

PROJECY KBAR/SOFT/1 31 MEI 1984

).

which involves only 7 logical inferences instead of 17 if we would use
the original program.

Another example involving abstract data types could be an
implementation of lists.

empty(nil).
cons(_e, _list, .(_e,_list)).
append{_in, _out, _out} :- empty{_in).
append(_in, _part, _out) :-
cons{_e, _listt, _in),
append(_list!, _part, _list2),
cons(_e, _list2, _out).

Y, _2Z)" as target we obtain :

Using the call ‘?7- append(_X

append(nil,_X,_X).
append{.{_e,_in}, _part, .(_e,_out)) :-
append{_in, _part, _out).

which is the program we would write when not using abstract data types
(the variables are renamed for clarity). This implies that we can now
safely use the concepts of abstract data types, without losing any
efficiency during evaluation, thanks to the partial evaluation. A call
to append using the first program would involve 3n+2 inferences (where
n 1is the number of elements in the first inputlist), the transformed
program only n+1t.

Let us consider now an example which queries a simple database about
family relationships :

grandparent{_X,_Y) :- grandmother(_X,_Y).
grandparent{_X,_Y) :- grandfather{_X,_Y}.
grandmother(_X,_Y} :- mother(_X,_2Z), parent(_2Z._Y).
grandfather(_X,_Y) :- father(_X,_2Z), parent(_Z,_Y).
parent{_X,_Y) :- mother{_X,_Y).

parent(_X,_Y) :- father(_X,_Y).

mother (Anna,Violette).
mother(Violette,Jlan).
mother{Vialette,Stan).
mother(Henriette,Henry).
mother{Henriette, Stanis).

Let us consider that the tuples for the father relation are not
available at compile-time, but reside e.g. on an external database.
Consider the call : '?- grandmother(_gm,Jan)’. The program resulting
from partial evaluation :

grandmother{Anna,Jan) :-

BIM - KUL PARTIAL EVALUATION - 3

PROJECT KBAR/SOFT/1 J1 MET 1984

which would yield on the output file

‘Approved .

product(380,._X,_Y), _X == ‘High Quality’', _Y =
which is definitely not equivalent to the initial program. The problem
rises whenever there are multiple definitions for a procedure, the
meta-interpreter backtracks on ‘clause(_X,_Y) which it should do in
the context of interpreting a program but obviously not in the context
of partial evaluation. Therefore we changed the program : instead of
simply writing down the calls to primitive actions we constitute a
list of the sequence of calls encountered and write the completed list
down at the end, on backtracking we generate a list for each solution
which can be written down at the end. In the case of the example it
would give

‘High Quality’.

program{_X,._Y) :- product{380,_X,_Y), _X ==
Y == ‘Approved’.

program{_X,_Y) :- product(380,_X,_Y},

Which reflects better what we want. However, when we add a primitive
action, which has a side effect during execution, in front of the
program, the transformed program is once again not equivalent to the
initial one.

program{_X,_Y} :- write(anything), product(380,_X,_Y},
acceptable(_X,_YI}.

is transformed to

program(_X,_Y) :- write{anything), product(380,_X,_ Y},
_X == "High Quality’.

program(_X,_Y} :- write({anything). product{380,_X,_Y},
_Y == ‘Approved’.

The write would be executed twice here, in the initial program only

once. In fact we want the following result :

program(_X,_Y) :- write{anything), product(380,_X,_Y},
{_X == "High Quality’ ; _Y == ‘Approved’).

which can be achieved by putting the "clause(_X,_Y)'-call in a ‘"setof’
and treat the resulting 1list of bodies as an or-list. This or-list
should recursively be transformed by the partial evaluation system.
(The result of the partial evaluation is then and and-list where the
elements can be calls to primitive actions or or-lists of and-lists).

It should be noted at this stage that this version of our partial
evaluation system already takes in account the process of propagating
the values through the program (by the unification at the moment of
executing the clause(_X,_Y)} and the opening of the calls through the
constitution of the list of consecutive calls.

8IM - KUL PARTIAL EVALUATION - S

PROJECT KBAR/SOFT/1 31 MEI 198¢

The third technique, which consists of evaluating builtins whenever it
is possible, is easily added to this partial evaluation system : every
builtin which 1is known not to have a side-effect (e.g. arithmetic
functions, etc.) are evaluated when possible, which instantiates
possible new variables which can be propagated through the program
otherwise the call is simply included in the output-list as we would
do before.

This gives us the following program :

execute{(_X,_Y),_delay,_L,_ M) :- 1,
execute(_X,delay{_Y, delay)._L._HM).
execute{(_X;_Y),_delay, L,and(or(_rest,_res2), L)) :-
execute(_X,_delay,nil,_rest),
execute(_Y, delay,nil,_res2).
execute(_X,_delay, L, M) :- builtinpred(_X, L, N}, !,
executedelay(_delay, N, _M).
execute(_X,_delay, L,and{(_or,_L}):-
setof(_B,allclauses{_X,_delay, 8),_M),
orlist(_M,_or).
execute{nil, delay,_ part,_res) :-
executedelay(_delay, part,_res).

{meaning of the procedures and parameters :
execute : 1st par. is calls to be evaluated
2nd par. is list of calls to be evaluated later
3rd par. is partial result
4th par. resulting list (output)
setof is a builtin which constitutes a list _MH of all _B
which are a solution of allclauses{_X,_ delay,_8)
orlist converts a "standard’ list to an or-list }

executedelay(nil,_res,_res).
executedelay(delay(_X,_delay),_part,_res) :-
execute{_X,_delay,_part,_res).

allclauses(_X,_delay, B) :- clause(_X,_Y),
execute(_Y,_delay,nil,_B8).

{note here the recursive call to ‘execute’ to evaluate the
bodies of the procedures, before inclusion in the list}

builtinpred(_X,_ L,and(_X,_ L)) :- builtin{_X), sideef(_X), !.
builtinpred(_Xx,_L,_L) - builtin{_X), call(_X), .
builtinpred(_X, L, ,and(_X,_L)}) :~ builtin(_X).

at which we should add some ‘'declarations' about the builtin
predicates of the system :

builtin{write(_X)).

sideef{write(_X)).
builtin(nl).

BIM - KUL PARTIAL EVALUATION - 6

