
BIM-PROLOG

Joint Project between
BIM
and

Department of Computer Science
Katholi eke Universiteit LEUVEN

Sponsored by DPWB/SPPS
under grant nr KBAR/SOFT/1

Tc PU/ IC tV./ /(. IJIT.

Canpilation of WIC to Assembler

* BIM
Kwikstraat 4
B-3078 Everberg Belgium
tel. +32 2 759 59 25

by
Herman CRAl.WELS *

Internal Rerx>rt
BlM-prolog- IR.11

April 1985

** Katholiek.e Universiteit 1.ewen
Department of Canp.iter Science
Celestijnenlaan 200A
B-3030 Heverlee Belgium
tel. +32 16 20 06 56

DPWB = Diensten van de eerste minister: Prograrrmatie van
het Wetenschapsbeleid.

SPPS = Services du pranier ministre: Prograrnnation de la
Politique Scientifique.

,.

+---•
COHPILATION OF

WIC
TO ASSEMBLER

•---+

Herman Crauwels

BIM

ABSTRACT

This paper describes how WIC can be converted to VAX assem
bly code. The resulting code can be directly executed
without an interpreter. Several optimizations in the assem
bly code are discussed. Problems concerning the integration
of the code for the builtin predicates are mentioned. In
the last section some *improvements· for the interpreter are
suggested.

-- 1 --

1. Structure of the compiled program.

A prolog program is converted to a WIC file, which can be
interpreted. This interpretation is now skipped by converting the
WIC file into an executable program. Host modules of this program
are more or less identical to modules in the interpreter. The
main module is simplified and the interpreting module is changed
to a routine called ·query·:

jmp_buf kern_env; /* global variable*/

main()
{

}

query ()
{

initializations():
if (setjmp(kern_env) -- O)
{

query(l;
exit (o l ;

}

else
exit (1 l ;

/*initializations*/
jump to STARTQUERY
I* compiled static code*/
/* dynamic code is not allowed*/

STARTQUERY:
/* compiled query*/

}

The query routine is constructed from the WIC code file by
translating each WIC instruction into a set of assembler instruc
tions.

The general structure of such a set is:

copy arguments to predefined places
registers six and seven

jump to local subroutine
corresponding to the WIC instruction

The subroutines for some WIC instructions are so small that
inline substitution is more efficient both in space and in time
(e.g. most PUT-instructions). Other WIC instructions must be
translated in line because a subroutine would give very compli
cated code (e.g. SWITCH_ON_TERH).

-- 2 --

2. Usage of hardware registers .

Before the code of the differe~t WIC instructions is described,
a summary is given of used hardware registers.

The value fields of the E, Hand A WIC registers are stored in
the general registers three, four and five:

value field of E register (_E+4)
value field of H register I_H+4)
value field of A register I_A+4)

= r3
= r4
= rs

Each time evalpred is called these three registers are saved on
the machinestack by a "pushr" instruction.

The B WIC register can not be put efficiently in a general
register because it must be available in the routine "falen".
This can not be guaranteed with the save mechanism used for r3,r4
and rS:

query
{

}

evalpred
{

}

falen(I
{

}

pushr r3,r4,r5
evalpred(I
popr r3,r4,r5

falen()

B must be accessible

reset r3,r4,r5 from information kept in choicepoint

In the routine "falen· B cannot be popped from the machine stack
because nobody knows in which frame on the machine stack Bis
saved.

In stead of saving the B WIC register on the machinestack, it
can also be copied in a global variable before each call to
"evalpred" and restored after the return but this seems to give
too much overhead.

The P and CP WIC registers are not used very frequently in the
generated assembler code; no hardware registers are reserved for
them.

What to do with the remaining two registers (HB and TR) is not
yet decided.

-- 3 --

Register 6 and 7 (r6 and r7) are used to store the first and
second argument (if any) before a local subroutine call is made.

UNIFY instructions have at most one argument. So register seven
(r7) is used to temporarily store the value field of the S WIC
register.

The startaddresses of the Aregister and Xregister areas are put
in registers 8 and 9 (re and r9l.

moval
moval

_Aregister+8,r8
_xregister+8,r9

3. The generated code.

3.1. Inline substitutions.

3.1.1. PUT-instructions.

The put_constant (int and real) is the simplest one. The type
field of the Aregister gets the type. For integers the integer
value itself is put in the Aregister. For reals end constants a
pointer to the value is put in the Aregister. For example:

movb
moval

$106,(r8)
_ct+8,4(r8)

The put_yvar instruction initializes the Aregister in the same
way, but it also ·undefs" the variable in the environment:

movb
moval
movl
movb

$109,(r8)
16 (r3) , r0
r0,4(r8)
$103, (r0)

r3 = _E+4

The put_xvar and put_void instructions are very analogous.

In the put_list instruction the value field of the Aregister is
initialized with the heap pointer. Also the global variable
·mode" must be set to WRITE (1).

movb
movl
cvtlw

$101, (r8)
r4,4(r8)
$1 ,_mode

The put_structure instruction does the same and also sets the
pointer to the structure on the heap.

-- 4 --

movb
movl
movl
moval
cvtlw

$102, (r8)
r4,4(r8)
$110,(r4)+
_ft+BO, (r4)+

S 1 ,_mode

3.1.2. UNIFY-instructions.

After a put_list and a put_structure instruction the unify_mode
is always WRITE and it does not change during a unify_list of
unify_structure instruction. With this knowledge the code genera
tion of some unify instructions can be somewhat optimized. These
instructions are:

unify_constant
unify_int
unify_real

unify_yvar
unify_xvar
unify_void

In stead of inserting the complete code for the instruction and
doing the ·mode· test at runtime, only the code for the WRITE case
is generated. This code is very similar to code described in the
previous section about the PUT-instructions.

3.1.3. SWITCH_ON_TERH-instruction.

The switch_on_term instruction has four parameters: the
addresses of WIC instructions where execution can start if the
first Aregister has a specific type. These four addresses are
translated into labels in the assembler code. Some of the
addresses can be zero, but that does not matter; the label can
still be generated. The testing of the type is done with a
·caseb· instruction.

-- 5 --

1 :

2:

1 :

SxSO:

S><Sa 1:

S><Sa2:

S><Sa3:

SxSa4:

moval
jbr

movl

cmpb
jeql
caseb

.word

.word

.word

.word

. word

.word

.word

.word

calls

I code

I code

code

I code

I switch on term a1 a2 - -
I r8 l, r6
2f

4 I r6 l , r6

(r6),$109
1b
(r6) ,$100,$7

S><Sa2-1b I type =
SxSa3-1b I type =
SxSa4-1b I type =
S><Sa1-1b # type =
SxSa1-1b # type =
SxSa1-1b I type =
SxSa2-1b I type =
SxSa2-1b I type =

$0,_falen

if first A register has

if first A register has

if first A register has

if first A register has

a3 a4

INT
LIST
STRUCT
UNOEF
KREF
SREF
CONST
REAL

type UNOEF

type CONST, REAL or INT

type LIST

type STRUCT

Although cases KREF and SREF are mentioned in the test because
of the structure of the ·caseb" instruction, the first argument
can never have those types.

3.1.4. Other instructions.

The code for some WIC instructions is small and can be directly
inserted.

-- 6 --

•

PROCEED :
jmp

ALLOCATE :
movb
movl
movl
movl

EXECUTEE :
pushr
pushl
pushl
calls
popr
movb
jmp

EXECUTEC :
movb
jmp

CALLE

INIT

JUMP

pushr
pushl
pushl
calls
popr
movb

movb

jmp

*_CP+4

_E, (r5)
r3,4(r5)
_CP+4,12(r5)
r5,r3

$824
$-3
$number_of_builtin_predicate
$2,_evalpred
$824
$70 ,_E
*_CP+4

$70 ,_E
$procedure

$824
Snumber_of_permanent_variables
$number_of_builtin_predicate
$2,_evalpred
$824
$70 ,_E

$103,address_of_permanent_variable

$instruction after orlist - -
The ·retry· instructions must only substitute the "alternative·

field in the choicepoint:

movl
moval
movb

_8+4,r1
$alternative,12(r1l
$78,_E

The reset of the A register is already done in the routine
"falen".

The "try_me_else· and "try· instructions are translated into a
procedure call to ·s_createchoice·. The update of the 8, HB and A
register is also done in that routine.

3.2. Subroutines.

3.2.1. GET, PUT and UNIFY -instructions.

All GET instructions are translated to a subroutine call. The
UNIFY instructions are also translated to a subroutine call when
it can not be determined at compile time that only the WRITE unify
case is needed. This is after a get_list or get_structure

-- 7 --

instruction. The put_yval, put_xval and put_unsafe instructions
do a lot of testing; so a subroutine is needed because of space
optimizations. Before the subroutine call is made register six
and if needed register 7 are initialized to the arguments of the
instructions.

If the instructions uses a Aregister, its address is put in
register 7:

moval (r8),r7 # if Aregister[1]

The first argument or a reference to it is put in register 6
depending on the type of that argument:

type =
type =
type :::

type =
type ::

type =

INT
REAL
CONST
STRUCTURE
permanent
temporary

movl
moval
moval
moval
moval
moval

Svalue,r6
address_to_the_real,r6
address_to_table_of_constants,r6
address_to_table_of_functors,r6
16(r3),r6
(r9),r6

In the subroutine itself the necessary tests and moves are per
formed using registers 6 and 7. A side-effect is that some sub
routines implementing a WIC instructions are identical:

PUTxval -- PUTyval
GETxvar -- GETyvar
GETxval -- GETyval

3.2.2. Other instructions.

The ~ortry· instruction is translated into a subroutine call
because before the call to ·s_createchoice· the update of the A
register must be done and this takes a few instructions.

movl
moval
jsb

$length_of_environment,r6
alternative,r7
ORtry

The "trust· instructions are converted to a subroutine call
because there are no arguments. It thus takes just one line of
code.

Also the lastcut instruction is converted to a subroutine call
with no arguments.

The "callc" instruction has two arguments. The first argument,
a reference to the procedure that is called, is put in _P+4. The
second argument, the length of the environment is put in r6. Also
the continuationpointer CP must be set. In stead of a normal sub
routine call, here a jump is made to the subroutine. This is done
because the return from Calle will be done using the continuation
pointer.

-- 8 --

1 :

movl
moval
moval
jmp

$length_of_environment,r6
1f,_CP+4
$procedure,_P+4
Calle

Oealexc and dealexe are translated in the same way.

OEALEXC

DEALEXE

moval
jmp

movl
jmp

$procedure,_P+4
OEalexc

$number_of_builtin_predicate,r6
OEalexe

4. Generation of labels.

There are several places where labels must be inserted in the
assembler code:

The code of each prolog procedure starts with a label which is
the concatenation of an underscore (_), the name of the predi
cate and the arity of the predicate. These labels are used by
the CALLC, OEALEXC and EXECUTEC instructions.

Remark. If the name of the predicate does not start with an
alphabetical character, a unique label of the form "PROnumber·
is generated.

2 The addresses of the SWITCH_ON_TERH instruction are translated
to labels of the form

·s· - ·number_1· - ·s·-·number_2·

'Number 1· is the instruction address of the SWITCH_ON_TERH.
'Number _ 2· is one of the four arguments of the SWITCH_ON_TERH.
For example:

at address 453 : SWITCH_ON_TERH 454 455 463 0

----> S453S454
S453S455
S453S463
S453SO

3 The addresses used in the TRY_HE_ELSE, RETRY_HE_ELSE,
TRUST_HE_ELSE sequence are translated into '9f' labels:

-- 9 --

9:

9:

g:

address_1 TRY_ME_ELSE address_2 n
create choicepoint
choicepoint.alternative = 9f
code for the first alternative

address_2 RETRY_HE_ELSE address_J
choicepoint.alternative = 9f
code for the second alternative

address_n TRUST_ME_ELSE
remove choicepoint
code for the last alternative

4 The addresses used in TRY, RETRY, TRUST and ORTRY, ORRETRY and
JUMP are converted to a label that has the same form as in the
SWITCH_ON_TERH instruction, except the the ·s· is replaced by a
. J •.

5. Implementation of the backtrack operation.

In the startup code of the query routine, the current frame-,
argument- and stackpointer are saved in a global variable
"back_buf". Each time backtracking is initiated in the routine
"falen·, these three registers are restored and then a jump is
made to the code in the query routine. To what code is jumped, is
determined by the alternative field in the choicepoint.

6. Optimizations in the code.

In the code the C-compiler generates for the WIC instructions
some parts can be optimized:

REF - SREF - KREF :
These three types have now all the same value, REF. This

means that during dereferencing only one value must be
tested instead of three.

the copy of a real:
The "prs_move· macro tests the type of the item being

moved and uses different statements for the move of a real
or that of another type. When these C-statements are com
piled into assembler instructions, there is no real differ
ence between the move of a REAL value and another value. In
both cases four bytes must be moved from one place to
another. So during the translation of WIC to assembler this
test on the type is not made and the move is always done

-- 10 --

with a "movl" instruction.

the tests to reset:
Addresses are put on the trail stack if one of the fol

lowing two situations holds:

the address points to an item on the heap stack older
than the item to which HB points

cp_morerecent(HBval,addressl
&& cp_morerecent(address, cp_bodem-1))

the address points to an item on the local stack older
then the current choicepoint

s_morerecent(Bval,address)
&& s_morerecent(address, s_bodem)

The C compiler generates for these four tests
is stored in a local variable -8(fp)):

address

cmpl _B+4,-8(fp)
jleq 1 f
cmpl -8 (fp I ,_s_bodem
jgtr 2f

1 : cmpl _HB+4,-8(fp)
jleq 3f
sublJ $8 ,_cp_bodem, rO
cmpl -8(fp),r0
jleq 3f

2: movl _TR+4,r0
movl - 8 (fp I , 4 I rO)
subl2 $8 ,_TR+4

3:
next instruction

With WIC to assembler this becomes (address is stored in
r7):

cmpl _HB+4,r7
jgtr 3f
cmpl r7 ,_s_bodem
jlss 6f
cmpl _B+4,r7
jlss 6f

3: movl _TR+4,r0
movl r7,4(r0)
subl2 $8,_TR+4

6:
next instruction

The test on ·cp_bodem-1· disappears because it always
succeeds if HBval is morerecent than "address·.

-- 11 --

save-restore argumentregisters in choicepoint
The C-compiler generates here very inefficient code. In

the. assembler version the autoincrement addressing mode is
used. For example, in ·s_createchoice· the argumentregis
ters are saved in the choicepoint:

addl3 $56,r5,r1 • r5 - - A+4 -
moval _Aregister+8,r0
movl $1,r11
jbr 1f

2:
movq (rO)+, (r1)+ I move quadword (8 bytes)
incl r 11

1 :
cmpl r11,4(ap) # the number of registers

that must be
jleq 2b

As a side effect register 1 has at the end
the new value for the local stackpointer (A).
preter however A is calculated:

A< - B + length_choicepoint

saved

of the loop
In the inter-

For restoring, the roles of register zero and one are
interchanged.

falen_unif:
Each call of "falen_unif" is changed to a direct call of
·falen·.

Initialization of S register:
In stead of calling the routines "sinit" or "linit", the

contents of register six or seven (possibly incremented with
8) is moved to _S+4.

resetting variables:
In "falen· the procedure call "r_varreset· is replaced by
the body of the routine.

adding elements to the heap stack:
The explicit increment of the heap pointer is changed to

an implicit one by using the autoincrement addressing mode:

INTERPRETER
movl
movb
movl
addl2

_H+4,r4
$type, (r4)
$waarde,4(r4)
$8,_H+4

calculating A:

COMPILER

movl
movl

$type,(r4)+
$waarde, (r4)+

In the ·ca11· instruction the A register gets a new
value, either ·E+length_environment" or
·a+length_choicepoint·. The second one takes some assembler
instructions to be calculated:

-- 12 --

movl _8+4,rO
cvtbl (rO),rO
ashl $3,ro.ro
addl2 _8+4,rO
movl rO ,_A+4

This calculation can be done once during the creation of the
choicepoint and stored some where (e.g. in the first four
bytes of the B register). Each time the value
"B+length_choicepoint" is needed it can be found in the B
register.

In the first "CALLC" instruction after an "ALLOCATE", it
is known at compile_time that the new value for A is
"E+length_environment·. The test to see what is more recent
(E or B) can be omitted. The code for such a first CALLC
can be substituted in_line:

1f ,_CP+ 4 moval
movb
addl3
jmp

$70 ,_E
$length_environment,r3,r5
_name&arity_predicate

1 : # next WIC instruction

the cutflag:
The cutflag is stored in the type field of the E regis

ter. Each ALLOCATE instruction copies the flag to the top
of the local stack (the place to which the A register
points) . So the following sequence of instructions is fre
quently used:

30 try_me_else 54 2

set cutflag
3 1 allocate

copy cutflag

or

38 callc 80 3

set cutflag
80 allocate

copy cutflag

on movb

movb

off movb

movb

$78,_E

_E, (r5)

$70 ,_E

_E,(r5)

By storing the cutflag on top of the stack in stead of in
the E register, the copy in the ALLOCATE instruction can be
skipped.

30 try_me_else 54 2

set cutflag on
31 allocate

or

movb $78, (r5)

-- 13 --

36 callc 60 3

set cutflag off
80 allocate

movb $70,(rSl

There are cases where the cutflag is set and directly
thereafter reset. For example:

10 try_me_else 14 J

set cutflag on
13 executec 80

set cutflag off

movb

movb

This is when after the "try_me_else·
(also "try· and "retry") no ALLOCATE
The "set cutflag on· statement can then

The saved cutflag in a choicepoint
restored. So there is no need to save
tion of the choicepoint.

The cutflag is not changed during the
DEALEXE instructions .

save-restore registers:

$78,(rS)

$70,(rSl

and ·retry_me_else·
instruction follows.
be omitted.

is never used or
it during the crea-

CALLE, EXECUTEE and

When two builtin predicates
each other, the • save-·
statements between the the

are called immediately after
and ·restore hardware register·

two calls can be dropped:

movl
pushr
pushl
pushl
calls

pushl
pushl
calls
popr
movl

r4 ,_H+4
$824
Snumber_of_permanent_variables
Snumber_of_builtin_predicate
$2,_evalpred
popr $824
movl _H+4,r4
movl r4,_H+4
pus hr $824
Snumber_of_permanent_variables
Snumber_of_builtin_predicate
$2,_evalpred
$624
_H+4,r4

7. Optimizations in WIC.

7.1. The put_unsafe.

The sequence of tests to see if a permanent variable is unsafe
is changed:

-- 14 --

The interpreter:

if (s_onadres(address)
~~ s_morerecent(address, E_register)
~~ address->type == UNOEF)

address points to an unsafe variable:
else

if I address->type == UNDEF)
A_register = REF , address;

else
A_register = *address;

Compiled:

if address->type == UNDEF)
if (s_morerecent(address, E_register))

address points to an unsafe variable;
else

A_register = *address;
else

A_register = REF , address;

The test ·s_morerecent" contains implicitly the test •s_onadres·.

If "address· points to an unsafe variable, the variable is
copied to the heap and the A_register gets a pointer to that heap
location. The unsafe location itself is not changed, so its
address is not put on the trail stack. If the variable is also
needed in another A_register, it can not be done by a "put_yva1•
instruction. In stead the first A_register (containing the unsafe
variable) is copied into the second A_register. Thus the sequence

put_unsafe
put_yval

is changed into

put_unsafe
move_areg

Y3,A1
Y3,A2

Y3,A1
A1,A2

For a unify_yval after a put_unsafe the argument for the sub
routine performing the unify_yval is the address of the
A_register, initialized in the put_unsafe instruction.

7.2. Generalization of move_areg.

If the same variable (permanent or temporary) is needed in two
or more A_registers for a call, the second and following put
instructions can be changed into move_areg's:

put_yvar YJ,Al
put_yval YJ,AJ --- > move_areg A1,A3

-- 15 --

In
tions
value:

put_yval YJ,A1
put_yval YJ,AJ ---> move_areg A 1, AJ

put_xvar XJ,A1
put_ xval XJ,AJ ---> move_areg A 1, AJ

put_ xval X3,A1
put_ xval XJ,AJ ---> move_areg A 1, AJ

the first call after the get_ instructions
can be skipped because the A _register

get_yvar Y4,A1
get _ yvar Y2,A2
get_yvar YJ,AJ
put_yvar YS,A1

put_yval Y2,A2
put_xvar X1, AJ
callc ...

can be skipped.

some put instruc-
has still the good

In other cases put instructions can be changed to move_areg's,
from A_registers which are not yet overwritten:

get_yvar Y2,A1
get_yvar Y3,A2
get_yvar Y4,AJ
put_yval YJ,A1
put_yval Y4,A2
callc . ..

--->
--->

move_areg A2,A1
move_areg A3,A2

7. 3. Deterministic calls.

If an argument in a call is a
corresponding to that call have
then not all alternatives must be
stant" argument is equal to the
ple:

fact(a, b).
fact(a, c).
fact(a, d) .
fact(a, e).

?- fact(_><, d),

constant, and all predicates
a constant in the same argument,
tried but only those whose ·con
constant in the call. For exam-

That call of "fact· can directly jump to the third alternative
without creating a choicepoint.

If the ·constant" argument of several predicates match then the
call must be replaced by a ·try - retry - trust· sequence.

-- 16 --

7.4. Input-output mode declarations.

If the mode of an argument is known at compile-time then a
specific · input/output WIC instruction could be generated. The
pseudo C-code for these specific instruction can be very simple
because no testing on the mode must be done at run-time. Exam
ples:

get_yvar_output Y2,A1

get_yvar_input Y2,A1

Y2.type = REF
Y2.value = A1.value

Y2.type = Al.type
Y2.value = A1.value

In these two instructions the dereferencing of A1 is postponed
until later.

put_yval_output Y2,A1 if Y2.type -- REF
At.value = Y2.value

else
At.value = address of Y2

At. type = REF

Y2 is dereferenced because it possibly can disappear by trimming.

put_yval_input Y2,At

unify_xvar_input Xt

unify_xval_output X1

At.type= Y2.type
At.value= Y2.value

X1.type = S->type
X2.value = S->value
S++;

H->type = X1.type
H->value = Xl.value
H++;

A little bit more difficult is the get_list_input because the
argument can be the empty list in which case the instruction must
fail:

get_list_input At a= deref(A1)
if a.type != LIST

falen (l :
else

-- 17 --

S = a.value
mode= READ

8. Builtin predicates.

With builtin predicates, there are two main problems. The
first problem is that some builtin predicates can not be imple
mented. The second concerns the compilation of the "startup.a"
file.

The code of a few builtin predicates can not be copied from the
interpreter version to the compiler version.

1 The predicates ·clause·, ·dump· and ·1isting· consult the code
table. Because in the compiler version this table does not
exist, these predicates are not available.

2 The predicates "assert·, ·retract", ·retracta11·, ·consult· and
·reconsult· update the code table. Again this is not possible
in the compiler version .

3 The predicates using the metacall t·ca11·, "not· and "bagof")
are partially integrated in the compiler version. However
·bagof· uses ·assert· and ·retractall" and therefore it can not
be called.

4 All functors in the functor_table have type ·uNSPEc·. So the
·builtin· predicate would always return FALSE and therefore is
not implemented.

The assembler generator converts one WIC code file to one
assembler file. This assembler file contains one big routine,
·query". It is not possible to convert two or more WIC code files
to one assembler file. So it is not possible to use the builtin
predicates that are defined in the "startup.pro" file.

8.1. The metacall.

The builtin "ca11· can be used in the compiler version. When
the argument is a simple structure the implementation is straight
forward. For "and·- and ·or"-lists, something must be found to
compile the ANALYSE_ANDLIST and ANALYSE_ORLIST cases of the inter
preter.

In stead of generating the normal code for calling a builtin
predicate, some specific code is produced:

set the CP register to the next WIC instruction
save r3,r4,r5 in the global variables E, H, A
{normally they are pushed on the stack)
call directly ev_call
restore r3,r4,r5
jump to the address found in the P register

In the "ev_ca11· routine the A register is updated and the
address of the prolog procedure that is called, is looked up in

-- 18 --

the symboltable of the loadmodule and put in the P register. For
efficiency reasons, this address is also stored in the entry of
the procedure in the functor table and the type of the entry is
changed to ·srAr·. (So if the procedure is called again at a
later time, its address must not be looked up in the symbol table
but can be found in the functor table).

At initialization time (in the routine ·main·), the file
·euILTIN_PRo· is read and the functortable is extended with the
names of the builtin predicates. With this information it is pos
sible to use the metacall with a builtin predicate as argument.

When the argument of the metacall is an ·and-· or ·or-list·,
some special WIC instructions are used:

ANALYSE_ANDLIST
ANALYSE_ ORLIST

These two WIC instructions are converted to assembler routines
and added to the set of expanded WIC routines. When the metacall
of an and-list is executed, one sets the continuation pointer CP
to the address of the ANALYSE_ANDLIST routine and calls recur
sively ·ev_metaca11· for the first argument:

call((At , A2))
--> routine ev_call

<--

ev_metacall((At , A2))
--> routine ev_metacall

it is an andlist

<--

CP <- ~ANALYSE_ANOLIST
Aval+VERVOLG <- A2
ev_metacall(At)
--> routine ev_metacall

P <- At
<--

jmp *P

With the ·jmp· instruction the execution of the first argument
starts. This execution ends with:

jmp *CP # CP points to the ANALYSE_ANDLIST routine.
ANALYSE_ANOLIST:

pick up A2 from Aval+VERVOLG
ev_metacall(A2)
--> routine ev_metacall

P <- A2
<--
jmp *P

and the execution of the second arguments starts
For an orlist the sitation is very analogous. In this case the

address of the ANALYSE_ORLIST routine is stored in the alternative
field of the choicepoint.

-- 19 --

8.2. The linker.

To be able to use the builtin predicates that are defined in
the ·startup.pro" file, a "linker· was written. This "linker·
concatenates several WIC code files to one WIC file. (Starting
from this one big WIC file assembler ca~ be generated). During
this concatenation several addresses must be changed:

One "constant· table is built from the ·constant· tables of
each WIC file. This means that in the code each reference to
the ·constant" table must be changed.

The same goes for the "functor· table.

Local references to instructions are changed into global ones
by adding the sum of the lengths of the code of the already
processed files:

file1.o
file1.o

length of static code= 76
length of static code= 123

All references in file3.o are incremented with 199 .

Some external references (CALLU, DEALEXU, EXECUTEU) can be
resolved. For example: if file1 .pro contains a call to a pro
cedure that is defined in file2.pro

file1.pro:
a :- b(_x),

put_xvar _x Al
callu b 1

file2.pro:
b(_x) :- c(_x),

then in the output file of the "linker·, the CALLU instruction
is changed to a CALLC instruction.

9. Results.

The compiled WIC code is tested on three programs:

rever:
a program that builds a list of 100 elements, reverses the list
and counts the number of elements in the reversed list.

relat:
a program that looks up all possible relations (father, son,
brother, nephew, ...) of a man with members of his family.

-- 20 --

..

permu:
a program that generates all permutations of a list of eight
(8) elements.

In the table below the execution times (user and system) of
these programs are given both for interpretation and compilation.
The user time of interpretation when all predicates are declared
to be dynamic is given between parentheses. The column labeled
with "subrout" gives the number of local subroutines that where
called in the compiled execution. This number of subroutines
gives an idea of how many WIC instructions are executed. The
column labeled with "falen" gives the number of times the routine
"falen· was called. This is the number of times backtracking
occurred.

subrout falen compilation interpretation

rever 41765 , 0, 2. 1 u 2.0s 7. 1 u 1 . 4 s 12.2ul

relat 100838 73442 12. 1 u 2.4s 40.5u 3.4s 41. 4u l

permu 796772 46234 35.4u 3. 1 s 117. Ou 2.Bs (129.0u)

opt1 32515 101 1 . 4 u 1 . 5 s

opt2 33053 23078 4.4u 1 . 7 s

opt3 265600 46234 23.Ju 2 . 6s

The entry "opt1" is the reverse program whereby optimized A_
and X_ register allocation is done. The entry "opt2" is the rela
tions program with deterministic calls. The entry ·optJ" is the
permutation program whereby specific assembly code is generated
for input and output arguments.

The "opt1" and "optJ" program give an improvement factor of 5
(1 ! !) between the compiled and interpreted version; "opt2" approx
imates an improvement factor of 10.

10. Suggestions for the interpreter.

10.1. The trail stack.

The type field of an entry in the trail stack is never used .
The structure of the trail can thus be changed:

-- 21 --

struct trail
{

char *tr_address;
} ;

There is also no need to locate the trailstack between the heap
and the local stack. As a consequence the heap has then a con
stant upper bound ("st_midden·1 in stead of the variable TR regis
ter.

10.2 . Types and unifymode.

Several switch statements in the C code have cases for INT,
REAL, CONSTANT, LIST, STRUCTURE and UNDEF but not for SREF, KREF
and REF. Therefore it seems natural to rearrange the numerical
values assigned to types and give consecutive values to the types
used in switch statements:

INT 100
REAL 101
CONST 102
LIST 103
STRUCT 1 0 lo
UNDEF 105
FUNC 106
SREF 1 07
KREF 108
REF 109

As everybody knows, the types SREF, KREF and REF should be the
same.

In stead of using a switch statement for
unify instructions an if-then-else can be
guaranteed that ·mode" is either READ or WRITE:

testing "mode· in
used because it is

if (mode== READ)
READ-actions

else
WRITE-actions

10 . 3. Hardware registers.

Local variables in C procedure which will be
can best be declared to be register variables.
this is the case for:

-- 22 --

frequently used
In routine "kern·

..

register WPRE adres;
register WPRE uadres;
register WPRE varadr;
register WCP cpadres;
register ws WS;

10 . 4. Macro's .

The following procedures should be implemented as macro's:

falen_unif: it simply calls falen.

linit and sinit: initialization of the S register.

r_varreset: one small loop to reset variables.

10.5. Builtin predicates.

In stead of the routine ·evalpied· with the big switch an array
with function addresses can be used:

evalpted(nr, nvar);

is changed into

(*evalpredarray[nrJ . ev_routine)(nvar);

-- 23 --

Table of Contents

1. Structure of the compiled program 2

2. Usage of hardware registers 3

3. The generated code. 4 .. 3 .1. In line substitutions 4
3. 1 .1. PUT-instructions 4

• 3.1.2. UNIFY-instructions 5
3.1.3. SWITCH ON TERM instruction 5
3. 1. 4. Other instructions. 6

3.2. Subroutines ... 7
3.2.1. GET, PUT and UNIFY -instructions 7
3. 2. 2. Other instructions. 8

4. Generation of labels . .. 9

5. Implementation of the backtrack operation 10

6. Optimizations in the code•...... 10

7. Optimizations in WIC . .•..............................•..•... 14
7 .1. The put unsafe ... 14
7.2. Generalization of move areg 15
7. 3. Deterministic calls. 16
7.4. Input-output mode declarations 17

8. Builtin predicates .. 18
8.1. The metacall ... 18
8.2. The linker ... 20

9. Results ... 20

10. Suggestions for the interpreter 21
10.1. The trail stack 21
10.2. Types and unify mode 22
1 a. 3. Hardware registers. 22
10.4. Hacro·s ..• 23
1 O. 5. Builtin predicates 23

i

