
BIM-PROLOG

Joint Project between
BIM
and

Department of Computer Science
Katholi eke Universiteit LEUVEN

Sponsored by DPWB/SPPS
under grant nr KBAR/SOFT/1

Tc PU/ IC tV./ /(. IJIT.

... lvbdules in Prolog, once rrore

* BIM
Kwikstraat 4
B-3078 Everberg Belgium
tel. +32 2 759 59 25

by
Gerda JANSSENS **

Internal Rep::>rt
BIM-prolog IR4

Ma.y 1984

** Katholieke Universiteit Lel.Nen
Department of c.anpiter Science
Celestijnenlaan 200A
B-3030 Beverlee Belgium
tel. +32 16 20 06 56

DPWB = Diensten van de eerste minister: Progranv:natie van
bet Wetenschapsbeleid.

SPPS = Se:rvices du premier ministre: Progranmation de la
Politique Scientifique.

..

Abstract

l"lvlJULt;;;j 11,; .l:'.tt:ULOG, m;cE Z.:JRE
(*)

G.Janssens

Departement Computerwetenschappen K.U.Leuven
Celestijnenlaan 200A

B 3030 Heverlee Belgium
016/20.06.56

We briefly discuss the modular programming technique as used in
the classic procedural programming languages and we review the
currently known PROLOG module models.
We explain the concept o·f our proposal and the interface declara­
tions introduced to support the user. We compare our facilities
with the ones provided in a language as ADA (ADA is a trademark of
the US Departement of Defense). Finally a detailed critique of
other approaches to introduce modules in PROLOG is given.

Program Area : Logic Programming Languages
1. Modular programming
1.1. Motivation

It really is a burden when support for modularity is lacking in
a programming language, e.g. when one wants to build libraries or
wants to provide abstract data types. Such techniques are
currently used in large software development projects.
In the case of PROLOG, the absence of local names often ~esults in
the inadvertly use of the same name and is a major source of
errors in developing large programs.
1.2. Modules in rocedural rogramming languages

Parnas's technique Parn for module specification is the pre­
cursor of the syntax for abstract data types in the recent pro­
cedural ~rogramming languages such as .ADA [Bern], CLU [Lisk] and
Alphard LShaw].

Parnas regards a module as the manager of a given (abstract)
object. The subroutine calls to the module are regarded as func­
tions that observe or alter states of the object.
The declaration provides the user and the implementer with all
(and only) the necessary information. The details of implementing
the objects are hidden in the module and can be changed at any
time, without any consequences for the user, as long as they are
conform to the declaration.

In recent programming languages such as ADA it is also possible:

to specify the external properties of the abstract data type by
a predefined formalism (declaration) •
In Alphard the declaration includes the specification of the
effect of the procedures, providing an extra facility to verify
programs.

2 to define the declaration and the :ilnplementation as separate
compilation units.

(*) This work is sponsered by the "Diensten voor de Programma­
tie van het \'etenschapsbeleid" under contract nr KBAR/SOFT/1

-- 1 --

)

3 to use private types so that no structural details can ever be
lrnown by a user.

4 to restrict operations available on the objects of the type.

5 to use an exception mechanism for error handling.

6 to adapt easily an abstract data type to different situations
quite similar to one that bas motivated its creation:
the generic units

The main objective of our proposal is to group together related
procedures and data so that the minimum amount of essential infor­
mation is distributed around the program.
'While discussing our module mechanism we will verify which of
these facilities are inherent to PROLOG and which of them are
useful to provide abstract data types in PROLOG. This is impor­
tant because PROLOG as a logic programming language has specific
properties.
1.3. Other PROLOG models

Our objection to the existing proposals is that although they
are all based on the same idea, namely the support for modularity,
they interpret the concept on their own specific way. The lack of
a simple conceptual model creates a confusing situation for the
user.
Most of the models support the user insufficiently when he makes a
typing error. The impact of an erroneous name depends on the kind
of model.
2. Our solution
2.1. Concept of the solution

The concept is quite simple in the PROLOG programs we use
unambiguous names formed by prefixing the original names by the
name of the module in which they are defined.
The unambiguous name of the object pin module mis m$p.
The prefixing is not necessary for names referring to the outside
world, namely for data.

In fact, our approach consists only of a discipline of writing
programs, it does not change anything to the runtime structures of
PROLOG. However, to reduce the burden for the programmer, some
syntactic sugar is provided. This syntactic sugar can be handled
by a preprocessor and produces PROLOG as sketched in the above
concept. Thus all programs can be mapped to this very simple con­
ceptual model.
2.2. More in detail

. We rill describe how to obtain a more user friendly solution
and how to provide support for the use of modules.
2.2.1. How to work with modules in PROLOG
1) We eliminate most of the boring prefixing by adding an inter­

face declaration to the module. This declaration is nothing
else than syntactic sugar.
If p, then q and rare the names of objects to de used in a
module mO, the following interface declaration tells us that p
is defined in module m1 and thus must be imported from m1, that

-- 2 --

q is a global object and that r is a local one.

module mO
import p(•• , ••) from m1
global q(..)
local r

We propose as default options

- for constants: global

- for other objects (functions and p~ocedures) : local

2) A limited number of procedures may be used outside the module
they are defined in. Therefore we introduce the notion of
export information as a form of redundancy. This export
declarations enumerate the procedpres · defined in the module
which are allowed to be used by other modules

3) In the case of ambiguity the user himself must prefix the names
by the relevant module; it ·is allowed to have the following
import declara\i_ons :

import empty() from stack
import empty() from queue

but the user has to distinguish between both by explicitly
writing the prefix, i.e. stack$empty or queue$empty.
A procedure is normally characterized in the declarations by
its name. Sometimes it is necessary to denote a procedure by
the tupple name/arity to avoid confusion.

2.2.2 • . ,Support and safet y
A preprocessor converts a module into the notation as sketched

in section 2.1~
The default options do not cause any problems :

a constant which is not explicitly declared, is a global
object.

a procedure which is not explicitly declared, is a local
object.

The expansion is straightforward, different cases are sketched in
the following example.

module mO
import p(•• , ••) from m1
globalq(••)
local r

p(.. ' ••)
a
s(.. , ..)
q(..)

is expanded into m1$p(•• , ••)
a constant is by default global and remains a
is by default local and is expanded into m0$s(•• , ••)
the default (local) is overridden: remains q(••)

-- 3 --

r the default of a constant (global) is overridden
becomes m0$r

Moreover, the preprocessor can verify the consistency between the
declarations and implementation of the module. The preprocessor
verifies if all the procedures in the export declarations are
defined in the module and if there does not exist any ambiguity
within the module.

Referring to our comparison with the procedural languages we find
that the first two facilities are not relevant for PROLOG.
The nature of the programming language PROLOG implies that our
proposed formalism for interface declaration gives satisfaction:
we have no types and so we do not need explicit descriptions of
data types. In the case of procedures we have neither type re­
strictions for the parameters, nor input/output patterns to be
satisfied.

Although we have no explicit data type description, the structural
details can never be properly protected because of the availabili­
ty of predicates as "clause".

It is up to the user wether he decides to restrict himself to the
operations available on the objects of a given type. Modules can
be combined in large _PROLOG programs. Also here some verification
is possible. The consistency between the import and export
declarations can be checked. This verification cannot prevent the
user from calling local predicates from other modules. Using
build-in predicates as "clause", it is possible to obtain the
(encoded) name of all local predicates (e.g. a metainterpreter
providing a trace of the execution). Once the names are known,
the metacall mechanism can be used to execute them. Preventing
such a use is not possible without changing the meaning of
"clause".

With our mechanism we can not write an exception handler based on
propagation of raised exceptions. The import/export declarations
are static and can not be context dependent.

As we have no types in PROLOG, all the modules are in fact generic
units. We create data structures whose component values are un­
known at the time of creation.
3. Detailed critic of other module models
3.1. MProlog [MPRJ, [Sze]

The complex interface declaration is implementation oriented.
All the implementation dependent details are to be understood by
the user and are not relevant to the module concept.
The control and support are comparable with ours.
3.2. Prolog-Il [vcaneg]

The unambiguity of names is realized by characterizing objects
by the tupple "(world,identificator)".
Every object belongs to the module or to the world where its name
appears for the first time.
Each module is a node in a tree structure. All the objects of a
given module are visible for the sons in the tree and are

-- 4 --

invisible for the father and the brothers.
In this model you can not have a procedure empty for a stack and a
procedure empty for a queue at the same time.
A mistyped name is interpreted as an object of a world closer to
the root if that name appears there, and otherwise as a new object
of the current world.
3.3. Proposal of Feuer (Feu]

He proposes a mechanism of complex names by prefixing with the
module name.
In every module you specify the procedures to be exported. All
the visible modules belong to the "view" of the module.
When you refer to the first procedure in the view with a specific
simple name, you do not have to prefix it.
All the nonlocal names of a module in the view are accessible and
no selection can be made.
A mistyped name can match an object name in the view.
3.4. Micro Prolog (McCabe)

In the current module the objects that are available are these
appearing in the import/export lists as well as the local names.
We suppose that only one procedure with a specific name can be
available at a time, because you can not specify the module the
object belongs to. The manual is very unclear about the module
facilities. We assume that the user himself must organize the
module handling to avoid name clashes.
3.5. This proposal

Effects of mispelling the name of a procedure are considered
local. An unintentional match is only possible with an explicitly
imported name, otherwise a definition is missing, causing a compi­
lation error.
4. Future research

It seems interesting to integrate the module concept in a spe­
cial editor: this can further reduce the overhead for the user.
The PROLOG runtime environment can be adapted to the modular con­
text and can provide some facilities to test modules (Again by
removing the burden of explicitly prefixing names).
Program optimisation will be desirable for efficiency reasons: a
great deal of the extra procedure calls due to the modular design
can internally be eliminated.

Acknowledgements
I am grateful to M.Bruynooghe and Y.D.Willems for their sugges­
tions and their helpful comments.

Bibliografie

[Bern]
L.Bernard, "The Handling of Abstract Data Types in ADA",
Notes of a lecture at the Universite Libre de Bruxelles,
may 1983

-- 5 --

[Feu]
Alan Feuer,"Building Libraries in Prolog",
in the Proceedings of IJCAI-83, pp. 550-552

[Jones]
Simon B.Jones, "Structured Programming Techniques in Prolog",
in Logic Programming Workshop, 14-16 july 1980, pp. 322-333

[Lisk]
B.Liskov, A.Snijder, R.Atkinson, C.Schaffert,
"Abstraction Mechanism in CLU", in Communications of the ACM,
volume 20, number 8, august 1977, pp. 564-576

(McCabe]

[MPR]

F.G.McCabe, "Micro-Prolog Programmer's Reference Manual",
Logic Programming Associates Ltd., may 1981

"MPROLOG Language Reference Manual", version 1-2
Institute for Coordination of Computer Techniques in Hungary,
nov t98 ·2

[Parn]
D.L.Parnas, "A Technique for Software Module Specification
with Examples", in Commmunications of the ACM,
volume 15, number 5, may 1:972, pp. 330-336

[Shaw]
Mary Shaw, "Alphard : Form and Content",
Springer-Ve ,rlag New York, 1981

[Sze}
Peter Szeredi, "'Module eollcept For Prolog",
Institute for Coordinatien of Computer Techniques in Hungary,
in Proceedings of the Workshop on Prolog Programming
Environments (Sweden), pp.69-78

[vcaneg]
Michel Van Caneghem, "Prolog-II Manuel D'Utilisation",
Groupe Intelligence Artificielle Marseille, mars 1982

-- 6 --

