
BIM-PROLOG

Joint Project between
BIM
and

Department of Computer Science
Katholi eke Universiteit LEUVEN

Sponsored by DPWB/SPPS
under grant nr KBAR/SOFT/1

Tc PU/ IC tV./ /(. IJIT.

..

A Prolog M3ta-interpreter for
Partial Evaluation and its

Jlpplication to Source to Source
Transfonnation and Q.iecy Cptirni.sation

* BIM
Kwikstraat 4
B-3078 Everberg Belgium
tel. +32 2 759 59 25

by
Raf VENKEN *

Internal Re.EX)rt
BIM-pr-olog IR3

May 1984

** Katholieke lhiversiteit I.euven
Department of Canp.1ter Science
Celestijnenlaan 200A
B-3030 Heverlee Belgium
tel. +32 16 20 06 56

DPWB = Diensten van de eerste minister : Programnatie van
bet Wetenschapsbeleid.

SPPS = Services du premier ministre : Programnation de la
Politique Scientifique.

PROJECT KBAR/SOFT/1 31 HEI 1984

A PROLO& HETA-INTER,tETER FOR PARTIAL EVALUATION
AND ITS APPLICATION TO SOURCE TO SOURCE

TRANSFOIHATJON ANO QUEIY OPTJNJSATJON

In this report we investigate how·to apply the
concepts of partial evaluation on source to source
transformations of Prolog program. Starting from a
Prolog metainterpreter we gradually construct a
partial evaluation system and illustrate its
behaviour by several examples. The final system is
argued to be applicable to full Prolog programs. [n
order to achieve this we introduce a special
control structure and describe a meta-interpreter
that handles Prolog extended with this control
structure. finally we describe the impact a partial
evaluation system can have on the optimisation of
queries in deductiv• databases.

1. INTRODUCTION

In [8] partial evaluation of Prolog programs is investigated as a part
of a theory of interactive, incremental programming, with the goal to
provide formally correct, interactive programming tools for program
transformation. Those program transformation tools will play an
eminent role in program optimisation, relieving the programmer from
concern for efficiency in many cases.

In this report we show how a partial evaluation system for Prolog
programs can be build gradually, starting from a Prolog meta-inter
preter. The system is argued to work correctly for 'full-Prolog'
programs and could be used as an automatic optimisation tool for
Prolog program.

Currently we investigate how partial evaluation could be used as an
alternative for the different techniques of compiling queries in
deductive databases, where the deductive database is build around a
Prolog system. The classical compiling techniques restrict to non
recursive databases, where the recent algorithms compile towards
iterative programs (see (2), (4) and (6) for more details). We
indicate how partial evaluation can be used in this context.

2. OIJECTIVES.

The goal.
efficient
techniques
values for

BIH - ICUL

of partial evaluation is to transform programs into more
ones. This optimisation is accomplished by mainly three

: instantiate the parameters of a program by propagating
top-level. formal arguments through the program (execute the

PARTIAL EVALUATION - 1

PROJECT KBAR/SOFT/1 31 HE I 1984

unification at -compile-time-), reduce the number of logical
inferences by opening calls and by evaluating builtin predicates
(builtins for short) whenever possible.

Let us consider a simple example : a straightforward way to implement
a screen management system is to define an abstract data type 'screen'
which consists of some fixed text-fields and some input/output fields,
and some associated manipulations (here a routine to display the
screen on a terminal).

screen(test, 5, 15). {screen test, first line is 5th line
of terminal, last line 15th}

text(test, 5, 15, 'Screen A program x·).
text(test, 9, 5, ·command').
text(test,11, 5, 'Data').

{fixed text of screen test, position of first character
(row.coll followed by text to be displayed}

field(test,command, 9, 13, 11.
field(test,data, 11, 13, 60).

{data-fields of screen test, name of field, position and
length, empty fields are filled with a }

displayscreen(_screen) :
screen(_screen,_begin,_end), clear(_begin,_end),
while(text(_screen,_lin,_col,_text),

put(_lin,_col,_text)),
while(field(_screen,_name,_lin,_col,_len),

putd (_lin ,_col ,_!en, · . ·) l .

while(_X, _Y) :- _x. _Y. fail.
while(_X, _Yl.

Note that 'clear', 'put' and 'putd' are builtins and implement some
primitive actions for screenmanipulation.

Considering the call'?- displayscreen(test)' as the 'main program',
our partial evaluation system transforms the program to the following
equivalent program:

BIH - KUL

displayscreen(test) .
clear(5, 15),
(

put(S,15, ·screen A program x·),fail;
put (9. S, ·Command·). fail:
put (t t. S. ·Data·). fail;
(

putd(9,13,1, ·. '),fail;
putd(11,13,60, ·.·),fail;
true

PARTIAL EVALUATION - 2

PROJECT KBAR/SOFT/1 31 HEI 1984

) .

which involves only 7 logical inferences instead of 17 if we would use
the original program.

Another example involving
implementation of lists.

abstract data types could be an

empty{nil).
cons(_e, _list, .(_e,_list)).
append(_in, _out, _out) :- empty(_in).
append(_in, _part, _out) :-

cons(_e, _list1, _in),
append(_list1, _part, _list2),
cons(_e. _1ist2. _out).

Using the call'?- append(_X, _Y, _21· as target we obtain

append(nil,_X,_XI.
append(.(_e,_inl, _part, .(_e,_outll :-

append(_in, _part, _out).

which is the program we would write when not using abstract data types
(the variables are renamed for clarity). This implies that we can now
safely use the concepts of abstract data types, without losing any
efficiency during evaluation, thanks to the partial evaluation. A call
to append using the first program would involve 3n+2 inferences (where
n is the number of elements in the first inputlistl, the transformed
program only n+1.

Let us consider now an example which queries a simple database about
family relationships :

grandparent(_X,_Y) ·- grandmother(_X,_Y).
grandparent(_X,_Y) ·- grandfather(_X,_Y).
grandmother(_X,_Y) ·- mother(_X,_Z), parent(_Z,_Y).
grandfather(_X,_Y) • father(_X,_Z), parent(_Z,_Y).
parent(_X,_YI ·- mother(_X,_Y).
parent(_X,_Y) :- father(_X,_Y).

mother(Anna,Violette).
mother(Violette,Jan).
mother(Violette,Stan).
mother(Henriette,Henry).
mother(Henriette,Stanisl.

Let us consider that the tuples for the father relation are not
available at compile-time, but reside e.g. on an external database.
Consider the call : '?- grandmother(_gm,Jan)'. The program resulting
from partial evaluation:

grandmother(Anna,Jan) : -

81H - KUL PARTIAL EVALUATION - 3

PROJECT KBAR/SOFT/1 31 HEI 1984

(true ; father(Violette,Jan)l.
grandmother(Violette.Janl :- father(Jan,Jan).
grandmother(Violette,Jan) :- father(Stan,Jan).
grandmother(Henriette,Jan) ·- father(Henry,Jan).
grandmother(Henriette,Jan) :- father(Stanis,Jan).

These results are accomplished by forward propagation of values
through the program, opening calls. evaluating builtins whenever
possible and applying some simplifications on the resulting clauses.

3. A HETA-INTEIPl£Tfl AS A SINPLE ,AtTIAL EVALUATION SYSTEH.

The basis of our partial evaluation system is a Prolog meta-inter
preter (i.e. a Prolog interpreter written in Prolog) :

execute(_X) :- execute(_X,true).

execute(true,true) :- !.
execute((_X,true),_delay) :- !, execute(_X,_delay).
execute((_X,_Y),_delay) ·- !. execute(_X.(_Y._delayl).
execute((_X;_Y),_delay) :- ! , execute(_X._delay),

execute(_Y,_delay).
execute(_X,_delay) . ! , clause(_X,_Y),execute(_Y,_delay).
execute(_X._delayl . ! . call(_X),execute(_delay,true).

By changing the 'call(_Xl' to 'write(_X)' we obtain a simple partial
evaluation system which works only correctly for non-recursive,
cut-free and deterministic rules.

4. AM EXTENSION FOi PIOCEDUI ES CONSISTING Of HULTIPLE CLAUSES.

It is obvious that this system works not correctly for the following
little example :

_class== 'High Quality'.
·-_status== 'Approved'.

acceptable(_class,_statusl .
acceptable(_class._status)

where we assume a relation product which resides on an external
database and which is not known at compile time

product(330, 'Low Quality', 'Test').
product(340, 'High Quality', 'Approved').
product(350, 'Low Quality'. 'Approved').
product(360, 'High Quality', 'Test').
etc.

The program:

program(_X,_Y) ·- product(380,_X,_Y), acceptable(_X,_Y).

81H - KUL PARTIAL EVALUATION - 4

PROJECT KBAR/SOFT/1 31 HEI 1964

which would yield on the output file :

product(J80,_X,_YI, _x -- 'High Quality'. _Y == 'Approved' .

which is definitely not equivalent to the initial program. The problem
rises whenever there are multiple definitions for a procedure, the
meta-interpreter backtracks on 'clause(_X,_YI' which it should do in
the context of interpreting a program but obviously not in the context
of partial evaluation. Therefore we changed the program: instead of
simply writing down the calls to primitive actions we constitute a
list of the sequence of calls encountered and write the completed list
down at the end, on backtracking we generate a list for each solution
which can be written down at the end. In the case of the example it
would give:

program(_X,_Y) ·- product(380,_X,_Y), _x -- 'High Quality'.
program(_X,_Yl ·- product(380,_X,_YI, _Y == 'Approved'.

Which reflects
action, which
program, the
initial one.

better what we want. However, when we add a primitive
has a side effect during execution, in front of the

transformed program is once again not equivalent to the

program(_X,_Y) ·- write(anything), product(J80,_X._Y).
acceptable(_X,_Y).

is transformed to

program(_X,_Y) ·- write(anything), product(J80,_X,_Y),
_X == 'High Quality'.

program(_X,_Y) ·- write(anything). product(360,_X._Y),
_y == 'Approved'.

The write would be executed twice here, in the initial program only
once. In fact we want the following result

program(_X._Y) :- write(anything), product(380,_X._Y),
(_X == 'High Quality' : _Y == 'Approved').

which can be achieved by putting the 'clause(_X,_Y)'-call in a 'setof'
and treat the resulting list of bodies as an or-list. This or-list
should recursively be transformed by the partial evaluation system.
(The result of the partial evaluation is then and and-list where the
elements can be calls to primitive actions or or-lists of and-iists).

lt should be noted at this stage that this version of our partial
evaluation system already takes in account the process of propagating
the values through the program (by the unification at the moment of
eKecuting the clause(_X,_Y)t and the opening of the calls through the
constitution of the list of consecutive calls.

BIH - KUL PARTIAL EVALUATION - 5

PROJECT KBAR/SOFT/1 31 HEI 1984

The third technique, which consists of evaluating builtins whenever it
is possible. is easily added to this partial evaluation system: every
builtin which is known not to have a side-effect (e.g. arithmetic
functions, etc.) are evaluated when possible, which instantiates
possible new variables which can be propagated through the program
otherwise the call is simply included in the output-list as we would
do before.

This gives us the following program:

execute((_X,_Y),_delay,_L,_H) :- ! ,
execute(_X,delay(_Y,_delay),_L,_H).

execute((_X,_Y),_delay,_L,and(or(_res1,_res2),_L)) ·
execute(_X._delay,nil,_res1),
execute(_Y,_delay,nil,_res2).

execute(_X,_delay,_L,_H) :- builtinpred(_X,_L,_N), ! ,
executedelay(_delay,_N,_K).

execute(_X,_delay,_L,and(_or,_L)):
setof(_B,allclauses{_X,_delay,_8),_H),
orlist(_H,_or).

executelnil,_delay,_part,_res) :-
executedelay(_delay,_part,_res).

{meaning of the procedures and parameters :
execute : 1st par. is calls to be evaluated

2nd par. is list of calls to be evaluated later
3rd par. is partial result
4th par. resulting list (output)

setof is a builtin which constitutes a list _Hof all _B
which are a solution of allclauses(_X,_delay,_B)

orlist converts a 'standard' list to an or-list}

executedelay(nil,_res,_res).
executedelay(delay(_X,_delay),_part,_res) .

execute(_X,_delay,_part,_res).

allclauses(_X,_delay,_B) :- clause(_X,_Y).
execute(_Y,_delay,nil,_B).

{note here the recursive call to 'execute' to evaluate the
bodies of the procedures, before inclusion in the list}

builtinpred(_X,_L,and(_X,_L)) ·
builtinpred(_X,_L,_L)
builtinpred(_X,_l,and(_X,_L)) ·-

builtin(_X). sideef(_X). I

·- builtin(_X). call(_X), ! .
builtin(_X).

at which we should add some 'declarations' about the builtin
predicates of the system:

builtin(write(_X)).
sideef(write(_X)).
builtin(nl).

BIH - KUL PARTIAL EVALUATION - 6

PROJECT KBAR/SOFT/1

sideef(nl).
builtin(_X is _Y).
builtin(_X ~ _Y).
etc.

31 HEI 1984

The program to be optimised can be read in core and the invocation of
the partial evaluation could be as follows :

7- execute(program,nil,nil,_OL), prettyprint(_OL).

{where prettyprint(_X) is a procedure to output the result in
a human readable way}

This constitutes the basis of our partial evaluation system which we
will elaborate further in the sequel of this paper.

5. FIOH THEOIY TO PIACTICE : SOftE AHELIOIATIONS.

The first program we tried to optimise with this partial evaluation
system was the partial evaluation system itself, which did not work as
we liked to. There w•re several reasons for this which we explore in
this section and whose investigation resulted in a final system that
copes with full Prolog programs.

5.1 RECURSION.

The system obviously gets in a loop each time it encounters a
recursive rule. In the literature concerning compilation techniques
for queries in recursive first-order databases (e.g. [6]) one tries to
solve this by compiling recursive rules into iterative programs, which
does not suit our approach of compiling into Prolog. We propose (and
implemented) a simple but usable solution.

During the process of partial evaluation we keep track of the
procedures we currently are working on (e.g. in a list), when we
encounter a recursive call (which is thus an element of this list), we
suspend the process of partial evaluation on this call, but transfer
it as it was to the output list. In order to obtain an executable
program this call to a recursive rule should be queued. After ending
the partial evaluation of the input program, the system starts
evaluating the queued calls to recursive rules. The goal is to obtain
'execution plans' for procedures which consist of a sequence of
builtin-invocations and calls to recursive procedures. For each
recursive procedure used we generate an 'execution plan'.

An example:

program(_X) :- fac(_X).

BIH - KUL

fac(_X) · -
fac(_X) ·-

_x == o, write(1).
_x \== o, write(_X), write('•'), _Y is _X-1,

PARTIAL EVALUATION - 1

PROJECT KBAR/SOFT/1 31 HE I 19 84

fac(_Y).

{generation of a product that calculates n! }

The solution we propose generates

program(_XJ ·- (_X == o. write(1)
_x \== o, write(_X). write('*'). _y is _X-1, fac(_Y)).

fac(_X) ·- (_X == 0, write(1) :
_X \== o, write(_X), write('*'), _Y is _X-1, fac(_Y)).

which can be executed by the Prolog system and is equivalent to the
initial program. One can verify that an execution of the transformed
program needs less logical inferences than the initial program.

Note that this approach is too conservative in certain cases : a call
like'?- fac(28)' can be transformed savely with the initial system to
'?- write(28t, write("*'), write(21), writef'*'t, ... · because the
only parameter is instantiated and the procedure 'fac(_X)' is written
correctly. The problem however rises when parameters are only partialy
instantiated, in this case a decision whether to delay partial
evaluation or not, should be based upon whether the parameters are
sufficiently instantiated to prevent infinite recursion. This could be
accomplished when one adds declarations about legal uses of procedures
(all valid input-output patterns) in combination with a dataflow
analysis which checks the consistency of the different declarations
with the program (see [1] and [11] for more details). Some related
work has been presented in (9).

5.2 CUT.

The simple meta-interpreter which we introduced in section 2 does not
work correctly for rules with cuts. So we were not surprised that the
transformations of programs containing cuts did not work correctly. A
cut has a very specific impact on the control of a very specific part
of the program (i.e. only the subgoal where it appears within), this
notion of context should be preserved in the generated program. For
this reason we introduce a special control structure for keeping track
of this context.

An example:

program·- pos(_toy,_X), fac(_X).
fac(_X) ·- _x == o, !, write(1).
fac(_X) ·- write(_X), _Y is _X-1, write('*'), fac(_Y).

with a relation 'pos' on an external database.

aIH - KUL

pos(cubblestone,6).
pos(roulette,36).
etc.

PARTIAL EVALUATION - 8

PROJECT KBAR/SOFT/1 31 HEI 1984

The following program is obviously not equivalent :

program:- pos(_toy,_Xl, (_X == 0, !, write(1)
write(_XI, _Y is _X-1, write('*'), fac(_Y)).

The cut here (as we take the definition of the cut in Cprologl has an
impact on a too great part of the program, the context should be
restricted to the or-clause. This can be expressed introducing an
appropriate marking and a modified cut referring to this marking :

program:- pos(_toy,_XI, mark(1), (_X == o. !(11, write(t)
write(_X), _Y is _X-1, write('*'), fac(_Y)).

This program needs a modified Prolog system which handles those
special mark- and cutpredicates. A mark(nl always succeeds, on
reaching a cut(n) the modified interpreter removes all backtrackpoints
backwards till the mark(n). It is very easy to make this little change
in a Prolog interpreter or to write a meta-interpreter which copes
with this special control structure. A similar control structure has
been proposed in [3].

5.3 BACKWARD UNiflCATIOtt.

One technique of partial evaluation consists of propagating values
forward through the program, which is accomplished in our system by
the unification on calling 'clause(_X,_YI'. This unification however
does more than instantiating input parameters of the called procedure,
it also eventually gives back values for the output parameters which
in certain cases causes problems.

An example that illustrates these problems

program(_X) :- p(_X).
p(a) :- writela).
p(bl :- write(b).
p(_X) :- write(ok).

The partial evaluation system generates :

·- (write(al ; write(ok)).
write(bl.

program(a)
program(bl .

because of the backward unification the system generates 2 solutions
for p(_X) one with _X='a' and one with _X='b', while the solution that
_x remains a free variable is lost. Note that in such cases the
setof-statement backtracks and generates multiple solutions.

There are two ways to solve this problem. The first one is very simple
but restricts the impact of the partial evaluation considerably. The
second is somewhat more difficult to implement but gives the best
results.

BIH - KUL PARTIAL EVALUATION - 9

PROJECT KBAR/SOFT/1 31 HEI 1984

The first solution consists of making a copy of the call and partially
evaluate · it, the system continues by checking whether the unification
involves backward assignments, if not the copy of the call is unified
with the initial call, if so it delays the call as it would do with
recursive ones. In the example above the program would stay unchanged
and thus correct.

Note that this restriction is too conservative: when the called
procedure is deterministic (i.e. it has only one solution), the
backward unification is save. In general one can not decide at compile
time whether a procedure is deterministic or not (e.g. when the user
is allowed to add assertions). When using a modular program structure
however, which protects rules against illegal userinteraction, one
could include this check for determinism in the partial evaluation
system.

A program like :

program(_X) ·- p(_X).
p(a).

could then safely be transformed into

program(a).

But as we said before, this solution has a too restrictive effect on
the impact of the partial evaluation process, while the percentage of
backward unification in a typical Prolog program is usualy very high.

The second solution starts from a number of copies of the initial
call, one for each possible solution, the solutions are put in an
orlist. Instead of unifying the seperate calls with the initial one,
only the forward unification is executed, for each backward
unification an explicit assignment is added to the respective
solution. A little example illustrates

program(_X) :- (_X=a, write(a) ;
_X=b, write(b)
_X=_Y, write(ok)) .

This solution can then further be simplified into

program(a) :- write(a).
program(b) :- write(b).
program(_X) :- write(ok).

We do not intend to go in details concerning the implementation of the
final system which copes with recursion, cut and backward unification.
The final system consists of nearly 200 lines of Prolog code, from
which 25 lines implement the 'pretty printing'. 20 lines the
simplication of the solutions, 20 extra lines were needed for coping

81H - KUL PARTIAL EVALUATION - 10

PROJECT KBAR/SOFT/1 31 HEI 1984

with recursion, 15 lines for the cut and some 35 lines for backward
unification. Some extra code was needed to cope with some special
features of Prolog like meta-calls, not, ...

Tests with 'real-life· Prolog programs gave the same results as
described in (8). lt is obvious that 'dead' code is automatically
eliminated. The number of procedures decreases significantly : only
the 'main program' is preserved together with execution plans for all
used recursive rules. The volume of the code however can grow
considerably, depending on the nature of the program. A program using
an in-core database e.g. can give rise to a combinatorial explosion of
code. However the number of logical inferences required to execute the
transformed program is always less than those required to execute the
initial program, with a factor in the range of t.5 to 5 or more. The
gain achieved with the partial evaluation is the greatest when the
programs were written using structured programming techniques as
modular programming, abstract data types, etc., and the performance of
the transformed programs is comparable (if not better) with the
performance of manually optimised programs. In other words : the
partial evaluation system relieves the programmer from concerns about
optimisation and permits him to use programming methodologies who are
closer related to logic progranvning and to focus himself on issues of
efficient problem solving.

5. APPLICATION Of PA.TIAL EVALUATIOM ON QUERY OPTIHISATION.

The objective here is to couple a Prolog system to a database system
in a way that seems to be a good compromise between the compiled
approach as described in (2] and the interpretive approach first
implemented in (10]. By adding some declarations concerning the tuples
stored in the extensional database (edb) the former method generates,
by delaying edb-calls, a conjunction of calls to the edb, that can be
solved by the database system (this method only works for
non-recursive, cut-free, builtin-free rules). The latter method
requires a little change in the Prolog interpreter in the sense that
each time a call to a relation is encountered which is stored on the
database, the call is transmitted to the OB-system for execution, the
solutions are stored on a stack and consumed one by one by the normal
backtracking of the Prolog system.

Our approach consists of extending the partial evaluation system as to
treat calls to the edb as not yet evaluable builtins. This implies
that the transformed program consists of conjunctions of calls to the
edb intermixed with calls to builtins and recursive rules, which
themselves have the same structure. The corresponding Prolog system
operates in the same way as the one in the interpretive approach, but
instead of transmitting calls to single relations to the edb, it
transmits conjunctions of calls, which can be the subject of some
optimisation at the level of the database system (or possibly at
compile time), the results of the query are again stored on a stack
and consumed one by one through backtracking.

81H - KUL PARTIAL EVALUATION - 11

•

PROJECT KBAR/SOFT/1 31 HEI 1984

The advantage of this approach is that the transformed program remains
a Prolog program (Prolog extended with mark(n) and cut(n)), that the
system copes with recursive queries and that calls to the external
database are clustered together, which enables some query optimisa
tion .

Investigation should point out whether the optimisation on these
conjunctions of edb-calls should be done at compile time, (as in (12),
using statistical information from the database system or as in (5) or
(7] where semantical information is used for semantic query
optimisation) or whether the optimisation should be left over to the
available database system.

7. CONCLUSION.

We presented some results of the investigation to applying the
technique of partial evaluation to Prolog. The main goal was to obtain
a tool that could relieve the programmer from concerns of optimisation
issues. The partial evaluation system, which is based on a simple
Prolog meta-interpreter, is shown to work for full Prolog program. The
Prolog programs are transformed in equivalent (partially evaluated)
HC-Prolog programs, where HC-Prolog is a Prolog extended with mark(n)
and cut(n) builtins. It is shown how partial evaluation can be used as
a compromise between the compiled and interpreted approach in linking
Prolog to database systems.

8. ACKNOWLEDGEMENTS.

This work has been done partly under the contract KBAR/SOFT/1, which
is a grant of the OPWB (Oiensten van de programmatie van het
wetenschapsbeleid). The application of partial evaluation on the
integration of Prolog and databases has been investigated as part of
the ESPRIT pilot project 3.3, titled •A logic oriented approach to
knowledge and databases supporting natural user interaction·.

t. lffERENCES.

(1) Bruynooghe Maurice, Adding redundancy to obtain more reliable and
readable Prolog programs. Proc. of the 1st Int. Logic Programming
Conf.J Marseille 1982, pp. 129-133.

(2) Chakravarty, U.S., Hinker, J. and Tran, O., Interfacing predicate
logic languages and relational databases, Proc. of the 1st Int.
Logic Prografflllling Conf .• Marseille 1982, pp. 91-98.

[3] Chikayama T., ESP as a preliminary kernel language of fifth
generation computers, ICOT Research Center Technical Report,
1983.

[4] Gallaire H. and Hinker J., Logic and Data Bases. Plenum Press,
New York 1978.

BIH - KUL PARTIAL EVALUATION - 12

•

PROJECT KBAR/SOFT/1 31 HEI 1984

(5) Hammer H. and Zdonik S., Knowledge based query processing, Proc.
6th Int. Conf. on Very large Database, Hontreal 1980, pp.
137~147.

[6] Henschen L.J. and Naqvi S.A., On compiling queries in recursive
first-order databases, Journal of the ACH, Vol 31 Humber 1, Jan
1984.

[71 King J., Quist a system for semantic query optimisation in
relational databases, Proc. 7th tnt. Conf. on Very large
Databases, Cannes 1981, pp. 510-517.

[8] Komorowski Henryk Jan, A specification of an abstract Prolog
machine and its application to partial evaluation. Linkoping
Studies in Science and Technology Dissertations No 69, Linkoping
University 1981.

(9) Naish l., Automatic generation of control for logic programs.
Technical Report 83/6, Department of Computer Science, The
University of Helbourne 1983.

(10) Venken Raf, A simple relational database as an extension for
Prolog (in Dutch), undergraduate dissertation, Katholieke
Universiteit leuven 1981.

(11] Venken Raf and Bruynooghe Haurice, Prolog as a language for
prototyping, Proc. of Working Conference on Prototyping, Namur
1983.

[12) Warren, D.H.O., Efficient processing of interactive relational
database queries expressed in logic, Proc. 7th Int. Conf. on very
Large Databases, Cannes 1981.

81H - KUL PARTIAL EVALUATION - 13

