
BIM-PROLOG 

Joint Project between 
BIM 
and 

Department of Computer Science 
Katholi eke Universiteit LEUVEN 

Sponsored by DPWB/SPPS 
under grant nr KBAR/SOFT/1 

Tc PU/ IC tV./ /(. IJIT. 



.. 
A Real Time Garbage Cbllector 

for Prolog 

by 
Fdwi.n PITI'CMVILS ** 

Maurice BRUYNCXJGHE ** 

* BIM 
Kwikstraat 4 
B-3078 Everberg Belgium 
tel. +32 2 759 59 25 

Internal Rep:>rt 
BIM-prolog ms 

November 1984 

** Katholieke Universiteit Lewen 
Department of Canp.iter Science 
Celestijnenlaan 200A 
B-3030 Heverlee Belgium 
tel. +32 16 20 06 56 

DPWB = Diensten van de eerste minister : Programnatie van 
het Wetenschapsbeleid. 

SPPS = Services du premier ministre: Programmation de la 
Politique Scientifique. 



1. Abstract 

A real time garbage collector for PROLOG 

Edwin Pittomvils and Maurice Bruynooghe 

Department of Computer Science 
K.U.Leuven 

Celestijnenlaan 200A 
B 3030 Heverlee 

Belgium 

Inspired by the work of [Lieberman 83] which describes a gar­
bage collector which takes into account the lifetimes of objects, 
we were able to improve the garbage . collection algorithm as 
described in [Bruynooghe 82a]. The improved algorithm reduces the 
time needed to mark and compact the storage area by limiting its 
activity to relatively small segments .of memory. Moreover it can 
easily be extended to a real-time garbage collector. Contrary to 
the real-time garbage collector described in [Bekkers et al 84]:, 
it preserves th.e im,portant. properties of increasing the locality 
of references ' and allowing for the recuperation of memary dul"ing 
backtracking. 

2. Introduction 

Very little investigation has been done in the field of garbage 
collection for large memories. With the constant evolution of ever 
larger memories for ever lower prices, one might think there does 
not exist a garbage collection problem anymore. However, even for 
relatively small applications in the domain of artificial intelli­
gence, one runs out of memory very rapidly. 

This paper describes a new garbage collection algorithm for a 
sequential PROLOG processor. 

We will follow mainly the model proposed in [Tick & Warren 84], 
because it has some very interesting properties which makes it 
well suited to graft our garbage collector upon it and, not in the 
least, because it tends to be a very promising model on its own. 

In [Bruynooghe 82a], the garbage collection process was 
improved by reducing the number of starting points for the marking 
algorithm. Only those variables that are really needed for further 
computation are marked. This results in a more complete recovery 
of useless memory. However, no attention is paid to the time 
dimension of the problem i.e. there are no indications on how to 
perform this algorithm quickly. 

In [Tick & Warren 84], one obtains a better memory management 
on the local stack by performing a generalised tail recursion 
optimisation. To this end, the variables in the environments have 
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to be arranged in a special way. This arrangement will help us to 
perform the marking algorithm in [Bruynooghe 82a] more quickly. 

In [Bekkers et al 84] a further improvement was made by taking 
the reset information into account. This will be realised in our 
model by what ve call "virtual backtracking" (also described in 
[Bruynooghe 84]). . 

They propose a real time garbage collector for PROLOG by making 
use of Dijkstra's on-the-fly garbage collector [Dijkstra 78]. For 
large memories, this algorithm seems. to have many drawbacks. 
Dijkstra's garbage collection algorithm consists of a two­
processor model . with one processor (the .mutator) doing the proper 
computation and the other processor (the collector) performing 
garbage collection all the time. The collector's activity con­
sists of a number of batches, each batch consisting of a marking 
phase followed by an appending phase. In the appending phase, 
non-marked cells are incorporated into a free list. 
For large memories, marking all-accessible structures takes a long 
time and the possibility exists that the free list is exhausted 
before the marking phase comes to an end. In other words, there 
may be long suspensions of the mutator, waiting for the collector 
to terminate. 
A second drawback is, that memory cells are allocated · randomly 
throughout memory. Hence, . one cannot guarantee localness of 
pointers. In a virtual memory environment, this can considerably 
degrade the mutator's performance. 
A third important drawback is, that space recovery on backtracking 
is impossible. Because the heap does not · operate as a stack, 
there is no memory recovery possible by simply popping the stack. 
Therefo~e, the cells which become inaccessible on backtracking 
have to be recovered by the general marking and collecting 
mechanism. 

In [Lieberman 83] the garbage collection problem is stated in a 
more general setting. The heap is divided into a number of 
regions. The object of this division is to vary the degree of 
garbage collection for each region. The following strategy is 
used: ' 

Recent (created) regions are supposed to contain a high propor­
tion of garbage. These regions are collected frequently. 

Older regions are supposed to contain a low proportion of gar­
bage. They are collected less frequently. 

This strategy results in a higher efficiency of the garbage col­
lector. The cost per collected cell is less than in a strategy, 
where the age of the regions is not taken into account. 

Our garbage collection algorithm is an adaptation of ideas in 
[Lieberman 83] to the particularities of a PROLOG implementation. 
The heap is divided logically into a number of segments, each seg­
ment corresponding to a backtrackpoint (choicepoint). We are able 
to compact one segment at a time by what we call "incremental 
marking". We do not have to mark all accessible cells in order to 
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"know" all accessible cells! This can make the marking phase very 
short. 

In the following sections ., we consider three marking stra­
tegies: 

i. optimal total marking 

ii. optimal incremental marking 

iii. quasi(non)-optimal incremental marking 

Optimal marking means that a theoretically minimum number of cells 
is marked. In the first two strategies, we perform a full "virtual 
backtracking" allowing optimal marking. The third strategy per­
forms only a partial virtual backtracking and therefore is non­
optimal with regard to the recovered memory. 

In our terminology, the garbage collector developed in [Bekkers 
et al 84] is a real time garbage collector with optimal total 
marking. For large memories, we expect that an optimal 
incremental- or a quasi-optimal marking will give considerably 
better timing results. 

We obtain localness of pointers by dividing the heap into a 
number of segments. The number of inter-segment pointers is rela­
tively small. Most pointers are internal segment pointers (i.e. 
pointers pointing into the segment itself) which link datastruc­
tures together. Moreover by compacting the segments we obtain 
increased locality of pointers. 

Note that each segment on itself operates as a stack. 

J. Execution of PROLOG programs 

The concrete run-time structures of the PROLOG processor 
(interpreter) consist of a number of stacks and registers. They 
are the concrete representations of the abstract run-time struc­
tures: namely a search tree (OR-tree) and a proof tree (AND-tree). 
The search tree constitutes the solutionspace (the initial goal 
and the goals deducible from it through unification). The proof 
tree describes a path in the search tree. Goals are deduced one 
from another by a "depth first, left to right" computation rule. 
More details about the working of PROLOG interpreters can be found 
in [Bruynooghe 82b] and [van Emden 84]. 

4. Data areas and registers 

The data areas are mostly identical to those proposed in [Tick 
& Warren 84]. Only the heap and the trail will be organised in a 
different way. The description of some datastructures will be 
simplified in order to enhance the understanding of the developed 
algorithms. 
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local stack (environment stack): 
The local stack is the concrete representation of the 
tree. The local stack contains environments and 
points. 

environment (env) 
call of env: continuation program pointer(• next 

call to be executed in this environment) 
father of env: pointer to the fatherenvironment 
visit ofenv: boolean field (only needed in an 

optimal total marking strategy) 

proof 
choice 

number of env: indicates how many variables (Y1, 
Y2, ::-. ,Ynumber) have already been marked in env 
(only needed in an optimal total marking 
strategy) 

Y1 ,Y2, ••• ,Yn of env: permanent variables 

choice point (chpt) : 
reset of chpt: saved register TR' 
heap of chpt: saved register H 
back of chpt: saved register B; pointer to the 

previous choice point 
alternative of chpt: pointer to the alternative 

clauses to match the call 
cont of chpt: saved register CP 
env of chpt : saved register E 
A1 ,A2, ••• ,Am of chpt: saved argument registers 

ii. the heap: 
The heap consists of a number of segments. Each segment 
corresponds to a choice point. This is a one-to-one relation. 
Placing a choice point on the local stack closes a segment on 
the heap and opens a new one. 

iii. the trail 
On the trail, we place information about the bindings to be 
undone on backtracking. The logical division of the trail 
into segments is analogous to that of the heap. 

iv. registers 
We only mention those registers needed further in the text. 

P: program pointer (to the code area) 
CP: continuation pointer (next call to be executed) 
E: topenvironment on the local stack 
B: last choice point on the local stack 
H: top of the most recent heapsegment (• opened 

heapsegment which is the current creationzone) 
TR: top of the most recent trailsegment 
HL: pointer to a choice point; this is a history 

pointer needed by the garbage collector for 
incremental marking 

A1 ,A2, ••• , Am: argument registers 
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5. Optimal total marking algorithm (first strategy) 

This _ section is more of· a lead~up to the following sections. 
We explain briefly how the proof tree can be traversed-efficiently 
and what virtual backtracking is all about. For some details, we 
refer to [Bruynooghe 84] and [Bekkers et al 84]. 

The algorithm can best be explained on the basis of an example. 
Consider the following-proof tree and the . corresponding data areas 
(fig1): 

CHPTO 

rn@ 

~ 
EO 

El 

CKPTl 

E:Z 

CJIPT2 

E3 

figure 1 

In fig_1 the abbreviations have the following meaning: 

Si: call still to be executed 
Di deterministic call 
Bi: non-deterministic call ( choice point) 
R: root (this is a sentinel) 
CHPTi: choice point on the local stack 
Ei: environment on the local stack 
HSEGi heapsegment i 
TSEGi: trailsegment i 

I HSEGO I 
I HSEG11 

I ~G21 

Placing CHPTi+1 on the local stack closes the segments HSEGi and 
TSEGi, and opens the segments HSEGi+1 and TSEGi+1. The marking 
algorithm starts from all living goal statements [Bruynooghe 82a]. 
In general, there is the current living goal and a living goal 
corresponding .to each backtrackpoint. Here, we have three living 
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goal statements (enumerated from the most recent to the oldest): 

- current living goal: S8,S9,S7,S2,S3. 

- goal corresponding to B6: S6,S7,S2,S3. 

- goal corresponding to B4: S4,S5,S2,S3. 

The marking proceeds from the most recent to the oldest living 
goal in order to perform virtual backtracking. First the vari­
ables occurring in the calls S8,S9.,S7 ,S2,S3 are marked. Then we do 
virtual backtracking by resetting (virtually) the variables 
encountered in TSEG2. Inde9d, for the marking of the next (older) 
living goal, these bindings do not lo.gi.cally exist. 
During the treatment of the following living goal (corresponding 
to B6), we only need to mark the variables occurring in s6. Those 
occuring in S7,S2 and S3 have already been marked. Then we do vir­
tual backtracking again by resetting the variables encountered in 
TSEG1. 
At last the variables occurring in S4 and S5 are marked. Notice 
that TSEGO is always empty. 

The garbage collector is called in case of heap overflow. The 
teat on overflow takes place just before the execution of one of 
the following instructions: call proc/ar,n, execute proc/ar or 
proceed (see [Tick & Warren 84] for more details on those instruc­
tions). 

In the following procedures, comments are placed between 
brackets. 
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procedure marking 
begin 

{ marking of the argumentregisters A1,A2, ••• ,Aar 
in the case of a call proc/ar,n or execute/ar instruction} 

markargregisters( P ); 

( the first living goal is determined by CP and the 
environment corresponding to CP} 

active call:• CP 
active-env :• E; 

marklivinggoal( active_call, active env ); 

next:• B; 
while next<> root do 

od 

{ determine thenext living goal 
active_call := cont of next; 
active_env : 2 env of next; 

{ resetting of the variables in the trailsegment 
pointed to by reset of next} 

virtualbacktrack( reset of next); 

{ marking of the argumentregisters stored in the 
choice point next} 

markchptargregiaters( next); 

marklivinggoal( active_call, active env ); 

next:= back of next 

end marking 
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procedure marklivinggoal( active_call, active env) 
begin . 

end_of_goal :•false; 
repeat 

if visit of active env 
then begin 

markvariables( number of active env, 
numbervar(active call), active env ); 

number of active env :• numbervarTactive call); 
end_of_goal :• true -

end 
else begin 

markvariables( 0 , numbervar(active call), 
active env ); -

number of-active env :• numbervar(active call) 
visit of active env :•true; -
if father of active env • nil - - -then end of goal:• true; 
else begin -

active call:= call of active_env; 
active env :• father of active env 

end 

end 
fi 

fi 

until end_of_goal 
end marklivinggoal 

procedure markvariables( nbl, nbh, active env) 
begin 

{ marking of the variables Ynbh, Ynbh-1, 
in active env} 

end markvariables 

, Ynbl +1 

function numbervar( active_call) returns (integer) 
begin 

! This function returns the number of variables needed 
in active env to execute active call and its righthand 
brothers.-This information can be found in the code 
by going back one ' instruction from the place pointed 
at by active call. There you find the instruction 
call froc/ar-:n. In the case of _ an execute instruction 
n=O. 

return( n ) ; 
end numbervar 
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6. Incremental marking 

Placing a choice point (backtrackpoint) on the local stack 
saves (freezes) all existing structures on the heap. More techni­
cally: placing CHPTi+1 closes HSEGi . and opens HSEGi+1 which 
becomes the new creationzone on the heap. All the segments 
HSEGO,HSEG1, ••• , HSEGi are saved. 

All structures that are "no garbage" (i.e. structures needed 
for further computation) at the moment of saving will remain "no 
garbage" until we undo this saving by backtracking. Indeed, after 
backtracking · to a backtrackpoint, w.e must reinstate exactly the 
same state as just before placing that backtrackpoint. In other 
words, if we have compacted a saved segment on the heap once, this 
segment cannot contain inaccessible cells until we open it again 
(undo the saving). 

We can now see more clearly where the first strategy fails. 
The second, third, ••• time we call the garbage collector, a total 
marking algorithm will mark and compact many segments that have no 
garbage at all. In fact, it suffices to compact only those seg­
ments which have not been compacted before or which have been 
opened on backtracking. 
It should now also be clear that we must only mark a restricted 
number of active goals. 

7. Optimal incremental marking (second strategy) 

7.1. The marking strategy 
, 

As stated above, "optimal" refers to a 
marked cells. The second strategy will 
better timing results than the first 
optimal). 

We give a real-time model, making use 
working processor (worker) and a garbage 
lector). The model is easily expandable 
model with one workin~ processor and one 
processors (see also LLieberman 83]). 

theoretical minimum of 
be optimal and give much 

strategy (also being 

of two processors being a 
collector processor (col­
to a multiple-processor 
or more garbage-collector 

Incremental marking will also give much better timing results 
the classical one- processor model(~ the worker doing both 
computation and the garbage collection). 

for 
the 

Only one segment on the heap will be marked and compacted at a 
time. This can be done by marking the goal corresponding to 
CHPTi+1 , where CHPTi is designated by HL. HL is a history pointer 
and points to the oldest choice point for which the heapsegment 
designated by heap of HL has not been compacted in previous gar­
bage collections. -HL must be adjusted on backtracking or in the 
case of a cut operation as follows: 
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if HL is more recent than B 
then HL :,. B 
fi 

( initially ve have HL • B s CHPl'O) 

Also after compaction of the segment CHPTi, HL must be adjusted 
and point to CHPri+1 (• following choice point). 

Consider the following example (fig_2): 

~/~ 
CRPTO 

EU EJ I TSEGO I 
£1 

CHPT1 B G;J 

HL ..... 

E2 

CHPT2 I KSEGZ I B 
B....., 

E3 

CRPT3 

CHPT4 
I KSE63 I B 

E4 Fl I TSEG4 I 

~ ~ 

figur ·e 2 

The segments HSEGO and HSEG1 have been compacted in previous gar­
bage collections (see HL in fig_2). HSEG2 is the oldest segment 
that has not yet been compacted. The marking of nSEG2 proceeds as 
follows. 

First determine the goal to be 
active call and active env. We have: 
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active call• cont of CHPT3 
and active env • env of CHPT3 

Then we must perform virtual backtracking by ·resetting virtually 
the variables noticed in TSEG3 and TSEG4. Indeed, the heapsegments 
HSEG3 and HSEG4 do not logically exist .when marking the goal 
corresponding . to CHPT3. The marking starts from the argumentre­
gisters stored in CHPT3 (markchptargregisters( CHPT3 )). At last 
we must mark the rest of the goal (marklivinggoal( active call, 
active_env) ) • -

We now have the following modified marking algorithm: 

procedure marking1 
begin 

ptchpt :=- B; 
while ptchpt is more recent than HL do 

virtualbacktrack( reset of ptchpt ); 
hptchpt : • ptchpt ; -
ptchpt ::11 back of ptchp,t; 

od 

{ marking the argumentregisters stored in the 
choice point hptchpt} 

markchptargregisters( hptchpt ); 

active_call := cont of hptchpt; 
active env :=- env of hptchpt; 
maFklivinggoa11( active call, active_env) 

end marking1 -

procedure marklivinggoal1( active_call, active_env) 
begin 

! Because we only have to mark one living goal, 
the use of visit of active env and number of active env 
is not necessary anymore. No double markingia possible. } 

end_of_goal :=-false; 
repeat 

markvariables( 0, numbervar(active call) , active env ); 
if father of active env = nil 
then end_of goal:=- true 
else begin 

active call ::11 call of active_env; 
active env :• father of active env 

end 
fi 

untilend of goal 
end markli vinggoal 1 · 

Before we start executing marking1, every cell has to be 
"unmarked" in the segment under compaction and in the older seg­
ments. There are some alternatives to solve this problem. We 
could use a bitmaptable to mark the cells and after the marking 
reset all the marked cells, by cleaning up the whole bitmaptable. 
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Another alternative is to keep a table of marked entries. This 
table is released when. the marking is finished. 

In fact, for real time working, the marking of cells in the 
segment under compaction (HSEGi) is replaced by copying. Instead 
of marking the cells, they are directly evacuated from HSEGi to a 
nev segment (HSEGi') which · will become the compacted segment 
(fig_3). 

HSEGi evacuating HSEGi' 

p 

figure 3. 

References to HSEGi will be handled by 
to the evacuated object in HSEGi'. For 
After marking, the place occupied in 
released. 

7.2. Updating of pointers 

placing in HSEGi pointers 
details see [Lieberman 83]. 
memory for HSEGi can be 

We will have to update all pointers to HSEGi. They can be 
divided into forward pointers (pointers from older segments, 
environments or choice points) to HSEGi, backward pointers 
(pointers from younger segments, environments or choice points) to 
HSEGi and internal pointers. 

Internal pointers are handled automatically through the copying 
mechanism. 

All the forward pointers to HSEGi can be found in TSEGi on the 
trail. These are the only entries to HSEGi from older segments. 

For the updating of backward pointers, we associate an update 
table (UDTBi) with each non-compacted . heapsegment (HSEGi). In 
UDTBi .we note all the backward pointers to HSEGi. These update 
tables grow dynamically during the calculations of the worker, 
even if the corresponding segments are closed. This is illustrated 
in fig_4. 
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• 

I HSEGi-1 I 
-------

~•i-.!!f HL 

~apofB -., 

( topseiment } 

HSEGi 

figure 4 

UDTBi 

The use of updatetables will be considerably faster than the 
general "scavenging technique"(= scanning more recent segments, 
environments looking for backward pointers to be updated) proposed 
in [Lieberman 83]. We can afford the use of updatetables because 
we only have to keep a restricted number of them. Indeed, only the 
non-compacted segments need .updatetables, because we never have to 
compact segments more than once. 

7.3. Coordination and synchronisation of the processors 

The garQage collector must be synchronised in such a way that 
there are only a few segments (e.g 5) on the top of the heap which 
are not compacted. It is a good policy to always keep a few uncom­
pacted segments on the top of the heap to ensure little mutual 
interference between the worker and. the collector. We can 
motivate this as follows. The worker usually operates on struc­
tures residill8 in the topsegment. The probability that the worker 
asks access to the s_egment under compaction is rather small. 
If there are not enough uncompacted segments, we simply suspend 
the collector. 
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The worker and the collector operate on the same datastruc­
tures. Mostly, the worker will. interrupt the collector when 
access to the same data is required. This interruption will cause 
a suspension of the collector. 
On interruption, the collector finishes the atomic action it is 
working. on, and then it transfers control to the worker. More on 
atomic actions can be found in [Dijkstra 78]. 

Roughly, wa have suspension of the collector on the following 
occasions: 

- Access of the worker to the segment under compaction. 

- On backtracking or when executing a cut instruction. 
It is possible that the segment under compaction has to be 

removed on backtracking. This gives no major problems. The col­
lector stays suspended until enough uncompacted segments exist 
again. 

When the worker signals to the collector that it can con­
tinue working, the collector must decide whetherto stay 
suspended or to continue collecting • . If HL is no longer older 
than B after backtracking, the coilector stays suspended and 
resumes only when a certain number of uncompacted segments are 
in existence again. In the other case, the collector resumes 
immediately. 

The updating of the pointers to the compacted segment causes 
some critical periods, when there must be mutual exclusion 
between the worker and the collector. 

The worker must be suspended as 
suspension on finishing atomic 
tures, redirection of pointers, 
interrupt from the worker. 

little as possible. There is 
actions ( evacuation of datastruc­
••• ) by the collector after an 

8. Quasi-optimal marking (third strategy) 

In the second strategy we must only mark one living goal at a 
time. This is a considerable improvement over the first strategy. 
However the marking of the one living goal can cause the marking 
of many structures in older compacted segments. This marking in 
older segments is necessary because there are forward pointers in 
the older segments to the segment under compaction (HSEGi). 
When we mark the goal corresponding to HSEGi, all the necessary 
information about the (logically existing) forward pointers to 
HSEGi can be found in TSEGi. Not all of them will be marked in 
the second (optimal) strategy. Nevertheless the number of forward 
pointers which will not be marked seems to be very small. 

The third strategy differs from the second one in that we will 
mark the one living goal only partially. This means ~hat during 
the marking, pointers to older segments are not followed. Instead 
we will follow all forward pointers to HSEGi. Partial marking 
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causes the marking of too many- structures but we expect this 
disadvantage to be negligible compared to the time savings it 
allows. The difference in marking will be clarified by an exam­
ple. Consider the following PROLOG clauses: 

p(a,b). 
p(c,d). 

q( a.R, a.b.S) :-
garb_coll, r(S) , write(R) , write(S). 

r( e). 

and the query: 

?- p(Y,Z) , q(X,X) , write(Y) , write(Z). 

A fictive call garb coll is inserted to clarify the example. Just 
before executing -the call garb coll we have the situation 
represented in fig_5 and fig_6. -

CHPTO 

EO y....,a 
z...,.b 
X 

CHPT1 

El R 
s 

HSEGO 

o?mpty 

~ k1R) 
'-0~ ,, 
b S 

figure 5 
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figure 6 

In the optimal strategy, the variable X of EO will not be marked 
wheras it is marked in the quasi optimal strategy. The shaded 
area in fig_5 indicates memory locations which are unnecessarily 
marked. 
In the programs we have tested ( a.o. a concurrent PROLOG inter­
preter in PROLOG [Shapiro s;]), we have not found significant 
differences between strategy 2 and strategy 3 with respect to 
recovered memory. Only by testing a large number of extensive 
examples can one give a definite answer to the question. 

The only change to algorithms from the previous section, is the 
procedure marklivinggoal1. The updated version follows: 
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procedure markliViI18goa12( active_call, active_frame) 
begin 

end_of_goal :• false 
repeat 

I We make use of a procedure markvariablea1. The 
difference with markvariablea is, that pointers 
pointiI18 to memory locations which are less recent 
than HL (for the local stack) or heap of HL 
(for the hea~) will be neglected. } -

markvariables1 ( 0, numbervar(active_call) , active env ) ; 

Marking of those cells in HSEGi which are accessible 
from older segments and environments (older than HSEGi). 
Therefore we must mark all the pointers noticed in 
TSEGi. } 

markoldtonew( reset of HL ); 

if active env is not more recent than HL 
then end of goal : • true 
else begin -

active call:• call of active env; 
active-env :• fatherof active env 

end 
fi 

untilend of goal 
end marklivinggoal2 

9. Conclusions 

We have showed how garbage collection for PROLOG can be signi­
ficantly improved. These improvements were mainly possible by 
taking advantage of specific properties of the language. 
The indeterminism of PROLOG leads to a number of saved states. The 
basic idea is that the datastructures corresponding to a saved 
state have to be compacted only once. By .incremental marking, we 
avoid double marking and compaction of already compacted struc­
tures, corresponding to saved states. Moreover, by using an 
appropriate {segmented) memory organisation, this incremental 
marking leads to a real-time· garbage collection algorithm. 
The use of a segmented heap where each segment operates as a stack 
guarantees localness of pointers. 

In a first phase we have implemented a garbage collector for a 
sequential PROLOG interpreter making use of the total optimal 
marking strategy. In a second phase, this garbage collector was 
modified to the quasi-optimal incremental marking strategy 
[Pittomvils 84]. 
A real time garbage collector making use of incremental marking is 
under development. 
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