

Introduction to CLP(BNR)

William J. Older

Notes from a course given at Carleton University,
Winter Term, 1995

Copyright © 1995 William J. Older

All rights reserved

Author’s Note

In addition to presenting this material at a course given at
Carleton University in the Winter Term of 1995, I also gave
a two-day intense version at the University of Montreal in
1995. Some of the individual chapters and problems had
been previously presented in summary at the University of
Marseille in 1993 and at the University of Orlean in 1995. I
don’t recall which ones went where. The ODE paper was
never properly published but shared with an associate in
Germany who was attempting to diagnose the problems with
the first orbiting X-ray telescope launched from ESA, which
failed to maintain orientation because of some mechanical
glitch. It was also shared with the people at Brandeis and
Brown Universities who did a lot of work on it.

William Older
July 9, 2019

Preface

Since its beginnings in the 1980's the field of constraint logic
programming has developed into a practical industrial tool,
which can be used to solve some difficult combinatorial
problems quite elegantly with very modest programming
effort.

The newer interval-based constraint systems, such as
CLP(BNR) provide constraints on real-valued variables as
well as on integer-valued and boolean-valued variables. While
still somewhat less mature, this technology is potentially more
revolutionary in its consequences. At least in principle, it
brings many of the classical problems treated in numerical
analysis into the realm of logic programming and theorem
proving. i.e. "black" magic gets replaced by "white" magic.

Interval constraint technology is now becoming commercially
available in a number of systems (Prolog IV, ILOG,
ALS/CLP(BNR)) with reasonable performance, and is no
longer merely an academic curiosity, but has been used to
solve real, hard problems.

This new technology does require that we learn new ways to
think about problems, or rather, to unlearn many of the
presumptions that we have been taught by exposure to
conventional numerical practice. I hope that many of you
\vill find this as liberating and exciting as I have.

Please excuse the many inconsistencies (including fonts and
styles), not to mention downright errors, in the following
(draft) chapters.

William Older

CLP(BNR)Ilntroduction

CLP = Constraints + Logic Programming

The word "constraint" is used in a variety of contexts from everyday
life to physics, mathematics, and other sdences with much the same
intuitive meaning, even when the formalization is different. A bead
on a wire, a weight on a string, a beaker open to the atmosphere, a
space mission limited by onboard fuel, a desert ecology limited by
the lack of water are all examples of constrained systems.

CLP refers to the combination of constraints and logic programming.
A constraint is declaratively just a relation-usually a mathematical
relation-- but it differs operationally from other ways of treating
relations. As relations, constraints fit very well into logic
programming framework which is also based on relations.

CLP systems began appearing about 10 years ago and span by now a
considerable variety in system and underlying technology as well as
a variety of applications.

I. Historical Introduction to CLP

A. Forerunners

Prolog II, introduced in the early 1980's by A. Colmerauer, the
founder of Prolog a decade earlier, is a forerunner of a CLP system
in two quite different ways.

Prolog II departed from previous Prolog practice by altering the
interpretation of the fundamental unification algorithm of Prolog.
This was done by introducing the notion of rational trees to describe
the space of terms. Conventionally, Prolog terms were deemed to be
finite trees: unifications of a variable with a term containing that
variable (eg. X= f(X)) should result in a failure, detected by an
"occurs check". As a matter of effidency, however, the occurs check
code was usually incorrectly omitted. By permitting in theory the use
of infinite trees, e.g. f(f(f(f(....)))), the omission of the occurs check
could be formally justified at the price of weakening the
conventional connection with classical predicate calculus. This so
called "rational tree" unification algorithm could be thought of as a
system of equations to be solved in a certain formal structure (the
rational trees), for which the axioms of equality provide a basis for

10/24/95 1

CLP(BNR)/Introduction

the unification algorithm considered as rewrite rules. The change in
viewpoint- which both freed unification from its traditional logical
interpretations and provided a new interpretation in terms of
equation solving- was later developed in Prolog lli into a
comprehensive CLP system.

The second relevant feature of note in Prolg ll was the introduction
of the freeze/2 primitive:

freeze(V, P)

has the operational effect of delaying the execution of goal P until the
variable V becomes instantiated. This allows one to escape from the
rigid sequential structure of Prolog and encourages the use of sets of
asynchronous predicates which trigger one another through variable
bindings, "instantiation propagators". This mechanism could be used
effectively and efficiently to solve various puzzles concerning finite
domains and to improve upon the traditional Prolog approach to
arithmetic, and this stimulated interest in what later became various
constraint technologies.

B. CLP Systems of the 1980's

In the middle of the 1980's several such systems were developed.
The three best known are:

-Prolog III (Colmerauer, U. of Marseille and Prologia) expanded on
Pro log II by adding rational term disequality, boolean variables
subject to boolean relations, concatenation monoid on strings, and
rational linear arithmetic (using the simplex method of linear
programming). Nonlinear relations are delayed using something
similar to freeze. Unification was generalized to mean the addition of
new constraints to a constraint store and testing for satisfiability at
each procedure call.

-CLP(R) (Laissez, Jaffar-:- a research product from IBM's T.J. Watson
Laboratory) provided for solution of linear systems of equations and
inequalities and also, like Prolog m, delayed nonlinear equations.
Theoretical work done in connection with CLP(R) provided a general
framework for discussing idealized semantics of constraint systems
which closely parallels the formal semantics of Prolog. The actual
implementation of CLP(R) was based on floating point computation,
which gave it better performance than Prolog lll but is not sound.

10/24/95 2

CLP(BNR)IIntroduction

-CHIP (developed at ECRC and commercialized in Charme and later
by ILOG) focussed primarily on specialized propagation techniques
for finite domains (and boolean domains) which were based on
algorithms devised in the AI community. These systems have been
successfully applied to OR problems, particularly scheduling and
discrete resource allocation.

C. CLP(lntervals)

The first interval based CLP system was incorporated in BNR Prolog
(1988) based on ideas of Cleary (1986). The original version was
based on intervals over the reals only, but could handle simple non
linear constraints. A similar, independently developed, system was
described by Hyvoenen (1990) Another similar system (based on
BNR Prolog) was sold as Interlog by Dassault Electronique in the
early '90's.

In 1992 BNR Prolog's CLP system was extended to CLP(BNR) which
provides a uniform treatment of boolean, integer, and real valued
variables using interval propagation. Similar capabilities were
announced in 1994 for the new version of IBM Prolog, just shortly
before that system was discontinued by IBM. Prolog IV, the next
generation system from U. of Marseille expected to be released in
1 99 5, is also interval based. In 1994 commercial distribution rights
to CLP(BNR) were granted to Applied Logic Systems of Newton, Mass.,
with shipment to commence in 1995.

Interval based CLP has a somewhat different character from
previous approaches for continuous domains. Previous approaches
were based on traditional technology (such as linear programming)
and thus represent only a marginal change in approach and scope.
The use of intervals, however, permits one to deal with uncertain or
unknown data as well as non-linear models, and thus represents a
significant enlargement of the space of problems that can be tackled.
In addition, the interval approach can be applied also to discrete
domain problems and there provides solutions similar to traditional
finite-domain methods. Finally, because of the uniformity of the
approach, problems which involve closely interacting mixtures of
discrete and continuous domains can now be solved in ways not
previously available.

10/24/95 3

CLP(BNR)IIntroduction

In this course we will be using CLP(BNR) as working language. Most
of the techniques discussed here for discrete domains will be
available (in some form) in other CLP languages for fmite domains.
The continuous domain techniques will be for the most part specific
to interval-based systems.

D. Other Systems

The system CAL developed at ICOT is a CLP system based on
symbolic solution of polynomial equations over the complex field.
The essential limitation to complex numbers and its symbolic basis
gives it a quite different character from other constraint systems,
more akin to symbolic systems like Mathematica or Maple. This and
similar systems are very powerful but only in a somewhat limited
range of problems.

Systems like ILOG Solver, which is sold as a C++ library, are at the
fringe of the CLP realm because they are only rudimentary Logic
Programming systems. As such they provide the bare mechanism of
the constraint engine but without the conceptual framework of Logic
Programming. In such a system one writes mainly calls to built-in
C++ functions and the rudimentary logic programming environment is
de-emphasized as much as possible. ILOG Solver appears to be at
present commercially successful (partly because of the C++
connection), and has been used for large applications, but they
appear to almost exclusively in the scheduling and resource
allocation area pioneered by CHIP.

A number of systems (CHIP, Eclipse) provide a constraint framework
in which one has the freedom (and the responsibility) to write
customized solvers or value propagators or "demons". This is
consider a feature, but little can be said in general about such
systems unless the full set of demons and the details of their use is
known. Arbitrary "heuristic" propagators can of course be made to
perform certain computations, but do not necessarily mean anything,
and there is a serious problem whenever the order of flring needs to
be controlled.

10/24/95 4

I
I
I
I
I
•

CLP(BNR)/Introduction

II. Characteristics of CLP systems

CLP systems have either been modified Prolog systems (like Prolog
III) or embedded in Prolog (like CLP(BNR)); the difference can be
subtle. The relation with Prolog has several aspects which become
design issues for the CLP system and which can also have profound
effects on the use of the system.

A. Bactracking compliant

Prolog is a backtracking (or in some cases OR-parallel) system and
the constraint system must be designed with this in mind.
Backtracking is necessary since it provides the non-deterministic
search needed for completeness even in the discrete case.
There are two major issues:

(1) when a constraint (the imposition of the constraint) is
backtracked across, the state of the entire system (including the
constraint store and any consequences deduced from it) must be
restored completely to something equivalent to that which existed
just prior to establishing the constraint. This can sometimes be done
relatively easily through extensions of the Prolog trailing mechanism,
but may result in restrictions on the data structures employed. This
can be thought of succinctly as a "a Pro log failure must undo
constraints".

(2). Conversely, a detected non-satisfiable (inconsistent) constraint
store must cause a Pro log failure. Because of (1) this has the effect of
removing some inconsistent constraints from the constraint store.

B. Incrementality

This is sometimes taken as a general term to include bactracking
compliance as well. Here it means that in the Prolog setting problems
are assembled a bit at a time as constraints are encountered in
Prolog code instead of all at once as in e.g. classical linear
programming. This requires that classical algorithms (if used) must
be reformulated to work on partial problems.

C. Satisfaction test completeness

10/24/95 5

CLP(BNR)Ilntroduction

Incrementality raises a difficult design issue: should the consistency
test used on each update of the constraint store be complete or not.
If not complete, it can result in large amounts of unnecessary work
at the Prolog level. On the other hand, a complete test is generally
much more expensive than something which is less than complete, so
it results in the constraint engine doing more work, much of which
might become unnecessary ~ soon as the next constraint is seen.
Prolog III has opted (where possible) for complete consistency since
the variety of specialized algorithms it uses can provide such a test,
and by creating specific algorithms tailored for the special situation
the costs can still be kept reasonable. CLP(BNR) as a rule does not
use complete tests (they would be prohibitively expensive in the
general continuous non-linear and general discrete realms) but does
only as much as is convenient for the underlying mechanisms. Thus
the completeness issue depends on the constraint domains handled
and the machinery employed, and in tum it determines the sort of
theoretical and implementation issues that need to be addressed.
Curiously, in places where direct comparisons between complete and
incomplete systems are possible, the overall performance appears to
be comparable, although some specific problems will do better under
one regime or the other.

D. Instantiation Issues

In general, instantiation should propagate both ways between the
constraint solvers and the Prolog system. Prolog instantiations which
affect constraint variables need to be processed (usually
immediately) by the constraint solver. Likewise, variables which can
be fixed by a constraint solver need to be reflected at the Prolog
level, especially if freeze is supported. If a variable can be involved
in more then one constraint subsystem, this permits an interaction in
which one solver fiXes its value and propagates the binding to the
Prolog level,which in tum propagates it to the other solver. If such a
variable is bound by Prolog, there is a practical question of which
solver to give it to frrst, as well as a theoretical question to ensure
that in principle it doesn't matter which sees it first. In multi-solver
paradigms such as Prolog Ill, however, we note that the solvers in
fact respond to different and disjoint types of variables so these
complications do not arise.

In CLP(BNR) there is only one solver for all types of constraint
variables, and (except in rare circumstances) the solver takes
precedence over Prolog.

10/24/95 6

4

•
•
t
t
t

• • • I

CLP(BNR)IIntroduction

E. Equality versus unification

The issue here is whether a term which describes a constraint is
regarded as a term (i.e. an uninterpreted syntactic structure) or as a
constraint (interpreted structure) when passed as a parameter or
used in whatever plays the role of unification in the Prolog part of
the system. For example, as terms 'X+ Y = 2' is clearly false (since
the left side is a functor + of arity 2 and the right is a constant of
arity 0) while as an interpreted constraint it might be true. In
CLP(R) for example such expressions are always interpreted
(according to the syntactic rules of the language) as constraints. It
follows then that the corresponding syntactic expression 'X+ Y = 2'
cannot be formulated in this languages unless some spedal new
notation (which functions as 'quote') is introduced. CLP(BNR), on the
other hand, distinguishes between term unification ('=') and
arithmetic equality('=='), and hence arithmetic and other constraint
expressions are just Prolog terms until they are explicitly processed
as constraints via a primitive call (the outf1x operator ' { }'). This
means that Prolog plays the role of a meta-language with respect to
the constraint sub-language; more importantly, it means that
symbolic processing of constraint expressions can be easily done in
Prolog and that the use of constraints is always explidt in the
language.

F. Delay

Most constraint systems permit constraints they cannot actually deal
with; typically these are the non-linear constraints on continuous
variables. There is then a decision of how to treat such a constraint:
failure, error, or delay. Most have chosen to delay such constraints
(using a mechanism like freeze) until such time that instantiations of
some of(ih~ variables changes the constraint into a form which can ~
be dealt \vttlf by the system. Interval based techniques do not need
to do this explicitly, since they can 'handle' non-linear constraints,
although the handling may often be in fact indistinguishable from
delay.

G. Muliple solvers vs. single solver

Prior to the development of the interval based methods the direction
appeared to be towards having a separate solver for each separate

10/24/95 7

CLP(BNR)Ilntroduction

domain over which constraints were defmed. This creates a number
of problems in terms of potentially conflicting data structures, inter
solver protocols, and correctness issues. The interval based systems
at present use a single-solver approach and thus avoid this particular
set of problems. In future, however, we expect to see, e.g. symbolic
solvers, which are complementary to the interval approach,
integrated into CLP systems and some of these problems will again
become relevant. ·

H. Output Considerations

Systems which involve significant symbolic processing (e.g. linear
programming) or delay have a problem with regard to output,
especially final output. Systems like Prolog III and CLP(R) have
attempted to display whatever instantiations which may have been
computed as well as a simplified set of remaining constraints, those
whose "force" is unspent. "Simplified" here means usually "in terms
of the original variables introduced by the user". However, the
simplification problem (a form of variable elimination problem) is
very difficult (NP hard or worse) even in the simple case of linear
inequalities. This form of output seemed like a very good idea when
people began experimenting with small problems, since the
simplified symbolic output could often be used by the user to fmish
the solution of a problem outside the system's competence. But with
problems involving hundreds (let alone tens of thousands) of user
variables and many more intermediate variables the user can no
longer make use of such answers and the system often cannot find
sufficient memory or time to generate them.

With interval based methods, output takes the form of either an
instantiation of a variable or a narrowing of its range of possible
values, which can be expressed as a pair of floating point numbers.
Such a representation loses information (specifically: all the
constraints) ,of course, but is cheap to compute, easy to understand,
and often useful (especially when the range is narrow).

Early Applications

Since CLP(BNR) is a way of solving concrete mathematical problems,
it may be of use in any subject which such problems arise. Since the
interval approach can work with incomplete information (a range of

10/24/95 8

j

~

~

~

~

~

4

4
4
t

• • • • • • • • • • I
I
I
I
4
I
I
I
I
I
•

CLP(BNR)IIntroduction

possible values instead of a single value), it may be more useful than
traditional approaches in fields where predse information is difficult
to obtain. But this field is so new and access to implementations has
been so limited, that only a small range of applications has been
explored.

The first useable prototype of CLP(BNR) was constructed at the
Computing Research Lab of BNR in late 1992. In the short span of
six months following this, a number of successful applications of this
technology had been explored, and it was felt that it would be useful
to hold a workshop for exchanging results. This workshop- ARIA
'94-- was held in August of 1993 at BNR and brought together most
of the people who had used CLP(BNR) up to that time. A brief
description of some of the applications presented indicates both the
range of application areas and the variety of mathematical problems
treated.

1. Dr. :Majumdar explained the use of CLP(BNR) and the earlier BNR
Pro log system for the computation of performance bounds of tasking
systems. This was a problem of bounding possible solutions to large
systems of non-linear equations arising from performance modeling.

2. Dr. B. Nadel of Wayne State University described the application of
BNR Prolog interval arithmetic to the synthesis of designs of
automobile transmissions. This problem was subsequently
reformulated in a much more satisfactory way in CLP(BNR).

3. Andre Vellino of BNR described CLP(BNR) solutions to bin packing
problems of the sort that arise in system configuration.

4. Angelo Bean of BNR described the use of boolean equation solving
in CLP(BNR) for detecting siphons and traps in Petri net models of
software systems.

5. Mike Kelly of BNR discussed its use in _the 2 -dimensional layout of
functional blocks in Field Programmable Gate Arrays, a discrete
resource allocation problem.

6. Tammer Kamel of BNR described how CLP(BNR) could be used to
analyze timing requirements in digital drcuits and detect possible
timing violations.

10/24/95 9

CLP(BNR)IIntroduction

7. Bill Older of BNR described a CLP(BNR) approach to solving the
Traveling Salesman Problem in 2-dimensions for small networks and
the formulation of classical constrained optimization problems.

Since then further work has been done to develop techniques in
several broad areas:
-continuous time scheduling problems (Older & Van Emden),

·-continuous resource allocation scheduling (Older)
-ordinary differential equations (Older, Skuppin, & Hickey),
-integral and functional equations(Hickey).

These exploratory investigations have widened the scope of
CLP(BNR) applications and now appear to be ready for exploitation,
although they may be at the practical limits of the current
technology.

IV. Concerning CLP(BNR)

At this point no one knows what the limits of CLP(lnterval)
technology may be in the near future- even the limits of the current
technology are extremely hazy. In general we cannot at present
predict whether a given problem can be usefully formulated in it,
nor can we give anything like a recipe for such formulations, nor can
we generally predict performance. Understandably, these
uncertainties make it risky for anyone to commit themselves to the
use of this technology, especially in the risk-averse contexts now so
prevalent in industry. So it is natural to ask: why the intense
interest in this technology? There are several answers:

A. First, it is a new paradigm for doing applied numerical
mathematics-- indeed, probably the first new paradigm since the
invention of digital computers. Some of the things which have been
done with it are very radical -even bizarre-by all conventional
standards. Part of the difference is that the CLP technology both
uses different information and produces different information than
does conventional practice. Learning to use it, it seems, is mostly a
process of unlearning conventional ways of thinking.

10/24/95 10

4
'
t
t
t
t
t
4

CLP(BNR)/Introduction

B. It is mathematically rigorous, at least in prindple. Furthermore, it
makes it feasible to put applications also on a completely rigorous
footing, since the code is usually quite small and extremely close to
the mathematical statement of the problem.

C. Some of the practical applications which have already been done
successfully (and easily) ha:ve never been done successfully using
conventional techniques.

D. In NP-hard combinatorial problems where direct comparisons
between CLP(BNR) approaches and the most sophisticated
conventional algorithms are possible, the performance is very
roughly comparable.

E The field is changing rapidly, both in technique and technology;
many of the successful applications mentioned above could not be
done just months earlier because the right approach (or something)
wasn't known at the time.

V. About the Course

The first half of the course is devoted to basic prindples and their
use in examples, with the aim of producing a good intuitive working
knowledge of the technology and techniques that exploit it. In the
second half of the course there will be more emphasis (though
informal) on the theoretical aspects and the advanced topics which
require it.

Each student is expected to do a substantial project -typically a
prototype application -- as part of the course requirements. A sheet
of project guidelines and timetable will be provided.

10/24/95 11

CLP(BNR)/Prolog Review

Review of Prolog

This session is devoted to a short review of the basic ideas of Prolog.
The intention is to briefly cover aspects which will be relevant for
CLP(BNR). In particular, the more theoretical aspects of Prolog and
its connection with logic will be largely ignored.

Backtracking

Recall that computer science in the late 1960's and early 1970's was
very much concerned with the design and formal specification of
computer languages, or at least, of their syntax. Many of the
languages still popular (e.g. Pascal) were devised at this time. One of
the principle tools in widespread use for specifying syntax was --and
still is-- Backus-Naur Form or BNF. Such a specification is familiar:

program :- decl_part, body.
decl_part :- 'var' , decl_li.st.
decl_list
decl_list : declaration, ';', decl_list.
declaration :- identifier, ':', type.
body :- 'begin' , statement_list, 'end'.
statement_list :- .
statement_list :- statement, ';' , statement_list.

Declaratively, you can read':-' as 'consists or and',' as 'followed by'.
As a specification it has the virtue of being both formal and very
succint. Furthermore it could be converted manually into an
implementation of the recursive descent type, either by direct
coding, or by writing BNF interpreters, both of which were popular
implementation techniques.

Consider what such a BNF interpreter would have to do: it has a
stack to manage recursion, there is a stream of characters to be
parsed, and some store (possibly a heap) in which to construct parse
trees. The stack is initialized with program. The interpreter pops the
top item (a 'non-terminal') from the stack, and tries to fmd a
definition for it, i.e. a rule where program appears on the left of':-'. If
it does find such a rule, it can copy the body of the (frrst) defmition
to the stack, i.e. so decl_part is now the top. If the top is a "terminal"
(in quotes), it is matched against the input string, and, if successful,
pops the terminal and continues. In some cases there may be more
than one rule for a non-terminal, as in the case of decLl ist above. In

10/24/95 1

CLP(BNR)/Prolog Review

this case, it is necessary to store the current file index in the stack, so
if the first definition doesn't work out, it is possible to restore the file
pointer and try an alternate definition. The failure of a string match
triggers this "backtracking" process. In this context the need for
backtracking or "non-determinism" is obvious.

[Sometimes it is necessary or desirable to terminate backtracking
prematurely, for example when it suffices to know that there is at
least one answer to a question. A special symbol '!' can be
introduced with the operational meaning that it commits the
computation to the current branch, by removing backtracking
information generated since the current goal (the one matching the
current clause) was called.]

An abstract version of this, showing the original goal explidtly is:
- p. % goal

p :- l, b.
l :- v, dl.
dl:-
dl : - d' sc' dl.
d :- i, c, t.
b :- be, sl, e.
sl :- .
sl:- s, sc , sl.

In the early 1970's Alain Colmerauer noticed that if one interpreted
the 'p :-q ' as 'pis implied by q' and ','as 'and' in symbolic logic
then the algorithm given above provides a theorem prover for the
theorem 'p' . The basic step, which is to infer p:-r ,x from p:-q,r and
q:-x, is called a resolution step (a combination of transitivity and
weakening). (From the earlier theoretical work of Robinson it was
known that this sort of elementary inference was the only kind
needed.) So we have an analogy between a theorem proving
technique (applied to problems of a special kind) and recursive
descent parsing, and more generally, to any program which
resembles recursive descent parsing.

Logic Variables and Unification

Of course, to build a compiler it is not enough to have a parser which
simply tells you whether something is· syntactically correct. One
needs to build some sort of data structure (parse tree) and decorate
it with useful bits of information and sometimes transform it a bit.
So every BNF interpreter would add some notion of variable and
some semantic primitives that manipulate these variables. Of course,

10/24/95 2

CLP(BNR)/Prolog Review

if the parse failed down a particular branch, then some of these
things would have to be undone to maintain consistency, and this
aspect was seldom done quite right.

Now the concept of resolution had already been extended to theorem
proving in first-order predicate calculus, which as a language already
has a notion of variable. So we might ask: can these be used to
provide the kind of variable we need to extend our language
interpreter? A logic variable X is a pure "placeholder" which
notionally represents any individual object in the domain of
discourse, which in practice means any term we can construct in the
syntax of the language. Multiple occurrences of the same variable in
the same sentence of course must represent the same individual.
(Different variables may refer to different individuals but they need
not be distinct.) In the dausal form of predicate calculus all the
variables in a single clause (written as a disjunction) are universally
quantified; such a clause can serve as a rule (in the sense used
earlier) in that it can be applied (not neccessarily successfully) for
every possible substitution of its variables and can be used an
arbitrary number of times. Clauses with at most one positive literal
(so-called Hom clauses) , such as:

(X)(Y)(Z) { p(X,Z) \/ -q(X, Y) V -r(Y,Z) }

which can be transformed (using the logical defmition p<-q = p V -q
and the law -p\/-q= -(p & q)) to:

(X)(Y)(Z) p(X,Z) <-q(X,Y) & r(Y,Z)

which puts it into the right form for the algorithm above. (By
convention capitalized names refer to variables.)

(Note: If we move the universal quantifier (Y) into its natural place
first:

(X)(Z) p(X,Z) V (Y) {-q(X,Y) V -r(Y,Z) }

and then transform (using the law -p\1-q= -(p & q)) to

(X)(Z) p(X,Z) V (Y) - (q(X,Y) & r{Y,Z))

and then (using using (Y)- = -EY and the logical defmition p<-q = p
\/ -q) to get:

10/24/95 3

CLP(BNR)/Prolog Review

(X)(Z) p(X,Z) <- EY (q(X,Y) & r(Y,Z)).
Thus, even though all variables in a clause are formally universally
quantified when the quantifiers are all scoped over the whole clause,
variables appearing only in the body are in fact existensionally
quantified when quantifiers are put into their natural position.)

In order to resolve the goal p(X..) (with whatever actual arguments
it has) with the clause p(Y ..) :- ... ,we must frrst specialize both the
goal and the clause so its head is equivalent to the goal; that is, its
arguments are exactly the same up to a consistent renaming of
variables. (Of course, we must not overspecialize or we might miss a
possibility!) This process is called unification (denoted by'=' because
it makes terms "equal") and is traditionally described in terms of
finding substitutions which make the terms (the goal and the head)
match exactly. There are four essential cases to deal with:
(1) a variable and a non-variable - just substitute the non-variable
for the variable everywhere. For example, unifying the goal
p(fred,2,U) with the head p(X,Y, g) sets X=fred and Y=2 (so these act
like input variables) and U=g, soU acts like an output variable. Thus
unification generates (in the simplest cases) a variable passing
mechanism. (This is the place where an "occurs check" would be
made.);
(2) an atom and an atom - succeeds if they are the same atom and
fails otherwise (thus triggering backtracking). This is analogous to a
terminal matching the input stream in the BNF interpreter;
(3) a structure and a structure- e.g. f(X,2)=f(Y,Z) for the structures to
be identical they must have the same label (or "functor") and the
same components (i.e. X=Y & 2=Z) ; and fmally
(4) a variable and a variable - e.g. X=Y. This case is actually the
trickiest. If X and Y are the same variable, this is trivially true,
corresponding to the reflexive law of equivalence. Otherwise we
must process this in a way which respects the other other laws,
transitivity and symmetry. In Prolog this is usually done very
efficiently by making the newer variable "point to" the older one, i.e.
the oldest instance of each equivalence class is taken as the canonical
representative of the class.

Thus the predicate calculus connection gives us a notion of variable
(the logic variable) and unification gives us automatically a
parameter passing mechanism and a basic equality relation on atoms
and constructed terms. With these additions our interpreter begins
to look at least a bit like a general programming language. However,
unification also has a number of other properties which "come with

10/24/95 4

CLP(BNR)/Prolog Review

the package" which many people find a bit strange at frrst. For
example:

f(g(X,Y),h(Z)) = f(g(2,3),h(4)) -> {X=2, Y=3, Z=4}

f(g(2,Y),h(W))= f(g(A,3),h(A)) -> { A=2, Y=3, W=2}

f(Z, h(4)) = f(g(A,3), h(A)) -> { Z=g(4,3), A=4 }.

Unification can be used to match patterns, extract subterms,
exchange data between terms or subterms, and construct or replicate
terms, often all at the same time, so it is a sort of general purpose
data shuffler. It takes a while to get used to it, but once you do the
conventional alternatives seem very clumsy.

Basically, Prolog consists of just the three things we have discussed:
resolution, backtracking, and unification. This isn't quite enough to
do everything you might want to do, of course, like actually adding 1
and 1 to get 2 or printing something or reading a fl.le or opening a
window So, a number of built-in primitives are added to the
basic system to do really basic things outside of the Prolog universe,
Usually the syntax for calling such primitives looks just like Prolog
goals, but they may behave differently since they are playing by
different rules.

Thus we see that Prolog represents a sort of compromise or hybrid
between theorem proving technology and a programming language
not quite a theorem prover (by the standards of logicians) and not
quite a programming language (by the expectations of
programmers). The particular compromise is also a little surprising
(for one can imagine taking a slightly different mix of features) and
also quite delicate. Over the years there has been at work a dialectic
process which sometimes pulls towards formal logic (as the name
Logic Programming suggests) and sometimes in the programming
direction (as seen in Prolog compiler technology and the extensions
in commercial systems), but (fortunately I think) neither side has
prevailed.

The fact that Prolog is associated with just a subset (the Hom
clauses) of standard logic, although once regarded (and still so
regarded by some, no doubt) as a deficiency to be overcome, appears
now to be an advantage, for this subset of logic can be regarded as a
logic (or proto-logic, sometimes called "positive logic") in its own

10/24/95 5

CLP(BNR)/Prolog Review

right, which is in essence the common part of many of the competing
systems of formal logic. The things omitted (from standard boolean
logic) are boolean negation and the possibility of proving a
disjunction p \/ q without actually proving either p or proving q.
From this we can see that it is very closely related to intuitionist
logic. Research has also shown because of these omisions that it
possesses certain useful formal properties such as the minimal model
property.

Finally, we should note that Pro log has been very fecund in the sense
that most of the formal structure can be retained even when it has
been utterly transformed to become a parallel programming
language, a concurrent programming language, a process algebra
language, or a constraint programming language, all of which have
occurred in the 1980's. Each of these developments reinterprets the
basic symbols':-' and',' and the logic variable in quite different (and
often incompatible) ways, yet retains much of the flavour of Prolog.

BNR Prolog Terms

BNR Prolog has extended the syntax (and semantics) of terms a little
bit to make some things easier to do. We won't as a general rule be
using these features very much in the course if they are avoidable,
but I will describe them anyway.

f\1ost Pro log systems have an idea of a list (of terms) and a special
syntax that goes with it, consisting of brackets and comma
separators, e.g.

[]
[a,b,c]
[X,b,D,3,4]

are three lists of definite lengths 0, 3 and 5 respectively. There is a
special notation for representing indefinite lists (with no specific
length),e.g.

[a,b,ciX]
is a list with 3 or more elements. (Usually funny things happen if
the thing after 'I' is anything other than a single variable.) These uses
(which I will call "tail variables") are useful for expressing list
recursions:

f([]).
f([XIXs]):- p(X), f(Xs).

BNR Prolog has an alternative notation for indefinite lists: the
previous example could also be written in BNR Prolog as:

10/24/95 6

CLP(BNR)/Prolog Review

[a,b,c,X ..]
This notation (but not 'I') can be used to express any list ('[X ..]')
(which of course is not the same as any term.) It can also be used to
express structures of indefinite arity, e.g.:

f(2,3,4,X ..),
{ P,Q, Rest .. }.

The 'X..' construct can only appear just before')',']', or'}' which are
the bracket constructs in the language. If 'X..' is used anywhere in a
context, 'X' (X without the dots) represents [X..], so a list recursion
could also be written as:

f([J).
f([X,Xs ..]):- p(X), f(Xs).

BNR Prolog also permits the functor of a structure to be a variable,
e.g F(U,V,W,X ••)

represents any structure with arity at least 3.

Finally, BNR Prolog supports cyclic structures (infmite trees or
rational trees) so

f(X)=X --> X=f(f(f(f(f(...))))),
[2,X ..]=X --> X=[2,2,2,2,2,2,2, ...]

both "infinite" structures. This is easy, since one need only omit the
occurs check as previously discussed; the hard part is to efficiently
guarantee termination on the next unification or primitive call made
on the result. Infinite trees have a natural interpretation as
generalized state machines (and hence as formal languages) and
rational trees as finite state machines (regular languages), and
unification generalizes the notion of machine equivalence. More
generally, for many applications the natural data structure is some
sort of graph, and cyclic structures makes it possible to construct
graphs.

10/24/95 7

CLP(BNR)/Narrowing

Narrowing concepts in Prolog

In this chapter we are going to look at Prolog from a more formal
algebraic point of view as an example of something called a
"narrowing algebra." Later on this will be generalized a bit to cover
interval based constraint systems, but it is useful to discuss it first
for Prolog.

In the last chapter we discussed the subtle historical and technical
relations between Prolog and symbolic logic. A lot of theoretically
inclined courses on Logic Programming spend a lot of time on this
issue, but as a practical matter in Prolog programming it seems to be
seldom of any use. The sorts of general problems which arise in
practical Prolog programming are generally not addressed by that
sort of theory. Most of the problems, it turns out, arise from the use
of primitives (sometimes called "non-logical" primitives) which is
not covered at all by the Logic models. Something else is needed.

For this analysis it is best to forget about backtracking for a while
and concentrate entirely on what I call "forward computation", i.e.
along any one branch. Once we have understood what can happen on
any branch, the total behaviour is just the disjoint union of the
behaviour on all the branches. Also, since in BNR Prolog, we
notionally allow infinite trees, we will here ignore termination issues:
conceptually speaking, non-terminating computations generate
answers also.

Unification and Narrowing

If we fix the set of symbols (including operators) to some definite set
(possibly even all the symbols permitted), we can then imagine the
(infinite) space of all the terms that can be constructed from them
according to the syntactic rules. Terms that contain no variables are
called ground terms, which will be denoted by G and unification is
just equality on G. G of course has a rich "algebraic" structure-
sufficiently rich that it can model any (frrst-order) theory
whatsoever. But for our purposes here we will just think of it as an
unstructured set.

10/24/95 1

CLP(BNR)/Narrowing

Now for every term t (possibly with variables) there is a set of
ground terms t which is the set of ground terms which successfully
unify with t:

t := { t' £ G I t=t'}.
If two terms s,t are equivalent (by a relabeling of variables), then
s=t (set equality of course) .. So from now on, we embed the space of
all terms into the powerset on G, and think of a general term as
representing the ground terms which are its instances. We call this
space T. Note that not all elements of the power set were in the
range of this map, so only very special sets of terms are in T.

Having made this identification, the space of terms now has some
structure, since it is partially ordered set inclusion. The term
consisting of a single variable, since it can represent any term, is a
maximum element (or "top") in the partial order. (There is no term
corresponding to the empty set.) Now consider what happens when
we unify two terms, say s=t. After the unification (if successful) the
two terms have become equivalent, call the common result r. By
intention r is a specialization of both s and t and is the most general
common spectalization. As sets sand t have an intersection snt, and
if this intersection is in T , then it must be r. By going through the
details of performing such an intersection, one can derive the
unification rules presented previously, and this shows that
unification corresponds to intersection, with the empty set 0
corresponding to failure. In order to get closure under unification,
we adjoin 0 to T . (even if it is not assodated with a term- think of
it as the "empty" term). With this slight change T becomes a semi
lattice (and in fact a lattice, although we will have no use for the
"join" of two terms).

We have already talked about unification as formally representing
an equivalence relation between terms, that is a reflexive,
symmetric, transitive relation. There is a correspondence between
these properties and those of intersection:

X=X
X=y<->Y=X
X=Y & Y=Z-> X=Z

X=Xnx

xny=ynx
xnz ::> (xny)nz

One could call this the "narrowing interpretation of equality"- when
things are represented by sets of possibilities, and equal things have

10/24/95 2

I
I

• • • • • •
t
I
t
I
t
t
t
I

• •
I
t
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

•

CLP(BNR)/Narrowing

equal sets of possibilities, then knowledge of equality entails that
only the common possibilities survive.

Operators

Consider the function (operator) t defmed on T by
t : X --> t fiX •

Such operators have several main, easily proved, properties:
(contraction) x ::>t (x)
(monotonidty) x =>Y -> t (x)::>t (y)
(persistence) t (y)::>x -> t (x)=x .

Operators can be combined directly by function composition. These
unification operators then also commute, since:

s(t (x)) = s n(t nx)= t n(s nx)=t(s(x)).

Pure Prolog (the subset intuitively defmed by clause resolution and
unification with no primitive calls) is a sequence of such operators
and therefore satisfies these properties.

Predicates as operators

Now we want to consider an arbitrary Prolog goal p(ti,tz, ...) as an
operator (named by p) applied to its argument list regarded as a
term, i.e. as if it were written as a function p([ti,tz, ...]), its output
being the resulting term [t1•,tz•, ...] after the call. The operator p can
be a pure Prolog operator (written entirely in basic Prolog) or it can
be a built-in primitive or any combination theoreof, but note that we
do not include any side effects (output routines, or operating system
calls) in the semantics; we are looking only at the effect on the Prolog
arguments. Consider whether such an operator is contracting,
monotone, or persistent:

Contracting: Normally every such operator will be contracting
because of the "write once" or immutable character of logic variables.
The only exception would be a primitive which changes the value of
a symbol (or other instantiated type) to a variable (shudder!) or to a
different symbol (or other instantiated type). (This is possible, of
course, but hopefully very rare.)

10/24/95 3

CLP(BNR)/Narrowing

Persistent: Normally this is the case as well, especially if primitives
use an internal unification routine to update output arguments. An
exception would be any primitive that has some internal state (not
passed as an input argument), such as a random number generaotr
with an implicit seed. In particular, most type tests like integer(X)
or symbol(X) are persistent. An exception is the var test var(X). A
special case of interest is the standard "is" primitive: in

V is Expression
normally V is a variable and gets bound to the value of the
Expression during the call. Consider a sequence in which this goal is
repeated:

V is Expression, ... ,V is Expression
On the second occurrence Vis already instantiated, so for "is" to be

persistent it is necessary that the evaluation of the Expression yield
the exact same result (which of course it should) and the primitive
must then do a numerical equality test instead of a bind.

Note that a persistent operator need only ever be called once with a
particular argument.

Monotone: This is the most likely to fail: primitives that expect
instantiated input arguments and fail when the input arguments are
not instantiated will not be monotone. (If the call can ever succeed
with some instantiated argument, then monotonicity implies that it
must succeed when that argument is a variable, all other arguments
being unchanged.) Note that for this reason var(X) is monotone, but
standard Prolog arithmetic is not.

For primitives one needs to check their specifications and usually do
some testing to determine which properties hold and for which
arguments.

Usually in a clause execution, unification is used to pull inputs apart
into separate components, operators (calls) are applied to the
components, and then the results glued back together using
unification, but all this could be written in purely functional terms
using function composition, although it often would be comparatively
clumsy. (As an exercise, take a small Prolog predicate and convert it
to such a functional form.)

What makes the properties above interesting is first of all that:
(1) the composition of contractions is a contraction
(2) the composiiton of monotone operators is monotone

10/24/95 4

t
t
t
t
t
t
t
t
t
t
t
t
t
t

• • • • • • • •

CLP(BNR)/Narrowing

(3) the composition of persistent operators is persistent.
(Exercise: prove these staements from the definitions.)
From this it follows that these properties {abreviated CMP} of an
operator are unaffected by composition with unification, since
unifications possess all three. And knowing, for example, that a
clause uses var(X) tells us that the predicate it is part of is in danger
of being non-persistent (unless there is another clause that repairs
the damage) and that a clause which uses standard arithmetic is in
danger of being non-monotone. This is useful both diagnostically and
normatively.

From the above closure properties we see that if we start with a set S
of operators satisfying all three properties {CMP} as generators, and
form S*, the set of all the operators we can get from them by
composition, they all have these properties. The identity function,
written 1, is included in S* (formally: it is the composition of the
empty set of primitives), so S* is a monoid (semigroup with identity)
under composition as product, what we will call a CMP-monoid. (This
monoid is also a partially ordered set and has extra structure as well,
but we won't be discussing it now.)

Now we get a very strong result:

Theorem: Let p belong to the CMP monoid S*. Then there exists a
term t E T depending on p such that for all x E T, p(x) = t (x) = t n x.

Proof: By hypothesis p is a persistent monotone contraction. Let
u=mga(p) be the most general argument admissible for p. (Standard
Prolog predicates have a definite arity n, so the mga is a list of n
variables; for BNR Prolog predicates which can be of indefinite arity
the mga is therefore [X ..].) For p to succeed we must have u :;, x,
otherwise (p always fails) we can take t !a Then since p is
contracting, x ::::> p(x), and since pis monotone, p(u) :;, p(x), sox ::::>

x n p(u) ::::> p(x). Then since pis monotone, we have p(x) :;, p(x n
p(u)) ::::> p(p(x)) =p(x) (since pis persistent and hence idempotent), so
p(x) = p(x n p(u)). But since p(u)) ::::> x n p(u) and p is persistent,
p(x n p(u))=x n p(u)=p(u) n x, and we take t= p(u).

One can interpret each p(u) as the "local universal answer" to p, for
each branch of the computation. The (very likely infmite) collection
of all the p(u)'s from all branches (as a formal disjunction) is then
the global universal answer, and a similar theorem could be
formulated for it by distributing intersection over disjunction.

10/24/95 5

CLP(BNR)/Narrowing

Corollary: The operators of S* commute.

Proof: immediate.

Exercise: Prove the corollary ~irectly from the properties CMP.

Messy exercise: From the commutativity of the operator composiiton
monoid, show that the ',' operator appearing in clauses also
commutes.

This gives us an alternate, rather abstract, way of characterizing the
notion of a "pure Pro log" system, one which doesn't depend on how it
is implemented. It has been summarized in the phrase: "the question,
when properly narrowed, is the answer." We will return to this
framework later and generalize it to handle constraints as well as
Pro log.

Standard Prolog Arithmetic

The conventional standard arithmetic which has been added to
Prolog uses the primitives "is" and the various relational arithmetic
operators if the forms:

Var is Expression
Expression Op Expression

where Expression denotes a valid and fully instantiated arithmetic
expression. These forms are therefore non-monotonic, although both
are persistent contractions, provided is defaults to equality when its
left argument is instantiated. It follows that, even with integer
arithmetic, the use of these primitives gives rise to impure (
sometimes called non-logical) behaviour. Since most large
applications need to do some arithmetic, this is one of the ·main
reasons why large Prolog applications do not enjoy the same
properties of the small teaching examples.

When this form of arithmetic was pragmatically extended to handle
floating point numbers, an additional problem was introduced: the
results are no longer correct. In systems where exact arithmetic
equality('==') (i.e. exact match of binary representations) is used, for

10/24/95 6

CLP(BNR)/Narrowing

example, one gets anomalies such as the unexpected failure of 1.21
== 1.1 * 1.1. This occurs because 0.1 is an infinite decimal in binary
representation, which gets truncated in practice, and as a result the
two sides differ by a rounding bit. More complex cases occur
whenever arithmetic is done. Fuzzing equality (as was done in APL
for example) may mask some but not all such problems, and in
addition makes equality non transitive (and possibly even non
symmetric, depending on how it is done).

Thus the problem of constructing a Prolog compatible arithmetic can
be viewed as twofold: restoring correctness and restoring
monotonicity, without sacrificing the other two properties. One way
of doing this is to use infmite precision rational arithmetic (to restore
correctness) and delay to formally restore monotonicity, as in Prolog
III. Rational arithmetic is, however, insufficient since it does not
supply answers to e.g. "X is sqrt(2)", and one is forced to extend the
number system to the computable reals. Delay is ~~o counter
productive, since at the end of the computation one~Joften has
most of one's arithmetic still in the deferred state, and. it no longer
functions as a control on Prolog execution (which is one of its major
roles).

One way around this impass is to move to an interval representation:
each arithmetic variable is associated with an interval bounding its
range of possible values, and arithmetic operations result in a
narrowing of ranges. Done properly, this restores both monotonocity
and correctness, while permitting the use of ordinary floating point
arithmetic (with careful control of rounding direction). The next
section describes the result of this approach in detail.

Syntax and Semantics of CLP(BNR)

CLP(BNR) is Prolog extended with an interval based constraint
system which supports booleans(B), integers(N), and reals(R). It
consists fundamentally of three predicates: one to create numeric
variables, one (':') to to query the current value of its range (domain),
and one to establish constraints ('{ ... }'). There are also some
specialized utilities which will be covered in later sections.

10/24/95 7

CLP(BNR)/Narrowing

The explicit creation of numeric variables is done through one of the
following "type declarations":

X: real,
X:real(L,U)
X: integer,
X:integer(L,U)
X:boolean.

Here X is (normally) a variable or a list of variables, and L and U are
either instantiated arithmetic expressions with L=<U or variables
(conceptually representing -1+ infmity). If X is instantiated already,
then X: real is equivalent to float(X), X: integer to integer(X), and
X:boolean is true if X=O or X=L Such declarations restrict the
possible subsequent instantiations of X, just as "X = F(_,_,_)" limits
the possible values of X to be an arity 3 structure in Prolog.

For such a typed variable X
dornain(X, Type)

returns the type and bounds (for integer and reals only) in the same
form as used by':'; it fails unless X is a typed variable. The bounds
returned are the "current" bounds and reflect whatever narrowing
has occurred because of established constraints.

Since domain fails whenever X is instantiated, there is for
convenience also a predicate range which returns the bounds as a
list, but which also works on instantiated numerics. For many
purposes (e.g. display) one is more interested in the bounds than the
type, and range is therefore preferable, especially for integer
quantities which tend to become instantiated. As a matter of
terminology, it is useful to speak of "numeric quantities" consisting of
either "numeric constants" or "numeric variables".

In terms of the partial order (subsumption order) of terms, any
typed variable is a subtype of an untyped variable. For two typed
variables X,Y of the same type, X is a subtype of Y if and only if its
bounding range is smaller, and the unification of X and Y has as
bounding range the intersection of the two ranges (when not empty)
or failure (when the intersection is empty). For two type variables of
different kinds, one regards boolean as a subtype of integer and
integer as a subtype of real (via the natural embeddings) and this is
considered as well as bounding interval inclusion. With these rules,
the partial order on terms has been extended to cover typed
variables wherever they may occur. The fact that booleans are
represented as 0 or 1 (rather than true and false) and can be

10/24/95 8

•
•
•
•
•
•
• • • • • • • • • • • • • • • ..

CLP(BNR)/Narrowing

treated as integers and reals means that boolean variables can
appear in arithmetic expressions, e.g.

{ Z i.s B*X + (-B)*Y}
which plays the role of a conditional assignment in conventional
languages.

All constraints are established by executing constraint goals of the
form:

{ A } or
{ Al,AZ, }.

where the A's are arithmetic relations. Arithmetic relations are
written in the usual way, using 'is', '==', '=<', etc. and the usual
arithmetic expressions. The form "{AI ,A2 } " is equivalent to
"{Al}, {A2} ", although the former is often more convenient to write,
but the latter is sometimes easier to debug if there is a failure.

With respect to the extended subsumption order, constraint goals are
contracting, monotone and persistent and hence commute with each
other and with other such goals, e.g. unifications.

Therefore the order in which constraints are imposed will not affect
the results. However, the order of ':' and domain calls relative to
each other and to constraint goals does matter.

Constraint goals affect the system state in two distinct ways: one is
by generating implicit declarations (see next paragraph), and the
other by narrowing the ranges. When processing constraint goals all
intermediate variables corresponding to subexpressions and any
untyped uninstantiated variables are assigned default types
according to a set of type inferencing rules. In most cases these
types will be appropriate, and explicit declarations will therefore not
be required. (The default types assigned in any particular situation
can be determined experimentally by making the intermediate
variables explicit ; by explicitly typing such variables one can then
override the defaults). In the present version of the system, once a
type has been assigned to a variable, it cannot be changed by a
subsequent declaration. As a result, declarations may not commute
with constraint goals which infer a different type for that variable.
Declarations of the same type but different ranges do commute.

Ideally, there should be only three outcomes to a constraint goal: (1)
it adds the new constraint to the system and succeeds, (2) the new
constraint is provably inconsistent with the exisitng constraint
system and it fails, or (3) there is something syntactically wrong with

10/24/95 9

CLP(BNR)/Narrowing

the constraint and an exception is generated. (Note: in the present
version, some types of syntactic errors may result in failure rather
than an exception condition.)

10/24/95 10

CLP(BNR)/ Syntax

CLP(BNR) Syntax and Semantics

In the last section we presented a conceptual model of CLP(BNR) as
an extension of Prolog, regarded as a narrowing algebra. This
conceptual model will be the basis for everything we will do in this
course.

Some Examples

(The following examples were generated using version 4.3 of BNR
Prolog.)

Consider the following query:

?- [M,N]:integer(0,8), { M == 3*N}.

with response

?- [[_H583, _H588] : integer(0, 8), {_H583 == 3 * _H588}]
where [_HS83 : integer(0, 6), _H588 : integer(0, 2)].

The query is echoed, although variable names have been replaced by
system-generated global names (which may differ from these
appearing here). To avoid problems with the system names being
different each time and to improve readability, I will henceforth
substitute the original names, prefixed with '_', in these examples,
e.g.

?- [[_M, _N] : integer(0, 8), {_M == 3 * _N}]
where [_M : integer(0, 6), _N : integer(0, 2)].

The post-query domain information is expressed in a "where" clause
which will be automatically supplied whenever a term is output
using the predicate print. Note also that both variables have had
their ranges narrowed by the constraint.

Now if we add an additional constraint, M > 3 :

?- [M,N] :integer(0,8), { M == 3*N}, { M > 3}.
?- [[6, 2] : integer(0, 8), {6 = 3 * 2}, {6 > 3}].

There is now a unique and exact answer, which has been
instantiated.

10/24/95 1

CLP(BNR)/ Syntax

Things are a little different when dealing with real variables.
Consider the following query:

?-X::real(1,3), {Y**2==X}.

Note that Y will by default be considered as if it had been declared as
v: real. With Prolog we are use to answers being instantiations
("substitution instances") of the query, but here there is not enough
information in X to uniquely determine Y (or X). So what do we get?
The response to the above query is:

?- [_H527 :: real(1, 3), {_H541 ** 2 = _HS27}]
where [_H527 : real (1. 0, 3. 0) ,

_H541 : real(-1.73205080756888, 1. 73205080756888)].

Note that since the sign of Y is unspecified, so the answer permits
negative Y values. Note also that the interval for Y contains points
(from -1.0 to 1.0) which are not possible solutions. But Y is the
smallest interval that contains all the solutions and allows for worst
case rounding error.

Now try either:
?-X::real(1,3), Y:real(0,_), {Y**2==X}.
or
?-X::real(1,3), {Y>=0}, {Y**2==X}.
or
?-X::real(1,3), {Y**2==X},{Y>=0}.

and get
?-

where [_X : real(1.0, 3.0),
_y : real(1.0, 1.73205080756888)].

All are equivalent.

Now try

?- {Y>=0, Y**2=X}, {X=3}.

and get
? - [{_ Y >= 0, 3 . 0 = _ Y * * Z} , {3. 0 = 3}]

where [_Y: real(1.73205080756888, 1.73205080756888)].

Note that X has been coerced to a float and instantiated to a point
value, but Y is still an interval, though an exceedingly small one. This
is because the rounding error in taking the square root makes the
value of Y slightly uncertain; indeed no floating point number and no

10/24/95 2

CLP(BNR)/ Syntax

rational number is the square root of 3. You can't actually see the
difference in the bounds in this particular case because the printing
resolution isn't high enough, but you can test this with:
?- {Y>=0,X==Y**2}, {X==3}, ronge(Y,[L,U]), L=U.
produces 'NO' while
?- {Y>=0,X--Y**2}, {X==3}, ronge(Y,[L,U]), L<U.
produces 'YES'. You must avoid or be very careful when copying
such answers for entry later· (especially when the bounds appear to
be identical), or you may introduce numerical errors.

Any floating point constant, which is entered as a (terminating)
decimal, gets "fuzzed" slightly when put into a real variable:

?- X:reol, {X==1.73205080756888}.
?- [_X : real, {_H442 == 1. 73205080756888}]

where [_X : reol(1.73205080756888, 1.73205080756888)].

WARNING: This fuzzing helps compensate for the conversion from
decimal to binary, but is not necessarily enough to preserve exact
properties:
?- X:real, {X**2==3.0},{X==1.73205080756888}.
NO
To avoid this, numerical data should normally be entered as a
declaration, with the bounds reflecting the actual effective precision.

Here is a more complex example, involving two linear equations:
?- {1==X + 2*Y, Y - 3*X=0}.

?- {1 == _X + 2 • _Y, _y - 3 • _x == 0}
where [_Y : reol(0.428571428571429, 0.428571428571429),

_X : reol(0.142857142857143, 0.142857142857143)].

And here is one involving a pair of non-linear equations (one
involving a transcendental function):
?- [X,Y]:reol(0,1), {ton(X)==Y, x••2 + v••2 == 1 }.

?- [[_X, _H782] : reol(0, 1),
{ton(_X) == _y, _X •• 2 + _y •• 2 == 1}]
where [_X : reo l (0. 649888946665696, 0. 649888946665697),

_y : reol(0. 7600291816n751, 0. 76002918167n51)].

In general, sets of equations (even when the number of equations
equals the number of unknowns) will have multiple solutions; there
is a non-deterministic predicate solve which usually splits the
solutions:

?- X:real(0,1), {0==35*X**256 -14*X**17 + X}, solve(X).
?- [0.0 : real(0, 1),

{0 = (35 • 0.0 •• 256 - 14 • 0.0 .. 17) + 0.0},
solve(0.0)].

10/24/95 3

YES

CLP(BNR)/ Syntax

?- [_X : real(01 1) I
{0 = (35 * _x ** 256 - 14 * _x ** 17) + _x} I

solve(_X)]
where [_X : real(0.847943660827315 1 0.847943660827315)].

?- [_X : real(0 1 1) 1
{0 == (35 * _H634 ** 256 - 14 * _H634 ** 17) + _H634} I

solve(_X)]
· where [_X : real(0.9958424942004981 0.995842494200498)].

Note that the first solution (0.0) was actually instantiated.

Some Caveats

The current implementation of CLP(BNR) (V4.3) has - partially for
historical reasons and partly because of implementation difficulties -
several anomalies that do not quite fit the conceptual model
discussed in the last section:

(1) Historically, Prolog has made an absolute distinction between
integer and floating point constants. As a result, when X is declared
as a real variable, it is only allowed to take floating point values, and
when declared an integer it is only allowed integer values (which is
ok). The former violates the idea that integers should be regarded as
a subset of reals. This has some annoying consequences when
writing code, as we will see below.

(2) Related to this, the system does not currently allow one to change
the type of a variable by a subsequent declaration. Since such
changes are often the result of a programming error, this is
apparently a mixed blessing, but does formally violate the model
above.

(3) Also related to this: an arithmetic equality between arithmetic
variables of different types does not merge the two variables into a
single variable of the intersection type, although they will in fact be
constrained to be equal. For example,

X:real 1 N:integer 1 {X==N}, N:1
results in X being equal to 1.0 and N to 1.

Also note that in general declarations and domain calls do not
commute:

10/24/95 4

CLP(BNR)/ Syntax

X:real, domain(X,T)
works, but

domain(X,T), X:real
fails (assuming X was initially a plain variable), and in general
neither declarations nor domain calls commute with constraint goals.

Programming Considerations

The interaction between arithmetic constraints and Prolog introduces
new algorithmic possibilities as well as some new problems, which
sometimes have non-obvious solutions. As a simple example,
consider a predicate to sum a list of numeric quantities. In normal
Prolog, the simplest solution (for a list of numeric constants) is:

sum(0, 0).
sum([XIXs], Sum):- sum(Xs, S), Sum is X + S.

This version has the drawback that it is not tail-recursive, so
requires more stack storage. A tail-recursive version introduces an
auxiliary predicate and an accumulator variable:

sum(List, Sum):- Ssum(List, 0, Sum).
Ssum(0 , Sum, Sum).
Ssum([XIXs], S, Sum) :- Sl isS+ X, Ssum(Xs,Sl,Sum).

With constraints one also has the following option, which is tail
recursive without needing the auxiliary predicate:

sum(D, S):- {S=0}.
sum([X I Xs], Sum):- {Sum = X + S}, sum(Xs, S).

The first clause could also be written less explicitly as:

sum(0, 0.0).

This will work (but "sum(o. 0)" won't !) because the input
argumentS is by default real; as is the output Sum (unless explicitly
declared). Since one expects that the sum of a list of integers should
be an integer, this formulation is not ideal. Another advantage of
using the more explicit form using'==' is that it will work when the
incoming argument is an arithmetic expression (e.g. the call "sum(L,
2 + Y)"), while the second form will not because the expression "2 + Y''
is not the same as the expression "0".

10/24/95 5

CLP(BNR)/ Syntax

Often- perhaps even usually-the best possibility in BNR Prolog is to
perform the sum symbolically:

sum(D, 0).
sum([XIXs], X + S):- sum(Xs, S).

and convert to a constraint afterwards:
... s~.n(Li.st, S), .{ S~.n i.s S },

This has several advantages:
(1) one needs only one version of such utilities for both constraint

and non-constraint (including purely symbolic) use;
(2) because we have used 'is' and a new variable on the left of it, the

result will be an integer whenever all the list elements are
integers;

(3) the sum predicate is pure Pro log;
(4) it may be much easier to debug; and
(4) the cost of building the summation structure is offset by fewer

calls to { }.
This pattern of working symbolically and only afterwards converting
to constraints is one to keep in mind, as it seems to be widely useful.
It is counter-intuitive by conventional (even conventional Prolog)
thinking, which is usually motivated by compilation efficiency issues.

Constraints and Prolog Control

The interaction between constraints and Prolog can be subtle, but is
almost always beneficial. The next example illustrates both the
problems created by standard arithmetic in Prolog and the use of
constraints in controlling Prolog execution. Consider writing a
predicate that relates a list to its length- e.g. can either generate a
list (of variables) of a specified length or compute the length of a list.
In ordinary Prolog one is forced to write something like this:

plength(List, N):- integer(N),! ,N>=0, Smkli.st(N,Li.st).
plength(List, N):- list(List),Splength(List,N).

Smkli.st(0, []).
Smkli.st(N,[XIXs]):- N>0, Nl i.s N - 1, mkli.st(Nl,Xs).

Splength(O ,0). % don't cut - might be i.ndefi.ni.te li.st
$plength([XIXs],N):- Splength(Xs,Nl), N is Nl + 1.

Note that the auxiliary predicates Smkl i.st and Splength are
themselves non-logical because of their use of non-monotone Prolog
arithmetic, as discussed previously. The umbrella predicate plength

10/24/95 6

CLP(BNR)/ Syntax

partially compensates for this by testing the instantiation pattern (
using tests which are also non-monotone) in order to call the
appropriate subroutine. The net result of all this fmagling, however,
works fairly well:

?- plength([1,2,3,4], N).
?- plength([1, 2, 3, 4], 4).

YES

?- plength(X, 4).
?- plength([_H416, _H418, _H420, _H422], 4).

YES

?- plength([XIXs], 4).
?- plength([_x, _H430, _H432, _H434], 4).

YES

?- plength([_,_], 4).

NO
?- plength([X,Xs ..],-3).

NO

?- plength([XIXs], N). % nondetermi.ni.sti.c
?- plength([_X], 1).

?- plength([_x, _H433], 2).
?- plength([_X, _H433, _H435], 3).
?- plength([_X, _H433, _H435, _H437], 4).
?- plength([_X, _H433, _H435, _H437, _H439], 5).
?- plength([_X, _H433, _H435, _H437, _H439, _H441], 6).
?- plength([_X, _H433, _H435, _H437, _H439, _H441, _H443], 7).

etc

The last answer, which is an infinite backtracker (as it must be), is a
serious source of problems in Prolog, since the last one of these
executed will mask all previous choicepoints; Prolog has no nice
mechanism to deal with this problem.

Consider now a (deceptively) simple version using constraints:

length(Li.st, N) :- N:i.nteger(0,_), Slength(Li.st,N).

$length([],0).
Slength([XIXs],N):- {Nl is N - 1, Nl >=0}, Slength(Xs,Nl).

Here we have used a declaration in the umbrella routine to ensure
that list lengths are non-negative integers (as one would expect), and
we have used 'is' with the new variable as left argument in the
induction clause to propagate the type integer down the chain of
variables, so it is safe to use 0 in the head. This code is much smaller

10/24/95 7

CLP(BNR)/ Syntax

and cleaner- no instantiation tests and no '!' required-and it is also
tail-recursive. It also gives the same answers to all the above
queries.

But, whereas
?- plength(X, N).
just fails (since X is not a list), we now get instead:

?- length(X, N) .
?- length(O, 0).
?- length([_HZ37], 1).
?- length([_HZ37, _H409], 2).
?- length([_HZ37, _H409, _HS84], 3).
?- length([_HZ37, _H409, _HS84, _H76Z], 4).

etc.
And, perhaps unexpectedly, we can now do:

?- N:integer(S,7), length(L,N).
?- [5 . i.nteger(S, 7),

length([_H38Z, _H548, _H714, _H880, _Hl046],
?- [6 integer(S, 7),

length([_H38Z, _H548, _H714, _H880, _Hl046,
?- [7 . i.nteger(S, 7),

length([_H382, _H548, _H714, _H880, _H1046,

YES

5)].

_HlZ12],

_Hl212,

6)].

_H140Z], 7)].

Thus, provided we can establish initial bounds on the list length, we
can 'tame' the infinite backtracker problem.

Exercise: Work through the logic to see exactly why this works as it
does: why is the first answer a list of length 5? why does it stop
when it should?

The moral of this story is that constraints and Prolog are
complementary. Not only are they conceptually compatible, but
constraints provide the sort of arithmetic capability that Prolog has
always needed, while Prolog provides the symbolic processing and
programming environment needed to make effective use of
constraints.

Constraints and Prolog Negation

The usual negation-by-failure construct of Prolog works with
constraints according to the normal rules:

10/24/95 8

CLP(BNR)/ Syntax

not({ C })

succeeds only if the constraint C fails, i.e. C is provably inconsistent
with the constraints already in the system. For example, if, having
already declared variables X and Y and established constraints
involving them, we ask

... not({X>=Y})

and it succeeds, it indicates that X cannot possibly be larger or equal
to Y. (This may not be obvious from looking at their ranges, which
may in fact overlap.) Furthermore, there is a proof of this fact;
indeed, the fact was discovered by carrying out the proof. Note also,
that since constraint goals are monotone, their negations are
persistent: obviously if X can not be larger (or equal) to Y, no
additional constraints are going to change that.

The double negation,

not(not({ C }))

indicates that the constraint C is possibly consistent, but does not
actually impose the constraint. Success here does not actually
guarantee consistency, because the underlying mechanism is
incomplete.

Typed Variables and Freeze

Freeze and the freeze-based constructs, which also use ' { }' in their
syntax (e.g. { nonvar(V)->P}), can be used with typed variables if
desired. Since continuous (real) variables are seldom instantiated,
however, they are mostly useful only with integer and boolean
variables. The interval constraint propagation is finished before the
woken goals are executed. , Later there will be an example which
makes use of this facility.

The unusual construct

{{C}}

has the effect of postponing the constraint goal {C} (using freeze)
until C is ground. Although it may occasionally be useful for handling
disequality constraints on integers, usually it is a programming error.
(It can happen when constraint goals are being passed as arguments

10/24/95 9

CLP(BNR)/ Syntax

and there is confusion about whether they already have the braces
attached.)

10/24/95 10

CLP(BNR)/ Booleans

Boolean Constraints I

Boolean variables and operators

Boolean variables can take only the values 0 and 1; they can be
introduced explicitly with declarations of the form

X:boolean
where X is a variables (or list of variables). In most cases, explicit
declarations are unnecessary, since the frrst use of a variable with
exclusively boolean operations will force it to be a boolean. The
operations supported are the prefix operator - (boolean complement)
and the infix operators and, or, nand, nor, xor, ->. For
example, the constraint expression {l==A->B} constrains the usual
boolean conditional "A implies B" to be true. There are also the
relations '=<' (representing the boolean implication relation) and'=='
(representing boolean equivalence when used a s a relation, and
biconditional when used as an operator).

Boolean problems almost always require explicit enumeration, which
can be done using

enumerate(X)
where X is a boolean variable or a list of boolean variables. For
example, to display the truth table for the primitive xor, one can use:

?- {C== A xor B}, enumerate([A,B,C]).
?- [{0 - 0 xor 0}, enumerate([0, 0, 0])].
?- [{1 = 0 xor 1}, enumerate([0, 1, 1])].
?- [{1 = 1 xor 0}, enumerate([1, 0, 1])].
?- [{0 = 1 xor 1}, enumerate([1, 1, 0])].

Similarly:
?- {D= (A xor B) nand (B or C)}, enumerate([A,B,C,D]).

?- [{1 = (0 xor 0) nand (0 or 0)}, enumerate([0, 0, 0, 1])].
?- [{1 = (0 xor 0) nand (0 or 1)}, enumerate([0, 0, 1, 1])].
?- [{0 = (0 xor 1) nand (1 or 0)}, enumerate([0, 1, 0, 0])].
?- [{0 = (0 xor 1) nand (1 or 1)}, enumerate([0, 1, 1, 0])].
?- [{1 - (1 xor 0) nand (0 or 0)}, enumerate([1, 0, 0, 1])].
?- [{0 = (1 xor 0) nand (0 or 1)}, enumerate([1, 0, 1, 0])].
?- [{1 = (1 xor 1) nand (1 or 0)}, enumerate([1, 1, 0, 1])].
?- [{1 = (1 xor 1) nand (1 or 1)}, enumerate([1, 1, 1, 1])].

YES
Note that the enumeration is done in the order that the variables
appear in the list given to enumerate.

10/24/95 1

I
CLP(BNR)/ Booleans

Boolean satisfiability is the paradigm NP-complete problem: in the
worst case one may need to explore 2**N branches if there are N
boolean variables to enumerate. The effect of constraints is to
reduce this to 2**M where M<N, at the cost of value propagation in
the constraint system. But every constraint that forces a variable
(thereby avoiding one choice) halves the overall cost.

The general pattern for dealing with highly combinatoric problems
using constraints is:

(1) Set up the data structures and the declarations for the principle
variables. Any data values or information determining the size and
structure of the problem which must be read from files is done at
this time. Specifications expressed as Prolog facts usually need to be
converted into lists (using e.g. fi.ndall or findset) before being
processed into constraint goals.

(2) Set up all the constraints. If the Pro log preparation in step 1 has
been done well, the conversion to constraints should be relatively
easy and transparently clear. This is important because it can be
difficult to discover errors or omissions in the constraints. This part
should be strictly deterministic; any non-determinism should be
postponed until step 3 (the "Aurora principle"). When writing
constraint goals it usually helps to imagine that all variables are
instantiated, and you are just testing to see if you have a solution.
Test by actually giving it a solution to the problem: all the constraints
should of course be satisfied.

(3) Then proceed to the enumeration of constrained variables, or
other non-deterministic bits. The bulk of the execution time will
normally be spent in this section on difficult combinatorial problems,
so it should generallebe doing anything other than enumeration.
Step 1 should have buit ata structures so that it is easy to extract
the enumeration v · les. The built-in enumeration predicates
have been optimized in various ways and will generally be better
(and easier to use and document) than what you might casually
write, so use them. Think hard about different enumeration orders,
since the proper choice can make a significant difference in
performance; try several different strategies and compare the
results. Good heuristic orderings can often be accomplished easily by
proper use of sorts in step 1.

10/24/95 2

ClP(BNR)/ Booleans

(4) Once the solution is obtained, there is usually some code
required to capture the answer in a suitable form, e.g. in state space
or an external file. This part will normally be omitted in the
examples in this text.

Digital Logic

As an example of the use of boolean constraints, consider a 1-bit
adder expressed as:

addl(X, Y, Cin, Z, Cout):-
{ Z is Cin xor (X xor Y)},
{ Cout is (X and Cin) or (Y and Cin) or (X and Y) } .

A 4-bit adder can then be synthesized as:

add4([X3,X2,Xl],[Y3,Y2,Yl],Cin, [Z3,Z2,Zl], Cout):-
addl(Xl, Yl, Cin, Zl, Cl),
addl(XZ, Y2, Cl, Z2, C2),
addl(X3, Y3, C2, Z3, Cout).

A general adder can be defined by:

adder([] , 0, C, [], C).
adder([XIXs],[YIYs],Cin, [ZIZs],Carry):-

addl(X,Y,C, Z,Carry),
adder(Xs,Ys,Cin, Zs, C).

Functional components can be tested for equivalence by comparing
outputs. For example, if we have defined

addl_alt(X, Y, CI, Z, CO):-
{ Z is CI xor (X xor Y)},
{ CO is CCI and (X or Y)) or (X and Y)}.

then we can look for any differences:
?- addl(X,Y,CI,Z,CO),

NO

addl_alt(X,Y,CI,Z2,C02), % same inputs, different outputs
{1= ((Z xor Z2) or (CO xor C02))}, % compare outputs

enumerate([X,Y,CI]).

with no output differences implying equivalence.

Similarly, we can determine that some function, say f([X1,X2,.X3,X4],
Z) depends on a variable e.g. X1 by

10/24/95 3

CIP(BNR)/ Booleans

?- f([0,XZ,X3,X4],Zl), f([l,XZ,X3,X4],ZZ), {l==(Zl xor ZZ) },
enumerote([XZ,X3,X4]).

Functional dependencies

Functional dependencies is a formalized method used to analyze
"keys" in databases among other things. A relation in the sense of
relational databases is a finite set of tuples, with the fields of each
tuple named by a distinct attribute (from a set A of attributes) and
having values in some domain. A key is a field or set of fields whose
values uniquely determine a tuple, and hence the values of the rest
of the attributes. This can be expressed succinctly as P=>Q where P
and Q are subsets of A. Given a set of functional dependencies, one
of the things one might want to do is to determine if some other
functional dependency is a consequence of them. The first step in
answering such questions is to compute the closure operator of the
set of functional dependencies: for each subset W of A the closure of
W is the set of all attributes determined by W. Once we have the
closure operator, then W -> U for each U in closure(W) and as W
ranges over the powerset of A these are all the consequences of the
original set of dependencies.

The following example of a set of functional dependencies (for an
airline scheduling system) was given in Chapter 8 of the BNR Prolog
User Guide:

[a]
[a, c, d, i]
[c, d]
[c, d, f]
[b]
[c, f]
[a, c]
[a, d]
[e, g]

-> [b, e, f, g]
-> [h]
-> [j]
-> [k]
-> [g]
->[a, b, e]
-> [d]
-> [c]
-> [b]

Also given there was a conventional Prolog implementation of the
closure operation as well as a freeze-based implementation. You
should study those examples first. The boolean constraint version
given here works a lot like the freeze implementation, but is much
faster and more flexible. For a constraint implementation we map
attributes to boolean variables, although we will in fact only be using
the instantiated value 1. Each dependency is then translated using
"and" on the left, for each value on the right; here we translate the
implication as a relation using =<, but the conditional operator ->

10/24/95 4

ClP(BNR)/ Booleans

could also be used. Then the above example can be coded very
explicitly as:

closed([A,B,C,O,E,F,G,H,I,J,K]):- [A,B,C,D,E,F,G,H,I,J,K]:boolean,
{ A =< B, A =< E, A =< F, A =< G,

(A and C and 0 and I) =< H,
(C and D and F) =< K,
(C and F) =< A, (C and F) =< B, (C and F) =< E,
(A and C) =< D,
(A and D) =< C,
(E and G) =< B}.

After executing closed(X), whatever 1 's we put into X will have their
consequences set as well. So to compute closures (in terms of
attribute names say) we will need to convert a list of names to a list
of 1 'sand variables (a membership vector denoted), and then use
the resulting closed membership vector to select a list of attribute
names. (Note that these two routines are almost identical; they differ
because one is written to interact with the constraint system and the
other must not interact.)):

% epsilon(Ordlistl, Ordlist2, Blist*)
epsilon([], _, 0).
epsilon([NINs],[NIAs],[liBs]):- !,epsilon(Ns,As,Bs).
epsilon([N INs] ,As, [BIBs]):- epsilon(Ns,As,Bs).

% select(Ordlist2, Blist,Ordlistl*)
select(0, 0, []) ·
select([N lAs], [BIBs], [N INs]):- 8@=1,!, select(Ns,As,Bs).
select([A I As], [BIBs], [N INs]):- select([N INs] ,As ,Bs).

member(X, [X I_]).
member(X,[_IXs]):- member(X,Xs).

list_closures(List):-% code to compute closures
attri.bute_names(Master),
closed(X),
foreach(member(N,Li.st) do

[sort(N,NS),
epsilon(Master,NS,X),

select(Master, X,C),
nl, write(NS, 1 -> 1 ,C)

]).

For the example given above:

?- list_closures([[a, c, d], [b, e], [g, d, f], [a]]).

[a,c,d] -> [a,b,c,d,e,f,g,k]
[b,e] -> [a,b,c,d,e,f,g,k]
[d,f,g] -> [a,b,c,d,e,f,g,k]
[a]-> [a,b,c,d,e,f,g,k]

10/24/95 5

CLP(BNR)/ Booleans

Exercise: Suppose that the FD's are defined by a predicate of the form fd{ lhs
>rhs) and write a Prolog translation routine to construct the equivalent
closure predicate and the sorted list of all symbolic names, and adapt
lisLclosures to use these.

Propositional calculus problems

Propositional calculus problems for testing boolean satisfaction
algorithms are often expressed in conjunctive normal form, that is as
a conjunction (or list) of disjunctions of p's and -p's. This form is the
most convenient for some algorithms, but it is sometimes unnatural
and often much larger than other representations. The CLP(BNR)
algorithms of course do not require any such restricted form of input.

One of the standard benchmarks used for boolean satisfiability
testing is the "pigeon-hole(M,N)" problems: placing M pigeons into M
holes with every pigeon in one hole and no two pigeons in the same
hole. When M is N + 1, this is of course impossible, but a propositional
calculus proof of this fact is a "worst case" sort of problem.

To generate a conjunctive normal form representation, we use the
subroutines:

place_pigeon(N,Holes):- % holes will be list of booleans
length(N,Holes), Holes:boolean,
or_reduce(Holes, B), { 1==8}, % pi.geon has hole
at_most_one(Holes).

or_reduce([],0).
or_reduce([XIXs], X or 5):- or_reduce(Xs,S).

at_most_one(0). % each pigeon i.n just one hole
at_most_one([X I Xs]):- not_both(Xs ,X), at_most_one(Xs).

not_both([] ,_).
not_both([XIXs],Y):- { 1== -X or -Y}, not_both(X,Y).

Then pigeonhole predicates can be written as:

pigeons(M,N):- Spigeons(M,N,Hs),
holes_used_once(Hs).

Spigeons(0,N,[]).
Spigeons(M,N, [HIHs]):- M>0, M1 i.s M - 1,

ploce_pigeon(N, H),
$pigeons(M1, N).

10/24/95 6

l

CLP(BNR)/ Booleans

holes_used_once([[]1_]):-!.
holes_used_once(List_of_lists):-

column(List_of_lists, First_column, Rest),
at_most_once(First_column),
holes_used_once(Rest).

column(0, 0, 0).
column([[XIXs]IYs], [XICs], [XsiRs]):- column(Ys,Cs,Rs).

Using

enum_l ist([]).
enum_list([X I Xs]):- enumerote(X), enum_ list(Xs).

for enumeration, one can test this by frist giving a satisfiable
problem:

?- pigeons(3,3,H), enum_list(H).
?- [pigeons(3, 3, [[0, 0, 1], [0, 1, 0],

enum_list([[0, 0, 1], [0, 1, 0], [1,
?- [pigeons(3, 3, [[0, 0, 1], [1, 0, 0],

enum_list([[0, 0, 1], [1, 0, 0], [0,
?- [pi.geons(3, 3, [[0, 1, 0], [0, 0, 1],

enum_list([[0, 1, 0], [0, 0, 1], [1,
?- [pigeons(3, 3, [[0, 1, 0], [1, 0, 0],

enum_list([[0, 1, 0], [1, 0, 0], [0,
?- [pigeons(3, 3, [[1, 0, 0], [0, 0, 1]'

enum_list([[l, 0, 0], [0, 0, 1], [0,
?- [pigeons(3, 3, [[1, 0, 0], [0, 1, 0],

enum_Hst([[1, 0, 0], [0, 1, 0],

and then a non-satisfiable problem:
?- pi.geons(4,3,H), enum_Hst(H).

NO

[0,

[1, 0, 0]]),
0, 0]])].
[0, 1, 0]]),
1, 0]])].
[1, 0, 0]]),
0, 0]])].
[0, 0, 1]]),
0, 1]])].
[0, 1, 0]]),
1, 0]])].
[0, 0, 1]]),
0, 1]])].

To measure the time for a problem, one can first use stats/0 to clear
the statistics counters, then run a (successful) predicate, and
stats(A,B,c,o,T) to get the statistics. Here A represents the number of
Prolog logical inferences, B the number of primiitve (non-Prolog)
calls, C the number of primitive narrowing operations in the
constraint system, D is the number of separate invocations of the
constraint system, and Tis the time (in ms) elapsed since the statsO

call. For example:

?- stots, pi.geons(4,3,H), enum_list(H);true, stots(A,B,C,D,T).

The pigeon(M,M) problem is equivalent to finding all the
permutations on M objects. Note that there M*M booleans, so for

10/24/95 7

CIP(BNR)/ Booleans

M=10 we have a raw search space of 2**100 or about 10**30. The
1020 constraints effectively reduce this to 10!, or about 10**6.

Exercise: Compare with a version using inverted (-) booleans.

Structural analysis of Petri nets

Petri nets are widely used to model discrete control systems,
transaction systems, and communications protocols. A Petri net
consists of a net together with a marking which represents the state
of the net. The net is a bipartite graph consisting of places and
transitions connected by directed arcs; a marking is a distribution of
tokens over the places. Any transition may have input places (where
the arc is directed from the place to the transition) and output places
(arc from transition to place). A transition can fire if all of its input
places have at least one token; frring a transaction removes a token
from each input and puts a token into each output place. In general
the evolution of the state is non-deterministic as there may be many
transitions that can frre for any given marking.

Structural analysis studies properties that depend only on the ·
topology of the network independent of marking. Of particular
importance are structural properties that determine behavioural
possibilities. (For a special subclass of Petri nets, the "free choice
Petri nets" which are characterized by the property that if two
transitions share an input place, it is the unique input place of both,
structural properties are particularly useful.) For example:

siphon - a non-empty subset of places such that every transition that
outputs to it also inputs from it;

trap - a non-empty subset of places such that every transition that
inputs from it also outputs to it. ·

pre-conservative component - a non-empty subset which is both a
siphon and trap.

For a siphon, if none of its places is marked at some time, it will
remain empty henceforth. For a trap, if it contains tokens intitially,
will always contain tokens.

10/24/95 8

CLP(BNR)/ Booleans

Let us suppose that a Petri net is specified by a predicate
p laces(L i.st) whose argument is a list of places, and
transi.ti.on(Name,Inputs,Outputs) specifying the transitions. We
wish to find all the siphons in the network. For each siphon S and
each transaction t w emust have:

outputs(t) n S <> 0 -> inputs(t) n S <> 0, inputs(t)
or equivalently

inputs(t) n S= 0 -> outputs(t) n S = 0.
For each place we create a boolean variable B interpreted as B=O
means that it is in the siphon S. Then for each transi. ti.on(N, I, 0)
we can map I to its associated list of booleans IB and likewise for 0
to get I=OB, and translate the above condition by

conjunction(IB) =<conjunction(OS).

siphon(List_of_names):-
places(Places),
map_table(Places, Map, Bs),
findall(trans(I,O), transi.tion(_,I,O), Tiist),
map_transi.ti.ons(Tiist, Map),
enumerate(Bs),
selectfrom(Map, List_of_names).

% build 'symbol table' for mapping names & export boolean vector
map_table([],[],[]).
map_ table([PIPs], [[P ,B] IMs], [B lbs]): -B:boolean,

map_table(Ps,Ms,Bs).

map_transitions([],_).
map_transitions([trans(I,O)ITs], Map):-

map_places(I,Map,IB), % IB i.s symbolic conjuncti.onof I
map_places(O,Map,OB), % OB i.s symboli.c conjunctionof 0
{ IB =< OB }, % no inputs

map_ transi ti.ons(Ts, Map).

map_places([],_,1). % why 1?
map_places([PIPs],Map, PB and B):- member([P,PB],Map),!,

map_places(Ps,Map,B).

member(X,[XI_]).
member(X,[_IXs]):- member(X,Xs).

% convert soluti.on to list of place names
selectfrom(0, 0).
selectfrom([[P,0]1Ms], [PIPs]):- !, selectfrom(Ms,Ps).
selectfrom([[P,1]1Ms], Ps):- selectfrom(Ms,Ps).

With the following test data:

places([a,b,c,d,e,f,g,h,i.,j,k]).

transi.ti.on(1, [a,d], [c]).
transition(2, [c], [b,d]).
transition(3, [b], [a]).

10/24/95 9

CLP(BNR)/ Booleans

transi.ti.on(4, [b]' [d,e,h]).
transition(5, [e], [f,i]).
transition(6, [f]' [g]).
transi.ti.on(7, [g]' [e]).
transi. tion(8, [i,j]. [h,k]).
transi.ti.on(9, [k]' [j]).

we get the following list of siphons:

?- si.phon(X).
?- siphon([a, b, c, d, e, f, g, h, i., j, k]).
?- siphon([a, b, c, d, e, f, g, h, i, k]).
?- siphon([a, b, c, d, e, f, g, h, i]).
?- siphon([a, b, c, d, e, f, g, h, j. k]).
?- siphon([a, b, c, d, e, f, g, i, j, k]).
?- s"iphon([a, b, c, d, e, f, g, i, k]).
?- siphon([a, b, c, d, e, f, g, i]).
?- si.phon([a, b, c, d, e, f, g, j, k]).
?- siphon([a, b, c, d, e, f, g]).
?- si.phon([a, b, c, d, h, j, k]).
?- si.phon([a, b, c, d, j, k]).
?- si.phon([a, b, c, d]).
?- si.phon([a, b, c, e, f, g, h, i, j' k]).
?- si.phon([a, b, c, e, f, g, h, i., k]).
?- siphon([a, b, c, e, f, g, h, i]).
?- siphon([a, b, c, e, f, g, h, j, k]).
?- siphon([a, b, c, e, f, g, i., j, k]).
?- siphon([a, b, c, e, f, g, i., k]).
?- siphon([a, b, c, e, f, g, i]).
?- siphon([a, b, c, e, f, g, j, k]).
?- si.phon([a, b, c, e, f, g]).
?- siphon([a, b, c, h, j, k]).
?- si.phon([a, b, c, j, k]).
?- si.phon([a, b, c]).
?- si.phon([b, c, d, e, f, g, h, i' j' k]).
?- si.phon([b, c, d, e, f, g, h, i, k]).
?- siphon([b, c, d, e, f, g, h, i.]).
?- siphon([b, c, d, e, f, g, h, j, k]).
?- siphon([b, c, d, e, f, g, i, j, k]).
?- siphon([b, c, d, e, f, g, i, k]).
?- siphon([b, c, d, e, f, g, i]).
?- siphon([b, c, d, e, f, g, j, k]).
?- siphon([b, c, d, e, f, g]).
?- si.phon([b, c, d, h, j, k]).
?- si.phon([b, c, d, j, k]).
?- siphon([b, c, d]).
?- siphon([j, k]).
?- siphon(O).

YES

Exercise: This version tends to produce the large siphons first. Why?

Exercise: What condition has been omitted; how could you fix it?

Exercise: What is the easiest change(s) to make in order to compute traps
instead of siphons?

10/24/95 10

CLP(BNR)/ Booleans II

Boolean Constraints II

Relational algebra and transitive closure problems

A binary relation on X is an element of the powerset of :XXX, and are
hence partially ordered by set inclusion, and have intersection,
union, and complement defined. The bottom relation is 0, the top
one is U (the universal relation), and the diagonal relation is denoted
by 1. In addition, there are operations of relational product:

x(RS)y <-> Ez xRz & zSy
(for which 1 is an identity and 0 is a zero)
and adjoint (converse/reverse/inverse)

x(RT)y <-> yRx.
A relation R is reflexive iff R ::> 1, symmetric iff RT = R, transitive iff
RR=R (idempotent).

The reflexive relations form a sublattice. For a reflexive relation R,
one is often interested in its transitive closure R*, defined as the
smallest transitive R relation bigger than R, which can (in the finite
case) be computed by taking powers of R until they stabilize, that is
finding the least ftxed point of the equation X=RX. For a non
symmetric R, one unions it with 1 before taking the transitive
closure.

Let us represent a finite relation by a list of N lists of N booleans. To
generate a generic relation we will use:

relation(N,R):- N:integer(0,_), Srel_row(N,N,R).

Srel_row(0,_,[]).
Srel_row(M,N,[BsiRs]):- {M>=l, Ml is M - 1},

length(N,Bs), Bs:boolean,
Srel_row(Ml,N,Rs).

The length predicate was defined in a previous section; $rel_row
uses the same technique. A specialized print utility which produces a
compact output is useful:

p r _ r e 1 ([]) : - n l.
pr_rel([XIXs]):- nl, Spr_booLHst(X), pr_rel(Xs).

$pr_bool_list([]).
$pr_bool_list([BIBs]):- Smap_to_ch(B,C), write(C), !,Spr_bool_list(Bs).

10/24/95 1

CLP(BNR)/ Booleans II

Smap_to_ch(8,'_'):-var(8).
Smap_to_ch(0,'0').
Smap_to_ch(l,'l').

The partial order on relations can be implemented as:

ge(0. 0).
ge([XIXs],[YIYs]):- Sge(X,Y), ge(Xs,Ys).
Sge([], []).
Sge([XIXs],[YIYs]):- {X>=Y}, Sge(Xs,Ys).

To access the entries we can use an indexing routine (we are thinking
of a relation as a column of rows):

entry(R,I,J,8):- arg(R,I,Row), arg(Row,J,8).

To test for or make reflexive relations we can use:

reflexive(R):- Sdiagonal(R,l).
$diagonal(0, _).
$diagonal([RIRs],N):- Nl is N + 1,

arg(R,N,l),
Sdiagonal(Rs,Nl).

A useful utility is one to transpose such an array:

transpose(R, RT) :- Strans(R,RT).

Strans([[]l_],[]).
Strans(R, [CICs]):- Speel_column(R,C,Rest), Strans(Rest,Cs).

Speel_column(O, 0, 0).
Speel_column([[CIRs]IRest], [CICs], [RsiRRs]):

Speel_common(Rest, Cs, RRs).

Then one way to implement a predicate for symmetric relations is:

symmetric(R):- transpose(R,R).

Note that this can be applied to an array of untyped variables (and
constants), and it is more effcient to do so.

The relational product can be written in terms of its action on a
subset represented as a membership vector.

map_rel([O L], 8, 0):-!.
map_rel(R, 8, [CICs]):

Speel_column(R,Col,Rest),
Sor_and(B,Col,Dot),!,
{C = Dot},
map_rel(Rest,8,Cs).

10/24/95 2

I

• • • • •
I

• • • • • • • • • • • • • •
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CLP(BNR)/ Booleans II

$or _and([] , [], 0). % boolean i.nner product
$or_and([XIXs],[YIYs],(X andY) or C1):- $or_and(Xs,Ys,Cl).

Now we can easily express the relational product:

relati.on_product(O, _, 0):-!.
relati.on_product([AIAs],B,[CICs])

map_rel(B,A,C),
relati.on_product(As,B,Cs).

Using this we can express the constraint for a relation to be
transitive as:

transi.ti.ve(R):- relati.on_product(R,R,R).

and transitive closure of a relation S by:

transi.ti.ve_closure(S,R):- reflexi.ve(S),
relati.on(N,S), relati.on(N,R),
ge(R,S),
relati.on_product(R,S,R).

When value inS have (or take) the value 1, the appropriate values in
R will become 1. Conversely, if values in R become 0 they may
propagate to S; when S is symmetric this is a version of a coloring
problem. Thus when S is given by

1_ __ 10 __ 11
_1_1 ___ 1 __
0_1_ __ 1100
_1_1 ____ 00
__ 0_1 ____ _
_____ l ___ _
_ 0 ____ 1 __ _
_______ 1 __
___ 1 ____ 1 _
______ 1 __ 1

R initially (because of call to ge) becomes:
1_ __ 1 ___ 11
_1_1 ___ 1_ _
__ l_ __ ll __
_ l_l _____ _
____ l ____ _
_____ 1 ___ _
______ l __ _
_______ l __
___ 1 ____ 1 _
______ l __ l

10/24/95 3

CLP(BNR)/ Booleans II

whence the transitivity condition produces R as:

11_11_1111
_1_1_ __ 1 __
__ 1_ __ 11__
_1_1_ __ 1 __
____ 1 ____ _
_____ 1 ___ _
______ 1 __ _
_______ 1 __
_ 1_1_ __ 11_
______ 1 __ 1

Note that one can set up the equations before supplying the initial
values for S, as in the query:

?-relation(10,R),transitive_closure(R,S),nl,test10(R), pr_rel(S).

I
I
I
I
I

•
t
I

• • • • • • • • •
Also note that the forward propagation of 1 's in transitive closure •
problems is deterministic, while the backward propagation of O's is I
very non-deterministic (as in coloring problems). e

Because the number of boo leans in a relation is proportional to N*N,
general problems which require finding solutions to equations in
relational algebra lead very quickly to difficult problems (in terms of
time and space bounds), unless the constraints (including boundary
values) are very restrictive. However, small systems of relational
algebra equations can be solved quite nicely.

Exercise (suitable for a project): Develop a predicate re l_algebra(N, {Eqs .. })
for solving systems of relational algebra equations supporting union,
intersection, complement, transpose, order, relational product and transitive
closure operations.

NOTE: For maximum efficiency, symmetry should be imposed at the
level of Prolog variables before typing is done, and the presence of
reflexivity, symmetry, and idempotence should be propagated
symbolically as much as possible before setting up the constraint
equations.

Exercise: Formulate and solve some interesting problems in relational algebra
using the above technique. Many branches of computer science (eg. parsing
technology and finite state automata theory make use of such equations).

10/24/95 4

•
•
•
•
•
•
•

CLP(BNR)/ Booleans II

The representation of arrays as a list of lists is quite natural, but
makes transpose (and hence product) fairly expensive. Also, this
representation does not make it easy to relate solutions of order N to
those of order N + 1. An alternate representation which is better in
these respects treats an order N relation as an order N-1 relation
which has been "bordered" by adding a row and column:

I I I
I I I
I M I C I
I I I
I I I
l _____ l_l
I __ R _I_DI

This can be represented neatly as a recursive structure of the form:
relation(0, C, R, M)

where Dis a single element, C and Rare lists of length N-1, and M
is a matrix of order N-1. With this formulation, for example, we can
write the reflexive predicate as:

reflexive([]).
reflexive(relotion(l,_,_,M)):- reflexive(M).

and transpose as simply:

transpose([],[]).
transpose(relotion(A,C,R,M), relotion(A,R,C,M)):- transpose(M).

Exercise: Implement relational product in this representation and compare the
effidency of the two implementations.

Note that this only affects the cost of building constraints; the
constraints and hence propagation are the same. The big advantage
of this representation arises in problems in which one has a solution
to the equations defined on a subset and wishes to extend it to a
larger set.

Exercise: formulate a large non-deterministic coloring problem as a series of
problems for increasing N, and use ! after each stage is completed.

10/24/95 5

CLP(BNR) : Integer Constraints

Integer Constraints

Constraints on integer variables work much like those on boolean
variables. However, since the operations on integers are the same as
those on reals, it is usually necessary to provide more explicit
declarations with integer variables. Abstract finite domains must
first be mapped into fmite integer ranges in order to formulate
constraints.

Enumeration of integer variables can be also done with enumerate,
which enumerates the variables (from lower bound to upper bound)
in the order specified. In addition, the firstfai 1 predicate (with
syntax analogous to enumerate) enumerates integer ranges in order
of increasing size of domain. This enumeration strategy is in most
cases a good one, and usually much better than a random choice of
enumeration order, but has higher overheads than enumerate. Both
firstfai 1 and enumerate will enumerate any boolean variables first,
if the list of variables is of mixed type.

Crypto-Arithmetic

A simple example of the use of constraints on integer variables is the
well-known "SEND MORE MONEY" puzzle: to determine the digits
corresponding to the letters in the sum

SEND
+MORE

= MONEY.

This can be formulated as follows:

sendmoremoney([S,E,N,D,M,O,R,Y]):
[S,M]:integer(l,9),
[E,N,D,O,R,Y]: integer(0,9),
distinct([S,E,N,D,M,O,R,Y]),
{1000*(S +M)+ 100*(E +0)+ 10*(N +R) + (D +E)

= 10000*M + 1000*0 + 100*N + 10*E + Y}.

di sti net([]) .
distinct([XIXs]):- Sdistinct(Xs,X), distinct(Xs).
$distinct([],_).
Sdistinct([XIXs],Y):- {X<>Y}, Sdistinct(Xs,Y).

10/24/95 1

CIP(BNR) : Integer Constraints

By executing without enumeration we can verify that the setup is
deterministic, and also see what the initial narrowings are. If the
'YES' response and new prompt '?-' are printed, the call was
deterministic; if these are not printed, there was a choicepoint
created: entering <CR> will proceed to the next solution, and if the
prompt is then returned it indicates that the choicepoint was only
"virtual". Another way is to use the count predicate in Base, which
counts the number of solutions:

?- count([sendmoremoney(L)] ,N).
?- count([sendmorernoney(_H155)], 1).

YES

If there is more than one solution to the setup, the simplest way to
fiX the problem is to put a ! at the end of the main predicate. In the
output, lookout for effectively unbounded ranges, which would
suggest that some constraints needed to make the problem well
posed are missing.

?- sendmoremoney(_).
?- sendmoremoney([9, _H3461, _H3462, _H3463, 1, 0, _H3466, _H3467])

where (_H3461 : i.nteger(2, 8),
_H3462 i.nteger(Z, 8),
_H3463 i.nteger(2, 8),
_H3466 i.nteger(2, 8),
_H3467 i.nteger(Z, 8)].

YES

Then:
?- sendmoremoney(l), enumerate(l).
or
?- sendmoremoney(l), fi.rstfai.l(l).
gives:

?- sendmoremoney(l), enumerate(L).

YES

?- (sendmorernoney([9, 5, 6, 7, 1, 0, 8, 2]),
enumerate([9, 5, 6, 7, 1, 0, 8, Z])].

One can easily count the number of solutions to a problem:

?- count([sendmoremoney(_H160), enumerate(_H160)], 1).
?- count([sendmorernoney(_H159), enumerate(_H159)], 1).

It is often of interest to be able to determine just how many
backtrackings are done in such problems. For this, enumerate and
frrstfail can take an optional argument which is executed just after
each backtrack:

10/24/95 2
• • • •

CLP(BNR) : Integer Constraints

?- sendmoremoney(L), enumerate(L, write(*)).
*** ?- [sendmorernoney([9, 5, 6, 7, 1, 0, 8, 2]),

enurnerate([9, 5, 6, 7, 1, 0, 8, 2], wri.te("*"))].
<CR>
**
YES

For large searches, there is a predicate in the constaint utilities file
which is similar to count. To fmd the number of backtracks before
the first solution use:

?- backtracks(C, [sendmoremoney(L), enumerate(L, C)], N).

while to get the total number of backtracks:

?- backtracks(C, [sendmoremoney(L), enumerate(L, C),fail], N).

Exerdse: Introduce explidt carry variables ([0,1]) and replace the single constraint with
separate sums for each digit.

Eight Queens

A popular early example of constraint programming was the well
known "eight queens" problem and its generalization. The naively
declarative generate-and-test Prolog version of eight queens looks
like:
%
% Prolog generate-and-test solution
%
ei.ght_queens([X1,X2,X3,X4,X5,X6,X7,X8]):-

permutati.on([X1,X2,X3,X4,X5,X6,X7,X8],[1,2,3,4,5,6,7,8]),
safe([X1,X2,X3,X4,X5,X6,X7,X8]).

permutation([],[]).
permutation([XIXs],Ls):

delete(X,Ls,Rs),
permutati.on(Xs,Rs).

delete(X, [XIXs], Xs).
delete(X, [YIYs], [YIRs]):- delete(X,Ys,Rs).

safe([]).
safe([XIXs]):- noattack(Xs,X,1), safe(Xs).

noattack([],Y,N).
noattack([XIXs],Y,N):- N1 i.s N +1,

Y<>X - N,
Y<>X + N,

10/24/95 3

CLP(BNR) : Integer Constraints

noattack(Xs,Y,N1).

A pure constraint version (generalized toN-queens), and even more
declarative, is:
%
% one (of many) versions of queens using constraints
%
queens(N,List):- length(List,N), List:integer(1,N),

Squeens(N,List).

Squeens(0,[]):-!.
Squeens(N,[XIXs]):- N1 is N -1,

c_noattack(Xs, X,1),
Squeens(N1,Xs).

c_noattack([],Y,N).
c_noattack([XIXs],Y,N):- N1 is N +1,

{Y<>X, Y<>X - N, Y<>X + N},
c_noattack(Xs, Y, N1).

?- queens(5,L), enumerate(L), nl, write(L), fail.

[1,3,5,2,4]
[1,4,2,5,3]
[2,4,1,3,5]
[2,5,3,1,4]
[3,1,4,2,5]
[3,5,2,4,1]
[4,1,3,5,2]
[4,2,5,3,1]
[5,2,4,1,3]
[5,3,1,4,2]

The constraint version is also considerably better than the traditional
one:

8 queens(lst sol): gen&test
time(sec/25Mhz-68020) 4.267
#backtracks ?

enumerate
0.717
Z4

firstfai.l
0.6
15

The primitive disequality constraint '<>' tends to occur often in puzzle
problems over finite domains and bounded integers. The CHIP
technology is optimized to handle such constraints efficiently. Such
constraints are much less efficently handled in interval-based
systems, and are almost useless in large or continuous domains; in
CLP(BNR) they are in fact restricted to use on integer (or boolean)
values.

Exerd.se: swap the arguments to permutation in the first version above and remeasure the
performance.

Exercise: write a hybrid version that retains the use of permutation,
but uses constraints for the diagonals.

10/24/95 4

' ' ' I
t

•
I

I

I

I
I

I

I
I

I

I

• • •
t
I
I

' t
t
t

•
t
t

•
I

I

•
I

• • • • • •
•
• • •
• •

CLP(BNR) : Integer Constraints

E.xerdse: write a pure boolean constraint version of eight queens.

Exercise: the disequality constraint should be much weaker in CLP(BNR) than in CHIP, yet
the number of backtracks recorded for the frrstfail version of the constraint program
above is 15 versus 23 reported for CHIP in Van Hentenryck's book Constraint satisfaction
in Logic Programming: investigate this discrepancy.

Cardinality and Pseudo-Boolean Constraints

One of the most important uses of integer constraints is to count
boolean variables, the so-called cardinality operator introduced by
Pascal van Hentenryck (1991). Since CLP(BNR) takes boolean values
as 0 and 1, which can be regarded also as integers, it is possible to
explicitly sum booleans to get an integer result. This allows us to
define a cardinality operator easily:

cardinality(Bs, l, U):- sum(Bs,Sum), { S is Sum, l=<S,S=<U}.

For example, with N= length of Bs, using the built-in cardinality it is
easy to express a number of useful conditions:

cardinaHty(Bs, 1, 1)
cardinaHty(Bs, M, M)
cardinality(Bs, M, N)
cardinaHty(Bs, 0, M)
cordi na H ty(Bs, N, N)

% exactly one B is true
% exactly M B' s ore true
% at least M B's are true
% at most M B' s are true
% all B's ore true .

For example, using the frrst of these allows us to reformulate the
pigeonhole problem much more succinctly:

place_pigeon(N,Holes):- % holes will be list of booleans
length(N,Holes), Holes:boolean,
cardinality(Holes, 1,1). % pigeon has exactly one hole

Then pigeonhole predicates can be written as:

pigeons(M,N):- Spigeons(M,N,Hs),
holes_used_once(Hs).

Spigeons(0,N,[]).
Spigeons(M,N, [HIHs]):- M>0, M1 is M - 1,

place_pigeon(N, H),
Spigeons(M1, N).

holes_used_once([[]1_]):-!.
holes_used_once(list_of_lists):-

column(List_of_lists, First_column, Rest),
cardinality(First_column,1,1),

10/24/95 5

CLP(BNR) : Integer Constraints

holes_used_once(Rest).

colt.nn(0, 0, 0).
colt.nn([[XIXs]IYs], [XICs], [XsiRs]):- column(Ys,Cs,Rs).

Exercise: compare the performance (space and time) of this with the previous version.

Comparison Operators

The comparison relations {==,=<,>=}and their negations{<>,>,<}, which
usually appear as constraint relations, can also be used as boolean
valued operations of non-boolean arguments in CLP(BNR). For
example (and note the required parenthesization):

{B == (X>=Y)}
with [X,Y]:integer, and B:boolean, has the following effects:
- if B is 1 then it is equivalent to the relation {X>= Y}
- if B is 0 then it is equivalent to the relation {X<Y}
- if B is indeterminate and X>= Y is necessarily true, B becomes 1
-if B is indeterminate and X>=Y is necessarily false, B becomes 0.

The arithmetic operation (X>=Y) is necessarily true(resp. false) as
soon as the range of possible values for X are disjoint from those of Y
and strictly to the right (resp. left) of those for Y. These operations
permit a much wider range of interactions between boolean and non
boolean variables to be formulated than would otherwise be possible,
In particular, combinatorial aspects of a problem can be formulated
alongside the non-combinatorial aspects with propagation going both
ways.

For example, one of the common uses of these operators is to express
that a variable must be chosen from a finite set of values:

element(Y, Xs, Bs):- Selement(Xs,Y,Bs), Ssum(Bs,S), {5==1}.
$element(0. _, 0).
$element([XIXs], Y, [BIBs]):- {B is (X==Y)}, Selement(Xs,T,Bs).

Ssum(O, 0).
Ssum([BIBs], B + N):- Ssum(Bs,N).

?- Y:integer, element(Y, [20,30,50], Bs), enumerate(Bs).

?- Y:integer, element(Y, [20,30,50], Bs),{Y>=40}.

As an extension of this, we can easily write a predicate which
chooses M distinct values from a list of N:

choice(Choices, List, BoolArray):-

10/24/95 6

CLP(BNR): Integer Constraints

length(Choices,M), length(List,N), {M=<N},
$choice(Choices,List, BoolArray),
distinct(Choices). % see above for distinct

$choice(0, L, 0).
$choice([CJCs], L, [BllBls]):- element(C,L, Bs),

Schoice(Cs,L,Bls).

Another useful utility counts occurrences in a list:

occurrences(X,List,N):- N:integer(0,_),
Selement(List,X,Bs),
Ssum(Bs,S), {N is S}.

It may be useful sometimes to export the Bs as well, for enumeration
purposes.

All these utilities, plus a few others, can be found in the file named
constraint_ utilities. From now on we will make use of these
utilities without repeating the definitions.

Magic Series

The magic series problem. (Van Hentenryck, 1989) demonstrates the
use of the comparison operations to formulate a tricky problem and
also provides an example illustrating the effect of adding well-chosen
redundant constraints.

The magic series problem of order N can be thought of as finding a
sequence [MO,M1, ... MN] of integers which make the following self
referential text T true:

" T contains MO occurrences of 0 and
T contains M1 occurrences of 1 and
T contains M2 occurrences of 2 and

T contains MN occurrences of N "

TheM's are obviously one more than the number of occurrences KN
of each N in the list of Ms, so we can formulate the problem
succinctly in terms of these Ks as:

$initialization:- load_context(constraint_utilities).
% this will ensure that context constraint_utilities is loaded

magic_series(N, Ks):- length(Ks,N), Ks: integer(0,_),

10/24/95 7

CLP(BNR) : Integer Constraints

Smagic(Ks,0 ,Ks).

Smagic([],N,_).
Smagic([KIKs],N,KS):- Nl is N +1,

occurrences(N,KS, K),
Smagic(Ks,N1,KS).

?- magic_series(4, Ks), enumerate(Ks).
?- [magic_series(4, [1, Z, 1, 0]), enumerate([1, Z, 1, 0])].
?- [magic_series(4, [Z, 0, Z, 0]), enumerate([Z, 0, Z, 0])].

For N=10, the initial ranges for all ten variables will be [0,10]. (Why?)
This suggests an initial search space estimated size of 11 **10
possibilities. Yet there is but a single solution, and it only takes 27
backtracks to search the entire space. The statistics for the
enumeration alone are:

lips=565 pips=129 ops=19069 its=54

This shows that the initial search space size is not always a good
indicator of the difficulty of the problem, and this is one reason why
empirical investigation is so important.

If one sums over the Ks, the result must be N. (Why?) We can
therefore add this as a redundant constraint :

magic_seriesZ(N, Ks):- length(Ks,N), Ks:integer(0,_),
SLrn(Ks, N) ,
Smogic(Ks,0 ,Ks).

Since the added constraint is redundant, it does not change the set of
solutions. However, the number of backtracks required has now
dropped to 18, and the stats have become:

lipS=438 pipS=93 opS=5547 its=36

and the time is reduced to about a third of the original.

Similarly, we can reason that N also equals the sum of i*Kt . (This is
another way of summing the K's, using their interpretation.) Adding
this constraint as well, formulated as:

magic_series3(N, Ks):- length(Ks,N), Ks:integer(0,_),
SLIII(Ks, N) ,
SsumZ(Ks,0, M),{M==N},
Smagic(Ks,0 ,Ks).

% summation of j*K(j), j=0,N-1
SsumZCO ,_, 0).

10/24/95 8

CLP(BNR) : Integer Constraints

Ssum2([KIKs],N, K*N+S):- Nl is N +1, Ssum2(Ks,Nl,S).

gives

lips=354 pipS=69 opS=2427 its=24

and the number of backtracks has dropped to 12, and the time is
now halved from the previous version. This is summarized in the
aphorism: "the more constraints, the faster it goes."

Mastermind

Many people remember enjoying the puzzle game "Mastermind",
which involves guessing a linear arrangement of 4 colored pegs, with
colors chosen from the set {red,green,blue, yellow, brown,orange}.
Guesses are based on information gained from the scoring of the
previous guesses. The score consists of two numbers: the first
("bulls') indicating the number of pegs which have the right color in
the right position, and the second number("cows') indicating whether
the colors are right regardless of position. As a representation of the
problem data we define:

% defines the space of possible answers
newguess(G):-G=[A,B,C,D], G:integer(1,9),

{A<>B,A<>C,A<>D,B<>C,B<>D,C<>D}.

The scoring can be computed most easily in terms of bulls and the
sum of cows and bulls, as :

score(Answer,Guess, [B, C]) :-
bulls(Guess, Answer, B),
cowsbulls(Guess, Answer, C).

bulls(Xs, Ys, N):- Scount_equal(Xs,Ys,C), {N = C}.
Scount_equal(D, D, 0).
Scount_equal([GIGs],[AIAs], (G A) + S):-

Scount_equal(Gs,As,S).

cowsbulls(Guess, Answer, C):- % coWs + bulls
Scowsbulls(Guess,Answer,S), {C = S}.

$cowsbulls([],_,0).
Scowsbulls([XIXs],Ys,N+J):

in(X,Ys,J),
Scowsbulls(Xs,Ys,N).

in(X,Ys,N):- N:integer(0,1), Sin(Ys,X,M), {N = M}.

10/24/95 9

CLP(BNR) : Integer Constraints

SinCO ,_, 0).
Sin([YIYs],X, (Y==X)+S):-Sin(Ys,X,S).

The strategy to be used is simple but effective (but not optimal):
choose the first arrangement that reproduces all previous scores:

mastermind:- mastermind_l(O, 0).

mastermind_l(Gs, Ss):- make_a_guess(Gs,Ss,G),!, % take first choice
get_score(G, S),
not(S=[4,_])->mastermind_l([GIGs], [SISs]).

make_a_guess(Previous_Guesses, Previous_Scores, G):-
newguess(G),
matches_all(Previous_Guesses, Previous_Scores,G),
enumerate(G).

matches_all([],[],_).
matches_all([GIGs], [S ISs], New):

score(G, New, S),
matches_all(Gs, Ss, New).

get_score(G, S):- answer(A), score(G,A,S).

This gives:

?- mastermind2.
guessing [1,2,3,4]
guessing [2,1,5,6]
guessing [2,3,6,7]
guessing [3,1,7,5]
guessing [3,5,4,6]

In this version each guess sets up a new problem with one additional
constraint; a better strategy would be to just add the new constraint
to the current problem. This poses a problem: in order to generate a
guess we need to find a (frrst) solution to the current problem; once
we have narrowed the state to that solution, the new constraint will
be inconsistent with it (unless the guess was correct), but
backtracking across this failure will also remove the new constraint.
So, it is necessary to make use of side-effects to remember the frrst
solution (in the state space), get out of the search and back to the
generic problem, and only then use the remembered solution as the
next guess. In addition, the frrst guess generated by the above
algorithm is not very helpful, and since it is arbitrary anyway, we
will always use something using four colors, e.g.
[red,yellow,blue,green]. This leads to somewhat different program:

mastermind2:-
forget_all(mastermind(_)), % clear state space

10/24/95 10

CLP(BNR) : Integer Constraints

newguess(Vars), % setup variables of problem
Smastermind([1,2,3,4], Vars).

Smastermind(G, Vars):
get_score(G, S),
next_guess(G, S, Vars).

next_guess(Guess, [4,_], _):-!. % finished
next_guess(Guess, Score, Vars):-

score(Guess,Vars, Score), % add new constraint
pick_guess(Vars, New),
Smastermind(New, Vars).

pi.ck_guess(Vars, _) :- % side-effect utility
once(enumerate(Vars)),% find first solution
remember(mastermind(Vars)), % make side-effect
fai.l. % escape from search & undo narrowi.ng

pi.ck_guess(_ , Guess) :- % recover the answer
forget(mastermi.nd(Guess)).

with result:
?- mastermi.ndZ.
guessi.ng [1,2,3,4]
guessing [2,1,5,6]
guessing [2,3,6,7]
guessing [3,1,7,5]
guessing [3,5,4,6]

Word Algebra

This is a follow-up on the possibilities of the length predicate
discussed earlier. The problem is to write a meta-program that can
take a list of equations in the word monoid (including the involutive
operation of reversal) and solve them. For example, we would like to
be able to solve (with & representing concatenate, - representing
reverse, and# denoting length):

?-word_algebra({ #U =< 3, (-u) & [a] & W & U =(-W) & U & [a] & W}).

As mentioned earlier, the difficulty with a simple Prolog approach to
this problem is the occurrence of infmite choicepoints created by
indefinite lists. So the approach that we take here is to first impose
all the constraints on the lengths of words implied by the equations,
then enumerate the lengths (such that there is at most one infmite
choicepoint), and then use Prolog to deal with word equations on lists
of defmite length.

word_algebra({Xs .. }):-
setup_constrai.nts(Xs, SymbolTable),

10/24/95 11

CLP(BNR) : Integer Constraints

solve_for_lengths(SymbolTable),
interpret_word_equations(Xs).

The first step is to modify the length predicate to make it
deterministic by postponing choices until the length is determinate:

% CLP length_c
% uses freeze to maintain the relation
% from length to 1 ist

length_c(List, N) :- N:integer(0,_), Slengthz(List,N),!.

Slengthz([Tail ..],N):- domain(N,integer(0,_)),tailvar(Tail ..),!,
freeze(N,Slengthz(Tail, N)).

Slengthz([] ,0).
Slengthz([XIXs],N):- {Nl is N - 1, Nl >=0}, Slengthz(Xs,Nl).

For example:

?- N:integer(3,_), length_c(L,N), N=5.
?- [5 : integer(3, _Hl69),

length_c([_H252, _H253, _H254, _H408, _H478], 5),
5 = 5].

The second step is provide a symbol table utility to manage an
association between a variable, the list it represents, and its length:

% lookup Var in symbol table
lookup([V,N,List], [TV .•]):- tailvar(TV ..),!,% first occurrence

N:integer(0,_),
length_c(List, N), % associate list and length
TV=[[V,N,List] I_]. % add to end of table

lookup([V,N,L], [[U,N,L]I_]):- U@:=V,!. %found it
lookup(X, [_IXs]):- lookup(X,Xs). % keep searching

Next, we write a meta-predicate that extracts length conditions from
equations:
%
% Extract and set up constraints
%
setup_constraints(0, ST).
setup_constraints([EIEs],ST):-

constraint(E, ST),!,
setup_constraints(Es,ST).

% equal lists have equal lengths
constraint(Exprl=Expr2, ST):

length_of(Exprl, ST, Lengthl),
length_of(ExprZ, ST, Length2),!,
{Lengthl==LengthZ}. % impose constraint

constraint(Op(El,E2), ST):- arith_relation(Op),
evaluate(El,ST, Vl),
evaluate(E2,ST,V2),!,
{Op(Vl, V2)}. % impose constraint

10/24/95 12

CLP(BNR) : Integer Constraints

arith_relation(1 == 1
).

arith_relation(1 >= 1
).

arith_relation(1 =< 1
).

% evaluation of length expressions
evaluate(N, _, N):- integer(N),!.
evaluate(# V,ST, N):- !,length_of(V,ST,N).
evaluate(A + B, ST, M + N):- !,evaluate(A,ST,M), evaluate(B,ST,N).
evaluate(A - B, ST, M - N):- !,evaluate(A,ST,M), evaluate(B,ST,N).

% length of list expression
length_of(V , ST, N) :- var(V),!, lookup([V,N,_], ST).
length_of(l, _, N) :- li.st(l),! ,Slength(l,N). % only definite li.sts
length_of(-V , ST, N) :- !,length_of(V,ST,N),!.
length_of(U&V , ST, M+N):- length_of(U,ST,M), length_of(V,ST,N).

To eliminate all but (at most) one infmite choicepoint, we form the
sum of the list lengths so we can enumerate it first, and bind the
variables to their (now determinate) lists:
%
%
%
%
%
%
%

solve_for_lengths(SymbolTable),

form the s1.111 of all word lengths
then enumerate them, sum first

(this avoi.ds problems when more than one of them is
also binds variables to their lists

1 infinite 1)

solve_ for _lengths(SymbolTable):- Sum:integer(0,_), % decl. necessary
sum_of_words(SymbolTable,Sum, Nlist),
enumerate([Sum]),
enumerate(Nl ist).

sum_of _words(O, 0, 0):-! . % cut necessary
sum_of_words([[I., H, l] I Xs] , Sum, [N INs]):-

{ S.l is Sum - N } ,
sum_of_words(Xs, Sl, Ns).

Finally, we can interpret the word equations:

%
% Interpreter for word algebra
%
interpret_word_equati.ons([]).
interpret_word_equations([XIXs]):-

interpret_equati.on(X),!,
i.nterpret_word_equations(Xs).

interpret_equation(Exprl=Expr2):
interpret(Exprl,L1),!,
interpret(Expr2,l2),!,
ll=l2.

interpret_equati.on(Op(El,E2)):- ari.th_relati.on(Op),!.

10/24/95 13

CLP(BNR): Integer Constraints

interpret(L, L):- list(L),!.
interpret(-W, R):- ! , interpret(W,L),

reverse(L, 0, R).
interpret(U & W, R):

interpret(U, UL),
interpret(W, WL),
append(UL,WL,R).

%
% standard list utili ties
%
append([], L, L).
append([XIXs], L, [XIZs]):- append(Xs,L,Zs).

reverse([], Ls, Ls).
reverse([XIXs], Ls, R):- reverse(Xs,[XIls],R).

As an example:

?-word_algebra({ #U =< 3, (-U) & [a] & W & U =(-W) & U & [a] & W}).
?- word_algebra({(# 0) =< 3,

((- 0) & ([a] & CO & []))) =
cc- 0) & co & C[aJ & 0)))}).

?- word_algebra({(# [a]) =< 3,
cc- [a]) & ([a] & ([a] & [a]))) =
cc- [a]) & ([a] & ([a] & [a])))}).

?- word_algebra({(# [a, a]) =< 3,
((- [a, a]) & ([a] & ([a, a] & [a, a]))) =
((- [a, a]) & ([a, a] & ([a] & [a, a])))}).

?- word_algebra({(# [a, a, a]) =< 3,
((- [a, a, a]) & ([a] & ([a, a, a] & [a, a, a]))) =
((- [a, a, a]) & ([a, a, a] & ([a] & [a, a,a])))}).

YES

Exercise: find an interesting non-trivial application of word algebra solvable by this
method.

Bin Packing

A bin packing problem is one where one is given an assortment of
objects of different types which are to be grouped into "bins" and
where there are restrictions on the number and type of objects that
can be placed in a bin. Usually one wants to minimize the number of
bins needed, but in large practical problems it may be enough to just
provide a "good," but not necessarily optimal, solution. In another
variant, one starts with an existing packing and an assortment of
additional objects, with the goal of minimizing the additional
number of bins, and possibly the restriction that the existing
groupings should not be changed, although new items can be added
to existing bins. Such problems are often good abstract models for

10/24/95 14

CLP(BNR) : Integer Constraints

practical problems arising in the configuration of complex systems,
and nicely illustrate the interaction of boolean and integer
constraints.

Perhaps the most important point about such problems is that one
should avoid choosing representations which indicate which things go
where. Such formulations are invariant under (usually very large)
symmetry groups which permute equivalent objects among the
equivalent placements. Not only does this irrelevant detail enlarge
the search space, but the presence of symmetry groups will block the
narrowing of the search space. As we shall see in this example, even
when exact placement is avoided (by formulations based on counts of
objects), there may yet be symmetries present which cause
problems. The addition of extra, symmetry-breaking, constraints can
largely alleviate these problems, but choosing a representation
without symmetries is better when possible.

A specification for bin restrictions might be given conveniently in a
declarative form, as a set of simple facts, such as the following
"recycling depot" example:

bin_types([red,green,blue]).

commodities([glass, plastic, steel, wood, copper]).

requires(wood, plastic).
excludes(glass,copper).
excludes(copper,plastic).

capacity(red, 3).
capacity(blue,1).
capacity(green,4).

% total number of i terns in bin

capacity(red,
capacity(red,
capacity(red,
capacity(green,
capacity(green,
capacity(green,
capacity(blue,
capacity(blue,

wood, 1). % at most 1 wood item in any red bin
steel,0).
plastic, 0).

wood, 2).
glass,0).
steel,0).

wood, 0).
plastic, 0).

Here requi.res(A,B) means that if any A's are present, then there
must be at least one B present, and excludes(A,B) means that the
presence of either item excludes the other.

10/24/95 15

CLP(BNR) : Integer Constraints

To translate all the packing restrictions into constraints, we start by
representing the type of a bin by integerand its contents by an
integer vector and a size representing the total number of items. The
other conditions are then encoded using boolean constraints to
formulate the type depedendes and other conditionals:

op(500, xfx, requires).
op(500, xfx, excludes).
op(500, xfx, implies).

bin(Type, Contents, Total):-
Type:integer(1,3), [Red,Green,Blue]:boolean,
{ Red == (Type==1), Green==(Type==2), Blue==(Type==3)},
Contents=[Glass,Plastic,Steel,Wood,Copper],Contents:integer(0,_),
{ Binsize is Red*3 + Blue*1 + Green*4 } ,
{ Total is Glass + Plastic + Steel + Wood + Copper } ,
{ Total>=1, Total =< Binsize } ,
Wood requires Plastic,
Glass excludes Copper,
Copper excludes Plastic,
Blue implies (0= Wood + Plastic),
Red implies ((0=Steel + Plastic) and (Wood=<l)),
Green implies ((0=Glass + Steel) and (Wood=<2)).

X excludes Y :- {X*Y==0}.
X implies Y :- { X =< Y}.
X requires Y :- { (X>=1) =< (Y>=1) } .

This can be checked most easily by enumerating the possibilities:

?- bin(T,C,A), enumerate([T,A,C ..]),nl, print([T,A,C]),fail.

[1, 1, [0, 0, 0, 0, 1]]
[1, 1, [1, 0, 0, 0, 0]]
[1, 2, [0, 0, 0, 0, 2]]
[1, 2, [2, 0, 0, 0, 0]]
[1, 3, [0, 0, 0, 0, 3]]
[1, 3, [3, 0, 0, 0, 0]]
[2, 1, [0, 0, 0, 0, 1]]
[2, 1, [0, 1, 0, 0, 0]]
[2, 2, [0, 0, 0, 0, 2]]
[2, 2, [0, 1, 0, 1, 0]]
[2, 2, [0, 2, 0, 0, 0]]
[2, 3, [0, 0, 0, 0, 3]]
[2, 3, [0, 1, 0, 2, 0]]
[2, 3, [0, 2, 0, 1, 0]]
[2, 3, [0, 3, 0, 0, 0]]
[2, 4, [0, 0, 0, 0, 4]]
[2, 4, [0, 2, 0, 2, 0]]
[2, 4, [0, 3, 0, 1, 0]]
[2, 4, [0, 4, 0, 0, 0]]
[3, 1, [0, 0, 0, 0, 1]]
[3, 1, [0, 0, 1, 0, 0]]
[3, 1, [1, 0, 0, 0, 0]]

10/24/95 16

CLP(BNR) : Integer Constraints

Exercise: Work out the source (in the original specification) and the effect of each
constraint in this predicate. Verify the possible bins against the specification.

Exerdse: Write a program to translate any specification of the above general form into a
constraint generating clause of the same form as that given here.

For small problems (requiring relatively few bins) a complete
solution (independent of the packing rules) that adds bins one at a
time is feasible. (The algorithms below are given for the specific
problem above, for ease of readability, but it is easy to see how to
generalize them to any such problem; the specifics of the problem
can be isolated entirely to the bin predicate.)

Spack(0, [0,0,0,0,0], 0).
Spack(Total, Amounts, [[Type,Contents,Size] I Bins]):- % nl,
print([Total,Amounts]),

bin(Type,Contents,Size),
{T = Total - Size, T>=0},
subtract(Amounts, Contents, Residual),
Spack(T, Residual, Bins).

subtract(0, [], []).
subtract([XIXs], [YIYs], [ZIZs]):- {Z is X - Y,Z>=0},

subtroct(Xs,Ys,Zs).

pock([Glass,Plastic,Steel,Wood,Copper] Bins):-
Total is Glass + Plastic + Steel + Wood + Copper,
Spack(Total, [Glass, Plastic,Steel ,Wood, Copper], Bins),
Senum_bins(Bins),!.

Senum_bins([]).
Senum_bins([[T,C,S]IBs]):- enumerate([T,S,C ..]),

Senum_bins(Bs).

?- pack([3,4,1,4,2],_).

YES

?- pack([3, 4, 1, 4, 2],
[[1, [0, 0, 0, 0, 2]' 2]'
[1' [3 ' 0 ' 0' 0' 0] ' 3] '
[2, [0' 2' 0' 2' 0] ' 4] '
[2, [0, 2, 0, 2, 0], 4],
[3, [0, 0, 1, 0, 0]' 1]]).

stats(144675, 19974, 206185, 4382, 33500)

Exercise: How imponant is it to this implementation to have a variable for the total
number of items in a bin?

There is symmetry group here of order N!, where N is the number of
bins in the solution, since they could have been listed in any order.

10/24/95 17

CLP(BNR) : Integer Constraints

To· remove some of this symmetry, one can require that the list be
sorted, say by number of items in the bin and type. Because
enumeration begins at the low end, it is best to make this an
ascending sort.

order([_]):-!.
order([X,YIXs]):- Sorder(X,Y), order([YIXs]).

$order([Tl,_,S1], [TZ,_,SZ]):-
{ 1= (Tl<TZ) or ((Tl==TZ) and (Sl=<SZ))}.

ordpack([Glass,Plasti.c,Steel,Wood,Copper] , Bi.ns):-
Total i.s Glass + Plasti.c + Steel + Wood + Copper,

Spack(Total, [Glass,Plasti.c,Steel,Wood,Copper], Bi.ns),
order(Bi.ns),
Senum_bi.ns(Bi.ns),! .

?- [stats,
ordpack([3, 4, 1, 4, Z],

[[1, [0, 0, 0, 0, 2], 2],
[1, [3 , 0, 0 , 0 , 0] , 3] ,
[2, [0, 2, 0, 2, 0] , 4] ,
[Z, [0, 2, 0, 2, 0], 4] ,
[3, [0, 0, 1, 0, 0], 1]]),

stats(81096, 9739, 84969, Z183, 14133)].

Exerdse: The order in which the enumeration was being done agrees with that imposed, so
the first solution found is the same. Then why is this method so much faster?

For large numbers of commodities and small bins, where the
solutions will require many bins, this approach is still very slow. A
better strategy in this case is to generate all the possible
configurations of individual bins:

?-fi.ndset([S,T,C], [bi.n(T,C,S),enumerate([T,S,C ..])], Bs).

Note that by using fi.ndset (instead of fi.ndall) we have imposed a
defmite sort order (as described above) on the solution list. The
(unique) representation is then given by the multiplicities of each
configuration in the solution, a vector of non-negative integers. Note
that this removes the degeneracy symmetry (multiple bins with the
same fJ.ll pattern) not handled by the order technique presented
above. The constraint equations then become the linear equations
saying that the sums of quantities over all bins are equal the total
amount to be distributed, for each commodity. As a fmal step, we
remove any bins with a multiplicity of zero:

fastpack([Glass,Plastic,Steel,Wood,Copper] NBi.ns):-

10/24/95 18

CLP(BNR) : Integer Constraints

Total is Glass + Plastic + Steel + Wood + Copper,
findset([S,T,C], [bin(T,C,S),enumerate([T,S,C ..])], Bs),
summation(Bs, Ns, NB, Total,[Glass,Plastic,Steel,Wood,Copper]
enumerate(Ns),
compress(NB,NBins),!.

),

surnmation(O, 0, 0, 0, [0,0,0,0,0]).
summation([[Sz,T,Cn]IBs],[NINs],[(N*[Sz,T,Cn])IXs], Tot,[G,P,S,W,C]):

N:integer(0,_),
Cn=[Glass,Plastic,Steel,Wood,Copper],
{ Tl-Tot - N*Sz,

G1= G - N*Glass,
P1= P - N*Plastic,
S1= S - N*Steel,
W1= W - N*Wood,
C1= C - N*Copper},

summation(Bs ,Ns ,Xs, Tl, [G1 ,P1,S1 ,W1, C1]).

compress(0, 0).
compress([(0*X)IXs], Ys):- !, compress(Xs,Ys).
compress([(N*[S,T,C])IXs], [(N*[T,S,C])IYs]):-compress(Xs,Ys)./*

The _ standard enumeration strategy applied to the vector of
multiplicities seems to give good (and consistent) performance, even
for large quantities:

?- stats,fastpack([3, 4, 1, 4, 2],_), stats(_,_,_,_,_).
?- [stats,

YES

fastpack([3, 4, 1, 4, 2],
[1 • [3, 1, [0, 0, 1, 0, 0]].
1. [2, 2, [0, 0, 0, 0, 2]],
1 • [1, 3, [3, 0. 0. 0. 0]] •
2 • [2, 4, [0, 2, 0, 2, 0]]]),

stats(36288, 2150, 1134, 163, 1984)].

?- stats,fastpack([32, 44, 11, 44, 230],_), stats(_,_,_,_,_).
?- [stats,

YES

fastpack([32, 44, 11, 44, 230],
[11 • [3, 1, [0, 0, 1, 0, 0]].
1. [1, 2, [2, 0, 0, 0, 0]],
10 • [1, 3, [3, 0, 0, 0, 0]]'
2 • [2 ' 3 ' [0' 0, 0' 0 ' 3]] '
56 • [2, 4, [0, 0, 0, 0, 4]]'
22 • [2, 4, [0, 2, 0, 2, 0]]]),

stats(36374, 2168, 1478, 167, 2033)].

?- stats, fastpack([l32, 414, 1001, 414, .230] ,_), stats(_,_,_,_,_).
?- [stats,

fastpack([132, 414, 1001, 414, 230],

10/24/95

[1001 • [3, 1, [0, 0, 1, 0, 0]]'
44 • [1, 3, [3, 0, 0, 0, 0]]'
2 • [2' 3' [0, 0' 0' 0' 3]] '
56 • [2, 4, [0, 0, 0, 0, 4]].
207 • [2, 4, [0, 2, 0, 2, 0]]]),

stats(36375, 2168, 1852, 167, 2083)] .

19

CLP(BNR) : Integer Constraints

YES

It is certainly not obvious that the frrst solution found with this is
one with the minimal number of bins, although it does not seem
likely that it would be much worse than minimal, and there is a
plausible argument that it is, in fact, optimal. (In any case, this
problem could be remedied by adding the number of bins as an
explicit variable, to be enumerated first.)

Exercise: Prove that the last version in fact gives the optimal number of bins, or fmd a
counter example.

Exercise: Implement and test the following heuristic algorithm: work throught the bins
in decreasing order of binsize, for each take as many as you can use, decrement the
commodity totals, and recurse. Does this give the smallest number of bins? Why?

10/24/95 20

CLP(BNR)/Continuous Primitives

Continuous Primitives

Continuous Variables and Completeness

Most of the problems we have been concerned with up to this point
have consisted essentially of discrete variables, either boolean or
integer, for which the strategy of enumeration can be used. In the
case of bounded discrete (and hence finite) domains and exact
arithmetic, enumeration in principle provides complete solutions.
although with many variables or large domains the computation is
still impractical. In these circumstances it has not really been
necessary to think very hard about how the underlying machinery of
CLP(BNR) works, and the underlying narrowing semantics serves
merely to prune the search space.

When we begin to deal with continuous variables. considered to be in
the domain of the mathematical real numbers. it no longer makes
sense to think in terms of enumeration, since there are uncountably
infinite numbers of "real numbers" in every non-point interval. and
we can not even refer to most of them! Furthermore, the arithmetic
operations in general are no longer exact, but involve floating point
approximation (known traditionally as rounding errors.) In general.
then we will no longer have completeness, in the sense that we wilf
usually not be able to give exact solutions to problems, nor even lYe.
able to tell automatically whether a solution exists or not. We still
have correctness, however, and a properly formulated question
which fails still indicates that no solution is possible.

As a result of this, we find that there is a now a sharp distinction
(which was blurred in discrete domains) in the ways in which we can
use the CLP(BNR). In some problems, corresponding to universally
quantified variables, we seek rigorous assurance of some properties.
and we therefore formulate the problem negatively (using not()) so
that failure indicates a successful proof of the statement. In other.
more typical, cases, corresponding ·to existentially quantified
variables, we seek a specific solution and use a direct formulation. In
this case, the answer must usually be taken as conditional: if the
problem has a solution (in the initial domains of the variables), then
it has a solution in the final intervals. Even when variables are fully
instantiated, a positive answer is generally conditional, since it

February 6, 1995 1

~.

'•

CLP(BNR)/Continuous Primitives

merely indicates that there is no contradiction detected at the level
of precision used in the (approximate) arithmetic operations.

One aspect of this incompleteness is that CLP(BNR) constraints use
only closed intervals and closed relations: for example {X==Yl is
supported, but {X<>Y} is not, for X andY continuous variables. Note
that since neither X nor Yare likely to ever become instantiated to
an exact value, {X<> Y}, if allowed, would likely never be able to 'fire',
and even if say X does become instantiated to an exact point, and
{X<>Y} fires, it would be unable to narrow Y at all, given the
restriction to closed intervals. (It is possible to construct systems
which use open,closed. and mixed intervals. and to propagate
open/closed conditions. but these do not produce any effective
narrowing.)

With discrete variables. when setting a variable to a constant or
constant expression, it made little difference whether one used
unification (V=C), the primitive is (V is CE), or constraint
expressions like {V=C} or {V is CE}. With real variables, however.
there is an important distinction: the ("constraint unaware") Prolog
expression V=C will bind V to the floating point constant C regarded
as an exact (binary} constant. Similarly. V is CE will bind V to the
result of evaluating the expression CE using ordinary floating point
arithmetic, and may thereby introduce rounding errors. For
example. given X:real (and assuming 5 decimal digits of internal
precision for expository reasons)
X= 0.33333 ~ X= 0.3333300000000000000 ...
X is 3 fails
X i. s 3. 0 => X = 3 . 00000000000000000000 .. .
X is 2/3 => X = 0. 66667000000000000000 .. .
On the other hand, the constraint expressions {V=C} or {V is CE}
will treat floating point constants (other than 0.0) as approximate
(and fuzz them slightly), and perform all evaluations using interval
arithmetic, and also automatically coerce the type of results if
necessary:
{X == 0.33333333} ~ X in [0.33333000 ... , 0.33334000 ••.]
{X== 3} => X= 3.00000 •••
{X= 3.0} * X i.n [2.99999000 ... ,3.00001000 ...]
{X = 2/3} * X in [0.66666000 ... ,0.66667000 ...]
and similarly for i.s. As a result, the consistent use of {} when
dealing with real variables will avoid many subtle problems .

•

February 6, 1995 2

CLP(BNR)/Continuous Primitives

From our previous work we know that narrowing alone is not usually
strong enough to solve most problems. Only on small, simple
problems with at most one solution, is narrowing alone sometimes
adequate. (Narrowing is deterministic, so produces at most one
answer: if a problem has more than one classical solution, this
answer must big enough to contain them all.) So something
nondeterministic like enumeration is required, if only to "split" (or
separate) solutions. At present it seems unlikely that any single
technique will be able to handle all problems efficiently. One such
heuristic technique provided in CLP(BNR), called solve, is useful for
many problems, particularly those with multiple point solutions and
not too many variables. Finding more general techniques, able to
deal with more complex problems, is currently a research topic, and
several promising lines of investigation are being pursued.

In our exploration of discrete problems we encountered two general
techniques which sometimes had dramatic effects on performance:
one was the judicious use of redundant constraints, and the other
was the elimination of symmetries in the problem formulation. Both
of these operate by effectively making narrowing stronger, and thus
increasing the pruning. With continuous domains. these techniques
become much more important, and will represent an important
recurring topic during the rest of the course.

Intervals and Interval Arithmetic

It is useful at this point to go into a little detail about intervals and
the basic concepts of classical interval arithmetic. Interval
arithmetic, initiated by Moore in the 1960's. is both an elementary
algebraic theory of arithmetic operations on intervals and a closely
related computational technique for estimating worse-case rounding
errors in floating point arithmetic. Interval analysis is a rigorous
mathematical discipline, based on interval arithmetic. which lies
somewhere between classical real analysis and classical numerical
analysis.

The basic concepts of interval arithmetic are important basic
ingredients in CLP(BNR). However, the theoretical structure
underlying CLP(BNR) is quite different from that studied in classical

February 6, 1995 3

CLP(BNR)/Continuous Primitives

interval arithmetic. Since these differences arise from some fairly
subtle points, it is necessary to discuss both to a sufficient degree.

A closed interval [xl,xu] is the subset of the reals { x EDt I xl=<X & X=<
xu}. (Here, xl and xu are in general themselves arbitrary real
numbers, for theoretical purposes, but will later be restricted to
floating point values for computational purposes.) Obviously, an
interval is empty, unless xl=<xu. Generally we will use uppercase
letters to denote intervals and lowercase letters for reals. The space
of real intervals ~m then can be pictured as consisting of the non
empty intervals in the upper closed half-plane. together with the
empty interval (the lower open half-plane) as shown:

Space of Intervals

The line xl=xu, the point intervals, or "points" for short. is then
isomorphic to the reals (and will be henceforth identified with the
reals), and is the boundary of the space. Everything below this line
corresponds to the empty interval.

The largest interval, the "top" or universal interval. which contains
all other intervals, is [-co;+co]. (This can be done by adjoining the ideal
points -co, +co and adjusting the topology accordingly, the so-called
two-point compactification of the real line.)

Intervals (in classical interval arithmetic) are considered equal if and
only if they have the exact same bounds, i.e. they are identical.
Intervals are partially ordered by set inclusion (::>). and the

February 6, 1995 4

4

4

CLP(BNR)/Continuous Primitives

intersection (n) of intervals is again an interval. With closed intervals
(but not with open intervals) this is also true for arbitrary (e.g.
infinite, even non-countably infinite) intersections. The union of tvvo
intervals (regarded as sets) is not generally an interval, but there is a
join interval (v), which is defined as the smallest interval containing
both, always exists when there is a universal interval. This makes
the set of intervals into a (complete, but not distributed) lattice. The
intersection (sometimes called meet) and join are illustrated below:

Meet and join

The basic relations of equality and inclusion between intervals, it
should be noted, are inherited from sets, and have nothing to do with
the reals as such. With this relational structure in place, classical
interval arithmetic proceeds to extend the basic functions of the
reals (as a field) to the intervals, which we will now explore.

The half line xl=-xu (corresponding to intervals of the form [-b,b],
b>=O) will be called the symmetric intervals. The only symmetric
point interval is 0. The symmetry operation here, which we will call
"flip", is defined by

o([xl,xu]) := [-xu,-xl],

so, o(o(X))=X. Obviously, we have the following inclusion theorem:: a
point x is in interval X iff -x is in o(X), so o corresponds to unary
negation. This operation does not involve any rounding when done
with floating point numbers, so we say it is exact.

•
February 6, 1995 5

CLP(BNR)/Continuous Primitives

Sometimes it is convenient to describe intervals in terms of their
midpoint and width (or delta), according to the change of
coordinates:

midpoint:= (L + U)/2,
delta := (U-D).

In this representation points are those with delta=O, and symmetric
intervals are those with midpoint =0.

Addition of intervals is like vector addition in the plane:
[xl,xu] + [yl,yu] := [xl + yl, xu+ yu].

Interval sum is hence commutative and also associative when doen
in infinite precision. Note that the midpoint(delta) of the sum is the
sum of the midpoints(deltas). Because addition is a monotone
increasing function in both variables. it follows that we get the
inclusion property:

x EX & y E Y => (x+y) E (X+ Y}.
The interval defined as the sum is the smallest interval for which
this holds.

Since subtraction in the reals can be defined as
X- y :=X+ (-y) ,

we can lift this definition and define subtraction on intervals as:
X - Y := X + cr(Y),

and it will then follow that:
X EX & v E Y => (x-v} E (X- Yi.

~ ~ .

Note that the midpoint of the difference is the difference of the
midpoints, but the delta of the difference is the sum of the deltas. In
the reals, we always have O=x-x, but in intervals S= X- X is not zero
unless X is a point. (Such an S is always symmetric, however. Note
that the sums and differences of symmetric intervals are also
symmetric.) As a consequence of this, subtraction is for intervals
not the inverse of addition: i.e. it is not the case that X + Y - Y = X.

An interval X is non-negative iff xl>=O, and positive if xl>O. Since
multiplication x*y is monotonically increasing for non-negative x· and
y, we can define the product of two non-negative intervals as

[xl,xu] *[yl,yu]=[xl*yl~xu*yu], foryl>=0.xl>=0
and show that this is the smallest interval such that

x EX & y E Y => (x*y) E (X *Y).
For non-positive X and non-negative Y, cr(X) is non-negative, and
since -(x*y) = (-x)*y

Februarv 6, 1995 6

CLP(BNR)/Continuous Primitives

we can define X*Y = o(o(X)*Y) for non-positive X, non-negative Y,
from which inclusion results follow, and similarly for the other cases.
In fact, all cases of multiplication can be subsumed with a single
definition:

[xl,xu] *[yl,yu]=[ml,mu
where ml=min(xl*yl, xl*yu, xu*yl, xu*yu)
and mu=max(xl*yl, xl*yu, xu*yl, xu*yu).
Multiplication is commutative and associative (in infinite precision),
but the distributive law is weakened to the so-called subdistributive
Jav.':

X*(Y+Z) :> X*Y + X*Z

Any interval X times a symmetric interval Y yields a symmetric
interval, so that symmetric intervals are analogous to ideals in the
"pseudo-ring" structure (+,* ,0,1). (It is not really a ring, of course.
since subtraction does not undo addition and the distributive law
fails.)

For a positive (resp. negative) interval X. p(X):= [1/xu,l/xl] is an
intervaL and x E X<=> 1/x E p(X). Together with multiplication this
allows us to define interval division as

X/Y := X*p(Y). provided - (0 E Y).
with the usual inclusion results. But. as with subtraction, X/X does
not equal 1, except when X is a point.

The ideal intervals which we have been discussing are useful
theoretically, but for computations one is interested only in intervals
with floating point bounds (of some fixed precision, i..e. ftxed-size
representations). These are sometimes called F-intervals, where F is
the set of permitted bounds. Because of the limited precision, the
result of these interval operations is in general not an F-interval
when the inputs are F-intervals. This is remedied by using a F
closure operation defined as:

<t>(X) =smallest F-intervallarger than X.
This is also known as "outward rounding," since the upper bound is
rounded toward + oo and the lower bourid toward -oo. By rounding
the result outwards after each interval operation we can preserve
the inclusion properties. But the associative laws of addition and
multiplication (as well as some other properties) are lost, since
floating point arithmetic is not associative due to the rounding.

February 6, 1995 7

CLP(BNR)/Continuous Primitives

These definitions and their assorted formal properties constitute
interval arithmetic. As a formal structure it differs a great deal from
the formal structure of the reals: most of the axioms of the reals no
longer hold for intervals. Consequently, most algebraic derivations
which are formally justified in the reals will not be justified for
intervals, so formal reasoning with these classical intervals is
difficult.

However, given a real function f(x1 ... ,x0) expressed in a definite finite
syntactic form in terms of(+,-,*,/) and intervals X1 .. .X0 such that ·the
corresponding interval operations are defined (specifically, no
divisions by intervals containing 0), then we can form the natural
interval extension F(X1, ,Xn) by syntactically replacing Xj by Xj and
real operations by the corresponding interval operations. Since the
inclusion property holds at each operator, an induction over the
syntax tree yields the result that

'fXl E X1, ... Vxn E Xn f(Xt, ..• ,Xn) E f(Xt, .•• ,Xn).
This is called the fundamental theorem of interval arithmetic.

In general syntactic forms which are mathematically equivalent over
the reals generate different extensions and produce different
resulting intervals. But, if the natural interval extensions exist. each
satisfies the inclusion theorem (and so therefore does their meet. ;
To derive interval inclusions for a function, then, one can proceed by
manipulating the function over the reals in the ordinary way until it
is in any suitable syntactic form, and then take the natural inclusion
of that form to get a valid inclusion. (Much of the theory of classical
interval arithmetic was concerned with choosing good syntactic
forms which make the inclusion as tight as possible, and the formal
properties of intervals are useful for this.)

An implementation of interval arithmetic would minimally consist of
an abstract data type for intervals together with the appropriate
constructors and the basic relations and operations described above.
Such an implementation, regarded as an abstract language, would
necessarily have the (somewhat peculiar) algebraic/axiomatic
structure described above, a structure very different from that of
real arithmetic .

•
February 6, 1995 8

CLP(BNR)/Continuous Primitives

Relational Interval Arithmetic

At the CLP(BNR) linguistic level the key entities are the typed
variable and the constraint. The current domain of a typed variable
is always an interval in the sense of interval arithmetic; as the
domain is narrowed during a forward computation one sees a nested
sequence of such intervals. The conceptual variable in CLP(BNR) thus
corresponds to many such nested sequences of intervals (under
different forward computations and backtrackings). so the·
relationship to interval arihtmetic is not such a simple one. -·__...

Similarly, a single constraint at the CLP(BNR) level corresponds to
many different functions in the interval arithmetic world - one for
every way in which the relation could be uniquely 'solved' for any
variable in terms of all the rest, and even this may not exhaust its
potential. Thus even relatively simple CLP(BNR) formulations can
explode into a bewildering complexity when translated into the
classical language of interval arithmetic. This point has usually not
been appreciated.

In order to get closer to the level where comparisons with interval
arithmetic become meaningful, one needs to drop below the
CLP(BNR) linguistic level to the underlying technology. Relational
interval arithmetic (RIA) is the name used for this technology-- data
structures. algorithms. and relevant theory--which supports
CLP(BNR) and similar languages.

In the early days (Cleary.l986) RIA was thought of as an adaptation
of interval arithmetic to the needs of the Prolog environment.
However. as the technology evolved and the structure of the theory
became clearer, it has become evident that although they use the
same basic concepts of intervals, outward rounding, and inclusion
properties, and share many of the same goals, they are structurally
very different and have very different properties and uses.

The fundamental construct in relational interval arithmetic is the
approximation of relations on the reals by narrowing operators on
lattices created from intervals. The crucial difference with interval
arithmetic is the choice of relations (rather than functions), and the
ubiquitous use of narrowing operators. (Narrowing operators do
appear in interval analysis. but only occur in special circumstances.)
The fact that RIA maps constraints (and sets of constraints) to
operators is an important one, and often misunderstood because it

February 6, 1995 9

CLP(BNR)/Continuous Primitives

seems so abstract. To overcome this, we will spend some time
looking at specific primitive relations and their operators, and so
develop a better intuition for what it really means . .

We have already noted that closed intervals on the extended line
form a complete lattice - a partially ordered set with top and bottom
elements and meet and join always defined. This lattice is also
atomic, where the atoms (smallest non-empty elements) are the
point intervals. It is sometimes convenient to take the lattice as· an
abstract lattice L of states, with many possible realizations: e.g., all
sets, all closed sets, all intervals, all closed intervals. all closed F
intervals , and postpone specialization until needed.

In order to treat a relation of arity n, which is a subset of 9tn. it is
useful to construct a lattice L of states in mn by defining a state in
iltn to be the n-fold Cartesian product of states in m. A non-empty
state X can be conveniently represented as a vector of !-dimensional
states (sometimes called an interval vector):

X= [XI···· ,Xn].
with all X; non-empty. The empty state will be denoted by 0 .
Partial order between states is defined by set inclusion, and meet by
set intersection, and join by the lattice join (which, as above, is not in
general set union). Equivalently, these operations can be defined
termwise in the interval vector representation, with the proviso that
if any component of the termwise meet is empty, the result is empty:

X :::l Y <=>XI :::l Y I & ... Xn :::l Y n
X v Y <=> [XI v Y I, ,Xn v Y nl
X n Y <=>[XI n Y I, ,Xn n Yn] if all are non-empty

and 0 otherwise.

The lattice of states defines a closure relation on sets (as in the !
dimensional case) according to:

cp (X) = { smallest state Y such that Y:::lX!,
which can also be expressed termwise as:

cp ([XI,··· .Xn]) = [ct>(XI), ••. ,cp(Xn)] ·
These closure relations have the following properties:

expanding: cj> (X) :::lX
monotone: X :::l Y => cp (X) :) cj> (Y)
idem patent: cp (cj> (X))=cp (X).

February 6, 1995 10

CLP(BNR)/Continuous Primitives

When the lattice is the full powerset, the closure operation is the
identity; when it is the lattice of closed sets it is the usual topological
closure on the reals.

(Note: The existence of the closure operation depends only on the
poset of states having a top and being closed under arbitrary meets,
since it can then be defined as cp (X) = /\ {YI Y :)X} with the set of Y's
being non-empty. But these conditions also guarantee the existence
of the join and make the states a lattice.)

Given an arbitrary n-ary relation R, we can then define the operator
R:L->L by:

R (X) =cp (X n R).
This is illustrated for n=2 in the figure below:

X
C anemic al N arrov.1ng Operator

This operator R is correct (or "conservative") with respect to the
relation R since R(X) ::) X n R. It also has the following abstract
properties:

contracting: X~ R(X)
monotone: X~ Y => R(X) ::) R(Y)
idempotent: R(R(X))=R(X).

We will henceforth call any lattice operator with these properties a
narrowing operator. (Note that this generalizes the notion of
narrowing operator used earlier for Prolog by weakening persistence
to idempotence, which is a obvious consequence of persistence. The

February 6. 1995 11

CLP(BNR)/Continuous Primitives

Prolog operators will henceforth be called persistent narrowing
operators. later on we will show how the persistence gets put back
with a vengeance!)

There may be many narrowing operators correct for some relation R,
but the definition makes it clear that this R is the smallest correct
narrowing operator for R, and is therefore unique. We call it the
canonical narrowing operator of R .. It provides the basic recipe for
implementing optimal interval approximations to the various
primitive relations supported by CLP(BNR). Usually several
refinement steps are required to transform this abstract recipe into a
sufficiently low-level and efficient executable specification. and in
many instances there is an explosion of cases (possibly over 200 for
a single primitive!) to be considered, so that the resulting code is
extremely complex and it is not easy to discern its properties. Hence.
it is important that all the fundamental properties can be so easily
established from the abstract specification.

We have already dealt with operators on a lattice before. at the very
beginning of this course. and you may recall the basic notation:

Recall that operators are partially ordered by
P ~ Q <=> P (X) ~ Q!X) for all states X in L.

Equality of operators is similarly defined by
P = Q <=> P (X) = Q!X) for all states X in L,

so we have P = Q <=>P ~ Q & Q ~ P.

The meet and join of operators with respect to this partial order exist
and are given by:

P n Q <=> P (X) n Q!X) for all states X in L.
P v Q <=> P (X) v Q!X) for all states X in L.

The smallest operator ("bottom") in the partial order. called 0. is
obviously the one which maps every state to 0:

O(X)= 0 for all states X in L. .
(This operator would be one which just fails, whatever you give it.)
The identity operator, which does nothing at all, is denoted by 1. and
is similarly defined by:

1 (X)= X for all states X in L.

Finally, the product of operators is defined by composition:
PQ (X) := P (Q{X)) for all states X in L.

February 6, 1995 12

CLP(BNR)/Continuous Primitives

We will be using this notation below, but not get into the algebra
until later.

Exact Primitives

There are a number of important primitive relations which do not
perform any arithmetic operations, so rounding issues do not arise ..
For these exact relations, it makes no difference whether we use F
intervals or intervals as the state lattice.

Integral/ 1

The "integral" primitive (of arity 1) does not appear explicitly in
CLP(BNR), but is used implicitly to construct the integer and boolean
types. Its formal definition as a unary relation is

integral(x) <=>xis an integer.

The corresponding narrowing operator (by inspection) is

integral([xl,xu])=[xi' ,xu']
where xl' = ceiling(xl). xu'=floor(xu>.

Here [xl,xu] denotes the state (a single interval) before the operation.
and [xl',xu'] the state after the operation. This primitive seems very
simple--too simple to be useful. But all of the applications of
CLP(BNR) to integer and boolean problems. and hence the
subsumption of specialized finite domain and boolean solvers. follow
from it.

Equality/2: X==Y

The equality relation on the reals is represented by the diagonal set
D in mxm. Given initial state [X,Y] as shown in fig., we form the
intersection as shown and take the interval closure to get the final
state [X' ,Y'].

February 6, 1995 13

CLP(BNR)/Continuous Primitives

y

X

The operational effect for an arbitrary placement of the initial state
[X.Y} can be expressed succintly as:

U <- X n Y,
X'<- U, Y'<-U.

(Compare this with the narrowing semantics of unification.) Thus the
output intervals X' and Y' are equal in the (static) sense of interval
arithmetic. But the'==' relation in CLP(BNR) refers to the process of
making them equal (and, as we shall later see, maintaining them
equal), and not the mere fact of equality itself. This will have
important consequences later.

When expressed in even lower level language, in terms of bounds,
this becomes:

equality([[xl,xu],[yl,yl]]) --> [[xl 1,XU 1],[yl 1,yu 1]]:
xl1<- y1 1<- max(xl,yl);
xh 1<- yh 1<- min(xu,yu);
i.f xl'>Xh 1 then fail.

and even lower:

equality([[xl,xu],[yl,yl]]) --> [[xl 1,XU 1],[yl',yu']]:-
xl'<-xl'; xh<-xh; y1 1<-yl;yh'<-yh; %default
if xl >yl then yl 1<- xl
else if yl>xl then xl 1 <- yl
else ,
if xh<yu then yu 1 <- xu
else if yu<xu then xu'<- yu
else ;
i.f xl '>XU' then fail.

This can be summarized in a propagation diagram:
xu<-> yu

February 6, 1995 14

CLP(BNR)/Continuous Primitives

xi <-> yl
which indicates all the ways that bounds can be propagated in the
primitive. Note here that only upper bounds can affect upper
bounds (either way) and similarly for lower bounds.

This, like integral, appears to be trivial, as indeed it is, when
regarded as a mere piece of code.. But also like integral, it has the
most profound consequences in the CLP context. (In fact, much of
the rest of the course will be spent exploring these consequences.)

To begin with, we will establish three simple properties of this
definition. In order to state them succintly we need to use the
operator notation summarized earlier. Here we will use f E } to mean
the canonical operator for E. where E is a primitive relation and
possibly a list of such relations.

Property 1. { X == X } = 1.
This says that if we use the same interval for both input arguments to
equality, it will do no narro\\ing, and hence is equal (as an operator) to the
identity operation.

Property 2. { X == Y } = f Y == X } .
This expresses the fact that equality is sy·mmetric under intercahnge of it~
input arguments.

Property 3. {X== Z l :J{ X ==Y, Y == Z }.
The left side doesn't use Y at all, so doesn't narrow it. \Ve have not yet
explained what the comma means (that comes later), but suppose {P.Ql to mean
that we do P, then Q. then P again and so on until nothing more is changing.
Then the right side winds up with interval X and interval Z the same,
regardless of the starting values, i.e. just as does the left side. But the right side
has narrowed Y also (to the same interval), hence the :J.

These properties should look sort of familar by now: they are
essentially the reflexive, symmetric, and transitive laws of equality
as they are expressed in narrowing semantics. Note that (in this
particular case) the :J corresponds to backwards implication <- , = to
the biconditional, and comma to 'and'.

Inequality/2: X =< Y

The relation '=<' is represented by the half-plane shown in fig.

February 6, 1995 15

CLP(BNR)/Continuous Primitives

--------------- ----------·------------------------·· ·----------------------------------·-- --·--------···-----·····--········ --------············-

-7
X

X:<Y

Carrying out the steps of the operator construction yields the
operational specification:

less_than([[xl,xu],[yl,yl]]) --> [[xl',xu'],[yl',yu']]:-
xl'<-xl'; xh<-xh; yl'<-yl;yh'<-yh; %default
H xl >yl then yl'<- xl
else ;
i. f XU>YU then XU'<- yu
else ;
i.f xl'>xu' or yl'>yu' then fai.l.

and the propagation diagram:
xu<- yu
xl -> yl

stating that upper bounds propagate down (towards the lower value)
and lo\ver bounds only propagate up.

This operator has the following (not unexpected) properties:
I X=< X}= 1
{X=< Y. Y=< X} = {X== Y}
{X=< Z} ~I X=< Y, Y=< Z}

The propagation diagram above suggests that we can operationally
define primitives with similar diagrams, such as:

xu<- yu
xl <- yl

February 6. 1995 16

CLP(BNR)/Continuous Primitives

This primitive would be written as X<=Y. Since it's semantics
propagate changes in Y to X, but not the other direction, it acts like a
sort of"diode". Note that

{X<= Y, Y <=X}= {X== Y}.
If X and Yare point intervals, it is equivalent to equality, but it is
not the canonical narrowing operator for equality. Its declarative
meaning is that X is constrained to be a subinterval of Y, Y:::>X. If X is
thought of as an unknown point, it can be interpreted as XEY. Th~

ability to enforce these second-order relations as constraints will be
exploited in some of the more advanced algorithms discussed later.

There is one important elementary use of diode: in many applications
it is undesirable that input data should become narrowed by the
computation that uses it. To avoid such narrowing it is necessary to
use diodes to read the data into intermediate variables first, e.g.

{V <= Data},
which narrows V to the same bounds as Data, but insulates Data from
any subsequent narrowing of V.

The other second-order primitives are XI=Y ("start together'') and
X=IY ("end together") correspond respectively to:

xu yu XU<->yu
xi<-> yl xl yl

Note that
{XI=Y,X=IY} = {X==Y}.

Probably the chief use of these is to enforce overlap conditions: giYen
X constrained to be to the left of Y (ie. {X=<Y~) and initially
overlapping Y, we can define a new overlap variable XOY by)
YI=XOY,XOY=IX}. This creates a situation where if X and Y ever cease
to overlap due to narrowing, XOY becomes empty and triggers
failure.

Absolute value/2: Y==abs(X)

The binary relation corresponding to the absolute value function
looks like:

February 6, 1995 17

CLP(BNR)/Continuous Primitives

Y ==abs(X)

For positive intervals X, it behaves like equality; for negative one. it
is equivalent to negation. For X containing zero and Y positive. as
shov.··n above. the final X interval may contain points which cannot be
solutions because of the interval hull closure. In other such cases. as
seen below. the canonical narrowing operator will do be better:

Note that this is due to the difference between the canonical
prescription:

X' := rr1 R(X.Y)
Y' := 't2 R(X,Y)

and the weaker prescription
X' := :t 1 R(T ,Y)

Y' := :11:2 R(X,T).

Similar behaviour is seen in any relation with a fold, such as even
powers and trigonometric functions.

minimum/3:
maximum/3:

Z==min(X,Y)
Z==max(X,Y)

The minimum and maximum relations, being of arity 3, are harder to
visualize. The most useful approach is to graph the XY rectangle and
the level curves of the corresponding function for the Z bounds. For
maximum the level curves are L-shaped with the point of the L on
the diagonal, as shown below. From this we see that for disjoint
intervals X andY, Z becomes equal to the larger of the two.

February 6, 1995 18

CLP(BNR)/Continuous Primitives

,
y t---.E,...--_ ---• ---1---.,u-,-, ,

LJ

, ,

, ,

, ,

, ,

, ,

, , I -------- I
...............

Z::::m.ax(X;Y)

Minimum is similar, with the direction of the L reversed.

With overlapping intervals. the behaviour is much more complex:

y ~·-·
1-------co:~:-:'2-:1

11!1' ::::::. 1------r.

,'

"
r:l , ,

X
Z=l!WC(X,Y)

The intuitive meaning becomes clearer ·if we project the intervals
onto the diagonal, both before and after the operation:

February 6, 1995

X..---
Y--~-......

z
z

--+---T-- before
after

19

CLP(BNR)/Continuous Primitives

We see that the lower bound of Z becomes the larger of the two
lower bounds, and the same with its upper bound. Further
narrowing of Z can be propagated backwards to X and Y also:

X..----

z
z
X~

Y--__.

before
after

A high level (and somewhat redundant) pseudo-code description for
minimum is:

mi.ni.mum([Z,X,Y]) --> [Z',X',Y']:
less_than([Z, X])->(Z' ,X'],
less_than([Z' ,Y])->(Z',Y'],
Z' <- Z' n mi n(X, Y).

where the less_than calls can be macro-expanded from the definition
given earlier, and min(X, Y) is the interval arithmetic inclusion for min:

mi.n([xl,xu],[yl,yu] -> [zl,zu]
where zl:= mi.n(xl,yl), zu:=mi.n(xu,yu).

Here upper bounds affect upper bounds only and lower bounds
affect lower bounds only, with a propagation diagram:

XU<-> ZU <-> yu
xl <-> zl <-> yl.

The maximum relation is analogous.

choice/3: Z ==(X ; Y)

The choice function in ordinary arithmetic 'Z is (X;Y)' is non
deterministic, returning the two answers Z=X or Z=Y. (Note the
mandatory parentheses!) The corresponding constraint primitive,
like all constraint primitives, is deterministic. If Z is initially the
universal interval and X andY are bounqed, Z becomes the join of X
andY. Subsequent narrowing of Z does not propagate to either X or
Y. until one or the other becomes disjoint from Z, at which point it
reduces to equality with the remaining candidate. Thus, the
constraint serves to (1) defer the choice, while (2) propagating as
much as possible from X andY to Z, and (3) automatically making the
choice as soon as no alternative is available .

•
February 6, 1995 20

CLP(BNR)/Continuous Primitives

Summary of basic interval relations

Most of the basic relations between intervals are summarized in the
following diagram. It supposes that some general interval X is
given~ and divides the space of intervals into distinct regions such
that any interval Yin any one of the regions has the same qualitative
relation to X.

Addition/3 : Z == X + Y

Relative to X, inten·al Y is
a: subinterval, Y <=X
b: superinterval, X<= Y
c: =< & overlapping
d: >= & overlapping
e: =< & disjoint
f: >= & disjoint

The horizontal line through X
corresponds to = I

The vertical line through X
corresponds to I =

Interval Relations

As an example of a non-exact primitive we consider addition. The
relation z=x+y
can be solved in turn for each variable:

Z=X + y, X=Z-y, Y=Z-X
in which the right hand sides are continuous functions. The
corresponding interval extensions:

Z':=X + Y, X':=Z- Y, Y':=Z -X
then provide a narrowing operator which is minimal (because of the
properties of the interval functions+,-) and therefore is the canonical
narrowing operator. Although convenient for implementation. it is
worthwhile examining the canonical construction as well:

February 6, 1995 21

CLP(BNR)/Continuous Primitives

y

Z==X + Y

Here the outermost Z- bounds (upper bound labeled 1 and unlabeled
lower bound) resulted from the forvvard narrowing of Z. If the
upper bound of Z is subsequently lowered (line labeled 2). we see
that the narrowing does not propagate to either X or Y until a certain
thresh hold is reached (i.e. the lower right corner of the rectangle).
Past that point, there is narrowing, in this case of X. as shown by the
dashed line. Eventually, when the upper left corner is passed. both X
and Y will be narrowed.

The threshhold effect is common in arity 3 primitives. Note.
however, that the narrowing which goes into overcoming the
threshhold, and which apparently disappears, is not necessarily lost.
but may be released by a subsequent narrowing of Y, which reduces
the threshhold. thereby generating a "rebate". The second point to
notice, is that the backwards narrowing appears first in the larger of
the two input intervals, X in this case. This also is a general
qualitative phenomenon, although a precise definition of "larger" is
difficult in the case of more complex primitives. The general
tendency is for information to flow from the more precisely known
intervals to the least precisely known, tending towards a state of
more uniform uncertainty.

We note some obvious properties of addiiton:
{ Z==X + Y} = {Z == Y +X}

and { Z== X+ 0} = {Z ==X}.
(The latter depends on 0 being treated as an exact value.)

February 6, 1995 22

CLP(BNR)/Continuous Primitives

What about the associative law? We can not write
{ U==X+Y, W==Z+U}? { V== Z +X, W==V + Y}

since clearly U and V have no comparison. But if we write the
operators as { W== Z + (X + Y)} and { W==(Z + X) + Y}, so that the
same variables are explicitly mentioned in both, and the comparison
is done only on these variables, it is ~till not the case that these
operators are equal, because floating point addition is not always
associative. However, both operators are correct and hence contain
all possible real solutions to the relation over the original domains.
We can therefore write:

{ W== Z +(X+ Y)} a { W==(Z +X) + Y}
indicating a form of asymptotic equivalence: roughly, that both sides
are correct approximations to the same set of ideal solutions. Note
also that this can also be expressed as:

{ Z + (X+ Y)==(Z +X) + Y} e 1
with the interpretation that the operator is one that never fails, ie. is
an effective tautology .. The reasoning is that each sum computes an
outer estimate for the true sum, so the intervals going into the
equality must have a non-empty intersection.

Thus the associative law is formally obeyed in RIA. unlike the
situation in classical interval arithmetic. Since both are using the
same implementation of interval addition. the difference is due to
the choice of equality: interval arithmetic used a strict and static
notion of equality on intervals, while RIA constructs equality by the
same process by which it constructs addition. The same
considerations apply also to the other laws of real analysis, such as
the distrbutive law, which holds in RIA but not in interval arithmetic
even in infinite precision. This formal validity of the standard laws
has many profound consequences which we will investigate later.

February 6, 1995 23

CLP Prototype Implementation

INTRODUCTION

The interval arithmetic system of BNR Prolog was one of its most advanced (and complex)
features. For various purposes it is useful to have a succint executable specification written
in 'normal' (BNR) Prolog of a simplified CLP implementation .. This document describes
such a protypel

The specification is divided into several levels, which are treated in bottom-up fashion.

FUNCTIONAL INTERVAL ARITHMETIC

The principles of interval arithmetic are very old, but were first systematically explored by
Moore in the 1960's. The basic idea is to compute inclusions of arithmetic functions of
intervals, i.e. interval outputs which always include all the real solutions. In particular, it
is necessary to bound the effect of rounding errors when fixed precision arithmetic is
employed. We therefore assume that we are given two basic routines for doing arithmetic:
SisL, and $isH.

op(700, xfx, 'Sisl'). % rounds low (left)

op(700, xfx, '$isH'). % rounds high (right)

These are similar to is, but round results left (resp. right). (Note: rounding left means
towards negative infinity, not towards 0!) Such special routines would normally have to
be added to a Prolog system as new primitives or as externals. In addition we assume the
primitive arithmetic comparison operators, which will be denoted by <=, => so as not to
be confused with =< and >=, their interval-extended counterparts. These primitives can be
implemented independently of rounding issues. Interval values (i.e. closed intervals with
floating point representable endpoints) are represented as 2-element lists [L, U] with L
<= u.

The most important basic function is that to intersect two interval values:

intersect((XL,XH] , (YL,YH],[IL,IH]) :-
IH Si.sl mnn(XH,YH),
IL $isH max(Xl,Yl),
Il <= IH.

For notational convenience, we will construct a little function evaluation language to
perform the traditional functions on intervals:

1

Interval Arithmetic Specification

op(700, xfx, :=).
op(500, xfx, ").

% functional "assignment"
% " denotes interval intersection

z := X A y :- Zl := Y, intersect(X,Zl,Z).

[L,H] := [Expl, Exp2] : % general (explicit) case
L $isL Expl, H $isH Exp2.

The rest of the interval functions are defined by:

z != [XL, XH] + [YL, YH] z == [XL + YL, XH + YH].
z == [XL, XH] - [YL, YH] :- z ·- [XL .- - YL, XH - YH].
z := min([XL,XH],[YL,YH]):- z ·- [min(XL,YL), min(XH, YH)] . ·-z != max([XL,XH],[YL,YH]):- z ·- [max(XL,YL), max(XH,YH)]. .-
z ·- [XL, XH] * [YL, YH] :- z != [XL *YL XH*YH] . .- ,

% (use * only with non-negative intervals)

[SL,SH] := [XL, XH] I [YL, YH] % dividing intervals
universal_interval([Neg_inf,Pos_inf]),
YH > 0 -> SL SisL XL I YH ; SL = Neg_inf,
YL > 0 -> SH $isH XH I YL ; SH = Pos_inf.

% (use I only with non-negative intervals)

universal_interval([-3.4000e+38, 3.4000e+38]).

89032

(Note: The universal interval is implementation specific and may depend on the details of
the floating point algorithms/hardware. Ideally the universal interval is from negative
infinity to positive infinity. Note that division by an interval containing 0 produces an
answer in this system because of the existence of a universal interval.)

The fundamental principle of traditional interval arithmetic is simply that if each functional
operation is implemented as above it computes an inclusion and is thus guaranteed to
include the correct answer given that the inputs are within the specified ranges. It follows
that any function built up from these primitive functions also computes an inclusion.

RELATIONAL INTERVALOPERATIONS

In the first part we have discussed functions from intervals to intervals. We now turn to
the relations between intervals. Note that these relations are not part of traditional
(functional) interval arithmetic, nor do they correspond to any of the relations used in that
subject. The basic relational operations used here correspond to equality, less-than-or
equal-to, addition, multiplication, and min and max:

ternary_relation($add).
ternary_relation(Smul).
ternary_relation(Smin).
ternary_relation($max).

binary_relation(Seq).
binary_relation(Sle).

The equality relation reduces to interval intersection:

2

illtervat J-\.11mmeuc .)pt;l.:llu.:auuu o':fu;,~

$eq(X, Y, New, New) :- New :=X A Y.

The first two arguments represent the inputs , the last two the outputs. (Do not confuse
this with interval equality in the interval arithmetic literature, which would correspond to =
here.)

The inequality relation is only slightly more complicated:

$le([LX, UX], [LY, UY], NewX, NewY):- %X=< Y
universal_interval([Neg_inf, Pos_inf]),
NewX := [LX,UX] A [Neg_inf ,UY],
NewY := [LX, Pos_inf] A [LY,UY].

The $min and $max relations are defined by:

$mi.n(X,Y,[LZ,UZ], NewX,NewY,NewZ):- % Z==mi.n(X,Y)
NewZl := [LZ,UZ] A mi.n(X,Y),
not(NewZl A X) -> $eq(Y,NewZl,NewY,NewZ)
I not(NewZl A Y) -> $eq(X,NewZl,NewX,NewZ)
I [uni.versal_i.nterval([_, Pos_inf]),

] .

NewX := X A [LZ, Pos_inf],
NewY := Y A [LZ, Pos_i.nf]
NewZ := NewZl

$max(X, Y, [LZ, UZ], New X, NewY, NewZ):- % Z==max(X, Y)
NewZl := [LZ,UZ] A max(X, Y),
not(NewZl A X) -> $eq(Y,NewZl,NewY,NewZ)
I not(NewZl A Y) -> $eq(X,NewZl,NewX,NewZ)
I [uni.versal_interval([Neg_i.nf,_]),

] .

New X : = X A [Neg_ i.nf, UZ],
NewY := Y A [Neg_i.nf,UZ],
NewZ : = NewZl

Addition takes three input intervals and returns three updated intervals (or else it fails):

$add(X,Y,Z, NewX,NewY,NewZ) :- ...

The inputs define a set (a closed parallelopiped) X x Y x Z while the relation z=x+y has
a graph G which is also a closed set when restricted to U x U x U (where U is the
universal interval). The procedure is then to intersect these two sets to form a new closed
set G', and then to project this onto the coordinate axes to form the outputs X',Y',Z'.
Note that this abstract mapping produces outputs which are the same or smaller than the
corresponding inputs(i.e. it is contracting) , it is jointly monotone with respect to set
inclusion (i.e. inclusion isotone) and it is idempotent. Similar arguments apply to the
other interval relations, so these properies apply to them as well.

In terms of the previously defined interval functions the result of this procedure can be
written simply as:

3

Interval Arithmetic Specification

$add(X, Y, Z, NewX, NewY, NewZ):
NewZ := Z A (X + Y),
New X : = X A (Z - Y) ,
NewY : = Y A (Z - X).

89032

From the logic point of view, the interval query expression Z==X + Y is taken as having
implicit existential quanitfiers (as usual). The procedure outlined above trims the intervals
of any points (x,y ,z) which can be proved not to be solutions. Hence, if there are
solutions in the initial ranges, then they will also be in the frnal ranges. (Whether there are
any solutions or not will, in general, depend ultimately on some form of the completeness
axiom for the real numbers, and hence goes well beyond the competence of -the system,
although knowledgeable users may make such inferences.)

The most complex operation is multiplication, which must be broken into a number of
cases because of the discontinuity at 0. By using symmetry, the 27 cases can be reduced
to just 3 essentially different ones.

$mul(X, Y, Z, X, Y, NewZ) % either X or Y exactly 0
(zero(X);zero(Y)) , zero(NewZ),!.

zero([0.0,0.0]).

$mul(X, Y, Z, NewX, NewY, NewZ)
non_neg(Px, X, XP),
non_neg(Py, Y, YP),

% flip into + if possible
% ditto

Pz is Px*Py,
switch(Pz, Z, ZP),
multcase(Pz, Px,Py,F),!,
F(XP, YP, ZP, NXP, NYP,
switch(Px,NXP, NewX),
switch(Py,NYP, NewY),
switch(Pz,NZP, NewZ).

%
%
%

NZP),
%

sign logic
fli.p Z if necessary
case-by-case

switch back if flipped

non_neg(1, [XL, XH] , [XL, XH]) : - XL >= 0 , ! .
non_neg(-1,[XL,XH], [YL,YH]) :- XH =<0,YL is -XH, YH is - XL,!.
non_neg(0,[XL,XH], [XL,XH])

switch(-1,[XL,XH], [YL,YH]) :- YL is -XH, YH is- XL.
switch(1, X, X).
switch(0, X, X) •

% rnul tcase(Pz,Px,Py, Use)
rnul tease(0, 0, 0, SrnulC).
multcase(1, _, _, $mulA).
multcase(-1, _, _, $mulA).
multcase(0, _, 0, SrrulBy).
multcase(0, 0, _, SrrulBx).

% contains ongtn in interior
% first quadrant

% right -half
% top half

SrrulA(X, Y, Z, NewX, NewY, NewZ):- % all first quadrant
NewZ : = Z A (X * Y),
NewX := X A (Z I Y),
NewY : = Y A (Z I X) .

4

paul
Sticky Note

% $mulBx: X spans 0, Y non-negative
$mulBx([XL,XH], Y, [ZL,ZH], NewX, NewY, NewZ):- ZL >= 0,!,

$mulA([0.0,XH],Y,[ZL,ZH], NewX, NewY, NewZ).

$mulBx([XL,XH], Y, [ZL,ZH], NewX, NewY, NewZ):- ZH =< 0,!,
$mulA([XL,0.0],Y,[ZL,ZH], NewX, NewY, NewZ).

$mulBx([XL,XH], [YL,YH], [ZL,ZH], NewX, NewY, NewZ):
NewZ := [ZL,ZH]A(XL*YH, XH*YH],
YL>0 -> NewX := (XL,XH]A(ZLIYL,ZHIYL].

$mulBy(X,Y,Z, NewX, NewY, NewZ):- % Y spans 0, X non-negative
$mulBx(Y, X, Z, NewY, NewX, NewZ).

$mulC([XL,XH], [YL~YH], Z, NewX, NewY,NewZ) :- % all span zero
NewZ := Z A (min(XL*YH, XH*YL),max(XL*YL, XH*YH)].

The "C" case (all signs unknown) does not do very much ; in particular it does not update
either factor. (Note that if "new" variables are left uninstantiated they count as unchanged
values in the update procedure.) There is actually a fourth case corresponding to the
product having a known sign (possibly 0) but the signs of the factors unknown. This case
can only be handled by exploring alternatives (e.g. both factors positive OR both
negative).

5

Interval Arithmetic Specification 89032

DATA STRUCTURES AND ITERATION

The natural data structure for keeping interval constraints is a bipartite graph or network in
which interval nodes alternate with operation nodes. The obvious Prolog implementation
(in those Prologs which allow it) is as a cyclic structure. The constructor for interval
nodes is given by:

tnterval_obj(tnt(I,[V,_Values ..],Nodeltst)):
untque_tdenttfier(I),
universal_interval(V). % initial first value

Each interval node consists of a sequence of interval values (a monotone inclusion
decreasing sequence in fact), and a list of nodes. In addition, since logically distinct
intervals must be kept distinct even if they happen to have the same contents (e.g. just after
creation, when the nodelist is empty and the the value sequence contains only the universal
range, an id-less interval would unify with any other interval), a unique identification label
is attached to each new node. The uniqueness requirement is very local (it suffices if it
discriminates among the nodes in the system at any one time) but essential.

The operation node constructor is given by:

node(N):- N=Op(tnt(_,_,NX),int(_,_,NY),int(_,_,NZ)),
ternary_relatton(Op),
new_member(N, NX),
new_member(N, NY),
new_member(N, NZ).

node(N):- N=Op(int(_,_,NX),int(_,_,NY)),
btnary_relatton(Op),
new_member(N, NX),
new_member(N, NY).

The cyclic structures are formed here when node N (which contains/ references interval
objects) is put onto the nodelists of its intervals. The new_mernber predicate is essentially
an optimized version of [member(N,L), !] and is given in BNR Prolog by:

new_member(X,[List ..]):- termlength(List,_,[X,_ ..]).

(There is a subtle difference, however: [memer !] would not actually add a duplicate
node to the lists, while new_rnernber essentially assumes that the item is to be regarded as
distinct.)

The interval object data structure is accessed in only two ways, one to fetch the "current"
value of its range and one to update it. The latter operation is logically describable as a
[member(New,VaLseq) , !] to the indefinite list of ranges; thus if the new value is
already on the list (i.e. the last item) the list need not be extended. If the list is extended,
however, then the associated nodes need to be "informed" of the change to one of their
inputs. This "broadcast" is simulated by keeping an indefinite scheduling list (Agenda)

6

U/U .. u,.

and adding nodes to it using [member(..) , !] . In this case, using member has the
important effect of not putting a node on the list if it is already there. A BNR Pro log
program for doing get/put of range values is:

current_value(int(_,V ,NL),
termlength(V,N,Tail),
% GET last value XOR
arg(N,V,[L,U])

% (use Agenda =0 for get-only)
[L,U], Agenda):-

% see BNR Prolog Ref. manula

! .

PUT new value
[L =< U, % check

Tai.l =[[L,U] ,_ ..] ,
subset(NL~ Agenda)],

just one branch

subset([X ..],_):- tailvar(X ..), ! .

for null interval
% append

% broadcast

subset([X,Xs ..], List):- member(X, List),!, subset(Xs, List).

The use of this can be seen best in the general setup and execute routine for operation
nodes:

donode(Op(X, Y, Z) , Agenda):-
current_value(X,XV, []),
current_value(Y,YV, []),
current_value(Z,ZV, []),
Op(~, YV, ZV, NewX, NewY, NewZ),
current_value(X, NewX, Agenda),
current_value(Y, NewY, Agenda),
current_value(Z, NewZ, Agenda).

don ode(Op(X, Y) , Agenda):-
current_value(X,XV, []),
current_value(Y,YV, []),
Op(~, YV, New X, NewY) ,
current_value(X, NewX, Agenda),
current_value(Y, NewY, Agenda).

Finally, the flxed point iteration code is given by:

stable ([]): - ! . % terminate when agenda comes ~o end
stable([Node, Agenda ..]):-

donode(Node,[Node, Agenda ..]), % note:Node still on agenda
stable(Agenda).

Here the cut in the first clause is necessary because the list is an indefmite one, and the
second clause would still apply even when the "end" is reached. Note that in the second
clause the agenda with the currently executing node on it is passed as an argument to the
currently running node operation, so a node won't trigger its own reexecution.

Most of the theoretical questions center around the stable predicate.

7

.. . ·

Interval Arithmetic Specification 89032

SETTING UP CONSTRAINTS

We will describe the fmal pan of the system, the simplified user interface. The first
statement to consider is the type declaration : which is used to create intervals:

X: real !, interval_obj(X).

X:real(LB,UB):-
interval_obj(X), % test for/create interval .
current_value(X, [CL,CU], []),
[LBI,UBI] :• [CL,CU] " [LB,UB],
current_value(X, [LBI,UBI], Agenda),
stable(Agenda). % process any repercussions

Note that if the range is set it may trigger a cascade of additional narrowings; if the setting
is inconsistent the call to stable may fail.

The rest of the major arithmetic relations are handled (so far as intervals are concerned) by:

{Y is X} interval_obj(Y), $arith_rel(Seq, Y, X).
{Y == X} - $arith_rel(Seq, Y, X).
{Y =< X} :- $arith_rel(Sle, Y, X).
{Y >= X} - $arith_rel(Sle, X, Y).

$arith_rel(F,Expressionl, Expression2):-
evaluate(Expressionl, El, Agenda),
evaluate(Expression2, E2, Agenda),
node(F(El, E2)) , % make a node
new _member(F(El, E2), Agenda), % add it to agenda
stable(Agenda). % fixed point i terati.on

The interval evaluation procedure is essentially a mapping from the usual tree expression to
the constraint network. (Again, we ignore the addiitonal code required to implement non
interval arithmetic expressions.) The first three cases handle the leaves of the tree:

evaluate(X,_,_) :- var(X),! ,X: real.% ill1'l ici t interval creation
evaluate(X, X, _):- i.nterval_obj(X),!.
evaluate(X, XE,_):- point_interval(X,XE),!.

The fll'St of these clauses is to create an interval when an uninstantiated variable is
discovered in an arithmetic expression. A simple implementation for point interval is

point_interval(X, XE):
coerce(X,R),
i.nterval_obj(XE),
current_value(XE,[R,R],[]).

coerce(X,X):-float(X).

% assert: nodeli.st is empty

coerce(X,Y):-integer(X), Y is float(X) .

8

Interval Arithmetic Specification 89032

The actual implementation in BNR Prolog differs from this in that the endpoints are not
identical. This is an attempt to work around the problems caused by using binary internal
representations which, in general, cannot represent finite decimal numbers exactly.

Finally, the recursion step in evaluation is given by:

evaluate(F(X,Y), ZE, Agenda):-
Sfrnap(ZE i.s F(XE, YE), M),
eva 1 uate(X, XE, Agenda) ,
evaluate(Y, YE, Agenda),
interval_obj(ZE),
node(M),
new_member(M, Agenda).

Sfmap(Z is X + X,
$fmap(Z i.s X + Y,
$fmap(Z is X - X,
$fmap(Z i.s X - Y,
$fmap(Z i.s X • Y,
Sfmap(Z i.s X/Y ,
Sfrnap(Z is min(X,Y),
$fmap(Z is max(X,Y),

$mul(Two,X,Z)):- poi.nt_i.nterval(2, Two),!.
$add(X,Y,Z)).
$eq(Zero,Z)):- point_ interval(0, Zero),!.

$add(Z,Y,X)).
$mul(X,Y,Z)).
$mul(Z,Y,X)).
$min(X,Y,Z)).
$max(X,Y,Z)).

We have omitted the functions midpoint, median, and delta which take intervals as
arguments but which return floating point values. Also omitted are the integer and boolean
types and their primitives and transcendental functions and special utilities such as
accumulate. Finally, the recently added new predicates lower _bound and upper _bound
are given by:

lower_bound(X):- i.nterval_obj(X),
current_value(X,[L,U],[]),
current_value(X,[L,L], Agenda),
stable(Agenda).

upper_bound(X):- i.nterval_obj(X),
current_value(X,[L,U],[]),
current_value(X,[U,U], Agenda),
stable(Agenda).

EXAMPLES

Some examples of execution traces can help to give a feel for the dynamics. This first
example illustrates "waves" of change sweeping across a small network. Note how the
lower bound of 1 is propagated incrementally, while the upper bound 5 is propagated
backwards "all at once". When these two networks are then bridged by the final equality,
there are two update waves which get processed in parallel. Notice also the final bounce
off the boundary conditions.

9

InterVal Arithmetic Specification

problem:

trace:

X: real,
1 =< X,
u =< v,
y == u

Y:real,U:real,V:real,
X =< Y,

v =< 5,

X:real % _Interval_984396
Y: real % _IntervaL985196
U:real % _IntervaL985996
V: real % _IntervaL986796

=< --> $le(_Interval_987736,_Interval_984396) % first =<
node: $le(_Interval_987736,_Interval_984396)

_IntervaL984396 <- [1.0,3.4000e+30] % X changes

=< --> Sle(_Interval_984396,_Interval_985196)
node: $le(_Interval_984396,_Interval_985196)

_Interval_985196 <- [1.0,3.4000e+30] % Y changes

=< --> Sle(_Interval_985996,_Interval_986796)
node: $le(_IntervaL985996,_Interval_986796) % no change

=< --> $le(_Interval_986796,_Interval_992976)
node: $1e(_Interval_986796,_Interval_992976)

_Interval_986796 <- [-3.4000e+30,5.0] % change V
node: Sle(_Interval_985996,_Interval_986796)

_IntervaL985996 <- [-3.4000e+30,5.0] % then U

== --> Seq(_Interval_985196,_Interval_985996)
node: $eq(_Interval_985196,_Interval_985996)

_Interval_985196 <- [1.0,5.0] % change Y
_Interval_985996 <- [1.0,5.0] % change U

node: Sle(_Interval_984396,_Interval_985196)
_Interval_984396 <- [1.0,5.0] % change X

node: $le(_Interval_985996,_Interval_986796)
_Interval_986796 <- [1.0,5.0] % change V

node: $le(_Interval_987736,_Interval_984396)
node: $le(_Interval_986796,_Interval_992976)

final results:
_Interval_984396:[1.0,5.0]
_Interval_985196:[1.0,5.0]
_Interva1_985996:[1.0,5.0]
_Interval_986796:[1.0,5.0]

10

89032

Interval Arithmetic Specification 89032

The next example illustrates function evaluation. Note that information generally passes
from narrower to wider intervals; in the case of function evaluation this is naturally the
same direction that conventional computation takes.

problem: X:real(-100,100), Y:real,

trace

Y -- -6 + X * (X - 1),
X == 2

X:real(-100,100)
_IntervaL984760 <- [-100.0,100.0]
Y:real

--> $add(_Interval_987568,_Interval_987348,_Interval_984760)
* --> $mul(_Interval_984760,_Interval_987568,_Interva1_988220)
+ --> $add(_Interval_986728,_Interval_988220,_Interval_988872)
== --> $eq(_Interval_985644,_Interval_988872)
node: $add(_Interval_987568,_Interval_987348,_Interval_984760)

_IntervaL987568 <- [-101.0,99.0
node: $mul(_Interval_984760,_Interval_987568,_Interval_988220)

_Interval_988220 <- [-1.0100e+4,1.0100e+4]
node: $add(_Interval_986728,_Interval_988220,_Interval_988872)

_Interval_988872 <- [-1.0106e+4,1.0094e+4
node: Seq(_Interval_985644,_Interval_988872)

_Interva1_985644 <- [-1.0106e+4,1.0094e+4]

% now do the x-2
== --> $eq(_Interval_984760,_Interval_995740)
node: $eq(_Interva1_984760,_Interval_995740)

_Interval_984760 <- [2.0,2.0]
node: Sadd(_Interva1_987568,_Interval_987348,_Interval_984760)

_Interval_987568 <- [1.0,1.0]
node: $mul(_Interval_984760,_Interval_987568,_Interval_988220)

_Interval_988220 <- [2.0,2.0]
node: $add(_Interval_986728,_Interval_988220,_Interval_988872)

_Interval_988872 <- [-4.0,-4.0]
node: $eq(_Interval_985644,_Interval_988872)

_lntervaL985644 <- [-4.0,-4.0]

final results:
_Interva1_984760:[2.0,2.0]
_Interva1_985644:[-4.0,-4.0]

The last test illustrates fl.xed point iterations:

problem:

trace:

X:rea1(-100,100),Y:real
v == -6 + x • c_x - 1),
y = 0,
X >= 0

X:real(-100,100)
11

Interval Arithmetic Specification

_Interval_984560
Y:real

89032

<- [-100.0,100.0]

--> $add(_Interval_987368,_Interval_987148,_Interval_984560)
* --> $mul(_Interval_984560,_Interval_987368,_Interval_988020)
+ --> $add(_Interval_986528,_Interval_988020,_Interval_988672)
== --> $eq(_Interval_985444,_Interval_988672)
node: $add(_Interval_987368,_Interval_987148,_Interval_984560)

_IntervaL987368 <- [-101.0,99.0]
node: $mul(_Interval_984560,_Interval_987368,_Interval_988020)

_Interval_988020 <- [-1.0100e+4,1.0100e+4]
node: $add(_Interval_986528,_Interval_988020,_Interval_9$8672)

_Interval_988672 <- [-1.0106e+4,1.0094e+4
node: $eq(_Interval_985444,_Interval_988672)

_Interval_985444 <- [-1.0106e+4,1.0094e+4]
% network has now been constructed

% setting Y==0: this shows co~utation coming "back up" the evaluation
% tree, opposite to the conventional direction

-- --> $eq(_Interval_985444,_Interval_995540)
node: $eq(_Interval_985444,_Interval_995540)

_Interval_985444 <- [0.0,0.0]
node: $eq(_Interval_985444,_Interval_988672)

_Interval_988672 <- [0.0,0.0]
node: $add(_Interval_986528,_Interval_988020,_Interval_988672)

_Interval_988020 <- [6.0,6.0]
node: $mul(_Interval_984560,_Interval_987368,_Interval_988020)

% iteration stops here- the SmulC case mentioned previously
% the rrul tipl icati.on i.s 6=X*(X-1), but both X and (X-1) span 0

% X >= 0 ; this breaks the impasse
>= --> $le(_Interva1_1001820,_Interva1_984560)
node: $le(_Interval_1001820,_Interva1_984560)

_Interval_984560 <- [0.0,100.0]
node: $add(_Interval_987368,_Interval_987148,_Interval_984560]

_Interval_987368 <- [-1.0,99.0]
node: $mul(_Interval_984560,_Interval_987368,_Interval_988020)

_IntervaL984560 <- [0.060606,100.0]
_Interval_987368 <- [0.06,99.0]

node: $add(_Interval_987368,_Interval_987148,_Interval_984560)
_Interval_984560 <- [1.06,100.0]

node: $le(_Interval_1001820,_Interva1_984560)
note that Sle is never going to do anything but gets scheduled
just i.n case; some Sle cases are naturDally persistent, but we
aren't taking advantage of i.t

node: $mul(_Interval_984560,_Interval_987368,_Interval_988020)
_IntervaL987368 <- [0.06,5.6604]

% note that X -1 has now narrowed substantially
node: $add(_Interval_987368,_Interval_987148,_Interval_984560)

_IntervaL987368 <- [0.06,5.6604]
_IntervaL984560 <- [1.06,6.6604]

node: $mul(_Interval_984560,_Interval_987368,_Interval_988020)

node:
note we

node:

_IntervaL987368 <- [0.90085,5.6604]
$1e(_Interval_1001820,_Interval_984560)

are now i.n a loop with intervals decreasing
$add(_Interva1_987368,_Interval_987148,_Interval_984560)

_Interval_984560 <- [1.9009,6.6604]

12

lnterval Antllmenc .specmcanon

node: $mul(_Interval_984560,_Interval_987368,_Interval_988020)
_Interval_987368 <- [0.90085,3.1565]

node: $le(_Interval_1001820,_Interval_984560)
% each stage is able to eliminate more points in a sort of
% inductive proof

node: Sadd(_Interval_987368,_Interval_987148,_Interval_984560)
_Interval_984560 <- [1.9009,4.1565]

node: $mul(_Interval_984560,_Interval_987368,_Interval_988020)
_Interval_987368 <- [1.4435,3.1565]

node: $le(_Interval_1001820,_Interval_984560)
% convergence is slow, comparable with regula falsi

node: $add(_Interval_987368,_Interval_987148,_Interval_984560)
_Interval_984560 <- [2.4435,4.1565]

node: $mul(_Interva1_984560,_Interva1_987368,_Interval_988020)
_Interval_987368 <- [1.4435,2.4555]

node: $le(_Interval_1001820,_Interval_984560)

node: $add(_Interval_987368,_Interval_987148,_Interval_984560)
_Interval_984560 <- [2.4435,3.4555]

node: $mul(_Interval_984560,_Interval_987368,_Interval_988020)
_Interval_987368 <- [1.7364,2.4555]

node: $le(_Interval_1001820,_Interval_984560)

% next cycle
% (printing

node:

is different- both factors narrow in the multiplication
precision does not show the difference)
$add(_Interval_987368,_Interval_987148,_Interval_984560)

node:

node:

_Interval_984560 <- [2.9757,3.0163]
$mul(_Interval_984560,_Interval_987368,_Interval_988020)

_Interval_984560 <- [2.9757,3.0163]
_Interval_987368 <- [1.9892,2.0163]

$le(_Interval_1001820,_Interval_984560)

node: $add(_Interval_987368,_Interval_987148,_Interval_984560)
_Interval_984560 <- [2.999,3.0006]

node: $mul(_Interval_984560,_Interval_987368,_Interval_988020)
_Interval_984560 <- [2.999,3.0006]
_Interval_987368 <- [1.9996,2.0006]

% at this point the changes become invisible because of printing
% precision limitations, but the iteration finally stops with the
% correct answers printed as 2.0 and 3.0. Internally, these are very
% small pointlike intervals, the width determined by the implementation
% of point_interval and the precsion of arithmetic used in Si.sl and
% $isH.

BffiLIOGRAPHY

BNR Prolog (1988) User Guide and Reference Manual.

Cleary, J. C. (1987) ''Logical Arithmetic", Future Computing Systems, Volume 2,
Number 2, pp.125-149.

13

Interval Arithmetic Specification 89032

Davis, E.(1987) "Constraint propagation with interval labels" Arrificial Intelligence 32 pp.
281-331.

Moore, R. E.(Ed.) (1966) Interval Analysis, Prentice Hall, New Jersey.

Moore, R. E.(Ed.) (1988) Reliability in Computing (The role of Interval Methods in
Scientific Computing) Perspectives in Computing; Vol. 19, Academic Press.

Older, W. and Vellino, A. (1989) "Extending Prolog with Constraint Arithmetic on Real
Intervals", CRL Doc#89023 .

Vuillemin J., (1987) "Exact real computer arithmetic with continued fractions", Institut
National de Recherche en lnformatique et Automatique (INRA).

14

Interval Arithmetic Specification 89032

APPENDIX A: THEORY

This appendix is concerned with the proofs of properties of the fixed point iteration
operator represented by the stable predicate. The properties in question are the existence
of fixed points, independence of scheduling order, monotonicity and termination. Partial
correcmess is already established since the primitive operations never discard points_ except
when there is a proof that they contain no consistent solutions.

The proof is based on establishing an appropriate partially-ordered state space, based on
topological considerations, and then employing simple lattice-theoretic arguments.

STATE SPACE

The first thing to note about this operator is that it does not change the structure of the
constraint network, but at most alters the current values of some intervals. Thus the state
can be construed as a fixed set of interval objects each with a current value which is an
interval range. Formally, let I be the set of interval ranges (including the empty range)
over the reals, 0 be the finite set of interval objects, and V be the map V:O -> I

defining the current value. Then the state is defined as S = X i e o V(i), the Cartesian
product of the current values. The state space L is defined to be all such Cartesian
products, partially ordered by inclusion. (For simplicity, we will consider U as fixed and
have suppressed it from the notation.) The largest element (U*) in the partial order is the n
fold product of the universal interval U; the smallest is the null set. Since ranges are closed
intervals, they are compact topological spaces and therefore so are all their Cartesian
products. In particular, U* as a topological space is compact and Hausdorff (with the
usual induced topology from the reals), and therefore all states are closed sets. Hence the
arbitrary intersections of states are all closed compact sets and in fact states.

It follows that since L is closed under arbitrary intersections, and since there is a largest
element, a join operation V can be defined (by intersecting all elements bigger than all the
items in a given collection), and L is a complete lattice. (Since meets in the lattice are just
set intersections. we will generally use "intersection" for "meet" in the following and refer
to the elements of L as "sets"; however. the lattice we are dealing with is not the usual
power set lattice of U since the join is not the set union.)

L is also intersection-compact, i.e. if the intersection of an arbitrary collection of sets is
empty, then there is a fmite subcollection which has empty intersection. (This is just the
compactness ofU* restated in the finite-intersection property form.) For inconsistent sets
of constraints, which eventually end in failure, this guarantees that the failure occurs after a
fmite number of steps.

15

Interval Arithmetic Specification 89032

CONTRACTIONS ON L

Now let us turn to the operations, i.e. the maps p: L -> L . The primitive operations $le,
$add, etc. all had the following properties (with respect to the space spanned by their input
arguments):

a. contracting
b. monotone (isotone)
c. idempotent

y ::2 p(Y)
X :2 Y implies p(X) ~ p(Y)
p(p(X)) = p(X).

(Note that failure is regarded as mapping to the null set.) When applied to a selected two
or three dimensions out of L , all others being left unchanged, these properties carry over
directly to similar statements over L .

Given two maps p,q: L ->L with these properties, the composite maps pq and qp are
obviously contracting, but need not be idempotent. (Recall the last example in the main
text.) To investigate this question, a good place to start is the space of all contraction
maps over L , which we will denote by C:

def C := { p :L ->L I p is contraction } .

C inherits a partial order and lattice structure from L in the usual way, e.g

p ::2 q iff for all X in L p(X) ::2 q(X)

(p '"' q) (X) := p (X) '"' q(X) for all X in L

The bottom element is the null map 0 (the analog of "fail" in Prolog); the top element is the
identity map 1.

C is also a semigroup under function composition with 1 as two-sided identity and 0 as a
two-sided zero element:

1p=p
p1 =p
Op=O
p0=0

Only the last of these depends on the maps beirig contractions.

The lattice and semigroup structures are tied together by two basic properties:

for all p,q in C : q ::J pq
for all p,q,r in C : p ~ q implies pr ~ qr .

16

Interval Arithmetic Specification 89032

The first merely restates that p is a contraction; the second follows from the definition of the
partial order relation. Note that the second states that the semigroup operation is monotone
in the first variable.

There are a couple of useful results on idempotents in C. If p and q are idempotents in any
semigroup, and p commutes with q, then pq=qp is also an idempotent, since

(pq)(pq) =p(qp)q= ppqq = pq.
Second, given any contraction p then p* :=lim p n exists. To show this, fix an arbitrary
set X; then X ::2 p(X) ::2 pp(X) ::2 ••• ; this monotonically decreasing sequence has a
limit since the lattice L is complete, and this defmes the action of p* on X. Since X is
arbitrary, p* is well defined. From the method of construction, it is clear that p* is
idempotent. Given two idempotents, p,q, we can then define p*q := (pq)*; by the
preceding comments, this operation is a well defmed operation on the set of idempotent
contractions.

Ifp and q are idempotents, then define the (Green's) relations by
pLqiff p=pq
pRqiff p=qp
p S q iff p=qp=pq (i.e. iffp L q and p R q).

These relations capture the idea of one idempotent p being "stronger" than q. Note that all
three are trivially reflexive. Lis transitive, since p L q and q L r implies p=pq and q=qr,
so pr= (pq)r=p(qr)=pq=p.
R is transitive by a similar proof, and the transitivity of S follows. Since pSq and qSp
implies p=qp and q=qp implies p=q, S is a partial order on C , and pSq => q ~ p since
p is a contraction. If i is idempotent and iLp, then iLpll, and iLp* and similarly for R and
S. Hence, p* is the weakest idempotent stronger than p.

17

-

Interval Arithmetic Specification 89032

MONOTONE CONTRACTIONS

To get a significantly stronger connection between the semigroup and lattice structures,
we need to specialize to CM, the space of monotone contractions.

def CM := { p -.L ->L I X:2 p(X) and X ::2 Y => p(X) :::> p(Y)}.

(Since all the basic node operations are monotone, this is a reasonable restriction.) Since
the composition of two monotone maps is monotone, CM is a subsemigroup of C. The
intersection of monotone maps is also monotone, since intersection is itself monotone.
Since 0 and 1 are both monotone maps, CM also inherits the lattice and monoid properties
as well. Monotonicity (as maps on L) provides for symmetrical relationships between
the product and order structures:

for all p,q in C : q :2 qp
for all p,q,r in C : p ::2 q implies rp ::> rq .

Note that the product is now monotone in the second argument as well as the first. A
simple proof then shows that the product is in fact jointly monotone in both arguments.
From this it follows that p ~ q implies pp ::2 qq and p* ;2 q*. If p is monotone, then
so is p*.

Suppose p,q are idempotents in CM. Since pis a contraction, q ::2 pq, so pLq implies q
~ p. Conversely, if q ~ p, then since pis monotone, pq :::> pp = p, but since q is a
contraction 1 ::2 q and p ~ pq, so p=pq and pLq. Similarly, pRq iff q ::? p and pSq
iff q :::> p. Hence these partial orders all collapse into the state-induced partial order.

Since q :2 qp and p :2 qp, it follows that p 11 q ::? qp ; similarly, p 11 q :::> pq. By
induction, (pq)n-1 ::? (qp)fi and (qp)n-1 ::2 (pq)n, so (pq)n-1 11 (qp)n-1 ::? (qp)n and
(pq)n-1 n (qp)n-1 ~ (pq)fi. Thus these sequences are mutually cofmal and have the same
limit: p*q=(pq)*=(qp)*=q*p. Hence, regarded as an operation on idempotents, * is
commutative.

If p and q are idemptents in CM: since pa nd q are contractions then X :2 p(X) and X ~
q(X), so X ~ p(X) Y q(X) ::? p(X), and then p(X) ::> p(p(X) Y q(X)) ::>
p(p(X))=p(X), and hence p(X) = p(p(X) Yq(X)) and similarly q(X) = q(p(X) Y q(X))
Then (p Y q)(p Y q)(X) =(p Y q)(p(X) Y q(X)) = p(p(X) Y q(X)) Y q(p(X) Y q(X))
=p(X) Y q(X) = (pVq)(X), so the join of idempotents is idempotent. This can be
generalized to arbitrary joins.

If p,q are idempotents in CM , then X is a flxed point of p*q iff X is a fixed point of p
and X is a fixed point of q. Obviously, if X is a flxed point of both p and q,
(p*q)(X)=(pq)*(X)=pq(X)=X. Coversely, if X is a fixed point of p*q then X::2 pq(X) ~
(p*q)(X) =X, so p(X)=pq(X)=X and similarly for q.

18

Interval Arithmetic Specification 89032

Fixed Points

From previous results, p*q is monotone and idempotent, p*q S p, p*q S p, and if r is a
monotone idempotent with rSp, rSq, then r S p*q. Thus the binary operation *
constructs the greatest lower bound with respect to the S partial order. It follows, by the
usual lattice arguments, that * is an associative as well as commutative operation.
Operationally, this implies that the final state of the flXed point iteration is independent of
the order in which the individual primitive operations are done.

An alternate approach is to define the set of fixed "points" associated with an idempotent in
CM: F(p) = { X I p(X)=X}. The set of fixed points contains the bottom state and is
closed under arbitrary joins.

For any join-closed family F of states containing bottom, define G(F)(X)= to be the largest
Y in F such that X :2 Y. (This is unique because of the join-closed propeny.) Then G(F)
is easily shown to be an idempotent monotone contraction.

The maps F,G satisfy G(F(p))=p and F(G(A)=A, and form a bijective correspondence
between narrowing operators (idempotent monotone contractions) and join-closed subsets
of stable states. Note that from the result of the last section, F (p*q) = F (p)nF (q).

Compactness

We have noted earlier that compactness implies finite termination of all iterations which
eventually fail. Non-failing iterations can, in principle, continue indefmitely over the reals;
each such monotonically decreasing sequence of intervals contains a real number by
Cantor's nested set theorem. However, in the implementation the precision of the
arithmetic is limited by the floating point machinery; the floating point representation space
being finite, the aproximation sequences converge after a finite number of operations.

19

CLP(BNR) /X-ray

The Application of CLP(BNR) to

Powder Method X-ray Diffraction Crystallography

ABSTRACf

William J. Older

February 1995

This paper illustrates the use of relational interval arithmetic in CLP(BNR)
for the determination of primitive cell structure from powder method X-ray
diffraction data. It serves to illustrate the way in which a uniform
declarative programming style can be employed for problems involving a
search over a space of models parameterized by both discrete and
continuous parameters.

INTRODUCTION

The techniques natural to Prolog programming are particularly suitable for problems
involving searches over discrete spaces. Simple algorithms to do exhaustive search can be
written very easily in Prolog by taking advantage of its natural backtracking ability, and
more efficient search algorithms can usually be obtained by manipulating the order of
generation of candidates, arranging for early failure, or otherwise constraining the search.

Traditionally, however, the treatment of searches over spaces parameterized by continuous
variables has been limited by the conventional nature of the floating point arithmetic
available. Since continuous spaces cannot practically be aproximated by discrete spaces,
the advantages of the declarative style are lost and one is forced to treat such problems in
ways that would be fami1iar to the Fortran programmer.

The introduction of relational interval arithmetic in CLP(BNR) now makes it possible to
adopt the declarative style in problems involving continuous variables. This is particularly
convenient in problems where both discrete and continuous parameters are present, since it
allows both to be treated with the same paradigm. To illustrate this point we present a
simplified version of a typical problem of this sort, and show how a declarative Prolog
solution can be expressed using interval arithmetic.

THE PROBLEM

The problem is that of identifying the shape of the primitive cell of a crystal lattice from X
ray diffraction data. A primitive cell can be characterized by six continuous parameters,
which may be taken as the lengths of three non-coplanar vectors a,b,c and the angles

CLP(BNR) /X-ray

between them. When X-rays interact with a crystal lattice, the phenomenon of Bragg
diffraction causes scattering of the X-ray beam at specific angles 9 depending on the
wavelength A. of the X-rays and the spacing d between the planes of the crystal lattice,
according to the well-known Bragg equation:

n A. =2d sin e.

In the powder method, a crystalline sample is ground to powder and the powder mixed
with glue is mounted in an X-ray beam, so that the scattered rays impinge on a detector
such as a photographic film. Individual crystals then take many different orientations
relative to the optical axis of the beam, thus averaging over all orientations. The resulting
image at a fixed radius shows a spectrum which is a function of the interplanar·distances
and the effective X-ray wavelength. The problem is then to determine the correct shape of
the primitive cell which would account for all the observed lines in the spectrum.

The mathematical formulation of the problem is simplest when expressed in terms of the
parameters of the reciprocal lattice, the dual basis in Fourier space. The squared distances
from the arbittarily chosen origin to the lattice points (h,kJ) (with h.k,l integers) can be
related directly to the observed line spacings, given the X-ray wavelength and test
equipment geometry. Thus given some initial transformation of the raw data to squared
distances, the essential problem is to infer the cell parameters from the pattern of squared
distances in the lattice. This is illustrated schematically in figure 1 below, which shows the
two-dimensional case.

This is an example of an inverse problem with a discrete labeling component: the forward
problem of computing the distances given cell parameters and line labeling is trivial.
Likewise inferring cell parameters from known labeling and distances, although not so
trivial, is relatively straightforward by conventional techniques. With both the cell
parameters and labeling unknown, however, it is difficult to find a way to apply
conventional techniques. One is forced to adopt an approach which guesses tentative
labelings until there enough to determine cell parameters, and to do this systematically until
the right guess is made, and this is difficult to do correctly using conventional techniques .

..,

CLP(BNR) /X-ray

Fig.l.-Reciprocallattice and observed spectrum

For any ftxed lattice point (h,k,l), there is a simple quadratic formula for computing the
squared distance as a function of the cell parameters:

di.stance2(
{ 02

[H,K,L], [A,B,C,CosA,"CosB,CosC], 02):-
i.s (H*A)**2 + (K*B)**2 + (L *C)**2 +

2*(H*K*A*B*CosC + K*L*B*C*CosA + l*H*C*A*CosB) }.

CLP(BNR) {X-ray

where A, 8, c are the lengths of the primitive vectors and where CosC is the cosine of the
angle between vector a and vector b and so on. Since only the cosines of the cell angles
appear in this formula, it is evidently more efficient to use these cosines instead of the
angles themselves in our representation for a primitive cell

The mathematical structure of the problem is now becoming clear: given the primitive cell
shape there is a function to determine the squared distance to any particular lattice point.
Furthermore, given any six sufficiently different lattice points (and knowing which ones
they are) and their corresponding squared distances, one could solve the six simultaneous
non-linear equations to determine the cell shape. (Solving such a system is, of course, not
exactly trivial but there are traditional techniques for accomplishing it.) The essential
difficulty is then that one does not know a priori which distance values correspond to
which lattice points. This is complicated by the fact that there may be addiitonallines
present due to contamination of the sample, or the sample might just be a mixture. In this
manner the continuous system identification problem has acquired a significant
combinatorial complexity.

There is one more significant theoretical point to be made. The cell shape which we are
seeking has been described as three lengths and three cosines. This description, however,
is both imprecise and inadequate. To be more precise, we can choose a specific tuple
representation such as that used above:

[A, 8, C, CosA, Cos8, CosC]

In addition, however, we need to specify that these six parameters are continuous and
indicate their initial domains. In CLP(BNR) this can be done by means of a type
declaration. Since A, 8, and c are distances, their domains are [O,infmity] and this would
be written as

[A,8,C]:rea1(0,_)

This is not quite right, however, since it contains a hidden redundancy. Since we do not
know which base vector A,B, or cis which, any permutation of them (together with the
corresponding angles) would represent the same primitive cell, so there is a six-fold
degeneracy in the representation. To remove this degeneracy, we can agree to always list
them in order of increasing size. This can be added to the specification above, by adding
the constraint:

(A -< 8, B-< C }

after the declarations.

The cosines must be treated similarly; since the angles between the vectors·go from 0 to
180 degrees, the cosines would have initial domains [-1,1] and should be declared as such.
However, this is also a redundant representation since the signs of any of the base vectors
of the cell can be inverted (thus changing the signs of the cosines) without describing a
different lattice at all A symmetry analysis (which can be found in reference 1) shows that
there are two classes of crystals depending on whether their primitive cells have an odd or
even number of obtuse angles. By restricting ourselves to Type I crystals (those with an
even number of obtuse angles), it is always possible to choose base vectors such that all the
angles are acute, by reversing the sign of the base vector opposite the acute angle. Hence,
for Type I crystals, the proper initial domain restrictions are:

A

CLP{BNR) /X-ray

[CosA,Cos8,CosC] : real(0,1) •

For Type IT cells (with an odd number of obtuse angles), the declaration should
correspondingly be:

[CosA,Cos8,CosC] : real(-1,0).

and to handle both possibilities together:

[CosA,Cos8,CosC] : real(-1,1), 8:boolean,
{ B== (CosA>=0),B==(CosB>=0),B==(CosC>=0)}.

We will henceforth assume for simplicity that we are dealing with Type I crystals.

This specification can then be packaged as a Prolog "type description" which
checks/creates instances of the type:

type_I_cell([A,8,C,CosA,Cos8,CosC])
[A,8,C] : real(0,_),
[CosA,Cos8,CosC] : real(0,1),
{ A =< 8, 8 =< C }.

THE PROGRAM

The next step is to provide a generator for lattice points. It will be more efficient in the fmal
algorithm if computed distances are aproximately ordered by size. One way to accomplish
this is to generate lattice points [H,K,L] from the center out. For this one can simply use a
set of facts lof the form i.sometri.c(N, [H,K,L]), ordered by N:

~ N i.s h**2 + k**2 +1**2
~ defi.nes search order i.n general case

i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
i.sometri.c(
etc.

1,[1,0,0]).
2, [1,1,0]).
3,[1,1,1]).
4, [2,0,0]).
5,[2,1,0]).
6,[2,1,1]).
8, [2, 2,0]).
9,[3,0,0]).
9, [2,2,1]).
10,[3,1,0]).
11,[3,1,1]).
12,[2,2,2]).
13,[3,2,0]).
14, [3,2 ,1]).
16,[4,0,0]).
17,[4,1,0]).
17,[3,2,2]).
18,[4,1,1]).
18,[3,3,0]).

This table lists one point of each distinct type in order of distance from the origin in a cubic
lattice; it can easily be computed in Prolog to any desired limit by:

CLP(BNR) /X-ray

findset(isometric(N, [H,K,L]),
[integer_range(H,0, Max),

integer _range(K,0, Max),
integer _range(L, 0, Max),

N is J*J + K*K + L *L
],
List),

foreach(member(X, List) do assert(X)),

For each such point all its distinct permutations are also lattice points:

distinct_perm([H,K,L], [H,K,L]).
distinct_perm([H,K,L], [H,L,K]):- K<>L.
distinct_perm([H,K,L], [K,H,L]):- H<>K.
distinct_perm([H,K,L], [L,K,H]):- L<>H.
distinct_perm([H,K,L], [K,L,H]):- H<>K,K<>L,L<>H.
distinct_perm([H,K,L], [L,H,K]):- H<>K,K<>L,L<>H.

Similarly, any non-zero coordinate can also occur with the opposite sign; the opposite
point (with all signs reversed) is redundant and should be eliminated. This specification
can then be written as

sign(
sign(
sign(
sign(
sign(
sign(
sign(

[H,K, L],
[0,K,L],
[H,0,L],
[H,K,0],
[H,K,L],
[H,K,L],
[H,K,L],

[H,K,L]).
[0,-K,L]):-K<>0,L<>0,!.
[H,0,-L]):-L<>0,H<>0,!.
[H,-K,0]):-H<>0,K<>0,!.
[-H,K,L]):- H<>0,K<>0,L<>0.
[H,-K,L]):- H<>0,K<>0,L<>0.
[H,K,-L]):- H<>0,K<>0,L<>0.

The complete generator for lattice points is then:

hkl([H,K,L], Limit):-
integer_range(N,l, Li~t),
isometric(N,HKL),
distinct_perm(HKL,HKLU),
sign(HKLU,[H,K,L]).

We will want to generate a list of squared distances to lattice points: one way to accomplish
this is:

dist2_list(N_limit, Cell, List):
findall(HKL, hkl(HKL,N_l imit),L),
SdistZ(L, Cell, List).

SdistZ([] ,Cell,[]).
SdistZ([HKLILs],Cell,[DZIDs]):-

distanceZ(HKL, Cell, 02),
SdistZ(Ls,Cell, Ds).

~

where Cell is as defined previously. Converting the lattice indexes toa list first, and using
list processing to compute distances, is necessary if we want to use this with Cell

CLP(BNR) /X-ray

consisting of intervals (since we must have a conjunction of constraint equations).

We also need a predicate, essentially an arithmetic version of the well-known member
predicate, to check if an arithmetic quantity is arithmetically equal to any on an ordered list
of observational data. Since there are several sources of uncertainty in the experimental
setup, such as the fact that the xray beam is a mixture of frequencies, the observed data is
slightly fuzzy, and will therefore also be represented as interval values. Since it is
conceptually misleading that the comparison with a predicted value should narrow the
interval actually observed, the first clause makes use of the inclusion primitive '<=' of
CLP{ (BNR), which reads the data but does not change it The second clause includes a
constraint check that cuts off search once the proper place in the list is past

op(700, xfy, in). % member for intervals

X in [DIDs]:- { X <- D}. % inclusion
X in [DIDs] :-{ X>-D }, X in Ds.

Finally, here is a simple version of the complete algorithm which takes the measured
values of distance squared (as a list of intervals), and non-deterministically finds all
reciprocal lattice parameters which can be found in the data. By formulating the problem
this way, we can handle both mixtures and contaminated samples. (However, it does
assume that we are not missing any data points, such as those too large or too small to have
been captured.)

analyze(Limit, Cell, Observations) :
type_I_cell(Cell),
di.st2_li.st(Li.mi.t, Cell, Computed_li.st),
all i.n(C~uted_l i.st, Observations).

all i.n([] ,_).
allin([XIXs],L):- X in L, allin(Xs,L).

The declarative reading of this program is straightforward. The first line ensures that the
reciprocal lattice parameters meet the requirements specified for a Type I lattice. The
second line then computes a list of all the squared distances up to some order, the higher the
order, the more likely that the answer will be unique (provided one is not looking for
something beyond the end of the observational data). The third line then requires that all
computed lines are among the observed ones.

An operational interpretation in CLP(BNR) would be something like this: the first line
creates six interval variables with known initial domains and a couple of constraints. The
second line creates many more variables connected to the original six through the relation
distance2. Since initially the six parameters of the reciprocal lattice are only slightly
constrained, the conceptually distinct computed values all have ranges from 0 to infinity.
The third line non-deterministically matches observations to computed values.

For example, the first computed value will always match (<=) the first observation, thus
constraining funher the cell parameters on which the first computed value depends, which
in turn affects all the computed values. Each successful match narrows the ranges of the
cell parameters and thus makes further matches more difficult As usual, a matching failure
triggers backtracking to try another possibility.

To show this in a more concrete form, the program was modified to output the cell

'7

CLP(BNR) /X-ray

parameters after each successful match. The cell parameters after the first seven matches (
for artificial input data) are:

1 [0.32848,0.33152] [0.32848,9.2196e+18] [0.32848,9.2196e+18]
[0.00000,1.0001] [0.00000,1.0001] [0.00000,1.0001]

2 [0.32848,0.33152] [0.49899,0.5010] [0.49899,9.2196e+18]
[0.00000,1.0001] [0. 00000' 1. 0001] [0.00000,1.0001]

3 [0.32848,0.33152] [0.49899,0.5010] [0.99949,1.0006]
[0.00000,1.0001] [0.00000,1.0001] [0.00000,1.0001]

4 [0.32848,0.33152] [0.49899,0.5010] [0.99949,1.0006]
[0.00000,1.0001] [0.00000,1.0001] [0.00000,0.0091536]

5 [0.32848,0.33152] [0. 49899 '0. 5010] [0.99949,1.0006]
[0.80937,0.81946] [0. 00000 '1. 0001] [0.00000,0.0091536]

6 [0.32848,0.33152] [0. 49899 '0. 5010] [0.99949,1.0006]
[0.80937,0.81946] [0.63359,0.64923] [0.00000,0.0091536]

7 [0.32848,0.33152] [0 .49899,0. 5005] [0.99949,1.0006]
[0.81018,0.81896] [0.63359,0.64923] [0.00000,0.0091536]

illustration of convergence of reciprocal lattice parameters
form: step number A B C

CosA CosB CosC

Notice that after the first match (obviously the (1,0,0) line) that all three sizes have
changed because of the ordering convention imposed on our representation. At step 2 (the
(0,1,0) line), B becomes very narrowly defined and the lower bound of Cis changed. C
is defined by the third step, the (0,0,1) line. The next three steps fill in the cosine values.
Note that on the seventh step (the first constraint which is "redundant"), there is only a
small adjustment to one cell size and slight narrowing of one of the cosines. Subsequent
match steps may also result in a refinement of the cell parameters; to explain why, it is
necessary to discuss what would usually be called an error analysis.

The raw experimental data consists of the spacings of lines on the photographic fllm; such
lines must have a fmite thickness to be observable. Some lines may be substantially thicker
than others, however, so one should actually measure distances to both the left and right
edges of each line in order to obtain an interval representation for the line spacing. The
line spacings will be related to the observation data by the above algorithm through a
mathematical relation, the Bragg formula, combined with relations derived from the
geometry of the apparatus. These relations involve other imperfectly known parameters
such as apparatus dimensions and the wavelength of the incident beam. If sources of
systematic error (e.g. shrinkage of the photographic film during development) are known
or suspected, these effects may be explicitly . incorporated in the model and assigned
appropriate (and hopefully narrow) initial ranges. All these sources of uncertainty will
make the observation sequence more uncertain than the raw data. Even when the raw data
has uniform errors, the non-linear nature of this transformation will mean that the enors in
the observation data sequence may differ substantially from datum to datum. The tedious
task of inferring proper 'error bars' on the observation data from the uncertainties in the
raw data (and other parameters) is done automatically by the interval arithmetic machinery.

CLP(BNR) /X-ray

It is a characteristic of the usual apparatus employed that errors in the raw data are
comparable, determined by the precision of distance measurements. The errors in the
observed squared distances (the observation list) then depend directly on the cotangent of
the scattering angle, so the most precise observations are those in which the scattering is
aproximately a right angle, and this generally occurs at higher order lines. On the other
hand, the quadratic formula alone makes higher order lines more sensitively dependent on
the cell parameters. The net result of these effects is that higher order lines, when matched
against computed values in the above algorithm, can cause a slight reduction in the size of
the cell parameter intervals, thereby refining the original estimate due to the frrst six
matches.

From a practical point of view this 'error propagation' property of interval arithmetic can be
considered an alternative to the use of more complicated statistical methods, such as least
squares. Of course, conceptually speaking, statistical techniques such as least squares (
based on L2 norms) make quite different assumptions from the interval method (which
would correspond more closely to the Ll-norm-based statistical approach), and the results
have quite different interpretations: a least squares solution is a 'point' solution which best
approximates the data in the presence of essentially normal errors, while the interval
solution describes a region in which the solution must lie if it is to account for the data
(with error bars explicitly specified).

EFFICIENCY ISSUES

As a benchmark, artificial observational data was generated as described earlier, and then
solved using this method, using the low precision CLP(RI) system on an 25Mhz 68030.

The frrst test used the "point" cell parameters [1, 2, 3, 0.12, 0.23, 0.45] and produced the
answer

[0.99999, 1.0001] '[1.9999, 2.0001]' [2. 9999, 3.0001]'
[0.11999,0.12001],[0.22999,0.23001],[0.44999,0.45001]

after 19.9 seconds. The actual search, however, only consumed about 1.13 seconds of
this.

The second test, which used the partly nearly orthogonal cell parameters [1.0, 1.3, 1.8,
0.32, 0.01, 0.2] produced the answer:

[0. 99999' 1. 0001] '[1. 2999, 1. 3001] '[1. 7999' 1. 8001] '
[0.31999,0.32001],[0.0099,0.010003],[0.19999,0.20001]

in 7.25 seconds, only 0.43 of which was spent in the search.

Finally, we note that a priori information limiting the range of cell sizes or angles (
provided by other physicochemical tests or by measuring a the angles of a macroscopic
crystal), or additional symmetry information (e.g. all sides equal) can be incorporated
directly and declaratively into the specification of the cell. In some cases of common
occurrence (e.g. onhogonal crystals), a simplified version of the algorithm would provide
performance advantages. The main point is that tuning the performance of the interval
arithmetic involves many of the same tradeoff's (such as that between speed and
completeness) and the same strategies (such as maximizing the use of a priori information

0

CLP(BNR) /X-ray

to prune searches) that appear in ordinary Prolog programming.

CONCLUSION

This example illustrates several aspectS of relational interval arithmetic. One is the use of a
declarative programming style which emphasizes the conceptual structure of the problem
and which makes it easier to manipulate the problem description to take advantage of
special circumstances. The clarity and generality achieved has a price: one can no longer
exercise such fine control over the operational details of the algorithm. The logic
programming methodology suggests starting with the most general problem statement, and
then transforming to less general but more efficient formulations by applying additional
knowledge (or additional explicit assumptions) . In addition, the use of interval arithmetic
permits new approaches to the treatment of traditional problems of precision and error
analysis. Finally, essentially the same paradigm can be used for both discrete and
continuous variables.

References

[1] L. V. Azaroff and M. J. Buerger, The Powder Method in X-ray
Ctystalloil'llphy, McGraw-Hill, 1958.

Using Interval Arirhmetic for Non-Linear
Constrained. Optimization

William J. Older

Bell- Northern Research

P.O. Box 3511, Station C

K 1 Y 4H7, Ottawa, Ontario

1.0 Introduction

One of the most imponant problems of applied mathematics which arises in most areas of
the quantitative sciences and engineering disciplines is that of optimizing some function
of many variables subject to various side constraints. The general case of real-valued non
linear functions of real variables, where the constraints may be non-linear and either of
equality or inequality type, is especially difficulL This paper is an informal preliminary
repon on the use of relational interval arithmetic to solve such problems under the restric
tion that all functions are explicitly and finitely expressible and have continuous first
derivatives.

As a physically meaningful example of this son of problem, consider the problem of min
imizing the cost of a heat exchanger, taken from section 7.2 of reference [4], and simpli
fied slightly by removing some obviously redundant constraints. It is expressed in BNR
Prolog syntax in precisely the form required by the algorithm described in this paper.

minimize(

· 1300* exp(0.6 * ln(20000*6/(4*sqn(Tll *Tl2)+(Tll+ Tl2))))

+ 1300* exp(0.6 * ln(l2000*6/{4*sqn(T21*122) +(T2l+T22))))

where [

Tll=500 -Tol,

Tl2= 250- Til,

T21= 350- To2,

T22=200 • Ti2,

Ti1>=150, Til=<240,

Tol>=250,Tol=<490,

Ti2>=150, Ti2=<190,

To2>=210,To2=<340,

t.: sing Interval Arithmetic for X on-Linear Constrained Optimization.\iarch 3, 1993

(EQ 1)

(EQ2)

(EQ3)

(EQ4)

(EQ 5)

(EQ6)

(EQ7)

(EQ8)

(EQ9)

(EQ 10)

J).

O=<Fil, 0=<Fi2, 0=<FB12, 0=<FB21, O=<Fol, 0=<Fo2,

2.941=<FE1, FE1=<10,

3.158=<FE2, FE2=<10,

FE2*(To2- 112)=600,

FE1*(Tol- Til)=lOOO,

150•Fil + To2*FB12- Til*FE1==0,

150•Fi2 + To1 *FB21 - Ti2*FE2-=0,

Fi1 + Fi2 = 10,

Fo2 + FB 12=FE2,

Fo1 + FB21=FE1,

Fil + FB12==FE1,

Fi2 + FB21=FE2

(EQ ll)

(EQ 12)

(EQ 13)

(EQ 14)

(EQ 15)

(EQ 16)

(EQ 17)

(EQ 18)

(EQ 19)

(EQ20)

(EQ 21)

(EQ 22)

In this panicular case most of the constraints are in fact linear constraints, but the presence
of some non-linear ones (Eqs. 14-17) plus the very non-linear objective function (Eqns 1
& 2) make the problem difficult. Symbolic elimination of variables is not helpful, since
there are bounding constraints on most of the variables, which cannot therefore be elimi
nated cleanly. Although it is not obvious, it is stated in [4] that the problem is in fact con
vex, and therefore has a unique local minimum, thus making the minimization problem
much easier. Maximizing this function, however, is still difficult, since there will generally
be local maxima on each facet of the boundary of the feasible region. The algorithm which
we will describe below is completely general, and can be used to solve either of these
problems.

General problems of this son have a variety of difficulties at most levels. Conceptually,
however, there is no problem with existence of solutions under mild conditions such as
compactness of the set of feasible points and continuity of the objective function. The tra
ditional numerical approaches to optimization have usually been through some form of
"hill-climbing" or gradient-ascent methods, with numerous variations to speed conver
gence. The first and fundamental problem is that in the absence of a priori know ledge,
such as knowing that the problem is convex, a single such ascent is not sufficient since it
will find only a local optimum. Many ascents leading to the same solution suggests that it
may be the global optimum, but does not of course represent proof. There has not been, to
my knowledge, any practical, systematic, and easy way to ensure (in a strong and precise
sense) that a global optimum has been achieved. More modern techniques, like simulated
annealing, seem to work quite well at finding good solutions on even very big problems,
but still one never seems to achieve the desired degree of cenainty that the solution has in
fact been reached.

The second and more technical issue is simply to get one's favorite gradient (or whatever)
hill climber to actually do what it is supposed to do. There is usually a cenain amount

t: sing Interval Arithmetic for Xon·Linear Consuained Optimiution.\1arch 3. 1993 2

(possibly implicit) of sampling and cu:rve-fitting going on in such algorithms, and the situ
ation may often be quite different than what the algorithm is assuming to be the case.

The third complication is non-linear equality constraints. Here there is a basic choice in
techniques. One way is to replace the constraints with penalty functions and continue to
use the basic hill-climbing technique for unconstrained problems. In this case the effect of
the constraints is to make the ·'terrain" rougher (in the topographical sense), thus making
the first and second problems much more severe. The alternative is to use projected gradi
ent techniques, which requires programming of the partial derivatives, evaluating Jaco
bian matrices, and a matrix inversions (or equivalent) at every step. Naturally, each of
these involve new problems as well as costs.

The founh difficulty is due to inequality constraints, each of which may be either slack or
tight at each feasible point. The slack ones can be ignored; the tight ones must be treated
as equality constraints as described above. The problem is then that at each new point the
algorithm reaches, the inequalities must be scanned to son out which are tight, which are
slack, and which are violated. Violations must be addressed first to bring the point back
into the feasible region; this requires (at every step) reevaluation of the consrraints, which
may cause new violations, etc.

It should also be remembered that simple phrases like "inven the matrix" can hide a lot of
nastiness. In panicular, for problems in which there are redundant constraints (not uncom
mon) or local degeneracy the matrix will not be invertible; in other cases it may just be ill
conditioned and take you someplace you did not expect to ever get to. Similar things could
be said about the infamous phrase "until it converges". It seems to me that it is a character
istic of these traditional techniques that there is a very large and rather scary gap between
the high-level descriptions which one finds in journal articles and the concrete reality of
the FORTRAN codes that implement them. A lot of things (such as, for example, all of
classical numerical analysis) have been thrown into this gap in the last half-century, but
the gap does not seem to have grown much smaller.

2.0 The CLP Appio&ch

Relational inte:rval arithmetic such as that of CLP(BNR) [1 ,2] offers an alternative to this
traditional approach. Because it is tied to a strict logical framework and tracks in precise
detail the consequences of floating-point approximations, it avoids many of the low-level
pitfalls of the traditional approaches. Its meta-language (Prolog) makes it possible to
encode abstract concepts and strategies directly into programming constructs, so that there
is a fairly direct correspondence between the abstract theory and its implementation. There
is, however, a price for these advantages, as one gives up not only the low-level control
over execution (as one might expect), but also many of the traditional strategies, concepts,
and presuppositions of traditional numerical computation. Our experience seems to sug
gest, in fact, that the technique of relational inte:rval arithmetic works more effectively
when coupled with the pure abstract mathematical formulations, rather than with their
lower level translations generally encountered in traditional approaches.

t.: sing Interval Arithmetic for~ on-Linear Constrained Optimization.\1arch 3, 1993 3

The algorithm described in this paper will illustrate this thesis. Read declaratively, it con
sists mainly of a (very redundant) statement of the classical mathematical conditions for a
local optimum. Read procedurally (to the extent that this can be done), it appears to be
doing an exhaustive search over the feasible region, including every lower dimensional
facet of its boundary set. It involves some matrix inversion (or at least something like
what we usually call matrix inversion), except it is done just once before we start, and we
do not at that point know what the matrix really is, and this part of the algorithm is in fact
somewhat optional. Finally, it gives as output not just the position and value of the opti
mum (and its sensitivity coefficients), but all the optima and a rigorous proof (modulo cer
tain hypotheses) of optimality.

The basic idea of this general algorithm is simply to convert the original continuous prob
lem into a search over a discrete space of candidate solutions, and use branch-and-bound
and enumeration techniques to solve the new problem. The candidate solutions will be just
those states which might be local minima. The issue is then to formulate the necessary
conditions for candidate solutions as a conjunction of explicit arithmetic constraints,
which is precisely what the classical indirect method of optimization does.

2.1 Tne Kuhn Tucker CoiHlitio:os

In this section we will review the ideas behind the classical indirect method for expressing
such problems: the Kuhn-Tucker equations. For a full treatment, see reference [3], espe
cially Chapter 9. We will deal with the case of minimization problems only, since mini
mizing -F is equivalent to maximizing F. Most of the difficulties in the classical theory
have to do with finding sufficient conditions for a local minimum, but all we need is neces
sary conditions that are sufficiently difficult to satisfy that they serve to eliminate all but a
few points.

We start with problems in one unrestricted variable x and with no constraints. Then since
the objective function f is assumed ro be continuously differentiable, a necessary condi
tion for a minimum at x' is that the derivative f' is zero at x'. (Of course, it may also be a
maximum or inflection point there, but we don't care.) If xis restricted by x>=O, then we
find that there are two cases for minimum at x': either [x'=O & f'(x')>O] or [x'>O &
f'(x')=O]. See figure 1. These two disjunctive cases can be packed quite conveniently into
the single conjunctive expression: x'>=O & f'(x')>=O & x'f(x')=O. (This is a cheap math
ematician's trick in some sense, but it is also the fundamental basis for this entire algo
rithm, since it avoids using "or" explicitly.)

C sing Interval Arithmetic for :\"on·Linear Constrained Optimization.\1arch 3, 1993 4

f(x)

X

FIGURE 1. Necessary conditions for minimum: x>O & f'=O or x=O & f'>O

For problem equality constraints of the form h(x)=O, the classical theory of Lagrangian
multipliers tells us to look at the critical points of the Lagrangian function:

L(x, A):= f(x) + Ah(x),

by solving the simultaneous equations:

oxL =ox f + A.Oxh = 0,

o;.,L=h=O.

(EQ 23)

(EQ 24)

(EQ 25)

Note that the second equation is just the imposed constraint. The first equation involves
the derivatives of the objective function and constraint function with respect to the state
variable x, and the Lagrangian multiplier appears linearly. The value of the Lagrangian
multiplier at any solution of equations 24 & 25 can be interpreted as a sensitivity coeffi
cient, that is, it is the rate at which that particular optimum value (of f) changes as a func
tion of the right hand side of the equation h(x)=O, i.e. if the 0 were changed to a small E.

For inequality constraints of the form g(x)>= 0., we combine the previous techniques. First
we define the slack variable s=g(x) and impose the condition s>=O. This results in the ine
quality constraint being replaced by an equality constraint s - g(x)=O and a 0 lower bound
on the new state variable s. Thus we form the Lagrangian:

L(x, A):= f(x) + A(s - g(x)), S>= 0,

and the critical points will be given by solutions to the simultaneous equations:

oxL = ox f- Aaxg = 0,

o5L= A>= 0,

t.: sing Interval Arithmetic for Xon·Linear Constrained Optimization.\1arcll 3, 1993

(EQ 26)

(EQ 27)

(EQ 28)

5

a-,., L = s - g = 0,

s>=O,

A.s=O,

(EQ 29)

(EQ 30)

(EQ 31)

where X and S are regarded as independent variables, SO ax S = 0 =as X. Equations 29 and 30
are equivalent to the original imposed inequality g>=O. Equation 31 is the complementary
slackness condition, which says that either the constraint is tight (s=O) or else its sensitiv
ity is 0 (=0). This set of relations is known as the Kuhn-Tucker conditions.

For the general case, we suppose a se~ of state variables (xi, i= 1 ,.,n}, an objectiye function
f(x)i), a set of equality constraints {hl(xi)=O, j=l,m} and a set of inequality constraints
{gk(xi)>= 0, k=1, .. .1}. The Lagrangian function becomes:

and the Kuhn-Tucker conditions are then:

v\L = v X f +Lj llj v xhi -:Ek "-k v xrf = 0,

V f4L =}ri = 0.

V s L = A.k >= 0,

V f4 L = sk- r/ = 0,

(EQ 32)

(EQ 33)

(EQ 34)

(EQ 35)

(EQ 36)

(EQ 37)

(EQ 38)

Equation 33 can also conveniently be written in terms of the matrices V'xhj andV'_,gk as

(EQ 39)

which separates the equality- and inequality-parts nicely. (These are sometimes referred to
as the Kuhn-Tucker equations.)Equations 34 and 36 just impose the original problem con
straints, while equation 34 requires non-negativity of multipliers associated with inequal
ity constraints, and equation 38 are the complementary slackness conditions.

These conditions are necessary conditions for a local minimum provided that a cenain
regularity assumption holds. (The significance of this restriction will be discussed later.)
These then are the constraints which are imposed in the algorithm, which will be described
in the next section. ·

3.0 Description of Algorithm

The algorithm consists of about nine pages of BNR Pro log source, which sits on top of the
CLP(BNR) system. The CLP(BNR) system in turn consists of about fifteen pages of BNR

l!sing Interval Arithmetic for X on-Linear Constrained Optimization.\tarch 3, 1993 6

Prolog code which provides a run-time "compiler" for arithmetic expression as well as
control and enumeration predicates, plus an "arithmetic inferencing engine" which is
about 30K of C (or Assembler on 68XXX machines). Most of this engine code is for the
25 or so primitive relations of the CLP(BNR) language, and is in fact code generated by
Prolog programs from "abstract machine" source code written in Prolog.

The algorithm can be conveniently decomposed into five parts: initialization and setting
up the constraints for the feasible region, setting up the Kuhn-Tucker equations (including
computing the symbolic gradients), "redundification", enumeration, and branch-and
bound. The form of the predicate, modeled somewhat on setof, is:

minimize(F where Constraint_List, Y, Multipliers) (EQ 40)

where initially F is an arithmetic expression, constraint_List is a list of equality(=) or
inequality(=< or>=) arithmetic constraints involving unbound (and unconstrained) vari
ables, Y is a logic variable, and Multipliers is a logic variable. On (each) success, Y is
the value ofF at a global minimum, all the variables ofF and Constrair.'t _ ::.:. S"C. have
their corresponding values, and Multipliers is a list of values of Lagrangian multipliers
corresponding to the constraint list. By "values" here is meant in general an interval, i.e. a
Prolog variable constrained to lie in a closed real interval, however in some cases (espe
cially "0.0") the variable may actually be instantiated to a number.

There is a current restriction that the entire problem must be given explicitly in the call.
This means, for example, that there can be no user-defined functions in the arithmetic
expressions. It would be relatively easy to relax this somewhat and allow a simple
"macro" facility, e.g. a tanh function defined in terms of exp. But for arbitrary user
defined functions (e.g. a recursive function definition or fixed point definition) the prob
lems of computing symbolic derivatives would be fonnidable. For much the same reason,
we do not allow any of the incoming variables to be intervals, since this would allow the
existence of "hidden" constraints. .

Multiple solutions on output, although rare, can happen for several reasons. One obvious
and common cause is symmetry in the problem. Another possibility, but unusual, is for
two local optima to be so close in value that the finite precision arithmetic prevents us
from definitely choosing one or the other. A third reason is redundant constraints at the
optimum, which means that there is more than one distinct set of Lagrangian multipliers
for the same state, and the predicate returns these as two different solutions.(See Figure 2
below.)

3.1 Initialization and Constraint Setup

The first step in the algorithm is to collect a list, with duplicates removed, of all variables
used in the problem statement. Each variable is checked to ensure that it is not already
constrained, as mentioned above, and is then declared to be real, i.e. an interval with
unspecified bounds. The list of interval-variables, state variables, will be used to define the
gradient operator.

{J sing Interval Arillunetic for X on-Linear Constrained Optimization.\1arch 3, 1993 7

The second step is to son out the list of constraints. For each constraint we decide whether
it is equality or inequality and transfonn it to the standard fonn: F op o, where op is either
== or >=. The current implementation perfonns this standardization as a separate pass
over the constraint list, and returns the standardized constraints in two separate lists
depending on type. (The rest of the processing is very similar for the two types, but it is
convenient later to have two separate lists.) The transfonnations are given by:

nor.mal_for.m_of_constraint(El== 0, El==O).

nor.mal_for.m_of_constraint(El== E2, (El-E2)==0).

nor.mal_for.m_of_constraint(El>= 0, El>=O).

nor.mal_for.m_of_constrain~(El>= E2, (El-E2)>=0).

nor.mal_for.m_of_cons~raint(El=< E2, G)

:- nor.mal_for.m_of_constraint(E2>=El,G).

Then the gradient of each constraint with respect to all the state variables is computed
symbolically, using some Prolog rules for panial differentiation. Since differentiation pro
duces many expressions of the fonns x + 0 or 1 *x, some minor simplification is done dur
ing differentiation. The gradients expressions are "compiled" into CLP(BNR) constraints
and returned as a list of intervals:

gradient ([J, F, [J) • % gradient (Variab:.es, Ei<:pression, Result)

gradient ([X, Xs ..] , F, [FX, Ds ..]) :-

pd(F, X, DxF), %calculate partial derivative wrt X

FX is DxF, % compile expression DxF to in~erval

gradient(Xs, F, Ds).

After the expression G has been differentiated, we execute s is G to construct the interval
network for G, and s op 0 to impose the constraint. Note that for inequalities the variable s
represents a slack variable. For each constraint we create a new interval variable L to be its
Lagrangian multiplier; it is unbounded for equality constraints but constrained to be non
negative for inequality constraints, which also impose the complementary slackness con
ditions L*S=O at this time. The multipliers are returned in an output list. Another output
list for inequalities also returns the formal product L*S which will be used later for enu
meration.

form_ineq_constraint(G >= 0, Vlist, Grad, L, L*S) :

gradient(Vlist, G, Grad),

S is G, % define slack variable

S >= 0, % impose original constraint

L >= 0, % impose Kuhn-Tucker non-negativity condition

S*L == 0. % impose complementary slackness

Using Interval Arithmetic for ~oo-I..i.near Constrained Optimization.\hrch 3, 1993 8

•
1

1

1

1
4

1

Finally, the objective function's gradient is added to the list of gradients for the equality
constraints. This is done conveniently by adding it to the end of the equality constraints
and treating this as the base case. The final output objective variable is created at this time.

At the end of pan 1 we have imposed all the constraints, defined the objective function,
defined the multipliers, and imposed the complementary slackness conditions. The multi
pliers have not been coupled to the state variables as yet, nor have the final Kuhn-Tucker
equations (Eq. 33) been imposed yet. Hence failure at this point or before must be due to
inconsistent constraints, or non-differentiable functions.

3.2 Kuhn· Tucker Equations

At the end of pan 1 we have two vectors of Lagrangian multipliers, and two Jacobian
matrices, and can form the Kuhn-Tucker equations (Eq. 33) for coupling the state vari
ables to the multipliers by doing two matrix multiplications as in Eq. 39. The algorithm
actually does the matrix multiplications for the two sides separately, each producing a dif
ferent vector, and these vectors are then equated in a separate step.

3.3 Redundification

This step is very strange by conventional ways of thinking, and it is very strange on many
levels. First of all, it is not logically necessary at all, but is solely for purposes of improv
ing performance by making the problem statement harder! Early versions of this algorithm
did not include it at all, and were able to do simple optimization problems quite well.
However, as the size and difficulty of problems was increased, the enumeration costs
became prohibitive until this step was added. For the sample problem given earlier, for
example, it reduced the enumeration time by a factor of about 1500. (Of course, it also
increased setup time considerably (a factor of 3 or so), but this cost is largely controllable
and is expected to become substantially reduced in the near future.) It should also be men
tioned that almost half of the source code is currently devoted to this step.

The basic idea of this step in general terms is very simple: the direct statement of a set of
simultaneous equations will generally produce a constraint network with too many large
fixed points. However, if any logical consequence (i.e. arithmetic relation) of the existing
constraints is added to the system it will eliminate some (hopefully many) of these extra
fixed points while leaving the "nue" fixed points unchanged (becausethey are logical con
sequences).

For those who prefer to think in process algebra terms, these extraneous fixed points are
essentially deadlocks: A and Bare both in the "I won't narrow before he does" mode. But
unlike the usual situation in communication systems, where adding a new communicating
process just results in the deadlock absorbing the new participant, here adding extra con
straints resultS (or may result in) breaking the deadlock.

C sing Interval Arithmetic for :\on-linear Constrained OptimiLation.'&rch 3, 1993 9

The details of the redundification step, because of their general interest and utility, are dis
cussed at length in section 4.

3.4 Enumeration

The task of enumeration is to force separation of the various point solutions. (Since the
join of two solutions is necessarily a solution in a narrowing algebra, this forcing must be
done by some external mechanism.) As we remarked in section 1, the complementary
slackness conditions L*S==O (with S>=O, L>=O) is really shorthand for the statement
"s==O or L==O". This expansion, with "or" being a Prolog choicepoint, is basically what
we do during the first phase of enumeration. Geometrically speaking, setting the slack
variable s to 0 means that the corresponding constraint is tight, while s > 0 (and hence
L==O) corresponds to being "interior" with respect to a paiticular constraint and so this
multiplier drops out of the Kuhn-Tucker equations. Each pattern of zero and nonzero val
ues for the different slack variables represents a different m-dimensional facet of the n
dimensional polytope defined by the inequality relations. For redundant problem con
straints it is possible to have both s==O and L==O, and this leads to multiple solutions with
the same state but different sets of multiplier values, as seen in figure 2.

FIGURE 2. Redundant problem constraint

Note that since the complementary slackness conditions were imposed as CLP(B~"R) con
straints in part 1, if either s or L become nonzero because of the other constraints present,
the other one will automatically become 0. As a result, for a problem with say 16 inequal
ity constraints, the enumeration which formally has 2**16- 65,000 branches, may in fact
have very few. Some will be pruned away by failure (i.e. there could be no possible solu
tion to the Kuhn-Tucker equations on that facet), others will be determinized by previous
decisions forcing either s or L to 0. This is, of course, the same pruning effect we see in the
semantic version of the Davis-Putnam Procedure with unit resolution and discrete con
straint systems such as CHIP. The basic enumeration code is thus apparently very simple:

complementary_slackness([], _).

complementary_slackness([L,Ls ..], X):-

t.:sing Interval Arithmetic for Non-Linear Constrained Optimization.\1arch 3, 1993 10

I

I
I
I
I

•
I
I
I
I

alternative(L, X),

complementary_slackness(Ls, X).

% L.,..S -v1here L is multiplier, S is constraint

alternative(L*S, X):- S==O. % constraint is tight

alternative(L*S, X):- S > 0. % constraint is slack

It should be mentioned that we enumerate in such a way that we set S==O first, i.e. we save
the interior of the feasible region until last. This reflects a belief that practical industrial
problems seem often to have solutions at a boundary point, so it makes sense to search the
low dimensional facets first Furthermore, these solutions (which seem to be easier in gen
eral to compute) provide fodder for the branch and bound algorithm, and thus may help to
prune the search space in the potentially most difficult case, which is the interior of the
feasible region.

Finally, after the enumeration of the complementary slackness conditions succeeds, if the
state variables and multipliers are not already reduced to points (or "pointlike" intervals),
it is necessary to use some general purpose forcing technique to pin down the possible
solutions on that facet. In particular, the interior of the feasible region, if it has many criti
cal points, will need to be decomposed so as to isolate them. So far, for relatively simple
problems, the solve predicate of CLP(BI\TR) seems to be adequate for this. In more com
plex cases we expect to use a new control predicate presol ve, which is much more
"intelligent" in the sense of exploiting much more specific knowledge of the specific con
straint network.

3.5 Branch and Bound

The last component of the algorithm is the branch-and-bound strategy, which works
exactly the same here as it does in discrete constraint logic programming. That is, one has
a generator of candidate solutions, and keeps the value of the best solution seen so far, and
imposes the additional constraint that the next solution must be at least as good as the best
seen so far.

There are two variations on this strategy in BNR Prolog. One makes use of Prolog side
effect primitives to remember the first solution of the current problem. Then the problem
is restarted from the beginning of the enumeration with the added constraint that the new
solution must be as good or better than the previous, in which case it is added or replaces
(respectively) the previous solution. This is repeated until the search fails, in which case
the remembered solution(s) are recalled non-deterministically.

The second variation is more subtle insofar as it is done entirely in the CLP(BNR) con
straint network using a special (CLP(BNR) side-effect) primitive which enables one to
export bounds from one branch of an or-computation into subsequent branches. In this
case the enumeration is only done once, but each success tightens global constraint which
makes subsequent successes harder. This naturally generates a monotone sequence of
improving solutions, so something like setof is needed here to capture the sequence as a

t;sing Interval Arithmetic for :\on-Linear Constrained Optimization.\1arch 3, 1993 11

list, from which all but the last one(s) can be removed. (We suspect that this approach may
usually be more efficient than the previous approach, although we have seen certain
instances where it is not.)

4.0 Results for Example Problem

For the example problem given above, the entire solution process requires about 25,000
primitive interval operations, or about half a second on a HP-400 series machine to do the
interval arithmetic. (Setting up all the equations takes roughly an order of magnitude
longer than this in our current implementation.) Only two facets of the -250000 possible
facets are actually visited during enumeration; all other branches failing immediately.
These two solutions have the same state and value, but different multipliers, and are due to
a redundant constraint in the original problem statement.

The solution found (twice) has Tol=310.0, To2=210.0, Ti1=210.0, Ti2= 150.0 and a cost
of $56,825.83 in agreement with the "best known solution" given in reference [4].

5.0 Redundification and Variable Elimination

The general strategy of"redundification" has been described above. This can be illustrated
nicely with a very simple example: the pair of equations Cl=X + Y, C2 =X- Y. When Cl
and C2 are known constants, the unique solution is of course the intersection P of the two
lines representing the two equations as shown in figure 3.

FIGURE 3. The Geometric Solution is P

However, the narrowing operator constructed from the two equations has as "fixed points"
every square centered on P and with corners on the two lines, as shown in figure 4. (This
case is very rare in two dimensions, for if either line is tilted slightly or bent slightly most

'{;sing Interval Arithmetic for ~on·Linear Constrained Optimiution.\1arch 3. 1993 12

of these fixed points will vanish, but cases like this becomes more common as the number
of dimensions increases.)

FIGURE 4. There may be extraneous fixed points: every square centered on P.

Adding a redundant equation, i.e. any other line through P, eliminates all the fixed points
but P itself, as shown in figure 5.

FIGURE 5. Adding redundant constraints destabilizes fixed points

In particular, adding a vertical or horizontal line through P, as in figure 6, will eliminate

t: sing Interval Arithmetic for Non-Linear Constrained Optimizati~\farch 3, 1993 13

FIGURE 6. Pivoting as adding redundant constraints

all the extra fixed points most efficiently. But this is just the "pivoting·· operation used in
Gaussian elimination.

In general, consider two equations:

Bl=Cl*X+Dl,

B2 = C2*X + 02.

(EQ 41)

(EQ 42)

If these equations hold, so does

U*Bl + V*B2 = (U*Cl + V•C2)*X + (01 + 02) (EQ 43)

for any real numbers (or real valued functions) U and V. In particular, if we use U=C2 and
V=- Cl, we will get the consequent

C2*Bl- Cl*B2= 0* X+ C2*Dl- Cl*D2, (EQ44)

i.e., with X eliminated. Passing over to interval arithmetic, and making sure that we use
only interval arithmetic to perform all arithmetic steps, we can get a redundant equation
which is guaranteed (since it no longer depends on X) to eliminate many extra fixed points
(if there are any). (Note that doing this with ordinary floating point arithmetic does not
work, since the resulting equation will most likely be formally inconsistent with the origi
nal pair because of rounding errors.)

Of course this is just pure algebra of the most elementary sort, and it is exploited all the
time in traditional numerical programs, isn't it? One thinks, of course, of the usual algo
rithms for matrix inversion and the simplex method of linear programming. But most of
the time (in the real world) the operations are performed in floating point arithmetic, for
which the required axioms are not true, and so the implication has been lost along with

Using Interval Arithmetic for !'.'on-l.inearConstrained Optimiution.\iarch 3, 1993 14

t
I
I
I
I
I
t
t
I

•
•

correctness. Funhermore, these applications are mostly only done on numbers, not func
tions, so the full power of this simple algebra is hardly exploited at all.

Now in the Kuhn-Tucker equations (Eq. 39) we conveniently have matrix expressions of
the form MX= Y where M is an nxm matrix of interval quantities, X is an m-vector of
intervals (representing Lagrangian multipliers) and Y is an n-vector of intervals. The fact
that there may be a number of constraints imposed on or between any of these quantities is
irrelevant. Therefore, we can systematically reduce M to an upper triangular form by pivot
operations of the above general type, with each pivot operation generating a number of
redundant equations. (As an optimization, whenever the chosen pivot element is never 0,
we can use the standard pivot operations which involve dividing by the pivot, exactly like
in the usual Gaussian elimination algorithm.) Since M in general is not even square (let
alone invertible), the last step in the triangular reduction has different cases depending on
whether n >m, n=m, or n<m, as seen in figure 7. If one wishes, one can put some extra
effon into exploiting sparsity, or trying to choose pivot elements that do not contain 0 or
are very narrow intervals, or suchlike.

= ~
underdetermined

square

overdetermined

FIGURE 7. Pivoting cases

This algorithm is very much like a traditional one: apan from its being written in Prolog, it
looks like a conventional algorithm, and the difference is entirely in the meaning and the
behavior. In BNR Prolog and CLP(BNR) one can in fact just write it as if it were a tradi
tional one for numerical matrices and test it, and then go back and make the tiny modifica
tions required to handle intervals. Usually the intervals do not change much until near the

t.:sing Interval Arilhmetic for :\on-LinearConsuained Optimization.\1arch 3. 1993 15

very last step; if the matrix M and the right side vector Y are essentially known, the last
step fixes one variable in X and this fixes another and so on. For the Kuhn-Tucker equa
tions, where there are generally matrix products on both sides of the equation, it was found
best (for ease of debugging) to treat each side of the equation separately by introducing
two new vectors Y andY', and only afterwards coupling the two systems together by
equating Y andY'. This can trigger a dramatic amount of narrowing, and in some prob
lems will just produce the answer directly without enumeration at all.

Naturally the Kuhn-Tucker equations, which are linear in the Lagrangian multipliers
(regardless of how non-linear they may be with respect to the state variables) will respond
very well to this tteatment However, ir is nor necessary that the equations be linear equa
tions for this technique robe applicable. All that is required is that they can be written as
linear forms, where the coefficients can be any quantity at all. More generally, other oper
ations besides* and+ and=, if they satisfy similar axioms, will yield similar algorithms.

6.0 Proof Procedure

The method described above, unlike traditional methods, can be regarded as an automated
proof procedure, modulo certain assumptions. It is worthwhile to make these assumptions
explicit.

First, obviously we are assuming the correctness of the implementation. This includes
especially the floating point implementation, the interval arithmetic "engine" implementa
tion, the translation of the equations into interval networks, and the Prolog programs
which implement the algorithm. Some degree of strict, even formal, verification of all this,
while not easy, is at least conceivable. In particular, some strict verification of IEEE float
ing point implementations may be required for other purposes. (Unfonunately, some cru
cial issues, such as the precision of transcendental functions is not covered by the
standard, nor is it usually specified by the vendors to the degree necessary for interval
arithmetic.) We are currently looking at ways of doing formal verification of primitive
interval operations in cooperation with Dr. Bruce Spencer of the University of New Brun
swick.

Second, the Kuhn-Tucker conditions are. not strictly necessary, but depend additionally on
a regularity assumption which essentially says that the optimum does not occur on a cusp
as shown in figure 8. A sufficient condition for this is that the Jacobian matrices appearing
in the first Kuhn-Tucker equation have maximal rank. Alternative formulations expressed
in terms of spaces of feasible directions avoid this technicality, but thereby lqse the valu
able practical advantage of generating the values of Lagrangian multipliers as a by-prod
uct. There are some subtle issues here which need to be examined very closely. One issue
is that rank maximality is generic, so an infinitesimal change in the problem (e.g. by alter
ing a coefficient slightly) should restore regularity. Therefore, it is at least plausible that a
treatment by interval arithmetic in which all constants are fuzzed slightly would be unable
to miss such a solution. On the other hand, it is also unclear whether such an unstable solu
tion is really a valid solution to the engineering problem, even if it is a solution to the
mathematical problem.

t.: sing Irnerv al Arithmetic for ~on· Linear Constrained Optimization.'iarch 3, 1993 16

I
1
I
I
I
I
I
I
I
I
I
I
I

• t
t

•
•
4

FIGURE 8. The leftmost feasible point is on a cusp

Third, the branch-and-bound strategy relies on the existence of solutions; interval arith
metic, however, only guarantees possible existence. As a practical matter, if a solution is
known to 20-digit accuracy and all consrraints are satisfied to such accuracy, one does not
hesitate to accept it, and the question of the theoretical existence of real numbers exactly
satisfying the Kuhn-Tucker equations is purely academic. It would be nice, marhemari
cally speaking, if we could provide such a theoretical guarantee, but, philosophically
speaking, it is unclear what such a guarantee could possibly mean, since one's actions are
not affected by it.

7.0 Conclusions

We have presented a general and apparently practical algorithm for solving consrrained
optimization problems by using relational interval arithmetic. It is based on using Kuhn
Tucker conditions to conven the problem into one with a discrete solution set (viz. find all
possible Kuhn-Tucker critical points), and then using branch-and-bound to find the mini
mum such critical point. The complementary slackness conditions are used in pan to drive
the enumeration of solutions. Another imponant pan of this algorithm, in terms of effi
ciency, is the use of pivoting operations to provide systematic redundancy in the constraint
network, and it is noted that this is a general technique of interval arithmetic and not lim
ited to linear problems.

There are several preliminary conclusions which may be drawn from this exercise. One is
that the formulation of mathematical problems in interval arithmetic is quite different
from traditional implementation techniques. It is not just a matter of shoner programs with
a different structure and a declarative reading; deeper issues such as "what is mathemati
cally relevant?", "what is difficult?", and even "what is the meaning of a solution?" are all
transformed in significant ways. There is, or can be, a very close relation between the
implementation and the abstract mathematical theory it embodies.

We do not know what the practical limits of this technology are, or may be in the future.
There has been such rapid progress in the interval arithmetic technology recently that

Using Interval Arithmetic for :Son-Linear Constrained Optimization.\llarch 3, 1993 17

problems, such as this one, which we would have consider~d beyond our capabilities a
few months ago, now appear very approachable.

8.0 Refe.rences

[1] W. Older and A. Vellino, "Constraint Arithmetic on Real Intervals" to appear in Con
straint Logic Programming:Selected Research, F. Benhamou and A. Colmerauer (eds),
MIT Press, 1993.

[2] W. Older and F. Benhamou, "Programming in CLP(BNR)", BNR Research Repon,
1993.

[3] R. Fletcher, Pracrical Methods of Optimization, (2nd Edition), John Wiley & Sons,
1987.

[4] C.A. Floudas and P.M.Pardalos, A Collection ofTesr Problems for Consrrained Global
Optimization Problems, Springer-Verlag,?.

March 3, 1993 18

Application of Relational Interval
Arithmetic to Ordinary Differential

Equations

William J. Older
March 1995

wolder@ bnr.ca

Abstract

Relational interval arithmetic can be used in the numerical solution of
ordinary differential equations. although the overheads can be substantially
higher than for conventional arithmetic. In return for the increased
overheads, relational interval arithmetic can offer several advantages which
are difficult to achieve using traditional approaches. The first and most
fundamental of these is correctness, in the sense that the interval solution
when properly implemented is guaranteed to contain the true trajectory; that
is, both conventional truncation error and roundoff error can be replaced by
an interval of uncenainty in the solution. The second advantage is symmetry :
the same formulation solves not only initial value problems, but also the final
value problem, as well as problems in which there is panial information at
both ends.

1. Introduction

The conventional approaches to the numerical solution of ordinary
differential equations have several problems. The most fundamental
of these is that these techniques introduce errors at every step of the
integration: truncation error which results from using a finite order
approximation to a Taylor series, and ·roundoff error due to floating
point arithmetic. Another set of problems is due the limitations of
functional language: one can directly solve the initial value problem
(or the final value problem) but other boundary conditions require
iteration of the integration procedures, with a great increase in the
complexity of the code and the cost of solution. Iteration is also used

•

to investigate structural stability issues when the equations contain
parameters whose value is not known precisely.

Thus although it is possible to implement something like the
traditional integration algorithms in interval arithmetic, there is no
real incentive to do so as the results would still suffer from at least
some of these problems. One is therefore led to reformulate the
integration algorithms in ways which can better take advantage of
the formal properties of interval arithmetic. We will dev~lop a
family of such algorithms in the remainder of this paper, using the
language of CLP(BNR).

2. Ordinary Differential Equations - General Framework

First we establish some notation. The differential equation will be
written generically as:

dy/dx = f(x,y)
where y may be a vector (as indicated by the boldface). We assume
that we are interested in this equation within a box (an approximate
"flow box") defined by closed intervals for x and each element of y.
We also assume some degree of differentiability of f (with respect to
x and each y) within this box; the precise degree required will
depend on which algorithm is being used. As usual, if f does not
depend on y, the algorithms reduce to simple quadratures.

As a Prolog predicate, we then get something of the conceptual form:

integrate(ODE,Initial,Final,Flowbox,Control,Output).

We want all the variables of the problem to be represented by
uninstantiated (and unconstrained) logic variables. Furthermore it is
necessary that we be able to match these problem variables with
their corresponding initial and final value terms and their flow box
bounds. The simplest way to accomplish this is to express the ODE
explicitly (i.e. with the left hand side present), using the syntax:

X I> [Yl1 ••• Yn] := [Fl1 ••• Fn]

where X and {Yl, ... Yn} are free logic variables, {F 1 1 ••• F n} are
arithmetic expressions in {X,Y 11 ••• Yn }, and we have introduced the
... 1 >" infix operator to denote differentiation (of the right argument(s)
by the left argument(s)). It is convenient to represent points along
the curve (e.g. initial and final values) in the form [X, Y s] where Y s is

the list of y values. In terms of control strategy, we will limit
ourselves to those based on binary subdivision of the range of X, so
Con t r o 1 is an integer indicating the number of doublings of the
interpolation points; in particular, Co n t r o 1 =0 indicates no
subdivision. (Note that this assumes that the initial and final values
of x are known precisely in advance, so they can be represented as
ordinary floats rather than intervals.) Other control regimes, such as
a variety of adaptive techniques, would be possible but are outside
the scope of this paper. Finally, we assume that 0 u t put. takes the
form of a list of points along the curve, which we will treat internally
as a difference list of form "Head I T a i 1 ".

With these assumptions in place, the code takes on the following
general shape:

integrate(ODE,Initial,Final,Fl~wbox, Control, Out):-
setup ode(ODE, Method),
$integrate(Control,ODE2,Initial,Final,Flowbox, O~t/~~).

Sintegrate(O,Method,Initial,Final,Flowbox, [P,?s ..]/PsJ :
h.:t.hod(Initial, Fi.nal, Flowbox, ?) .

$integrate (Control,Method, Initial, Final, Flowbox, L/E) :- C:::-.-::=::2..>0,
en is Control - 1,
$interpolate(Initial, Final, Flowbox, Midd~el,
$integrate (Cn,Method, Initial,:"'..iddle, Flcwbox, :::./!·1),
Sintegrate(Cn,Method,Middle, Final, Flowbox, ~/E).

The function of the second clause of $ integrate is to insert a new
point midway between the initial value of X and the final value of X,
and to construct a vector of new Y values at this point; the flow box
is used to initialize the ranges of these Y values, and is assumed to be
of the canonical CLP(BNR) form [real (YlL, YlHl, ... real (YNL, YNHl J.

$interpolate ([XO, YOs], [Xl, Yls], Flowbox, [XM, [YMs .. J J) :
XM is O.S*(XO + Xl),
YMs : Flowbox.

Finally, set up_ ode must create/select the appropriate code for the
algorithm being used, and the base clause for sinter p o 1 ate must
execute it. Since a separate instance ·of the basic integration routine
will be needed at each subinterval, the appropriate code will be a
predicate call and we must arrange for it to be called with the proper
arguments. Hence we have assumed that the variable Met h oct is
bound to a symbol naming this dynamic predicate, and its calling
sequence is

Method(Inicial, Final, Flowbox, Output).

This completes the general framework for our family of algorithms.
It remains to fill in the various versions of setup_ode for the specific
members of the family.

3. Interval Eulerian Integration

In order to keep things as simple as possible to begin with, we start
with the Eulerian algorithm, which replaces the differential equation
by the difference equation, which has the initial value form
(3 .1) y 1 - YO = f(xo,yo) dx
and a symmetrical final value form
(3.2) Yl- YO= f(Xt,Yl) dx.
Both are, of course, fundamentally incorrect and only provide an
approximation to the solution. Both can be thought of as arising from
approximating the correct integral form:

(3.3) Yl -yo= fx f(x,y) dx,

where the X denotes the interval (xo ,x 1]. An interval form can be
derived from (3.3) since

(3.4) m dx s fx f(x,y) dx s M dx

whenever we have m S f(x,y) s M over interval Xo 1 = (xo,x I] and so
we have the inclusions:
(3.5) f(x,y) e f(Xot.Y) and

(3.6) fxot f(x,y) dx e f(Xot.Y)dx and

with Y any valid range estimate for y over interval Xo 1· In effect, we
are using the natural interval extension of f to compute Lipshitz
bounds, from which we can genet"ate an inclusion for Y 1. This leads
to the following interval equations:
(3.7a) Dx is Xl - XO, OX: real(O,Dx),
(3. 7b) F <= f(Xot.Yot) % inclusion
(3 .Sa) Y 10 - Yo == F * Dx, % - vector subtraction
(3.8b) Y 1- Yo== F * DX. % .* scalar multiplication

The first step is to create the "dx" variables: Dx spanning from XO to
XI, and DX spanning from XO to any point within the [XO,Xl] interval.
The first inclusion equation (symbolized by "<=') evaluates the rhs of
the ode in the box (Xo 1, Yo 1), but blocks any attempt to backwards
narrow from its output. The next equation creates the fixpoint

•

computation to narrow Yo 1 , and hence the interval slope f(Xo 1, Yo 1).
Then the last extrapolates the resulting slope to the end of the
interval in order to bound Y 1·

Equations (3.7) and (3.8) lead to the following code for the
integration step. (For expository simplicity we are assuming that the
CLP language has been augmented to handle vector operations.)

euler([XO,YO], [Xl,Yl], Flowbox, [Xl,Yl)):
XOl: real(XO,Xl),
YOl : Flowbox, % range of Y in interval XOl
Dx is Xl - XO, % assumed dx>O
DX: real(O,Dx), %or: U:real(O,l), DX is U*Dx,
f(XOl,YOl, F), %range f over interval XOl
{ YOl - YO = F*DX}, % "forward predict:or"
{Yl -YO== F*Dx}. % extrapolat:on

The integration step assumes that the rhs of the original equation has
been converted into a predicate f(X,Y,F) and then uses (3.8) to set up
an implicit equation for YOl in line 6 (the unknown range of f in the
interval DX), and an explicit equation in line 7 for Yl. Lines 5 and 6
establish a "feedback loop" which narrows YOI to some fixed point.
Note that the last two lines are vector relations, with "-" denoting
vector difference and * scalar multiplication (DX,dx being the scalars).
The output is chosen to be the pair Xl and the (interval vector) Yl
which is guaranteed to contain the correct value, but other choices
like [DX,Y] which bound the entire curve are sometimes useful. (Line
4 as written assumes that xl > xO, but an alternate form given in the
comment will work in either direction.)

The setup code which is responsible for creating predicates for f/3 is
then simply:

setup ode(X I> Y := Exp , euler):
-assert(f(X,Y,F):- [F <= Exp]) .

Note that the (also vector) inclusion operator <= has been used m this
predicate.

4. Examples

As an example we consider the nonlinear ode
4.1 dy/dx = -2xy
with known solution

•

4.2 y= C exp(-x2),
over the interval [0, 1.0]. By inspection y is decreasing and bounded
below by the singular solution y=O, so the flow box is just [[O.O,yo]],
but we will use the estimate [[0.0, 1.0]]. Note that the expression on
the right hand side of 4.1 is interval convex (since x and y are
nonnegative) so the bounds estimates given by the natural interval
extension would be tight if x and y were independent; however, as
y(x) is decreasing in x, the extreme values achieved (at the NW and
SE corners of the XY rectangle in the first quadrant) will be much
closer than the interval bounds estimates based on the NE and SW
corners. For this reason the uncertainty estimates will be quite
pessimistic as we will see below.

1

I I

y

0
0 X 1

dy/dx := ((-2 * x) * y)

Case la: Initial Value problem, YO=l.O, Control=4 .

•

1
' I I

I I
I

I I
I

I I
I I

y

0
0 X 1

dy/dx .- ((-2 " x) " y)

Case lb: Initial Value problem, YO=l.O, Control=5.

The width (delta) of the final y value depends on the control
parameter and the number of subdivisions N used as follows:

Control
2
3
4
5

N delta(Y 1)
4 0.85205
8 0.55412
16 0.28066
3 2 0.14079

One can see that each doubling of the number of subdivisions
reduces the uncertainty by about a half. although this rate will
eventaully diminish for large enough N as roundoff error begins to
dominate.

1

I I
y

0
0 X 1

dy/dx .- ((-2 * x) * y)

Case 2. Final value problem, Yl = 1/e=0.36788 .

The symmetry of the formulation and the relational nature of the
interval arithmetic permits the known final value to propagate
backwards through the equations, as expected.

1

I I I

I I
. I I

I I
I

I I
I I

I I

y

0
0 X 1

dy/dx .- ((-2 • x} * y}

Ca~ 3. Both together, YO=l.O, Yl=l/e = 0.36788 .

This would, of course, be considered an overdetermined problem
classically speaking. Note that as one might expect the uncertainty is
largest in the middle, away from the boundary conditions. Since the
integration routine is correct, the imposition of a final value actually
on the correct trajectory will always succeed, while those sufficiently
far off the trajectory will cause failure for sufficiently high number
of subdivisions. (Points sufficiently close to the true trajectory will
not cause failures because with very fine subdivisions the effect of
tracking rounding errors will keep the intervals from vanishing.)

It is apparent from these cases that one is getting a correct
trajectory, and that the algorithm works symmetrically in both
directions and even both directions at once. However, it is also clear
that the interval of uncertainty is very large and only improves
slowly with subdivision as one would expect with a first order
method. The next few examples explore other aspects- or problems
of the technique.

1
I I

I I

I I

I II

y

0 ~::::-o ________ x _____ .~...~.....~...~.........,1 .. s

dy/dx = ((-2 * x) • y)

Case 4a: (a pathological case) initial value problem with x 1 = 1.5

Here we have tried to extend the solution farther along the x-axis,
but the solution becomes relatively useless shortly after x=l.O . The
problem here is due to the flow box on y: the initial estimate of [0, 1]
refuses to narrow (at the low end), since the lower bound of the
extrapolated yl remains at 0; as a result, the possibility of a leveling
off is not eliminated either. Reducing the step size postpones this
effect only slightly; another strategy is needed.

I

I

I

l

I
I

1
I I

I I
I I

I I I

y

II
0

0 X 1 .5

dy/dx .- ((-2 • x) • y)

Case 4b. Use of absolve (YF, 3) on final Y value in case 5.

The overly large fixed point for the previous case contains points
which when extrapolated backwards will be unable to match up with
the forward extrapolation. These can be trimmed by using absolve;
in this case a modest absolve(YF,3) done on the final value eliminates
some of the problem.

I I
I

I I
I I

I I
II

II
y II

Ill
Ill

II
II II I

0
0 X 1.5

dy/dx . - ((-2 * x) * y)

Case 4c. Use of absolve (Yl 1 2) at each step.

In this case, we have modified euler to use ab s c::. ve (Y 1 1 2) after each
step. This is very expensive in time, but has trimmed the error
considerably (especially in the second half of the interval where we
note the graph is convex upward) as well as overcoming the lower
bound "stuck" at 0. Note that there appears to be a slight oscillation
in the size of the error bars: this can be explained by noting that
error bars expand until their non-viable fringes are large enough for
a b so 1 v e (_, 2) to eliminate. The prohibitive cost of this approach
makes it impractical generally, but it does suggest that it might be
useful to employ a b s o 1 v e whenever there is insufficient narrowing of
Y.

5. Trapezoidal integration- Geometric .
vers1on.

The first order Eulerian integration algorithm has a problem with
accuracy--although correct, the intervals of uncertainty are large,
and- what is worse- they only improve slowly with subdivision. To
improve matters· we can use a second order inclusion in the
integration step. Thus we return to equation (3.3)

(3.3) Yl -YO= Jx f(x,y) dx,
•

I
I
I
I
I
I

•
I

• •
I

• • •
I

• • • • •
~

~

~

~

~

•
•
~

~

•
•
•
•
•
t

•
•
t
t
t
~

~

t
~

~

a

and try to refine our estimate of the definite integral. In this section
we will use elementary geometric arguments (with y a scalar), and in
the next section we will develop a more formal approach that can be
generalized more easily. If we look at a graph of f (regarded as a
function of x alone along the true trajectory) we see that the Eulerian
interval approximation computes the area under it as the interval
[mdx,Mdx] as shown in Fig 5.la , with an "uncertainty" (M-m)dx
where m and M are bounds generated by the natural interval
extension of the original formulation of f.

Ml------~--+

f nn ···························· ···•················•······· ·················•·········· ····•·•············•········
··················•·········•....•........•...•.................•.•............•.................•................•.....................•...•....•............
····-··········-············•...•..........
··•························· ····························
····························•........•............

dx

Figure 5.la
Eulerian approximation

··•························· ··•························· ····························
···························· ···························· . •••....•••.......•••...•.•.
···························· •··•··•••··········••···••··
·•••·•·•••··•·•······•····•• ························-··· ···························· ········•··················· ····························
·•··•••••·······•·••····•••·•••••....•...•....•••..
·••··•··•·····•··•••····•••• •.•......••••......•.•...•.. . •......•.•.....•.•••....••.
····························

dx

Figure 5.lb
Trapezoidal approximation

Geometrically speaking, trapezoidal integration would use the
approximation given in Figure 5.1 b, which uses the average of the
values of f at the beginning (fo=f(xo,yo)) and end (ft =f(x 1 ,y 1)) of the
interval. (For simplicity let us assume that we know both of these
values exactly; this assumption will be relaxed later.) If the ·total
derivative of f with respect to x is co~_stant in the interval, this result
is obviously exact. But in general- as shown- there is an error
represented by the area between the graph of f and this straight line
interpolation.

If we have bounds [b,B] for the total derivative of f, we get a picture
as in Figure 5.2, where the graph of f is now constrained to lie within
the parallelogram P formed by the linear equations:

•

m(x -xo) ~ y(x)-xo ~ M(x-xo)
m(x 1 - x) ~ y(x)-x 1 ~ M(x 1-x)

for xo ~ x ~ x 1· Since the average slope line segement from YO to Yl
line bisects the parallelogram, the true value of the integral is
bounded by (1/2)*(fo+f 1)*dx ± 1/2 area(P).

XO X1

Figure 5.2
Graph of f lies in shaded region,

which represents the uncertainty in the integral

It remains to calculate the area of the paralleclgram P. It is shown in
Figure 5.3 that P can be rearranged by slicing a bit off the top and
sticking it on the bottom, so as to make the tops and bottoms level.
The area can then conveniently computed as the product of the base
and height as shown. With J.L= (Y1 - yo)/dx being the average slope,
and assuming that J.1. is greater than or equal to the average of M and
m, the height h can be computed as

h = M dx - J.1. dx = (M- J.L) dx.
(The reverse case leads event_ually to the same formula.)
Similarly the base b can be computed from

YO+ Mb = Yp = YI(dx -b)
so Mb = J.1. dx - m(dx - b)
so (M - m)b = (J.1. - m) dx

and finally b = dx (J.1. - m)/{M - m).
Hence the area of P is given by the pleasantly symmetric form:

t
I
I
I
I
I
I
I
I
t
I
I
I
I

•
I
I
I
I

•
I
I
I
I
I
I
I
I
I

•
• •
I
I

• I
I
I

• I

•
t
t
I
I

•

area = dx 2 (ll - m)(M- ll)/(M - m).
This can be expressed more conveniently by introducing p (O~p~ 1)

defined by 1-L= p m + (1-p)M, so
area= p(l-p) (M - m) dx 2 .

Note that the error vanishes whenever p =0 or p = 1, since the
parallelogram degenerates into a line segment, implying that the
graph of f is a straight line. This formula gives a maximum error
(half of the area) , which occurs at p= 0.5 , of

error = (1/2)(1/4) (M - m) dx 2 .

X~

b

area= bh

dx

Figure 5.3
Bounding the error

6. Trapezoidal Integration by Taylor Series

In this section we will develop the second order error estimate by
analytical means. We assume that f has a continuous total derivative
with respect to x. in the interval [xo,x I]. If we expand y in a Taylor
series with remainder about x=xo we get exactly
(5.1) y(x) =YO + fo (x -xo) + oR2
about x=xt we get exactly
(5 .2) y(x) = Yl + ft (x -XI) + 1R2
where oR2 and 1 R 2 are the respective remainder terms. Taking the
difference of (5.1) evaluated at x=xt and (5.2) evaluated at x=xo
gives the identity

2(yl -yO) = fo (XI -xo)- ft (XQ-XI) +(oR2- 1R2)
2(yl - yO) = (fo + ft)(xo-x t) +(oR2 - 1R2)

yielding

(5 .3) yl - yO = (1/2)(fo + fi)(xo-x I) +(1/2)(oR2 - 1 R2).

We recognize the first term on the right as the truncated trapezoidal
formula. So it remains to generate an interval estimate of the

· remainder "error" quantity E=(l/4)(oR2 - 1R2).

To do this, it is helpful to review the derivation of (5.1) to see the
ongm of the remainder term. We start with:

(5 .4) y(x) = YO + f y'(t) dt

where the integral is from xo to x, and apply integration by parts to
get

y(x) = YO + [y'(t)(t-x) - J (t-x) y"(t) dt]

evaluated from t=xO to t=x, giving

y(x) = YO - y'(xo)(xo-x) - J [xO.x] (t-x) y"(t) dt

(5.5) y(x) = YO + y'(xo)(x-xo) - J [xO.x] (t-x) y"(t) dt .

Since y'(xo)= f(xo,Yo)= fo , this agrees with (5.1) if we set

(5.6) oR2 = f [xO,xl] (x1-t) f(t) dt.

Similarly, we get

(5.7) 1R2 = J (xl.xO] (xo-t) f(t) dt.

Then

E=(l/2)(0R2 - 1R2) = (l/2)J [xO,xl] (xo + Xl - 2t) f(t) dt

= J (xO,xl] ((xo + XI)/2 - t) f(t) dt.

The integrand is a product of f and the ramp shown in figure 6.1.

Figure 6.1
Error term is integral of the product of f and a ramp

•

4

•

We estimate this integral by breaking it into its two parts at the
midpoint xm=(xo + x 1)/2 and estimating each separately:

E = J (xO,xm] (xm - t) f(t) dt - J [xm,xl] (t-Xm) f(t) dt

so E E (1/8)[m,M] (x 1 - xo)2 - (1/8) [m,M] (x 1 - xo)2,
since xm - xo = Xm - xo = (x 1 - xo)/2, where [m,M] are bounds for f
over [xo,x 1]. Thus the interval error term can be expressed as

E= (1/8) [m-M,M-m] (x 1 - xo)2
or as E= (1/4) o(R) (xi - xo)2

where the symmetric interval o(R) (:= (R - R)/2) represents the
width of interval R=[m,M]. Note that this simplified formula agrees
with that of the previous section, although the processes by which
they were arrived at are quite different.

A more precise treatment of this one would be to use e.g. separate
estimates of f over the two halves of the interval. On the other hand.
the geometric argument suggests looking at where the average slope
falls between the bounds, as a way of improving the estimate.

7. Trapezoidal Implementation

In this section we develop an implementation for the trapezoidal
integration routine, which will require some symbolic differentiation.
Using the same ideas and notation as was used earlier in in euler we
can implement the integration step based on the previous two
sections as:

trapezoidal((XO,YO], [Xl,Yl], Flowbox, [Xl,Yl]):
XOl: real(XO,Xl),
YOl : Flowbox, % range of Y in interval DX
ex is Xl - XO,
DX : real(O,Dx),
f(XO,YO, FO), %
f(Xl,Yl, Fl), %
{Fm is (FO + Fl)/2},
df(X01,Y01, R),
{YOl - YO == Fm*DX +
{Yl - YO - Fm*Dx ==

slope at xO
slope at xl
% average slope
% aprox f' over interval DX
(1/4) d(R) DX**2 },
(1/4) 4jR) Dx**2 }.

Here we used the notation d(R) to represent the continuous
symmetric "delta" of interval R. Note that if f is constant over the
interval, d(R)=O. Also, we are here using a (nonexistent) vector CLP
language for readability .

•

The only new feature that this adds is the creation of a predicate df
to compute the derivative of f with respect to x along the trajectory,
i.e. the convective derivative:

Dx (y'j) = Dx (f(x,y)j) = ax(Yj) + 1:i y'iayifj

= ax(fj) + ri fiayifj .
This requires the use of a symbolic differentiation package; the one
used here uses 'I>' as a general infix partial differentiation operator in
harmony with our previous use. Also we have used the inclusion."<="
in computing the output. Using this we can implement the necessary
operations as:

setup ode(X I> Ys := Exps, trapezoidal):-
-retractall(Srhs(..)),
assert(Srhs(X,Ys:-Fs) :- [Fs := E:-:ps]),
retractall(Sdf(, ,)),
second derivatives(X I> Ys := Exps, Ds, Body),
assert(Sdf(X,Ys,Dsl :-Body).

second derivatives(X I> Ys := Es, Ds, Body):
convective_derivative(Es, X :> Ys := Es, Ds, Sody).

convective derivative(
convective-derivative(

{DD ::= X :> E,
J :: = Ys ! > E,
ID : := Fs +"' J,

[],X I>Ys :=Es, [], []).
[E,Es ..] ,X:>Ys := Fs, [D,Ds ..], [S<= Ex,3s ..]) :

% cc~p~:e direct derivative
% ccmp~~e gradie~t
% dct. wi~h veloci~y

Ex : :=DDT ID }, % add ~o direct deriva~ive
Es,X i> Ys := Fs,Ds,Bs). convective_derivative(

Using this implementation we can repeat the earlier examples.

•
•
•
•
4

•
~

•
•
•
•
•
•
•
•
•
• •

1.0~--~------------------------~

y

0.0~~--------------------------~ 0.0 X 1
dy/dx .- ((-2 • x) " y)

Case la: Initial Value problem, YO=l.O, Control=3.

Even with half as many points, the uncertainties are under much
better control. In order to see the error bars, we will drop to usmg
only four points (Control=2), as shown below:

1.0~----------------------------~

y

0.0~:--:----------------' 0.0 X 1
dy/dx := ((-2 * x) • y)

•

Case 2. Final value problem, Yl = l/e=0.36788 , Control=2.

1.0~------------------------------~

y

0.0~~----------------------------~ 0.0 X 1
dy/dx .- ((-2 * x) * y)

Case 3. Both together, YO=l.O, Yl=l/e = 0.36788 ., Control=2.

8. Concluding Remarks

In this paper we have taken the first small steps towards developing
a relational interval arithmetic approach to the integration of
ordinary differential equations. We have explored very slightly the
issue of containing tru-ncation errors, and demonstrated with simple
examples some of the qualitative properties possessed by this
approach: the formal correctness of the solution and its trade-off
against growing uncertainty in initial value problems, the symmetry
of use, and the use of redundant boundary conditions.

More sophisticated techniques, such as higher order and adaptive
algorithms, and more sophisticated applications, such as two-point
boundary conditions as well as the more complex boundary ~
conditions that often appear in control theory problems, will be the .l
subject of a subsequent paper .

•

A modified vers1on of this paper appeared in the Proceedings of the
CLP Workshop of the International Logic Programming Symposium
held in Ithaca, N. Y. in November, 1994.

Bibliography

BNR Prolog User's Guide, 1988.

BNR Prolog Reference Manual, 1988.

Older. W.J., and Vellino, A., Constraint Arithmetic on Real Intervals.
in Constraint Logic Programming:Selected Research, ed. Colmerauer
and Benhamou, MIT Press, 1993.

Press,W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical
Recipes in C, Second Edition, Cambridge University Press, 1988 .

•

CLP(BNR)/ Scheduling

Scheduling

Scheduling and related resource allocation problems are among the
technically hardest problems which the average person is likely to
encounter in ordinary circumstances. Such problems occur almost
everywhere, and most of them are at least NP hard or NP complete,
and the most important ones are very large. It is not surprising then
that there is a large literature on such problems, nor that much of
the practical focus has been on heuristic algorithms which aim to
give merely "good" results rather than complete or optimal ones.
This area has also been a fruitful one for the application of CLP
techniques (mostly of the finite domain variety), although the
practical focus here also has been on heuristics for the larger
problems.

The emphasis in this section, however, will be on the exact solution
of small (but not necessarily easy) problems. There are several
points which provide justification for this emphasis. First, some
important and hard problems are in fact now within reach of exact
methods, given the right approach and adequate computing
resources. Second, large problems usually consist of a large and
intertwined set of small problems of the sort dealt with here; in this
case it is plausible that a good formulation of the large problem can
be constructed directly from good and complete formulations of the
subproblems. Third, only exact/ complete solutions can be rigorously
compared with one another. Finally, many of the large practical
problems appear to be very heavily constrained, sometimes so much
so that it is possible that some exact methods may in fact be
practically useable.

It appears that much of the scheduling work done using CLP
techniques has been in the context of CLP technology of the finite
domain sort such as CHIP and its derivatives, such as Charme and
COSYfEC, and the CLP approach has been quite successful in this area.
In this framework the scheduling medium variables (time or space)
are discretized and eventually enumerated like everything else. This
discretization of time and space is usually problematic, being both a
conceptual distortion of the problem and a source of added decisions
concerning the resolution needed. More important, it has also tended
to obscure the very nature of scheduling problems in important
ways. In this discussion we will treat the scheduling medium, and

?? 1

CLP(BNR)/ Scheduling
sometimes resources as well, as continuous quantities, which cannot
be enumerated. This would seem to make the problems much more
difficult, if not impossible, but in fact leads to significant
simplifications.

Critical Path Scheduling

The Critical Path Method (CPM) is one of the most important
traditional scheduling methodologies for the simple reason that it is
one of the few subclasses of scheduling problems for which efficient
(linear time) classical algorithms exist. It was also one of the earliest
problems to be tackled by interval-based CLP techniques.

The problem is described as a set of activities, where each activity
has a start time, a duration, and a fmish time (= start+ duration).
The constraints are generated by a set of precedence rules which
state that one task must fmish before another starts. As with most
scheduling problem there is a feasibility variant and an optimization
variant. In the feasibility variant, all activities start after some
initial time TO and must finish before some deadline TF. In the
optimization variant, the object is fmd the minimum span or distance
between initial time and deadline, usually by minimizing TF with TO
constant. With TF at its minimal value, the start time (and finish
time) intervals of some activities become point values; these
activities are said to form the "critical path" and give the method its
name. The residual intervals at non-critical activities (traditionally
called "floats") represent some leeway or latitude in the
starting/finishing/ duration of the non-critical activities; small
changes (within float) of timing of non-critical activities will not
impact the total span.

Given the following problem specification:

activity duration follows
a 10 start
b 20 start
c 30 start
d 18 a,b
e 8 b,c
f 3 d
g 4 e,f
finish g

a direct CLP(BNR) encoding of the problem is:

?? 2

•
• • •
I
I

• • • •
I

• • • • • • • • • • •
• • •
• • • • •
•
• •
• • • •
I

• • •
I

• • • ..

op(700,xfx, before).
CLP(BNR)/ Scheduling

activity(Name, Duration, task(Name,Start,Finish)):
{ Finish = Start + Duration}.

task(_,_,F) before task(_,S,_) :- { F =< S }.

% specific data for a project:
project(Start, Finish, [A,B,C,D,E,F,G]):

activity(a,10,A), Start before A,
activity(b,Z0,B), Start before B,
activity(c,30,C), Start before C,
activity(d,18,D), A before 0,8 before D,
activity(e, 8,E), 8 before E,C before E,
activity(f, 3, F), D before F,
activity(g, 4,G), E before G, F before G,
G before Finish.

The feasibility variant, with a deadline of 60, is then posed as:

?- project(task(start,0,0),task(finish,60,60),L).
?- project(task(start, 0, 0),

YES

task(finish, 60, 60),
[task(a, [0.0000, 25.001], [10.000, 35.001]),
task(b, [0. 0000, 15. 001] , [20. 000, 35. 001]),
task(c, [0.0000, 18.001], [30.000, 48.001]),
task(d, [20.000, 35.001], [38.000, 53.001]),
task(e, [30. 000, 48. 001] , [38. 000, 56. 001]),
task(f, [38.000, 53.001], [41.000, 56.001]),
task(g, [41.000, 56. 001], [45.000, 60. 001])]).

The optimization variant can also be done very easily as:

?- project(task(start,0,0),task(finish,E,E),L), lower_bound(E).
?- [project(task(start, 0, 0),

YES

task(finish, [45.000, 45.001], [45.000, 45.001]),
[task(a, [0.0000, 10.001], [10.000, 20.001]),

task(b, [0.0000, 3.0518e-5], [20.000, 20.001]),
task(c, [0.0000, 3.0001], [30.000, 33.001]),
task(d, [20.000, 20.001], [38.000, 38.001]),
task(e, [30. 000, 33. 001], [38. 000, 41. 001]),
task(f, [38.000, 38.001], [41.000, 41.001]),
task(g, [41.000, 41. 001] , [45.000, 45 . 001])]) ,

lower_bound([45.000, 45.001])].

In general problems, optimization may be more difficult to do than
feasibility and require, for example, the branch-and-bound
technique discussed earlier, so the simplicity of this needs both
explanation and justification. One way to justify it is simply to note
that this is the way the classical algorithm does the problem, so we
can recycle whatever the classical justification was: the problem
decouples into a problem of calculating lower bounds of all intervals
from TO, and a separate problem of calculating upper bounds back

?? 3

CLP(BNR)/ Scheduling
from TF, and if lower bounds are always less than upper bounds the
problem is feasible, and fmally because of the additivity of the delay
constraints, a shift of TF translates into an equal shift of all upper
bounds, hence setting TF back to equal the computed lower bound of
the fmal activity generates the minimal solution.

The classical argument is quite problem specific and also does not
involve CLP explicitly, so applying it here tacitly assumes that the
CLP calculation of the lower bound of the final activity is in fact the
same as the classical computation (modulo rounding differences).
Showing this rigorously then requires formulating both the classical
algorithm and the internal CLP mechanism in ways that can be
compared usefully. This can be done, but is not really easy, because
the CLP framework does not imply any particular sequence of
operations.

It is useful therefore to find another way to tackle this problem, one
that is both more general and more CLP oriented. This leads to the
theoretical notion of interval convexity, which is explored in the next
section.

Interval Convexity

The concept of interval convexity was introduced very informally by
]. Cleary in the first paper on relational interval arithmetic, but was
not formalized nor explored in any depth until Benhamou & Older
(1992) and Older (WCLP, Marseille, 1993), which is the source for
much of the material presented here. The context used for theory is
that of relational interval arithmetic with intervals defined with real
bounds, i.e. the infmite precision case.

Defmition: A relation R is interval convex in a state X iff for every
subs tate Y of X, RIIY has all of its projections intervals.

That is, the interval hull closure operation can be omitted, and the
interval representation is the same as the set representation. When
the state X is the top state of the lattice, the state qualification is
usually omitted. From this definition it is clear that interval
convexity is persistent, that is, if true in a state it is true in every
substate; it is also preserved under projections (since they are spedal
cases of subtates).

There are a couple of useful theorems for recognizing interval convex
relations:

?? 4

CLP(BNR)/ Scheduling

Theorem: Convex relations and solvable relations are interval
convex.

A relation is convex if for every two points in it, the line segment
between them is also in it; it is said to be solvable if it can be solved
(uniquely) for each of its variables as a continuous function of the
remaining variables.

Many of the primitive relations are interval convex everywhere:
==,=<, +-, max, min, the odd powers, exp/ln. Most of the rest of the
primitives are interval convex over slightly smaller states: abs and
even powers on either the + or - half line, *I when the sign of at
least one factor is known, trigonometric relations when confined to a
region in which they are strictly increasing or decreasing.

A narrowing operator is said to have the sequential instantiation
property (SIP) if for any choice of order of its variables, any
sequential choice from the current domains of those variables will
succeed. Here sequential choice means that one variable is
instantiated, and only after the system has computed a new stable
state, one picks the next variable from the new domain. The
connection between interval convex relations and narrowing
operators satisfying the sequential instantiation property is:

Theorem: R is the canonical narrowing operator for an interval
convex relation R if and only if R has the sequential instantiation
property.

This only holds completely in the infinite precision case; for floating
point implementations the forward implication still holds, but of
course nothing can be implied about R below the precision limit.
Because of this theorem, there is a tendency to confuse the interval
convexity of the relation with the SIP property of its narrowing
operator, and speak loosely of interval convex narrowing operators,
which is permissible so long as the other condition (canonical, i.e.
minimal) holds.

Another sometimes useful theorem is:-

Theorem: If two narrowing operators over different sets of variables
each have SIP, and a single variable from one set is linked to a single
variable from the other by a narrowing operator with SIP, then the
whole network has SIP. Furthermore, if it fails it does so after at

?? 5

CLP(BNR)/ Scheduling
most one primitive operation, and if it succeeds it will do so in time
linear (or less)· in the size of the combined network.

Since most primitives are interval convex and their operators
therefore have SIP, constraint networks which are trees are likely to
have SIP. To be more precise, a network of primitive relations is said
to be locally interval convex in state X, if each primitive in the
network is interval convex in X. Then: a locally interval convex tree
has SIP, by recursive application of the above result.

One way to show that an operator has SIP is to first show that its
relation is interval convex (because e.g. it is convex), and then show
that the operator is tight, i.e. that the bounds of its stable states are
in fact solutions. Hence it must be the canonical narrowing operator,
and then one can apply this theorem to derive SIP. In particular, this
applies to the CPM problem: since it is composed of additions and
inequalities only, its solution set is convex; it can be shown to be
tight by instantiating to lower bounds sequentially from the earliest
task start and instantiating to upper bounds in order of latest finish,
so that there is no propagation possible from the instantiation.

Finally we note that if a feasibility problem can be reduced to a
residual problem known to have SIP, we can regard the residual
problem itself as a generalized solution, since it contains all the
particular solutions (uncountably many of them in general), and any
one of them can be generated easily (in quadratic time or less). For
optimization problems which can be reduced to an SIP residual, one
need only instantiate the appropriate bound of the objective variable
to form the most general solution.

Serially Reusable Resources- Disjunctive Scheduling

The activities to be scheduled often require the exclusive use of some
resource, and this requires serialization of the tasks using the same
resource. One way of handling this is by using booleans to force
serialization: for each pair of activities P and Q using the same
resource we require that either P precedes Q or Q precedes P. This
can be done with a constraint of the form:

Sdisjunct(task(P,Sl,Fl), task(Q,SZ,FZ), B):- B:boolean,
{ B == (Fl=< SZ), -B== (FZ=<Sl)}.

where S is the start time and F the fmish of a task. The code to
serialize all pairs from a list then follows the pattern of the distinct

?? 6

I
t
I

' I
I

• •
' I
I

• •
•
•
~

•
4

CLP(BNR)/ Scheduling
predicate:

serialize(List, Bs):- Sseri.alize(List,Bs, 0).

Sseri.ali.ze([XIXs], Bs, EndB):
Sseri.a li.ze_l(Xs, X, Bs, E),
Sseri.ali.ze(Xs, E, EndB).

Sseri.ali.ze_l(O,_, B, B).
$seri.a1i.ze_l([XIXs],Y, [BIBs],EndB):

Sdi.sjunct(X,Y,B),
Sseri.ali.ze_l(Xs,Y,Bs,EndB).

Enumeration of the booleans then determines the service order of
the tasks; when all the booleans have been enumerated, the residual
problem is of the CPM type, and the interval convexity results can be
applied to determine the minimal span for that particular task order.

Example: job-Shop Scheduling

As an example we will consider a classical Job-Shop Scheduling
problem: this consists of a set of tasks, each involving a sequence of
operations, where each operations needs the use of a machine of a
certain type, and there is only one machine of each type available.
The problem is fmd an ordering of operations at each machine such
that all the tasks complete before a given time, or to find the
minimal time to complete all tasks. The particular example here has
5 tasks of 10 operations each and 5 machines, with a raw search
space (all possible orderings) of about (10!)**5 or about 10**31.

The simplest direct specification of the specific problem
(deadline/feasibility version) is given below:

jss(Deadli.ne,F):-

??

{5=0, F=<Deadli.ne}, % S i.s start time
A=[A0,Al,A2,A3,A4,A5,A6,A7,A8,A9],
8=[80,81,82,83,84,85,86,87,88,89],
C=[C0,Cl,C2,C3,C4,C5,C6,C7,C8,C9],
D=[D0,D1,D2,D3,D4,D5,D6,D7,D8,D9],
E=[E0,E1,E2,E3,E4,E5,E6,E7,E8,E9],
sequence(S,F,a,A,[29,78, 9,36,49,11,62,56,44,21]),
sequence(S,F,b,B,[43,90,75,11,69,28,46,46,72,30]),
sequence(S,F,c,C,[91,85,39,74,90,10,12,89,45,33]),
sequence(S,F,d,D,[14, 7,23,61,35,18,52,29,11,69]),
sequence(S,F,e,E,[37,84, 6,43,22,61,27,17, 9,73]),
sertaltze([A0,A5,80,85,C1,C7,D4,D7,E1,E9], 8s0, m0),
sertaltze([A1,A6,83,88,C0,C6,D0,D9,E2,E8], 8s1, m1),
seri.alize([A2,A7,81,86,C4,C8,D1,D6,E0,E7], Bs2, m2),
seriali.ze([A3,A8,84,89,C2,C9,D3,D5,E4,E6], 8s3, m3),
serialize([A4,A9,82,87,C3,CS,D2,D8,E3,E5], Bs4, m4),
enumerate(8s0),
enumerate(8s1),
enumerate(Bs2),

7

enumerate(Bs3),
enumerate(Bs4),
lower_bound(F).

CLP(BNR)/ Scheduling

The first block of code just sets up the start and deadline times and
defines the lists of variables which will be the operations. The calls
to sequence create the operation data structure, impose the
sequencing constraints for the task, and ensure that the first
operation occurs after the start time and the last finishes before the
the value F. The code is:

sequence(Start,Finish,Label,List,Ourations):
Ssequence(List,Durations,Label,Start,Finish,0).

Ssequence(O,O,_,PreF,Fin,_):- { PreF =< Fin}.
Ssequence([task(Id,St,Fin)ITs],[DIDs],Label,PreF,F,N):- Nl is N +1,

swrite(Id,Label,N),
{ PreF =< St,Fin= St + 0 },
Ssequence(Ts,Ds,Label,Fin,F,Nl).

Then come the calls to serialize to set up the disjunctive constraints,
followed by enumeration of the 275 boolean variables, and finally
the use of lower _bound to calculate the actual time required by the
interval convex residual problem. Considering the raw size of the
search space and the apparent simplicity of this approach, the
performance is surprising: the constraint setup (prior to
enumeration) requires (on a 25Mhz 68030; Sun4 times are roughly
half of these) 6.2 seconds in the current version of CLP(BNR). (This
would be expected to drop by an order of magnitude in the
foreseeable future.) Enumeration time for the first solution in the
worst successful case (with deadline set to the minimal span of 634)
is 1.383 seconds (with only 23 backtracks!). (A careful choice of
enumeration order (busiest machines frrst) can reduce this to about
0.6 seconds.) More surprising even is that the worst failing case (with
deadline=633, which requires searching the entire space) only
required 2. 7 83 seconds of enumeration time.

In order to compute the minimal span one can use the branch-and
bound technique. Because there can be a very large number of
different schedules with the same span, the continuation method is
not very useful, and it is better to restart the search after each
solution (constraint setup needs to be done only once of course) with
a deadline strictly lower than the best seen so far. Also, since there
are many solutions with only slightly better spans, it helps to
retarget agressively (e.g. 90% of previous span), and then use
bifurcating search as soon as a failing value is discovered. With this
approach the minimal span was discovered (and proved) in 9.9
seconds of search time (statistics after setup are accumulative):

?? 8

CLP(BNR)/ Scheduling

setup costs: [90530, 6712, 1357, 1224, 6200]
target : 720
[1588, 150, 5395, 53, 616] [719.0, 720.0]
target : 647
[3763, 396, 20468, 172, 2366] [642.0, 647.0]
target : 577
[4054, 426, 21992, 173, 2633] fai.l(577)
target : 609
[4767, 457, 25574, 174, 3133] fai.l(609)
target : 625
[5921, 573, 40854, 229, 4850] fail(625)
target : 633
[8947, 961, 69997, 448, 7983] fail(633)
target : 637
[11538, 1208, 86645, 566, 9916] : [634.0, 637.0]
succeeds at:634.0
fat led at: 633

Serially Reusable Resource - Non-deterministic Sort Method

An alternative approach to the resource scheduling problem is based
on sorting. The idea here is that if we knew the start times of the
tasks and the fmish times of the tasks in order of time, we could
ensure feasibility by requiring that the start times and finish times
interleave: first start followed by first finish followed by second start
etc. If this is done the nth fmish is preceded by n starts for all n, and
by induction one can then show that the nth start and nth finish
must belong to the. same task. (This formulation may seem slightly
odd, but we shall see later that it has its uses.) For sorting intervals
we can use a declarative version of Quicksort, in which the binary
comparison imposes an inequality constraint down each branch; with
intervals, of course, both branches may succeed. Once we have an
output from each of the sorts, we can impose the interleaving
constraints; arrangements that survive are then again in CPM form
and we can apply interval convexity to minimize the span.

This algorithm just described is very inefficient because one must do
two non-deterministic sorts (worst case (N!)**2) before applying the
interleaving constraints which prune the space, and it is obviously
better to do both the sorts and the interleaving constraints together.
When this is done the basic sort decision becomes that of ordering
two tasks just as in the disjunctive constraint version. The code looks
like:

serialsort(X,Y):- ssort(X,Y,[J). % uses difference list

ssort([] ,A,A).

?? 9

ssort([XIXs],A,C):
part(Xs,X,Low,High),
ssort(Low,A,[XIB]),
ssort(High,B,C).

CLP(BNR)/ Scheduling

part(O,_, 0,0). 96 partition on U, last 2 args are di.f li.st
part([XIXs], U, [XIlow], High):- before(X, U), part(Xs,U,low,Hi.gh).
part([XIXs], U, low, [XIHi.gh]):- before(U, X), part(Xs,U,low,Hi.gh).

before(task(_,Sl,Fl), task(_,S2,F2)):- { Fl=<S2 }.

This was tested on a single resource benchmark (with 12 operations)
and found to be more than an order of magnitude slower than the
disjunctive approach given earlier. This would imply that on a
problem such as the 50-operation job-shop problem given above it is
likely to be at least 10**5 times slower and probably much worse.
Yet, in an abstract sense, it is the "same" algorithm (expressed partly
in Pro log rather than in CLP } . This underscores the importance of
being able to postpone choices until they are forced, and reminds us
that measurement of actual code of algorithms is absolutely
necessary.

Serially Reusable Resource - Deterministic Sort Method

The basic sort method was not very efficient because of the non
determinism and the fact that it was necessary to postpone the
interleaving inequalities until the sorts were done. We have seen
one way to partly get around this. Another, very different, way is to
do the sort deterministically using constraints. The key here is to
realize that a 2-element sort function can be constructed using mi.n
and max in ordinary arithmetic. A standard recursive algorithm
based on bitonic sequences can be used to defme a general sort (of a
power of 2 elements) from the 2 -element sort. By changing the low
level min/max to a constraint primitive, we can "lift" this algorithm
into the CLP realm and it will still be a sort, an interval sort. The
output list of intervals gives the bounds for the frrst, second, third,
etc event in time order for every possible instantiation of the original
list.. But, since this sort is now deterministic, we can sort the start
and fmish times and express the interleaving inequalities between
the sorted lists, as in: ·

i.serialize(Tlist ,SS, SF):-
Ssplit(Tlist, Starts, Fi.ns, Durations),
isort(Starts,SS),
isort(Fins, SF),
Sinterleave(SS,[01SF]).

?? 10

CLP(BNR)/ Scheduling
Ssp lit([],[],[] , []).
$split([task(_,O,S,F)ITs], [S ISs], [F IF s] , [O IDs]):- Ssplit(Ts,Ss,Fs).

$interleave([],_). % each start must be preceded by a finish
Sinterleave([SISs],[FIFs]):- {F=<S}, Sinterleave(Ss,Fs).

However, the interval sort is not interval convex, so there is a price
yet to pay, as we cannot just instantiate the lower bound of the last
finish to find the miminal span, and we need an instantiation
method, and non-determinism will be reintroduced during
instantiation. (A really good instantiation method for optimal
schedules is still being sought.)

The possible advantage of using this interval sort approach is that
given intervals for the time ordered start and finish times, it is
possible to impose constraints on these ordered times which can help
prune the space during instantiation. As an example, the simple
interleaving inequalities can be augmented by recognizing that the
sum of the previous idle time of the resource plus the amount of
work done so far must be equal to the finish time of the current
operation (a"conservation of time" law):

Sconservation([],[F],IdleSum, [Work],Finish):
{ F = IdleSum + W, F=< Finish}.

Sconservation([SISs],[FIFs], IdleSum, [WIWs],Finish):- Idle:real(0,_),
{Idle = S - F, % this is equivalent to {F=<S},
{ S1.111=IdleSum + Idle } ,
{ F = IdleSum + W},

Sconservation(Ss,Fs, Sum,Ws,Finish).

The work estimate vector can be approximated from the list of
durations (here assumed to be ordinary numbers) by sorting it in
both ascending order WL and descending order WH,so the work done
at the jth step is bounded between WL{j) and WH{j), and then
defming a the estimated work vector by partial summation:

estimate_work_done(Ourations, [01Ws]):
sort(Durations, Wl),
reverse(Wl,WH),
Sest_work(Wl,WH,0, Ws).

Sest_work([], D, S1.111, []).
Sest_work([llls],[HIHs], Sum, [WIWs]):- W:real(L,H),

{Suml=zSum + W},
Sest_work(ls,Hs,Suml,Ws).

Note that the last value is the total work (the sum of the durations)
and is a point value, so that the base clause of $conservation is very
strong: the last finish time will be pushed out past the total amount
of work to be done initially, and pushed out further everytime a idle

?? 11

CLP(BNR)/ Scheduling
definite idle period is created during instantiation. This is important:
since the last fmish time in every serial sequence must be less than
the span, pushing out the fmal fmish time makes the lower bound of
the span a more accurate estimate and can lead to much earlier
failure with tight deadlines. (Compare with Traveling Salesman.) The
conservation equations above serve therefore much the same
function as the global Carlier-Pinson inequalities in the traditional OR
approach to job-Shop Scheduling; it is apparently weaker in the
middle operations (in terms of forcing local orderings of activities)
than the local earlier-Pinson inequalities (which use the specific
durations of operations in each cluster instead of best/worst case
bounds), but is stronger for fmal activities because it includes the
effects of any forced idle periods, which seem to be common in real
job-shop problems.

Narrowing of the outputs of an interval sort do not in general
percolate back to the inputs (except at the two ends) since
narrowings will not propagate backwards very well through min and
max primitives of overlapping intervals. A partial exception occurs
at the first and last intervals in a cluster in the ordered list: if
instantiated, the propagation will percolate back to the original
operations whenever there is a unique solution (i.e., when only one
of the original operations could have had such an early/late value).
This suggests the possibility that there may be an effective time
ordered instantiation strategy. However, once a choice of ordering is
made during enumeration of the original operations, their intervals
may become disjoint, and then the narrowings stuck in the sort
network can trigger failure earlier than would otherwise be the case.
Overall, however, this approach has not been very
effective(compared with disjunctive scheduling) on benchmarks with
busy machines. It may be more useful (especially at detecting
infeasibile problems) in cases where the operations are of about the
same duration and where there are many external constraints on
time which produce many idle periods. ·

Serially Reusable Resources - Multiple Identical Resources

The method of disjunctive scheduling does not apply when there are
multiple equivalent servers of the same type, since the several
servers can perform overlapping operations. However, the method of
deterministic interval sorting, interleaving equations, and
conservation laws, does generalize fairly easily. (Older and Van
Emden 1994-95) All that is required is that the shift (the
prepended 0 on lists of fmishes and work estimates) be changed to

?? 12

CLP(BNR)/ Scheduling
reflect the number of servers. For example:

Sinterleave(SS,[0JSF])

becomes:
shift(Nservers,SF,ShF),
Sinterleave(SS,ShF),

where

shift(0,F,F):-!.
shift(Nservers,F,[01Fs]):- N is Nservers -1, shift(N,F,Fs).

Note that failure during the setup of these equations implies the
infeasibility of the scheduling problem (just from the correctness
property of CLP), so it becomes feasible to adjust the number of
servers during setup to values for which a solution may be possible.
The choice of a good enumeration strategy to be used with the
interval sort-based algorithm is still open. Based on the single-server
case, the method described in the next section may be a good
candidate.

General Resource Scheduling -
Cumulative Constraint

The previous method handles the common case of each task
requiring one instance of a resource, or more generally, where each
requires the same amount of the resource. But for the general case
where different tasks make different resource demands, one needs a
more general formulation. A useful interface to this general case is
the so-called "cumulative constraint" introduced by COSITEC.

The general form of the cumulative constraint is

cumulative(Ss,Ds,Ws,Limtt)

where ss,Ds,ws are lists of length N of numeric values representing
the start times, durations, and resource requirements respectively
(of a certain type) for N tasks, and _·Limi.t is the total amount of
resource available. The interpretation is that at all points in the
schedule the total resource usage must be less than L tmt t. (We use
the language of time scheduling here for convenience, but any one
dimensional space will do.) Usually the starts are intervals and
durations and weights and limit are all constants, but all may be
intervals if desired, although this does sometimes complicate the

?? 13

CLP(BNR)/ Scheduling
interpretation of the results. When durations and weights are
intervals there may also be side constraints, e.g. that the product of
duration and weight be constant. The starts, durations, weights etc.
are here taken usually as real values, but can be used with integer
variables also if some slight modifications are made.

The form of the cumulative constraint, i.e. with separate lists for the
arguments, makes it convenient to apply it in more complex
situations. Where there are several sorts of resources used by the
same tasks, each will need a separate cumulative call in which the ss
and os are the same, but ws and Limit are different (corresponding to
the different resource usages) on each call. In a two dimensional
placement problem formulated with cumulative, there will be a call
for placement on the X-axis and one for the Y-axis with different
starts (X-starts and Y-starts) and with duration and weights (i.e.
heights) interchanged.

In the COSYfEC implementation, cumulative is a complex "black-box"
primitive, the implementation of which is not described in detail. For
CLP(BNR), it can be implemented in terms of the more basic facilities
as a utility, and this can have advantages in terms of increased
flexibility to adapt to problem demands.

Simple Formulation in CLP(BNR)

The semantics of this constraint is that at each point along the time
axis (from the earliest to latest time mentioned), the sum of the
resources in use at that time must be less than the limit. The
geometrical picture is the familiar one of the Gantt chart, with weight
shown as height. This can be expressed as:

That is, at each point we sum the Ws of just those tasks currently
holding resources. Of course, this is impractical (for continuous time)
since it represents an uncountable infinity of summations. However,
we note that the resources being used only change at start and finish
times of the tasks, so it suffices to check at only these values.

Hence we reformulate (1) in two steps: first defme the finish times

then require:

?? 14

CLP(BNR)/ Scheduling

(2b) for each Tin {Sk} or {Fk} :
Limit >= Sunlk (Wk *(T £ [Sk ,Fk]).

Altogether there are N constraints in 2a and 2N in 2b.

We can compute the boolean expression T £ [Sk,Fk] in CLP(BNR) as:
{ Bk = (T >= Sk) and (T =< Fk) }

or more explidtly as:
{Bkl = (T >= Sk),
Bk2= (T =< Fk) ,
Bk i.s Bkl and Bk2},

where Bk,Bkl,Bk2 are booleans. Note that with the substitutions
envisioned for T, the low level boo leans become

Bssi.k:=(Si. > Sk),Bsfi.k:=(Si. < Fk)

and Bfsi.k:=(Fi. > Sk),Bffi.k:=(Fi. < Fk)

so there is some overlap between them (Bfsi.k=Bsfki.,

Bssi.k=Bsski. ,Bffi.k=Bffki.), which should be exploited by the common
subexpression folding feature in CLP(BNR). There are also various
dependencies such as Bssi.k-> Bfsi.k and Bffi.k->Bsfi.k, which also help
reduce the effective complexity.

A couple of special points are important. First, the "diagonal
elements" such as Sk £ [Sk,Fk] and Fk £ [Sk,Fk] should be replaced by1,
which helps to get the algorithm started. Second, usually one permits
a new task to start at the same time instant that an old one finishes,
but this is prohibited by the formulation above. To fix this, we must
alter the formulation slightly so that we exclude cases where a start
and fmish are equal. This can be done using (forT a start timeS)

{Bkl = (S >= Sk),
Bk2== -(Fk =< S),
Bk i.s Bkl and -Bk2},

and for T a fm.ish time as:
{Bkl == -(Sk >= T) ,
Bk2= (T =< Fk) ,
Bk i.s -Bkl and Bk2} •

Now consider the effect of the sum constraint in eq. (2b). Depending
on the extent to which start and fmish times are known, we may
know that some start or finish time of necessity occurs during some
task, thus setting the booleans to 1, or alternatively, that they follow
or precede serially thus setting the booleans to 0.

?? 15

CLP(BNR)/ Scheduling
In the other direction, suppose we focus on one term, say:

Limit >= Wk•(Bssik and Bsfik) + Rest
for a case where Rest is so large (because of existing placements) that
adding Wk to it would exceed Limit. Then the boolean value (Bssi.k
and Bsfik) would neccessarily narrow away from 1 and hence
become 0. If either Bssik or Bsfik is 1, the other must become 0, i.e.
the task k will be forced either to strictly follow task i (Bsfik = 1) (if it
already starts later) or to start before thus narrowing a start time
and ensuring that one of the booleans associated with start k is 1. In
this way a tight resource constraint can deterministically force
serialization of tasks.

The remaining case forces (Bssik and Bsfik) to 0, but both
constituents are indeterminate. If either becomes 1, then the other
is forced to 0 deterministically. But otherwise, we need to introduce
a choice point of the form:

(Bssik=0);(Bsfik=0).

These are the only choice points required; physically they correspond
to the classical disjunctive scheduling form of serial resource use in
which one must choose a serial order. Since N tasks have N! possible
serial orders, one expects that there can be at most about
log2(N!)=Nlog2(N) such choices to make.

When all the choices have been made so that the resource
summations are determined, then the remaining active constraints
(since the booleans have become "dead") are all either the addition
constraints from (2a) or a coherent set of inequalities as in a CPM
problem, and hence possesses the sequential instantiation property.
Narrowing of a time normally propagates only a short distance in
such a network, but will be at worst of order N when successful.
However, the creation of a directed cyclic graph, which corresponds
to a cyclic precedence relation and hence eventually fails, may at
worst require several iterations to do so, but in fact is usually quite
fast.

CLP(BNR) Implementation

The implementation is now quite straightforward. This version is for
a single resource problem with continuous variables; the booleans
are exported for separate enumeration.

?? 16

CLP(BNR)/ Scheduling
cumulative(Ss, Ds, Ws, Limit, Bs):

-Sadd(Ss, Ds, Fs),
Sresource_constraints(Ss,Fs,l, Ws, Ss, Fs,Limit, Bs).

$add(0 , 0 , 0)
$add([SISs],[DIDs], [FIFs]):- {F==S + D},Sadd(Ss, Ds, Fs).

It is more efficient to do the sums for both starts and finishes in one
pass since the overhead can be shared; this also keeps the booleans
dealing with the same two items together. We have also changed the
encoding of the booleans so that the standard enumeration (which
tries 0 first) will attempt to force tasks to be concurrent first.

Sresource_constraints(O, 0, K, Ws, Sl, Fl, Limit,O).
Sresource_constraints([SISs],[FIFs], K, Ws, Sl, Fl, Limit, B):-

Kl is K + 1,
Ssum_at(Ws,l, Sl,Fl, S,F, K, Suml, SumZ, B,EB), % print(Sum),
{Suml =< Limit, Sum2=<Limit},
Sresource_constraints(Ss, Fs, Kl, Ws, Sl, Fl, Limit, EB).

$sum_at(0, J, 0, 0, Sl, Fl, K, Suml, SumZ, EBs, EBs):-
{Sum1==0,Sum2==0}.

Ssum_at([WIWs],J, [SISs],[FIFs], Sl,F1,J, Sum1,Sum2, Bs,EBs):-!,
Jl is J + 1,
{Suml = W + Sum_l, SumZ--W + Sum_Z},
Ssum_at(Ws,Jl, Ss,Fs, Sl,Fl, J, Sum_l,Sum_Z,Bs,EBs).

$sum_at([WIWs],J,[SISs],[FIFs],Sl,Fl, K, Suml, Sum2,
[Q,Ql,Q2,P,P1,P21Bs], EBs):-!,

{ Q1== (F1=<S), QZ =(F1=<F),
Q ==(Q1 or -QZ),
Sum2= W*(-Q) + Sum_Z,
Pl== (S=<Sl), PZ ==(F=<Sl),
P ==(-Pl or PZ) ,
Sum1== w•c -P) + Sum_l } ,

Jl is J + 1,
Ssum_at(Ws,Jl, Ss,Fs, Sl,F1, K, Sum_l,Sum_Z,Bs,EBs).

For many, and perhaps for most, purposes a good enumeration order
is the one which enumerates the largest demands (duration*weight)
first. This can be done by preordering the arguments.

Application to the Squares Puzzle

A classic benchmark which illustrates- the use of cumulative is the
squares problem: arrange a list of squares within a large square of
given size. As a two dimensional layout problem, this will use
cumulative along both the X- and Y- axis. This has been done with a
version modified to work with integer variables (and integer
summations), but we will not be doing any enumeration on the
integer variables at all. Since the total area of the little squares just

?? 17

CLP(BNR)/ Scheduling
equals that of the big square in this problem, it is also very
advantageous to be able to modify the code for cumulative to make
the resource limit constraint an equality:

Sresource_constraints(O, 0, K, Ws, S1, F1, Limit, 0).
Sresource_constraints([SISs],[FIFs], K, Ws, S1, F1, Limit, 8):-

K1 is K + 1,
Ssum_at(Ws,1, S1,F1, S,F, K, Sum1, Sum2, 8,E8), % print(Sum),
{Sum1 = Limit, SI.III2=L imi t}, % exact fit
Sresource_constraints(Ss, Fs, Kl, Ws, S1, F1, Limit, E8).

The compatibility connection between the X and Y solutions is that no
squares overlap. This can be forced by imposing some additional
constraints between the enumeration maps of the X and Y
subproblems: by checking which booleans in each cluster of 6
encode finish=< start disjointness conditions, we can ensure that at
least one of the four conditions is true:

meld([],[]).
meld([_,Qx1,_,_,_,Px21As],[_,Qy1,_,_,_,Py218s]):-

{ 1== Qx1 or Px2 or Qy1 or Py2}, % non-overlapping
meld(As,8s).

Here is the code for a small problem of this type:

squares(9, [5,4,4,3,2,2,2,1,1,1]).

pack(Size):- stats,
squares(Size, Sqs),
location(Sqs, Size, Xs, Ys),
cumulative(Xs, Sqs, Sqs, Size, 81),
cumulative(Ys, Sqs, Sqs, Size, 82),
stats(l,P,O,I,OT), nl, write([l,P,O,I,OT]), % setup time
stats,
meld(B1,B2),
enumerate(81),
stats{l1,P1,01,Il,Dn), nl, write([l1,P1,01,Il,OT1]),% 1st x sol
nl,write('Xs:'),print(Xs),
enumerate(82),
stats(l2,P2,02,I2,DT2), nl, write([l2,P2,02,I2,0T2]),% 1st y sol
nl,write('Ys:'),print(Ys).

The execution trace is:

[291952,20705,4510,2894,15883] % set up costs

[57645,7203,259794,4322,25350] % time to get first solution in X
Xs: [4, 5, 0, 2, 2, 0, 0, 4, 0, 1]

[68318,9134,263546,5154,26584] % total time for solution in X and Y
Ys: [4, 0, 5, 0, 3, 3, 0, 3, 2, 2]

?? 18

Cu>(BNR)/ Scheduling
Times are for 25Mhz 68030. The enumeration time to find the first X
solution is almost 27 seconds. The final enumeration list of 540
boo leans for X is:

001100 100111 100010 100111 100111 100111 100010 100111 100111
001010 100111 100111 100111 100111 100111 100111 100111 100111
111100 111100 001100 001100 100010 100010 111100 100010 100100
001100 111100 100010 100010 100111 100111 001100 100111 100111
111100 111100 001010 001010 100111 100111 111100 100111 100111
111100 111100 001010 111100 111100 001010 111100 100010 001100
111100 111100 001010 111100 111100 001010 111100 100010 001100
001010 111100 100111 001010 100111 100111 100111 100111 100111
111100 111100 001010 111100 111100 001010 001010 111100 111100
111100 111100 001010 111100 111100 001010 001010 111100 100111

•
Note also that only a little more than an extra second is then
required to find the first right fit in the Y direction because of the
constraints between the enumeration lists, even though the 540 Y
booleans are initially unknown when Y enumeration begins. (Note
that there will be several Y solutions for each X solution because of
symmetries.)

The cross-coupling between the X- andY-enumerations suggests that
it might be a good idea to interleave the two enumerations. Doing
this on a block-by-block basis (i.e. the block of 6 booleans dealing
with one pair of squares), leads to much better times, requiring only
5.2 seconds to jointly enumerate both:

[291952,20705,4510,2894,15984]
[63905,6193,21808,2232,5216]
Xs: [4, 5, 0, 2, 2, 0, 0, 4, 0, 1]
Ys: [4, 0, 5, 0, 3, 3, 0, 3, 2, 2]

There are several open questions at this point. One has to do with
resolution: the same problem, also expressed as integers, but with
everything increased by a factor of 10, was much slower on the
original formulation (227 sees enumeration), suggesting that
(although integer variables are not enumerated) integer rounding is
playing a major hidden (and not understood) role. Curiously, the
interleaved version showed only a slight increase (to 5.7 sees).

Another question is whether the use. of cumulative is necessary at
all, or would the systematic enumeration of just the no-overlap
conditions be suffident and perhaps even better? A step in this
direction is to eliminate half of the sums from cumulative, retaining
just the sums at the start of each task, since the rest are redundant.
At the same time, half of the enumeration booleans are dropped, the
revised code looking like:

?? 19

CLP(BNR)/ Scheduling

Ssum_at(0, J, 0, 0, S1,F1,K, Sum1,EBs,EBs):-
{Sum1==0}.

Ssum_at([WIWs],J, [SISs],[FIFs], S1,F1,J, Sum1, Bs,EBs):-!,
J1 i.s J + 1,
{Sum1 == W + Sum_1} ,
Ssum_at(Ws,J1, Ss,Fs, S1,F1, J, Sum_1,Bs,EBs).

Ssum_at([WIWs],J,[SISs],[FIFs],S1,F1,K,Sum1,[P,Q1,P21Bs],EBs):-!,
{ Q1== (F1=<S),

P1== (S=<S1), P2 ==(F=<S1),
P i.s (-P1 or P2) ,
Suml== W*(-P) + Sum_1 },

J1 i.s J + 1,
Ssum_at(Ws,J1, Ss,Fs, S1,F1, K, Sum_1,Bs,EBs).

This version- with all real variables-- cut setup costs almost in half
and produced slightly better enumeration times as well:

?- pack(9).
[167154,12067,2184,1628,9184]
[53520,4378,23368,1497,4600]
Xs:[4.0, 3.0, 0.0, 0.0, 7.0, 7.0, 0.0, 3.0, 2.0, 2.0]
Ys: [4.0, 0.0, 5.0, 2.0, 0.0, 2.0, 0.0, 4.0, 0.0, 1.0]

It is possible that even simpler and better versions may exist.

?? 20

CLP(BNR) Algorithms for Traveling Salesman

William J. Older

BNR Computing Research Laboratory

August 3, 1993

ABSTRACT

This paper describes the development of several CLP(BNR) exact algo
rithms for the well-known traveling salesman problem. Although none of
these algorithms are efficient enough for serious practical use, their devel
opment illustrates several principles of constraint logic programming: the
difficulties posed by optimizations, the need for intrinsic characterizations
of optima, the use of branch-and-bound techniques, and the occasional ad
vantages of solutions which use a mixture of Prolog and CLP techniques.

This paper describes in detail how relational interval arithmetic can be ap
plied to give a complete solution to a classical NP-complete problem, the fa
mous "traveling salesman" problem. This problem is of intrinsic interest
because of its numerous practical applications as well as its theoretical sig
nificance. But it also easy to describe and understand, so it is an interesting
example to illustrate the application of CLP methods. Because it is usually
thought of as an essentially combinatorial problem, a useful formulation of
this problem in interval arithmetic terms is not completely obvious. It ap
pears that this problem is not a "natural" candidate for the application of re
lational interval arithmetic. This has several advantages when it is viewed
as a teaching example. First, most real-world problems will also not be en
tirely "natural" for this technology, and will sometimes require some inge
nuity to formulate in CLP terms, or will require hybrid solutions. Also, the
difficulties are themselves illuminating; it is just as important to see what
cannot be conveniently done in CLP as it is know what can be done.

We will begin by describing the problem and then give two versions of a tra
ditional Prolog solution, and then describe the practical performance diffi
culties with these solutions. In section 2 we will describe a reasonable
(deterministic) sub-optimal heuristic solution, and examine its shortcom
ings. In section 3 we will extend the heuristic solution to a complete (non
deterministic) solution using interval arithmetic. Finally, in section 4, we
extend this solution to get an effectively prunable branch and bound algo
rithm.

1. Traveling Salesman Problem

The general problem may be stated as: given N points in a metric space, find
the shortest tour which visits all the points, where a tour is a path where the
initial point is the same as the terminal point and which visits each point ex
actly once. In the sped.fic case dealt with here, the metric space will be a
region of the Euclidean 2 -plane.

It will be convenient to take the input data as consisting of the locations of
the N points, in the form of a relation:

point(Label, X, Y) .
The output can be represented most conveniently as a list of labels. The ini
tial (and terminal) point will be labeled 0 by convention.

We will need a relation to compute distances:

distance(J, K, D) :
point(J, XJ,YJ),
point(K, XK,YK),
0 is sqrt((XJ-XK)**Z + (YJ-YK)**2).

If a tour is represented as a list of point labels, the total length of a tour is
easily computed by:

tourlength(Tour, 0, 0.0, Length) % 0 is standard ori.gi.n

where

tour length([], Last, Di.st, Total):-
distance(Last, 0, D),
Total is Oist + D.
[X,Xs ..], Last, Dist, Total) :-
distance(Last, X , D),

tour length(

Newdist is Dist + 0,
tourlength(Xs, X, Newdist, Total).

A naive Prolog program (in the traditional declarative style) for computing
the lengths of all paths is then easily written:

tour _ancLlength(Tour , Length):-
findall(P, poi.nt(P,_,_) , List),
permutation(List, l),
tourlength(l, 0 , 0.0, Length).

permutation(0, 0).
permutation(List, [X,Xs ..]):

delete(List, X, Newlist),
permutation(Newli.st, Xs).

delete([X,Xs ..] , X, Xs) .
delete([Y,Xs ..], X, [Y,Ys ..]):- delete(Xs, X, Ys).

The time required to generate all solutions is then aproximately proportional
to (N-1)! * N. The extra factor of N (for computing the length of the tour)
can be largely eliminated by interleaving the length computation with the
permutation generation. This eliminates the recalculation of the the cost of
the early steps of the tour for each tour. This can be done easily by "splic
ing" the two programs together with an editor (and possibly relabeling
some variables).

tour_and_length(Tour , Length):-
findall(P, point(P,_,_) , List),
perm_length(List, L, 0, 0.0, Length).

perm_ length(D, 0, Last, Dist, Total): -
distance(Last, 0, D),
Total is Dist + D.

perm_length(List, [X,Xs .•], Last, Dist, Total)
delete(List, X, Newlist),
distance(Last, X , D),
Newdist is Dist + D,
perm_length(Newlist, Xs, X, Newdist, Total).

Both of these procedure can be used with a general minimization search al
gorithm which records in state space any solution which is better than any
previous solution:

min_search(Generator(MinResult, Solution, Parms ..)):-
forget_all(Generator(_,_)),

Generator(Res, So 1, Pa nns ..) ,
update_best(Generator, Res, Sol) ,

fail.
min_search(Generator(MinResult, Solution, Panns ..)) :

recall(Generator(MinResult, Solution)) .

update_best(G,R,S):-
once(recall(G(OR,_))),

OR=< R,!. %worse, so cut
update_best(G, R, S):-

remembera(G(R,S)) .

The result is, of course, still much too slow to use for problems with more
than a few points. With N=11, (N-1)! is already over three and half million,
and the running time of this algorithm would be about an hour. Then 12
points would require about a work day; 13 about a week, 14 a season, and
16 about a half century.

One problem is that interval arithmetic, like Prolog, is naturally oriented to
wards determining feasibility, i.e., existential propositions of the form

exists(x) such that P(x)
for some vector of variables x and some predicate P. Optimization problems,
however, have quite a different structure of the form:

exists(x) such that P(x) & forall(y) { P(y) => X<<Y}} .
A search program of the above sort is the direct translation (assuming the
comparison relation is transitive) of this formulation, and, in general, such a
search will be necessary. The best approach in such a case is usually to dis-

cover intrinsic properties Q that any optimum point must have, and then re
strict the search to the space of points satisfying Q as well as P:

exists(x) such that {P(x) & Q(x) & forall(y) { P(y) => X<<y}} .
Later we will see how we can apply this idea to the traveling salesman prob
lem, but fJISt we need to look at a somewhat different algorithmic approach.

2. Heuristic Algorithm

Faced with this combinatorial intractability, one can relax the problem and
seek only a "good" tour. There is no formal defmition for what constitutes
a "good" tour, nor generally is there any way to judge just how far from the
optimum it may be. There are many ways to fmd good tours- a human be
ing with a pencil and a large sheet of paper often does very well! In this
paper we will consider only one such heuristic algorithm, one probably re
discovered many times.

The starting point is the observation that the shortest tour will tend to be
made of the shortest point-to-point segments, or "legs." An obvious "greedy"
heuristic is therefore to construct a tour by picking legs in order of size. The
most economical way to do this is to construct all the M=N(N-1)/2 legs and
sort them by length to form a list. Items can then be sequentially picked
from the list, subject to the constraint that the picked items must form a val
id tour. Since this produces a list of selected legs in order of size, a step is
needed to assemble the legs of the tour into the proper sequence. This
yields:

heuristic(Tour, Length) :-
construct_legs(Leglist , N),
sort(Leg list, Ascending) ,
select(N, Ascending, Selected),
sequence(Selected, Tour, 0, 0.0, Length).

We will see that these steps will have execution times roughly proportional
toM, M*ln(M), M, and N, respectively, where M=N*(N-1)/2.

In order to use the standard sort predicate, we must construct the term for
a leg so that the sort key (distance) is fJISt; we will want to know which
points are on each leg as well, so we consi9er the term with structure:

leg(Distance, PointA, PointB) .

(Note that legs are unoriented; the leg AB is to be regarded as the same as
leg BA. This cuts the number of legs in half, but means that the proper ori
entation must be done as part of the sequencing.)

With these ideas in mind we can code the first predicate thus:

~

4

construct_legs(Leglist):-
findall(pt(Label, Component, [Next, Prev], [X,Y]),

mk_pt(Label, Component, [Next, Prev], [X, Y]),
Point_l ist) ,

list_length(Point_list,N),
distance_list(Point_list, Leglist).

mk_pt(Label, Component, [Next,Prev], [X,Y]):- point(Label,X,Y).

list_length([], N, N).
list_length([X,Xs ..],M,N):- Ml is M + 1, 1ist_length(Xs,M1,N).

dist(pt(_,_,_,[X1,Y1]), pt(_,_,_,[X2,Y2]), D):-
0 is sqrt((X2-X1)**2 + (Y2-Y1)**2.

% form the list of N*(N-1)/2 pairs
distance_l ist([] , []) .
distance_list([C,Cs ..], DL):- dist_from(Cs,C, DL,EL),

distance_list(Cs, EL).
% legs from 1 ist of points to a point

dist_from([], P, L, L).
dist_from([X,Xs ..],Y, [leg(D,X,Y),Ls ..], E):

dist(X,Y,D),
dist_from(Xs,Y,Ls, E).

The key issue is to ensure that only collections of legs forming valid tours
are selected. One constraint is then that each point must be visited exactly
once; i.e. used in exactly two legs. This can be accomplished most easily in
Pro log by associating two unbound variables [Next, Prev] with each point, and
then binding them as legs are selected.

The second constraint is to ensure that the tour forms a single cycle rather
than several smaller cycles. This can be restated as a rule that a leg should
never be chosen if it will connect to points which are already connected, un
less this is the last leg to be selected. A Prolog implementation of this is to
add an unbound variable Component to each point, and unify these variables
for the points connected by a leg (so the variables represent connected com
ponents of the graph), but only if they are not already identical(@=), except
for the last leg.

The main algorithm now has a very simple structure:

select(0, List, 0):-! .% stop when N are selected
select(N, [L,Ls ..], [L,Rs ..]):- check_constraints(L,N),!,

N1 is N - 1,
select(Nl,Ls, Rs).

select(N,[L,Ls ..], R):- select(N, Ls, R). % else skip

check_constraints(leg(_, pt(P, Cl, Pli.nk,_),- pt(Q, CZ, Qli.nk,_)),N):
di fferent_components(C1, CZ, N),
link(P, Qlink), link(Q,Plink).

link(X, [X, _]).
link(X, [...., X]).

different_components(C1,C2,N):- N<>l, Cl@=CZ,!,fail.
different_components(C, C, N). % succeed and unify components

The final sequencing is also straightforward:

sequence(D, D, 0 , D, D):-!. %last leg returns to ori.gi.n
sequence(li.st, [P,Ps ..], P, length_so_far, length):-

delete_leg(li.st, leg(D, pt(P,_ ..),pt(Next,_ ..), Rest),!,
02 i.s length_so_far + D,
sequence(Rest, Ps, Next, 02, length).

delete_leg([X,Xs ..], Y, Xs):- rnatch_leg(X,Y),!.
delete_leg([X,Xs ..], Y, [X,Ys ..]):- delete_leg(Xs,Y,Ys).

match_leg(leg(D,A,B), leg(D,A,B)).
match_leg(leg(D,A,B), leg(D,B,A)).

If we run this algorithm on our test problem, we get a tour length of about
84.2, not far from the optimal tour of 77.54 7 . If we examine the tour itself,
we fmd that it agrees with the optimal tour (or its reverse, which is also op
timal) almost everywhere. However, unlike the optimal tour, its path cross
es itself. This suggests that we take a closer look at self-crossings.

A Geometrical Lemma

Recall that a metric d satisfies the axioms:
d(X,Y) >= 0
d(X, Y) = d(Y ,X)
d(X,Z) =< d(X, Y) = d(Y,Z).

In any metric space we can defme the 3-ary relation
between(X,Y,Z) iff d(X,Z) = d(X,Y) + d(Y,Z).

(There may not be any points between two given points, depending on the
particular metric space.)

Lemma: If points A,B,C,D in a metric space are such that there is a point W
where between(A,W,C) and between(B,W,D), then

d(A,D) + d(B,C) =< d(A,C) + d(B,D)
and d(A,B) + d(C,D) =<d(A,C) + d(B,D).
Proof: From the triangle inequality we have

d(A,D) =< d(A,W) + d(W,D)
and d(B, C) =< d(B,W) + d(W,C),
so d(A,C) + d(B,D) =< d(A,W) + d(W,C) + d(B,W) + d(W,D)

= d(A,C) + d(B,D), .
since W is between A and C, B and D. The other inequality is proved simi
larly.

In ordinary two-dimensional Euclidean space, for any four points, no three
of which are colllinear, there will be at most one of the three pairs of seg
ments (with distinct endpoints) which has a crossing. The situation can be
more complex with non-Euclidean metrics, but this theorem remains valid.

. . . , . , , . . , , , , - , -. .. . -. ' . ' . -, -. -. -. -. -. ,

D

c
Figure 1: Self-crossing removal

Now suppose we have an optimal tour in the Euclidean plane with a self
crossing, for example leg A-c crosses leg B-D. Removing these two legs
breaks the tour into two pieces, and suppose A and B are in one piece and C
and D in the other. We can then construct a new tour by adding legs from
A-D and B-D, and by the above the result will be better (or the same) as the
original tour. Thus we infer that a minimal tour (but not neccessarily all
minimal tours) are non-self-crossing; so "non-self-crossing" is a possible in
trinsic property that can be used to reduce the search space.

One way that we might try to use this property is this: whenever we select
a leg, any leg which crosses it becomes inelgible for selection. In this way
we would only generate tours free of crossings. This requires that the selec
tion algorithm be non-deterministic and we must remove the cut in the sec
ond clause.

3. Basic Constraint Algorithm

In this section we begin formulating a constraint based algorithm. The first
problem is to fmd a representation of the problem in terms of "arithmetic"
variables, including integer and boolean. Since the problem involves a per
mutation, one thinks naturally of a permutation matrix, that is, a matrix p(i,j)
(denoting "from i goto j") with boolean entries such that row and column

sums are equal to 1. However, proper tours have additional constraints: (a)
the diagonal entries p(i,i) are 0, and (b) if p(i,j)=l then p(j,i)=O. These added
constraints can be used to reduce the number of variables by more than a
factor of two, if we use instead of the p(i,j) the new variables p'(i,j) := p(i,j)
or p(j,i) for i<j. These are easily seen to be essentially equivalent to the un
oriented "legs" used above. The row and column sum constraints are re
placed with: the sum of all leg variables attached to a point is 2, as shown in
fig. 1. (This replaces the link fields used earlier.)

The same strategy that was used before for ensuring only single-cycle per
mutations are generated can be used here also. In fact, there does hot ap
pear to be any practical way of achieving the same result using CLP
techniques at all. Here is one of the places where a hybrid aproach is necces
sary.

The previous algorithm can now be transformed easily into an equivalent
constraint- based algorithm (changed parts are shown in italics, some sec
ondary simplification has also been done):

salesmanl(Tour, Length) :-
construct_legs(Leglist , N),
sort(Leg list, Ascending) ,
select(N, Ascending, Selected) ,
sequence(Selected, Tour, 0, 0.0, Length).

construct_legs(Leglist ,N):-
fi.ndall(pt(Label, Component, [X, Y]),

mk_pt(Label, Component, X, Y),
Point_l i.st) ,

list_length(Poi.nt_list,N),
di.stance_li.st(Poi.nt_list, Leglist),
N is N - 1,

setup_dst_constraints(N, Leglist). % nl, print(Legl ist).

mk_pt(Label, Component, X, Y):- point(Label, X, Y).

di.st(pt(_,_, [X1, Y1]), pt(_,_, [XZ, YZ]), D):-
D is sqrt((X2-X1)**2 + (Y2-Yl)**2.

" form the list of N*(N-1)/2 pairs
di.stance_li.st(0, 0) .
di.stance_list([C,Cs ..], DL):- dist_from(Cs,C, DL,EL),

distance_list(Cs, EL).
" legs from l i.st of points to a poi.nt

dist_from(D, P, L, L) .
di.st_from([X,Xs ..],Y, [leg(D,P,X,Y),Ls ..], E):-

P:boolean, " make boolean constraint variable to record choices
dist(X,Y,D).

setup_dst_constraints(-1, L):- ! .
setup_dst_constraints(N, L):- N1 is N - 1,

incident(L, N, LN),
sum(LN, S),
S = Z, % total degree in tour is exactly Z
setup_dst_constraints(N1, L).

incident(a. -· Q).

incident([X,Xs ..], N, [P, Ys ..]):- incid(X,N,P),!,
incident(Xs,N,Ys).

incident([X,Xs ..], N, Ys):- incident(Xs,N, Ys).

incid(Zeg(D,P, pt(N,_ ..),_), N, P).
incid(Zeg(D,P, _,pt(N,_ ..)), N, P).

sum([X], 5):-S X,!.
sum([X,Xs ..], N):- S:integer, N = X + S, sum(Xs,S).

select(1, [leg(D,l,P,Q),_ ..], [leg(D,P,Q)]):-!.
% stop when last one is selected

select(N, [leg(_,l, P, Q),Ls . .] , [leg(D, P, Q), Rs ..]):
check_components(P, Q),! ,

N1 is N - 1,
select(N1,Ls, Rs).

select(N,[leg(_,e,_ ..), Ls ..], R):-
select(N, Ls, R). % else skip

check_components(pt(_, Cl,_), pt(_, CZ,_)):
different_components(Cl,CZ).

different_components(Cl,CZ):- Cl@=CZ,!,fail.
different_components(C, C). % succeed and unify components

This constraint-based algorithm can now be extended to use the crossing
blocking strategy discussed above. For this we need to first move the cut out
of select; for a heuristic algorithm we can keep the cut around the call for
select. Secondly, we need to impose an additional constraints for each pair
of crossing legs. These changes transform the main predicate into:

salesman2(Tour, Length) :-
construct_legs(Leglist , N),
sort(Legl ist, Ascending) ,
crossover _constraints(Ascending) ,
select(N, Ascending, Selected),!,
sequence(Selected, Tour, 0, 0.0, Length).

where we have added

crossover_constraints(D).
crossover_constraints([L,Ls ..]):

cross_constrain_all(Ls, L),
crossover _constraints(Ls).

cross_constrain_all([],_).
cross_constrain_all([L,Ls ..] , K)

cross_constrain(L, K),
cross_constrain_all(Ls, K).

cross_constrain(L, K) :- crosses(L, K), ! , notboth(L, K).
cross_constrain(_, _).

notboth(leg(_,P,_ ..), leg(_,Q,_ ..):- P+Q =< 1.

The crossing test, once adjacent legs are eliminated, can also make effective

use of interval arithmetic:
crosses(leg(_,_,pt(I,_,[X0,Y0]), pt(J,_,[X1,Yl])),

leg(_,_,pt(K,_,[XZ,YZ]), pt(L,_,[X3,Y3]))):-
not(adjacent_legs(I,J,K,L)),

[S,T]: real(0,1),
S*X0 + (1-S)*X1 = T*XZ + (1-T)*X3,
S*Y0 + (1-S)*Yl = T*YZ + (1-T)*Y3,
solve(S,T).

adjacent_legs(X,J,X,L).
adjacent_legs(X,J,K,X).
adjacent_legs(I,X,X,L).
adjacent_legs(I,X,K,X).

Note, however, that the setup costs for these constraints are fourth order inN, so
that computing all these crossovers becomes quite expensive.

Figure 2 : Leg c is skipped because of
the interaction between constraints

With crossover prohibition constraints in place one fmds that there is sometimes a
significant amount of pruning of the search space which appears surprising at
first. For example, in Figure 2. above, we have a case where the algorithm first
chooses leg a, then leg b, and suppose leg c would then be the next choice. How
ever, when leg cis chosen, the constraints trigger an immediate failure, so leg c
is skipped. The reason for this failure is that choosing leg c requires that all the
legs crossing c must become inelgible, but since this includes all the remaining
legs incident at point p, this leads to a contradiction with the requirement that
we must choose two legs incident at p.

Because of this interaction between crossover constraints and incidence con
straints (and in general with other constraints to be added later) the algorithm
begins to exhibit new and sometimes surprising properties. This synergy phe
nomenon, in which separate (and often weak) constraints interact to produce a
strong and surprising result, is a novel characteristic of CLP programming .. Note

that, had we not moved the incident restrictions into the constraint network,
this synergy would not have happened, but that after choosing leg c, all
branches of select would have eventually failed.

In view of this, and the geometrical lemma above, one might expect that the
first solution of the crossing-blocked algorithm would be better than the
first solution with crossovers. However, generally the reverse is true: the ad
ditional constraints make the first solution worse rather than better. So, as
a heuristic algorithm, we are now worse off. The benefits of blocking cross
overs only appear when we run the algorithm non-deterministically, be
cause it reduces the search space.

4. Branch and Bound
At this point we would like to remove the cut and return to a complete. non
deterministic algorithm. However, the number of crossover-free tours
(which is the set we are searching with this algorithm) is still too large to be
practical for any but very small values of N.

In order to prune the search space further we introduce a constraint version
of the branch and bound strategy. This requires that we maintain an inter
val estimate of the length of a tour and a global bounding value based on the
best tour seen so far with the intent that we thereby cut off the search
whenever the estimate's lower bound is above the global bound. Each new
(and better) solution must then alter (as a side-effect) the global bound.

For this purpose we add two additional fields SP (an integer variable) and
SPD (a real variable) to the leg structure: leg(o, P, SP, SPD, x, v).

The variable SP represents the partial sum of the P booleans for this and all
previous legs, while SPD is the partial sum of P*D for this and all subsequent
legs. This additional constraint structure is constructed by a call to bnb_con
straintsC Leglist, Number, Nsofar, Total_Oist).

The mainline of the algorithm is then changed to call this additional setup
routine, set up the global bound inequality, and to update the global bound
for each new solution. It uses a special CLP(BNR) primitive (set_ upper_
bound) for performing this last action as a side-effect, which will not be un
done by backtracking. At the end, the optimal (i.e. the last) solution is
retrieved from state space.

salesman_bnb(Tour, Length) :-
construct_legs(Leglist , N),
sort(Legl ist, Ascending) ,

crossover_constraints(Ascending),
bnb_constraints(Ascending, N, B, Total)),

Bound: reol(B,_),
Total =< Bound,

foreach(selectl(N, Ascending, Selected, Ct)

do [remembera(tour(Selected)),
range(Total,[_,U]),
set_upper_bound(Bound,U)]),

recall(tour(Selected)), % get fi.nal answer
sequence(Selected, Tour, 0, 0. 0, Length) .

One possibility for the setup routine would be this:

bnb_constrai.nts(0, _, _, 0.0).
bnb_constrai.nts([leg(D,P,SP,SPO,_,_), Ls .•], Number, OSP, SPD):

SP = OSP + P,
bnb_constrai.nts(Ls, Number, SP, OSPD),

SPD = OSPD + P*D,
SPD >= (N1.111ber - SP)*D.

Notice that the fli'St line in the second clause computes SP as a partial sum
of previous P's, while the third line computes SPD as a partial sum of subse
quent P*D's .

.._.,.. ----tl SPD ~~ -
Figure 3.A portion of the constraint network

This is not good enough, however, since the lower bound of SPD will be 0.0
so long as no subsequent P's are equal to 1; for this reason the total value
returned by bnb_constraints has a lower bound which just reflects the currently
chosen legs. This lower bound is too low to get much pruning from the global
bound. For this reason, the last line in the second clause adds a bounding

constraint: the rest of the choices (of which there are: Number- SP) are
each at least as big as D, so SPD >= (Number- SP)*D. Note that this estimate is
applied at every stage so that many lower bounds are being computed "in
parallel" and the largest of these becomes the lower bound of the total cost
of the tour. The largest ofthese bounds would come from legs with large D,
except that past the current choosing point of the select algorithm, the other
factor (Number- SP) becomes increasingly uncertain because of SP. Usually,
the effective bound will comes from at or just ahead of the choosing point.

With this mechanism in place the number of choices K1 drops rather dra-
matically. Direct measurements yield: ·

N
(N-1)!
K1

7
720

18

8
5040

55

9 10 11
40320 362880 3628800

230 448 1378

These mechanisms have thus reduced the complexity of the problem signif
icantly, from (N-1)! to a mere approximate 2**(N-1). Practically speaking,
however, the cost of the constraint processing, which seems to be roughly
proportional to N*N, means that the running times to do not show the same
improvement. For the N=11 case, for example, the improvement is only
about a factor of 10. Thus despite the fact that on larger problems one might
be able to reduce the running time from say a century to a mere few
months, this is not a practical solution in the usual sense.

Therefore, in order to improve the pruning in the branch and bound, and re
duce the constraint costs for doing estimates, in our last version we will
move the bounding estimation back into Prolog. We no longer need to have
the SP variables, so we can simplify:

bnb_constraints([], 0.0).
bnb_constraints([leg(O,P,SP,SPO,_,_), Ls ..], SPO):

bnb_constraints(Ls, OSPO),
SPO - OSPO + P*O.

The select algorithm, however, becomes more complex:

select(1, (leg(0,1,_,_,P,Q),_ ..], [leg(O,P,Q)]):- !.
select(N, [leg(O,S,SPO,P,Q),Ls ..] , R):-

var(S) -> [estimate(N, Ls,O, TO),
SPD:- TO ~ connect estimate to constraint net

],
sel(S, leg(O,P,Q), N, N1, R,R1),
select1(N1, Ls, R1).

sel(1, leg(O,P,Q), N, N1,[leg(O,P,Q),Ls ..],Ls):
check_components(P,Q),

N1 is N - 1
sel(0, Leg, N,N, L,L).

In this hybrid solution we compute an explicit lower bound by summing
over the next n possibly chooseable legs; since this ignores any constraints
between them, it is obviously a lower bound.

estimate(1,_, D,D):-!
estimate(N, [leg(D,S,_ ..),Ls ..], 01, TO):- 5@=0,!, estimate(N,Ls,D1,TD).
estimate(N,[leg(D,S,_ ..),Ls ..],D1,TD):-

N1 is N - 1, DO is 01 + D,
estimate(N1, Ls, DO, TO).

This lower bound is then connected directly into the SPD variable, where it
propagates back to the comparison against the global bound. With this ver
sion, which computes a slightly tighter lower bound, we get a further reduc
tion in the number of choices K2.

N
(N-1)!
Kl
K2

7
720

18
16

8
5040

55
46

9
40320

230
166

10
362880

448
287

11
3628800

1378
911

12 13
39916800 479001600

') ')

3403 9805

This version is also somewhat better in time because of the reduction in the
amount of constraint activity devoted to lower bounds, with the search time
for N= 11, for example, reduced to a couple of minutes versus the hour re
quired by the naive algorithm. The lower bound estimator is still very
crude, however, and an investment in finding a tighter lower bound estima
tor would most likely produce large benefits.

Conclusion

In this paper we have gone through the frrst steps of an iterative develop
ment cycle for a partially constraint-based approach to a difficult problem.
We have examined several strategies for pruning search spaces and looked
at the mechanism for implementing branch-and-bound, and seen how these
act to reduce the amount of non-determinism by large factors. The resulting
algorithm is, of course, still exponential as it must be (unless P=NP). In any
particular problem, depending on the details of the formulation, the result
ing algorithm may or may not be useable for realistic-sized problem instanc
es; only by doing the experiment can we tell what the practical limits will be.
CLP(BNR), which makes the job of writing correct and complete solutions
very easy, makes such empirical investigation feasible. Each improvement
in the algorithm permits larger sample problems to be handled, and these
serve as test cases for the next generation algorithm. Finally, and most im
portant, each advance in theoretical knowledge (such as the geometry lem
ma in this example) translates directly into additional constraints and hence

a reduced search space.

	Author’s Note
	Preface
	Introduction
	Review of Prlog
	Narrowing concepts in Prolog
	CLP(BNR) Syntax and Semantics
	Boolean Constraints I
	Boolean Constraints II
	Integer Constraints
	Continuous Primitives
	CLP Prototype Implementation
	Functional Interval Arithmetic
	Relational Interval Operations
	Data Structures and Iteration
	Setting up Constraints
	Examples
	Bibliography
	Appendix A: Theory

	The Application of CLP(BNR) to Powder Method X-ray Diffraction Crystallography
	Using Interval Arithmetic for Non-Linear Constrained Optimization
	Application of Relational Arithmetic to Ordinary DIfferential Equations
	Scheduling
	CLP(BNR) Algorithms for Traveling Salesman

