------
1 2 I ari ty of the code
l-----•---------------------------
1 1 I arity of the iblock
l-----•---------------------
1 10 I length
l-----•--------
1 1 I type
l-----•--------
1 a I
I d I
I d I
I r I

Interface Prolog-Unify

I e I
I s I
I s I
I I 1
I 2 I
l-----•---------------------------
1 2 I arity of the iblock

l-----•---------------------
1 5 I length
l-----•--------
1 1 I type
l-----•--------
1 J I
I o I
I s I
I e I
l-----+--------------
1 2 I length
l-----•--------
1 J I type
l-----•--------
1 -1 I

October 1984 Page 13

In the
variable X
the query.

last <smallblock> the byte -1 represents the
of the Prolog query. It's value is thus the aim of

Therefore the obuffer for this query would be:

I O I result
1----- ♦---------- --------------

! 1 I relative identification
-----♦-------------------------

last solution
-----♦-------------------------

number of oblocks

-----+-------------------------
10 length

-----♦-----------------

-1 variable number
-----+----------------~

type

-----+-----------------
H

e
I/

e
r
1
e

e

Interface Pro1og-Unify October 1984 Page 14

Exaa p1e 3.3.3: (retrieve with a void variable)

Let us now suppose that in the former query Prolog was not
interested in the value of the variable X. This means that the
query would be: has Jose an address? and it could be written
in Prolog syntax: ·1-address(Jose,_).·

This difference would generate a ibuffer just like the
previous one but with the last <smallblock> modified in the
following way:

I 1 I length
l-----+---------
1 4 I type

The type 4 means a void variable, therefore the obuffer
with the answer just has to mention the result, the last
solution with the value 1. and the relative identification of
the process.

I O I result
l-----+-------------------------
1 1 I relative identification
l-----+-------------------------
1 1 I last solution
l-----+-------------------------
1 0 I number of iblocks

Exaap1e 3.3.4: (Retrieve of a join of relations)

Let us now suppose that in the previous database we have
also a table for the relation age':

AGE/2

\ name I age I
l-----------+-----------1
I Raf I 26 I
I I I
I Jose I 28 I

Interface Prolog-Unify October 1984 Page 15

The Prolog query: "?-age(Raf,_X),address(Raf,_Y)." (how
old is Raf and where does he live?) is in fact a join of two
database calls, so its ibuffer will have in the first iblock the
two relation names and in the second iblock their arguments, as
follows:

I 3 I code
l-----+---------------------------
1 2 I arity of the code
-----+---------------------------

2 arity of the iblock
-----♦---------------------

6 length
-----♦--------

1 type
-----+--------

a I
g I
e I

' I 2 I
-----♦---------------

10 length
-----+--------

type
-----+--------

a I
d I
d I
r I
e I
s I
s I

' I I 2 I
l-----•---------------------------
1 4 I ar i ty of the iblock
l-----•---------------------
1 4 I length
-----+--------

type
-----+--------

R

a

f

-----+---------------------
2 length

-----+--------
] type

-----♦--------

-1

-----+---------------------
4 length

Interface Prolog-Unify October 1984 Page 16

l-----+--------
1 , I type
l-----+--------
1 R I
I a I
I f I
l-----+---------------------
1 2 I length
l-----+--------
1 l I type
l-----+--------
1 -2 I

The obuffer for this query would be:

I O I result
l-----•-------------------------
1 1 I relative identification
l-----+-------------------------
1 1 I last solution
l-----•-------------------------
1 2 I number of oblocks
-----♦-------------------------

3 length

-----+-----------------
-1 variable number

-----+-----------------
2 type

-----+-----------------
26

-----+-------------------------
8 length

-----♦-----------------
-2 variable number

-----+-----------------
type

-----+-----------------
L
e
u
V

e

n

Notes about the retrieve operation:

1) The contents of the
retrieve operation.

database
This

remains
operation

unchanged after a
just accesses the

Interface Pro1og-Unify October 1984 Page t7

information stored in the database.

2) The variable numbers that appear in obuffer are the ones that
were sent to the Scheduler in the previous ibuffer.

3) When the retrieve represents a join
small blocks that appears inside
arguments of the relations involved

of database calls the
the second iblock are the
and they appear ordered.

4) The obuffer contains only the first solution to the database
query in order that Prolog might proceed with that solution.
However, the database system must continue, in parallel,
searching for the other solutions (if they exist) and must
store them (in a stack) because Prolog may need them on
backtracking. We will come back to this subject whe~ we
describe the database query backtracking.

5) When a query contains void variables the database system
doesn't have to retrieve their values. Therefore the obuffer
just has to contain the information about the result of the
operation. Note that queries with only void variables can
never be backtracked, so the database system must send always
the <last solution> with value 1 when all the variables in
the query are void.

3_4 Createre1ation

This question adds the specification of a database relation
to the schema of the database.

In fact, the Prolog system can only send to the Scheduler
the characteristics of the relation that are important in the
Prolog context. These characteristics are the name of the
relation, the number of fields that exist in the relation and if
there exists or not the possibility of having duplicate records
in the relaton table, ie, if the ·insert· operation of a record
that already exists in the database must be sucessful or not.

characteristics like the field names, the field types, the
primary keys, the indexes, etc, must be settled by default.

The syntax of this question is the following:

<code> = 4;
<arity of the code> = 1; and
the only existing <iblock> contains the characteristics of the
relation, more specifically, it will have-t.h..ree <smallblock>'s
that will have, in this order, the name of the relation, its
number of fields and the permission or not of duplicate records
in its table. ~ -------

Interface Prol09-Unify October 1984 Page 18

Let's now see the syntax of this question by means of an
example.

Exaaple l.4.1:

Suppose that
·person/2·, with
duplicate records.
following:

I 4 I code

we want to create a relation with name
two fields and without the possibility of

The corresponding ibuffer would be the

l-----+------------------------
1 1 I arity of the code
l-----+------------------------
1 3 I arity of the iblock
l-----+---------------------
1 9 I length
l-----+--------
1 1 I type
l-----+--------
1 P I
I e I
I r I
I s I
I o I
I n I
I I I
I 2 I
l-----•---------------------
1 2 I length
l-----•--------
1 2 I type
l-----+--------
1 2 I
l-----•---------------------
1 2 I length
l-----•--------
1 2 I type
l----- •--------
1 o I

Assuming that the operation was sucessful and that its
relative identification number was 1, the obuffer that the
Scheduler would sent in response would be:

I O I result
l-----•--------------------------
1 1 I relative identification

Interface Pro1og-Unify October 1984 Page 19

l-----+--------------------------
1 1 I last solution
l-----+--------------------------
1 0 I number of oblocks

Notes about the createre1ation operation:

1) The effect of this operation
ditionary, a definition of
characteristics.

is to create, in the data
a relation with the specified

2) This operation is unsucessful when there already exists a
definition for that relation in the data ditionary or when an
internal error occurs. In these cases the error code is
transmited to the Prolog system in <result>.

3) Remark that this operation changes the data ditionary by
adding new definitions to it. We can only insert information
in the table of a relation after creating its entry in the
data ditionary.

3.5 Insert

This is one of the simplest database queries because it has
no variables. Its syntax is the following:

<code>= 5;
<arity of the code> ; 2;
The first <iblock> specifies the relation name that is envolved
in the query; and
The second <iblock> contains the fields of the record that will
be inserted in the table of that relation name.

Note that this primitive will only add records to previous
existing tables. The role of creating new relations belongs to
the primitive "createrelation· (described in last section) and
not to "insert·.

Exa•p1e 3.5.1:

Suppose that, in the context of the previous examples, we
want to add to the database relation "address/2" the Prolog unit
ground clause: "address(Pol,Brussels)." which can be read as:
"the address of Pol is Brussels".

The ibuffer that the Prolog system would sent to the
Scheduler would be:

Interface Prolog-Unify

I 5 I code
l-----+--------------------------
1 2 I arity of the code
l-----+--------------------------
1 1 I arity of the iblock
l-----•---------
1 10 I length
l-----+---------
1 , I type
l-----+---------
1 a I
I d I
I d I
I r I
I e I
I s I
I s I
I I I
I 2 I
l-----•--------------------------
1 2 I arity of the iblock
l-----+-----------------
1 4 I length
l-----+---------
1 1 I type
l-----+---------
1 P I
I o I

1 I
-----+-----------------

9 length
-----+---------

type
-----+---------

B I
r I
u I
s I
s I
e I
l I
s I

October 1984 Page 20

Assuming that the operation was successful and that its
relative identification number was 1, the obuffer that Prolog
would get as answer would be:

I O I result
1-----+-------------------------

Interface Pro1og-Unify October 1984 Page 21

I 1 I relative identification
l-----•-------------------------
1 1 I last solution
l-----•-------------------------
1 0 I number of oblocks

Notes about the insert operation:

1) The contents of the database is changed if the insertion is
sucessful. Depending on the definition of the relation this
operation is successful or not if the record already exists
in the database. If an internal error occurs then its code
will be the value of <result>.

2) In the ibuffer of the insertion there are never variables
because in Prolog the external database can only contain unit
ground clauses. So the obuffer has always 4 bytes: the
<result>, the <relative identification> number, the <last
solution> with value 1 and O for the <number of oblocks>.

3) The first <iblock> of the ibuffer will always consist of only
one <smallblock>, that is, there are no joins for the insert
operation.

4) The arguments of the relations are always atoms, ie, there
can be no functors with arity greater than O inside those
arguments.

3.6 Delete

This operation is used to delete a record in a database
table. When it is called the record may or may not be
completely specified. In the later case the values of the
fields that were not specified must be returned to the Prolog
system. The syntax of this operation is the following:

<code> = 6;
<arity of the code> : 2;
the first <iblock> specifies the relation name that is involved
in the call; and
the second <iblock> contains the fields that will be deleted in
the table of that relation name.

Note that as far as Prolog is concerned it makes no
difference if we are deleting the last record of the relation,
and it will be empty from then on, or if we are deleting one of
its records and there will remain more others.

In fact, when the last record of a table is deleted, the
table remains existing. The role of deleting a table is
performed by "deleterelation· as we will see in the next

Interface Pro1og-Unify October 1984 Page 22

paragraph .

Exaap1e 3.6.1:

Suppose that, in the context of the previous examples, we
want to delete the information about the address of Raf but we
don't know what it is.

The ibuffer that would be sent to the Scheduler would be:

I 6 I code
l-- ---• ---------- --------- -- ---
1 2 I arity of the code
l-----•------------------------
1 1 I arity of the iblock
l-----•---------------------
1 10 I length
l-----•---------
1 1 I type
l-----•- ---- ----
1 a I
I d I
I d I
I r I
I e I
I s I
I s I
I I I
I 2 I
l----- •------------------- -----
1 2 I arity of the iblock
l-- ---•- ----------- ---------
1 4 I length
l-----•---- --- -
1 1 I type
l-----•--------
1 R I

I a I
I f I
l-----•---------------------
1 2 I length
l--- -- •------- -
1 J I type
l-----•--------
1 - 1 I

Assuming that the operation
relative identification number
would get as answer would be:

was sucessful and that its
was 1, the obuffer that Prolog

Interface Prolog-Unify

0 result
-----+--------------------------

relative identification
-----♦--------------------------

1 last solution
-----♦--------------------------

1 number of oblocks
-----+--------------------------

8 length
-----♦----------------

-1 variable number
-----♦----------------

1 I type
l-----•----------------
1 L I
I e I
I u I
I V I
I e I
I n I

October 1984 Page 23

If the Prolog system was not interested in the value of
variable -1. that means, if the Prolog query was: delete the
address of Raf whatever it is, then the ibuffer for this query
would be very similar to the one presented above with the only
exception that the last <smallblock> would be:

I 1 I length
l-----•--------
1 4 I type

The reason for this is that the variable is now void so it
doesn't matter what value it has. The obuffer, in this case,
would be much more simple:

I O I result
l-----+-------------------------
1 1 I relative identification
l-----•-------------------------
1 1 I last solution
l-----•-------------------------
1 0 I number of oblocks

Interface Prolog-Unify October 1984 Page 24

Notes about the deletion operation:

1) The contents of the database is changed if the deletion is
sucessful. This operation is not sucessful if the record
doesn't exist in the database. If an internal error occurs
its code will be sent in <result>.

2) In the obuffer of this operation there may exist values for
variables depending on the ibuffer transmitted before .

3) The first <iblock> of the ibuffer will
one <smallblock> because for this
joins of database calls.

always contain only
operation there are no

4) Remark the difference between the
previous example and the effect
obuffer of this operation.

two obuffers of the
of void variables in the

5) Remark also that the <last solution> in the obuffer of this
question is always 1 because the database system doesn"t
proceed in parallel with the Prolog system. It just deletes
the record and stops.

3.7 Deleterelation

This operation is used to delete completely a database
relation. In the answer for this query only the result is
important. When this query is performed Prolog has the warranty
that it can be done in order to prevent user"s mistakes. The
syntax of this question is the following:

<code> = 7;
<arity of the code> = 1; and
the only existing <iblock> specifies the name of the relation
whose table and entry in the data ditionary are going to be
deleted.

Example 3.7.1:

Let"s suppose that we have the previous database with the
two tables for the relations "AGE/2" and "ADDRESS/2" and that we
want to delete the first one. The ibuffer for this question
would be the following:

7 code
l--- --•- --------------------
1 1 I arity of the code
l-----+---------------------
1 1 I arity of the iblock
l-----•---------------------
1 6 I length

Interface Prolog-Unify

l-----+--------
1 1 I type
l-----+--------
1 a I
I 9 I
I e I
I I I
I 2 I

October 1984

Assuming that the operation was sucessful and that
relative identification number 1, the answer would
following obuffer:

I 0 I result
l-----+-------------------------
1 1 I relative identification
l-----+-------------------------
1 1 \ last solution
l-----+-------------------------
1 0 I number of blocks

Notes about the deletere1ation operation:

Page 25

it had
be the

1) The contents of the database is deeply changed if the
deleterelation is sucessful. This operation is not sucessful
if the relation doesn't exist in the database or if the user
has unsufficient priviledge (in Unix sense) for the
operation. If an error occurs its code will be sent in
<result>.

2) The obuffer for this question is very short and, in fact, the
only important part of it is the <result>.

3) Remark the difference between ·delete· and ·deleterelation·.
In the former case just a record is deleted and in the later
case the whole relation is deleted {both the table and the
entry in the data ditionary). Even when we delete the last
record of a certain relation with ·delete·, the table
continues to exist, ie, the relation is not deleted from the
database schema. However, when we use ·deleterelation· the
table and the name of the relation no longer exist, .ie, the
relation is deleted from the database schema.

Interface Pro1og-Unify October 1984 Page 26

l.1 Backtracking

As we have seen in the retrieve operation, the obuffer oi
that operation only contains.the first solution. However, as
there may be mare solutions, the database system will continue
in parallel searching for them. As they are found they are
stored in a stack and when Prolog asks for more solutions in
backtracking they must be given back to it.

This primitive "backtracking" is the one
solutions of a previous "retrieve". therefore
the Scheduler the relative identification
"retrieve· that is going to be backtracked.

that asks for more
it has to send to
number of the

The syntax for this operation is the following:

<code> = 8;
<arity of the code> = t; and
the only existing <iblock> specifies the relative identification
number of the operation to be backtracked (ie, it specifies in
what stack the solution is to be found).

Let's see how it works through an example.

Exa~p1e 3.8.1: (backtracking without void variables)

Let's now suppose that the relation "address/2" in the
database has the following table:

ADDRESS/2

I name I place I
l-- --- --- --•------- --- ---1
I Raf I Leuven I
I I I
I Jose I Heverlee I
I I I
I Yves I Heverlee I

Let's suppose also that a query
made asking for the people who
syntax: "?-address(_X,Heverlee)." .

to the database has been
live in Heverlee, in Prolog

The ibuffer of this retrieve would be:

I II, I code
l-----•-----------------------
1 2 I arity of the code
!-----+-----------------------

ln~erface Prolog-Unify

I 1 I arity of the iblock
l-----+---------
1 10 I length
l-----+---------
1 1 I type
l-----+---------
1 a I
I d I
I d I
I r I
I e I
I s I
I s I
I t I
I 2 I
l-----+-----------------------
1 2 I arity of the iblock
l-----+---------------------
1 2 I length
l-----+--------
1 3 I type
l-----+--------
1 - 1 I
l-----+---------------------
1 9 I length
l-----+--------
1 1 I type
l-----+--------
1 H I
I e I
I V I
I e I
I r I
I l I
I e I
I e I

October 1984 Page 27

The answer that Prolog would get, assuming that this
retrieve operation had relative identification number 2, would
be the following obuffer:

I O I result
l-----+-------------------------
1 2 I relative identification
l-----+-------------------------
1 0 I last solution
l-----+-------------------------
1 1 I number of oblocks
l-----+-------------------------
1 5 I length

Interface Prolog-Unify

l--- --•-------- --- --- ---
1 -1 I variable number
l-----•-----------------
1 1 I type
l-----+-----------------
1 J I
I o I
I s I
I e I

October 1984 Page 28

After this obuffer is sent to Prolog the database system
proceeds and finds the other solution and stores it in a stack.

In the meantime
first solution and
of backtracking that
previous retrieve.
Scheduler would be:

I 8 I code

the Prolog system continues to run with the
let's now suppose that it has the necessity
query. So it needs another solution of the

The ibuffer that Prolog would send to the

l-----+- -----------------------
1 1 I ar ity of the code
l-----+------------------------
1 1 I arity of the iblock
l-----+---------------------
1 2 I length
l-----+--------
1 2 I type
l-----+--------
1 2 I

When it receives this message, the Scheduler has to see if
it has any solution left in the stack of the relative
identification number 2. Let us now suppose that the Scheduler
has already the solution with variable -1 instantiated with
·Yves· and that it knows that it is the last solution, therefore
the answer to this query is the following obuffer:

I O I result
l-----•-------------------------
1 2 I relative identification
l-----•-------------------------
1 1 I last solution
l-----•-------------------------
1 I number of oblocks

Interface Pro1og-Unify

-----♦-------------------------

6 length
-----♦-----------------

-1 variable number
-----♦------- - ---------

type
-----♦-----------------

y

V

e
s

October 1984 Page 29

Let's now suppose that, in the later case, the Scheduler
doesn't know yet that "Yves· is the last solution of the query
then in the obuffer the position <last solution> would be 0, and
let's suppose also the Prolog system backtracks again to the
retrieve query. The following ibuffer would be sent again to
the Scheduler:

I 8 I code
l-----•--------------------------
1 1 I arity of the code
l-----•--------------------------
1 1 I arity of the iblock
l-----•---------------------
1 2 \ length
l-----•---------------------
1 2 I type
l-----•---------------------
1 2 I

Now, the Scheduler finds that the stack of the relative
identification number 2 is empty, therefore there are no other
solutions. So the following obuffer would be sent to the Prolog
system:

I -1 I result
l-----+-------------------------
1 2 I relative identification
l-----+-------------------------
1 1 I last solution
l--- --•------------------------ -
1 O I number of oblocks

Interface Prolog-Unify October 1984 Page 30

Example l.8.2: (backtracking with void variables envolved)

When there are void variables envolved the obuffers that
the Scheduler sends to the Prolog system are shorter.

If, in the previous example the variable envolved
then the ibuffer of the initial retrieve would
following <smallblock> to represent the void variable.
place of the one where variable Xis specified:

I 1 I length
l-----•------ ---
1 4 I type

The obuffer would then be the following:

I O I result
l-----•------ ------- ------------
1 2 I relative identification
l-----•-------------------------
1 1 I last solution
l-----•-------------------------
1 O I number of oblocks

was void,
have the

in the

When there are only void variables there are never
backtracking, so the former obuffer would be sent in response to
the initial retrieve and Prolog would never backtrack that
relative identification.

Notes about the backtracking operation:

1) The only backtrackable operation is the retrieve so the
relative identification that will be sent to the Scheduler
must correpond to a previous retrieve. If it doesn't the
response of the Scheduler must have result unsucessful.

2) The Scheduler must keep the variable numbers of the
operation because it has to sent them back
backtracking obuffer.

retrieve
in the

3) The backtracking operation doesn't imply necesseraly an
access to the database. The Scheduler just has to consult
the stack that corresponds to the relative identification he
received .

Interface Prolog-Unify October 1984 Page 31

3.9 Cut

This is the simplest database query. It means that Prolog
will never use again the stack of a certain relative
identification so the Scheduler may discard it. Its syntax is
the following:

<code> = 9;
<arity of the code> = 1; and
the only existing <iblock> specifies the relative identification
of the operation whose stack is no longer needed.

Example 3.9.1:

In the context of the two previous examples let us now
suppose that after the first retrieve the Prolog system sends to
the Scheduler the following ibuffer:

I 9 I code
l-----+------------------------
1 1 I arity of the code
l-----+------------------------
1 1 I arity of the iblock
l-----+---------------------
1 2 \ length
l-----+---------------------
1 2 I type
l-----+---------------------
1 2 I

After receiving this buffer the Scheduler just has to
discard the stack corresponding to the relative identification
number 2 and, if necessary, to stop its corresponding search.
The obuffer that Prolog will get is:

I O I result
l-----+-------------------------
1 2 I relative identification
l-----+-------------------------
1 1 I last solution
l-----+-------------------------
1 0 I number of oblocks

•

Interface Prolog-Unify October 1984 Page 32

Notes about the cut operation:

1} The only possibility
concerns the cut is
relative identification
retrieve operation.

of unsucessful operation in what
a wrong relative identification, ie, a
that doesn't correspond to a previous

2} The cut just like the backtracking operation has only effect
on relative identifications of previous ·retrieves·.

l) This operation
just has to
identification
search .

doesn't need a database access. The Scheduler
discard the stack of the specified relative
and, eventually, to stop its corresponding

•

Interface Prolog-Unify October 1984 Page 33

4~ Bibliography

<Ven84> Venken, R.
interaction
system,

and Adler, H. D . , Report DB 1 and 062: the
between Prolog and a relational database

internal LOKI report (ESPRIT pp 107), feb 1984 .

