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A PROLO& HETA-INTER,tETER FOR PARTIAL EVALUATION 
AND ITS APPLICATION TO SOURCE TO SOURCE 

TRANSFOIHATJON ANO QUEIY OPTJNJSATJON 

In this report we investigate how·to apply the 
concepts of partial evaluation on source to source 
transformations of Prolog program. Starting from a 
Prolog metainterpreter we gradually construct a 
partial evaluation system and illustrate its 
behaviour by several examples. The final system is 
argued to be applicable to full Prolog programs. [n 
order to achieve this we introduce a special 
control structure and describe a meta-interpreter 
that handles Prolog extended with this control 
structure. finally we describe the impact a partial 
evaluation system can have on the optimisation of 
queries in deductiv• databases. 

1. INTRODUCTION 

In [8] partial evaluation of Prolog programs is investigated as a part 
of a theory of interactive, incremental programming, with the goal to 
provide formally correct, interactive programming tools for program 
transformation. Those program transformation tools will play an 
eminent role in program optimisation, relieving the programmer from 
concern for efficiency in many cases. 

In this report we show how a partial evaluation system for Prolog 
programs can be build gradually, starting from a Prolog meta-inter
preter. The system is argued to work correctly for 'full-Prolog' 
programs and could be used as an automatic optimisation tool for 
Prolog program. 

Currently we investigate how partial evaluation could be used as an 
alternative for the different techniques of compiling queries in 
deductive databases, where the deductive database is build around a 
Prolog system. The classical compiling techniques restrict to non
recursive databases, where the recent algorithms compile towards 
iterative programs (see (2), (4) and (6) for more details). We 
indicate how partial evaluation can be used in this context. 

2. OIJECTIVES. 

The goal. 
efficient 
techniques 
values for 
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of partial evaluation is to transform programs into more 
ones. This optimisation is accomplished by mainly three 

: instantiate the parameters of a program by propagating 
top-level. formal arguments through the program (execute the 
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unification at -compile-time-), reduce the number of logical 
inferences by opening calls and by evaluating builtin predicates 
(builtins for short) whenever possible. 

Let us consider a simple example : a straightforward way to implement 
a screen management system is to define an abstract data type 'screen' 
which consists of some fixed text-fields and some input/output fields, 
and some associated manipulations (here a routine to display the 
screen on a terminal). 

screen(test, 5, 15). {screen test, first line is 5th line 
of terminal, last line 15th} 

text(test, 5, 15, 'Screen A program x·). 
text(test, 9, 5, ·command'). 
text(test,11, 5, 'Data'). 

{fixed text of screen test, position of first character 
(row.coll followed by text to be displayed} 

field(test,command, 9, 13, 11. 
field(test,data, 11, 13, 60). 

{data-fields of screen test, name of field, position and 
length, empty fields are filled with a } 

displayscreen(_screen) :
screen(_screen,_begin,_end), clear(_begin,_end), 
while( text(_screen,_lin,_col,_text), 

put(_lin,_col,_text) ), 
while( field(_screen,_name,_lin,_col,_len), 

putd (_lin ,_col ,_!en, · . · ) l . 

while(_X, _Y) :- _x. _Y. fail. 
while(_X, _Yl. 

Note that 'clear', 'put' and 'putd' are builtins and implement some 
primitive actions for screenmanipulation. 

Considering the call'?- displayscreen(test)' as the 'main program', 
our partial evaluation system transforms the program to the following 
equivalent program: 
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displayscreen(test) . 
clear(5, 15), 
( 

put(S,15, ·screen A program x· ),fail; 
put ( 9. S, ·Command· ). fail: 
put ( t t. S. ·Data·). fail; 
( 

putd(9,13,1, ·. '),fail; 
putd(11,13,60, ·.·),fail; 
true 
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) . 

which involves only 7 logical inferences instead of 17 if we would use 
the original program. 

Another example involving 
implementation of lists. 

abstract data types could be an 

empty{nil). 
cons(_e, _list, .(_e,_list)). 
append(_in, _out, _out) :- empty(_in). 
append(_in, _part, _out) :-

cons(_e, _list1, _in), 
append(_list1, _part, _list2), 
cons(_e. _1ist2. _out). 

Using the call'?- append(_X, _Y, _21· as target we obtain 

append(nil,_X,_XI. 
append(.(_e,_inl, _part, .(_e,_outll :-

append(_in, _part, _out). 

which is the program we would write when not using abstract data types 
(the variables are renamed for clarity). This implies that we can now 
safely use the concepts of abstract data types, without losing any 
efficiency during evaluation, thanks to the partial evaluation. A call 
to append using the first program would involve 3n+2 inferences (where 
n is the number of elements in the first inputlistl, the transformed 
program only n+1. 

Let us consider now an example which queries a simple database about 
family relationships : 

grandparent(_X,_Y) ·- grandmother(_X,_Y). 
grandparent(_X,_Y) ·- grandfather(_X,_Y). 
grandmother(_X,_Y) ·- mother(_X,_Z), parent(_Z,_Y). 
grandfather(_X,_Y) • father(_X,_Z), parent(_Z,_Y). 
parent(_X,_YI ·- mother(_X,_Y). 
parent(_X,_Y) :- father(_X,_Y). 

mother(Anna,Violette). 
mother(Violette,Jan). 
mother(Violette,Stan). 
mother(Henriette,Henry). 
mother(Henriette,Stanisl. 

Let us consider that the tuples for the father relation are not 
available at compile-time, but reside e.g. on an external database. 
Consider the call : '?- grandmother(_gm,Jan)'. The program resulting 
from partial evaluation: 

grandmother(Anna,Jan) : -
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(true ; father(Violette,Jan)l. 
grandmother(Violette.Janl :- father(Jan,Jan). 
grandmother(Violette,Jan) :- father(Stan,Jan). 
grandmother(Henriette,Jan) ·- father(Henry,Jan). 
grandmother(Henriette,Jan) :- father(Stanis,Jan). 

These results are accomplished by forward propagation of values 
through the program, opening calls. evaluating builtins whenever 
possible and applying some simplifications on the resulting clauses. 

3. A HETA-INTEIPl£Tfl AS A SINPLE ,AtTIAL EVALUATION SYSTEH. 

The basis of our partial evaluation system is a Prolog meta-inter
preter (i.e. a Prolog interpreter written in Prolog) : 

execute(_X) :- execute(_X,true). 

execute(true,true) :- !. 
execute((_X,true),_delay) :- !, execute(_X,_delay). 
execute((_X,_Y),_delay) ·- !. execute(_X.(_Y._delayl). 
execute((_X;_Y),_delay) :- ! , execute(_X._delay), 

execute(_Y,_delay). 
execute(_X,_delay) . ! , clause(_X,_Y),execute(_Y,_delay). 
execute(_X._delayl . ! . call(_X),execute(_delay,true). 

By changing the 'call(_Xl' to 'write(_X)' we obtain a simple partial 
evaluation system which works only correctly for non-recursive, 
cut-free and deterministic rules. 

4. AM EXTENSION FOi PIOCEDUI ES CONSISTING Of HULTIPLE CLAUSES. 

It is obvious that this system works not correctly for the following 
little example : 

_class== 'High Quality'. 
·-_status== 'Approved'. 

acceptable(_class,_statusl . 
acceptable(_class._status) 

where we assume a relation product which resides on an external 
database and which is not known at compile time 

product(330, 'Low Quality', 'Test'). 
product(340, 'High Quality', 'Approved'). 
product(350, 'Low Quality'. 'Approved'). 
product(360, 'High Quality', 'Test'). 
etc. 

The program: 

program(_X,_Y) ·- product(380,_X,_Y), acceptable(_X,_Y). 
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which would yield on the output file : 

product(J80,_X,_YI, _x -- 'High Quality'. _Y == 'Approved' . 

which is definitely not equivalent to the initial program. The problem 
rises whenever there are multiple definitions for a procedure, the 
meta-interpreter backtracks on 'clause(_X,_YI' which it should do in 
the context of interpreting a program but obviously not in the context 
of partial evaluation. Therefore we changed the program: instead of 
simply writing down the calls to primitive actions we constitute a 
list of the sequence of calls encountered and write the completed list 
down at the end, on backtracking we generate a list for each solution 
which can be written down at the end. In the case of the example it 
would give: 

program(_X,_Y) ·- product(380,_X,_Y), _x -- 'High Quality'. 
program(_X,_Yl ·- product(380,_X,_YI, _Y == 'Approved'. 

Which reflects 
action, which 
program, the 
initial one. 

better what we want. However, when we add a primitive 
has a side effect during execution, in front of the 

transformed program is once again not equivalent to the 

program(_X,_Y) ·- write(anything), product(J80,_X._Y). 
acceptable(_X,_Y). 

is transformed to 

program(_X,_Y) ·- write(anything), product(J80,_X,_Y), 
_X == 'High Quality'. 

program(_X,_Y) ·- write(anything). product(360,_X._Y), 
_y == 'Approved'. 

The write would be executed twice here, in the initial program only 
once. In fact we want the following result 

program(_X._Y) :- write(anything), product(380,_X._Y), 
(_X == 'High Quality' : _Y == 'Approved' ). 

which can be achieved by putting the 'clause(_X,_Y)'-call in a 'setof' 
and treat the resulting list of bodies as an or-list. This or-list 
should recursively be transformed by the partial evaluation system. 
(The result of the partial evaluation is then and and-list where the 
elements can be calls to primitive actions or or-lists of and-iists). 

lt should be noted at this stage that this version of our partial 
evaluation system already takes in account the process of propagating 
the values through the program (by the unification at the moment of 
eKecuting the clause(_X,_Y)t and the opening of the calls through the 
constitution of the list of consecutive calls. 

BIH - KUL PARTIAL EVALUATION - 5 



PROJECT KBAR/SOFT/1 31 HEI 1984 

The third technique, which consists of evaluating builtins whenever it 
is possible. is easily added to this partial evaluation system: every 
builtin which is known not to have a side-effect (e.g. arithmetic 
functions, etc.) are evaluated when possible, which instantiates 
possible new variables which can be propagated through the program 
otherwise the call is simply included in the output-list as we would 
do before. 

This gives us the following program: 

execute((_X,_Y),_delay,_L,_H) :- ! , 
execute(_X,delay(_Y,_delay),_L,_H). 

execute((_X,_Y),_delay,_L,and(or(_res1,_res2),_L)) ·
execute(_X._delay,nil,_res1), 
execute(_Y,_delay,nil,_res2). 

execute(_X,_delay,_L,_H) :- builtinpred(_X,_L,_N), ! , 
executedelay(_delay,_N,_K). 

execute(_X,_delay,_L,and(_or,_L)):
setof(_B,allclauses{_X,_delay,_8),_H), 
orlist(_H,_or). 

executelnil,_delay,_part,_res) :-
executedelay(_delay,_part,_res). 

{meaning of the procedures and parameters : 
execute : 1st par. is calls to be evaluated 

2nd par. is list of calls to be evaluated later 
3rd par. is partial result 
4th par. resulting list (output) 

setof is a builtin which constitutes a list _Hof all _B 
which are a solution of allclauses(_X,_delay,_B) 

orlist converts a 'standard' list to an or-list} 

executedelay(nil,_res,_res). 
executedelay(delay(_X,_delay),_part,_res) . 

execute(_X,_delay,_part,_res). 

allclauses(_X,_delay,_B) :- clause(_X,_Y). 
execute(_Y,_delay,nil,_B). 

{note here the recursive call to 'execute' to evaluate the 
bodies of the procedures, before inclusion in the list} 

builtinpred(_X,_L,and(_X,_L)) ·
builtinpred(_X,_L,_L) 
builtinpred(_X,_l,and(_X,_L)) ·-

builtin(_X). sideef(_X). I 

·- builtin(_X). call(_X), ! . 
builtin(_X). 

at which we should add some 'declarations' about the builtin 
predicates of the system: 

builtin(write(_X)). 
sideef(write(_X)). 
builtin(nl). 

BIH - KUL PARTIAL EVALUATION - 6 



PROJECT KBAR/SOFT/1 

sideef(nl). 
builtin(_X is _Y). 
builtin(_X ~ _Y). 
etc. 

31 HEI 1984 

The program to be optimised can be read in core and the invocation of 
the partial evaluation could be as follows : 

7- execute(program,nil,nil,_OL), prettyprint(_OL). 

{where prettyprint(_X) is a procedure to output the result in 
a human readable way} 

This constitutes the basis of our partial evaluation system which we 
will elaborate further in the sequel of this paper. 

5. FIOH THEOIY TO PIACTICE : SOftE AHELIOIATIONS. 

The first program we tried to optimise with this partial evaluation 
system was the partial evaluation system itself, which did not work as 
we liked to. There w•re several reasons for this which we explore in 
this section and whose investigation resulted in a final system that 
copes with full Prolog programs. 

5.1 RECURSION. 

The system obviously gets in a loop each time it encounters a 
recursive rule. In the literature concerning compilation techniques 
for queries in recursive first-order databases (e.g. [6]) one tries to 
solve this by compiling recursive rules into iterative programs, which 
does not suit our approach of compiling into Prolog. We propose (and 
implemented) a simple but usable solution. 

During the process of partial evaluation we keep track of the 
procedures we currently are working on (e.g. in a list), when we 
encounter a recursive call (which is thus an element of this list), we 
suspend the process of partial evaluation on this call, but transfer 
it as it was to the output list. In order to obtain an executable 
program this call to a recursive rule should be queued. After ending 
the partial evaluation of the input program, the system starts 
evaluating the queued calls to recursive rules. The goal is to obtain 
'execution plans' for procedures which consist of a sequence of 
builtin-invocations and calls to recursive procedures. For each 
recursive procedure used we generate an 'execution plan'. 

An example: 

program(_X) :- fac(_X). 

BIH - KUL 

fac(_X) · -
fac(_X) ·-

_x == o, write(1). 
_x \== o, write(_X), write('•'), _Y is _X-1, 
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fac(_Y). 

{generation of a product that calculates n! } 

The solution we propose generates 

program(_XJ ·- (_X == o. write(1) 
_x \== o, write(_X). write('*'). _y is _X-1, fac(_Y)). 

fac(_X) ·- (_X == 0, write(1) : 
_X \== o, write(_X), write('*'), _Y is _X-1, fac(_Y) ). 

which can be executed by the Prolog system and is equivalent to the 
initial program. One can verify that an execution of the transformed 
program needs less logical inferences than the initial program. 

Note that this approach is too conservative in certain cases : a call 
like'?- fac(28)' can be transformed savely with the initial system to 
'?- write(28t, write("*'), write(21), writef'*'t, ... · because the 
only parameter is instantiated and the procedure 'fac(_X)' is written 
correctly. The problem however rises when parameters are only partialy 
instantiated, in this case a decision whether to delay partial 
evaluation or not, should be based upon whether the parameters are 
sufficiently instantiated to prevent infinite recursion. This could be 
accomplished when one adds declarations about legal uses of procedures 
(all valid input-output patterns) in combination with a dataflow
analysis which checks the consistency of the different declarations 
with the program (see [1] and [11] for more details). Some related 
work has been presented in (9). 

5.2 CUT. 

The simple meta-interpreter which we introduced in section 2 does not 
work correctly for rules with cuts. So we were not surprised that the 
transformations of programs containing cuts did not work correctly. A 
cut has a very specific impact on the control of a very specific part 
of the program (i.e. only the subgoal where it appears within), this 
notion of context should be preserved in the generated program. For 
this reason we introduce a special control structure for keeping track 
of this context. 

An example: 

program·- pos(_toy,_X), fac(_X). 
fac(_X) ·- _x == o, !, write(1). 
fac(_X) ·- write(_X), _Y is _X-1, write('*'), fac(_Y). 

with a relation 'pos' on an external database. 

aIH - KUL 

pos(cubblestone,6). 
pos(roulette,36). 
etc. 
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The following program is obviously not equivalent : 

program:- pos(_toy,_Xl, (_X == 0, !, write(1) 
write(_XI, _Y is _X-1, write('*'), fac(_Y)). 

The cut here (as we take the definition of the cut in Cprologl has an 
impact on a too great part of the program, the context should be 
restricted to the or-clause. This can be expressed introducing an 
appropriate marking and a modified cut referring to this marking : 

program:- pos(_toy,_XI, mark(1), (_X == o. !(11, write(t) 
write(_X), _Y is _X-1, write('*'), fac(_Y)). 

This program needs a modified Prolog system which handles those 
special mark- and cutpredicates. A mark(nl always succeeds, on 
reaching a cut(n) the modified interpreter removes all backtrackpoints 
backwards till the mark(n). It is very easy to make this little change 
in a Prolog interpreter or to write a meta-interpreter which copes 
with this special control structure. A similar control structure has 
been proposed in [3]. 

5.3 BACKWARD UNiflCATIOtt. 

One technique of partial evaluation consists of propagating values 
forward through the program, which is accomplished in our system by 
the unification on calling 'clause(_X,_YI'. This unification however 
does more than instantiating input parameters of the called procedure, 
it also eventually gives back values for the output parameters which 
in certain cases causes problems. 

An example that illustrates these problems 

program(_X) :- p(_X). 
p(a) :- writela). 
p(bl :- write(b). 
p(_X) :- write(ok). 

The partial evaluation system generates : 

·- (write(al ; write(ok)). 
write(bl. 

program(a) 
program(bl . 

because of the backward unification the system generates 2 solutions 
for p(_X) one with _X='a' and one with _X='b', while the solution that 
_x remains a free variable is lost. Note that in such cases the 
setof-statement backtracks and generates multiple solutions. 

There are two ways to solve this problem. The first one is very simple 
but restricts the impact of the partial evaluation considerably. The 
second is somewhat more difficult to implement but gives the best 
results. 
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The first solution consists of making a copy of the call and partially 
evaluate · it, the system continues by checking whether the unification 
involves backward assignments, if not the copy of the call is unified 
with the initial call, if so it delays the call as it would do with 
recursive ones. In the example above the program would stay unchanged 
and thus correct. 

Note that this restriction is too conservative: when the called 
procedure is deterministic (i.e. it has only one solution), the 
backward unification is save. In general one can not decide at compile 
time whether a procedure is deterministic or not (e.g. when the user 
is allowed to add assertions). When using a modular program structure 
however, which protects rules against illegal userinteraction, one 
could include this check for determinism in the partial evaluation 
system. 

A program like : 

program(_X) ·- p(_X). 
p(a). 

could then safely be transformed into 

program(a). 

But as we said before, this solution has a too restrictive effect on 
the impact of the partial evaluation process, while the percentage of 
backward unification in a typical Prolog program is usualy very high. 

The second solution starts from a number of copies of the initial 
call, one for each possible solution, the solutions are put in an 
orlist. Instead of unifying the seperate calls with the initial one, 
only the forward unification is executed, for each backward 
unification an explicit assignment is added to the respective 
solution. A little example illustrates 

program(_X) :- ( _X=a, write(a) ; 
_X=b, write(b) 
_X=_Y, write(ok) ) . 

This solution can then further be simplified into 

program(a) :- write(a). 
program(b) :- write(b). 
program(_X) :- write(ok). 

We do not intend to go in details concerning the implementation of the 
final system which copes with recursion, cut and backward unification. 
The final system consists of nearly 200 lines of Prolog code, from 
which 25 lines implement the 'pretty printing'. 20 lines the 
simplication of the solutions, 20 extra lines were needed for coping 
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with recursion, 15 lines for the cut and some 35 lines for backward 
unification. Some extra code was needed to cope with some special 
features of Prolog like meta-calls, not, ... 

Tests with 'real-life· Prolog programs gave the same results as 
described in (8). lt is obvious that 'dead' code is automatically 
eliminated. The number of procedures decreases significantly : only 
the 'main program' is preserved together with execution plans for all 
used recursive rules. The volume of the code however can grow 
considerably, depending on the nature of the program. A program using 
an in-core database e.g. can give rise to a combinatorial explosion of 
code. However the number of logical inferences required to execute the 
transformed program is always less than those required to execute the 
initial program, with a factor in the range of t.5 to 5 or more. The 
gain achieved with the partial evaluation is the greatest when the 
programs were written using structured programming techniques as 
modular programming, abstract data types, etc., and the performance of 
the transformed programs is comparable (if not better) with the 
performance of manually optimised programs. In other words : the 
partial evaluation system relieves the programmer from concerns about 
optimisation and permits him to use programming methodologies who are 
closer related to logic progranvning and to focus himself on issues of 
efficient problem solving. 

5. APPLICATION Of PA.TIAL EVALUATIOM ON QUERY OPTIHISATION. 

The objective here is to couple a Prolog system to a database system 
in a way that seems to be a good compromise between the compiled 
approach as described in (2] and the interpretive approach first 
implemented in (10]. By adding some declarations concerning the tuples 
stored in the extensional database (edb) the former method generates, 
by delaying edb-calls, a conjunction of calls to the edb, that can be 
solved by the database system (this method only works for 
non-recursive, cut-free, builtin-free rules). The latter method 
requires a little change in the Prolog interpreter in the sense that 
each time a call to a relation is encountered which is stored on the 
database, the call is transmitted to the OB-system for execution, the 
solutions are stored on a stack and consumed one by one by the normal 
backtracking of the Prolog system. 

Our approach consists of extending the partial evaluation system as to 
treat calls to the edb as not yet evaluable builtins. This implies 
that the transformed program consists of conjunctions of calls to the 
edb intermixed with calls to builtins and recursive rules, which 
themselves have the same structure. The corresponding Prolog system 
operates in the same way as the one in the interpretive approach, but 
instead of transmitting calls to single relations to the edb, it 
transmits conjunctions of calls, which can be the subject of some 
optimisation at the level of the database system (or possibly at 
compile time), the results of the query are again stored on a stack 
and consumed one by one through backtracking. 
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The advantage of this approach is that the transformed program remains 
a Prolog program (Prolog extended with mark(n) and cut(n)), that the 
system copes with recursive queries and that calls to the external 
database are clustered together, which enables some query optimisa
tion . 

Investigation should point out whether the optimisation on these 
conjunctions of edb-calls should be done at compile time, (as in (12), 
using statistical information from the database system or as in (5) or 
(7] where semantical information is used for semantic query 
optimisation) or whether the optimisation should be left over to the 
available database system. 

7. CONCLUSION. 

We presented some results of the investigation to applying the 
technique of partial evaluation to Prolog. The main goal was to obtain 
a tool that could relieve the programmer from concerns of optimisation 
issues. The partial evaluation system, which is based on a simple 
Prolog meta-interpreter, is shown to work for full Prolog program. The 
Prolog programs are transformed in equivalent (partially evaluated) 
HC-Prolog programs, where HC-Prolog is a Prolog extended with mark(n) 
and cut(n) builtins. It is shown how partial evaluation can be used as 
a compromise between the compiled and interpreted approach in linking 
Prolog to database systems. 
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