
BIM-PROLOG

Joint Project between
BIM
and

Department of Computer Science
Katholi eke Universiteit LEUVEN

Sponsored by DPWB/SPPS
under grant nr KBAR/SOFT/1

Tc PU/ IC tV./ /(. IJIT.

..
A Real Time Garbage Cbllector

for Prolog

by
Fdwi.n PITI'CMVILS **

Maurice BRUYNCXJGHE **

* BIM
Kwikstraat 4
B-3078 Everberg Belgium
tel. +32 2 759 59 25

Internal Rep:>rt
BIM-prolog ms

November 1984

** Katholieke Universiteit Lewen
Department of Canp.iter Science
Celestijnenlaan 200A
B-3030 Heverlee Belgium
tel. +32 16 20 06 56

DPWB = Diensten van de eerste minister : Programnatie van
het Wetenschapsbeleid.

SPPS = Services du premier ministre: Programmation de la
Politique Scientifique.

1. Abstract

A real time garbage collector for PROLOG

Edwin Pittomvils and Maurice Bruynooghe

Department of Computer Science
K.U.Leuven

Celestijnenlaan 200A
B 3030 Heverlee

Belgium

Inspired by the work of [Lieberman 83] which describes a gar­
bage collector which takes into account the lifetimes of objects,
we were able to improve the garbage . collection algorithm as
described in [Bruynooghe 82a]. The improved algorithm reduces the
time needed to mark and compact the storage area by limiting its
activity to relatively small segments .of memory. Moreover it can
easily be extended to a real-time garbage collector. Contrary to
the real-time garbage collector described in [Bekkers et al 84]:,
it preserves th.e im,portant. properties of increasing the locality
of references ' and allowing for the recuperation of memary dul"ing
backtracking.

2. Introduction

Very little investigation has been done in the field of garbage
collection for large memories. With the constant evolution of ever
larger memories for ever lower prices, one might think there does
not exist a garbage collection problem anymore. However, even for
relatively small applications in the domain of artificial intelli­
gence, one runs out of memory very rapidly.

This paper describes a new garbage collection algorithm for a
sequential PROLOG processor.

We will follow mainly the model proposed in [Tick & Warren 84],
because it has some very interesting properties which makes it
well suited to graft our garbage collector upon it and, not in the
least, because it tends to be a very promising model on its own.

In [Bruynooghe 82a], the garbage collection process was
improved by reducing the number of starting points for the marking
algorithm. Only those variables that are really needed for further
computation are marked. This results in a more complete recovery
of useless memory. However, no attention is paid to the time
dimension of the problem i.e. there are no indications on how to
perform this algorithm quickly.

In [Tick & Warren 84], one obtains a better memory management
on the local stack by performing a generalised tail recursion
optimisation. To this end, the variables in the environments have

-- 1 --

to be arranged in a special way. This arrangement will help us to
perform the marking algorithm in [Bruynooghe 82a] more quickly.

In [Bekkers et al 84] a further improvement was made by taking
the reset information into account. This will be realised in our
model by what ve call "virtual backtracking" (also described in
[Bruynooghe 84]). .

They propose a real time garbage collector for PROLOG by making
use of Dijkstra's on-the-fly garbage collector [Dijkstra 78]. For
large memories, this algorithm seems. to have many drawbacks.
Dijkstra's garbage collection algorithm consists of a two­
processor model . with one processor (the .mutator) doing the proper
computation and the other processor (the collector) performing
garbage collection all the time. The collector's activity con­
sists of a number of batches, each batch consisting of a marking
phase followed by an appending phase. In the appending phase,
non-marked cells are incorporated into a free list.
For large memories, marking all-accessible structures takes a long
time and the possibility exists that the free list is exhausted
before the marking phase comes to an end. In other words, there
may be long suspensions of the mutator, waiting for the collector
to terminate.
A second drawback is, that memory cells are allocated · randomly
throughout memory. Hence, . one cannot guarantee localness of
pointers. In a virtual memory environment, this can considerably
degrade the mutator's performance.
A third important drawback is, that space recovery on backtracking
is impossible. Because the heap does not · operate as a stack,
there is no memory recovery possible by simply popping the stack.
Therefo~e, the cells which become inaccessible on backtracking
have to be recovered by the general marking and collecting
mechanism.

In [Lieberman 83] the garbage collection problem is stated in a
more general setting. The heap is divided into a number of
regions. The object of this division is to vary the degree of
garbage collection for each region. The following strategy is
used: '

Recent (created) regions are supposed to contain a high propor­
tion of garbage. These regions are collected frequently.

Older regions are supposed to contain a low proportion of gar­
bage. They are collected less frequently.

This strategy results in a higher efficiency of the garbage col­
lector. The cost per collected cell is less than in a strategy,
where the age of the regions is not taken into account.

Our garbage collection algorithm is an adaptation of ideas in
[Lieberman 83] to the particularities of a PROLOG implementation.
The heap is divided logically into a number of segments, each seg­
ment corresponding to a backtrackpoint (choicepoint). We are able
to compact one segment at a time by what we call "incremental
marking". We do not have to mark all accessible cells in order to

-- 2 --

"know" all accessible cells! This can make the marking phase very
short.

In the following sections ., we consider three marking stra­
tegies:

i. optimal total marking

ii. optimal incremental marking

iii. quasi(non)-optimal incremental marking

Optimal marking means that a theoretically minimum number of cells
is marked. In the first two strategies, we perform a full "virtual
backtracking" allowing optimal marking. The third strategy per­
forms only a partial virtual backtracking and therefore is non­
optimal with regard to the recovered memory.

In our terminology, the garbage collector developed in [Bekkers
et al 84] is a real time garbage collector with optimal total
marking. For large memories, we expect that an optimal
incremental- or a quasi-optimal marking will give considerably
better timing results.

We obtain localness of pointers by dividing the heap into a
number of segments. The number of inter-segment pointers is rela­
tively small. Most pointers are internal segment pointers (i.e.
pointers pointing into the segment itself) which link datastruc­
tures together. Moreover by compacting the segments we obtain
increased locality of pointers.

Note that each segment on itself operates as a stack.

J. Execution of PROLOG programs

The concrete run-time structures of the PROLOG processor
(interpreter) consist of a number of stacks and registers. They
are the concrete representations of the abstract run-time struc­
tures: namely a search tree (OR-tree) and a proof tree (AND-tree).
The search tree constitutes the solutionspace (the initial goal
and the goals deducible from it through unification). The proof
tree describes a path in the search tree. Goals are deduced one
from another by a "depth first, left to right" computation rule.
More details about the working of PROLOG interpreters can be found
in [Bruynooghe 82b] and [van Emden 84].

4. Data areas and registers

The data areas are mostly identical to those proposed in [Tick
& Warren 84]. Only the heap and the trail will be organised in a
different way. The description of some datastructures will be
simplified in order to enhance the understanding of the developed
algorithms.

-- 3 --

local stack (environment stack):
The local stack is the concrete representation of the
tree. The local stack contains environments and
points.

environment (env)
call of env: continuation program pointer(• next

call to be executed in this environment)
father of env: pointer to the fatherenvironment
visit ofenv: boolean field (only needed in an

optimal total marking strategy)

proof
choice

number of env: indicates how many variables (Y1,
Y2, ::-. ,Ynumber) have already been marked in env
(only needed in an optimal total marking
strategy)

Y1 ,Y2, ••• ,Yn of env: permanent variables

choice point (chpt) :
reset of chpt: saved register TR'
heap of chpt: saved register H
back of chpt: saved register B; pointer to the

previous choice point
alternative of chpt: pointer to the alternative

clauses to match the call
cont of chpt: saved register CP
env of chpt : saved register E
A1 ,A2, ••• ,Am of chpt: saved argument registers

ii. the heap:
The heap consists of a number of segments. Each segment
corresponds to a choice point. This is a one-to-one relation.
Placing a choice point on the local stack closes a segment on
the heap and opens a new one.

iii. the trail
On the trail, we place information about the bindings to be
undone on backtracking. The logical division of the trail
into segments is analogous to that of the heap.

iv. registers
We only mention those registers needed further in the text.

P: program pointer (to the code area)
CP: continuation pointer (next call to be executed)
E: topenvironment on the local stack
B: last choice point on the local stack
H: top of the most recent heapsegment (• opened

heapsegment which is the current creationzone)
TR: top of the most recent trailsegment
HL: pointer to a choice point; this is a history

pointer needed by the garbage collector for
incremental marking

A1 ,A2, ••• , Am: argument registers

-- 4 --

5. Optimal total marking algorithm (first strategy)

This _ section is more of· a lead~up to the following sections.
We explain briefly how the proof tree can be traversed-efficiently
and what virtual backtracking is all about. For some details, we
refer to [Bruynooghe 84] and [Bekkers et al 84].

The algorithm can best be explained on the basis of an example.
Consider the following-proof tree and the . corresponding data areas
(fig1):

CHPTO

rn@

~
EO

El

CKPTl

E:Z

CJIPT2

E3

figure 1

In fig_1 the abbreviations have the following meaning:

Si: call still to be executed
Di deterministic call
Bi: non-deterministic call (choice point)
R: root (this is a sentinel)
CHPTi: choice point on the local stack
Ei: environment on the local stack
HSEGi heapsegment i
TSEGi: trailsegment i

I HSEGO I
I HSEG11

I ~G21

Placing CHPTi+1 on the local stack closes the segments HSEGi and
TSEGi, and opens the segments HSEGi+1 and TSEGi+1. The marking
algorithm starts from all living goal statements [Bruynooghe 82a].
In general, there is the current living goal and a living goal
corresponding .to each backtrackpoint. Here, we have three living

-- 5 --

ITSEGO I
I TSEGII

I TSEG21

goal statements (enumerated from the most recent to the oldest):

- current living goal: S8,S9,S7,S2,S3.

- goal corresponding to B6: S6,S7,S2,S3.

- goal corresponding to B4: S4,S5,S2,S3.

The marking proceeds from the most recent to the oldest living
goal in order to perform virtual backtracking. First the vari­
ables occurring in the calls S8,S9.,S7 ,S2,S3 are marked. Then we do
virtual backtracking by resetting (virtually) the variables
encountered in TSEG2. Inde9d, for the marking of the next (older)
living goal, these bindings do not lo.gi.cally exist.
During the treatment of the following living goal (corresponding
to B6), we only need to mark the variables occurring in s6. Those
occuring in S7,S2 and S3 have already been marked. Then we do vir­
tual backtracking again by resetting the variables encountered in
TSEG1.
At last the variables occurring in S4 and S5 are marked. Notice
that TSEGO is always empty.

The garbage collector is called in case of heap overflow. The
teat on overflow takes place just before the execution of one of
the following instructions: call proc/ar,n, execute proc/ar or
proceed (see [Tick & Warren 84] for more details on those instruc­
tions).

In the following procedures, comments are placed between
brackets.

6 --

procedure marking
begin

{ marking of the argumentregisters A1,A2, ••• ,Aar
in the case of a call proc/ar,n or execute/ar instruction}

markargregisters(P);

(the first living goal is determined by CP and the
environment corresponding to CP}

active call:• CP
active-env :• E;

marklivinggoal(active_call, active env);

next:• B;
while next<> root do

od

{ determine thenext living goal
active_call := cont of next;
active_env : 2 env of next;

{ resetting of the variables in the trailsegment
pointed to by reset of next}

virtualbacktrack(reset of next);

{ marking of the argumentregisters stored in the
choice point next}

markchptargregiaters(next);

marklivinggoal(active_call, active env);

next:= back of next

end marking

-- 7 --

procedure marklivinggoal(active_call, active env)
begin .

end_of_goal :•false;
repeat

if visit of active env
then begin

markvariables(number of active env,
numbervar(active call), active env);

number of active env :• numbervarTactive call);
end_of_goal :• true -

end
else begin

markvariables(0 , numbervar(active call),
active env); -

number of-active env :• numbervar(active call)
visit of active env :•true; -
if father of active env • nil - - -then end of goal:• true;
else begin -

active call:= call of active_env;
active env :• father of active env

end

end
fi

fi

until end_of_goal
end marklivinggoal

procedure markvariables(nbl, nbh, active env)
begin

{ marking of the variables Ynbh, Ynbh-1,
in active env}

end markvariables

, Ynbl +1

function numbervar(active_call) returns (integer)
begin

! This function returns the number of variables needed
in active env to execute active call and its righthand
brothers.-This information can be found in the code
by going back one ' instruction from the place pointed
at by active call. There you find the instruction
call froc/ar-:n. In the case of _ an execute instruction
n=O.

return(n) ;
end numbervar

-- 8 --

6. Incremental marking

Placing a choice point (backtrackpoint) on the local stack
saves (freezes) all existing structures on the heap. More techni­
cally: placing CHPTi+1 closes HSEGi . and opens HSEGi+1 which
becomes the new creationzone on the heap. All the segments
HSEGO,HSEG1, ••• , HSEGi are saved.

All structures that are "no garbage" (i.e. structures needed
for further computation) at the moment of saving will remain "no
garbage" until we undo this saving by backtracking. Indeed, after
backtracking · to a backtrackpoint, w.e must reinstate exactly the
same state as just before placing that backtrackpoint. In other
words, if we have compacted a saved segment on the heap once, this
segment cannot contain inaccessible cells until we open it again
(undo the saving).

We can now see more clearly where the first strategy fails.
The second, third, ••• time we call the garbage collector, a total
marking algorithm will mark and compact many segments that have no
garbage at all. In fact, it suffices to compact only those seg­
ments which have not been compacted before or which have been
opened on backtracking.
It should now also be clear that we must only mark a restricted
number of active goals.

7. Optimal incremental marking (second strategy)

7.1. The marking strategy
,

As stated above, "optimal" refers to a
marked cells. The second strategy will
better timing results than the first
optimal).

We give a real-time model, making use
working processor (worker) and a garbage
lector). The model is easily expandable
model with one workin~ processor and one
processors (see also LLieberman 83]).

theoretical minimum of
be optimal and give much

strategy (also being

of two processors being a
collector processor (col­
to a multiple-processor
or more garbage-collector

Incremental marking will also give much better timing results
the classical one- processor model(~ the worker doing both
computation and the garbage collection).

for
the

Only one segment on the heap will be marked and compacted at a
time. This can be done by marking the goal corresponding to
CHPTi+1 , where CHPTi is designated by HL. HL is a history pointer
and points to the oldest choice point for which the heapsegment
designated by heap of HL has not been compacted in previous gar­
bage collections. -HL must be adjusted on backtracking or in the
case of a cut operation as follows:

-- q --

if HL is more recent than B
then HL :,. B
fi

(initially ve have HL • B s CHPl'O)

Also after compaction of the segment CHPTi, HL must be adjusted
and point to CHPri+1 (• following choice point).

Consider the following example (fig_2):

~/~
CRPTO

EU EJ I TSEGO I
£1

CHPT1 B G;J

HL

E2

CHPT2 I KSEGZ I B
B.....,

E3

CRPT3

CHPT4
I KSE63 I B

E4 Fl I TSEG4 I

~ ~

figur ·e 2

The segments HSEGO and HSEG1 have been compacted in previous gar­
bage collections (see HL in fig_2). HSEG2 is the oldest segment
that has not yet been compacted. The marking of nSEG2 proceeds as
follows.

First determine the goal to be
active call and active env. We have:

-- 10 --

marked by calculating

)

active call• cont of CHPT3
and active env • env of CHPT3

Then we must perform virtual backtracking by ·resetting virtually
the variables noticed in TSEG3 and TSEG4. Indeed, the heapsegments
HSEG3 and HSEG4 do not logically exist .when marking the goal
corresponding . to CHPT3. The marking starts from the argumentre­
gisters stored in CHPT3 (markchptargregisters(CHPT3)). At last
we must mark the rest of the goal (marklivinggoal(active call,
active_env)) • -

We now have the following modified marking algorithm:

procedure marking1
begin

ptchpt :=- B;
while ptchpt is more recent than HL do

virtualbacktrack(reset of ptchpt);
hptchpt : • ptchpt ; -
ptchpt ::11 back of ptchp,t;

od

{ marking the argumentregisters stored in the
choice point hptchpt}

markchptargregisters(hptchpt);

active_call := cont of hptchpt;
active env :=- env of hptchpt;
maFklivinggoa11(active call, active_env)

end marking1 -

procedure marklivinggoal1(active_call, active_env)
begin

! Because we only have to mark one living goal,
the use of visit of active env and number of active env
is not necessary anymore. No double markingia possible. }

end_of_goal :=-false;
repeat

markvariables(0, numbervar(active call) , active env);
if father of active env = nil
then end_of goal:=- true
else begin

active call ::11 call of active_env;
active env :• father of active env

end
fi

untilend of goal
end markli vinggoal 1 ·

Before we start executing marking1, every cell has to be
"unmarked" in the segment under compaction and in the older seg­
ments. There are some alternatives to solve this problem. We
could use a bitmaptable to mark the cells and after the marking
reset all the marked cells, by cleaning up the whole bitmaptable.

-- 11 --

Another alternative is to keep a table of marked entries. This
table is released when. the marking is finished.

In fact, for real time working, the marking of cells in the
segment under compaction (HSEGi) is replaced by copying. Instead
of marking the cells, they are directly evacuated from HSEGi to a
nev segment (HSEGi') which · will become the compacted segment
(fig_3).

HSEGi evacuating HSEGi'

p

figure 3.

References to HSEGi will be handled by
to the evacuated object in HSEGi'. For
After marking, the place occupied in
released.

7.2. Updating of pointers

placing in HSEGi pointers
details see [Lieberman 83].
memory for HSEGi can be

We will have to update all pointers to HSEGi. They can be
divided into forward pointers (pointers from older segments,
environments or choice points) to HSEGi, backward pointers
(pointers from younger segments, environments or choice points) to
HSEGi and internal pointers.

Internal pointers are handled automatically through the copying
mechanism.

All the forward pointers to HSEGi can be found in TSEGi on the
trail. These are the only entries to HSEGi from older segments.

For the updating of backward pointers, we associate an update
table (UDTBi) with each non-compacted . heapsegment (HSEGi). In
UDTBi .we note all the backward pointers to HSEGi. These update
tables grow dynamically during the calculations of the worker,
even if the corresponding segments are closed. This is illustrated
in fig_4.

-- 12 --

•

I HSEGi-1 I

~•i-.!!f HL

~apofB -.,

(topseiment }

HSEGi

figure 4

UDTBi

The use of updatetables will be considerably faster than the
general "scavenging technique"(= scanning more recent segments,
environments looking for backward pointers to be updated) proposed
in [Lieberman 83]. We can afford the use of updatetables because
we only have to keep a restricted number of them. Indeed, only the
non-compacted segments need .updatetables, because we never have to
compact segments more than once.

7.3. Coordination and synchronisation of the processors

The garQage collector must be synchronised in such a way that
there are only a few segments (e.g 5) on the top of the heap which
are not compacted. It is a good policy to always keep a few uncom­
pacted segments on the top of the heap to ensure little mutual
interference between the worker and. the collector. We can
motivate this as follows. The worker usually operates on struc­
tures residill8 in the topsegment. The probability that the worker
asks access to the s_egment under compaction is rather small.
If there are not enough uncompacted segments, we simply suspend
the collector.

-- 13 --

The worker and the collector operate on the same datastruc­
tures. Mostly, the worker will. interrupt the collector when
access to the same data is required. This interruption will cause
a suspension of the collector.
On interruption, the collector finishes the atomic action it is
working. on, and then it transfers control to the worker. More on
atomic actions can be found in [Dijkstra 78].

Roughly, wa have suspension of the collector on the following
occasions:

- Access of the worker to the segment under compaction.

- On backtracking or when executing a cut instruction.
It is possible that the segment under compaction has to be

removed on backtracking. This gives no major problems. The col­
lector stays suspended until enough uncompacted segments exist
again.

When the worker signals to the collector that it can con­
tinue working, the collector must decide whetherto stay
suspended or to continue collecting • . If HL is no longer older
than B after backtracking, the coilector stays suspended and
resumes only when a certain number of uncompacted segments are
in existence again. In the other case, the collector resumes
immediately.

The updating of the pointers to the compacted segment causes
some critical periods, when there must be mutual exclusion
between the worker and the collector.

The worker must be suspended as
suspension on finishing atomic
tures, redirection of pointers,
interrupt from the worker.

little as possible. There is
actions (evacuation of datastruc­
•••) by the collector after an

8. Quasi-optimal marking (third strategy)

In the second strategy we must only mark one living goal at a
time. This is a considerable improvement over the first strategy.
However the marking of the one living goal can cause the marking
of many structures in older compacted segments. This marking in
older segments is necessary because there are forward pointers in
the older segments to the segment under compaction (HSEGi).
When we mark the goal corresponding to HSEGi, all the necessary
information about the (logically existing) forward pointers to
HSEGi can be found in TSEGi. Not all of them will be marked in
the second (optimal) strategy. Nevertheless the number of forward
pointers which will not be marked seems to be very small.

The third strategy differs from the second one in that we will
mark the one living goal only partially. This means ~hat during
the marking, pointers to older segments are not followed. Instead
we will follow all forward pointers to HSEGi. Partial marking

-- 14 --

causes the marking of too many- structures but we expect this
disadvantage to be negligible compared to the time savings it
allows. The difference in marking will be clarified by an exam­
ple. Consider the following PROLOG clauses:

p(a,b).
p(c,d).

q(a.R, a.b.S) :-
garb_coll, r(S) , write(R) , write(S).

r(e).

and the query:

?- p(Y,Z) , q(X,X) , write(Y) , write(Z).

A fictive call garb coll is inserted to clarify the example. Just
before executing -the call garb coll we have the situation
represented in fig_5 and fig_6. -

CHPTO

EO y....,a
z...,.b
X

CHPT1

El R
s

HSEGO

o?mpty

~ k1R)
'-0~ ,,
b S

figure 5

-- 15 --

TSEGO

empty

TSEGl

Y- EO

Z- EO

X- EO

figure 6

In the optimal strategy, the variable X of EO will not be marked
wheras it is marked in the quasi optimal strategy. The shaded
area in fig_5 indicates memory locations which are unnecessarily
marked.
In the programs we have tested (a.o. a concurrent PROLOG inter­
preter in PROLOG [Shapiro s;]), we have not found significant
differences between strategy 2 and strategy 3 with respect to
recovered memory. Only by testing a large number of extensive
examples can one give a definite answer to the question.

The only change to algorithms from the previous section, is the
procedure marklivinggoal1. The updated version follows:

-- 16 --

procedure markliViI18goa12(active_call, active_frame)
begin

end_of_goal :• false
repeat

I We make use of a procedure markvariablea1. The
difference with markvariablea is, that pointers
pointiI18 to memory locations which are less recent
than HL (for the local stack) or heap of HL
(for the hea~) will be neglected. } -

markvariables1 (0, numbervar(active_call) , active env) ;

Marking of those cells in HSEGi which are accessible
from older segments and environments (older than HSEGi).
Therefore we must mark all the pointers noticed in
TSEGi. }

markoldtonew(reset of HL);

if active env is not more recent than HL
then end of goal : • true
else begin -

active call:• call of active env;
active-env :• fatherof active env

end
fi

untilend of goal
end marklivinggoal2

9. Conclusions

We have showed how garbage collection for PROLOG can be signi­
ficantly improved. These improvements were mainly possible by
taking advantage of specific properties of the language.
The indeterminism of PROLOG leads to a number of saved states. The
basic idea is that the datastructures corresponding to a saved
state have to be compacted only once. By .incremental marking, we
avoid double marking and compaction of already compacted struc­
tures, corresponding to saved states. Moreover, by using an
appropriate {segmented) memory organisation, this incremental
marking leads to a real-time· garbage collection algorithm.
The use of a segmented heap where each segment operates as a stack
guarantees localness of pointers.

In a first phase we have implemented a garbage collector for a
sequential PROLOG interpreter making use of the total optimal
marking strategy. In a second phase, this garbage collector was
modified to the quasi-optimal incremental marking strategy
[Pittomvils 84].
A real time garbage collector making use of incremental marking is
under development.

-- 17 --

)

10. Acknowledgments

M. Bruynooghe is supported as a research associate by the
Belgian National Fund for Scientific Research.

E. Pittomvils is currently working on a project in collabora­
tion with the Belgian Institute of Management and is supported by
the Belgian Institute of Scientific Research in Agriculture and
Industry (IWONL-IRSIA).

11. References

[Bekkers et al 84]
Y.Bekkers, B.Canet, O.Ridoux, L.Ungaro, A memory management
machine for PROLOG interpreters, Proceedings Second International
Logic Programming Conference, 1984, pp. 343-353.

[Bruynooghe 82a]
M.Bruynooghe, A note on garbage collection in PROLOG interpreters,
Proceedings First International Logic Programming Conference,
1982, pp. 22-55.

[Bruynooghe 82b]
M.Bruynooghe, The memory management of PROLOG implementations,
Logic Programming, Eds. K.L.Clark & S.A.Tarlund, Academic Press,
1982, pp.83-98.

[Bruynooghe 84]
Garbage collection in PROLOG interpreters, Implementations of PRO­
LOG ed. J.A.Campbell, Ellis Horwood, 1984, pp. 259-267.

[Dijkstra 78]
Edsger W.Dijkstra, On-the-fly garbage collection: An exercise in
cooporation, Communications of the ACM. Nov.1978 -, Vol.21, No.11_,
pp.966-975.

[Lieberman 83]
Henry Lieberman & Carl Hewitt, A real time garbage collector based
on the life time of objects, Communications of the ACM. Jun.1983,
Vol.26, No.6, pp.419-429.

[Pittomvils 84]
A garbage collector for PROLOG (in Dutch), Katholieke Universiteit
Leuven, Project completed to obtain the degree of engineer in com­
puter science.

[Shapiro 8'3]
E.Y.Shapiro, A subset of CONCURRENT PROLOG and its interpreter,
Revised ICOT TC TR-003, JAPAN, 1983.

[Tick & Warren 84]
E.Tick & D.H.D.Warren, Towards a pipelined PROLOG processor, 1984
International Symposium on Logic Programming, IEEE Computer
Society Press, 1984, pp.2g-40.

[van Emden 84]
An interpreting algorithm for PROLOG programs, Implementations of
PROLOG ed. J.A.Campbell, Ellis Horwood, 1984, pp~ 93-110.

-- 18 --

