
BIM-PROLOG

Joint Project between
BIM
and

Department of Computer Science
Katholi eke Universiteit LEUVEN

Sponsored by DPWB/SPPS
under grant nr KBAR/SOFT/1

Tc PU/ IC tV./ /(. IJIT.

•

.. A Debugging System for Prolog

1:7.:r'

* BIM
Kwikstraat 4
B-3078 Everberg Belgium
tel. +32 2 759 59 25

Raf VENKEN *

Internal Rep:>rt
BIM-prolog IR.9

Novanrer 1984

** Katholieke Universiteit Let.Wen
Department of Canp.1ter Science
Celestijnenlaan 200A
B-3030 Heverlee Belgium
tel. +32 16 20 06 56

DPWB == Diensten van de.eerste minister: Programmatie van
het Wetenschapsbeleid.

SPPS = Se:rvices du premier ministre : Prograrcmation de la
Politique Scientifique.

1.0 INTRODUCTION

A Debugging System for Prolog

by

Raf Venken

Belgian Institute of Management
Kwikstraat 4

3078 Everberg
Belgium

Until recently, logic programming and more specifically Prolog, was
mostly used in the context of artificial intelligence research for the
development of experimental systems or for basic research. On one
hand a lot of research was done on the development of new logic
programming languages (e.g. parallellism, interaction with functional
languages, control features, relations with database theory) and on
the efficient implementation of them, on the other hand these
languages were used for building experimental systems in the
'classical' artificial intelligence domains (i.g. v1s1on, natural
language understanding, robotics). However, since the Japanese Fifth
Generation Computer Project announced Prolog as one of the building
blocks of future generation computer systems, the i~terest in logic
programming has exploded.

For the moment a lot of research or industrial institutes are
investigating the usability of Prolog in the development of complex
systems (complex in structure or complex in the AI-like features they
use). Although not being a perfect logic programming language, Prolog
has proven its qualities as implementation language for
AI-applications such as expert systems or natural language systems.
However the main criticisms on account of Prolog, as a language for
programming real-life applications remain it has no (or a very
poor) programming environment and there exists no methodology (and
associated tools) for the development of complex systems in Prolog.

In this paper we will concentrate on the programming environment of
Prolog more specifically we will tackle the problem of designing a
debugging system for Prolog programs. A debugger is a very (if not
the most) important module of the programming environment of any high
or low level programming language it is the quality of the debugger
which is decisive for the overall appreciation of a language.

In the next chapter we describe the nature and the structure of a
possible programming environment for Prolog. Then we shortly survey
the literature concerning Prolog debugging systems. Finally we
introduce a new approach concerning the debugging of Prolog programs,
which tries to unify the existing approaches.

Prolog and Debugging

2.0 THE PROLOG PROGRAMMING ENVIRONMENT

Figure 1 depicts a possible scenario for the development of Prolog
programs using a programming environment.

I
User --> I

Designer
I
I program specification
I

Program
Generators

Prolog code

Editor <-----------> I ______ _

Prolog code

Partial
Evaluation

Prolog code

Compilation
Query Optimis . I <-----------> _______ ,,

I
I 0bje€t C::oEle·
I'

Prolog System <----------->

Figure 1

Debugger

I I
I I
I I
I Relational I
I· Data I·
I: Base I
I Sy.stem 1:

I I
I I
I I
I I

The program generator could be the final tool in an integrated
software technology laboratory. E.g a lot of research is going on in
the definition of conceptual modelling languages which could serve as
a very high level description formalism of applications. This
description of applications could serve as the basis of a
semi-automatic conversion to programs written in high level languages
like Prolog. For more details on this matter see [GreenspanB4) and
references listed there.

2

Prolog and Debugging

A Prolog oriented editor is the first _building block of a
sophisticated programming environment. It serves as the interface
between the programmer and the Prolog system (including the
environment). Language dedicated editors can be classified in two
categories concerning the mode of operation. One category contains
the editors working in a guiding mode : this means a.o that the
editor guides (or sometimes imposes) the way of writing a program,
this may be useful for novice programmers, but unacceptable for
experienced programmers who developed an own personal strategy of
writing programs in Prolog. The second category of editors are
characterized by a free style of editing : at first sight one can not
distinguish them from normal text editors, however they provide some
language dependent features, e.g. checking of syntax of entered
program (on demand or on exit), semantical checking like dataflow or
type checking (see [Bruynooghe82] for more details on this kind of
program checking}, searching for language specific constructs,
generation of intermediary code. One could see the debugging system,
the partial evaluation system and the compiler as specialised
functions of the editor, although for simplicity we will treat them
separately while at the implementation level the different modules
should be interconnected closely, admitting especially the flexible
interplay between the editor and the debugger.

Since the topic of this paper is the debugging system, we will not go
into detail on this module at this stage. Although one can notice we
make a clear distinction between the Prolog system and the debugging
system. Both systems should have the same external behaviour when
executing programs, although the debugger needs to have an extended
bookkeeping (as we shall see later) while the Prolog system, for the
sake of performance and robustness, tries to optimise, i.e. to keep
only that information absolutely necessary for further calculation.

Partial evaluation is a semi-automatic optimisation technique which
tries to apply at compile-time the mechanisms a Prolog system applies
to a Prolog program at run-time as much as possible. A Prolog program
is converted to an equivalent Prolog program, which is partially
evaluated and which, ran by the Prolog system has the same external
effect, but needs less logical inferences, the apparent performance of
the system thus increases. For more details (a.o. the impact of
partial evaluation on query optimisation) see {Venken84].

The compiler and the Prolog system have to be considered together
there are two extreme ways, the first being a Prolog system which
executes the Prolog source directly, the other being a compiler from
Prolog to assembler. Between these two we see the whole range of
compilation to intermediary codes and interpreters for those codes.
Finaly, for real-life applications it is needed to have a flexible
interface to an existing relational database.

3

Prolog and Debugging

3.0 A SURVEY OF DEBUGGING SYSTEHS FOR PROLOG

3.1 The Problems When Debugging Prolog Programs

Prolog is a very high level programming language its notation is
very compact and the semantics are very powerful, there are no
declarations, its syntax is very simple and uniform and it is an ideal
tool for quick (and dirty) programming and complex systems written in
Prolog are extremely hard to debug, when no precautions on style or
methodology were taken. In this section we give some features of
Prolog which demand for a sophisticated debugging system.

The Prolog system builders sometimes make the life of the Prolog
programmer very hard. The distinction between values and variables is
rather arbitrary and differs substantially from system to system, in
different systems variables start with a higher case letter, an
underscore, an asterisk, a lower case letter, This not only
decreases the portability of a Prolog program, but confuses the Prolog
programmer. A standardisation effort would be desirable. Any way,
since there are no variable declarations and a variable is only a
typing error away from a value, one can easily produce very invisible
bugs.

The basic concepts of logic programming are very clean and
straightforward, Prolog however has been 'enhanced' for efficiency and
functionality reasons with some extra-logical features (cut, assert,
retract, metacall, ... I which mutilate the declarative reading of
Prolog programs, make the language more difficult to master and the
debugging of Prolog programs a hard job.

The main reason however that makes Prolog hard to debug is its
complete lack of redundancy concerning the notation. A small
typographical error does often not result in compile-time or run-time
diagnostics, but simply gives another, unintended, meaning to the
program. Where the semantics of Prolog are called very high level,
the syntax in comparison is very poor and below the current standard
of software engineering (the only advantage is the decrease of
clerical work in writing programs, but at what price ...). There are
no declarations for variables, nor for procedures, the number of
arguments, the expected types and the parameter passing mechanism.

3.2 The Execution Trace

To monitor the execution of a Prolog program the first Prolog systems
provided the programmer with a tracing facility which gave information
about the procedures which were being called during execution. This
trace contains all necessary information to be able to follow the
ekecution of a program, but the amount of displayed information
rapidly grows with the size of the program and since, it was not at
all structured, impossible to master.

4

Prolog and Debugging

3.3 The Procedure Box

Host popular Prolog dialects use as debugging tool a trace package
based on a boxes model for the execution of Prolog (see (Byrd 80)1. A
Procedure is represented as a box with 2 entrances and 2 exits, an
entrance for a 'call' to the procedure and one for a 'redo' on
backtracking, two exits one for success and one for failure. The
programmer can now place spy-points on the four gates of the different
boxes which will trigger the trace package, interactively he can skip
spy-points or cause particular calls to fail or be retried.

In essence this approach remained an execution trace, where the user
could monitor the amount of information to be displayed on the screen.
The other main inconvenients however remained the tracing is
closely bound to the execution, you cannot go back in your trace
without restarting the complete trace again (very inconvenient,
especially for bugs at the 'end' of a huge program). The failure of a
call to a procedure can have a multitude of reasons, these are all
covered by the unique 'fail"-comment, which is not very helpful! for
fixing a possible bug.

3.4 Algorithmic Program Debugging

The main inconvenience of the tracing way of debugging lies in the
fact that it compares with a linear search for the bug . It is in
[Shap~ro 82) that a method was given to speed up this search the
divide-and-query algorithm. If a bug has been encountered the
programmer can ask the debugging-algorithm to split the prooftree in
two equal parts ; the user can then check (by looking at the output
of tne first part) whether the bug is in the first or the second part.
The prooftree of the buggy part is then split up recursively and so
fortr. . The search time for a bug is reduced to log(n) like a binary
searc~. An algorithm has been presented for finite failure,
incom~lete solution and infinite failure.

This method relies on the single assignment structure of Prolog and
the lack of global variables each part of the prooftree is
independent of the other. However real-life Prolog supports also
global variables (assert-retract) which are incompatible with the
method, as are all other kinds of side-effects .

3.5 Rational Program Debugging

A similar method is under investigation in [Pereira 84). This method
uses information about Prolog data term dependency on derivation goals
(which is also used in selective backtracking Prolog) for a better
debugging. It automates the reasoning required to pinpoint errors,
where the programmer only has to answer questions about the intended
program semantics. The method exploits both the declarative and
operational semantics of Prolog. The main advantage to the previous
methoc is that it can jump over subderivations irrelevant to the
investigated bug and so speed up the search process and reduce the
numbe::- of questions to be answered by the programmer.

5

Prolog and Debugging

3.6 Ameliorations Of The Previous Hethods

In the literature some ameliorations have been presented, mainly on
the boxes-model (see the programmer's manuals of the respective Prolog
systems and [Eisenstadt 84]) or on Shapiro's work ([Plaisted 84]).
They enhance the methods mainly concerning the user interface and
optimise the space and time requirements for execution of the
algorithms. But the principles remain the same.

4.0 A UNIFIED APPROACH

All the methods as summarized in the previous section don't differ
that much, since they all try to represent the same information to the
user only in a different way. The first two methods are execution
bound the information is displayed while the program is executed,
and impose a linear search upon the user. Shapiro's algorithmic
debugging imposes a binary search strategy through the prooftree,
while the relational debugging optimises the search by skipping over
parts of the prooftree irrelevant to the bug. The information used is
merely syntactic and the methods apply only to 'pure' Prolog, i.e. if
one does not use global variables (assert, retract) or other
side-effects.

To our view it is possible to gather the different approaches in one
debugging system and doing so combine their advantages, moreover we
will develop strategies to locate bugs involving non-logic Prolog
features like ·cut', 'retract', ·assert · , etc.

4.1 The Basis Of The Approach

The basis of an implementation gathering all methods consists of a
Prolog interpreter or meta-interpreter with an extended bookkeeping
facility which keeps track in all details of the invocation of the
different clauses and of the binding of the variables. Part of this
information is in the run-time structures of any Prolog system, but
where a run-time Prolog tries to minimise the amount of information to
be kept in core, a debugging system must keep all information possibly
relevant to a debugging strategy. Therefore we propose to keep the
complete profftree in the datastructures of the debugging system.
Only this garatuees us to be able to track down any possible bug in a
Prolog program using any possible strategy.

It is clear that the information to be kept in core will increase
significantly with the size of the program, but the complexity of
debugging does so too. In any case is amodular approach to writing
programs and debugging them advisable. The inefficiency. eventually
brought in through modularity can be eliminated after the debugging
phase by partial evaluation as demonstrated in (Venken 84).

6

Prolog and Debugging

4.2 An Example Debugging Strategy

There are different kinds of bugs possible in a Prolog program which
cause different kinds of unexpected program behaviour. This
unexpected program behaviour are the symptons of the bugs and each
sympton asks for a different strategy to track down the bug. Some
symptons are finite failure (the program fails to find enough
solutions), infinite failure (the program goes in an endless loop),
wrong result (exact number of solutions, but wrong values), too many
solutions (duplicate or wrong results), unexpected side-effects and
any possible combination of the previous.

We now give a possible strategy
of a wrong solution, which
prooftree which can be obtained
once .

A .

for tracking down the bug in the case
can be implemented using the complete
by executing the buggy program only

The Prolog program is executed by the debugging system, this permits
the construction of the internal data structures containing the
information concerning the prooftree of the executed program.

8.

The user identifies a wrong solution to the program he executed, with
a pointing device he points to the term containing the wrong value.

C.

This pointing to a wrong term permits the system to analyse which part
of the prooftree is relevant to the obtained wrong value, using the
dependencies between the variables.

D .

The 'previous· call relevant to the obtaining of the wrong result is
considered next. If this call is not admissible (it doesn·t have the
correct type of arguments), the user points to a wrong term in it and
the strategy continues with phase C.

E.

The call under inspection, as it would look after unification with the
head of the clause used to generate the wrong solution, is analysed.
If the result is not acceptable then the clause head is wrong since it
produced a wrong binding or matched a call it should not. In the case
of a unit clause, a wrong unit clause is detected.

F.

If the call is not solvable (according to the expected behaviour of
the program) then the body of the clause is wrong. The user points to
the wrong term, now it can be analysed whether this term was passed to
the clause via the call (the clause is then wrong since it accepted a
wrong input) or actually produced by the clause by executing the body.

7

Prolog and Debugging

G.

The body is analysed next, if one of the calls should have
(which it didn't) then this call is taken as focus for step A.
should succeed (as they did) then the clause is in contradiction
the semantics you wanted to attribute with it.

failed
If all

with

This is only an example strategy a user could follow to track down a
possible bug in a program. To our opinion, this strategy or similar
ones for different symptons, should not be automized in a debugging
system, but facilities should be implemented that would enable the
user to analyse the behaviour of his program according to his own
strategy. The implementation of a debugging system then consists of
providing the user with a flexible and intelligent interface to the
information contained in the datastructures of the debugging system
and facilities to move the focus through the prooftree or to mark
subtrees which are dependent of a term.

One can note that in the example debugging strategy the focus of
attention traverses the prooftree in 'reverse' order, the variables in
a call can get a value through unification with the heading of a
clause or through execution of the body, the different stages through
which a call goes should be separated one from the other. This must
enable the user to decide for what reason a call fails {no
unification, failing call in the body) and when it succeeds where the
values for the variables were produced.

4.3 The Interface

The most important part of the debugging system is to our view the
interface between the internal datastructures en the user of the
debugging system. The most appropriate way to start with a debugging
session is to have the information (the prooftree of the executed
program) represented in a graphical way. The user should be provided
with easy means to traverse this prooftree using a pointing device or
simple control keys. Zooming on particular points of interest should
be made possible in order for the user to distinguish between input or
output values in a call, to see the subsequent results after
unification and after execution of each subgoal. Reference must be
made to the initial source code of the program under investigation to
enable the user to see which particular clause was selected during
execution of a certain call, also the same variable names should be
used as in the intial source code since they normally have a
mnemotechnical meaning.

The complexity of the interface suggests to use state of the art
display devices like bitmap screens with multiple window facilities
and pointing devices. Multiple windows are needed to represent at the
same time the graphical representation of the prooftree, the source
code under investigation and eventually a menu with the different
manipulation or investigation possibilities.

8

Prolog and Debugging

4.4 Side-effects

One thing which is very difficult to debug using the 'classical'
strategies as represented in section 2 is any program using
side-effects (being it input-output on screens or files, assert or
retract in internal or external memory and other non-logic Prolog
features). On the other hand, side-effects are the most important
aspects of a real application : the aim of aiy program is to have
some side-effect (on database or the user's terminal). Moreover, it
is nearly always through a side-effect that a user detects the
existence of a bug (wrong value output on the screen, inconsistent
database, etc).

In order to treat side-effects in a debugging system one is obliged to
keep the complete prooftree in the internal datastructures (this means
the or- and the and-trees). For pure Prolog programs one could
contend to only keep the branch from the root to one of the
(eventually wrong) solutions to be able to implement a debugging
strategy, whenever one needs something to know about branch which
failed (or a previous solution) this can savely be reexecuted to show
the user the eventual reasons for failure or success. Apart from the
fact that reexecution may involve considerable time-overheads, this
cannot work for programs involving side-effects : an assert would be
executed twice. .. . By keeping the entire prooftree (eventually
abreviated for already debugged parts) one can circumvent this
problem, all information concerning failed branches remains available
for investigation and no reexecution of side-effects is to feared.

To be able now to debug the impact of the program on the environment
of the Prolog system, i.e. the produced side-effects, we propose to
keep snapshots of the environment on secondary storage, taken at
regular intervals. The snapshots refer to particular nodes in the
prooftree, and can be used to show the user the status of the
environment (e.g. the screen as it was during execution) at any point
of the execution using the prooftree (which serves as a logging file)
to construct any intermediate situation. The environment of a real
application program usually involves the terminal screen (eventually
graphics), the internal database (global variables), the external
database. This snapshot technique combined with the logging as
provided by the complete prooftree permits a flexibility of movement
through the prooftree which is not possible in any other debugging
system proposed or implemented yet.

5.0 DEVELOPMENTS

We are currently working on the implementation of
Professional Prolog system including a state-of-the-art
interpreter (initially for UNIX systems) and a Prolog
environment.

a so-called
compiler and

programming

The environment includes a Prolog oriented editor with incremental
data- and typechecking, a partial evaluation system ([Venken 84]), an
integration with an existing commercial database system and the here
introduced debugging system. The debugging system will be designed to
work with advanced screens as available on the SUN workstations which

9

Prolog and Debugging

run UNIX 4.2 .
summer ·as .

A first version of the system should be available

6 . 0 CONCLUSION

We proposed a new approach to the debugging of Prolog programs which
permits the application of all strategies and techniques as introduced
in the Prolog literature. This new approach permits not only more
flexibility for the user in designing more appropriate debugging
techniques for pure Prolog programs, but offers facilities which
permit the debugging of non-logic features of Prolog. Advantage is
taken of state-of-the-art technology concerning display screens which
permit multi-windowing and pointing.

7.0 ACKNOWLEDGEMENTS

This work has been
sponsored by the
Wetemschapsbeleidl.

8. D REFERENCES

(Bruynooghe 82]

done
OPWB

under the
(Diensten

research
voor de

contract KBAR/SOFT/1
Programmatie van het

Bruynooghe H. , Adding Redundancy to obtain more reliable and readable
Prolog Programs , Proceeding of the First Int. Logic Programming
Conference, Marseille, 1982.

(Byrd BO]

Byrd L.,
Proceedings
1980.

Unde r standing the Control Flow of Prolog Programs,
of the Logic Programming Workshop, Oebrecen, Hungary,

(Eisenstadt 84]

Eisenstadt E. , A Powerful Prolog Trace Package, Proceedings of ECAI
'84, Pisa, 1984

[Greenspan 84]

Greenspan, S.JJ .. Requirements Hodeling : A Knowledge Representation
Approach to Software Requirements Definition , University of Toronto,
Technical Report CSRG-155, 1984.

[Pereira 84]

Pereira L.H., Rational Debugging of Logic Programs, Universidade Nova
de Lisboa, 1984.

[Pl21~ted 84]

1 0

•

Prolog and Debugging

Plaisted D.A., An Efficient Bug Location Algorithm, Proceedings of the
Second Int. Logic Programming Conference, Uppsala , Sweden, 1984 .

[Shapiro 82]

Shapiro E .. Algorithic Program Debugging, Cambridge, MA, MIT Press,
19 8 2.

[Venken 84]

Venken R., A Prolog Hetainterpreter for Partial Evaluation and its
Application to Source-to-source Transformation and Query Optimisation,
Proceedings of ECAI · 84, Pisa, 1984 .

1 1

