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Preface 

Since its beginnings in the 1980's the field of constraint logic 
programming has developed into a practical industrial tool, 
which can be used to solve some difficult combinatorial 
problems quite elegantly with very modest programming 
effort. 

The newer interval-based constraint systems, such as 
CLP(BNR) provide constraints on real-valued variables as 
well as on integer-valued and boolean-valued variables. While 
still somewhat less mature, this technology is potentially more 
revolutionary in its consequences. At least in principle, it 
brings many of the classical problems treated in numerical 
analysis into the realm of logic programming and theorem 
proving. i.e. "black" magic gets replaced by "white" magic. 

Interval constraint technology is now becoming commercially 
available in a number of systems (Prolog IV, ILOG, 
ALS/CLP(BNR) ) with reasonable performance, and is no 
longer merely an academic curiosity, but has been used to 
solve real, hard problems. 

This new technology does require that we learn new ways to 
think about problems, or rather, to unlearn many of the 
presumptions that we have been taught by exposure to 
conventional numerical practice. I hope that many of you 
\vill find this as liberating and exciting as I have. 

Please excuse the many inconsistencies (including fonts and 
styles), not to mention downright errors, in the following 
(draft) chapters. 

William Older 
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CLP = Constraints + Logic Programming 

The word "constraint" is used in a variety of contexts from everyday 
life to physics, mathematics, and other sdences with much the same 
intuitive meaning, even when the formalization is different. A bead 
on a wire, a weight on a string, a beaker open to the atmosphere, a 
space mission limited by onboard fuel, a desert ecology limited by 
the lack of water are all examples of constrained systems. 

CLP refers to the combination of constraints and logic programming. 
A constraint is declaratively just a relation-usually a mathematical 
relation-- but it differs operationally from other ways of treating 
relations. As relations, constraints fit very well into logic 
programming framework which is also based on relations. 

CLP systems began appearing about 10 years ago and span by now a 
considerable variety in system and underlying technology as well as 
a variety of applications. 

I. Historical Introduction to CLP 

A. Forerunners 

Prolog II, introduced in the early 1980's by A. Colmerauer, the 
founder of Prolog a decade earlier, is a forerunner of a CLP system 
in two quite different ways. 

Prolog II departed from previous Prolog practice by altering the 
interpretation of the fundamental unification algorithm of Prolog. 
This was done by introducing the notion of rational trees to describe 
the space of terms. Conventionally, Prolog terms were deemed to be 
finite trees: unifications of a variable with a term containing that 
variable ( eg. X= f(X) ) should result in a failure, detected by an 
"occurs check". As a matter of effidency, however, the occurs check 
code was usually incorrectly omitted. By permitting in theory the use 
of infinite trees, e.g. f(f(f(f( .... )) )), the omission of the occurs check 
could be formally justified at the price of weakening the 
conventional connection with classical predicate calculus. This so
called "rational tree" unification algorithm could be thought of as a 
system of equations to be solved in a certain formal structure (the 
rational trees), for which the axioms of equality provide a basis for 
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the unification algorithm considered as rewrite rules. The change in 
viewpoint- which both freed unification from its traditional logical 
interpretations and provided a new interpretation in terms of 
equation solving- was later developed in Prolog lli into a 
comprehensive CLP system. 

The second relevant feature of note in Prolg ll was the introduction 
of the freeze/2 primitive: 

freeze( V, P) 

has the operational effect of delaying the execution of goal P until the 
variable V becomes instantiated. This allows one to escape from the 
rigid sequential structure of Prolog and encourages the use of sets of 
asynchronous predicates which trigger one another through variable 
bindings, "instantiation propagators". This mechanism could be used 
effectively and efficiently to solve various puzzles concerning finite 
domains and to improve upon the traditional Prolog approach to 
arithmetic, and this stimulated interest in what later became various 
constraint technologies. 

B. CLP Systems of the 1980's 

In the middle of the 1980's several such systems were developed. 
The three best known are: 

-Prolog III (Colmerauer, U. of Marseille and Prologia) expanded on 
Pro log II by adding rational term disequality, boolean variables 
subject to boolean relations, concatenation monoid on strings, and 
rational linear arithmetic (using the simplex method of linear 
programming). Nonlinear relations are delayed using something 
similar to freeze. Unification was generalized to mean the addition of 
new constraints to a constraint store and testing for satisfiability at 
each procedure call. 

-CLP(R) (Laissez, Jaffar-:- a research product from IBM's T.J. Watson 
Laboratory) provided for solution of linear systems of equations and 
inequalities and also, like Prolog m, delayed nonlinear equations. 
Theoretical work done in connection with CLP(R) provided a general 
framework for discussing idealized semantics of constraint systems 
which closely parallels the formal semantics of Prolog. The actual 
implementation of CLP(R) was based on floating point computation, 
which gave it better performance than Prolog lll but is not sound. 
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-CHIP ( developed at ECRC and commercialized in Charme and later 
by ILOG) focussed primarily on specialized propagation techniques 
for finite domains (and boolean domains) which were based on 
algorithms devised in the AI community. These systems have been 
successfully applied to OR problems, particularly scheduling and 
discrete resource allocation. 

C. CLP(lntervals) 

The first interval based CLP system was incorporated in BNR Prolog 
(1988) based on ideas of Cleary (1986). The original version was 
based on intervals over the reals only, but could handle simple non
linear constraints. A similar, independently developed, system was 
described by Hyvoenen ( 1990) Another similar system (based on 
BNR Prolog) was sold as Interlog by Dassault Electronique in the 
early '90's. 

In 1992 BNR Prolog's CLP system was extended to CLP(BNR) which 
provides a uniform treatment of boolean, integer, and real valued 
variables using interval propagation. Similar capabilities were 
announced in 1994 for the new version of IBM Prolog, just shortly 
before that system was discontinued by IBM. Prolog IV, the next 
generation system from U. of Marseille expected to be released in 
1 99 5, is also interval based. In 1994 commercial distribution rights 
to CLP(BNR) were granted to Applied Logic Systems of Newton, Mass., 
with shipment to commence in 1995. 

Interval based CLP has a somewhat different character from 
previous approaches for continuous domains. Previous approaches 
were based on traditional technology (such as linear programming) 
and thus represent only a marginal change in approach and scope. 
The use of intervals, however, permits one to deal with uncertain or 
unknown data as well as non-linear models, and thus represents a 
significant enlargement of the space of problems that can be tackled. 
In addition, the interval approach can be applied also to discrete 
domain problems and there provides solutions similar to traditional 
finite-domain methods. Finally, because of the uniformity of the 
approach, problems which involve closely interacting mixtures of 
discrete and continuous domains can now be solved in ways not 
previously available. 
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In this course we will be using CLP(BNR) as working language. Most 
of the techniques discussed here for discrete domains will be 
available (in some form) in other CLP languages for fmite domains. 
The continuous domain techniques will be for the most part specific 
to interval-based systems. 

D. Other Systems 

The system CAL developed at ICOT is a CLP system based on 
symbolic solution of polynomial equations over the complex field. 
The essential limitation to complex numbers and its symbolic basis 
gives it a quite different character from other constraint systems, 
more akin to symbolic systems like Mathematica or Maple. This and 
similar systems are very powerful but only in a somewhat limited 
range of problems. 

Systems like ILOG Solver, which is sold as a C++ library, are at the 
fringe of the CLP realm because they are only rudimentary Logic 
Programming systems. As such they provide the bare mechanism of 
the constraint engine but without the conceptual framework of Logic 
Programming. In such a system one writes mainly calls to built-in 
C++ functions and the rudimentary logic programming environment is 
de-emphasized as much as possible. ILOG Solver appears to be at 
present commercially successful (partly because of the C++ 
connection), and has been used for large applications, but they 
appear to almost exclusively in the scheduling and resource 
allocation area pioneered by CHIP. 

A number of systems (CHIP, Eclipse) provide a constraint framework 
in which one has the freedom (and the responsibility) to write 
customized solvers or value propagators or "demons". This is 
consider a feature, but little can be said in general about such 
systems unless the full set of demons and the details of their use is 
known. Arbitrary "heuristic" propagators can of course be made to 
perform certain computations, but do not necessarily mean anything, 
and there is a serious problem whenever the order of flring needs to 
be controlled. 
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II. Characteristics of CLP systems 

CLP systems have either been modified Prolog systems (like Prolog 
III) or embedded in Prolog (like CLP(BNR)); the difference can be 
subtle. The relation with Prolog has several aspects which become 
design issues for the CLP system and which can also have profound 
effects on the use of the system. 

A. Bactracking compliant 

Prolog is a backtracking ( or in some cases OR-parallel) system and 
the constraint system must be designed with this in mind. 
Backtracking is necessary since it provides the non-deterministic 
search needed for completeness even in the discrete case. 
There are two major issues: 

( 1) when a constraint (the imposition of the constraint) is 
backtracked across, the state of the entire system (including the 
constraint store and any consequences deduced from it) must be 
restored completely to something equivalent to that which existed 
just prior to establishing the constraint. This can sometimes be done 
relatively easily through extensions of the Prolog trailing mechanism, 
but may result in restrictions on the data structures employed. This 
can be thought of succinctly as a "a Pro log failure must undo 
constraints". 

(2). Conversely, a detected non-satisfiable (inconsistent) constraint 
store must cause a Pro log failure. Because of ( 1) this has the effect of 
removing some inconsistent constraints from the constraint store. 

B. Incrementality 

This is sometimes taken as a general term to include bactracking 
compliance as well. Here it means that in the Prolog setting problems 
are assembled a bit at a time as constraints are encountered in 
Prolog code instead of all at once as in e.g. classical linear 
programming. This requires that classical algorithms (if used) must 
be reformulated to work on partial problems. 

C. Satisfaction test completeness 
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Incrementality raises a difficult design issue: should the consistency 
test used on each update of the constraint store be complete or not. 
If not complete, it can result in large amounts of unnecessary work 
at the Prolog level. On the other hand, a complete test is generally 
much more expensive than something which is less than complete, so 
it results in the constraint engine doing more work, much of which 
might become unnecessary ~ soon as the next constraint is seen. 
Prolog III has opted (where possible) for complete consistency since 
the variety of specialized algorithms it uses can provide such a test, 
and by creating specific algorithms tailored for the special situation 
the costs can still be kept reasonable. CLP(BNR) as a rule does not 
use complete tests ( they would be prohibitively expensive in the 
general continuous non-linear and general discrete realms) but does 
only as much as is convenient for the underlying mechanisms. Thus 
the completeness issue depends on the constraint domains handled 
and the machinery employed, and in tum it determines the sort of 
theoretical and implementation issues that need to be addressed. 
Curiously, in places where direct comparisons between complete and 
incomplete systems are possible, the overall performance appears to 
be comparable, although some specific problems will do better under 
one regime or the other. 

D. Instantiation Issues 

In general, instantiation should propagate both ways between the 
constraint solvers and the Prolog system. Prolog instantiations which 
affect constraint variables need to be processed (usually 
immediately) by the constraint solver. Likewise, variables which can 
be fixed by a constraint solver need to be reflected at the Prolog 
level, especially if freeze is supported. If a variable can be involved 
in more then one constraint subsystem, this permits an interaction in 
which one solver fiXes its value and propagates the binding to the 
Prolog level,which in tum propagates it to the other solver. If such a 
variable is bound by Prolog, there is a practical question of which 
solver to give it to frrst, as well as a theoretical question to ensure 
that in principle it doesn't matter which sees it first. In multi-solver 
paradigms such as Prolog Ill, however, we note that the solvers in 
fact respond to different and disjoint types of variables so these 
complications do not arise. 

In CLP(BNR) there is only one solver for all types of constraint 
variables, and (except in rare circumstances) the solver takes 
precedence over Prolog. 

10/24/95 6 

4 

• 
• 
t 
t 
t 

• • • I 



CLP(BNR)IIntroduction 

E. Equality versus unification 

The issue here is whether a term which describes a constraint is 
regarded as a term (i.e. an uninterpreted syntactic structure) or as a 
constraint ( interpreted structure ) when passed as a parameter or 
used in whatever plays the role of unification in the Prolog part of 
the system. For example, as terms 'X+ Y = 2' is clearly false (since 
the left side is a functor + of arity 2 and the right is a constant of 
arity 0) while as an interpreted constraint it might be true. In 
CLP(R) for example such expressions are always interpreted 
(according to the syntactic rules of the language) as constraints. It 
follows then that the corresponding syntactic expression 'X+ Y = 2' 
cannot be formulated in this languages unless some spedal new 
notation (which functions as 'quote') is introduced. CLP(BNR), on the 
other hand, distinguishes between term unification ('=') and 
arithmetic equality('=='), and hence arithmetic and other constraint 
expressions are just Prolog terms until they are explicitly processed 
as constraints via a primitive call ( the outf1x operator ' { .... }'). This 
means that Prolog plays the role of a meta-language with respect to 
the constraint sub-language; more importantly, it means that 
symbolic processing of constraint expressions can be easily done in 
Prolog and that the use of constraints is always explidt in the 
language. 

F. Delay 

Most constraint systems permit constraints they cannot actually deal 
with; typically these are the non-linear constraints on continuous 
variables. There is then a decision of how to treat such a constraint: 
failure, error, or delay. Most have chosen to delay such constraints 
(using a mechanism like freeze) until such time that instantiations of 
some of(ih~ variables changes the constraint into a form which can ~ 
be dealt \vttlf by the system. Interval based techniques do not need 
to do this explicitly, since they can 'handle' non-linear constraints, 
although the handling may often be in fact indistinguishable from 
delay. 

G. Muliple solvers vs. single solver 

Prior to the development of the interval based methods the direction 
appeared to be towards having a separate solver for each separate 
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domain over which constraints were defmed. This creates a number 
of problems in terms of potentially conflicting data structures, inter
solver protocols, and correctness issues. The interval based systems 
at present use a single-solver approach and thus avoid this particular 
set of problems. In future, however, we expect to see, e.g. symbolic 
solvers, which are complementary to the interval approach, 
integrated into CLP systems and some of these problems will again 
become relevant. · 

H. Output Considerations 

Systems which involve significant symbolic processing (e.g. linear 
programming) or delay have a problem with regard to output, 
especially final output. Systems like Prolog III and CLP(R) have 
attempted to display whatever instantiations which may have been 
computed as well as a simplified set of remaining constraints, those 
whose "force" is unspent. "Simplified" here means usually "in terms 
of the original variables introduced by the user". However, the 
simplification problem ( a form of variable elimination problem) is 
very difficult (NP hard or worse) even in the simple case of linear 
inequalities. This form of output seemed like a very good idea when 
people began experimenting with small problems, since the 
simplified symbolic output could often be used by the user to fmish 
the solution of a problem outside the system's competence. But with 
problems involving hundreds (let alone tens of thousands) of user 
variables and many more intermediate variables the user can no 
longer make use of such answers and the system often cannot find 
sufficient memory or time to generate them. 

With interval based methods, output takes the form of either an 
instantiation of a variable or a narrowing of its range of possible 
values, which can be expressed as a pair of floating point numbers. 
Such a representation loses information (specifically: all the 
constraints) ,of course, but is cheap to compute, easy to understand, 
and often useful (especially when the range is narrow). 

Early Applications 

Since CLP(BNR) is a way of solving concrete mathematical problems, 
it may be of use in any subject which such problems arise. Since the 
interval approach can work with incomplete information (a range of 
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possible values instead of a single value), it may be more useful than 
traditional approaches in fields where predse information is difficult 
to obtain. But this field is so new and access to implementations has 
been so limited, that only a small range of applications has been 
explored. 

The first useable prototype of CLP(BNR) was constructed at the 
Computing Research Lab of BNR in late 1992. In the short span of 
six months following this, a number of successful applications of this 
technology had been explored, and it was felt that it would be useful 
to hold a workshop for exchanging results. This workshop- ARIA 
'94-- was held in August of 1993 at BNR and brought together most 
of the people who had used CLP(BNR) up to that time. A brief 
description of some of the applications presented indicates both the 
range of application areas and the variety of mathematical problems 
treated. 

1. Dr. :Majumdar explained the use of CLP(BNR) and the earlier BNR 
Pro log system for the computation of performance bounds of tasking 
systems. This was a problem of bounding possible solutions to large 
systems of non-linear equations arising from performance modeling. 

2. Dr. B. Nadel of Wayne State University described the application of 
BNR Prolog interval arithmetic to the synthesis of designs of 
automobile transmissions. This problem was subsequently 
reformulated in a much more satisfactory way in CLP(BNR). 

3. Andre Vellino of BNR described CLP(BNR) solutions to bin packing 
problems of the sort that arise in system configuration. 

4. Angelo Bean of BNR described the use of boolean equation solving 
in CLP(BNR) for detecting siphons and traps in Petri net models of 
software systems. 

5. Mike Kelly of BNR discussed its use in _the 2 -dimensional layout of 
functional blocks in Field Programmable Gate Arrays, a discrete 
resource allocation problem. 

6. Tammer Kamel of BNR described how CLP(BNR) could be used to 
analyze timing requirements in digital drcuits and detect possible 
timing violations. 
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7. Bill Older of BNR described a CLP(BNR) approach to solving the 
Traveling Salesman Problem in 2-dimensions for small networks and 
the formulation of classical constrained optimization problems. 

Since then further work has been done to develop techniques in 
several broad areas: 
-continuous time scheduling problems (Older & Van Emden), 

·-continuous resource allocation scheduling (Older) 
-ordinary differential equations (Older, Skuppin, & Hickey), 
-integral and functional equations( Hickey). 

These exploratory investigations have widened the scope of 
CLP(BNR) applications and now appear to be ready for exploitation, 
although they may be at the practical limits of the current 
technology. 

IV. Concerning CLP(BNR) 

At this point no one knows what the limits of CLP(lnterval) 
technology may be in the near future- even the limits of the current 
technology are extremely hazy. In general we cannot at present 
predict whether a given problem can be usefully formulated in it, 
nor can we give anything like a recipe for such formulations, nor can 
we generally predict performance. Understandably, these 
uncertainties make it risky for anyone to commit themselves to the 
use of this technology, especially in the risk-averse contexts now so 
prevalent in industry. So it is natural to ask: why the intense 
interest in this technology? There are several answers: 

A. First, it is a new paradigm for doing applied numerical 
mathematics-- indeed, probably the first new paradigm since the 
invention of digital computers. Some of the things which have been 
done with it are very radical -even bizarre-by all conventional 
standards. Part of the difference is that the CLP technology both 
uses different information and produces different information than 
does conventional practice. Learning to use it, it seems, is mostly a 
process of unlearning conventional ways of thinking. 
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B. It is mathematically rigorous, at least in prindple. Furthermore, it 
makes it feasible to put applications also on a completely rigorous 
footing, since the code is usually quite small and extremely close to 
the mathematical statement of the problem. 

C. Some of the practical applications which have already been done 
successfully (and easily) ha:ve never been done successfully using 
conventional techniques. 

D. In NP-hard combinatorial problems where direct comparisons 
between CLP(BNR) approaches and the most sophisticated 
conventional algorithms are possible, the performance is very 
roughly comparable. 

E The field is changing rapidly, both in technique and technology; 
many of the successful applications mentioned above could not be 
done just months earlier because the right approach (or something) 
wasn't known at the time. 

V. About the Course 

The first half of the course is devoted to basic prindples and their 
use in examples, with the aim of producing a good intuitive working 
knowledge of the technology and techniques that exploit it. In the 
second half of the course there will be more emphasis ( though 
informal) on the theoretical aspects and the advanced topics which 
require it. 

Each student is expected to do a substantial project -typically a 
prototype application -- as part of the course requirements. A sheet 
of project guidelines and timetable will be provided. 
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Review of Prolog 

This session is devoted to a short review of the basic ideas of Prolog. 
The intention is to briefly cover aspects which will be relevant for 
CLP(BNR). In particular, the more theoretical aspects of Prolog and 
its connection with logic will be largely ignored. 

Backtracking 

Recall that computer science in the late 1960's and early 1970's was 
very much concerned with the design and formal specification of 
computer languages, or at least, of their syntax. Many of the 
languages still popular (e.g. Pascal ) were devised at this time. One of 
the principle tools in widespread use for specifying syntax was --and 
still is-- Backus-Naur Form or BNF. Such a specification is familiar: 

program :- decl_part, body. 
decl_part :- 'var' , decl_li.st. 
decl_list 
decl_list : declaration, ';', decl_list. 
declaration :- identifier, ':', type. 
body :- 'begin' , statement_list, 'end'. 
statement_list :- . 
statement_list :- statement, ';' , statement_list. 

Declaratively, you can read':-' as 'consists or and',' as 'followed by'. 
As a specification it has the virtue of being both formal and very 
succint. Furthermore it could be converted manually into an 
implementation of the recursive descent type, either by direct 
coding, or by writing BNF interpreters, both of which were popular 
implementation techniques. 

Consider what such a BNF interpreter would have to do: it has a 
stack to manage recursion, there is a stream of characters to be 
parsed, and some store (possibly a heap) in which to construct parse 
trees. The stack is initialized with program. The interpreter pops the 
top item (a 'non-terminal') from the stack, and tries to fmd a 
definition for it, i.e. a rule where program appears on the left of':-'. If 
it does find such a rule, it can copy the body of the (frrst) defmition 
to the stack, i.e. so decl_part is now the top. If the top is a "terminal" 
(in quotes), it is matched against the input string, and, if successful, 
pops the terminal and continues. In some cases there may be more 
than one rule for a non-terminal, as in the case of decLl ist above. In 
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this case, it is necessary to store the current file index in the stack, so 
if the first definition doesn't work out, it is possible to restore the file 
pointer and try an alternate definition. The failure of a string match 
triggers this "backtracking" process. In this context the need for 
backtracking or "non-determinism" is obvious. 

[Sometimes it is necessary or desirable to terminate backtracking 
prematurely, for example when it suffices to know that there is at 
least one answer to a question. A special symbol '!' can be 
introduced with the operational meaning that it commits the 
computation to the current branch, by removing backtracking 
information generated since the current goal ( the one matching the 
current clause) was called.] 

An abstract version of this, showing the original goal explidtly is: 
- p. % goal 

p :- l, b. 
l :- v, dl. 
dl:-
dl : - d' sc' dl. 
d :- i, c, t. 
b :- be, sl, e. 
sl :- . 
sl:- s, sc , sl. 

In the early 1970's Alain Colmerauer noticed that if one interpreted 
the 'p :-q ' as 'pis implied by q' and ','as 'and' in symbolic logic 
then the algorithm given above provides a theorem prover for the 
theorem 'p' . The basic step, which is to infer p:-r ,x from p:-q,r and 
q:-x, is called a resolution step ( a combination of transitivity and 
weakening). (From the earlier theoretical work of Robinson it was 
known that this sort of elementary inference was the only kind 
needed.) So we have an analogy between a theorem proving 
technique ( applied to problems of a special kind) and recursive 
descent parsing, and more generally, to any program which 
resembles recursive descent parsing. 

Logic Variables and Unification 

Of course, to build a compiler it is not enough to have a parser which 
simply tells you whether something is· syntactically correct. One 
needs to build some sort of data structure (parse tree) and decorate 
it with useful bits of information and sometimes transform it a bit. 
So every BNF interpreter would add some notion of variable and 
some semantic primitives that manipulate these variables. Of course, 
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if the parse failed down a particular branch, then some of these 
things would have to be undone to maintain consistency, and this 
aspect was seldom done quite right. 

Now the concept of resolution had already been extended to theorem 
proving in first-order predicate calculus, which as a language already 
has a notion of variable. So we might ask: can these be used to 
provide the kind of variable we need to extend our language 
interpreter? A logic variable X is a pure "placeholder" which 
notionally represents any individual object in the domain of 
discourse, which in practice means any term we can construct in the 
syntax of the language. Multiple occurrences of the same variable in 
the same sentence of course must represent the same individual. 
(Different variables may refer to different individuals but they need 
not be distinct.) In the dausal form of predicate calculus all the 
variables in a single clause ( written as a disjunction) are universally 
quantified; such a clause can serve as a rule (in the sense used 
earlier) in that it can be applied ( not neccessarily successfully) for 
every possible substitution of its variables and can be used an 
arbitrary number of times. Clauses with at most one positive literal 
(so-called Hom clauses) , such as: 

(X)(Y)(Z) { p(X,Z) \/ -q(X, Y) V -r(Y,Z) } 

which can be transformed (using the logical defmition p<-q = p V -q 
and the law -p\/-q= -(p & q)) to: 

(X)(Y)(Z) p(X,Z) <-q(X,Y) & r(Y,Z) 

which puts it into the right form for the algorithm above. (By 
convention capitalized names refer to variables.) 

( Note: If we move the universal quantifier (Y) into its natural place 
first: 

(X)(Z) p(X,Z) V (Y) {-q(X,Y) V -r(Y,Z) } 

and then transform (using the law -p\1-q= -(p & q)) to 

(X)(Z) p(X,Z) V (Y) - (q(X,Y) & r{Y,Z) ) 

and then (using using (Y)- = -EY and the logical defmition p<-q = p 
\/ -q ) to get: 

10/24/95 3 



CLP(BNR)/Prolog Review 

(X)(Z) p(X,Z) <- EY (q(X,Y) & r(Y,Z)). 
Thus, even though all variables in a clause are formally universally 
quantified when the quantifiers are all scoped over the whole clause, 
variables appearing only in the body are in fact existensionally 
quantified when quantifiers are put into their natural position. ) 

In order to resolve the goal p(X..) (with whatever actual arguments 
it has) with the clause p(Y .. ) :- ... ,we must frrst specialize both the 
goal and the clause so its head is equivalent to the goal; that is, its 
arguments are exactly the same up to a consistent renaming of 
variables. (Of course, we must not overspecialize or we might miss a 
possibility!) This process is called unification (denoted by'=' because 
it makes terms "equal") and is traditionally described in terms of 
finding substitutions which make the terms (the goal and the head) 
match exactly. There are four essential cases to deal with: 
( 1) a variable and a non-variable - just substitute the non-variable 
for the variable everywhere. For example, unifying the goal 
p(fred,2,U) with the head p( X,Y, g) sets X=fred and Y=2 (so these act 
like input variables) and U=g, soU acts like an output variable. Thus 
unification generates (in the simplest cases) a variable passing 
mechanism. (This is the place where an "occurs check" would be 
made.); 
( 2) an atom and an atom - succeeds if they are the same atom and 
fails otherwise (thus triggering backtracking). This is analogous to a 
terminal matching the input stream in the BNF interpreter; 
(3) a structure and a structure- e.g. f(X,2)=f(Y,Z) for the structures to 
be identical they must have the same label (or "functor") and the 
same components (i.e. X=Y & 2=Z) ; and fmally 
(4) a variable and a variable - e.g. X=Y. This case is actually the 
trickiest. If X and Y are the same variable, this is trivially true, 
corresponding to the reflexive law of equivalence. Otherwise we 
must process this in a way which respects the other other laws, 
transitivity and symmetry. In Prolog this is usually done very 
efficiently by making the newer variable "point to" the older one, i.e. 
the oldest instance of each equivalence class is taken as the canonical 
representative of the class. 

Thus the predicate calculus connection gives us a notion of variable 
(the logic variable) and unification gives us automatically a 
parameter passing mechanism and a basic equality relation on atoms 
and constructed terms. With these additions our interpreter begins 
to look at least a bit like a general programming language. However, 
unification also has a number of other properties which "come with 
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the package" which many people find a bit strange at frrst. For 
example: 

f( g(X,Y),h(Z)) = f(g(2,3),h(4)) -> {X=2, Y=3, Z=4} 

f(g(2,Y),h(W))= f(g(A,3),h(A)) -> { A=2, Y=3, W=2} 

f( Z, h( 4)) = f(g(A,3 ), h(A)) -> { Z=g(4,3), A=4 }. 

Unification can be used to match patterns, extract subterms, 
exchange data between terms or subterms, and construct or replicate 
terms, often all at the same time, so it is a sort of general purpose 
data shuffler. It takes a while to get used to it, but once you do the 
conventional alternatives seem very clumsy. 

Basically, Prolog consists of just the three things we have discussed: 
resolution, backtracking, and unification. This isn't quite enough to 
do everything you might want to do, of course, like actually adding 1 
and 1 to get 2 or printing something or reading a fl.le or opening a 
window .... So, a number of built-in primitives are added to the 
basic system to do really basic things outside of the Prolog universe, 
Usually the syntax for calling such primitives looks just like Prolog 
goals, but they may behave differently since they are playing by 
different rules. 

Thus we see that Prolog represents a sort of compromise or hybrid 
between theorem proving technology and a programming language
not quite a theorem prover (by the standards of logicians) and not 
quite a programming language ( by the expectations of 
programmers). The particular compromise is also a little surprising 
(for one can imagine taking a slightly different mix of features) and 
also quite delicate. Over the years there has been at work a dialectic 
process which sometimes pulls towards formal logic ( as the name 
Logic Programming suggests) and sometimes in the programming 
direction ( as seen in Prolog compiler technology and the extensions 
in commercial systems), but (fortunately I think) neither side has 
prevailed. 

The fact that Prolog is associated with just a subset (the Hom 
clauses) of standard logic, although once regarded (and still so 
regarded by some, no doubt) as a deficiency to be overcome, appears 
now to be an advantage, for this subset of logic can be regarded as a 
logic (or proto-logic, sometimes called "positive logic") in its own 

10/24/95 5 



CLP(BNR)/Prolog Review 

right, which is in essence the common part of many of the competing 
systems of formal logic. The things omitted (from standard boolean 
logic) are boolean negation and the possibility of proving a 
disjunction p \/ q without actually proving either p or proving q. 
From this we can see that it is very closely related to intuitionist 
logic. Research has also shown because of these omisions that it 
possesses certain useful formal properties such as the minimal model 
property. 

Finally, we should note that Pro log has been very fecund in the sense 
that most of the formal structure can be retained even when it has 
been utterly transformed to become a parallel programming 
language, a concurrent programming language, a process algebra 
language, or a constraint programming language, all of which have 
occurred in the 1980's. Each of these developments reinterprets the 
basic symbols':-' and',' and the logic variable in quite different (and 
often incompatible) ways, yet retains much of the flavour of Prolog. 

BNR Prolog Terms 

BNR Prolog has extended the syntax (and semantics) of terms a little 
bit to make some things easier to do. We won't as a general rule be 
using these features very much in the course if they are avoidable, 
but I will describe them anyway. 

f\1ost Pro log systems have an idea of a list (of terms) and a special 
syntax that goes with it, consisting of brackets and comma 
separators, e.g. 

[] 
[a,b,c] 
[X,b,D,3,4] 

are three lists of definite lengths 0, 3 and 5 respectively. There is a 
special notation for representing indefinite lists ( with no specific 
length),e.g. 

[a,b,ciX] 
is a list with 3 or more elements. (Usually funny things happen if 
the thing after 'I' is anything other than a single variable.) These uses 
(which I will call "tail variables") are useful for expressing list 
recursions: 

f([]). 
f([XIXs]):- p(X), f(Xs). 

BNR Prolog has an alternative notation for indefinite lists: the 
previous example could also be written in BNR Prolog as: 
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[a,b,c,X .. ] 
This notation (but not 'I') can be used to express any list ('[X .. ]') 
(which of course is not the same as any term.) It can also be used to 
express structures of indefinite arity, e.g.: 

f(2,3,4,X .. ), 
{ P,Q, Rest .. }. 

The 'X..' construct can only appear just before')',']', or'}' which are 
the bracket constructs in the language. If 'X..' is used anywhere in a 
context, 'X' (X without the dots) represents [X..], so a list recursion 
could also be written as: 

f([J). 
f([X,Xs .. ]):- p(X), f(Xs). 

BNR Prolog also permits the functor of a structure to be a variable, 
e.g F(U,V,W,X •• ) 

represents any structure with arity at least 3. 

Finally, BNR Prolog supports cyclic structures ( infmite trees or 
rational trees) so 

f(X)=X --> X=f(f(f(f(f( ... ))))), 
[2,X .. ]=X --> X=[2,2,2,2,2,2,2, ... ] 

both "infinite" structures. This is easy, since one need only omit the 
occurs check as previously discussed; the hard part is to efficiently 
guarantee termination on the next unification or primitive call made 
on the result. Infinite trees have a natural interpretation as 
generalized state machines (and hence as formal languages) and 
rational trees as finite state machines (regular languages), and 
unification generalizes the notion of machine equivalence. More 
generally, for many applications the natural data structure is some 
sort of graph, and cyclic structures makes it possible to construct 
graphs. 
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Narrowing concepts in Prolog 

In this chapter we are going to look at Prolog from a more formal 
algebraic point of view as an example of something called a 
"narrowing algebra." Later on this will be generalized a bit to cover 
interval based constraint systems, but it is useful to discuss it first 
for Prolog. 

In the last chapter we discussed the subtle historical and technical 
relations between Prolog and symbolic logic. A lot of theoretically 
inclined courses on Logic Programming spend a lot of time on this 
issue, but as a practical matter in Prolog programming it seems to be 
seldom of any use. The sorts of general problems which arise in 
practical Prolog programming are generally not addressed by that 
sort of theory. Most of the problems, it turns out, arise from the use 
of primitives ( sometimes called "non-logical" primitives) which is 
not covered at all by the Logic models. Something else is needed. 

For this analysis it is best to forget about backtracking for a while 
and concentrate entirely on what I call "forward computation", i.e. 
along any one branch. Once we have understood what can happen on 
any branch, the total behaviour is just the disjoint union of the 
behaviour on all the branches. Also, since in BNR Prolog, we 
notionally allow infinite trees, we will here ignore termination issues: 
conceptually speaking, non-terminating computations generate 
answers also. 

Unification and Narrowing 

If we fix the set of symbols (including operators) to some definite set 
(possibly even all the symbols permitted), we can then imagine the 
(infinite) space of all the terms that can be constructed from them 
according to the syntactic rules. Terms that contain no variables are 
called ground terms, which will be denoted by G and unification is 
just equality on G. G of course has a rich "algebraic" structure-
sufficiently rich that it can model any (frrst-order) theory 
whatsoever. But for our purposes here we will just think of it as an 
unstructured set. 
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Now for every term t (possibly with variables) there is a set of 
ground terms t which is the set of ground terms which successfully 
unify with t: 

t := { t' £ G I t=t'}. 
If two terms s,t are equivalent ( by a relabeling of variables), then 
s=t (set equality of course) .. So from now on, we embed the space of 
all terms into the powerset on G, and think of a general term as 
representing the ground terms which are its instances. We call this 
space T. Note that not all elements of the power set were in the 
range of this map, so only very special sets of terms are in T. 

Having made this identification, the space of terms now has some 
structure, since it is partially ordered set inclusion. The term 
consisting of a single variable, since it can represent any term, is a 
maximum element (or "top") in the partial order. (There is no term 
corresponding to the empty set. ) Now consider what happens when 
we unify two terms, say s=t. After the unification (if successful) the 
two terms have become equivalent, call the common result r. By 
intention r is a specialization of both s and t and is the most general 
common spectalization. As sets sand t have an intersection snt, and 
if this intersection is in T , then it must be r. By going through the 
details of performing such an intersection, one can derive the 
unification rules presented previously, and this shows that 
unification corresponds to intersection, with the empty set 0 
corresponding to failure. In order to get closure under unification, 
we adjoin 0 to T . (even if it is not assodated with a term- think of 
it as the "empty" term). With this slight change T becomes a semi
lattice (and in fact a lattice, although we will have no use for the 
"join" of two terms). 

We have already talked about unification as formally representing 
an equivalence relation between terms, that is a reflexive, 
symmetric, transitive relation. There is a correspondence between 
these properties and those of intersection: 

X=X 
X=y<->Y=X 
X=Y & Y=Z-> X=Z 

X=Xnx 

xny=ynx 
xnz ::> (xny )nz 

One could call this the "narrowing interpretation of equality"- when 
things are represented by sets of possibilities, and equal things have 
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equal sets of possibilities, then knowledge of equality entails that 
only the common possibilities survive. 

Operators 

Consider the function (operator) t defmed on T by 
t : X --> t fiX • 

Such operators have several main, easily proved, properties: 
(contraction) x ::>t (x) 
(monotonidty) x =>Y -> t (x)::>t (y) 
(persistence) t (y)::>x -> t (x)=x . 

Operators can be combined directly by function composition. These 
unification operators then also commute, since: 

s(t (x)) = s n(t nx)= t n(s nx)=t(s(x)). 

Pure Prolog ( the subset intuitively defmed by clause resolution and 
unification with no primitive calls ) is a sequence of such operators 
and therefore satisfies these properties. 

Predicates as operators 

Now we want to consider an arbitrary Prolog goal p(ti,tz, ... ) as an 
operator (named by p) applied to its argument list regarded as a 
term, i.e. as if it were written as a function p( [ti,tz, ... ] ), its output 
being the resulting term [t1•,tz•, ... ] after the call. The operator p can 
be a pure Prolog operator (written entirely in basic Prolog) or it can 
be a built-in primitive or any combination theoreof, but note that we 
do not include any side effects ( output routines, or operating system 
calls) in the semantics; we are looking only at the effect on the Prolog 
arguments. Consider whether such an operator is contracting, 
monotone, or persistent: 

Contracting: Normally every such operator will be contracting 
because of the "write once" or immutable character of logic variables. 
The only exception would be a primitive which changes the value of 
a symbol (or other instantiated type) to a variable (shudder!) or to a 
different symbol (or other instantiated type). (This is possible, of 
course, but hopefully very rare.) 
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Persistent: Normally this is the case as well, especially if primitives 
use an internal unification routine to update output arguments. An 
exception would be any primitive that has some internal state ( not 
passed as an input argument), such as a random number generaotr 
with an implicit seed. In particular, most type tests like integer(X) 
or symbol(X) are persistent. An exception is the var test var(X). A 
special case of interest is the standard "is" primitive: in 

V is Expression 
normally V is a variable and gets bound to the value of the 
Expression during the call. Consider a sequence in which this goal is 
repeated: 

V is Expression, ... ,V is Expression 
On the second occurrence Vis already instantiated, so for "is" to be 

persistent it is necessary that the evaluation of the Expression yield 
the exact same result (which of course it should) and the primitive 
must then do a numerical equality test instead of a bind. 

Note that a persistent operator need only ever be called once with a 
particular argument. 

Monotone: This is the most likely to fail: primitives that expect 
instantiated input arguments and fail when the input arguments are 
not instantiated will not be monotone. (If the call can ever succeed 
with some instantiated argument, then monotonicity implies that it 
must succeed when that argument is a variable, all other arguments 
being unchanged.) Note that for this reason var(X) is monotone, but 
standard Prolog arithmetic is not. 

For primitives one needs to check their specifications and usually do 
some testing to determine which properties hold and for which 
arguments. 

Usually in a clause execution, unification is used to pull inputs apart 
into separate components, operators (calls) are applied to the 
components, and then the results glued back together using 
unification, but all this could be written in purely functional terms 
using function composition, although it often would be comparatively 
clumsy. (As an exercise, take a small Prolog predicate and convert it 
to such a functional form.) 

What makes the properties above interesting is first of all that: 
( 1) the composition of contractions is a contraction 
( 2) the composiiton of monotone operators is monotone 
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(3) the composition of persistent operators is persistent. 
(Exercise: prove these staements from the definitions.) 
From this it follows that these properties {abreviated CMP} of an 
operator are unaffected by composition with unification, since 
unifications possess all three. And knowing, for example, that a 
clause uses var(X) tells us that the predicate it is part of is in danger 
of being non-persistent (unless there is another clause that repairs 
the damage) and that a clause which uses standard arithmetic is in 
danger of being non-monotone. This is useful both diagnostically and 
normatively. 

From the above closure properties we see that if we start with a set S 
of operators satisfying all three properties {CMP} as generators, and 
form S*, the set of all the operators we can get from them by 
composition, they all have these properties. The identity function, 
written 1, is included in S* (formally: it is the composition of the 
empty set of primitives), so S* is a monoid (semigroup with identity) 
under composition as product, what we will call a CMP-monoid. (This 
monoid is also a partially ordered set and has extra structure as well, 
but we won't be discussing it now.) 

Now we get a very strong result: 

Theorem: Let p belong to the CMP monoid S*. Then there exists a 
term t E T depending on p such that for all x E T, p(x) = t (x) = t n x. 

Proof: By hypothesis p is a persistent monotone contraction. Let 
u=mga(p) be the most general argument admissible for p. (Standard 
Prolog predicates have a definite arity n, so the mga is a list of n 
variables; for BNR Prolog predicates which can be of indefinite arity 
the mga is therefore [X .. ]. ) For p to succeed we must have u :;, x, 
otherwise (p always fails) we can take t !a Then since p is 
contracting, x ::::> p(x), and since pis monotone, p(u) :;, p(x), sox ::::> 

x n p(u) ::::> p(x). Then since pis monotone, we have p(x) :;, p(x n 
p(u)) ::::> p(p(x)) =p(x) (since pis persistent and hence idempotent), so 
p(x) = p( x n p(u)). But since p(u)) ::::> x n p(u) and p is persistent, 
p(x n p(u))=x n p(u)=p(u) n x, and we take t= p(u). 

One can interpret each p(u) as the "local universal answer" to p, for 
each branch of the computation. The (very likely infmite) collection 
of all the p(u)'s from all branches (as a formal disjunction) is then 
the global universal answer, and a similar theorem could be 
formulated for it by distributing intersection over disjunction. 
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Corollary: The operators of S* commute. 

Proof: immediate. 

Exercise: Prove the corollary ~irectly from the properties CMP. 

Messy exercise: From the commutativity of the operator composiiton 
monoid, show that the ',' operator appearing in clauses also 
commutes. 

This gives us an alternate, rather abstract, way of characterizing the 
notion of a "pure Pro log" system, one which doesn't depend on how it 
is implemented. It has been summarized in the phrase: "the question, 
when properly narrowed, is the answer." We will return to this 
framework later and generalize it to handle constraints as well as 
Pro log. 

Standard Prolog Arithmetic 

The conventional standard arithmetic which has been added to 
Prolog uses the primitives "is" and the various relational arithmetic 
operators if the forms: 

Var is Expression 
Expression Op Expression 

where Expression denotes a valid and fully instantiated arithmetic 
expression. These forms are therefore non-monotonic, although both 
are persistent contractions, provided is defaults to equality when its 
left argument is instantiated. It follows that, even with integer 
arithmetic, the use of these primitives gives rise to impure ( 
sometimes called non-logical ) behaviour. Since most large 
applications need to do some arithmetic, this is one of the ·main 
reasons why large Prolog applications do not enjoy the same 
properties of the small teaching examples. 

When this form of arithmetic was pragmatically extended to handle 
floating point numbers, an additional problem was introduced: the 
results are no longer correct. In systems where exact arithmetic 
equality('==') (i.e. exact match of binary representations) is used, for 
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example, one gets anomalies such as the unexpected failure of 1.21 
== 1.1 * 1.1. This occurs because 0.1 is an infinite decimal in binary 
representation, which gets truncated in practice, and as a result the 
two sides differ by a rounding bit. More complex cases occur 
whenever arithmetic is done. Fuzzing equality (as was done in APL 
for example) may mask some but not all such problems, and in 
addition makes equality non transitive (and possibly even non
symmetric, depending on how it is done). 

Thus the problem of constructing a Prolog compatible arithmetic can 
be viewed as twofold: restoring correctness and restoring 
monotonicity, without sacrificing the other two properties. One way 
of doing this is to use infmite precision rational arithmetic (to restore 
correctness) and delay to formally restore monotonicity, as in Prolog 
III. Rational arithmetic is, however, insufficient since it does not 
supply answers to e.g. "X is sqrt(2)", and one is forced to extend the 
number system to the computable reals. Delay is ~~o counter
productive, since at the end of the computation one~Joften has 
most of one's arithmetic still in the deferred state, and. it no longer 
functions as a control on Prolog execution (which is one of its major 
roles). 

One way around this impass is to move to an interval representation: 
each arithmetic variable is associated with an interval bounding its 
range of possible values, and arithmetic operations result in a 
narrowing of ranges. Done properly, this restores both monotonocity 
and correctness, while permitting the use of ordinary floating point 
arithmetic (with careful control of rounding direction). The next 
section describes the result of this approach in detail. 

Syntax and Semantics of CLP(BNR) 

CLP(BNR) is Prolog extended with an interval based constraint 
system which supports booleans(B), integers(N), and reals(R). It 
consists fundamentally of three predicates: one to create numeric 
variables, one (':') to to query the current value of its range (domain), 
and one to establish constraints ('{ ... }'). There are also some 
specialized utilities which will be covered in later sections. 
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The explicit creation of numeric variables is done through one of the 
following "type declarations": 

X: real, 
X:real(L,U) 
X: integer, 
X:integer(L,U) 
X:boolean. 

Here X is (normally) a variable or a list of variables, and L and U are 
either instantiated arithmetic expressions with L=<U or variables 
(conceptually representing -1+ infmity). If X is instantiated already, 
then X: real is equivalent to float(X), X: integer to integer(X), and 
X:boolean is true if X=O or X=L Such declarations restrict the 
possible subsequent instantiations of X, just as "X = F(_,_,_)" limits 
the possible values of X to be an arity 3 structure in Prolog. 

For such a typed variable X 
dornain(X, Type) 

returns the type and bounds (for integer and reals only) in the same 
form as used by':'; it fails unless X is a typed variable. The bounds 
returned are the "current" bounds and reflect whatever narrowing 
has occurred because of established constraints. 

Since domain fails whenever X is instantiated, there is for 
convenience also a predicate range which returns the bounds as a 
list, but which also works on instantiated numerics. For many 
purposes (e.g. display) one is more interested in the bounds than the 
type, and range is therefore preferable, especially for integer 
quantities which tend to become instantiated. As a matter of 
terminology, it is useful to speak of "numeric quantities" consisting of 
either "numeric constants" or "numeric variables". 

In terms of the partial order (subsumption order) of terms, any 
typed variable is a subtype of an untyped variable. For two typed 
variables X,Y of the same type, X is a subtype of Y if and only if its 
bounding range is smaller, and the unification of X and Y has as 
bounding range the intersection of the two ranges (when not empty) 
or failure (when the intersection is empty). For two type variables of 
different kinds, one regards boolean as a subtype of integer and 
integer as a subtype of real (via the natural embeddings) and this is 
considered as well as bounding interval inclusion. With these rules, 
the partial order on terms has been extended to cover typed 
variables wherever they may occur. The fact that booleans are 
represented as 0 or 1 (rather than true and false) and can be 
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treated as integers and reals means that boolean variables can 
appear in arithmetic expressions, e.g. 

{ Z i.s B*X + ( -B)*Y} 
which plays the role of a conditional assignment in conventional 
languages. 

All constraints are established by executing constraint goals of the 
form: 

{ A } or 
{ Al,AZ, .... }. 

where the A's are arithmetic relations. Arithmetic relations are 
written in the usual way, using 'is', '==', '=<', etc. and the usual 
arithmetic expressions. The form "{AI ,A2 } " is equivalent to 
"{Al}, {A2} ", although the former is often more convenient to write, 
but the latter is sometimes easier to debug if there is a failure. 

With respect to the extended subsumption order, constraint goals are 
contracting, monotone and persistent and hence commute with each 
other and with other such goals, e.g. unifications. 

Therefore the order in which constraints are imposed will not affect 
the results. However, the order of ':' and domain calls relative to 
each other and to constraint goals does matter. 

Constraint goals affect the system state in two distinct ways: one is 
by generating implicit declarations (see next paragraph), and the 
other by narrowing the ranges. When processing constraint goals all 
intermediate variables corresponding to subexpressions and any 
untyped uninstantiated variables are assigned default types 
according to a set of type inferencing rules. In most cases these 
types will be appropriate, and explicit declarations will therefore not 
be required. (The default types assigned in any particular situation 
can be determined experimentally by making the intermediate 
variables explicit ; by explicitly typing such variables one can then 
override the defaults). In the present version of the system, once a 
type has been assigned to a variable, it cannot be changed by a 
subsequent declaration. As a result, declarations may not commute 
with constraint goals which infer a different type for that variable. 
Declarations of the same type but different ranges do commute. 

Ideally, there should be only three outcomes to a constraint goal: ( 1) 
it adds the new constraint to the system and succeeds, (2) the new 
constraint is provably inconsistent with the exisitng constraint 
system and it fails, or (3) there is something syntactically wrong with 

10/24/95 9 



CLP(BNR)/Narrowing 

the constraint and an exception is generated. (Note: in the present 
version, some types of syntactic errors may result in failure rather 
than an exception condition.) 
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CLP(BNR) Syntax and Semantics 

In the last section we presented a conceptual model of CLP(BNR) as 
an extension of Prolog, regarded as a narrowing algebra. This 
conceptual model will be the basis for everything we will do in this 
course. 

Some Examples 

(The following examples were generated using version 4.3 of BNR 
Prolog.) 

Consider the following query: 

?- [M,N]:integer(0,8), { M == 3*N}. 

with response 

?- [[_H583, _H588] : integer(0, 8), {_H583 == 3 * _H588}] 
where [_HS83 : integer(0, 6), _H588 : integer(0, 2)]. 

The query is echoed, although variable names have been replaced by 
system-generated global names (which may differ from these 
appearing here). To avoid problems with the system names being 
different each time and to improve readability, I will henceforth 
substitute the original names, prefixed with '_', in these examples, 
e.g. 

?- [[_M, _N] : integer(0, 8), {_M == 3 * _N}] 
where [_M : integer(0, 6), _N : integer(0, 2)]. 

The post-query domain information is expressed in a "where" clause 
which will be automatically supplied whenever a term is output 
using the predicate print. Note also that both variables have had 
their ranges narrowed by the constraint. 

Now if we add an additional constraint, M > 3 : 

?- [M,N] :integer(0,8), { M == 3*N}, { M > 3}. 
?- [[6, 2] : integer(0, 8), {6 = 3 * 2}, {6 > 3}]. 

There is now a unique and exact answer, which has been 
instantiated. 
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Things are a little different when dealing with real variables. 
Consider the following query: 

?-X::real(1,3), {Y**2==X}. 

Note that Y will by default be considered as if it had been declared as 
v: real. With Prolog we are use to answers being instantiations 
("substitution instances") of the query, but here there is not enough 
information in X to uniquely determine Y (or X). So what do we get? 
The response to the above query is: 

?- [_H527 :: real(1, 3), {_H541 ** 2 = _HS27}] 
where [_H527 : real (1. 0, 3. 0) , 

_H541 : real( -1.73205080756888, 1. 73205080756888)]. 

Note that since the sign of Y is unspecified, so the answer permits 
negative Y values. Note also that the interval for Y contains points 
(from -1.0 to 1.0) which are not possible solutions. But Y is the 
smallest interval that contains all the solutions and allows for worst
case rounding error. 

Now try either: 
?-X::real(1,3), Y:real(0,_), {Y**2==X}. 
or 
?-X::real(1,3), {Y>=0}, {Y**2==X}. 
or 
?-X::real(1,3), {Y**2==X},{Y>=0}. 

and get 
?-

where [_X : real(1.0, 3.0), 
_y : real(1.0, 1.73205080756888)]. 

All are equivalent. 

Now try 

?- {Y>=0, Y**2=X}, {X=3}. 

and get 
? - [ {_ Y >= 0, 3 . 0 = _ Y * * Z} , {3. 0 = 3}] 

where [_Y: real(1.73205080756888, 1.73205080756888)]. 

Note that X has been coerced to a float and instantiated to a point 
value, but Y is still an interval, though an exceedingly small one. This 
is because the rounding error in taking the square root makes the 
value of Y slightly uncertain; indeed no floating point number and no 

10/24/95 2 



CLP(BNR)/ Syntax 

rational number is the square root of 3. You can't actually see the 
difference in the bounds in this particular case because the printing 
resolution isn't high enough, but you can test this with: 
?- {Y>=0,X==Y**2}, {X==3}, ronge(Y,[L,U]), L=U. 
produces 'NO' while 
?- {Y>=0,X--Y**2}, {X==3}, ronge(Y,[L,U]), L<U. 
produces 'YES'. You must avoid or be very careful when copying 
such answers for entry later· (especially when the bounds appear to 
be identical), or you may introduce numerical errors. 

Any floating point constant, which is entered as a (terminating) 
decimal, gets "fuzzed" slightly when put into a real variable: 

?- X:reol, {X==1.73205080756888}. 
?- [_X : real, {_H442 == 1. 73205080756888}] 

where [_X : reol(1.73205080756888, 1.73205080756888)]. 

WARNING: This fuzzing helps compensate for the conversion from 
decimal to binary, but is not necessarily enough to preserve exact 
properties: 
?- X:real, {X**2==3.0},{X==1.73205080756888}. 
NO 
To avoid this, numerical data should normally be entered as a 
declaration, with the bounds reflecting the actual effective precision. 

Here is a more complex example, involving two linear equations: 
?- {1==X + 2*Y, Y - 3*X=0}. 

?- {1 == _X + 2 • _Y, _y - 3 • _x == 0} 
where [_Y : reol(0.428571428571429, 0.428571428571429), 

_X : reol(0.142857142857143, 0.142857142857143)]. 

And here is one involving a pair of non-linear equations (one 
involving a transcendental function): 
?- [X,Y]:reol(0,1), {ton(X)==Y, x••2 + v••2 == 1 }. 

?- [[_X, _H782] : reol(0, 1), 
{ton(_X) == _y, _X •• 2 + _y •• 2 == 1}] 
where [_X : reo l (0. 649888946665696, 0. 649888946665697), 

_y : reol(0. 7600291816n751, 0. 76002918167n51)]. 

In general, sets of equations ( even when the number of equations 
equals the number of unknowns) will have multiple solutions; there 
is a non-deterministic predicate solve which usually splits the 
solutions: 

?- X:real(0,1), {0==35*X**256 -14*X**17 + X}, solve(X). 
?- [0.0 : real(0, 1), 

{0 = (35 • 0.0 •• 256 - 14 • 0.0 .. 17) + 0.0}, 
solve(0.0)]. 
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?- [_X : real(01 1) I 
{0 = (35 * _x ** 256 - 14 * _x ** 17) + _x} I 

solve(_X)] 
where [_X : real(0.847943660827315 1 0.847943660827315)]. 

?- [_X : real(0 1 1) 1 
{0 == (35 * _H634 ** 256 - 14 * _H634 ** 17) + _H634} I 

solve(_X)] 
· where [_X : real(0.9958424942004981 0.995842494200498)]. 

Note that the first solution (0.0) was actually instantiated. 

Some Caveats 

The current implementation of CLP(BNR) (V4.3) has - partially for 
historical reasons and partly because of implementation difficulties -
several anomalies that do not quite fit the conceptual model 
discussed in the last section: 

( 1) Historically, Prolog has made an absolute distinction between 
integer and floating point constants. As a result, when X is declared 
as a real variable, it is only allowed to take floating point values, and 
when declared an integer it is only allowed integer values (which is 
ok). The former violates the idea that integers should be regarded as 
a subset of reals. This has some annoying consequences when 
writing code, as we will see below. 

( 2) Related to this, the system does not currently allow one to change 
the type of a variable by a subsequent declaration. Since such 
changes are often the result of a programming error, this is 
apparently a mixed blessing, but does formally violate the model 
above. 

( 3) Also related to this: an arithmetic equality between arithmetic 
variables of different types does not merge the two variables into a 
single variable of the intersection type, although they will in fact be 
constrained to be equal. For example, 

X:real 1 N:integer 1 {X==N}, N:1 
results in X being equal to 1.0 and N to 1. 

Also note that in general declarations and domain calls do not 
commute: 
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X:real, domain(X,T) 
works, but 

domain(X,T), X:real 
fails (assuming X was initially a plain variable), and in general 
neither declarations nor domain calls commute with constraint goals. 

Programming Considerations 

The interaction between arithmetic constraints and Prolog introduces 
new algorithmic possibilities as well as some new problems, which 
sometimes have non-obvious solutions. As a simple example, 
consider a predicate to sum a list of numeric quantities. In normal 
Prolog, the simplest solution (for a list of numeric constants) is: 

sum( 0, 0). 
sum( [XIXs], Sum):- sum( Xs, S), Sum is X + S. 

This version has the drawback that it is not tail-recursive, so 
requires more stack storage. A tail-recursive version introduces an 
auxiliary predicate and an accumulator variable: 

sum( List, Sum):- Ssum(List, 0, Sum). 
Ssum( 0 , Sum, Sum). 
Ssum([XIXs], S, Sum) :- Sl isS+ X, Ssum(Xs,Sl,Sum). 

With constraints one also has the following option, which is tail
recursive without needing the auxiliary predicate: 

sum( D, S):- {S=0}. 
sum( [X I Xs], Sum):- {Sum = X + S}, sum( Xs, S). 

The first clause could also be written less explicitly as: 

sum( 0, 0.0). 

This will work ( but "sum( o. 0)" won't !) because the input 
argumentS is by default real; as is the output Sum (unless explicitly 
declared). Since one expects that the sum of a list of integers should 
be an integer, this formulation is not ideal. Another advantage of 
using the more explicit form using'==' is that it will work when the 
incoming argument is an arithmetic expression (e.g. the call "sum(L, 
2 + Y)"), while the second form will not because the expression "2 + Y'' 
is not the same as the expression "0". 
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Often- perhaps even usually-the best possibility in BNR Prolog is to 
perform the sum symbolically: 

sum( D, 0). 
sum( [XIXs], X + S):- sum( Xs, S). 

and convert to a constraint afterwards: 
... s~.n( Li.st, S), .{ S~.n i.s S }, 

This has several advantages: 
( 1) one needs only one version of such utilities for both constraint 

and non-constraint (including purely symbolic) use; 
(2) because we have used 'is' and a new variable on the left of it, the 

result will be an integer whenever all the list elements are 
integers; 

( 3) the sum predicate is pure Pro log; 
( 4) it may be much easier to debug; and 
( 4) the cost of building the summation structure is offset by fewer 

calls to { }. 
This pattern of working symbolically and only afterwards converting 
to constraints is one to keep in mind, as it seems to be widely useful. 
It is counter-intuitive by conventional (even conventional Prolog) 
thinking, which is usually motivated by compilation efficiency issues. 

Constraints and Prolog Control 

The interaction between constraints and Prolog can be subtle, but is 
almost always beneficial. The next example illustrates both the 
problems created by standard arithmetic in Prolog and the use of 
constraints in controlling Prolog execution. Consider writing a 
predicate that relates a list to its length- e.g. can either generate a 
list (of variables) of a specified length or compute the length of a list. 
In ordinary Prolog one is forced to write something like this: 

plength( List, N):- integer(N),! ,N>=0, Smkli.st(N,Li.st). 
plength( List, N):- list(List),Splength(List,N). 

Smkli.st(0, []). 
Smkli.st(N,[XIXs]):- N>0, Nl i.s N - 1, mkli.st(Nl,Xs). 

Splength(O ,0). % don't cut - might be i.ndefi.ni.te li.st 
$plength([XIXs],N):- Splength(Xs,Nl), N is Nl + 1. 

Note that the auxiliary predicates Smkl i.st and Splength are 
themselves non-logical because of their use of non-monotone Prolog 
arithmetic, as discussed previously. The umbrella predicate plength 
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partially compensates for this by testing the instantiation pattern ( 
using tests which are also non-monotone) in order to call the 
appropriate subroutine. The net result of all this fmagling, however, 
works fairly well: 

?- plength( [1,2,3,4], N). 
?- plength([1, 2, 3, 4], 4). 

YES 

?- plength( X, 4). 
?- plength([_H416, _H418, _H420, _H422], 4). 

YES 

?- plength( [XIXs], 4 ). 
?- plength([_x, _H430, _H432, _H434], 4). 

YES 

?- plength( [_,_], 4). 

NO 
?- plength( [X,Xs .. ],-3). 

NO 

?- plength( [XIXs], N). % nondetermi.ni.sti.c 
?- plength([_X], 1). 

?- plength([_x, _H433], 2). 
?- plength([_X, _H433, _H435], 3). 
?- plength([_X, _H433, _H435, _H437], 4). 
?- plength([_X, _H433, _H435, _H437, _H439], 5). 
?- plength([_X, _H433, _H435, _H437, _H439, _H441], 6). 
?- plength([_X, _H433, _H435, _H437, _H439, _H441, _H443], 7). 

etc 

The last answer, which is an infinite backtracker (as it must be), is a 
serious source of problems in Prolog, since the last one of these 
executed will mask all previous choicepoints; Prolog has no nice 
mechanism to deal with this problem. 

Consider now a (deceptively) simple version using constraints: 

length( Li.st, N) :- N:i.nteger(0,_), Slength(Li.st,N). 

$length([],0). 
Slength([XIXs],N):- {Nl is N - 1, Nl >=0}, Slength(Xs,Nl). 

Here we have used a declaration in the umbrella routine to ensure 
that list lengths are non-negative integers (as one would expect), and 
we have used 'is' with the new variable as left argument in the 
induction clause to propagate the type integer down the chain of 
variables, so it is safe to use 0 in the head. This code is much smaller 
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and cleaner- no instantiation tests and no '!' required-and it is also 
tail-recursive. It also gives the same answers to all the above 
queries. 

But, whereas 
?- plength( X, N). 
just fails (since X is not a list), we now get instead: 

?- length( X, N ) . 
?- length(O, 0). 
?- length([_HZ37], 1). 
?- length([_HZ37, _H409], 2). 
?- length([_HZ37, _H409, _HS84], 3). 
?- length([_HZ37, _H409, _HS84, _H76Z], 4). 

etc. 
And, perhaps unexpectedly, we can now do: 

?- N:integer(S,7), length(L,N). 
?- [5 . i.nteger(S, 7), 

length([_H38Z, _H548, _H714, _H880, _Hl046], 
?- [6 integer(S, 7), 

length([_H38Z, _H548, _H714, _H880, _Hl046, 
?- [7 . i.nteger(S, 7), 

length([_H382, _H548, _H714, _H880, _H1046, 

YES 

5)]. 

_HlZ12], 

_Hl212, 

6)]. 

_H140Z], 7)]. 

Thus, provided we can establish initial bounds on the list length, we 
can 'tame' the infinite backtracker problem. 

Exercise: Work through the logic to see exactly why this works as it 
does: why is the first answer a list of length 5? why does it stop 
when it should? 

The moral of this story is that constraints and Prolog are 
complementary. Not only are they conceptually compatible, but 
constraints provide the sort of arithmetic capability that Prolog has 
always needed, while Prolog provides the symbolic processing and 
programming environment needed to make effective use of 
constraints. 

Constraints and Prolog Negation 

The usual negation-by-failure construct of Prolog works with 
constraints according to the normal rules: 
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not( { C } ) 

succeeds only if the constraint C fails, i.e. C is provably inconsistent 
with the constraints already in the system. For example, if, having 
already declared variables X and Y and established constraints 
involving them, we ask 

... not( {X>=Y}) 

and it succeeds, it indicates that X cannot possibly be larger or equal 
to Y. (This may not be obvious from looking at their ranges, which 
may in fact overlap.) Furthermore, there is a proof of this fact; 
indeed, the fact was discovered by carrying out the proof. Note also, 
that since constraint goals are monotone, their negations are 
persistent: obviously if X can not be larger (or equal) to Y, no 
additional constraints are going to change that. 

The double negation, 

not(not( { C } )) 

indicates that the constraint C is possibly consistent, but does not 
actually impose the constraint. Success here does not actually 
guarantee consistency, because the underlying mechanism is 
incomplete. 

Typed Variables and Freeze 

Freeze and the freeze-based constructs, which also use ' { }' in their 
syntax ( e.g. { nonvar(V)->P}), can be used with typed variables if 
desired. Since continuous (real) variables are seldom instantiated, 
however, they are mostly useful only with integer and boolean 
variables. The interval constraint propagation is finished before the 
woken goals are executed. , Later there will be an example which 
makes use of this facility. 

The unusual construct 

{{C}} 

has the effect of postponing the constraint goal {C} (using freeze) 
until C is ground. Although it may occasionally be useful for handling 
disequality constraints on integers, usually it is a programming error. 
(It can happen when constraint goals are being passed as arguments 
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and there is confusion about whether they already have the braces 
attached. ) 
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Boolean Constraints I 

Boolean variables and operators 

Boolean variables can take only the values 0 and 1; they can be 
introduced explicitly with declarations of the form 

X:boolean 
where X is a variables (or list of variables). In most cases, explicit 
declarations are unnecessary, since the frrst use of a variable with 
exclusively boolean operations will force it to be a boolean. The 
operations supported are the prefix operator - (boolean complement) 
and the infix operators and, or, nand, nor, xor, ->. For 
example, the constraint expression {l==A->B} constrains the usual 
boolean conditional "A implies B" to be true. There are also the 
relations '=<' (representing the boolean implication relation) and'==' 
(representing boolean equivalence when used a s a relation, and 
biconditional when used as an operator). 

Boolean problems almost always require explicit enumeration, which 
can be done using 

enumerate( X ) 
where X is a boolean variable or a list of boolean variables. For 
example, to display the truth table for the primitive xor, one can use: 

?- {C== A xor B}, enumerate([A,B,C]). 
?- [{0 - 0 xor 0}, enumerate([0, 0, 0])]. 
?- [{1 = 0 xor 1}, enumerate([0, 1, 1])]. 
?- [{1 = 1 xor 0}, enumerate([1, 0, 1])]. 
?- [{0 = 1 xor 1}, enumerate([1, 1, 0])]. 

Similarly: 
?- {D= (A xor B) nand (B or C)}, enumerate([A,B,C,D]). 

?- [{1 = (0 xor 0) nand (0 or 0)}, enumerate([0, 0, 0, 1])]. 
?- [{1 = (0 xor 0) nand (0 or 1)}, enumerate([0, 0, 1, 1])]. 
?- [{0 = (0 xor 1) nand (1 or 0)}, enumerate([0, 1, 0, 0])]. 
?- [{0 = (0 xor 1) nand (1 or 1)}, enumerate([0, 1, 1, 0])]. 
?- [{1 - (1 xor 0) nand (0 or 0)}, enumerate([1, 0, 0, 1])]. 
?- [{0 = (1 xor 0) nand (0 or 1)}, enumerate([1, 0, 1, 0])]. 
?- [{1 = (1 xor 1) nand (1 or 0)}, enumerate([1, 1, 0, 1])]. 
?- [{1 = (1 xor 1) nand (1 or 1)}, enumerate([1, 1, 1, 1])]. 

YES 
Note that the enumeration is done in the order that the variables 
appear in the list given to enumerate. 
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Boolean satisfiability is the paradigm NP-complete problem: in the 
worst case one may need to explore 2**N branches if there are N 
boolean variables to enumerate. The effect of constraints is to 
reduce this to 2**M where M<N, at the cost of value propagation in 
the constraint system. But every constraint that forces a variable 
(thereby avoiding one choice) halves the overall cost. 

The general pattern for dealing with highly combinatoric problems 
using constraints is: 

( 1) Set up the data structures and the declarations for the principle 
variables. Any data values or information determining the size and 
structure of the problem which must be read from files is done at 
this time. Specifications expressed as Prolog facts usually need to be 
converted into lists (using e.g. fi.ndall or findset ) before being 
processed into constraint goals. 

( 2) Set up all the constraints. If the Pro log preparation in step 1 has 
been done well, the conversion to constraints should be relatively 
easy and transparently clear. This is important because it can be 
difficult to discover errors or omissions in the constraints. This part 
should be strictly deterministic; any non-determinism should be 
postponed until step 3 (the "Aurora principle"). When writing 
constraint goals it usually helps to imagine that all variables are 
instantiated, and you are just testing to see if you have a solution. 
Test by actually giving it a solution to the problem: all the constraints 
should of course be satisfied. 

( 3) Then proceed to the enumeration of constrained variables, or 
other non-deterministic bits. The bulk of the execution time will 
normally be spent in this section on difficult combinatorial problems, 
so it should generallebe doing anything other than enumeration. 
Step 1 should have buit ata structures so that it is easy to extract 
the enumeration v · les. The built-in enumeration predicates 
have been optimized in various ways and will generally be better 
(and easier to use and document) than what you might casually 
write, so use them. Think hard about different enumeration orders, 
since the proper choice can make a significant difference in 
performance; try several different strategies and compare the 
results. Good heuristic orderings can often be accomplished easily by 
proper use of sorts in step 1. 
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( 4) Once the solution is obtained, there is usually some code 
required to capture the answer in a suitable form, e.g. in state space 
or an external file. This part will normally be omitted in the 
examples in this text. 

Digital Logic 

As an example of the use of boolean constraints, consider a 1-bit 
adder expressed as: 

addl( X, Y, Cin, Z, Cout):-
{ Z is Cin xor (X xor Y)}, 
{ Cout is (X and Cin) or (Y and Cin) or (X and Y) } . 

A 4-bit adder can then be synthesized as: 

add4( [X3,X2,Xl],[Y3,Y2,Yl],Cin, [Z3,Z2,Zl], Cout):-
addl( Xl, Yl, Cin, Zl, Cl), 
addl( XZ, Y2, Cl, Z2, C2), 
addl( X3, Y3, C2, Z3, Cout). 

A general adder can be defined by: 

adder( [] , 0, C, [], C). 
adder( [XIXs],[YIYs],Cin, [ZIZs],Carry):-

addl( X,Y,C, Z,Carry), 
adder(Xs,Ys,Cin, Zs, C). 

Functional components can be tested for equivalence by comparing 
outputs. For example, if we have defined 

addl_alt( X, Y, CI, Z, CO):-
{ Z is CI xor (X xor Y)}, 
{ CO is CCI and (X or Y)) or (X and Y)}. 

then we can look for any differences: 
?- addl(X,Y,CI,Z,CO), 

NO 

addl_alt(X,Y,CI,Z2,C02), % same inputs, different outputs 
{1= ((Z xor Z2) or (CO xor C02))}, % compare outputs 

enumerate([X,Y,CI]). 

with no output differences implying equivalence. 

Similarly, we can determine that some function, say f([X1,X2,.X3,X4], 
Z) depends on a variable e.g. X1 by 
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?- f([0,XZ,X3,X4],Zl), f([l,XZ,X3,X4],ZZ), {l==(Zl xor ZZ) }, 
enumerote([XZ,X3,X4]). 

Functional dependencies 

Functional dependencies is a formalized method used to analyze 
"keys" in databases among other things. A relation in the sense of 
relational databases is a finite set of tuples, with the fields of each 
tuple named by a distinct attribute (from a set A of attributes) and 
having values in some domain. A key is a field or set of fields whose 
values uniquely determine a tuple, and hence the values of the rest 
of the attributes. This can be expressed succinctly as P=>Q where P 
and Q are subsets of A. Given a set of functional dependencies, one 
of the things one might want to do is to determine if some other 
functional dependency is a consequence of them. The first step in 
answering such questions is to compute the closure operator of the 
set of functional dependencies: for each subset W of A the closure of 
W is the set of all attributes determined by W. Once we have the 
closure operator, then W -> U for each U in closure(W) and as W 
ranges over the powerset of A these are all the consequences of the 
original set of dependencies. 

The following example of a set of functional dependencies (for an 
airline scheduling system) was given in Chapter 8 of the BNR Prolog 
User Guide: 

[a] 
[a, c, d, i] 
[c, d] 
[c, d, f] 
[b] 
[c, f] 
[a, c] 
[a, d] 
[e, g] 

-> [b, e, f, g] 
-> [h] 
-> [j] 
-> [k] 
-> [g] 
->[a, b, e] 
-> [d] 
-> [c] 
-> [b] 

Also given there was a conventional Prolog implementation of the 
closure operation as well as a freeze-based implementation. You 
should study those examples first. The boolean constraint version 
given here works a lot like the freeze implementation, but is much 
faster and more flexible. For a constraint implementation we map 
attributes to boolean variables, although we will in fact only be using 
the instantiated value 1. Each dependency is then translated using 
"and" on the left, for each value on the right; here we translate the 
implication as a relation using =<, but the conditional operator -> 
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could also be used. Then the above example can be coded very 
explicitly as: 

closed([A,B,C,O,E,F,G,H,I,J,K]):- [A,B,C,D,E,F,G,H,I,J,K]:boolean, 
{ A =< B, A =< E, A =< F, A =< G, 

(A and C and 0 and I) =< H, 
(C and D and F) =< K, 
(C and F) =< A, (C and F) =< B, (C and F) =< E, 
(A and C) =< D, 
(A and D) =< C, 
(E and G) =< B}. 

After executing closed(X), whatever 1 's we put into X will have their 
consequences set as well. So to compute closures (in terms of 
attribute names say) we will need to convert a list of names to a list 
of 1 'sand variables ( a membership vector denoted), and then use 
the resulting closed membership vector to select a list of attribute 
names. (Note that these two routines are almost identical; they differ 
because one is written to interact with the constraint system and the 
other must not interact.)): 

% epsilon( Ordlistl, Ordlist2, Blist*) 
epsilon( [], _, 0). 
epsilon( [NINs],[NIAs],[liBs]):- !,epsilon( Ns,As,Bs). 
epsilon( [N INs] ,As, [BIBs]):- epsilon( Ns,As,Bs). 

% select( Ordlist2, Blist,Ordlistl*) 
select( 0, 0, []) · 
select( [N lAs], [BIBs], [N INs]):- 8@=1,!, select( Ns,As,Bs). 
select( [A I As], [BIBs], [N INs]):- select( [N INs] ,As ,Bs). 

member(X, [X I_]). 
member(X,[_IXs]):- member(X,Xs). 

list_closures( List):-% code to compute closures 
attri.bute_names( Master), 
closed( X), 
foreach( member(N,Li.st) do 

[ sort(N,NS), 
epsilon(Master,NS,X), 

select(Master, X,C), 
nl, write( NS, 1 -> 1 ,C) 

]). 

For the example given above: 

?- list_closures([[a, c, d], [b, e], [g, d, f], [a]]). 

[a,c,d] -> [a,b,c,d,e,f,g,k] 
[b,e] -> [a,b,c,d,e,f,g,k] 
[d,f,g] -> [a,b,c,d,e,f,g,k] 
[a]-> [a,b,c,d,e,f,g,k] 
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Exercise: Suppose that the FD's are defined by a predicate of the form fd{ lhs
>rhs) and write a Prolog translation routine to construct the equivalent 
closure predicate and the sorted list of all symbolic names, and adapt 
lisLclosures to use these. 

Propositional calculus problems 

Propositional calculus problems for testing boolean satisfaction 
algorithms are often expressed in conjunctive normal form, that is as 
a conjunction (or list) of disjunctions of p's and -p's. This form is the 
most convenient for some algorithms, but it is sometimes unnatural 
and often much larger than other representations. The CLP(BNR) 
algorithms of course do not require any such restricted form of input. 

One of the standard benchmarks used for boolean satisfiability 
testing is the "pigeon-hole(M,N)" problems: placing M pigeons into M 
holes with every pigeon in one hole and no two pigeons in the same 
hole. When M is N + 1, this is of course impossible, but a propositional 
calculus proof of this fact is a "worst case" sort of problem. 

To generate a conjunctive normal form representation, we use the 
subroutines: 

place_pigeon(N,Holes):- % holes will be list of booleans 
length(N,Holes), Holes:boolean, 
or_reduce( Holes, B), { 1==8}, % pi.geon has hole 
at_most_one( Holes). 

or_reduce([],0). 
or_reduce([XIXs], X or 5):- or_reduce(Xs,S). 

at_most_one( 0). % each pigeon i.n just one hole 
at_most_one( [X I Xs]):- not_both(Xs ,X), at_most_one(Xs). 

not_both([] ,_). 
not_both([XIXs],Y):- { 1== -X or -Y}, not_both(X,Y). 

Then pigeonhole predicates can be written as: 

pigeons(M,N):- Spigeons(M,N,Hs), 
holes_used_once(Hs). 

Spigeons(0,N,[]). 
Spigeons(M,N, [HIHs]):- M>0, M1 i.s M - 1, 

ploce_pigeon(N, H), 
$pigeons(M1, N). 
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holes_used_once( [[]1_]):-!. 
holes_used_once(List_of_lists):-

column( List_of_lists, First_column, Rest), 
at_most_once( First_column), 
holes_used_once(Rest). 

column( 0, 0, 0). 
column( [ [XIXs]IYs], [XICs], [XsiRs]):- column(Ys,Cs,Rs). 

Using 

enum_l ist( []). 
enum_list( [X I Xs]):- enumerote(X), enum_ list(Xs). 

for enumeration, one can test this by frist giving a satisfiable 
problem: 

?- pigeons(3,3,H), enum_list(H). 
?- [pigeons(3, 3, [[0, 0, 1], [0, 1, 0], 

enum_list([[0, 0, 1], [0, 1, 0], [1, 
?- [pigeons(3, 3, [[0, 0, 1], [1, 0, 0], 

enum_list([[0, 0, 1], [1, 0, 0], [0, 
?- [pi.geons(3, 3, [[0, 1, 0], [0, 0, 1], 

enum_list([[0, 1, 0], [0, 0, 1], [1, 
?- [pigeons(3, 3, [[0, 1, 0], [1, 0, 0], 

enum_list([[0, 1, 0], [1, 0, 0], [0, 
?- [pigeons(3, 3, [[1, 0, 0], [0, 0, 1]' 

enum_list([[l, 0, 0], [0, 0, 1], [0, 
?- [pigeons(3, 3, [[1, 0, 0], [0, 1, 0], 

enum_Hst([[1, 0, 0], [0, 1, 0], 

and then a non-satisfiable problem: 
?- pi.geons(4,3,H), enum_Hst(H). 

NO 

[0, 

[1, 0, 0]]), 
0, 0]])]. 
[0, 1, 0]]), 
1, 0]])]. 
[1, 0, 0]]), 
0, 0]])]. 
[0, 0, 1]]), 
0, 1]])]. 
[0, 1, 0]]), 
1, 0]])]. 
[0, 0, 1]]), 
0, 1]])]. 

To measure the time for a problem, one can first use stats/0 to clear 
the statistics counters, then run a (successful) predicate, and 
stats(A,B,c,o,T) to get the statistics. Here A represents the number of 
Prolog logical inferences, B the number of primiitve (non-Prolog) 
calls, C the number of primitive narrowing operations in the 
constraint system, D is the number of separate invocations of the 
constraint system, and Tis the time (in ms) elapsed since the statsO 

call. For example: 

?- stots, pi.geons(4,3,H), enum_list(H);true, stots(A,B,C,D,T). 

The pigeon(M,M) problem is equivalent to finding all the 
permutations on M objects. Note that there M*M booleans, so for 
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M=10 we have a raw search space of 2**100 or about 10**30. The 
1020 constraints effectively reduce this to 10!, or about 10**6. 

Exercise: Compare with a version using inverted (-) booleans. 

Structural analysis of Petri nets 

Petri nets are widely used to model discrete control systems, 
transaction systems, and communications protocols. A Petri net 
consists of a net together with a marking which represents the state 
of the net. The net is a bipartite graph consisting of places and 
transitions connected by directed arcs; a marking is a distribution of 
tokens over the places. Any transition may have input places (where 
the arc is directed from the place to the transition) and output places 
(arc from transition to place). A transition can fire if all of its input 
places have at least one token; frring a transaction removes a token 
from each input and puts a token into each output place. In general 
the evolution of the state is non-deterministic as there may be many 
transitions that can frre for any given marking. 

Structural analysis studies properties that depend only on the · 
topology of the network independent of marking. Of particular 
importance are structural properties that determine behavioural 
possibilities. (For a special subclass of Petri nets, the "free choice 
Petri nets" which are characterized by the property that if two 
transitions share an input place, it is the unique input place of both, 
structural properties are particularly useful.) For example: 

siphon - a non-empty subset of places such that every transition that 
outputs to it also inputs from it; 

trap - a non-empty subset of places such that every transition that 
inputs from it also outputs to it. · 

pre-conservative component - a non-empty subset which is both a 
siphon and trap. 

For a siphon, if none of its places is marked at some time, it will 
remain empty henceforth. For a trap, if it contains tokens intitially, 
will always contain tokens. 
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Let us suppose that a Petri net is specified by a predicate 
p laces(L i.st) whose argument is a list of places, and 
transi.ti.on(Name,Inputs,Outputs) specifying the transitions. We 
wish to find all the siphons in the network. For each siphon S and 
each transaction t w emust have: 

outputs(t) n S <> 0 -> inputs(t) n S <> 0, inputs(t) 
or equivalently 

inputs(t) n S= 0 -> outputs(t) n S = 0. 
For each place we create a boolean variable B interpreted as B=O 
means that it is in the siphon S. Then for each transi. ti.on(N, I, 0) 
we can map I to its associated list of booleans IB and likewise for 0 
to get I=OB, and translate the above condition by 

conjunction(IB) =<conjunction( OS). 

siphon( List_of_names):-
places( Places), 
map_table( Places, Map, Bs), 
findall( trans(I,O), transi.tion(_,I,O), Tiist), 
map_transi.ti.ons( Tiist, Map), 
enumerate(Bs), 
selectfrom(Map, List_of_names). 

% build 'symbol table' for mapping names & export boolean vector 
map_table([],[],[]). 
map_ table( [PIPs], [ [P ,B] IMs], [B lbs]): -B:boolean, 

map_table(Ps,Ms,Bs). 

map_transitions([],_). 
map_transitions([ trans(I,O)ITs], Map):-

map_places(I,Map,IB), % IB i.s symbolic conjuncti.onof I 
map_places(O,Map,OB), % OB i.s symboli.c conjunctionof 0 
{ IB =< OB }, % no inputs 

map_ transi ti.ons( Ts, Map). 

map_places( [],_,1). % why 1? 
map_places( [PIPs],Map, PB and B):- member([P,PB],Map),!, 

map_places( Ps,Map,B). 

member(X,[XI_]). 
member(X,[_IXs]):- member(X,Xs). 

% convert soluti.on to list of place names 
selectfrom( 0, 0). 
selectfrom( [ [P,0]1Ms], [PIPs]):- !, selectfrom(Ms,Ps). 
selectfrom( [ [P,1]1Ms], Ps):- selectfrom( Ms,Ps). 

With the following test data: 

places( [a,b,c,d,e,f,g,h,i.,j,k]). 

transi.ti.on( 1, [a,d], [c]). 
transition( 2, [c], [b,d]). 
transition( 3, [b], [a] ). 
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transi.ti.on( 4, [b]' [d,e,h]). 
transition( 5, [e], [f,i]). 
transition( 6, [f]' [g] ). 
transi.ti.on( 7, [g]' [e] ). 
transi. tion( 8, [i,j]. [h,k]). 
transi.ti.on( 9, [k]' [j] ). 

we get the following list of siphons: 

?- si.phon(X). 
?- siphon([a, b, c, d, e, f, g, h, i., j, k]). 
?- siphon([a, b, c, d, e, f, g, h, i, k]). 
?- siphon([a, b, c, d, e, f, g, h, i]). 
?- siphon([a, b, c, d, e, f, g, h, j. k]). 
?- siphon([a, b, c, d, e, f, g, i, j, k]). 
?- s"iphon([a, b, c, d, e, f, g, i, k]). 
?- siphon([a, b, c, d, e, f, g, i]). 
?- si.phon([a, b, c, d, e, f, g, j, k]). 
?- siphon([a, b, c, d, e, f, g]). 
?- si.phon([a, b, c, d, h, j, k]). 
?- si.phon([a, b, c, d, j, k]). 
?- si.phon([a, b, c, d]). 
?- si.phon([a, b, c, e, f, g, h, i, j' k]). 
?- si.phon([a, b, c, e, f, g, h, i., k]). 
?- siphon([a, b, c, e, f, g, h, i]). 
?- siphon([a, b, c, e, f, g, h, j, k]). 
?- siphon([a, b, c, e, f, g, i., j, k]). 
?- siphon([a, b, c, e, f, g, i., k]). 
?- siphon([a, b, c, e, f, g, i]). 
?- siphon([a, b, c, e, f, g, j, k]). 
?- si.phon([a, b, c, e, f, g]). 
?- siphon([a, b, c, h, j, k]). 
?- si.phon([a, b, c, j, k]). 
?- si.phon([a, b, c]). 
?- si.phon([b, c, d, e, f, g, h, i' j' k]). 
?- si.phon([b, c, d, e, f, g, h, i, k]). 
?- siphon([b, c, d, e, f, g, h, i.]). 
?- siphon([b, c, d, e, f, g, h, j, k]). 
?- siphon([b, c, d, e, f, g, i, j, k]). 
?- siphon([b, c, d, e, f, g, i, k]). 
?- siphon([b, c, d, e, f, g, i]). 
?- siphon([b, c, d, e, f, g, j, k]). 
?- siphon([b, c, d, e, f, g]). 
?- si.phon([b, c, d, h, j, k]). 
?- si.phon([b, c, d, j, k]). 
?- siphon([b, c, d]). 
?- siphon([j, k]). 
?- siphon(O). 

YES 

Exercise: This version tends to produce the large siphons first. Why? 

Exercise: What condition has been omitted; how could you fix it? 

Exercise: What is the easiest change(s) to make in order to compute traps 
instead of siphons? 
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Boolean Constraints II 

Relational algebra and transitive closure problems 

A binary relation on X is an element of the powerset of :XXX, and are 
hence partially ordered by set inclusion, and have intersection, 
union, and complement defined. The bottom relation is 0, the top 
one is U (the universal relation), and the diagonal relation is denoted 
by 1. In addition, there are operations of relational product: 

x(RS)y <-> Ez xRz & zSy 
(for which 1 is an identity and 0 is a zero) 
and adjoint (converse/reverse/inverse) 

x(RT)y <-> yRx. 
A relation R is reflexive iff R ::> 1, symmetric iff RT = R, transitive iff 
RR=R (idempotent). 

The reflexive relations form a sublattice. For a reflexive relation R, 
one is often interested in its transitive closure R*, defined as the 
smallest transitive R relation bigger than R, which can (in the finite 
case) be computed by taking powers of R until they stabilize, that is 
finding the least ftxed point of the equation X=RX. For a non
symmetric R, one unions it with 1 before taking the transitive 
closure. 

Let us represent a finite relation by a list of N lists of N booleans. To 
generate a generic relation we will use: 

relation(N,R):- N:integer(0,_), Srel_row(N,N,R). 

Srel_row(0,_,[]). 
Srel_row(M,N,[BsiRs]):- {M>=l, Ml is M - 1}, 

length(N,Bs), Bs:boolean, 
Srel_row(Ml,N,Rs). 

The length predicate was defined in a previous section; $rel_row 
uses the same technique. A specialized print utility which produces a 
compact output is useful: 

p r _ r e 1 ( [] ) : - n l. 
pr_rel([XIXs]):- nl, Spr_booLHst(X), pr_rel(Xs). 

$pr_bool_list([]). 
$pr_bool_list([BIBs]):- Smap_to_ch(B,C), write(C), !,Spr_bool_list(Bs). 
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Smap_to_ch(8,'_'):-var(8). 
Smap_to_ch(0,'0'). 
Smap_to_ch(l,'l'). 

The partial order on relations can be implemented as: 

ge( 0. 0). 
ge( [XIXs],[YIYs]):- Sge(X,Y), ge(Xs,Ys). 
Sge([], []). 
Sge([XIXs],[YIYs]):- {X>=Y}, Sge(Xs,Ys). 

To access the entries we can use an indexing routine (we are thinking 
of a relation as a column of rows): 

entry(R,I,J,8):- arg(R,I,Row), arg(Row,J,8). 

To test for or make reflexive relations we can use: 

reflexive( R ):- Sdiagonal(R,l). 
$diagonal( 0, _). 
$diagonal( [RIRs],N):- Nl is N + 1, 

arg(R,N,l), 
Sdiagonal(Rs,Nl). 

A useful utility is one to transpose such an array: 

transpose(R, RT) :- Strans(R,RT). 

Strans([[]l_],[]). 
Strans(R, [CICs]):- Speel_column(R,C,Rest), Strans(Rest,Cs). 

Speel_column(O, 0, 0). 
Speel_column([ [CIRs]IRest], [CICs], [RsiRRs]):

Speel_common( Rest, Cs, RRs). 

Then one way to implement a predicate for symmetric relations is: 

symmetric(R):- transpose(R,R). 

Note that this can be applied to an array of untyped variables (and 
constants), and it is more effcient to do so. 

The relational product can be written in terms of its action on a 
subset represented as a membership vector. 

map_rel([O L], 8, 0):-!. 
map_rel( R, 8, [CICs]):

Speel_column(R,Col,Rest), 
Sor_and(B,Col,Dot),!, 
{C = Dot}, 
map_rel(Rest,8,Cs). 
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$or _and([] , [], 0). % boolean i.nner product 
$or_and([XIXs],[YIYs],(X andY) or C1):- $or_and(Xs,Ys,Cl). 

Now we can easily express the relational product: 

relati.on_product(O, _, 0):-!. 
relati.on_product([AIAs],B,[CICs]) 

map_rel(B,A,C), 
relati.on_product(As,B,Cs). 

Using this we can express the constraint for a relation to be 
transitive as: 

transi.ti.ve(R):- relati.on_product(R,R,R). 

and transitive closure of a relation S by: 

transi.ti.ve_closure(S,R):- reflexi.ve(S), 
relati.on(N,S), relati.on(N,R), 
ge(R,S), 
relati.on_product(R,S,R). 

When value inS have (or take) the value 1, the appropriate values in 
R will become 1. Conversely, if values in R become 0 they may 
propagate to S; when S is symmetric this is a version of a coloring 
problem. Thus when S is given by 

1_ __ 10 __ 11 
_1_1 ___ 1 __ 
0_1_ __ 1100 
_1_1 ____ 00 
__ 0_1 ____ _ 
_____ l ___ _ 
_ 0 ____ 1 __ _ 
_______ 1 __ 
___ 1 ____ 1 _ 
______ 1 __ 1 

R initially (because of call to ge) becomes: 
1_ __ 1 ___ 11 
_1_1 ___ 1_ _ 
__ l_ __ ll __ 
_ l_l _____ _ 
____ l ____ _ 
_____ 1 ___ _ 
______ l __ _ 
_______ l __ 
___ 1 ____ 1 _ 
______ l __ l 
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whence the transitivity condition produces R as: 

11_11_1111 
_1_1_ __ 1 __ 
__ 1_ __ 11__ 
_1_1_ __ 1 __ 
____ 1 ____ _ 
_____ 1 ___ _ 
______ 1 __ _ 
_______ 1 __ 
_ 1_1_ __ 11_ 
______ 1 __ 1 

Note that one can set up the equations before supplying the initial 
values for S, as in the query: 

?-relation(10,R),transitive_closure(R,S),nl,test10(R), pr_rel(S). 

I 
I 
I 
I 
I 

• 
t 
I 

• • • • • • • • • 
Also note that the forward propagation of 1 's in transitive closure • 
problems is deterministic, while the backward propagation of O's is I 
very non-deterministic (as in coloring problems). e 

Because the number of boo leans in a relation is proportional to N*N, 
general problems which require finding solutions to equations in 
relational algebra lead very quickly to difficult problems (in terms of 
time and space bounds), unless the constraints (including boundary 
values) are very restrictive. However, small systems of relational 
algebra equations can be solved quite nicely. 

Exercise (suitable for a project): Develop a predicate re l_algebra(N, {Eqs .. }) 
for solving systems of relational algebra equations supporting union, 
intersection, complement, transpose, order, relational product and transitive 
closure operations. 

NOTE: For maximum efficiency, symmetry should be imposed at the 
level of Prolog variables before typing is done, and the presence of 
reflexivity, symmetry, and idempotence should be propagated 
symbolically as much as possible before setting up the constraint 
equations. 

Exercise: Formulate and solve some interesting problems in relational algebra 
using the above technique. Many branches of computer science ( eg. parsing 
technology and finite state automata theory make use of such equations). 
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The representation of arrays as a list of lists is quite natural, but 
makes transpose (and hence product) fairly expensive. Also, this 
representation does not make it easy to relate solutions of order N to 
those of order N + 1. An alternate representation which is better in 
these respects treats an order N relation as an order N-1 relation 
which has been "bordered" by adding a row and column: 

I I I 
I I I 
I M I C I 
I I I 
I I I 
l _____ l_l 
I __ R _I_DI 

This can be represented neatly as a recursive structure of the form: 
relation( 0, C, R, M ) 

where Dis a single element, C and Rare lists of length N-1, and M 
is a matrix of order N-1. With this formulation, for example, we can 
write the reflexive predicate as: 

reflexive([]). 
reflexive( relotion(l,_,_,M)):- reflexive(M). 

and transpose as simply: 

transpose([],[]). 
transpose(relotion(A,C,R,M), relotion(A,R,C,M)):- transpose(M). 

Exercise: Implement relational product in this representation and compare the 
effidency of the two implementations. 

Note that this only affects the cost of building constraints; the 
constraints and hence propagation are the same. The big advantage 
of this representation arises in problems in which one has a solution 
to the equations defined on a subset and wishes to extend it to a 
larger set. 

Exercise: formulate a large non-deterministic coloring problem as a series of 
problems for increasing N, and use ! after each stage is completed. 
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Integer Constraints 

Constraints on integer variables work much like those on boolean 
variables. However, since the operations on integers are the same as 
those on reals, it is usually necessary to provide more explicit 
declarations with integer variables. Abstract finite domains must 
first be mapped into fmite integer ranges in order to formulate 
constraints. 

Enumeration of integer variables can be also done with enumerate, 
which enumerates the variables (from lower bound to upper bound) 
in the order specified. In addition, the firstfai 1 predicate (with 
syntax analogous to enumerate) enumerates integer ranges in order 
of increasing size of domain. This enumeration strategy is in most 
cases a good one, and usually much better than a random choice of 
enumeration order, but has higher overheads than enumerate. Both 
firstfai 1 and enumerate will enumerate any boolean variables first, 
if the list of variables is of mixed type. 

Crypto-Arithmetic 

A simple example of the use of constraints on integer variables is the 
well-known "SEND MORE MONEY" puzzle: to determine the digits 
corresponding to the letters in the sum 

SEND 
+MORE 

= MONEY. 

This can be formulated as follows: 

sendmoremoney([S,E,N,D,M,O,R,Y]):
[S,M]:integer(l,9), 
[E,N,D,O,R,Y]: integer(0,9), 
distinct( [S,E,N,D,M,O,R,Y]), 
{1000*(S +M)+ 100*(E +0)+ 10*(N +R) + (D +E) 

= 10000*M + 1000*0 + 100*N + 10*E + Y}. 

di sti net([]) . 
distinct([XIXs]):- Sdistinct(Xs,X), distinct(Xs). 
$distinct([],_). 
Sdistinct([XIXs],Y):- {X<>Y}, Sdistinct(Xs,Y). 
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By executing without enumeration we can verify that the setup is 
deterministic, and also see what the initial narrowings are. If the 
'YES' response and new prompt '?-' are printed, the call was 
deterministic; if these are not printed, there was a choicepoint 
created: entering <CR> will proceed to the next solution, and if the 
prompt is then returned it indicates that the choicepoint was only 
"virtual". Another way is to use the count predicate in Base, which 
counts the number of solutions: 

?- count( [sendmoremoney(L)] ,N). 
?- count([sendmorernoney(_H155)], 1). 

YES 

If there is more than one solution to the setup, the simplest way to 
fiX the problem is to put a ! at the end of the main predicate. In the 
output, lookout for effectively unbounded ranges, which would 
suggest that some constraints needed to make the problem well
posed are missing. 

?- sendmoremoney(_). 
?- sendmoremoney([9, _H3461, _H3462, _H3463, 1, 0, _H3466, _H3467]) 

where (_H3461 : i.nteger(2, 8), 
_H3462 i.nteger(Z, 8), 
_H3463 i.nteger(2, 8), 
_H3466 i.nteger(2, 8), 
_H3467 i.nteger(Z, 8)]. 

YES 

Then: 
?- sendmoremoney(l), enumerate(l). 
or 
?- sendmoremoney(l), fi.rstfai.l(l). 
gives: 

?- sendmoremoney(l), enumerate(L). 

YES 

?- (sendmorernoney([9, 5, 6, 7, 1, 0, 8, 2]), 
enumerate([9, 5, 6, 7, 1, 0, 8, Z])]. 

One can easily count the number of solutions to a problem: 

?- count([sendmoremoney(_H160), enumerate(_H160)], 1). 
?- count([sendmorernoney(_H159), enumerate(_H159)], 1). 

It is often of interest to be able to determine just how many 
backtrackings are done in such problems. For this, enumerate and 
frrstfail can take an optional argument which is executed just after 
each backtrack: 
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?- sendmoremoney(L), enumerate(L, write(*)). 
*** ?- [sendmorernoney([9, 5, 6, 7, 1, 0, 8, 2]), 

enurnerate([9, 5, 6, 7, 1, 0, 8, 2], wri.te("*"))]. 
<CR> 
** 
YES 

For large searches, there is a predicate in the constaint utilities file 
which is similar to count. To fmd the number of backtracks before 
the first solution use: 

?- backtracks( C, [sendmoremoney(L), enumerate(L, C)], N). 

while to get the total number of backtracks: 

?- backtracks( C, [sendmoremoney(L), enumerate(L, C),fail], N). 

Exerdse: Introduce explidt carry variables ([0,1]) and replace the single constraint with 
separate sums for each digit. 

Eight Queens 

A popular early example of constraint programming was the well
known "eight queens" problem and its generalization. The naively 
declarative generate-and-test Prolog version of eight queens looks 
like: 
% 
% Prolog generate-and-test solution 
% 
ei.ght_queens([X1,X2,X3,X4,X5,X6,X7,X8]):-

permutati.on( [X1,X2,X3,X4,X5,X6,X7,X8],[1,2,3,4,5,6,7,8]), 
safe( [X1,X2,X3,X4,X5,X6,X7,X8]). 

permutation([],[]). 
permutation([XIXs],Ls):

delete(X,Ls,Rs), 
permutati.on(Xs,Rs). 

delete(X, [XIXs], Xs). 
delete(X, [YIYs], [YIRs]):- delete(X,Ys,Rs). 

safe([]). 
safe([XIXs]):- noattack(Xs,X,1), safe(Xs). 

noattack([],Y,N). 
noattack([XIXs],Y,N):- N1 i.s N +1, 

Y<>X - N, 
Y<>X + N, 
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noattack( Xs,Y,N1). 

A pure constraint version (generalized toN-queens), and even more 
declarative, is: 
% 
% one (of many) versions of queens using constraints 
% 
queens(N,List):- length(List,N), List:integer(1,N), 

Squeens(N,List). 

Squeens(0,[]):-!. 
Squeens(N,[XIXs]):- N1 is N -1, 

c_noattack( Xs, X,1), 
Squeens(N1,Xs). 

c_noattack([],Y,N). 
c_noattack([XIXs],Y,N):- N1 is N +1, 

{Y<>X, Y<>X - N, Y<>X + N}, 
c_noattack( Xs, Y, N1). 

?- queens(5,L), enumerate(L), nl, write(L), fail. 

[1,3,5,2,4] 
[1,4,2,5,3] 
[2,4,1,3,5] 
[2,5,3,1,4] 
[3,1,4,2,5] 
[3,5,2,4,1] 
[4,1,3,5,2] 
[4,2,5,3,1] 
[5,2,4,1,3] 
[5,3,1,4,2] 

The constraint version is also considerably better than the traditional 
one: 

8 queens(lst sol): gen&test 
time(sec/25Mhz-68020) 4.267 
#backtracks ? 

enumerate 
0.717 
Z4 

firstfai.l 
0.6 
15 

The primitive disequality constraint '<>' tends to occur often in puzzle 
problems over finite domains and bounded integers. The CHIP 
technology is optimized to handle such constraints efficiently. Such 
constraints are much less efficently handled in interval-based 
systems, and are almost useless in large or continuous domains; in 
CLP(BNR) they are in fact restricted to use on integer (or boolean) 
values. 

Exerd.se: swap the arguments to permutation in the first version above and remeasure the 
performance. 

Exercise: write a hybrid version that retains the use of permutation, 
but uses constraints for the diagonals. 
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E.xerdse: write a pure boolean constraint version of eight queens. 

Exercise: the disequality constraint should be much weaker in CLP(BNR) than in CHIP, yet 
the number of backtracks recorded for the frrstfail version of the constraint program 
above is 15 versus 23 reported for CHIP in Van Hentenryck's book Constraint satisfaction 
in Logic Programming: investigate this discrepancy. 

Cardinality and Pseudo-Boolean Constraints 

One of the most important uses of integer constraints is to count 
boolean variables, the so-called cardinality operator introduced by 
Pascal van Hentenryck (1991). Since CLP(BNR) takes boolean values 
as 0 and 1, which can be regarded also as integers, it is possible to 
explicitly sum booleans to get an integer result. This allows us to 
define a cardinality operator easily: 

cardinality( Bs, l, U):- sum(Bs,Sum), { S is Sum, l=<S,S=<U}. 

For example, with N= length of Bs, using the built-in cardinality it is 
easy to express a number of useful conditions: 

cardinaHty(Bs, 1, 1) 
cardinaHty(Bs, M, M) 
cardinality(Bs, M, N) 
cardinaHty(Bs, 0, M) 
cordi na H ty(Bs, N, N) 

% exactly one B is true 
% exactly M B' s ore true 
% at least M B's are true 
% at most M B' s are true 
% all B's ore true . 

For example, using the frrst of these allows us to reformulate the 
pigeonhole problem much more succinctly: 

place_pigeon(N,Holes):- % holes will be list of booleans 
length(N,Holes), Holes:boolean, 
cardinality( Holes, 1,1). % pigeon has exactly one hole 

Then pigeonhole predicates can be written as: 

pigeons(M,N):- Spigeons(M,N,Hs), 
holes_used_once(Hs). 

Spigeons(0,N,[]). 
Spigeons(M,N, [HIHs]):- M>0, M1 is M - 1, 

place_pigeon(N, H), 
Spigeons(M1, N). 

holes_used_once( [[]1_]):-!. 
holes_used_once(list_of_lists):-

column( List_of_lists, First_column, Rest), 
cardinality( First_column,1,1), 
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holes_used_once(Rest). 

colt.nn( 0, 0, 0). 
colt.nn( [ [XIXs]IYs], [XICs], [XsiRs]):- column(Ys,Cs,Rs). 

Exercise: compare the performance (space and time) of this with the previous version. 

Comparison Operators 

The comparison relations {==,=<,>=}and their negations{<>,>,<}, which 
usually appear as constraint relations, can also be used as boolean 
valued operations of non-boolean arguments in CLP(BNR). For 
example (and note the required parenthesization): 

{B == ( X>=Y)} 
with [X,Y]:integer, and B:boolean, has the following effects: 
- if B is 1 then it is equivalent to the relation {X>= Y} 
- if B is 0 then it is equivalent to the relation {X<Y} 
- if B is indeterminate and X>= Y is necessarily true, B becomes 1 
-if B is indeterminate and X>=Y is necessarily false, B becomes 0. 

The arithmetic operation (X>=Y) is necessarily true(resp. false) as 
soon as the range of possible values for X are disjoint from those of Y 
and strictly to the right (resp. left) of those for Y. These operations 
permit a much wider range of interactions between boolean and non
boolean variables to be formulated than would otherwise be possible, 
In particular, combinatorial aspects of a problem can be formulated 
alongside the non-combinatorial aspects with propagation going both 
ways. 

For example, one of the common uses of these operators is to express 
that a variable must be chosen from a finite set of values: 

element(Y, Xs, Bs):- Selement(Xs,Y,Bs), Ssum(Bs,S), {5==1}. 
$element( 0. _, 0). 
$element( [XIXs], Y, [BIBs]):- {B is (X==Y)}, Selement(Xs,T,Bs). 

Ssum(O, 0). 
Ssum([BIBs], B + N):- Ssum(Bs,N). 

?- Y:integer, element( Y, [20,30,50], Bs), enumerate(Bs). 

?- Y:integer, element( Y, [20,30,50], Bs),{Y>=40}. 

As an extension of this, we can easily write a predicate which 
chooses M distinct values from a list of N: 

choice( Choices, List, BoolArray):-
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length(Choices,M), length(List,N), {M=<N}, 
$choice( Choices,List, BoolArray), 
distinct( Choices). % see above for distinct 

$choice( 0, L, 0). 
$choice( [CJCs], L, [BllBls]):- element( C,L, Bs), 

Schoice(Cs,L,Bls). 

Another useful utility counts occurrences in a list: 

occurrences(X,List,N):- N:integer(0,_), 
Selement(List,X,Bs), 
Ssum(Bs,S), {N is S}. 

It may be useful sometimes to export the Bs as well, for enumeration 
purposes. 

All these utilities, plus a few others, can be found in the file named 
constraint_ utilities. From now on we will make use of these 
utilities without repeating the definitions. 

Magic Series 

The magic series problem. (Van Hentenryck, 1989) demonstrates the 
use of the comparison operations to formulate a tricky problem and 
also provides an example illustrating the effect of adding well-chosen 
redundant constraints. 

The magic series problem of order N can be thought of as finding a 
sequence [MO,M1, ... MN] of integers which make the following self
referential text T true: 

" T contains MO occurrences of 0 and 
T contains M1 occurrences of 1 and 
T contains M2 occurrences of 2 and 

T contains MN occurrences of N " 

TheM's are obviously one more than the number of occurrences KN 
of each N in the list of Ms, so we can formulate the problem 
succinctly in terms of these Ks as: 

$initialization:- load_context( constraint_utilities). 
% this will ensure that context constraint_utilities is loaded 

magic_series(N, Ks):- length(Ks,N), Ks: integer(0,_), 
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Smagic(Ks,0 ,Ks). 

Smagic([],N,_). 
Smagic([KIKs],N,KS):- Nl is N +1, 

occurrences(N,KS, K), 
Smagic(Ks,N1,KS). 

?- magic_series( 4, Ks), enumerate(Ks). 
?- [magic_series(4, [1, Z, 1, 0]), enumerate([1, Z, 1, 0])]. 
?- [magic_series(4, [Z, 0, Z, 0]), enumerate([Z, 0, Z, 0])]. 

For N=10, the initial ranges for all ten variables will be [0,10]. (Why?) 
This suggests an initial search space estimated size of 11 **10 
possibilities. Yet there is but a single solution, and it only takes 27 
backtracks to search the entire space. The statistics for the 
enumeration alone are: 

lips=565 pips=129 ops=19069 its=54 

This shows that the initial search space size is not always a good 
indicator of the difficulty of the problem, and this is one reason why 
empirical investigation is so important. 

If one sums over the Ks, the result must be N. (Why?) We can 
therefore add this as a redundant constraint : 

magic_seriesZ(N, Ks):- length(Ks,N), Ks:integer(0,_), 
SLrn( Ks, N) , 
Smogic(Ks,0 ,Ks). 

Since the added constraint is redundant, it does not change the set of 
solutions. However, the number of backtracks required has now 
dropped to 18, and the stats have become: 

lipS=438 pipS=93 opS=5547 its=36 

and the time is reduced to about a third of the original. 

Similarly, we can reason that N also equals the sum of i*Kt . (This is 
another way of summing the K's, using their interpretation.) Adding 
this constraint as well, formulated as: 

magic_series3(N, Ks):- length(Ks,N), Ks:integer(0,_), 
SLIII( Ks, N) , 
SsumZ( Ks,0, M),{M==N}, 
Smagic(Ks,0 ,Ks). 

% summation of j*K(j), j=0,N-1 
SsumZCO ,_, 0). 
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Ssum2([KIKs],N, K*N+S):- Nl is N +1, Ssum2(Ks,Nl,S). 

gives 

lips=354 pipS=69 opS=2427 its=24 

and the number of backtracks has dropped to 12, and the time is 
now halved from the previous version. This is summarized in the 
aphorism: "the more constraints, the faster it goes." 

Mastermind 

Many people remember enjoying the puzzle game "Mastermind", 
which involves guessing a linear arrangement of 4 colored pegs, with 
colors chosen from the set {red,green,blue, yellow, brown,orange}. 
Guesses are based on information gained from the scoring of the 
previous guesses. The score consists of two numbers: the first 
("bulls') indicating the number of pegs which have the right color in 
the right position, and the second number("cows') indicating whether 
the colors are right regardless of position. As a representation of the 
problem data we define: 

% defines the space of possible answers 
newguess(G):-G=[A,B,C,D], G:integer(1,9), 

{A<>B,A<>C,A<>D,B<>C,B<>D,C<>D}. 

The scoring can be computed most easily in terms of bulls and the 
sum of cows and bulls, as : 

score(Answer,Guess, [B, C]) :-
bulls( Guess, Answer, B), 
cowsbulls( Guess, Answer, C). 

bulls( Xs, Ys, N ):- Scount_equal(Xs,Ys,C), {N = C}. 
Scount_equal( D, D, 0). 
Scount_equal( [GIGs],[AIAs], (G A) + S):-

Scount_equal(Gs,As,S). 

cowsbulls( Guess, Answer, C):- % coWs + bulls 
Scowsbulls(Guess,Answer,S), {C = S}. 

$cowsbulls([],_,0). 
Scowsbulls([XIXs],Ys,N+J):

in(X,Ys,J), 
Scowsbulls(Xs,Ys,N). 

in(X,Ys,N):- N:integer(0,1), Sin(Ys,X,M), {N = M}. 

10/24/95 9 



CLP(BNR) : Integer Constraints 

SinCO ,_, 0). 
Sin([YIYs],X, (Y==X)+S):-Sin(Ys,X,S). 

The strategy to be used is simple but effective (but not optimal): 
choose the first arrangement that reproduces all previous scores: 

mastermind:- mastermind_l(O, 0). 

mastermind_l( Gs, Ss):- make_a_guess(Gs,Ss,G),!, % take first choice 
get_score(G, S), 
not(S=[4,_])->mastermind_l( [GIGs], [SISs]). 

make_a_guess( Previous_Guesses, Previous_Scores, G ):-
newguess(G), 
matches_all( Previous_Guesses, Previous_Scores,G), 
enumerate(G). 

matches_all([],[],_). 
matches_all( [GIGs], [S ISs], New):

score( G, New, S), 
matches_all( Gs, Ss, New). 

get_score( G, S):- answer(A), score(G,A,S). 

This gives: 

?- mastermind2. 
guessing [1,2,3,4] 
guessing [2,1,5,6] 
guessing [2,3,6,7] 
guessing [3,1,7,5] 
guessing [3,5,4,6] 

In this version each guess sets up a new problem with one additional 
constraint; a better strategy would be to just add the new constraint 
to the current problem. This poses a problem: in order to generate a 
guess we need to find a (frrst) solution to the current problem; once 
we have narrowed the state to that solution, the new constraint will 
be inconsistent with it (unless the guess was correct), but 
backtracking across this failure will also remove the new constraint. 
So, it is necessary to make use of side-effects to remember the frrst 
solution (in the state space), get out of the search and back to the 
generic problem, and only then use the remembered solution as the 
next guess. In addition, the frrst guess generated by the above 
algorithm is not very helpful, and since it is arbitrary anyway, we 
will always use something using four colors, e.g. 
[red,yellow,blue,green]. This leads to somewhat different program: 

mastermind2:-
forget_all( mastermind(_)), % clear state space 
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newguess(Vars), % setup variables of problem 
Smastermind([1,2,3,4], Vars). 

Smastermind(G, Vars):
get_score( G, S), 
next_guess( G, S, Vars). 

next_guess( Guess, [4,_], _ ):-!. % finished 
next_guess( Guess, Score, Vars):-

score(Guess,Vars, Score), % add new constraint 
pick_guess( Vars, New), 
Smastermind(New, Vars). 

pi.ck_guess( Vars, _ ) :- % side-effect utility 
once(enumerate( Vars )),% find first solution 
remember( mastermind( Vars)), % make side-effect 
fai.l. % escape from search & undo narrowi.ng 

pi.ck_guess( _ , Guess) :- % recover the answer 
forget( mastermi.nd(Guess)). 

with result: 
?- mastermi.ndZ. 
guessi.ng [1,2,3,4] 
guessing [2,1,5,6] 
guessing [2,3,6,7] 
guessing [3,1,7,5] 
guessing [3,5,4,6] 

Word Algebra 

This is a follow-up on the possibilities of the length predicate 
discussed earlier. The problem is to write a meta-program that can 
take a list of equations in the word monoid (including the involutive 
operation of reversal) and solve them. For example, we would like to 
be able to solve (with & representing concatenate, - representing 
reverse, and# denoting length): 

?-word_algebra( { #U =< 3, (-u) & [a] & W & U =(-W) & U & [a] & W}). 

As mentioned earlier, the difficulty with a simple Prolog approach to 
this problem is the occurrence of infmite choicepoints created by 
indefinite lists. So the approach that we take here is to first impose 
all the constraints on the lengths of words implied by the equations, 
then enumerate the lengths (such that there is at most one infmite 
choicepoint), and then use Prolog to deal with word equations on lists 
of defmite length. 

word_algebra({Xs .. } ):-
setup_constrai.nts( Xs, SymbolTable), 
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solve_for_lengths(SymbolTable), 
interpret_word_equations(Xs). 

The first step is to modify the length predicate to make it 
deterministic by postponing choices until the length is determinate: 

% CLP length_c 
% uses freeze to maintain the relation 
% from length to 1 ist 

length_c( List, N) :- N:integer(0,_), Slengthz(List,N),!. 

Slengthz([Tail .. ],N):- domain(N,integer(0,_)),tailvar(Tail .. ),!, 
freeze(N,Slengthz(Tail, N)). 

Slengthz([] ,0). 
Slengthz([XIXs],N):- {Nl is N - 1, Nl >=0}, Slengthz(Xs,Nl). 

For example: 

?- N:integer(3,_), length_c(L,N), N=5. 
?- [5 : integer(3, _Hl69), 

length_c([_H252, _H253, _H254, _H408, _H478], 5), 
5 = 5]. 

The second step is provide a symbol table utility to manage an 
association between a variable, the list it represents, and its length: 

% lookup Var in symbol table 
lookup( [V,N,List], [TV .• ]):- tailvar(TV .. ),!,% first occurrence 

N:integer(0,_), 
length_c(List, N), % associate list and length 
TV=[[V,N,List] I_]. % add to end of table 

lookup( [V,N,L], [[U,N,L]I_]):- U@:=V,!. %found it 
lookup( X, [_IXs]):- lookup(X,Xs). % keep searching 

Next, we write a meta-predicate that extracts length conditions from 
equations: 
% 
% Extract and set up constraints 
% 
setup_constraints( 0, ST). 
setup_constraints( [EIEs],ST):-

constraint( E, ST),!, 
setup_constraints(Es,ST). 

% equal lists have equal lengths 
constraint( Exprl=Expr2, ST):

length_of( Exprl, ST, Lengthl), 
length_of( ExprZ, ST, Length2),!, 
{Lengthl==LengthZ}. % impose constraint 

constraint( Op(El,E2), ST):- arith_relation(Op), 
evaluate( El,ST, Vl), 
evaluate( E2,ST,V2),!, 
{Op(Vl, V2)}. % impose constraint 
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arith_relation( 1 == 1
). 

arith_relation( 1 >= 1
). 

arith_relation( 1 =< 1
). 

% evaluation of length expressions 
evaluate( N, _, N ):- integer(N),!. 
evaluate( # V,ST, N ):- !,length_of(V,ST,N). 
evaluate( A + B, ST, M + N):- !,evaluate(A,ST,M), evaluate(B,ST,N). 
evaluate( A - B, ST, M - N):- !,evaluate(A,ST,M), evaluate(B,ST,N). 

% length of list expression 
length_of( V , ST, N) :- var(V),!, lookup([V,N,_], ST). 
length_of( l, _, N) :- li.st(l),! ,Slength(l,N). % only definite li.sts 
length_of(-V , ST, N) :- !,length_of(V,ST,N),!. 
length_of( U&V , ST, M+N):- length_of(U,ST,M), length_of(V,ST,N). 

To eliminate all but (at most) one infmite choicepoint, we form the 
sum of the list lengths so we can enumerate it first, and bind the 
variables to their (now determinate) lists: 
% 
% 
% 
% 
% 
% 
% 

solve_for_lengths(SymbolTable), 

form the s1.111 of all word lengths 
then enumerate them, sum first 

(this avoi.ds problems when more than one of them is 
also binds variables to their lists 

1 infinite 1 ) 

solve_ for _lengths( SymbolTable):- Sum:integer(0,_), % decl. necessary 
sum_of_words(SymbolTable,Sum, Nlist), 
enumerate( [Sum]), 
enumerate( Nl ist). 

sum_of _words(O, 0, 0):-! . % cut necessary 
sum_of_words( [[I., H, l] I Xs] , Sum, [N INs]):-

{ S.l is Sum - N } , 
sum_of_words( Xs, Sl, Ns). 

Finally, we can interpret the word equations: 

% 
% Interpreter for word algebra 
% 
interpret_word_equati.ons([]). 
interpret_word_equations([XIXs]):-

interpret_equati.on(X),!, 
i.nterpret_word_equations( Xs). 

interpret_equation( Exprl=Expr2):
interpret(Exprl,L1),!, 
interpret(Expr2,l2),!, 
ll=l2. 

interpret_equati.on( Op(El,E2)):- ari.th_relati.on(Op),!. 
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interpret( L, L):- list(L),!. 
interpret( -W, R):- ! , interpret(W,L), 

reverse( L, 0, R). 
interpret(U & W, R):

interpret( U, UL), 
interpret( W, WL), 
append(UL,WL,R). 

% 
% standard list utili ties 
% 
append( [], L, L). 
append( [XIXs], L, [XIZs]):- append(Xs,L,Zs). 

reverse( [], Ls, Ls). 
reverse( [XIXs], Ls, R):- reverse(Xs,[XIls],R). 

As an example: 

?-word_algebra( { #U =< 3, (-U) & [a] & W & U =(-W) & U & [a] & W}). 
?- word_algebra({(# 0) =< 3, 

((- 0) & ([a] & CO & []))) = 
cc- 0) & co & C[aJ & 0)))}). 

?- word_algebra({(# [a]) =< 3, 
cc- [a]) & ([a] & ([a] & [a]))) = 
cc- [a]) & ([a] & ([a] & [a])))}). 

?- word_algebra({(# [a, a]) =< 3, 
((- [a, a]) & ([a] & ([a, a] & [a, a]))) = 
((- [a, a]) & ([a, a] & ([a] & [a, a])))}). 

?- word_algebra({(# [a, a, a]) =< 3, 
((- [a, a, a]) & ([a] & ([a, a, a] & [a, a, a]))) = 
((- [a, a, a]) & ([a, a, a] & ([a] & [a, a,a])))}). 

YES 

Exercise: find an interesting non-trivial application of word algebra solvable by this 
method. 

Bin Packing 

A bin packing problem is one where one is given an assortment of 
objects of different types which are to be grouped into "bins" and 
where there are restrictions on the number and type of objects that 
can be placed in a bin. Usually one wants to minimize the number of 
bins needed, but in large practical problems it may be enough to just 
provide a "good," but not necessarily optimal, solution. In another 
variant, one starts with an existing packing and an assortment of 
additional objects, with the goal of minimizing the additional 
number of bins, and possibly the restriction that the existing 
groupings should not be changed, although new items can be added 
to existing bins. Such problems are often good abstract models for 
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practical problems arising in the configuration of complex systems, 
and nicely illustrate the interaction of boolean and integer 
constraints. 

Perhaps the most important point about such problems is that one 
should avoid choosing representations which indicate which things go 
where. Such formulations are invariant under (usually very large) 
symmetry groups which permute equivalent objects among the 
equivalent placements. Not only does this irrelevant detail enlarge 
the search space, but the presence of symmetry groups will block the 
narrowing of the search space. As we shall see in this example, even 
when exact placement is avoided (by formulations based on counts of 
objects), there may yet be symmetries present which cause 
problems. The addition of extra, symmetry-breaking, constraints can 
largely alleviate these problems, but choosing a representation 
without symmetries is better when possible. 

A specification for bin restrictions might be given conveniently in a 
declarative form, as a set of simple facts, such as the following 
"recycling depot" example: 

bin_types( [red,green,blue]). 

commodities( [glass, plastic, steel, wood, copper]). 

requires( wood, plastic). 
excludes(glass,copper). 
excludes(copper,plastic). 

capacity(red, 3). 
capacity(blue,1). 
capacity(green,4). 

% total number of i terns in bin 

capacity( red, 
capacity( red, 
capacity( red, 
capacity( green, 
capacity( green, 
capacity( green, 
capacity( blue, 
capacity( blue, 

wood, 1). % at most 1 wood item in any red bin 
steel,0). 
plastic, 0). 

wood, 2). 
glass,0). 
steel,0). 

wood, 0). 
plastic, 0). 

Here requi.res(A,B) means that if any A's are present, then there 
must be at least one B present, and excludes(A,B) means that the 
presence of either item excludes the other. 
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To translate all the packing restrictions into constraints, we start by 
representing the type of a bin by integerand its contents by an 
integer vector and a size representing the total number of items. The 
other conditions are then encoded using boolean constraints to 
formulate the type depedendes and other conditionals: 

op(500, xfx, requires). 
op(500, xfx, excludes). 
op(500, xfx, implies ). 

bin( Type, Contents, Total):-
Type:integer(1,3), [Red,Green,Blue]:boolean, 
{ Red == (Type==1), Green==(Type==2), Blue==(Type==3)}, 
Contents=[Glass,Plastic,Steel,Wood,Copper],Contents:integer(0,_), 
{ Binsize is Red*3 + Blue*1 + Green*4 } , 
{ Total is Glass + Plastic + Steel + Wood + Copper } , 
{ Total>=1, Total =< Binsize } , 
Wood requires Plastic, 
Glass excludes Copper, 
Copper excludes Plastic, 
Blue implies (0= Wood + Plastic), 
Red implies ((0=Steel + Plastic) and (Wood=<l)), 
Green implies ((0=Glass + Steel) and (Wood=<2)). 

X excludes Y :- {X*Y==0}. 
X implies Y :- { X =< Y}. 
X requires Y :- { (X>=1) =< (Y>=1) } . 

This can be checked most easily by enumerating the possibilities: 

?- bin(T,C,A), enumerate([T,A,C .. ]),nl, print([T,A,C]),fail. 

[1, 1, [0, 0, 0, 0, 1]] 
[1, 1, [1, 0, 0, 0, 0]] 
[1, 2, [0, 0, 0, 0, 2]] 
[1, 2, [2, 0, 0, 0, 0]] 
[1, 3, [0, 0, 0, 0, 3]] 
[1, 3, [3, 0, 0, 0, 0]] 
[2, 1, [0, 0, 0, 0, 1]] 
[2, 1, [0, 1, 0, 0, 0]] 
[2, 2, [0, 0, 0, 0, 2]] 
[2, 2, [0, 1, 0, 1, 0]] 
[2, 2, [0, 2, 0, 0, 0]] 
[2, 3, [0, 0, 0, 0, 3]] 
[2, 3, [0, 1, 0, 2, 0]] 
[2, 3, [0, 2, 0, 1, 0]] 
[2, 3, [0, 3, 0, 0, 0]] 
[2, 4, [0, 0, 0, 0, 4]] 
[2, 4, [0, 2, 0, 2, 0]] 
[2, 4, [0, 3, 0, 1, 0]] 
[2, 4, [0, 4, 0, 0, 0]] 
[3, 1, [0, 0, 0, 0, 1]] 
[3, 1, [0, 0, 1, 0, 0]] 
[3, 1, [1, 0, 0, 0, 0]] 
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Exercise: Work out the source (in the original specification) and the effect of each 
constraint in this predicate. Verify the possible bins against the specification. 

Exerdse: Write a program to translate any specification of the above general form into a 
constraint generating clause of the same form as that given here. 

For small problems (requiring relatively few bins) a complete 
solution (independent of the packing rules) that adds bins one at a 
time is feasible. (The algorithms below are given for the specific 
problem above, for ease of readability, but it is easy to see how to 
generalize them to any such problem; the specifics of the problem 
can be isolated entirely to the bin predicate.) 

Spack( 0, [0,0,0,0,0], 0). 
Spack( Total, Amounts, [[Type,Contents,Size] I Bins]):- % nl, 
print([Total,Amounts]), 

bin( Type,Contents,Size), 
{T = Total - Size, T>=0}, 
subtract( Amounts, Contents, Residual), 
Spack( T, Residual, Bins). 

subtract( 0, [], []). 
subtract( [XIXs], [YIYs], [ZIZs]):- {Z is X - Y,Z>=0}, 

subtroct(Xs,Ys,Zs). 

pock( [Glass,Plastic,Steel,Wood,Copper] Bins):-
Total is Glass + Plastic + Steel + Wood + Copper, 
Spack( Total, [Glass, Plastic,Steel ,Wood, Copper], Bins), 
Senum_bins( Bins),!. 

Senum_bins([]). 
Senum_bins([[T,C,S]IBs]):- enumerate([T,S,C .. ]), 

Senum_bins(Bs). 

?- pack([3,4,1,4,2],_). 

YES 

?- pack([3, 4, 1, 4, 2], 
[[1, [0, 0, 0, 0, 2]' 2]' 
[1' [3 ' 0 ' 0' 0' 0] ' 3] ' 
[2, [0' 2' 0' 2' 0] ' 4] ' 
[2, [0, 2, 0, 2, 0], 4], 
[3, [0, 0, 1, 0, 0]' 1]]). 

stats(144675, 19974, 206185, 4382, 33500) 

Exercise: How imponant is it to this implementation to have a variable for the total 
number of items in a bin? 

There is symmetry group here of order N!, where N is the number of 
bins in the solution, since they could have been listed in any order. 
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To· remove some of this symmetry, one can require that the list be 
sorted, say by number of items in the bin and type. Because 
enumeration begins at the low end, it is best to make this an 
ascending sort. 

order([_]):-!. 
order([X,YIXs]):- Sorder(X,Y), order([YIXs]). 

$order( [Tl,_,S1], [TZ,_,SZ]):-
{ 1= (Tl<TZ) or ((Tl==TZ) and (Sl=<SZ))}. 

ordpack( [Glass,Plasti.c,Steel,Wood,Copper] , Bi.ns):-
Total i.s Glass + Plasti.c + Steel + Wood + Copper, 

Spack( Total, [Glass,Plasti.c,Steel,Wood,Copper], Bi.ns), 
order(Bi.ns), 
Senum_bi.ns( Bi.ns),! . 

?- [stats, 
ordpack([3, 4, 1, 4, Z], 

[[1, [0, 0, 0, 0, 2], 2], 
[1, [3 , 0, 0 , 0 , 0] , 3] , 
[2, [0, 2, 0, 2, 0] , 4] , 
[Z, [0, 2, 0, 2, 0], 4] , 
[3, [0, 0, 1, 0, 0], 1]]), 

stats(81096, 9739, 84969, Z183, 14133)]. 

Exerdse: The order in which the enumeration was being done agrees with that imposed, so 
the first solution found is the same. Then why is this method so much faster? 

For large numbers of commodities and small bins, where the 
solutions will require many bins, this approach is still very slow. A 
better strategy in this case is to generate all the possible 
configurations of individual bins: 

?-fi.ndset( [S,T,C], [bi.n(T,C,S),enumerate([T,S,C .. ])], Bs). 

Note that by using fi.ndset (instead of fi.ndall) we have imposed a 
defmite sort order (as described above) on the solution list. The 
(unique) representation is then given by the multiplicities of each 
configuration in the solution, a vector of non-negative integers. Note 
that this removes the degeneracy symmetry (multiple bins with the 
same fJ.ll pattern) not handled by the order technique presented 
above. The constraint equations then become the linear equations 
saying that the sums of quantities over all bins are equal the total 
amount to be distributed, for each commodity. As a fmal step, we 
remove any bins with a multiplicity of zero: 

fastpack( [Glass,Plastic,Steel,Wood,Copper] NBi.ns):-
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Total is Glass + Plastic + Steel + Wood + Copper, 
findset( [S,T,C], [bin(T,C,S),enumerate([T,S,C .. ])], Bs), 
summation( Bs, Ns, NB, Total,[Glass,Plastic,Steel,Wood,Copper] 
enumerate( Ns), 
compress( NB,NBins),!. 

), 

surnmation(O, 0, 0, 0, [0,0,0,0,0]). 
summation([[Sz,T,Cn]IBs],[NINs],[(N*[Sz,T,Cn])IXs], Tot,[G,P,S,W,C] ):

N:integer(0,_), 
Cn=[Glass,Plastic,Steel,Wood,Copper], 
{ Tl-Tot - N*Sz, 

G1= G - N*Glass, 
P1= P - N*Plastic, 
S1= S - N*Steel, 
W1= W - N*Wood, 
C1= C - N*Copper}, 

summation( Bs ,Ns ,Xs, Tl, [G1 ,P1,S1 ,W1, C1]). 

compress( 0, 0). 
compress( [(0*X)IXs], Ys):- !, compress(Xs,Ys). 
compress( [(N*[S,T,C])IXs], [(N*[T,S,C])IYs]):-compress(Xs,Ys)./* 

The _ standard enumeration strategy applied to the vector of 
multiplicities seems to give good (and consistent) performance, even 
for large quantities: 

?- stats,fastpack([3, 4, 1, 4, 2],_), stats(_,_,_,_,_). 
?- [stats, 

YES 

fastpack([3, 4, 1, 4, 2], 
[1 • [3, 1, [0, 0, 1, 0, 0]]. 
1. [2, 2, [0, 0, 0, 0, 2]], 
1 • [1, 3, [3, 0. 0. 0. 0]] • 
2 • [2, 4, [0, 2, 0, 2, 0]]]), 

stats(36288, 2150, 1134, 163, 1984)]. 

?- stats,fastpack([32, 44, 11, 44, 230],_), stats(_,_,_,_,_). 
?- [stats, 

YES 

fastpack([32, 44, 11, 44, 230], 
[11 • [3, 1, [0, 0, 1, 0, 0]]. 
1. [1, 2, [2, 0, 0, 0, 0]], 
10 • [1, 3, [3, 0, 0, 0, 0]]' 
2 • [2 ' 3 ' [0' 0, 0' 0 ' 3]] ' 
56 • [2, 4, [0, 0, 0, 0, 4]]' 
22 • [2, 4, [0, 2, 0, 2, 0]]]), 

stats(36374, 2168, 1478, 167, 2033)]. 

?- stats, fastpack([l32, 414, 1001, 414, .230] ,_), stats(_,_,_,_,_). 
?- [stats, 

fastpack([132, 414, 1001, 414, 230], 

10/24/95 

[1001 • [3, 1, [0, 0, 1, 0, 0]]' 
44 • [1, 3, [3, 0, 0, 0, 0]]' 
2 • [2' 3' [0, 0' 0' 0' 3]] ' 
56 • [2, 4, [0, 0, 0, 0, 4]]. 
207 • [2, 4, [0, 2, 0, 2, 0]]]), 

stats(36375, 2168, 1852, 167, 2083)] . 
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YES 

It is certainly not obvious that the frrst solution found with this is 
one with the minimal number of bins, although it does not seem 
likely that it would be much worse than minimal, and there is a 
plausible argument that it is, in fact, optimal. (In any case, this 
problem could be remedied by adding the number of bins as an 
explicit variable, to be enumerated first. ) 

Exercise: Prove that the last version in fact gives the optimal number of bins, or fmd a 
counter example. 

Exercise: Implement and test the following heuristic algorithm: work throught the bins 
in decreasing order of binsize, for each take as many as you can use, decrement the 
commodity totals, and recurse. Does this give the smallest number of bins? Why? 
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Continuous Primitives 

Continuous Variables and Completeness 

Most of the problems we have been concerned with up to this point 
have consisted essentially of discrete variables, either boolean or 
integer, for which the strategy of enumeration can be used. In the 
case of bounded discrete (and hence finite) domains and exact 
arithmetic, enumeration in principle provides complete solutions. 
although with many variables or large domains the computation is 
still impractical. In these circumstances it has not really been 
necessary to think very hard about how the underlying machinery of 
CLP(BNR) works, and the underlying narrowing semantics serves 
merely to prune the search space. 

When we begin to deal with continuous variables. considered to be in 
the domain of the mathematical real numbers. it no longer makes 
sense to think in terms of enumeration, since there are uncountably 
infinite numbers of "real numbers" in every non-point interval. and 
we can not even refer to most of them! Furthermore, the arithmetic 
operations in general are no longer exact, but involve floating point 
approximation (known traditionally as rounding errors. ) In general. 
then we will no longer have completeness, in the sense that we wilf 
usually not be able to give exact solutions to problems, nor even lYe. 
able to tell automatically whether a solution exists or not. We still 
have correctness, however, and a properly formulated question 
which fails still indicates that no solution is possible. 

As a result of this, we find that there is a now a sharp distinction 
(which was blurred in discrete domains) in the ways in which we can 
use the CLP(BNR). In some problems, corresponding to universally 
quantified variables, we seek rigorous assurance of some properties. 
and we therefore formulate the problem negatively (using not()) so 
that failure indicates a successful proof of the statement. In other. 
more typical, cases, corresponding ·to existentially quantified 
variables, we seek a specific solution and use a direct formulation. In 
this case, the answer must usually be taken as conditional: if the 
problem has a solution (in the initial domains of the variables), then 
it has a solution in the final intervals. Even when variables are fully 
instantiated, a positive answer is generally conditional, since it 
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merely indicates that there is no contradiction detected at the level 
of precision used in the (approximate) arithmetic operations. 

One aspect of this incompleteness is that CLP(BNR) constraints use 
only closed intervals and closed relations: for example {X==Yl is 
supported, but {X<>Y} is not, for X andY continuous variables. Note 
that since neither X nor Yare likely to ever become instantiated to 
an exact value, {X<> Y}, if allowed, would likely never be able to 'fire', 
and even if say X does become instantiated to an exact point, and 
{X<>Y} fires, it would be unable to narrow Y at all, given the 
restriction to closed intervals. (It is possible to construct systems 
which use open,closed. and mixed intervals. and to propagate 
open/closed conditions. but these do not produce any effective 
narrowing.) 

With discrete variables. when setting a variable to a constant or 
constant expression, it made little difference whether one used 
unification (V=C), the primitive is (V is CE), or constraint 
expressions like {V=C} or {V is CE}. With real variables, however. 
there is an important distinction: the ("constraint unaware") Prolog 
expression V=C will bind V to the floating point constant C regarded 
as an exact (binary} constant. Similarly. V is CE will bind V to the 
result of evaluating the expression CE using ordinary floating point 
arithmetic, and may thereby introduce rounding errors. For 
example. given X:real (and assuming 5 decimal digits of internal 
precision for expository reasons) 
X= 0.33333 ~ X= 0.3333300000000000000 ... 
X is 3 fails 
X i. s 3. 0 => X = 3 . 00000000000000000000 .. . 
X is 2/3 => X = 0. 66667000000000000000 .. . 
On the other hand, the constraint expressions {V=C} or {V is CE} 
will treat floating point constants (other than 0.0) as approximate 
(and fuzz them slightly), and perform all evaluations using interval 
arithmetic, and also automatically coerce the type of results if 
necessary: 
{X == 0.33333333} ~ X in [0.33333000 ... , 0.33334000 ••. ] 
{X== 3} => X= 3.00000 ••• 
{X= 3.0} * X i.n [ 2.99999000 ... ,3.00001000 ... ] 
{X = 2/3} * X in [ 0.66666000 ... ,0.66667000 ... ] 
and similarly for i.s. As a result, the consistent use of {} when 
dealing with real variables will avoid many subtle problems . 

• 
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From our previous work we know that narrowing alone is not usually 
strong enough to solve most problems. Only on small, simple 
problems with at most one solution, is narrowing alone sometimes 
adequate. (Narrowing is deterministic, so produces at most one 
answer: if a problem has more than one classical solution, this 
answer must big enough to contain them all.) So something 
nondeterministic like enumeration is required, if only to "split" (or 
separate) solutions. At present it seems unlikely that any single 
technique will be able to handle all problems efficiently. One such 
heuristic technique provided in CLP(BNR), called solve, is useful for 
many problems, particularly those with multiple point solutions and 
not too many variables. Finding more general techniques, able to 
deal with more complex problems, is currently a research topic, and 
several promising lines of investigation are being pursued. 

In our exploration of discrete problems we encountered two general 
techniques which sometimes had dramatic effects on performance: 
one was the judicious use of redundant constraints, and the other 
was the elimination of symmetries in the problem formulation. Both 
of these operate by effectively making narrowing stronger, and thus 
increasing the pruning. With continuous domains. these techniques 
become much more important, and will represent an important 
recurring topic during the rest of the course. 

Intervals and Interval Arithmetic 

It is useful at this point to go into a little detail about intervals and 
the basic concepts of classical interval arithmetic. Interval 
arithmetic, initiated by Moore in the 1960's. is both an elementary 
algebraic theory of arithmetic operations on intervals and a closely 
related computational technique for estimating worse-case rounding 
errors in floating point arithmetic. Interval analysis is a rigorous 
mathematical discipline, based on interval arithmetic. which lies 
somewhere between classical real analysis and classical numerical 
analysis. 

The basic concepts of interval arithmetic are important basic 
ingredients in CLP(BNR). However, the theoretical structure 
underlying CLP(BNR) is quite different from that studied in classical 
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interval arithmetic. Since these differences arise from some fairly 
subtle points, it is necessary to discuss both to a sufficient degree. 

A closed interval [xl,xu] is the subset of the reals { x EDt I xl=<X & X=< 
xu}. (Here, xl and xu are in general themselves arbitrary real 
numbers, for theoretical purposes, but will later be restricted to 
floating point values for computational purposes. ) Obviously, an 
interval is empty, unless xl=<xu. Generally we will use uppercase 
letters to denote intervals and lowercase letters for reals. The space 
of real intervals ~m then can be pictured as consisting of the non
empty intervals in the upper closed half-plane. together with the 
empty interval (the lower open half-plane) as shown: 

Space of Intervals 

The line xl=xu, the point intervals, or "points" for short. is then 
isomorphic to the reals (and will be henceforth identified with the 
reals), and is the boundary of the space. Everything below this line 
corresponds to the empty interval. 

The largest interval, the "top" or universal interval. which contains 
all other intervals, is [-co;+co ]. (This can be done by adjoining the ideal 
points -co, +co and adjusting the topology accordingly, the so-called 
two-point compactification of the real line.) 

Intervals (in classical interval arithmetic) are considered equal if and 
only if they have the exact same bounds, i.e. they are identical. 
Intervals are partially ordered by set inclusion (::>). and the 
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intersection (n) of intervals is again an interval. With closed intervals 
(but not with open intervals) this is also true for arbitrary (e.g. 
infinite, even non-countably infinite) intersections. The union of tvvo 
intervals (regarded as sets) is not generally an interval, but there is a 
join interval ( v), which is defined as the smallest interval containing 
both, always exists when there is a universal interval. This makes 
the set of intervals into a (complete, but not distributed) lattice. The 
intersection (sometimes called meet) and join are illustrated below: 

Meet and join 

The basic relations of equality and inclusion between intervals, it 
should be noted, are inherited from sets, and have nothing to do with 
the reals as such. With this relational structure in place, classical 
interval arithmetic proceeds to extend the basic functions of the 
reals (as a field) to the intervals, which we will now explore. 

The half line xl=-xu (corresponding to intervals of the form [-b,b], 
b>=O) will be called the symmetric intervals. The only symmetric 
point interval is 0. The symmetry operation here, which we will call 
"flip", is defined by 

o( [xl,xu]) := [-xu,-xl], 

so, o(o(X))=X. Obviously, we have the following inclusion theorem:: a 
point x is in interval X iff -x is in o(X), so o corresponds to unary 
negation. This operation does not involve any rounding when done 
with floating point numbers, so we say it is exact. 

• 
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Sometimes it is convenient to describe intervals in terms of their 
midpoint and width (or delta), according to the change of 
coordinates: 

midpoint:= (L + U)/2, 
delta := (U-D). 

In this representation points are those with delta=O, and symmetric 
intervals are those with midpoint =0. 

Addition of intervals is like vector addition in the plane: 
[xl,xu] + [yl,yu] := [xl + yl, xu+ yu]. 

Interval sum is hence commutative and also associative when doen 
in infinite precision. Note that the midpoint( delta) of the sum is the 
sum of the midpoints(deltas). Because addition is a monotone 
increasing function in both variables. it follows that we get the 
inclusion property: 

x EX & y E Y => (x+y) E (X+ Y}. 
The interval defined as the sum is the smallest interval for which 
this holds. 

Since subtraction in the reals can be defined as 
X- y :=X+ ( -y) , 

we can lift this definition and define subtraction on intervals as: 
X - Y := X + cr(Y), 

and it will then follow that: 
X EX & v E Y => (x-v} E (X- Yi. 

~ ~ . 

Note that the midpoint of the difference is the difference of the 
midpoints, but the delta of the difference is the sum of the deltas. In 
the reals, we always have O=x-x, but in intervals S= X- X is not zero 
unless X is a point. (Such an S is always symmetric, however. Note 
that the sums and differences of symmetric intervals are also 
symmetric. ) As a consequence of this, subtraction is for intervals 
not the inverse of addition: i.e. it is not the case that X + Y - Y = X. 

An interval X is non-negative iff xl>=O, and positive if xl>O. Since 
multiplication x*y is monotonically increasing for non-negative x· and 
y, we can define the product of two non-negative intervals as 

[xl,xu] *[yl,yu]=[xl*yl~xu*yu], foryl>=0.xl>=0 
and show that this is the smallest interval such that 

x EX & y E Y => (x*y) E (X *Y). 
For non-positive X and non-negative Y, cr(X) is non-negative, and 
since -(x*y) = ( -x)*y 
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we can define X*Y = o( o(X)*Y) for non-positive X, non-negative Y, 
from which inclusion results follow, and similarly for the other cases. 
In fact, all cases of multiplication can be subsumed with a single 
definition: 

[xl,xu] *[yl,yu]=[ml,mu 
where ml=min( xl*yl, xl*yu, xu*yl, xu*yu) 
and mu=max( xl*yl, xl*yu, xu*yl, xu*yu). 
Multiplication is commutative and associative (in infinite precision), 
but the distributive law is weakened to the so-called subdistributive 
Jav.': 

X*(Y+Z) :> X*Y + X*Z 

Any interval X times a symmetric interval Y yields a symmetric 
interval, so that symmetric intervals are analogous to ideals in the 
"pseudo-ring" structure ( +,* ,0,1 ). (It is not really a ring, of course. 
since subtraction does not undo addition and the distributive law 
fails.) 

For a positive (resp. negative) interval X. p(X):= [1/xu,l/xl] is an 
intervaL and x E X<=> 1/x E p(X). Together with multiplication this 
allows us to define interval division as 

X/Y := X*p(Y). provided - (0 E Y). 
with the usual inclusion results. But. as with subtraction, X/X does 
not equal 1, except when X is a point. 

The ideal intervals which we have been discussing are useful 
theoretically, but for computations one is interested only in intervals 
with floating point bounds (of some fixed precision, i..e. ftxed-size 
representations). These are sometimes called F-intervals, where F is 
the set of permitted bounds. Because of the limited precision, the 
result of these interval operations is in general not an F-interval 
when the inputs are F-intervals. This is remedied by using a F
closure operation defined as: 

<t>( X ) =smallest F-intervallarger than X. 
This is also known as "outward rounding," since the upper bound is 
rounded toward + oo and the lower bourid toward -oo. By rounding 
the result outwards after each interval operation we can preserve 
the inclusion properties. But the associative laws of addition and 
multiplication (as well as some other properties) are lost, since 
floating point arithmetic is not associative due to the rounding. 
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These definitions and their assorted formal properties constitute 
interval arithmetic. As a formal structure it differs a great deal from 
the formal structure of the reals: most of the axioms of the reals no 
longer hold for intervals. Consequently, most algebraic derivations 
which are formally justified in the reals will not be justified for 
intervals, so formal reasoning with these classical intervals is 
difficult. 

However, given a real function f(x1 ... ,x0 ) expressed in a definite finite 
syntactic form in terms of(+,-,*,/) and intervals X1 .. .X0 such that ·the 
corresponding interval operations are defined (specifically, no 
divisions by intervals containing 0), then we can form the natural 
interval extension F(X1, .... ,Xn) by syntactically replacing Xj by Xj and 
real operations by the corresponding interval operations. Since the 
inclusion property holds at each operator, an induction over the 
syntax tree yields the result that 

'fXl E X1, ... Vxn E Xn f(Xt, ..• ,Xn) E f(Xt, .•• ,Xn). 
This is called the fundamental theorem of interval arithmetic. 

In general syntactic forms which are mathematically equivalent over 
the reals generate different extensions and produce different 
resulting intervals. But, if the natural interval extensions exist. each 
satisfies the inclusion theorem ( and so therefore does their meet. ; 
To derive interval inclusions for a function, then, one can proceed by 
manipulating the function over the reals in the ordinary way until it 
is in any suitable syntactic form, and then take the natural inclusion 
of that form to get a valid inclusion. (Much of the theory of classical 
interval arithmetic was concerned with choosing good syntactic 
forms which make the inclusion as tight as possible, and the formal 
properties of intervals are useful for this.) 

An implementation of interval arithmetic would minimally consist of 
an abstract data type for intervals together with the appropriate 
constructors and the basic relations and operations described above. 
Such an implementation, regarded as an abstract language, would 
necessarily have the (somewhat peculiar) algebraic/axiomatic 
structure described above, a structure very different from that of 
real arithmetic . 

• 
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Relational Interval Arithmetic 

At the CLP(BNR) linguistic level the key entities are the typed 
variable and the constraint. The current domain of a typed variable 
is always an interval in the sense of interval arithmetic; as the 
domain is narrowed during a forward computation one sees a nested 
sequence of such intervals. The conceptual variable in CLP(BNR) thus 
corresponds to many such nested sequences of intervals (under 
different forward computations and backtrackings). so the· 
relationship to interval arihtmetic is not such a simple one. -· . .. . . ...__... 

Similarly, a single constraint at the CLP(BNR) level corresponds to 
many different functions in the interval arithmetic world - one for 
every way in which the relation could be uniquely 'solved' for any 
variable in terms of all the rest, and even this may not exhaust its 
potential. Thus even relatively simple CLP(BNR) formulations can 
explode into a bewildering complexity when translated into the 
classical language of interval arithmetic. This point has usually not 
been appreciated. 

In order to get closer to the level where comparisons with interval 
arithmetic become meaningful, one needs to drop below the 
CLP( BNR) linguistic level to the underlying technology. Relational 
interval arithmetic (RIA) is the name used for this technology-- data 
structures. algorithms. and relevant theory--which supports 
CLP(BNR) and similar languages. 

In the early days (Cleary.l986) RIA was thought of as an adaptation 
of interval arithmetic to the needs of the Prolog environment. 
However. as the technology evolved and the structure of the theory 
became clearer, it has become evident that although they use the 
same basic concepts of intervals, outward rounding, and inclusion 
properties, and share many of the same goals, they are structurally 
very different and have very different properties and uses. 

The fundamental construct in relational interval arithmetic is the 
approximation of relations on the reals by narrowing operators on 
lattices created from intervals. The crucial difference with interval 
arithmetic is the choice of relations (rather than functions), and the 
ubiquitous use of narrowing operators. (Narrowing operators do 
appear in interval analysis. but only occur in special circumstances.) 
The fact that RIA maps constraints (and sets of constraints) to 
operators is an important one, and often misunderstood because it 

February 6, 1995 9 



CLP(BNR)/Continuous Primitives 

seems so abstract. To overcome this, we will spend some time 
looking at specific primitive relations and their operators, and so 
develop a better intuition for what it really means . . 

We have already noted that closed intervals on the extended line 
form a complete lattice - a partially ordered set with top and bottom 
elements and meet and join always defined. This lattice is also 
atomic, where the atoms (smallest non-empty elements) are the 
point intervals. It is sometimes convenient to take the lattice as· an 
abstract lattice L of states, with many possible realizations: e.g., all 
sets, all closed sets, all intervals, all closed intervals. all closed F
intervals .... , and postpone specialization until needed. 

In order to treat a relation of arity n, which is a subset of 9tn. it is 
useful to construct a lattice L of states in mn by defining a state in 
iltn to be the n-fold Cartesian product of states in m. A non-empty 
state X can be conveniently represented as a vector of !-dimensional 
states (sometimes called an interval vector): 

X= [XI···· ,Xn]. 
with all X; non-empty. The empty state will be denoted by 0 . 
Partial order between states is defined by set inclusion, and meet by 
set intersection, and join by the lattice join (which, as above, is not in 
general set union). Equivalently, these operations can be defined 
termwise in the interval vector representation, with the proviso that 
if any component of the termwise meet is empty, the result is empty: 

X :::l Y <=>XI :::l Y I & ... Xn :::l Y n 
X v Y <=> [XI v Y I, ,Xn v Y nl 
X n Y <=>[XI n Y I, ,Xn n Yn] if all are non-empty 

and 0 otherwise. 

The lattice of states defines a closure relation on sets (as in the !
dimensional case) according to: 

cp (X) = { smallest state Y such that Y:::lX!, 
which can also be expressed termwise as: 

cp ([XI,··· .Xn]) = [ct>(XI), ••. ,cp(Xn)] · 
These closure relations have the following properties: 

expanding: cj> (X) :::lX 
monotone: X :::l Y => cp (X) :) cj> (Y) 
idem patent: cp ( cj> (X) )=cp (X). 
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When the lattice is the full powerset, the closure operation is the 
identity; when it is the lattice of closed sets it is the usual topological 
closure on the reals. 

(Note: The existence of the closure operation depends only on the 
poset of states having a top and being closed under arbitrary meets, 
since it can then be defined as cp (X) = /\ {YI Y :)X} with the set of Y's 
being non-empty. But these conditions also guarantee the existence 
of the join and make the states a lattice.) 

Given an arbitrary n-ary relation R, we can then define the operator 
R:L->L by: 

R ( X ) =cp ( X n R). 
This is illustrated for n=2 in the figure below: 

X 
C anemic al N arrov.1ng Operator 

This operator R is correct ( or "conservative") with respect to the 
relation R since R( X ) ::) X n R. It also has the following abstract 
properties: 

contracting: X~ R(X) 
monotone: X~ Y => R(X) ::) R(Y) 
idempotent: R(R(X))=R(X). 

We will henceforth call any lattice operator with these properties a 
narrowing operator. (Note that this generalizes the notion of 
narrowing operator used earlier for Prolog by weakening persistence 
to idempotence, which is a obvious consequence of persistence. The 
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Prolog operators will henceforth be called persistent narrowing 
operators. later on we will show how the persistence gets put back
with a vengeance!) 

There may be many narrowing operators correct for some relation R, 
but the definition makes it clear that this R is the smallest correct 
narrowing operator for R, and is therefore unique. We call it the 
canonical narrowing operator of R .. It provides the basic recipe for 
implementing optimal interval approximations to the various 
primitive relations supported by CLP(BNR). Usually several 
refinement steps are required to transform this abstract recipe into a 
sufficiently low-level and efficient executable specification. and in 
many instances there is an explosion of cases (possibly over 200 for 
a single primitive!) to be considered, so that the resulting code is 
extremely complex and it is not easy to discern its properties. Hence. 
it is important that all the fundamental properties can be so easily 
established from the abstract specification. 

We have already dealt with operators on a lattice before. at the very 
beginning of this course. and you may recall the basic notation: 

Recall that operators are partially ordered by 
P ~ Q <=> P (X) ~ Q!X) for all states X in L. 

Equality of operators is similarly defined by 
P = Q <=> P (X) = Q!X) for all states X in L, 

so we have P = Q <=>P ~ Q & Q ~ P. 

The meet and join of operators with respect to this partial order exist 
and are given by: 

P n Q <=> P (X) n Q!X) for all states X in L. 
P v Q <=> P (X) v Q!X) for all states X in L. 

The smallest operator ("bottom") in the partial order. called 0. is 
obviously the one which maps every state to 0: 

O(X)= 0 for all states X in L. . 
(This operator would be one which just fails, whatever you give it.) 
The identity operator, which does nothing at all, is denoted by 1. and 
is similarly defined by: 

1 (X)= X for all states X in L. 

Finally, the product of operators is defined by composition: 
PQ (X) := P (Q{X)) for all states X in L. 
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We will be using this notation below, but not get into the algebra 
until later. 

Exact Primitives 

There are a number of important primitive relations which do not 
perform any arithmetic operations, so rounding issues do not arise .. 
For these exact relations, it makes no difference whether we use F
intervals or intervals as the state lattice. 

Integral/ 1 

The "integral" primitive (of arity 1) does not appear explicitly in 
CLP(BNR), but is used implicitly to construct the integer and boolean 
types. Its formal definition as a unary relation is 

integral(x) <=>xis an integer. 

The corresponding narrowing operator (by inspection) is 

integral( [xl,xu] )=[xi' ,xu'] 
where xl' = ceiling(xl). xu'=floor(xu>. 

Here [xl,xu] denotes the state (a single interval) before the operation. 
and [xl',xu'] the state after the operation. This primitive seems very 
simple--too simple to be useful. But all of the applications of 
CLP(BNR) to integer and boolean problems. and hence the 
subsumption of specialized finite domain and boolean solvers. follow 
from it. 

Equality/2: X==Y 

The equality relation on the reals is represented by the diagonal set 
D in mxm. Given initial state [X,Y] as shown in fig., we form the 
intersection as shown and take the interval closure to get the final 
state [X' ,Y']. 
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y 

X 

The operational effect for an arbitrary placement of the initial state 
[X.Y} can be expressed succintly as: 

U <- X n Y, 
X'<- U, Y'<-U. 

(Compare this with the narrowing semantics of unification.) Thus the 
output intervals X' and Y' are equal in the (static) sense of interval 
arithmetic. But the'==' relation in CLP(BNR) refers to the process of 
making them equal (and, as we shall later see, maintaining them 
equal ), and not the mere fact of equality itself. This will have 
important consequences later. 

When expressed in even lower level language, in terms of bounds, 
this becomes: 

equality( [[xl,xu],[yl,yl]]) --> [[xl 1,XU 1],[yl 1,yu 1]]:
xl1<- y1 1<- max(xl,yl); 
xh 1<- yh 1<- min(xu,yu); 
i.f xl'>Xh 1 then fail. 

and even lower: 

equality( [[xl,xu],[yl,yl]]) --> [[xl 1,XU 1],[yl',yu']]:-
xl'<-xl'; xh<-xh; y1 1<-yl;yh'<-yh; %default 
if xl >yl then yl 1<- xl 
else if yl>xl then xl 1 <- yl 
else , 
if xh<yu then yu 1 <- xu 
else if yu<xu then xu'<- yu 
else ; 
i.f xl '>XU' then fail. 

This can be summarized in a propagation diagram: 
xu<-> yu 
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xi <-> yl 
which indicates all the ways that bounds can be propagated in the 
primitive. Note here that only upper bounds can affect upper 
bounds (either way) and similarly for lower bounds. 

This, like integral, appears to be trivial, as indeed it is, when 
regarded as a mere piece of code.. But also like integral, it has the 
most profound consequences in the CLP context. (In fact, much of 
the rest of the course will be spent exploring these consequences.) 

To begin with, we will establish three simple properties of this 
definition. In order to state them succintly we need to use the 
operator notation summarized earlier. Here we will use f E } to mean 
the canonical operator for E. where E is a primitive relation and 
possibly a list of such relations. 

Property 1. { X == X } = 1. 
This says that if we use the same interval for both input arguments to 
equality, it will do no narro\\ing, and hence is equal (as an operator) to the 
identity operation. 

Property 2. { X == Y } = f Y == X } . 
This expresses the fact that equality is sy·mmetric under intercahnge of it~ 
input arguments. 

Property 3. {X== Z l :J{ X ==Y, Y == Z }. 
The left side doesn't use Y at all, so doesn't narrow it. \Ve have not yet 
explained what the comma means (that comes later), but suppose {P.Ql to mean 
that we do P, then Q. then P again and so on until nothing more is changing. 
Then the right side winds up with interval X and interval Z the same, 
regardless of the starting values, i.e. just as does the left side. But the right side 
has narrowed Y also (to the same interval), hence the :J. 

These properties should look sort of familar by now: they are 
essentially the reflexive, symmetric, and transitive laws of equality 
as they are expressed in narrowing semantics. Note that (in this 
particular case) the :J corresponds to backwards implication <- , = to 
the biconditional, and comma to 'and'. 

Inequality/2: X =< Y 

The relation '=<' is represented by the half-plane shown in fig. 
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-7 
X 

X:<Y 

Carrying out the steps of the operator construction yields the 
operational specification: 

less_than( [[xl,xu],[yl,yl]]) --> [[xl',xu'],[yl',yu']]:-
xl'<-xl'; xh<-xh; yl'<-yl;yh'<-yh; %default 
H xl >yl then yl'<- xl 
else ; 
i. f XU>YU then XU'<- yu 
else ; 
i.f xl'>xu' or yl'>yu' then fai.l. 

and the propagation diagram: 
xu<- yu 
xl -> yl 

stating that upper bounds propagate down (towards the lower value) 
and lo\ver bounds only propagate up. 

This operator has the following (not unexpected) properties: 
I X=< X}= 1 
{X=< Y. Y=< X} = {X== Y} 
{X=< Z} ~I X=< Y, Y=< Z} 

The propagation diagram above suggests that we can operationally 
define primitives with similar diagrams, such as: 

xu<- yu 
xl <- yl 
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This primitive would be written as X<=Y. Since it's semantics 
propagate changes in Y to X, but not the other direction, it acts like a 
sort of"diode". Note that 

{X<= Y, Y <=X}= {X== Y}. 
If X and Yare point intervals, it is equivalent to equality, but it is 
not the canonical narrowing operator for equality. Its declarative 
meaning is that X is constrained to be a subinterval of Y, Y:::>X. If X is 
thought of as an unknown point, it can be interpreted as XEY. Th~ 

ability to enforce these second-order relations as constraints will be 
exploited in some of the more advanced algorithms discussed later. 

There is one important elementary use of diode: in many applications 
it is undesirable that input data should become narrowed by the 
computation that uses it. To avoid such narrowing it is necessary to 
use diodes to read the data into intermediate variables first, e.g. 

{V <= Data}, 
which narrows V to the same bounds as Data, but insulates Data from 
any subsequent narrowing of V. 

The other second-order primitives are XI=Y ("start together'') and 
X=IY ("end together") correspond respectively to: 

xu yu XU<->yu 
xi<-> yl xl yl 

Note that 
{XI=Y,X=IY} = {X==Y}. 

Probably the chief use of these is to enforce overlap conditions: giYen 
X constrained to be to the left of Y (ie. {X=<Y~) and initially 
overlapping Y, we can define a new overlap variable XOY by ) 
YI=XOY,XOY=IX}. This creates a situation where if X and Y ever cease 
to overlap due to narrowing, XOY becomes empty and triggers 
failure. 

Absolute value/2: Y==abs(X) 

The binary relation corresponding to the absolute value function 
looks like: 
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Y ==abs(X) 

For positive intervals X, it behaves like equality; for negative one. it 
is equivalent to negation. For X containing zero and Y positive. as 
shov.··n above. the final X interval may contain points which cannot be 
solutions because of the interval hull closure. In other such cases. as 
seen below. the canonical narrowing operator will do be better: 

Note that this is due to the difference between the canonical 
prescription: 

X' := rr1 R(X.Y) 
Y' := 't2 R(X,Y) 

and the weaker prescription 
X' := :t 1 R(T ,Y) 

Y' := :11:2 R(X,T ). 

Similar behaviour is seen in any relation with a fold, such as even 
powers and trigonometric functions. 

minimum/3: 
maximum/3: 

Z==min(X,Y) 
Z==max(X,Y) 

The minimum and maximum relations, being of arity 3, are harder to 
visualize. The most useful approach is to graph the XY rectangle and 
the level curves of the corresponding function for the Z bounds. For 
maximum the level curves are L-shaped with the point of the L on 
the diagonal, as shown below. From this we see that for disjoint 
intervals X andY, Z becomes equal to the larger of the two. 

February 6, 1995 18 



CLP(BNR)/Continuous Primitives 

, 
y t---.E,...--_ ---• ---1---.,u-,-, , 

LJ 

, , 

, , 

, , 

, , 

, , 

, , I -------- I .......... 
............... 

Z::::m.ax(X;Y) 

Minimum is similar, with the direction of the L reversed. 

With overlapping intervals. the behaviour is much more complex: 
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X 
Z=l!WC(X,Y) 

The intuitive meaning becomes clearer ·if we project the intervals 
onto the diagonal, both before and after the operation: 
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We see that the lower bound of Z becomes the larger of the two 
lower bounds, and the same with its upper bound. Further 
narrowing of Z can be propagated backwards to X and Y also: 

X..----

z 
z 
X~ 

Y--__. 

before 
after 

A high level (and somewhat redundant) pseudo-code description for 
minimum is: 

mi.ni.mum([Z,X,Y]) --> [Z',X',Y']:
less_than([Z, X])->(Z' ,X'], 
less_than([Z' ,Y])->(Z',Y'], 
Z' <- Z' n mi n(X, Y). 

where the less_than calls can be macro-expanded from the definition 
given earlier, and min(X, Y) is the interval arithmetic inclusion for min: 

mi.n([xl,xu],[yl,yu] -> [ zl,zu] 
where zl:= mi.n(xl,yl), zu:=mi.n(xu,yu). 

Here upper bounds affect upper bounds only and lower bounds 
affect lower bounds only, with a propagation diagram: 

XU<-> ZU <-> yu 
xl <-> zl <-> yl. 

The maximum relation is analogous. 

choice/3: Z ==(X ; Y) 

The choice function in ordinary arithmetic 'Z is (X;Y)' is non
deterministic, returning the two answers Z=X or Z=Y. (Note the 
mandatory parentheses!) The corresponding constraint primitive, 
like all constraint primitives, is deterministic. If Z is initially the 
universal interval and X andY are bounqed, Z becomes the join of X 
andY. Subsequent narrowing of Z does not propagate to either X or 
Y. until one or the other becomes disjoint from Z, at which point it 
reduces to equality with the remaining candidate. Thus, the 
constraint serves to (1) defer the choice, while (2) propagating as 
much as possible from X andY to Z, and (3) automatically making the 
choice as soon as no alternative is available . 

• 
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Summary of basic interval relations 

Most of the basic relations between intervals are summarized in the 
following diagram. It supposes that some general interval X is 
given~ and divides the space of intervals into distinct regions such 
that any interval Yin any one of the regions has the same qualitative 
relation to X. 

Addition/3 : Z == X + Y 

Relative to X, inten·al Y is 
a: subinterval, Y <=X 
b: superinterval, X<= Y 
c: =< & overlapping 
d: >= & overlapping 
e: =< & disjoint 
f: >= & disjoint 

The horizontal line through X 
corresponds to = I 

The vertical line through X 
corresponds to I = 

Interval Relations 

As an example of a non-exact primitive we consider addition. The 
relation z=x+y 
can be solved in turn for each variable: 

Z=X + y, X=Z-y, Y=Z-X 
in which the right hand sides are continuous functions. The 
corresponding interval extensions: 

Z':=X + Y, X':=Z- Y, Y':=Z -X 
then provide a narrowing operator which is minimal (because of the 
properties of the interval functions+,-) and therefore is the canonical 
narrowing operator. Although convenient for implementation. it is 
worthwhile examining the canonical construction as well: 
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y 

Z==X + Y 

Here the outermost Z- bounds (upper bound labeled 1 and unlabeled 
lower bound) resulted from the forvvard narrowing of Z. If the 
upper bound of Z is subsequently lowered (line labeled 2). we see 
that the narrowing does not propagate to either X or Y until a certain 
thresh hold is reached (i.e. the lower right corner of the rectangle). 
Past that point, there is narrowing, in this case of X. as shown by the 
dashed line. Eventually, when the upper left corner is passed. both X 
and Y will be narrowed. 

The threshhold effect is common in arity 3 primitives. Note. 
however, that the narrowing which goes into overcoming the 
threshhold, and which apparently disappears, is not necessarily lost. 
but may be released by a subsequent narrowing of Y, which reduces 
the threshhold. thereby generating a "rebate". The second point to 
notice, is that the backwards narrowing appears first in the larger of 
the two input intervals, X in this case. This also is a general 
qualitative phenomenon, although a precise definition of "larger" is 
difficult in the case of more complex primitives. The general 
tendency is for information to flow from the more precisely known 
intervals to the least precisely known, tending towards a state of 
more uniform uncertainty. 

We note some obvious properties of addiiton: 
{ Z==X + Y} = {Z == Y +X} 

and { Z== X+ 0} = {Z ==X}. 
(The latter depends on 0 being treated as an exact value.) 

February 6, 1995 22 



CLP(BNR)/Continuous Primitives 

What about the associative law? We can not write 
{ U==X+Y, W==Z+U}? { V== Z +X, W==V + Y} 

since clearly U and V have no comparison. But if we write the 
operators as { W== Z + (X + Y)} and { W==(Z + X) + Y}, so that the 
same variables are explicitly mentioned in both, and the comparison 
is done only on these variables, it is ~till not the case that these 
operators are equal, because floating point addition is not always 
associative. However, both operators are correct and hence contain 
all possible real solutions to the relation over the original domains. 
We can therefore write: 

{ W== Z +(X+ Y)} a { W==(Z +X) + Y} 
indicating a form of asymptotic equivalence: roughly, that both sides 
are correct approximations to the same set of ideal solutions. Note 
also that this can also be expressed as: 

{ Z + (X+ Y)==(Z +X) + Y} e 1 
with the interpretation that the operator is one that never fails, ie. is 
an effective tautology .. The reasoning is that each sum computes an 
outer estimate for the true sum, so the intervals going into the 
equality must have a non-empty intersection. 

Thus the associative law is formally obeyed in RIA. unlike the 
situation in classical interval arithmetic. Since both are using the 
same implementation of interval addition. the difference is due to 
the choice of equality: interval arithmetic used a strict and static 
notion of equality on intervals, while RIA constructs equality by the 
same process by which it constructs addition. The same 
considerations apply also to the other laws of real analysis, such as 
the distrbutive law, which holds in RIA but not in interval arithmetic 
even in infinite precision. This formal validity of the standard laws 
has many profound consequences which we will investigate later. 
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INTRODUCTION 

The interval arithmetic system of BNR Prolog was one of its most advanced (and complex) 
features. For various purposes it is useful to have a succint executable specification written 
in 'normal' (BNR) Prolog of a simplified CLP implementation .. This document describes 
such a protypel 

The specification is divided into several levels, which are treated in bottom-up fashion. 

FUNCTIONAL INTERVAL ARITHMETIC 

The principles of interval arithmetic are very old, but were first systematically explored by 
Moore in the 1960's. The basic idea is to compute inclusions of arithmetic functions of 
intervals, i.e. interval outputs which always include all the real solutions. In particular, it 
is necessary to bound the effect of rounding errors when fixed precision arithmetic is 
employed. We therefore assume that we are given two basic routines for doing arithmetic: 
SisL, and $isH. 

op(700, xfx, 'Sisl'). % rounds low (left) 

op(700, xfx, '$isH'). % rounds high (right) 

These are similar to is, but round results left (resp. right). (Note: rounding left means 
towards negative infinity, not towards 0!) Such special routines would normally have to 
be added to a Prolog system as new primitives or as externals. In addition we assume the 
primitive arithmetic comparison operators, which will be denoted by <=, => so as not to 
be confused with =< and >=, their interval-extended counterparts. These primitives can be 
implemented independently of rounding issues. Interval values (i.e. closed intervals with 
floating point representable endpoints ) are represented as 2-element lists [L, U] with L 
<= u. 

The most important basic function is that to intersect two interval values: 

intersect( (XL,XH] , (YL,YH],[IL,IH] ) :-
IH Si.sl mnn(XH,YH), 
IL $isH max(Xl,Yl), 
Il <= IH. 

For notational convenience, we will construct a little function evaluation language to 
perform the traditional functions on intervals: 
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Interval Arithmetic Specification 

op( 700, xfx, :=). 
op( 500, xfx, " ). 

% functional "assignment" 
% " denotes interval intersection 

z := X A y :- Zl := Y, intersect( X,Zl,Z). 

[L,H] := [Expl, Exp2] : % general (explicit ) case 
L $isL Expl, H $isH Exp2. 

The rest of the interval functions are defined by: 

z != [XL, XH] + [YL, YH] z == [XL + YL, XH + YH]. 
z == [XL, XH] - [YL, YH] :- z ·- [XL .- - YL, XH - YH]. 
z := min([XL,XH],[YL,YH]):- z ·- [min(XL,YL), min(XH, YH)] . ·-z != max([XL,XH],[YL,YH]):- z ·- [max(XL,YL), max(XH,YH)]. .-
z ·- [XL, XH] * [YL, YH] :- z != [ XL *YL XH*YH ] . .- , 

% (use * only with non-negative intervals) 

[SL,SH] := [XL, XH] I [YL, YH] % dividing intervals 
universal_interval( [Neg_inf,Pos_inf]), 
YH > 0 -> SL SisL XL I YH ; SL = Neg_inf, 
YL > 0 -> SH $isH XH I YL ; SH = Pos_inf. 

% (use I only with non-negative intervals) 

universal_interval( [-3.4000e+38, 3.4000e+38]). 

89032 

(Note: The universal interval is implementation specific and may depend on the details of 
the floating point algorithms/hardware. Ideally the universal interval is from negative 
infinity to positive infinity. Note that division by an interval containing 0 produces an 
answer in this system because of the existence of a universal interval. ) 

The fundamental principle of traditional interval arithmetic is simply that if each functional 
operation is implemented as above it computes an inclusion and is thus guaranteed to 
include the correct answer given that the inputs are within the specified ranges. It follows 
that any function built up from these primitive functions also computes an inclusion. 

RELATIONAL INTERVALOPERATIONS 

In the first part we have discussed functions from intervals to intervals. We now turn to 
the relations between intervals. Note that these relations are not part of traditional 
(functional) interval arithmetic, nor do they correspond to any of the relations used in that 
subject. The basic relational operations used here correspond to equality, less-than-or
equal-to, addition, multiplication, and min and max: 

ternary_relation($add). 
ternary_relation(Smul). 
ternary_relation(Smin). 
ternary_relation($max). 

binary_relation(Seq). 
binary_relation(Sle). 

The equality relation reduces to interval intersection: 
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$eq( X, Y, New, New) :- New :=X A Y. 

The first two arguments represent the inputs , the last two the outputs. (Do not confuse 
this with interval equality in the interval arithmetic literature, which would correspond to = 
here.) 

The inequality relation is only slightly more complicated: 

$le( [LX, UX], [LY, UY], NewX, NewY):- %X=< Y 
universal_interval( [Neg_inf, Pos_inf]), 
NewX := [LX,UX] A [Neg_inf ,UY], 
NewY := [LX, Pos_inf ] A [LY,UY]. 

The $min and $max relations are defined by: 

$mi.n( X,Y,[LZ,UZ], NewX,NewY,NewZ):- % Z==mi.n(X,Y) 
NewZl := [LZ,UZ] A mi.n(X,Y), 
not( NewZl A X) -> $eq(Y,NewZl,NewY,NewZ) 
I not( NewZl A Y) -> $eq(X,NewZl,NewX,NewZ) 
I [ uni.versal_i.nterval( [_, Pos_inf]), 

] . 

NewX := X A [LZ, Pos_inf], 
NewY := Y A [LZ, Pos_i.nf] 
NewZ := NewZl 

$max( X, Y, [LZ, UZ], New X, NewY, NewZ):- % Z==max(X, Y) 
NewZl := [LZ,UZ] A max(X, Y), 
not( NewZl A X) -> $eq(Y,NewZl,NewY,NewZ) 
I not( NewZl A Y) -> $eq(X,NewZl,NewX,NewZ) 
I [ uni.versal_interval( [ Neg_i.nf,_]), 

] . 

New X : = X A [Neg_ i.nf, UZ], 
NewY := Y A [Neg_i.nf,UZ], 
NewZ : = NewZl 

Addition takes three input intervals and returns three updated intervals (or else it fails): 

$add( X,Y,Z, NewX,NewY,NewZ) :- ... 

The inputs define a set (a closed parallelopiped) X x Y x Z while the relation z=x+y has 
a graph G which is also a closed set when restricted to U x U x U (where U is the 
universal interval). The procedure is then to intersect these two sets to form a new closed 
set G', and then to project this onto the coordinate axes to form the outputs X',Y',Z'. 
Note that this abstract mapping produces outputs which are the same or smaller than the 
corresponding inputs( i.e. it is contracting) , it is jointly monotone with respect to set 
inclusion ( i.e. inclusion isotone) and it is idempotent. Similar arguments apply to the 
other interval relations, so these properies apply to them as well. 

In terms of the previously defined interval functions the result of this procedure can be 
written simply as: 
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$add( X, Y, Z, NewX, NewY, NewZ):
NewZ := Z A ( X + Y), 
New X : = X A ( Z - Y) , 
NewY : = Y A ( Z - X). 

89032 

From the logic point of view, the interval query expression Z==X + Y is taken as having 
implicit existential quanitfiers (as usual). The procedure outlined above trims the intervals 
of any points (x,y ,z) which can be proved not to be solutions. Hence, if there are 
solutions in the initial ranges, then they will also be in the frnal ranges. ( Whether there are 
any solutions or not will, in general, depend ultimately on some form of the completeness 
axiom for the real numbers, and hence goes well beyond the competence of -the system, 
although knowledgeable users may make such inferences.) 

The most complex operation is multiplication, which must be broken into a number of 
cases because of the discontinuity at 0. By using symmetry, the 27 cases can be reduced 
to just 3 essentially different ones. 

$mul( X, Y, Z, X, Y, NewZ) % either X or Y exactly 0 
( zero(X);zero(Y)) , zero( NewZ),!. 

zero([0.0,0.0]). 

$mul( X, Y, Z, NewX, NewY, NewZ) 
non_neg( Px, X, XP), 
non_neg( Py, Y, YP), 

% flip into + if possible 
% ditto 

Pz is Px*Py, 
switch( Pz, Z, ZP), 
multcase(Pz, Px,Py,F),!, 
F( XP, YP, ZP, NXP, NYP, 
switch( Px,NXP, NewX), 
switch( Py,NYP, NewY), 
switch( Pz,NZP, NewZ). 

% 
% 
% 

NZP), 
% 

sign logic 
fli.p Z if necessary 
case-by-case 

switch back if flipped 

non_neg( 1, [XL, XH] , [XL, XH]) : - XL >= 0 , ! . 
non_neg(-1,[XL,XH], [YL,YH]) :- XH =<0,YL is -XH, YH is - XL,!. 
non_neg( 0,[XL,XH], [XL,XH]) 

switch(-1,[XL,XH], [YL,YH]) :- YL is -XH, YH is- XL. 
switch( 1, X, X). 
switch( 0, X, X) • 

% rnul tcase(Pz,Px,Py, Use) 
rnul tease( 0, 0, 0, SrnulC). 
multcase( 1, _, _, $mulA). 
multcase(-1, _, _, $mulA). 
multcase( 0, _, 0, SrrulBy). 
multcase( 0, 0, _, SrrulBx). 

% contains ongtn in interior 
% first quadrant 

% right -half 
% top half 

SrrulA( X, Y, Z, NewX, NewY, NewZ):- % all first quadrant 
NewZ : = Z A ( X * Y), 
NewX := X A ( Z I Y), 
NewY : = Y A ( Z I X) . 
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% $mulBx: X spans 0, Y non-negative 
$mulBx( [XL,XH], Y, [ZL,ZH], NewX, NewY, NewZ):- ZL >= 0,!, 

$mulA( [0.0,XH],Y,[ZL,ZH], NewX, NewY, NewZ). 

$mulBx( [XL,XH], Y, [ZL,ZH], NewX, NewY, NewZ):- ZH =< 0,!, 
$mulA( [XL,0.0],Y,[ZL,ZH], NewX, NewY, NewZ). 

$mulBx( [XL,XH], [YL,YH], [ZL,ZH], NewX, NewY, NewZ):
NewZ := [ZL,ZH]A(XL*YH, XH*YH], 
YL>0 -> NewX := (XL,XH]A(ZLIYL,ZHIYL]. 

$mulBy( X,Y,Z, NewX, NewY, NewZ):- % Y spans 0, X non-negative 
$mulBx( Y, X, Z, NewY, NewX, NewZ). 

$mulC( [XL,XH], [YL~YH], Z, NewX, NewY,NewZ) :- % all span zero 
NewZ := Z A (min( XL*YH, XH*YL),max( XL*YL, XH*YH)]. 

The "C" case ( all signs unknown) does not do very much ; in particular it does not update 
either factor. (Note that if "new" variables are left uninstantiated they count as unchanged 
values in the update procedure.) There is actually a fourth case corresponding to the 
product having a known sign (possibly 0) but the signs of the factors unknown. This case 
can only be handled by exploring alternatives (e.g. both factors positive OR both 
negative). 
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DATA STRUCTURES AND ITERATION 

The natural data structure for keeping interval constraints is a bipartite graph or network in 
which interval nodes alternate with operation nodes. The obvious Prolog implementation 
(in those Prologs which allow it) is as a cyclic structure. The constructor for interval 
nodes is given by: 

tnterval_obj( tnt(I,[ V,_Values .. ],Nodeltst)):
untque_tdenttfier(I), 
universal_interval( V). % initial first value 

Each interval node consists of a sequence of interval values ( a monotone inclusion
decreasing sequence in fact), and a list of nodes. In addition, since logically distinct 
intervals must be kept distinct even if they happen to have the same contents (e.g. just after 
creation, when the nodelist is empty and the the value sequence contains only the universal 
range, an id-less interval would unify with any other interval), a unique identification label 
is attached to each new node. The uniqueness requirement is very local ( it suffices if it 
discriminates among the nodes in the system at any one time) but essential. 

The operation node constructor is given by: 

node( N ):- N=Op( tnt(_,_,NX),int(_,_,NY),int(_,_,NZ) ), 
ternary_relatton(Op), 
new_member( N, NX), 
new_member( N, NY), 
new_member( N, NZ). 

node( N ):- N=Op( int(_,_,NX),int(_,_,NY) ), 
btnary_relatton(Op), 
new_member( N, NX), 
new_member( N, NY). 

The cyclic structures are formed here when node N (which contains/ references interval 
objects) is put onto the nodelists of its intervals. The new_mernber predicate is essentially 
an optimized version of [member(N,L), !] and is given in BNR Prolog by: 

new_member(X,[List .. ]):- termlength(List,_,[X,_ .. ]). 

(There is a subtle difference, however: [memer !] would not actually add a duplicate 
node to the lists, while new_rnernber essentially assumes that the item is to be regarded as 
distinct.) 

The interval object data structure is accessed in only two ways, one to fetch the "current" 
value of its range and one to update it. The latter operation is logically describable as a 
[member(New,VaLseq) , !] to the indefinite list of ranges; thus if the new value is 
already on the list ( i.e. the last item) the list need not be extended. If the list is extended, 
however, then the associated nodes need to be "informed" of the change to one of their 
inputs. This "broadcast" is simulated by keeping an indefinite scheduling list (Agenda) 
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and adding nodes to it using [member( .. ) , ! ] . In this case, using member has the 
important effect of not putting a node on the list if it is already there. A BNR Pro log 
program for doing get/put of range values is: 

current_value( int(_,V ,NL), 
termlength(V,N,Tail), 
% GET last value XOR 
arg(N,V,[L,U]) 

% ( use Agenda =0 for get-only) 
[L,U], Agenda):-

% see BNR Prolog Ref. manula 

! . 

PUT new value 
[ L =< U, % check 

Tai.l =[[L,U] ,_ .. ] , 
subset(NL~ Agenda) ], 

just one branch 

subset( [X .. ],_):- tailvar(X .. ), ! . 

for null interval 
% append 

% broadcast 

subset( [X,Xs .. ], List):- member( X, List),!, subset( Xs, List). 

The use of this can be seen best in the general setup and execute routine for operation 
nodes: 

donode( Op( X, Y, Z ) , Agenda):-
current_value(X,XV, []), 
current_value(Y,YV, []), 
current_value(Z,ZV, []), 
Op( ~, YV, ZV, NewX, NewY, NewZ), 
current_value( X, NewX, Agenda), 
current_value( Y, NewY, Agenda), 
current_value( Z, NewZ, Agenda). 

don ode( Op( X, Y ) , Agenda):-
current_value(X,XV, []), 
current_value(Y,YV, []), 
Op( ~, YV, New X, NewY) , 
current_value( X, NewX, Agenda), 
current_value( Y, NewY, Agenda). 

Finally, the flxed point iteration code is given by: 

stable ( []): - ! . % terminate when agenda comes ~o end 
stable([Node, Agenda .. ]):-

donode( Node,[Node, Agenda .. ]), % note:Node still on agenda 
stable( Agenda). 

Here the cut in the first clause is necessary because the list is an indefmite one, and the 
second clause would still apply even when the "end" is reached. Note that in the second 
clause the agenda with the currently executing node on it is passed as an argument to the 
currently running node operation, so a node won't trigger its own reexecution. 

Most of the theoretical questions center around the stable predicate. 
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SETTING UP CONSTRAINTS 

We will describe the fmal pan of the system, the simplified user interface. The first 
statement to consider is the type declaration : which is used to create intervals: 

X: real !, interval_obj(X). 

X:real(LB,UB):-
interval_obj( X), % test for/create interval . 
current_value( X, [CL,CU], []), 
[LBI,UBI] :• [CL,CU] " [LB,UB], 
current_value( X, [LBI,UBI], Agenda), 
stable( Agenda). % process any repercussions 

Note that if the range is set it may trigger a cascade of additional narrowings; if the setting 
is inconsistent the call to stable may fail. 

The rest of the major arithmetic relations are handled (so far as intervals are concerned) by: 

{Y is X} interval_obj(Y), $arith_rel( Seq, Y, X). 
{Y == X} - $arith_rel( Seq, Y, X). 
{Y =< X} :- $arith_rel( Sle, Y, X). 
{Y >= X} - $arith_rel( Sle, X, Y). 

$arith_rel(F,Expressionl, Expression2):-
evaluate( Expressionl, El, Agenda), 
evaluate( Expression2, E2, Agenda), 
node( F(El, E2) ) , % make a node 
new _member( F(El, E2), Agenda), % add it to agenda 
stable( Agenda). % fixed point i terati.on 

The interval evaluation procedure is essentially a mapping from the usual tree expression to 
the constraint network. (Again, we ignore the addiitonal code required to implement non
interval arithmetic expressions.) The first three cases handle the leaves of the tree: 

evaluate(X,_,_) :- var(X),! ,X: real.% ill1'l ici t interval creation 
evaluate( X, X, _):- i.nterval_obj(X),!. 
evaluate( X, XE,_):- point_interval( X,XE),!. 

The fll'St of these clauses is to create an interval when an uninstantiated variable is 
discovered in an arithmetic expression. A simple implementation for point interval is 

point_interval( X, XE):
coerce(X,R), 
i.nterval_obj(XE), 
current_value(XE,[R,R],[]). 

coerce( X,X):-float(X). 

% assert: nodeli.st is empty 

coerce( X,Y):-integer(X), Y is float(X) . 
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The actual implementation in BNR Prolog differs from this in that the endpoints are not 
identical. This is an attempt to work around the problems caused by using binary internal 
representations which, in general, cannot represent finite decimal numbers exactly. 

Finally, the recursion step in evaluation is given by: 

evaluate( F(X,Y), ZE, Agenda):-
Sfrnap( ZE i.s F(XE, YE), M), 
eva 1 uate( X, XE, Agenda) , 
evaluate( Y, YE, Agenda), 
interval_obj(ZE), 
node( M), 
new_member(M, Agenda). 

Sfmap( Z is X + X, 
$fmap( Z i.s X + Y, 
$fmap( Z is X - X, 
$fmap( Z i.s X - Y, 
$fmap( Z i.s X • Y, 
Sfmap( Z i.s X/Y , 
Sfrnap( Z is min(X,Y), 
$fmap( Z is max(X,Y), 

$mul(Two,X,Z)):- poi.nt_i.nterval( 2, Two),!. 
$add(X,Y,Z)). 
$eq(Zero,Z) ):- point_ interval( 0, Zero),!. 

$add(Z,Y,X)). 
$mul(X,Y,Z)). 
$mul(Z,Y,X)). 
$min(X,Y,Z)). 
$max(X,Y,Z)). 

We have omitted the functions midpoint, median, and delta which take intervals as 
arguments but which return floating point values. Also omitted are the integer and boolean 
types and their primitives and transcendental functions and special utilities such as 
accumulate. Finally, the recently added new predicates lower _bound and upper _bound 
are given by: 

lower_bound( X):- i.nterval_obj(X), 
current_value(X,[L,U],[]), 
current_value(X,[L,L], Agenda), 
stable( Agenda). 

upper_bound( X):- i.nterval_obj(X), 
current_value(X,[L,U],[]), 
current_value(X,[U,U], Agenda), 
stable( Agenda). 

EXAMPLES 

Some examples of execution traces can help to give a feel for the dynamics. This first 
example illustrates "waves" of change sweeping across a small network. Note how the 
lower bound of 1 is propagated incrementally, while the upper bound 5 is propagated 
backwards "all at once". When these two networks are then bridged by the final equality, 
there are two update waves which get processed in parallel. Notice also the final bounce 
off the boundary conditions. 
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problem: 

trace: 

X: real, 
1 =< X, 
u =< v, 
y == u 

Y:real,U:real,V:real, 
X =< Y, 

v =< 5, 

X:real % _Interval_984396 
Y: real % _IntervaL985196 
U:real % _IntervaL985996 
V: real % _IntervaL986796 

=< --> $le(_Interval_987736,_Interval_984396) % first =< 
node: $le(_Interval_987736,_Interval_984396) 

_IntervaL984396 <- [1.0,3.4000e+30] % X changes 

=< --> Sle(_Interval_984396,_Interval_985196) 
node: $le(_Interval_984396,_Interval_985196) 

_Interval_985196 <- [1.0,3.4000e+30] % Y changes 

=< --> Sle(_Interval_985996,_Interval_986796) 
node: $le(_IntervaL985996,_Interval_986796) % no change 

=< --> $le(_Interval_986796,_Interval_992976) 
node: $1e(_Interval_986796,_Interval_992976) 

_Interval_986796 <- [ -3.4000e+30,5.0] % change V 
node: Sle(_Interval_985996,_Interval_986796) 

_IntervaL985996 <- [-3.4000e+30,5.0] % then U 

== --> Seq(_Interval_985196,_Interval_985996) 
node: $eq(_Interval_985196,_Interval_985996) 

_Interval_985196 <- [1.0,5.0] % change Y 
_Interval_985996 <- [1.0,5.0] % change U 

node: Sle(_Interval_984396,_Interval_985196) 
_Interval_984396 <- [1.0,5.0] % change X 

node: $le(_Interval_985996,_Interval_986796) 
_Interval_986796 <- [1.0,5.0] % change V 

node: $le(_Interval_987736,_Interval_984396) 
node: $le(_Interval_986796,_Interval_992976) 

final results: 
_Interval_984396:[1.0,5.0] 
_Interval_985196:[1.0,5.0] 
_Interva1_985996:[1.0,5.0] 
_Interval_986796:[1.0,5.0] 
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The next example illustrates function evaluation. Note that information generally passes 
from narrower to wider intervals; in the case of function evaluation this is naturally the 
same direction that conventional computation takes. 

problem: X:real(-100,100), Y:real, 

trace 

Y -- -6 + X * (X - 1), 
X == 2 

X:real(-100,100) 
_IntervaL984760 <- [ -100.0,100.0] 
Y:real 

--> $add(_Interval_987568,_Interval_987348,_Interval_984760) 
* --> $mul(_Interval_984760,_Interval_987568,_Interva1_988220) 
+ --> $add(_Interval_986728,_Interval_988220,_Interval_988872) 
== --> $eq(_Interval_985644,_Interval_988872) 
node: $add(_Interval_987568,_Interval_987348,_Interval_984760) 

_IntervaL987568 <- [ -101.0,99.0 
node: $mul(_Interval_984760,_Interval_987568,_Interval_988220) 

_Interval_988220 <- [-1.0100e+4,1.0100e+4] 
node: $add(_Interval_986728,_Interval_988220,_Interval_988872) 

_Interval_988872 <- [-1.0106e+4,1.0094e+4 
node: Seq(_Interval_985644,_Interval_988872) 

_Interva1_985644 <- [-1.0106e+4,1.0094e+4] 

% now do the x-2 
== --> $eq(_Interval_984760,_Interval_995740) 
node: $eq(_Interva1_984760,_Interval_995740) 

_Interval_984760 <- [2.0,2.0] 
node: Sadd(_Interva1_987568,_Interval_987348,_Interval_984760) 

_Interval_987568 <- [1.0,1.0] 
node: $mul(_Interval_984760,_Interval_987568,_Interval_988220) 

_Interval_988220 <- [2.0,2.0] 
node: $add(_Interval_986728,_Interval_988220,_Interval_988872) 

_Interval_988872 <- [-4.0,-4.0] 
node: $eq(_Interval_985644,_Interval_988872) 

_lntervaL985644 <- [ -4.0,-4.0] 

final results: 
_Interva1_984760:[2.0,2.0] 
_Interva1_985644:[-4.0,-4.0] 

The last test illustrates fl.xed point iterations: 

problem: 

trace: 

X:rea1(-100,100),Y:real 
v == -6 + x • c_x - 1), 
y = 0, 
X >= 0 

X:real(-100,100) 
11 



Interval Arithmetic Specification 

_Interval_984560 
Y:real 

89032 

<- [-100.0,100.0] 

--> $add(_Interval_987368,_Interval_987148,_Interval_984560) 
* --> $mul(_Interval_984560,_Interval_987368,_Interval_988020) 
+ --> $add(_Interval_986528,_Interval_988020,_Interval_988672) 
== --> $eq(_Interval_985444,_Interval_988672) 
node: $add(_Interval_987368,_Interval_987148,_Interval_984560) 

_IntervaL987368 <- [-101.0,99.0] 
node: $mul(_Interval_984560,_Interval_987368,_Interval_988020) 

_Interval_988020 <- [-1.0100e+4,1.0100e+4] 
node: $add(_Interval_986528,_Interval_988020,_Interval_9$8672) 

_Interval_988672 <- [-1.0106e+4,1.0094e+4 
node: $eq(_Interval_985444,_Interval_988672) 

_Interval_985444 <- [-1.0106e+4,1.0094e+4] 
% network has now been constructed 

% setting Y==0: this shows co~utation coming "back up" the evaluation 
% tree, opposite to the conventional direction 

-- --> $eq(_Interval_985444,_Interval_995540) 
node: $eq(_Interval_985444,_Interval_995540) 

_Interval_985444 <- [0.0,0.0] 
node: $eq(_Interval_985444,_Interval_988672) 

_Interval_988672 <- [0.0,0.0] 
node: $add(_Interval_986528,_Interval_988020,_Interval_988672) 

_Interval_988020 <- [6.0,6.0] 
node: $mul(_Interval_984560,_Interval_987368,_Interval_988020) 

% iteration stops here- the SmulC case mentioned previously 
% the rrul tipl icati.on i.s 6=X*(X-1), but both X and (X-1) span 0 

% X >= 0 ; this breaks the impasse 
>= --> $le(_Interva1_1001820,_Interva1_984560) 
node: $le(_Interval_1001820,_Interva1_984560) 

_Interval_984560 <- [0.0,100.0] 
node: $add(_Interval_987368,_Interval_987148,_Interval_984560] 

_Interval_987368 <- [-1.0,99.0] 
node: $mul(_Interval_984560,_Interval_987368,_Interval_988020) 

_IntervaL984560 <- [0.060606,100.0] 
_Interval_987368 <- [0.06,99.0] 

node: $add(_Interval_987368,_Interval_987148,_Interval_984560) 
_Interval_984560 <- [1.06,100.0] 

node: $le(_Interval_1001820,_Interva1_984560) 
note that Sle is never going to do anything but gets scheduled 
just i.n case; some Sle cases are naturDally persistent, but we 
aren't taking advantage of i.t 

node: $mul(_Interval_984560,_Interval_987368,_Interval_988020) 
_IntervaL987368 <- [0.06,5.6604] 

% note that X -1 has now narrowed substantially 
node: $add(_Interval_987368,_Interval_987148,_Interval_984560) 

_IntervaL987368 <- [0.06,5.6604] 
_IntervaL984560 <- [1.06,6.6604] 

node: $mul(_Interval_984560,_Interval_987368,_Interval_988020) 

node: 
note we 

node: 

_IntervaL987368 <- [0.90085,5.6604] 
$1e(_Interval_1001820,_Interval_984560) 

are now i.n a loop with intervals decreasing 
$add(_Interva1_987368,_Interval_987148,_Interval_984560) 

_Interval_984560 <- [1.9009,6.6604] 
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node: $mul(_Interval_984560,_Interval_987368,_Interval_988020) 
_Interval_987368 <- [0.90085,3.1565] 

node: $le(_Interval_1001820,_Interval_984560) 
% each stage is able to eliminate more points in a sort of 
% inductive proof 

node: Sadd(_Interval_987368,_Interval_987148,_Interval_984560) 
_Interval_984560 <- [1.9009,4.1565] 

node: $mul(_Interval_984560,_Interval_987368,_Interval_988020) 
_Interval_987368 <- [1.4435,3.1565] 

node: $le(_Interval_1001820,_Interval_984560) 
% convergence is slow, comparable with regula falsi 

node: $add(_Interval_987368,_Interval_987148,_Interval_984560) 
_Interval_984560 <- [2.4435,4.1565] 

node: $mul(_Interva1_984560,_Interva1_987368,_Interval_988020) 
_Interval_987368 <- [1.4435,2.4555] 

node: $le(_Interval_1001820,_Interval_984560) 

node: $add(_Interval_987368,_Interval_987148,_Interval_984560) 
_Interval_984560 <- [2.4435,3.4555] 

node: $mul(_Interval_984560,_Interval_987368,_Interval_988020) 
_Interval_987368 <- [1.7364,2.4555] 

node: $le(_Interval_1001820,_Interval_984560) 

% next cycle 
% ( printing 

node: 

is different- both factors narrow in the multiplication 
precision does not show the difference ) 
$add(_Interval_987368,_Interval_987148,_Interval_984560) 

node: 

node: 

_Interval_984560 <- [2.9757,3.0163] 
$mul(_Interval_984560,_Interval_987368,_Interval_988020) 

_Interval_984560 <- [2.9757,3.0163] 
_Interval_987368 <- [1.9892,2.0163] 

$le(_Interval_1001820,_Interval_984560) 

node: $add(_Interval_987368,_Interval_987148,_Interval_984560) 
_Interval_984560 <- [2.999,3.0006] 

node: $mul(_Interval_984560,_Interval_987368,_Interval_988020) 
_Interval_984560 <- [2.999,3.0006] 
_Interval_987368 <- [1.9996,2.0006] 

% at this point the changes become invisible because of printing 
% precision limitations, but the iteration finally stops with the 
% correct answers printed as 2.0 and 3.0. Internally, these are very 
% small pointlike intervals, the width determined by the implementation 
% of point_interval and the precsion of arithmetic used in Si.sl and 
% $isH. 
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APPENDIX A: THEORY 

This appendix is concerned with the proofs of properties of the fixed point iteration 
operator represented by the stable predicate. The properties in question are the existence 
of fixed points, independence of scheduling order, monotonicity and termination. Partial 
correcmess is already established since the primitive operations never discard points_ except 
when there is a proof that they contain no consistent solutions. 

The proof is based on establishing an appropriate partially-ordered state space, based on 
topological considerations, and then employing simple lattice-theoretic arguments. 

STATE SPACE 

The first thing to note about this operator is that it does not change the structure of the 
constraint network, but at most alters the current values of some intervals. Thus the state 
can be construed as a fixed set of interval objects each with a current value which is an 
interval range. Formally, let I be the set of interval ranges (including the empty range) 
over the reals, 0 be the finite set of interval objects, and V be the map V:O -> I 

defining the current value. Then the state is defined as S = X i e o V(i), the Cartesian 
product of the current values. The state space L is defined to be all such Cartesian 
products, partially ordered by inclusion. (For simplicity, we will consider U as fixed and 
have suppressed it from the notation. ) The largest element (U*) in the partial order is the n
fold product of the universal interval U; the smallest is the null set. Since ranges are closed 
intervals, they are compact topological spaces and therefore so are all their Cartesian 
products. In particular, U* as a topological space is compact and Hausdorff (with the 
usual induced topology from the reals), and therefore all states are closed sets. Hence the 
arbitrary intersections of states are all closed compact sets and in fact states. 

It follows that since L is closed under arbitrary intersections, and since there is a largest 
element, a join operation V can be defined (by intersecting all elements bigger than all the 
items in a given collection), and L is a complete lattice. (Since meets in the lattice are just 
set intersections. we will generally use "intersection" for "meet" in the following and refer 
to the elements of L as "sets"; however. the lattice we are dealing with is not the usual 
power set lattice of U since the join is not the set union.) 

L is also intersection-compact, i.e. if the intersection of an arbitrary collection of sets is 
empty, then there is a fmite subcollection which has empty intersection. (This is just the 
compactness ofU* restated in the finite-intersection property form.) For inconsistent sets 
of constraints, which eventually end in failure, this guarantees that the failure occurs after a 
fmite number of steps. 

15 
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CONTRACTIONS ON L 

Now let us turn to the operations, i.e. the maps p: L -> L . The primitive operations $le, 
$add, etc. all had the following properties (with respect to the space spanned by their input 
arguments): 

a. contracting 
b. monotone (isotone) 
c. idempotent 

y ::2 p(Y) 
X :2 Y implies p(X) ~ p(Y) 
p(p(X)) = p(X). 

(Note that failure is regarded as mapping to the null set.) When applied to a selected two 
or three dimensions out of L , all others being left unchanged, these properties carry over 
directly to similar statements over L . 

Given two maps p,q: L ->L with these properties, the composite maps pq and qp are 
obviously contracting, but need not be idempotent. (Recall the last example in the main 
text.) To investigate this question, a good place to start is the space of all contraction 
maps over L , which we will denote by C: 

def C := { p :L ->L I p is contraction } . 

C inherits a partial order and lattice structure from L in the usual way, e.g 

p ::2 q iff for all X in L p(X) ::2 q(X) 

(p '"' q) (X) := p (X) '"' q(X) for all X in L 

The bottom element is the null map 0 ( the analog of "fail" in Prolog); the top element is the 
identity map 1. 

C is also a semigroup under function composition with 1 as two-sided identity and 0 as a 
two-sided zero element: 

1p=p 
p1 =p 
Op=O 
p0=0 

Only the last of these depends on the maps beirig contractions. 

The lattice and semigroup structures are tied together by two basic properties: 

for all p,q in C : q ::J pq 
for all p,q,r in C : p ~ q implies pr ~ qr . 

16 
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The first merely restates that p is a contraction; the second follows from the definition of the 
partial order relation. Note that the second states that the semigroup operation is monotone 
in the first variable. 

There are a couple of useful results on idempotents in C. If p and q are idempotents in any 
semigroup, and p commutes with q, then pq=qp is also an idempotent, since 

(pq)(pq) =p(qp)q= ppqq = pq. 
Second, given any contraction p then p* :=lim p n exists. To show this, fix an arbitrary 
set X; then X ::2 p(X) ::2 pp(X) ::2 ••• ; this monotonically decreasing sequence has a 
limit since the lattice L is complete, and this defmes the action of p* on X. Since X is 
arbitrary, p* is well defined. From the method of construction, it is clear that p* is 
idempotent. Given two idempotents, p,q, we can then define p*q := (pq)*; by the 
preceding comments, this operation is a well defmed operation on the set of idempotent 
contractions. 

Ifp and q are idempotents, then define the (Green's) relations by 
pLqiff p=pq 
pRqiff p=qp 
p S q iff p=qp=pq (i.e. iffp L q and p R q). 

These relations capture the idea of one idempotent p being "stronger" than q. Note that all 
three are trivially reflexive. Lis transitive, since p L q and q L r implies p=pq and q=qr, 
so pr= (pq)r=p(qr)=pq=p. 
R is transitive by a similar proof, and the transitivity of S follows. Since pSq and qSp 
implies p=qp and q=qp implies p=q, S is a partial order on C , and pSq => q ~ p since 
p is a contraction. If i is idempotent and iLp, then iLpll, and iLp* and similarly for R and 
S. Hence, p* is the weakest idempotent stronger than p. 

17 
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MONOTONE CONTRACTIONS 

To get a significantly stronger connection between the semigroup and lattice structures, 
we need to specialize to CM, the space of monotone contractions. 

def CM := { p -.L ->L I X:2 p(X) and X ::2 Y => p(X) :::> p(Y)}. 

(Since all the basic node operations are monotone, this is a reasonable restriction.) Since 
the composition of two monotone maps is monotone, CM is a subsemigroup of C. The 
intersection of monotone maps is also monotone, since intersection is itself monotone. 
Since 0 and 1 are both monotone maps, CM also inherits the lattice and monoid properties 
as well. Monotonicity (as maps on L ) provides for symmetrical relationships between 
the product and order structures: 

for all p,q in C : q :2 qp 
for all p,q,r in C : p ::2 q implies rp ::> rq . 

Note that the product is now monotone in the second argument as well as the first. A 
simple proof then shows that the product is in fact jointly monotone in both arguments. 
From this it follows that p ~ q implies pp ::2 qq and p* ;2 q*. If p is monotone, then 
so is p*. 

Suppose p,q are idempotents in CM. Since pis a contraction, q ::2 pq, so pLq implies q 
~ p. Conversely, if q ~ p, then since pis monotone, pq :::> pp = p, but since q is a 
contraction 1 ::2 q and p ~ pq, so p=pq and pLq. Similarly, pRq iff q ::? p and pSq 
iff q :::> p. Hence these partial orders all collapse into the state-induced partial order. 

Since q :2 qp and p :2 qp, it follows that p 11 q ::? qp ; similarly, p 11 q :::> pq. By 
induction, (pq)n-1 ::? (qp)fi and (qp)n-1 ::2 (pq)n, so (pq)n-1 11 (qp)n-1 ::? (qp)n and 
(pq)n-1 n (qp)n-1 ~ (pq)fi. Thus these sequences are mutually cofmal and have the same 
limit: p*q=(pq)*=(qp)*=q*p. Hence, regarded as an operation on idempotents, * is 
commutative. 

If p and q are idemptents in CM: since pa nd q are contractions then X :2 p(X) and X ~ 
q(X), so X ~ p(X) Y q(X ) ::? p(X), and then p(X) ::> p(p(X) Y q(X )) ::> 
p(p(X))=p(X), and hence p(X) = p(p(X) Yq(X )) and similarly q(X) = q(p(X) Y q(X )) 
Then (p Y q)(p Y q)(X) =(p Y q)(p(X) Y q(X)) = p( p(X) Y q(X) ) Y q( p(X) Y q(X) ) 
=p(X) Y q(X) = (pVq)(X), so the join of idempotents is idempotent. This can be 
generalized to arbitrary joins. 

If p,q are idempotents in CM , then X is a flxed point of p*q iff X is a fixed point of p 
and X is a fixed point of q. Obviously, if X is a flxed point of both p and q, 
(p*q)(X)=(pq)*(X)=pq(X)=X. Coversely, if X is a fixed point of p*q then X::2 pq(X) ~ 
(p*q)(X) =X, so p(X)=pq(X)=X and similarly for q. 

18 
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Fixed Points 

From previous results, p*q is monotone and idempotent, p*q S p, p*q S p, and if r is a 
monotone idempotent with rSp, rSq, then r S p*q. Thus the binary operation * 
constructs the greatest lower bound with respect to the S partial order. It follows, by the 
usual lattice arguments, that * is an associative as well as commutative operation. 
Operationally, this implies that the final state of the flXed point iteration is independent of 
the order in which the individual primitive operations are done. 

An alternate approach is to define the set of fixed "points" associated with an idempotent in 
CM: F(p) = { X I p(X)=X}. The set of fixed points contains the bottom state and is 
closed under arbitrary joins. 

For any join-closed family F of states containing bottom, define G(F)(X)= to be the largest 
Y in F such that X :2 Y. (This is unique because of the join-closed propeny.) Then G(F) 
is easily shown to be an idempotent monotone contraction. 

The maps F,G satisfy G(F(p))=p and F(G(A)=A, and form a bijective correspondence 
between narrowing operators (idempotent monotone contractions) and join-closed subsets 
of stable states. Note that from the result of the last section, F (p*q) = F (p )nF ( q). 

Compactness 

We have noted earlier that compactness implies finite termination of all iterations which 
eventually fail. Non-failing iterations can, in principle, continue indefmitely over the reals; 
each such monotonically decreasing sequence of intervals contains a real number by 
Cantor's nested set theorem. However, in the implementation the precision of the 
arithmetic is limited by the floating point machinery; the floating point representation space 
being finite, the aproximation sequences converge after a finite number of operations. 
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This paper illustrates the use of relational interval arithmetic in CLP(BNR) 
for the determination of primitive cell structure from powder method X-ray 
diffraction data. It serves to illustrate the way in which a uniform 
declarative programming style can be employed for problems involving a 
search over a space of models parameterized by both discrete and 
continuous parameters. 

INTRODUCTION 

The techniques natural to Prolog programming are particularly suitable for problems 
involving searches over discrete spaces. Simple algorithms to do exhaustive search can be 
written very easily in Prolog by taking advantage of its natural backtracking ability, and 
more efficient search algorithms can usually be obtained by manipulating the order of 
generation of candidates, arranging for early failure, or otherwise constraining the search. 

Traditionally, however, the treatment of searches over spaces parameterized by continuous 
variables has been limited by the conventional nature of the floating point arithmetic 
available. Since continuous spaces cannot practically be aproximated by discrete spaces, 
the advantages of the declarative style are lost and one is forced to treat such problems in 
ways that would be fami1iar to the Fortran programmer. 

The introduction of relational interval arithmetic in CLP(BNR) now makes it possible to 
adopt the declarative style in problems involving continuous variables. This is particularly 
convenient in problems where both discrete and continuous parameters are present, since it 
allows both to be treated with the same paradigm. To illustrate this point we present a 
simplified version of a typical problem of this sort, and show how a declarative Prolog 
solution can be expressed using interval arithmetic. 

THE PROBLEM 

The problem is that of identifying the shape of the primitive cell of a crystal lattice from X
ray diffraction data. A primitive cell can be characterized by six continuous parameters, 
which may be taken as the lengths of three non-coplanar vectors a,b,c and the angles 
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between them. When X-rays interact with a crystal lattice, the phenomenon of Bragg 
diffraction causes scattering of the X-ray beam at specific angles 9 depending on the 
wavelength A. of the X-rays and the spacing d between the planes of the crystal lattice, 
according to the well-known Bragg equation: 

n A. =2d sin e. 

In the powder method, a crystalline sample is ground to powder and the powder mixed 
with glue is mounted in an X-ray beam, so that the scattered rays impinge on a detector 
such as a photographic film. Individual crystals then take many different orientations 
relative to the optical axis of the beam, thus averaging over all orientations. The resulting 
image at a fixed radius shows a spectrum which is a function of the interplanar·distances 
and the effective X-ray wavelength. The problem is then to determine the correct shape of 
the primitive cell which would account for all the observed lines in the spectrum. 

The mathematical formulation of the problem is simplest when expressed in terms of the 
parameters of the reciprocal lattice, the dual basis in Fourier space. The squared distances 
from the arbittarily chosen origin to the lattice points (h,kJ) (with h.k,l integers) can be 
related directly to the observed line spacings, given the X-ray wavelength and test
equipment geometry. Thus given some initial transformation of the raw data to squared 
distances, the essential problem is to infer the cell parameters from the pattern of squared 
distances in the lattice. This is illustrated schematically in figure 1 below, which shows the 
two-dimensional case. 

This is an example of an inverse problem with a discrete labeling component: the forward 
problem of computing the distances given cell parameters and line labeling is trivial. 
Likewise inferring cell parameters from known labeling and distances, although not so 
trivial, is relatively straightforward by conventional techniques. With both the cell 
parameters and labeling unknown, however, it is difficult to find a way to apply 
conventional techniques. One is forced to adopt an approach which guesses tentative 
labelings until there enough to determine cell parameters, and to do this systematically until 
the right guess is made, and this is difficult to do correctly using conventional techniques . 

.., 
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Fig.l.-Reciprocallattice and observed spectrum 

For any ftxed lattice point (h,k,l), there is a simple quadratic formula for computing the 
squared distance as a function of the cell parameters: 

di.stance2( 
{ 02 

[H,K,L], [A,B,C,CosA,"CosB,CosC], 02):-
i.s (H*A)**2 + (K*B)**2 + (L *C)**2 + 

2*(H*K*A*B*CosC + K*L*B*C*CosA + l*H*C*A*CosB) }. 



CLP(BNR) {X-ray 

where A, 8, c are the lengths of the primitive vectors and where CosC is the cosine of the 
angle between vector a and vector b and so on. Since only the cosines of the cell angles 
appear in this formula, it is evidently more efficient to use these cosines instead of the 
angles themselves in our representation for a primitive cell 

The mathematical structure of the problem is now becoming clear: given the primitive cell 
shape there is a function to determine the squared distance to any particular lattice point. 
Furthermore, given any six sufficiently different lattice points (and knowing which ones 
they are) and their corresponding squared distances, one could solve the six simultaneous 
non-linear equations to determine the cell shape. ( Solving such a system is, of course, not 
exactly trivial but there are traditional techniques for accomplishing it. ) The essential 
difficulty is then that one does not know a priori which distance values correspond to 
which lattice points. This is complicated by the fact that there may be addiitonallines 
present due to contamination of the sample, or the sample might just be a mixture. In this 
manner the continuous system identification problem has acquired a significant 
combinatorial complexity. 

There is one more significant theoretical point to be made. The cell shape which we are 
seeking has been described as three lengths and three cosines. This description, however, 
is both imprecise and inadequate. To be more precise, we can choose a specific tuple 
representation such as that used above: 

[ A, 8, C, CosA, Cos8, CosC] 

In addition, however, we need to specify that these six parameters are continuous and 
indicate their initial domains. In CLP(BNR) this can be done by means of a type 
declaration. Since A, 8, and c are distances, their domains are [O,infmity] and this would 
be written as 

[A,8,C]:rea1(0,_) 

This is not quite right, however, since it contains a hidden redundancy. Since we do not 
know which base vector A,B, or cis which, any permutation of them (together with the 
corresponding angles) would represent the same primitive cell, so there is a six-fold 
degeneracy in the representation. To remove this degeneracy, we can agree to always list 
them in order of increasing size. This can be added to the specification above, by adding 
the constraint: 

( A -< 8, B-< C } 

after the declarations. 

The cosines must be treated similarly; since the angles between the vectors·go from 0 to 
180 degrees, the cosines would have initial domains [-1,1] and should be declared as such. 
However, this is also a redundant representation since the signs of any of the base vectors 
of the cell can be inverted (thus changing the signs of the cosines) without describing a 
different lattice at all A symmetry analysis ( which can be found in reference 1) shows that 
there are two classes of crystals depending on whether their primitive cells have an odd or 
even number of obtuse angles. By restricting ourselves to Type I crystals (those with an 
even number of obtuse angles), it is always possible to choose base vectors such that all the 
angles are acute, by reversing the sign of the base vector opposite the acute angle. Hence, 
for Type I crystals, the proper initial domain restrictions are: 

A 
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[ CosA,Cos8,CosC] : real(0,1) • 

For Type IT cells (with an odd number of obtuse angles), the declaration should 
correspondingly be: 

[ CosA,Cos8,CosC] : real(-1,0). 

and to handle both possibilities together: 

[ CosA,Cos8,CosC] : real(-1,1), 8:boolean, 
{ B== (CosA>=0),B==(CosB>=0),B==(CosC>=0)}. 

We will henceforth assume for simplicity that we are dealing with Type I crystals. 

This specification can then be packaged as a Prolog "type description" which 
checks/creates instances of the type: 

type_I_cell([A,8,C,CosA,Cos8,CosC]) 
[A,8,C] : real(0,_), 
[CosA,Cos8,CosC] : real(0,1), 
{ A =< 8, 8 =< C }. 

THE PROGRAM 

The next step is to provide a generator for lattice points. It will be more efficient in the fmal 
algorithm if computed distances are aproximately ordered by size. One way to accomplish 
this is to generate lattice points [H,K,L] from the center out. For this one can simply use a 
set of facts lof the form i.sometri.c(N, [H,K,L]), ordered by N: 

~ N i.s h**2 + k**2 +1**2 
~ defi.nes search order i.n general case 

i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
i.sometri.c( 
etc. 

1,[1,0,0]). 
2, [1,1,0]). 
3,[1,1,1]). 
4, [2,0,0]). 
5,[2,1,0]). 
6,[2,1,1]). 
8, [2, 2,0]). 
9,[3,0,0]). 
9, [2,2,1]). 
10,[3,1,0]). 
11,[3,1,1]). 
12,[2,2,2]). 
13,[3,2,0]). 
14, [3,2 ,1]). 
16,[4,0,0]). 
17,[4,1,0]). 
17,[3,2,2]). 
18,[4,1,1]). 
18,[3,3,0]). 

This table lists one point of each distinct type in order of distance from the origin in a cubic 
lattice; it can easily be computed in Prolog to any desired limit by: 
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findset( isometric(N, [H,K,L] ), 
[integer_range(H,0, Max), 

integer _range(K,0, Max), 
integer _range(L, 0, Max), 

N is J*J + K*K + L *L 
], 
List), 

foreach( member( X, List) do assert(X)), 

For each such point all its distinct permutations are also lattice points: 

distinct_perm( [H,K,L], [H,K,L]). 
distinct_perm( [H,K,L], [H,L,K]):- K<>L. 
distinct_perm( [H,K,L], [K,H,L]):- H<>K. 
distinct_perm( [H,K,L], [L,K,H]):- L<>H. 
distinct_perm( [H,K,L], [K,L,H]):- H<>K,K<>L,L<>H. 
distinct_perm( [H,K,L], [L,H,K]):- H<>K,K<>L,L<>H. 

Similarly, any non-zero coordinate can also occur with the opposite sign; the opposite 
point (with all signs reversed) is redundant and should be eliminated. This specification 
can then be written as 

sign( 
sign( 
sign( 
sign( 
sign( 
sign( 
sign( 

[H,K, L], 
[0,K,L], 
[H,0,L], 
[H,K,0], 
[H,K,L], 
[H,K,L], 
[H,K,L], 

[H,K,L]). 
[0,-K,L]):-K<>0,L<>0,!. 
[H,0,-L]):-L<>0,H<>0,!. 
[H,-K,0]):-H<>0,K<>0,!. 
[-H,K,L]):- H<>0,K<>0,L<>0. 
[H,-K,L]):- H<>0,K<>0,L<>0. 
[H,K,-L]):- H<>0,K<>0,L<>0. 

The complete generator for lattice points is then: 

hkl( [H,K,L], Limit):-
integer_range(N,l, Li~t), 
isometric(N,HKL), 
distinct_perm(HKL,HKLU), 
sign(HKLU,[H,K,L]). 

We will want to generate a list of squared distances to lattice points: one way to accomplish 
this is: 

dist2_list(N_limit, Cell, List):
findall( HKL, hkl(HKL,N_l imit),L), 
SdistZ( L, Cell, List). 

SdistZ([] ,Cell,[]). 
SdistZ([HKLILs],Cell,[DZIDs]):-

distanceZ(HKL, Cell, 02), 
SdistZ(Ls,Cell, Ds). 

~ 

where Cell is as defined previously. Converting the lattice indexes toa list first, and using 
list processing to compute distances, is necessary if we want to use this with Cell 
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consisting of intervals (since we must have a conjunction of constraint equations). 

We also need a predicate, essentially an arithmetic version of the well-known member 
predicate, to check if an arithmetic quantity is arithmetically equal to any on an ordered list 
of observational data. Since there are several sources of uncertainty in the experimental 
setup, such as the fact that the xray beam is a mixture of frequencies, the observed data is 
slightly fuzzy, and will therefore also be represented as interval values. Since it is 
conceptually misleading that the comparison with a predicted value should narrow the 
interval actually observed, the first clause makes use of the inclusion primitive '<=' of 
CLP{ (BNR), which reads the data but does not change it The second clause includes a 
constraint check that cuts off search once the proper place in the list is past 

op( 700, xfy, in). % member for intervals 

X in [DIDs]:- { X <- D}. % inclusion 
X in [DIDs] :-{ X>-D }, X in Ds. 

Finally, here is a simple version of the complete algorithm which takes the measured 
values of distance squared ( as a list of intervals), and non-deterministically finds all 
reciprocal lattice parameters which can be found in the data. By formulating the problem 
this way, we can handle both mixtures and contaminated samples. (However, it does 
assume that we are not missing any data points, such as those too large or too small to have 
been captured. ) 

analyze( Limit, Cell, Observations) :
type_I_cell( Cell), 
di.st2_li.st(Li.mi.t, Cell, Computed_li.st), 
all i.n( C~uted_l i.st, Observations). 

all i.n([] ,_). 
allin([XIXs],L):- X in L, allin(Xs,L). 

The declarative reading of this program is straightforward. The first line ensures that the 
reciprocal lattice parameters meet the requirements specified for a Type I lattice. The 
second line then computes a list of all the squared distances up to some order, the higher the 
order, the more likely that the answer will be unique ( provided one is not looking for 
something beyond the end of the observational data). The third line then requires that all 
computed lines are among the observed ones. 

An operational interpretation in CLP(BNR) would be something like this: the first line 
creates six interval variables with known initial domains and a couple of constraints. The 
second line creates many more variables connected to the original six through the relation 
distance2. Since initially the six parameters of the reciprocal lattice are only slightly 
constrained, the conceptually distinct computed values all have ranges from 0 to infinity. 
The third line non-deterministically matches observations to computed values. 

For example, the first computed value will always match ( <=) the first observation, thus 
constraining funher the cell parameters on which the first computed value depends, which 
in turn affects all the computed values. Each successful match narrows the ranges of the 
cell parameters and thus makes further matches more difficult As usual, a matching failure 
triggers backtracking to try another possibility. 

To show this in a more concrete form, the program was modified to output the cell 

'7 
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parameters after each successful match. The cell parameters after the first seven matches ( 
for artificial input data ) are: 

1 [0.32848,0.33152] [0.32848,9.2196e+18] [0.32848,9.2196e+18] 
[0.00000,1.0001] [0.00000,1.0001] [0.00000,1.0001] 

2 [0.32848,0.33152] [0.49899,0.5010] [0.49899,9.2196e+18] 
[0.00000,1.0001] [0. 00000' 1. 0001] [0.00000,1.0001] 

3 [0.32848,0.33152] [0.49899,0.5010] [0.99949,1.0006] 
[0.00000,1.0001] [0.00000,1.0001] [0.00000,1.0001] 

4 [0.32848,0.33152] [0.49899,0.5010] [0.99949,1.0006] 
[0.00000,1.0001] [0.00000,1.0001] [0.00000,0.0091536] 

5 [0.32848,0.33152] [0. 49899 '0. 5010] [0.99949,1.0006] 
[0.80937,0.81946] [0. 00000 '1. 0001] [0.00000,0.0091536] 

6 [0.32848,0.33152] [0. 49899 '0. 5010] [0.99949,1.0006] 
[0.80937,0.81946] [0.63359,0.64923] [0.00000,0.0091536] 

7 [0.32848,0.33152] [0 .49899,0. 5005] [0.99949,1.0006] 
[0.81018,0.81896] [0.63359,0.64923] [0.00000,0.0091536] 

illustration of convergence of reciprocal lattice parameters 
form: step number A B C 

CosA CosB CosC 

Notice that after the first match ( obviously the (1,0,0) line) that all three sizes have 
changed because of the ordering convention imposed on our representation. At step 2 (the 
(0,1,0) line), B becomes very narrowly defined and the lower bound of Cis changed. C 
is defined by the third step, the (0,0,1) line. The next three steps fill in the cosine values. 
Note that on the seventh step ( the first constraint which is "redundant" ), there is only a 
small adjustment to one cell size and slight narrowing of one of the cosines. Subsequent 
match steps may also result in a refinement of the cell parameters; to explain why, it is 
necessary to discuss what would usually be called an error analysis. 

The raw experimental data consists of the spacings of lines on the photographic fllm; such 
lines must have a fmite thickness to be observable. Some lines may be substantially thicker 
than others, however, so one should actually measure distances to both the left and right 
edges of each line in order to obtain an interval representation for the line spacing. The 
line spacings will be related to the observation data by the above algorithm through a 
mathematical relation, the Bragg formula, combined with relations derived from the 
geometry of the apparatus. These relations involve other imperfectly known parameters 
such as apparatus dimensions and the wavelength of the incident beam. If sources of 
systematic error (e.g. shrinkage of the photographic film during development) are known 
or suspected, these effects may be explicitly . incorporated in the model and assigned 
appropriate ( and hopefully narrow ) initial ranges. All these sources of uncertainty will 
make the observation sequence more uncertain than the raw data. Even when the raw data 
has uniform errors, the non-linear nature of this transformation will mean that the enors in 
the observation data sequence may differ substantially from datum to datum. The tedious 
task of inferring proper 'error bars' on the observation data from the uncertainties in the 
raw data (and other parameters) is done automatically by the interval arithmetic machinery. 
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It is a characteristic of the usual apparatus employed that errors in the raw data are 
comparable, determined by the precision of distance measurements. The errors in the 
observed squared distances ( the observation list) then depend directly on the cotangent of 
the scattering angle, so the most precise observations are those in which the scattering is 
aproximately a right angle, and this generally occurs at higher order lines. On the other 
hand, the quadratic formula alone makes higher order lines more sensitively dependent on 
the cell parameters. The net result of these effects is that higher order lines, when matched 
against computed values in the above algorithm, can cause a slight reduction in the size of 
the cell parameter intervals, thereby refining the original estimate due to the frrst six 
matches. 

From a practical point of view this 'error propagation' property of interval arithmetic can be 
considered an alternative to the use of more complicated statistical methods, such as least 
squares. Of course, conceptually speaking, statistical techniques such as least squares ( 
based on L2 norms) make quite different assumptions from the interval method (which 
would correspond more closely to the Ll-norm-based statistical approach), and the results 
have quite different interpretations: a least squares solution is a 'point' solution which best 
approximates the data in the presence of essentially normal errors, while the interval 
solution describes a region in which the solution must lie if it is to account for the data 
(with error bars explicitly specified). 

EFFICIENCY ISSUES 

As a benchmark, artificial observational data was generated as described earlier, and then 
solved using this method, using the low precision CLP(RI) system on an 25Mhz 68030. 

The frrst test used the "point" cell parameters [1, 2, 3, 0.12, 0.23, 0.45] and produced the 
answer 

[0.99999, 1.0001] '[1.9999, 2.0001]' [2. 9999, 3.0001]' 
[0.11999,0.12001],[0.22999,0.23001],[0.44999,0.45001] 

after 19.9 seconds. The actual search, however, only consumed about 1.13 seconds of 
this. 

The second test, which used the partly nearly orthogonal cell parameters [1.0, 1.3, 1.8, 
0.32, 0.01, 0.2] produced the answer: 

[0. 99999' 1. 0001] '[1. 2999, 1. 3001] '[1. 7999' 1. 8001] ' 
[0.31999,0.32001],[0.0099,0.010003],[0.19999,0.20001] 

in 7.25 seconds, only 0.43 of which was spent in the search. 

Finally, we note that a priori information limiting the range of cell sizes or angles ( 
provided by other physicochemical tests or by measuring a the angles of a macroscopic 
crystal), or additional symmetry information ( e.g. all sides equal) can be incorporated 
directly and declaratively into the specification of the cell. In some cases of common 
occurrence (e.g. onhogonal crystals), a simplified version of the algorithm would provide 
performance advantages. The main point is that tuning the performance of the interval 
arithmetic involves many of the same tradeoff's ( such as that between speed and 
completeness ) and the same strategies ( such as maximizing the use of a priori information 

0 
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to prune searches ) that appear in ordinary Prolog programming. 

CONCLUSION 

This example illustrates several aspectS of relational interval arithmetic. One is the use of a 
declarative programming style which emphasizes the conceptual structure of the problem 
and which makes it easier to manipulate the problem description to take advantage of 
special circumstances. The clarity and generality achieved has a price: one can no longer 
exercise such fine control over the operational details of the algorithm. The logic 
programming methodology suggests starting with the most general problem statement, and 
then transforming to less general but more efficient formulations by applying additional 
knowledge (or additional explicit assumptions) . In addition, the use of interval arithmetic 
permits new approaches to the treatment of traditional problems of precision and error 
analysis. Finally, essentially the same paradigm can be used for both discrete and 
continuous variables. 
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1.0 Introduction 

One of the most imponant problems of applied mathematics which arises in most areas of 
the quantitative sciences and engineering disciplines is that of optimizing some function 
of many variables subject to various side constraints. The general case of real-valued non
linear functions of real variables, where the constraints may be non-linear and either of 
equality or inequality type, is especially difficulL This paper is an informal preliminary 
repon on the use of relational interval arithmetic to solve such problems under the restric
tion that all functions are explicitly and finitely expressible and have continuous first 
derivatives. 

As a physically meaningful example of this son of problem, consider the problem of min
imizing the cost of a heat exchanger, taken from section 7.2 of reference [4], and simpli
fied slightly by removing some obviously redundant constraints. It is expressed in BNR 
Prolog syntax in precisely the form required by the algorithm described in this paper. 

minimize( 

· 1300* exp( 0.6 * ln( 20000*6/(4*sqn(Tll *Tl2)+(Tll+ Tl2)))) 

+ 1300* exp( 0.6 * ln(l2000*6/{4*sqn(T21*122) +(T2l+T22)))) 

where [ 

Tll=500 -Tol, 

Tl2= 250- Til, 

T21= 350- To2, 

T22=200 • Ti2, 

Ti1>=150, Til=<240, 

Tol>=250,Tol=<490, 

Ti2>=150, Ti2=<190, 

To2>=210,To2=<340, 
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(EQ 1) 

(EQ2) 

(EQ3) 

(EQ4) 

(EQ 5) 

(EQ6) 

(EQ7) 

(EQ8) 

(EQ9) 

(EQ 10) 



J). 

O=<Fil, 0=<Fi2, 0=<FB12, 0=<FB21, O=<Fol, 0=<Fo2, 

2.941=<FE1, FE1=<10, 

3.158=<FE2, FE2=<10, 

FE2*(To2- 112)=600, 

FE1*(Tol- Til)=lOOO, 

150•Fil + To2*FB12- Til*FE1==0, 

150•Fi2 + To1 *FB21 - Ti2*FE2-=0, 

Fi1 + Fi2 = 10, 

Fo2 + FB 12=FE2, 

Fo1 + FB21=FE1, 

Fil + FB12==FE1, 

Fi2 + FB21=FE2 

(EQ ll) 

(EQ 12) 

(EQ 13) 

(EQ 14) 

(EQ 15) 

(EQ 16) 

(EQ 17) 

(EQ 18) 

(EQ 19) 

(EQ20) 

(EQ 21) 

(EQ 22) 

In this panicular case most of the constraints are in fact linear constraints, but the presence 
of some non-linear ones (Eqs. 14-17) plus the very non-linear objective function (Eqns 1 
& 2) make the problem difficult. Symbolic elimination of variables is not helpful, since 
there are bounding constraints on most of the variables, which cannot therefore be elimi
nated cleanly. Although it is not obvious, it is stated in [ 4] that the problem is in fact con
vex, and therefore has a unique local minimum, thus making the minimization problem 
much easier. Maximizing this function, however, is still difficult, since there will generally 
be local maxima on each facet of the boundary of the feasible region. The algorithm which 
we will describe below is completely general, and can be used to solve either of these 
problems. 

General problems of this son have a variety of difficulties at most levels. Conceptually, 
however, there is no problem with existence of solutions under mild conditions such as 
compactness of the set of feasible points and continuity of the objective function. The tra
ditional numerical approaches to optimization have usually been through some form of 
"hill-climbing" or gradient-ascent methods, with numerous variations to speed conver
gence. The first and fundamental problem is that in the absence of a priori know ledge, 
such as knowing that the problem is convex, a single such ascent is not sufficient since it 
will find only a local optimum. Many ascents leading to the same solution suggests that it 
may be the global optimum, but does not of course represent proof. There has not been, to 
my knowledge, any practical, systematic, and easy way to ensure (in a strong and precise 
sense) that a global optimum has been achieved. More modern techniques, like simulated 
annealing, seem to work quite well at finding good solutions on even very big problems, 
but still one never seems to achieve the desired degree of cenainty that the solution has in 
fact been reached. 

The second and more technical issue is simply to get one's favorite gradient (or whatever) 
hill climber to actually do what it is supposed to do. There is usually a cenain amount 
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(possibly implicit) of sampling and cu:rve-fitting going on in such algorithms, and the situ
ation may often be quite different than what the algorithm is assuming to be the case. 

The third complication is non-linear equality constraints. Here there is a basic choice in 
techniques. One way is to replace the constraints with penalty functions and continue to 
use the basic hill-climbing technique for unconstrained problems. In this case the effect of 
the constraints is to make the ·'terrain" rougher (in the topographical sense), thus making 
the first and second problems much more severe. The alternative is to use projected gradi
ent techniques, which requires programming of the partial derivatives, evaluating Jaco
bian matrices, and a matrix inversions (or equivalent) at every step. Naturally, each of 
these involve new problems as well as costs. 

The founh difficulty is due to inequality constraints, each of which may be either slack or 
tight at each feasible point. The slack ones can be ignored; the tight ones must be treated 
as equality constraints as described above. The problem is then that at each new point the 
algorithm reaches, the inequalities must be scanned to son out which are tight, which are 
slack, and which are violated. Violations must be addressed first to bring the point back 
into the feasible region; this requires (at every step) reevaluation of the consrraints, which 
may cause new violations, etc. 

It should also be remembered that simple phrases like "inven the matrix" can hide a lot of 
nastiness. In panicular, for problems in which there are redundant constraints (not uncom
mon) or local degeneracy the matrix will not be invertible; in other cases it may just be ill
conditioned and take you someplace you did not expect to ever get to. Similar things could 
be said about the infamous phrase "until it converges". It seems to me that it is a character
istic of these traditional techniques that there is a very large and rather scary gap between 
the high-level descriptions which one finds in journal articles and the concrete reality of 
the FORTRAN codes that implement them. A lot of things (such as, for example, all of 
classical numerical analysis) have been thrown into this gap in the last half-century, but 
the gap does not seem to have grown much smaller. 

2.0 The CLP Appio&ch 

Relational inte:rval arithmetic such as that of CLP(BNR) [ 1 ,2] offers an alternative to this 
traditional approach. Because it is tied to a strict logical framework and tracks in precise 
detail the consequences of floating-point approximations, it avoids many of the low-level 
pitfalls of the traditional approaches. Its meta-language (Prolog) makes it possible to 
encode abstract concepts and strategies directly into programming constructs, so that there 
is a fairly direct correspondence between the abstract theory and its implementation. There 
is, however, a price for these advantages, as one gives up not only the low-level control 
over execution (as one might expect), but also many of the traditional strategies, concepts, 
and presuppositions of traditional numerical computation. Our experience seems to sug
gest, in fact, that the technique of relational inte:rval arithmetic works more effectively 
when coupled with the pure abstract mathematical formulations, rather than with their 
lower level translations generally encountered in traditional approaches. 
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The algorithm described in this paper will illustrate this thesis. Read declaratively, it con
sists mainly of a (very redundant) statement of the classical mathematical conditions for a 
local optimum. Read procedurally (to the extent that this can be done), it appears to be 
doing an exhaustive search over the feasible region, including every lower dimensional 
facet of its boundary set. It involves some matrix inversion (or at least something like 
what we usually call matrix inversion), except it is done just once before we start, and we 
do not at that point know what the matrix really is, and this part of the algorithm is in fact 
somewhat optional. Finally, it gives as output not just the position and value of the opti
mum (and its sensitivity coefficients), but all the optima and a rigorous proof (modulo cer
tain hypotheses) of optimality. 

The basic idea of this general algorithm is simply to convert the original continuous prob
lem into a search over a discrete space of candidate solutions, and use branch-and-bound 
and enumeration techniques to solve the new problem. The candidate solutions will be just 
those states which might be local minima. The issue is then to formulate the necessary 
conditions for candidate solutions as a conjunction of explicit arithmetic constraints, 
which is precisely what the classical indirect method of optimization does. 

2.1 Tne Kuhn Tucker CoiHlitio:os 

In this section we will review the ideas behind the classical indirect method for expressing 
such problems: the Kuhn-Tucker equations. For a full treatment, see reference [3], espe
cially Chapter 9. We will deal with the case of minimization problems only, since mini
mizing -F is equivalent to maximizing F. Most of the difficulties in the classical theory 
have to do with finding sufficient conditions for a local minimum, but all we need is neces
sary conditions that are sufficiently difficult to satisfy that they serve to eliminate all but a 
few points. 

We start with problems in one unrestricted variable x and with no constraints. Then since 
the objective function f is assumed ro be continuously differentiable, a necessary condi
tion for a minimum at x' is that the derivative f' is zero at x'. (Of course, it may also be a 
maximum or inflection point there, but we don't care.) If xis restricted by x>=O, then we 
find that there are two cases for minimum at x': either [x'=O & f'(x')>O] or [x'>O & 
f'(x')=O]. See figure 1. These two disjunctive cases can be packed quite conveniently into 
the single conjunctive expression: x'>=O & f'(x')>=O & x'f(x')=O. (This is a cheap math
ematician's trick in some sense, but it is also the fundamental basis for this entire algo
rithm, since it avoids using "or" explicitly.) 
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f(x) 

X 

FIGURE 1. Necessary conditions for minimum: x>O & f'=O or x=O & f'>O 

For problem equality constraints of the form h(x)=O, the classical theory of Lagrangian 
multipliers tells us to look at the critical points of the Lagrangian function: 

L(x, A):= f(x) + Ah(x), 

by solving the simultaneous equations: 

oxL =ox f + A.Oxh = 0, 

o;.,L=h=O. 

(EQ 23) 

(EQ 24) 

(EQ 25) 

Note that the second equation is just the imposed constraint. The first equation involves 
the derivatives of the objective function and constraint function with respect to the state 
variable x, and the Lagrangian multiplier appears linearly. The value of the Lagrangian 
multiplier at any solution of equations 24 & 25 can be interpreted as a sensitivity coeffi
cient, that is, it is the rate at which that particular optimum value (of f) changes as a func
tion of the right hand side of the equation h(x)=O, i.e. if the 0 were changed to a small E. 

For inequality constraints of the form g(x)>= 0., we combine the previous techniques. First 
we define the slack variable s=g(x) and impose the condition s>=O. This results in the ine
quality constraint being replaced by an equality constraint s - g(x)=O and a 0 lower bound 
on the new state variable s. Thus we form the Lagrangian: 

L(x, A):= f(x) + A(s - g(x)), S>= 0, 

and the critical points will be given by solutions to the simultaneous equations: 

oxL = ox f- Aaxg = 0, 

o5L= A>= 0, 
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(EQ 27) 

(EQ 28) 
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a-,., L = s - g = 0, 

s>=O, 

A.s=O, 

(EQ 29) 

(EQ 30) 

(EQ 31) 

where X and S are regarded as independent variables, SO ax S = 0 =as X. Equations 29 and 30 
are equivalent to the original imposed inequality g>=O. Equation 31 is the complementary 
slackness condition, which says that either the constraint is tight (s=O) or else its sensitiv
ity is 0 ( =0). This set of relations is known as the Kuhn-Tucker conditions. 

For the general case, we suppose a se~ of state variables (xi, i= 1 ,.,n}, an objectiye function 
f(x)i), a set of equality constraints {hl(xi)=O, j=l,m} and a set of inequality constraints 
{gk(xi)>= 0, k=1, .. .1}. The Lagrangian function becomes: 

and the Kuhn-Tucker conditions are then: 

v\L = v X f +Lj llj v xhi -:Ek "-k v xrf = 0, 

V f4L =}ri = 0. 

V s L = A.k >= 0, 

V f4 L = sk- r/ = 0, 

(EQ 32) 

(EQ 33) 

(EQ 34) 

(EQ 35) 

(EQ 36) 

(EQ 37) 

(EQ 38) 

Equation 33 can also conveniently be written in terms of the matrices V'xhj andV'_,gk as 

(EQ 39) 

which separates the equality- and inequality-parts nicely. (These are sometimes referred to 
as the Kuhn-Tucker equations.)Equations 34 and 36 just impose the original problem con
straints, while equation 34 requires non-negativity of multipliers associated with inequal
ity constraints, and equation 38 are the complementary slackness conditions. 

These conditions are necessary conditions for a local minimum provided that a cenain 
regularity assumption holds. (The significance of this restriction will be discussed later.) 
These then are the constraints which are imposed in the algorithm, which will be described 
in the next section. · 

3.0 Description of Algorithm 

The algorithm consists of about nine pages of BNR Pro log source, which sits on top of the 
CLP(BNR) system. The CLP(BNR) system in turn consists of about fifteen pages of BNR 
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Prolog code which provides a run-time "compiler" for arithmetic expression as well as 
control and enumeration predicates, plus an "arithmetic inferencing engine" which is 
about 30K of C (or Assembler on 68XXX machines). Most of this engine code is for the 
25 or so primitive relations of the CLP(BNR) language, and is in fact code generated by 
Prolog programs from "abstract machine" source code written in Prolog. 

The algorithm can be conveniently decomposed into five parts: initialization and setting 
up the constraints for the feasible region, setting up the Kuhn-Tucker equations (including 
computing the symbolic gradients), "redundification", enumeration, and branch-and
bound. The form of the predicate, modeled somewhat on setof, is: 

minimize(F where Constraint_List, Y, Multipliers) (EQ 40) 

where initially F is an arithmetic expression, constraint_List is a list of equality(=) or 
inequality(=< or>=) arithmetic constraints involving unbound (and unconstrained) vari
ables, Y is a logic variable, and Multipliers is a logic variable. On (each) success, Y is 
the value ofF at a global minimum, all the variables ofF and Constrair.'t _ ::.:. S"C. have 
their corresponding values, and Multipliers is a list of values of Lagrangian multipliers 
corresponding to the constraint list. By "values" here is meant in general an interval, i.e. a 
Prolog variable constrained to lie in a closed real interval, however in some cases ( espe
cially "0.0") the variable may actually be instantiated to a number. 

There is a current restriction that the entire problem must be given explicitly in the call. 
This means, for example, that there can be no user-defined functions in the arithmetic 
expressions. It would be relatively easy to relax this somewhat and allow a simple 
"macro" facility, e.g. a tanh function defined in terms of exp. But for arbitrary user
defined functions (e.g. a recursive function definition or fixed point definition) the prob
lems of computing symbolic derivatives would be fonnidable. For much the same reason, 
we do not allow any of the incoming variables to be intervals, since this would allow the 
existence of "hidden" constraints. . 

Multiple solutions on output, although rare, can happen for several reasons. One obvious 
and common cause is symmetry in the problem. Another possibility, but unusual, is for 
two local optima to be so close in value that the finite precision arithmetic prevents us 
from definitely choosing one or the other. A third reason is redundant constraints at the 
optimum, which means that there is more than one distinct set of Lagrangian multipliers 
for the same state, and the predicate returns these as two different solutions.(See Figure 2 
below.) 

3.1 Initialization and Constraint Setup 

The first step in the algorithm is to collect a list, with duplicates removed, of all variables 
used in the problem statement. Each variable is checked to ensure that it is not already 
constrained, as mentioned above, and is then declared to be real, i.e. an interval with 
unspecified bounds. The list of interval-variables, state variables, will be used to define the 
gradient operator. 
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The second step is to son out the list of constraints. For each constraint we decide whether 
it is equality or inequality and transfonn it to the standard fonn: F op o, where op is either 
== or >=. The current implementation perfonns this standardization as a separate pass 
over the constraint list, and returns the standardized constraints in two separate lists 
depending on type. (The rest of the processing is very similar for the two types, but it is 
convenient later to have two separate lists.) The transfonnations are given by: 

nor.mal_for.m_of_constraint(El== 0, El==O). 

nor.mal_for.m_of_constraint(El== E2, (El-E2)==0). 

nor.mal_for.m_of_constraint(El>= 0, El>=O). 

nor.mal_for.m_of_constrain~(El>= E2, (El-E2)>=0). 

nor.mal_for.m_of_cons~raint(El=< E2, G) 

:- nor.mal_for.m_of_constraint(E2>=El,G). 

Then the gradient of each constraint with respect to all the state variables is computed 
symbolically, using some Prolog rules for panial differentiation. Since differentiation pro
duces many expressions of the fonns x + 0 or 1 *x, some minor simplification is done dur
ing differentiation. The gradients expressions are "compiled" into CLP(BNR) constraints 
and returned as a list of intervals: 

gradient ( [ J, F, [ J) • % gradient (Variab:.es, Ei<:pression, Result) 

gradient ( [X, Xs .. ] , F, [FX, Ds .. ] ) :-

pd(F, X, DxF), %calculate partial derivative wrt X 

FX is DxF, % compile expression DxF to in~erval 

gradient(Xs, F, Ds). 

After the expression G has been differentiated, we execute s is G to construct the interval 
network for G, and s op 0 to impose the constraint. Note that for inequalities the variable s 
represents a slack variable. For each constraint we create a new interval variable L to be its 
Lagrangian multiplier; it is unbounded for equality constraints but constrained to be non
negative for inequality constraints, which also impose the complementary slackness con
ditions L*S=O at this time. The multipliers are returned in an output list. Another output 
list for inequalities also returns the formal product L*S which will be used later for enu
meration. 

form_ineq_constraint(G >= 0, Vlist, Grad, L, L*S) :

gradient(Vlist, G, Grad), 

S is G, % define slack variable 

S >= 0, % impose original constraint 

L >= 0, % impose Kuhn-Tucker non-negativity condition 

S*L == 0. % impose complementary slackness 
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Finally, the objective function's gradient is added to the list of gradients for the equality 
constraints. This is done conveniently by adding it to the end of the equality constraints 
and treating this as the base case. The final output objective variable is created at this time. 

At the end of pan 1 we have imposed all the constraints, defined the objective function, 
defined the multipliers, and imposed the complementary slackness conditions. The multi
pliers have not been coupled to the state variables as yet, nor have the final Kuhn-Tucker 
equations (Eq. 33) been imposed yet. Hence failure at this point or before must be due to 
inconsistent constraints, or non-differentiable functions. 

3.2 Kuhn· Tucker Equations 

At the end of pan 1 we have two vectors of Lagrangian multipliers, and two Jacobian 
matrices, and can form the Kuhn-Tucker equations (Eq. 33) for coupling the state vari
ables to the multipliers by doing two matrix multiplications as in Eq. 39. The algorithm 
actually does the matrix multiplications for the two sides separately, each producing a dif
ferent vector, and these vectors are then equated in a separate step. 

3.3 Redundification 

This step is very strange by conventional ways of thinking, and it is very strange on many 
levels. First of all, it is not logically necessary at all, but is solely for purposes of improv
ing performance by making the problem statement harder! Early versions of this algorithm 
did not include it at all, and were able to do simple optimization problems quite well. 
However, as the size and difficulty of problems was increased, the enumeration costs 
became prohibitive until this step was added. For the sample problem given earlier, for 
example, it reduced the enumeration time by a factor of about 1500. (Of course, it also 
increased setup time considerably (a factor of 3 or so), but this cost is largely controllable 
and is expected to become substantially reduced in the near future.) It should also be men
tioned that almost half of the source code is currently devoted to this step. 

The basic idea of this step in general terms is very simple: the direct statement of a set of 
simultaneous equations will generally produce a constraint network with too many large 
fixed points. However, if any logical consequence (i.e. arithmetic relation) of the existing 
constraints is added to the system it will eliminate some (hopefully many) of these extra 
fixed points while leaving the "nue" fixed points unchanged (becausethey are logical con
sequences). 

For those who prefer to think in process algebra terms, these extraneous fixed points are 
essentially deadlocks: A and Bare both in the "I won't narrow before he does" mode. But 
unlike the usual situation in communication systems, where adding a new communicating 
process just results in the deadlock absorbing the new participant, here adding extra con
straints resultS (or may result in) breaking the deadlock. 
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The details of the redundification step, because of their general interest and utility, are dis
cussed at length in section 4. 

3.4 Enumeration 

The task of enumeration is to force separation of the various point solutions. (Since the 
join of two solutions is necessarily a solution in a narrowing algebra, this forcing must be 
done by some external mechanism.) As we remarked in section 1, the complementary 
slackness conditions L*S==O (with S>=O, L>=O) is really shorthand for the statement 
"s==O or L==O". This expansion, with "or" being a Prolog choicepoint, is basically what 
we do during the first phase of enumeration. Geometrically speaking, setting the slack 
variable s to 0 means that the corresponding constraint is tight, while s > 0 (and hence 
L==O) corresponds to being "interior" with respect to a paiticular constraint and so this 
multiplier drops out of the Kuhn-Tucker equations. Each pattern of zero and nonzero val
ues for the different slack variables represents a different m-dimensional facet of the n
dimensional polytope defined by the inequality relations. For redundant problem con
straints it is possible to have both s==O and L==O, and this leads to multiple solutions with 
the same state but different sets of multiplier values, as seen in figure 2. 

FIGURE 2. Redundant problem constraint 

Note that since the complementary slackness conditions were imposed as CLP(B~"R) con
straints in part 1, if either s or L become nonzero because of the other constraints present, 
the other one will automatically become 0. As a result, for a problem with say 16 inequal
ity constraints, the enumeration which formally has 2**16- 65,000 branches, may in fact 
have very few. Some will be pruned away by failure (i.e. there could be no possible solu
tion to the Kuhn-Tucker equations on that facet), others will be determinized by previous 
decisions forcing either s or L to 0. This is, of course, the same pruning effect we see in the 
semantic version of the Davis-Putnam Procedure with unit resolution and discrete con
straint systems such as CHIP. The basic enumeration code is thus apparently very simple: 

complementary_slackness([], _). 

complementary_slackness([L,Ls .. ], X):-
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alternative(L, X), 

complementary_slackness(Ls, X). 

% L.,..S -v1here L is multiplier, S is constraint 

alternative(L*S, X):- S==O. % constraint is tight 

alternative(L*S, X):- S > 0. % constraint is slack 

It should be mentioned that we enumerate in such a way that we set S==O first, i.e. we save 
the interior of the feasible region until last. This reflects a belief that practical industrial 
problems seem often to have solutions at a boundary point, so it makes sense to search the 
low dimensional facets first Furthermore, these solutions (which seem to be easier in gen
eral to compute) provide fodder for the branch and bound algorithm, and thus may help to 
prune the search space in the potentially most difficult case, which is the interior of the 
feasible region. 

Finally, after the enumeration of the complementary slackness conditions succeeds, if the 
state variables and multipliers are not already reduced to points (or "pointlike" intervals), 
it is necessary to use some general purpose forcing technique to pin down the possible 
solutions on that facet. In particular, the interior of the feasible region, if it has many criti
cal points, will need to be decomposed so as to isolate them. So far, for relatively simple 
problems, the solve predicate of CLP(BI\TR) seems to be adequate for this. In more com
plex cases we expect to use a new control predicate presol ve, which is much more 
"intelligent" in the sense of exploiting much more specific knowledge of the specific con
straint network. 

3.5 Branch and Bound 

The last component of the algorithm is the branch-and-bound strategy, which works 
exactly the same here as it does in discrete constraint logic programming. That is, one has 
a generator of candidate solutions, and keeps the value of the best solution seen so far, and 
imposes the additional constraint that the next solution must be at least as good as the best 
seen so far. 

There are two variations on this strategy in BNR Prolog. One makes use of Prolog side
effect primitives to remember the first solution of the current problem. Then the problem 
is restarted from the beginning of the enumeration with the added constraint that the new 
solution must be as good or better than the previous, in which case it is added or replaces 
(respectively) the previous solution. This is repeated until the search fails, in which case 
the remembered solution(s) are recalled non-deterministically. 

The second variation is more subtle insofar as it is done entirely in the CLP(BNR) con
straint network using a special (CLP(BNR) side-effect) primitive which enables one to 
export bounds from one branch of an or-computation into subsequent branches. In this 
case the enumeration is only done once, but each success tightens global constraint which 
makes subsequent successes harder. This naturally generates a monotone sequence of 
improving solutions, so something like setof is needed here to capture the sequence as a 
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list, from which all but the last one(s) can be removed. (We suspect that this approach may 
usually be more efficient than the previous approach, although we have seen certain 
instances where it is not. ) 

4.0 Results for Example Problem 

For the example problem given above, the entire solution process requires about 25,000 
primitive interval operations, or about half a second on a HP-400 series machine to do the 
interval arithmetic. (Setting up all the equations takes roughly an order of magnitude 
longer than this in our current implementation.) Only two facets of the -250000 possible 
facets are actually visited during enumeration; all other branches failing immediately. 
These two solutions have the same state and value, but different multipliers, and are due to 
a redundant constraint in the original problem statement. 

The solution found (twice) has Tol=310.0, To2=210.0, Ti1=210.0, Ti2= 150.0 and a cost 
of $56,825.83 in agreement with the "best known solution" given in reference [4]. 

5.0 Redundification and Variable Elimination 

The general strategy of"redundification" has been described above. This can be illustrated 
nicely with a very simple example: the pair of equations Cl=X + Y, C2 =X- Y. When Cl 
and C2 are known constants, the unique solution is of course the intersection P of the two 
lines representing the two equations as shown in figure 3. 

FIGURE 3. The Geometric Solution is P 

However, the narrowing operator constructed from the two equations has as "fixed points" 
every square centered on P and with corners on the two lines, as shown in figure 4. (This 
case is very rare in two dimensions, for if either line is tilted slightly or bent slightly most 

'{;sing Interval Arithmetic for ~on·Linear Constrained Optimiution.\1arch 3. 1993 12 



of these fixed points will vanish, but cases like this becomes more common as the number 
of dimensions increases.) 

FIGURE 4. There may be extraneous fixed points: every square centered on P. 

Adding a redundant equation, i.e. any other line through P, eliminates all the fixed points 
but P itself, as shown in figure 5. 

FIGURE 5. Adding redundant constraints destabilizes fixed points 

In particular, adding a vertical or horizontal line through P, as in figure 6, will eliminate 
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FIGURE 6. Pivoting as adding redundant constraints 

all the extra fixed points most efficiently. But this is just the "pivoting·· operation used in 
Gaussian elimination. 

In general, consider two equations: 

Bl=Cl*X+Dl, 

B2 = C2*X + 02. 

(EQ 41) 

(EQ 42) 

If these equations hold, so does 

U*Bl + V*B2 = (U*Cl + V•C2)*X + (01 + 02) (EQ 43) 

for any real numbers (or real valued functions) U and V. In particular, if we use U=C2 and 
V=- Cl, we will get the consequent 

C2*Bl- Cl*B2= 0* X+ C2*Dl- Cl*D2, (EQ44) 

i.e., with X eliminated. Passing over to interval arithmetic, and making sure that we use 
only interval arithmetic to perform all arithmetic steps, we can get a redundant equation 
which is guaranteed (since it no longer depends on X) to eliminate many extra fixed points 
(if there are any). (Note that doing this with ordinary floating point arithmetic does not 
work, since the resulting equation will most likely be formally inconsistent with the origi
nal pair because of rounding errors.) 

Of course this is just pure algebra of the most elementary sort, and it is exploited all the 
time in traditional numerical programs, isn't it? One thinks, of course, of the usual algo
rithms for matrix inversion and the simplex method of linear programming. But most of 
the time (in the real world) the operations are performed in floating point arithmetic, for 
which the required axioms are not true, and so the implication has been lost along with 
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correctness. Funhermore, these applications are mostly only done on numbers, not func
tions, so the full power of this simple algebra is hardly exploited at all. 

Now in the Kuhn-Tucker equations (Eq. 39) we conveniently have matrix expressions of 
the form MX= Y where M is an nxm matrix of interval quantities, X is an m-vector of 
intervals (representing Lagrangian multipliers) and Y is an n-vector of intervals. The fact 
that there may be a number of constraints imposed on or between any of these quantities is 
irrelevant. Therefore, we can systematically reduce M to an upper triangular form by pivot 
operations of the above general type, with each pivot operation generating a number of 
redundant equations. (As an optimization, whenever the chosen pivot element is never 0, 
we can use the standard pivot operations which involve dividing by the pivot, exactly like 
in the usual Gaussian elimination algorithm.) Since M in general is not even square (let 
alone invertible), the last step in the triangular reduction has different cases depending on 
whether n >m, n=m, or n<m, as seen in figure 7. If one wishes, one can put some extra 
effon into exploiting sparsity, or trying to choose pivot elements that do not contain 0 or 
are very narrow intervals, or suchlike. 

= ~ 
underdetermined 

square 

overdetermined 

FIGURE 7. Pivoting cases 

This algorithm is very much like a traditional one: apan from its being written in Prolog, it 
looks like a conventional algorithm, and the difference is entirely in the meaning and the 
behavior. In BNR Prolog and CLP(BNR) one can in fact just write it as if it were a tradi
tional one for numerical matrices and test it, and then go back and make the tiny modifica
tions required to handle intervals. Usually the intervals do not change much until near the 
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very last step; if the matrix M and the right side vector Y are essentially known, the last 
step fixes one variable in X and this fixes another and so on. For the Kuhn-Tucker equa
tions, where there are generally matrix products on both sides of the equation, it was found 
best (for ease of debugging) to treat each side of the equation separately by introducing 
two new vectors Y andY', and only afterwards coupling the two systems together by 
equating Y andY'. This can trigger a dramatic amount of narrowing, and in some prob
lems will just produce the answer directly without enumeration at all. 

Naturally the Kuhn-Tucker equations, which are linear in the Lagrangian multipliers 
(regardless of how non-linear they may be with respect to the state variables) will respond 
very well to this tteatment However, ir is nor necessary that the equations be linear equa
tions for this technique robe applicable. All that is required is that they can be written as 
linear forms, where the coefficients can be any quantity at all. More generally, other oper
ations besides* and+ and=, if they satisfy similar axioms, will yield similar algorithms. 

6.0 Proof Procedure 

The method described above, unlike traditional methods, can be regarded as an automated 
proof procedure, modulo certain assumptions. It is worthwhile to make these assumptions 
explicit. 

First, obviously we are assuming the correctness of the implementation. This includes 
especially the floating point implementation, the interval arithmetic "engine" implementa
tion, the translation of the equations into interval networks, and the Prolog programs 
which implement the algorithm. Some degree of strict, even formal, verification of all this, 
while not easy, is at least conceivable. In particular, some strict verification of IEEE float
ing point implementations may be required for other purposes. (Unfonunately, some cru
cial issues, such as the precision of transcendental functions is not covered by the 
standard, nor is it usually specified by the vendors to the degree necessary for interval 
arithmetic.) We are currently looking at ways of doing formal verification of primitive 
interval operations in cooperation with Dr. Bruce Spencer of the University of New Brun
swick. 

Second, the Kuhn-Tucker conditions are. not strictly necessary, but depend additionally on 
a regularity assumption which essentially says that the optimum does not occur on a cusp 
as shown in figure 8. A sufficient condition for this is that the Jacobian matrices appearing 
in the first Kuhn-Tucker equation have maximal rank. Alternative formulations expressed 
in terms of spaces of feasible directions avoid this technicality, but thereby lqse the valu
able practical advantage of generating the values of Lagrangian multipliers as a by-prod
uct. There are some subtle issues here which need to be examined very closely. One issue 
is that rank maximality is generic, so an infinitesimal change in the problem (e.g. by alter
ing a coefficient slightly) should restore regularity. Therefore, it is at least plausible that a 
treatment by interval arithmetic in which all constants are fuzzed slightly would be unable 
to miss such a solution. On the other hand, it is also unclear whether such an unstable solu
tion is really a valid solution to the engineering problem, even if it is a solution to the 
mathematical problem. 
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FIGURE 8. The leftmost feasible point is on a cusp 

Third, the branch-and-bound strategy relies on the existence of solutions; interval arith
metic, however, only guarantees possible existence. As a practical matter, if a solution is 
known to 20-digit accuracy and all consrraints are satisfied to such accuracy, one does not 
hesitate to accept it, and the question of the theoretical existence of real numbers exactly 
satisfying the Kuhn-Tucker equations is purely academic. It would be nice, marhemari
cally speaking, if we could provide such a theoretical guarantee, but, philosophically 
speaking, it is unclear what such a guarantee could possibly mean, since one's actions are 
not affected by it. 

7.0 Conclusions 

We have presented a general and apparently practical algorithm for solving consrrained 
optimization problems by using relational interval arithmetic. It is based on using Kuhn
Tucker conditions to conven the problem into one with a discrete solution set ( viz. find all 
possible Kuhn-Tucker critical points), and then using branch-and-bound to find the mini
mum such critical point. The complementary slackness conditions are used in pan to drive 
the enumeration of solutions. Another imponant pan of this algorithm, in terms of effi
ciency, is the use of pivoting operations to provide systematic redundancy in the constraint 
network, and it is noted that this is a general technique of interval arithmetic and not lim
ited to linear problems. 

There are several preliminary conclusions which may be drawn from this exercise. One is 
that the formulation of mathematical problems in interval arithmetic is quite different 
from traditional implementation techniques. It is not just a matter of shoner programs with 
a different structure and a declarative reading; deeper issues such as "what is mathemati
cally relevant?", "what is difficult?", and even "what is the meaning of a solution?" are all 
transformed in significant ways. There is, or can be, a very close relation between the 
implementation and the abstract mathematical theory it embodies. 

We do not know what the practical limits of this technology are, or may be in the future. 
There has been such rapid progress in the interval arithmetic technology recently that 
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problems, such as this one, which we would have consider~d beyond our capabilities a 
few months ago, now appear very approachable. 
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Abstract 

Relational interval arithmetic can be used in the numerical solution of 
ordinary differential equations. although the overheads can be substantially 
higher than for conventional arithmetic. In return for the increased 
overheads, relational interval arithmetic can offer several advantages which 
are difficult to achieve using traditional approaches. The first and most 
fundamental of these is correctness, in the sense that the interval solution 
when properly implemented is guaranteed to contain the true trajectory; that 
is, both conventional truncation error and roundoff error can be replaced by 
an interval of uncenainty in the solution. The second advantage is symmetry : 
the same formulation solves not only initial value problems, but also the final 
value problem, as well as problems in which there is panial information at 
both ends. 

1. Introduction 

The conventional approaches to the numerical solution of ordinary 
differential equations have several problems. The most fundamental 
of these is that these techniques introduce errors at every step of the 
integration: truncation error which results from using a finite order 
approximation to a Taylor series, and ·roundoff error due to floating 
point arithmetic. Another set of problems is due the limitations of 
functional language: one can directly solve the initial value problem 
(or the final value problem) but other boundary conditions require 
iteration of the integration procedures, with a great increase in the 
complexity of the code and the cost of solution. Iteration is also used 
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to investigate structural stability issues when the equations contain 
parameters whose value is not known precisely. 

Thus although it is possible to implement something like the 
traditional integration algorithms in interval arithmetic, there is no 
real incentive to do so as the results would still suffer from at least 
some of these problems. One is therefore led to reformulate the 
integration algorithms in ways which can better take advantage of 
the formal properties of interval arithmetic. We will dev~lop a 
family of such algorithms in the remainder of this paper, using the 
language of CLP(BNR). 

2. Ordinary Differential Equations - General Framework 

First we establish some notation. The differential equation will be 
written generically as: 

dy/dx = f(x,y) 
where y may be a vector (as indicated by the boldface). We assume 
that we are interested in this equation within a box ( an approximate 
"flow box") defined by closed intervals for x and each element of y. 
We also assume some degree of differentiability of f (with respect to 
x and each y) within this box; the precise degree required will 
depend on which algorithm is being used. As usual, if f does not 
depend on y, the algorithms reduce to simple quadratures. 

As a Prolog predicate, we then get something of the conceptual form: 

integrate(ODE,Initial,Final,Flowbox,Control,Output). 

We want all the variables of the problem to be represented by 
uninstantiated (and unconstrained) logic variables. Furthermore it is 
necessary that we be able to match these problem variables with 
their corresponding initial and final value terms and their flow box 
bounds. The simplest way to accomplish this is to express the ODE 
explicitly (i.e. with the left hand side present ), using the syntax: 

X I> [Yl1 ••• Yn] := [ Fl1 ••• Fn] 

where X and {Yl, ... Yn} are free logic variables, {F 1 1 ••• F n} are 
arithmetic expressions in {X,Y 11 ••• Yn }, and we have introduced the 
... 1 >" infix operator to denote differentiation (of the right argument(s) 
by the left argument(s)). It is convenient to represent points along 
the curve (e.g. initial and final values) in the form [X, Y s] where Y s is 



the list of y values. In terms of control strategy, we will limit 
ourselves to those based on binary subdivision of the range of X, so 
Con t r o 1 is an integer indicating the number of doublings of the 
interpolation points; in particular, Co n t r o 1 =0 indicates no 
subdivision. (Note that this assumes that the initial and final values 
of x are known precisely in advance, so they can be represented as 
ordinary floats rather than intervals.) Other control regimes, such as 
a variety of adaptive techniques, would be possible but are outside 
the scope of this paper. Finally, we assume that 0 u t put. takes the 
form of a list of points along the curve, which we will treat internally 
as a difference list of form "Head I T a i 1 ". 

With these assumptions in place, the code takes on the following 
general shape: 

integrate(ODE,Initial,Final,Fl~wbox, Control, Out):-
setup ode( ODE, Method), 
$integrate(Control,ODE2,Initial,Final,Flowbox, O~t/~~). 

Sintegrate(O,Method,Initial,Final,Flowbox, [P,?s .. ]/PsJ :
h.:t.hod( Initial, Fi.nal, Flowbox, ?) . 

$integrate (Control,Method, Initial, Final, Flowbox, L/E) :- C:::-.-::=::2..>0, 
en is Control - 1, 
$interpolate( Initial, Final, Flowbox, Midd~el, 
$integrate (Cn,Method, Initial,:"'..iddle, Flcwbox, :::./!·1), 
Sintegrate(Cn,Method,Middle, Final, Flowbox, ~/E). 

The function of the second clause of $ integrate is to insert a new 
point midway between the initial value of X and the final value of X, 
and to construct a vector of new Y values at this point; the flow box 
is used to initialize the ranges of these Y values, and is assumed to be 
of the canonical CLP(BNR) form [real (YlL, YlHl, ... real (YNL, YNHl J. 

$interpolate ( [XO, YOs], [Xl, Yls], Flowbox, [XM, [YMs .. J J) :
XM is O.S*(XO + Xl), 
YMs : Flowbox. 

Finally, set up_ ode must create/select the appropriate code for the 
algorithm being used, and the base clause for sinter p o 1 ate must 
execute it. Since a separate instance ·of the basic integration routine 
will be needed at each subinterval, the appropriate code will be a 
predicate call and we must arrange for it to be called with the proper 
arguments. Hence we have assumed that the variable Met h oct is 
bound to a symbol naming this dynamic predicate, and its calling 
sequence is 



Method( Inicial, Final, Flowbox, Output). 

This completes the general framework for our family of algorithms. 
It remains to fill in the various versions of setup_ode for the specific 
members of the family. 

3. Interval Eulerian Integration 

In order to keep things as simple as possible to begin with, we start 
with the Eulerian algorithm, which replaces the differential equation 
by the difference equation, which has the initial value form 
(3 .1) y 1 - YO = f(xo,yo) dx 
and a symmetrical final value form 
(3.2) Yl- YO= f(Xt,Yl) dx. 
Both are, of course, fundamentally incorrect and only provide an 
approximation to the solution. Both can be thought of as arising from 
approximating the correct integral form: 

(3.3) Yl -yo= fx f(x,y) dx, 

where the X denotes the interval (xo ,x 1 ]. An interval form can be 
derived from (3.3) since 

(3.4) m dx s fx f(x,y) dx s M dx 

whenever we have m S f(x,y) s M over interval Xo 1 = (xo,x I] and so 
we have the inclusions: 
(3.5) f(x,y) e f(Xot.Y) and 

(3.6) fxot f(x,y) dx e f(Xot.Y)dx and 

with Y any valid range estimate for y over interval Xo 1· In effect, we 
are using the natural interval extension of f to compute Lipshitz 
bounds, from which we can genet"ate an inclusion for Y 1. This leads 
to the following interval equations: 
(3.7a) Dx is Xl - XO, OX: real(O,Dx), 
(3. 7b) F <= f(Xot.Yot) % inclusion 
(3 .Sa) Y 10 - Yo == F * Dx, % - vector subtraction 
(3.8b) Y 1- Yo== F * DX. % .* scalar multiplication 

The first step is to create the "dx" variables: Dx spanning from XO to 
XI, and DX spanning from XO to any point within the [XO,Xl] interval. 
The first inclusion equation (symbolized by "<=') evaluates the rhs of 
the ode in the box (Xo 1, Yo 1 ), but blocks any attempt to backwards 
narrow from its output. The next equation creates the fixpoint 
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computation to narrow Yo 1 , and hence the interval slope f(Xo 1, Yo 1). 
Then the last extrapolates the resulting slope to the end of the 
interval in order to bound Y 1· 

Equations (3.7) and (3.8) lead to the following code for the 
integration step. (For expository simplicity we are assuming that the 
CLP language has been augmented to handle vector operations.) 

euler( [XO,YO], [Xl,Yl], Flowbox, [Xl,Yl)):
XOl: real(XO,Xl), 
YOl : Flowbox, % range of Y in interval XOl 
Dx is Xl - XO, % assumed dx>O 
DX: real(O,Dx), %or: U:real(O,l), DX is U*Dx, 
f( XOl,YOl, F), %range f over interval XOl 
{ YOl - YO = F*DX}, % "forward predict:or" 
{Yl -YO== F*Dx}. % extrapolat:on 

The integration step assumes that the rhs of the original equation has 
been converted into a predicate f(X,Y,F) and then uses (3.8) to set up 
an implicit equation for YOl in line 6 (the unknown range of f in the 
interval DX), and an explicit equation in line 7 for Yl. Lines 5 and 6 
establish a "feedback loop" which narrows YOI to some fixed point. 
Note that the last two lines are vector relations, with "-" denoting 
vector difference and * scalar multiplication (DX,dx being the scalars). 
The output is chosen to be the pair Xl and the (interval vector) Yl 
which is guaranteed to contain the correct value, but other choices 
like [DX,Y] which bound the entire curve are sometimes useful. (Line 
4 as written assumes that xl > xO, but an alternate form given in the 
comment will work in either direction.) 

The setup code which is responsible for creating predicates for f/3 is 
then simply: 

setup ode( X I> Y := Exp , euler):
-assert( f(X,Y,F):- [F <= Exp ]) . 

Note that the (also vector) inclusion operator <= has been used m this 
predicate. 

4. Examples 

As an example we consider the nonlinear ode 
4.1 dy/dx = -2xy 
with known solution 
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4.2 y= C exp(-x2), 
over the interval [0, 1.0]. By inspection y is decreasing and bounded 
below by the singular solution y=O, so the flow box is just [ [O.O,yo] ], 
but we will use the estimate [ [0.0, 1.0] ]. Note that the expression on 
the right hand side of 4.1 is interval convex ( since x and y are 
nonnegative) so the bounds estimates given by the natural interval 
extension would be tight if x and y were independent; however, as 
y(x) is decreasing in x, the extreme values achieved (at the NW and 
SE corners of the XY rectangle in the first quadrant ) will be much 
closer than the interval bounds estimates based on the NE and SW 
corners. For this reason the uncertainty estimates will be quite 
pessimistic as we will see below. 

1 

I I 

y 

0 
0 X 1 

dy/dx := ((-2 * x) * y) 

Case la: Initial Value problem, YO=l.O, Control=4 . 
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dy/dx .- (( -2 " x) " y) 

Case lb: Initial Value problem, YO=l.O, Control=5. 

The width (delta) of the final y value depends on the control 
parameter and the number of subdivisions N used as follows: 

Control 
2 
3 
4 
5 

N delta(Y 1) 
4 0.85205 
8 0.55412 
16 0.28066 
3 2 0.14079 

One can see that each doubling of the number of subdivisions 
reduces the uncertainty by about a half. although this rate will 
eventaully diminish for large enough N as roundoff error begins to 
dominate. 
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0 X 1 

dy/dx .- ((-2 * x) * y) 

Case 2. Final value problem, Yl = 1/e=0.36788 . 

The symmetry of the formulation and the relational nature of the 
interval arithmetic permits the known final value to propagate 
backwards through the equations, as expected. 
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dy/dx .- (( -2 • x} * y} 

Ca~ 3. Both together, YO=l.O, Yl=l/e = 0.36788 . 

This would, of course, be considered an overdetermined problem 
classically speaking. Note that as one might expect the uncertainty is 
largest in the middle, away from the boundary conditions. Since the 
integration routine is correct, the imposition of a final value actually 
on the correct trajectory will always succeed, while those sufficiently 
far off the trajectory will cause failure for sufficiently high number 
of subdivisions. (Points sufficiently close to the true trajectory will 
not cause failures because with very fine subdivisions the effect of 
tracking rounding errors will keep the intervals from vanishing.) 

It is apparent from these cases that one is getting a correct 
trajectory, and that the algorithm works symmetrically in both 
directions and even both directions at once. However, it is also clear 
that the interval of uncertainty is very large and only improves 
slowly with subdivision as one would expect with a first order 
method. The next few examples explore other aspects- or problems
of the technique. 
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0 ~::::-o ________ x _____ .~...~.....~...~.........,1 .. s 

dy/dx = ((-2 * x) • y) 

Case 4a: (a pathological case) initial value problem with x 1 = 1.5 

Here we have tried to extend the solution farther along the x-axis, 
but the solution becomes relatively useless shortly after x=l.O . The 
problem here is due to the flow box on y: the initial estimate of [0, 1] 
refuses to narrow (at the low end), since the lower bound of the 
extrapolated yl remains at 0; as a result, the possibility of a leveling 
off is not eliminated either. Reducing the step size postpones this 
effect only slightly; another strategy is needed. 
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II 
0 

0 X 1 .5 

dy/dx .- (( -2 • x) • y) 

Case 4b. Use of absolve ( YF, 3) on final Y value in case 5. 

The overly large fixed point for the previous case contains points 
which when extrapolated backwards will be unable to match up with 
the forward extrapolation. These can be trimmed by using absolve; 
in this case a modest absolve(YF,3) done on the final value eliminates 
some of the problem. 
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0 
0 X 1.5 

dy/dx . - ((-2 * x) * y) 

Case 4c. Use of absolve ( Yl 1 2) at each step. 

In this case, we have modified euler to use ab s c::. ve ( Y 1 1 2 ) after each 
step. This is very expensive in time, but has trimmed the error 
considerably ( especially in the second half of the interval where we 
note the graph is convex upward) as well as overcoming the lower 
bound "stuck" at 0. Note that there appears to be a slight oscillation 
in the size of the error bars: this can be explained by noting that 
error bars expand until their non-viable fringes are large enough for 
a b so 1 v e ( _, 2 ) to eliminate. The prohibitive cost of this approach 
makes it impractical generally, but it does suggest that it might be 
useful to employ a b s o 1 v e whenever there is insufficient narrowing of 
Y. 

5. Trapezoidal integration- Geometric . 
vers1on. 

The first order Eulerian integration algorithm has a problem with 
accuracy--although correct, the intervals of uncertainty are large, 
and- what is worse- they only improve slowly with subdivision. To 
improve matters· we can use a second order inclusion in the 
integration step. Thus we return to equation (3.3) 

(3.3) Yl -YO= Jx f(x,y) dx, 
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and try to refine our estimate of the definite integral. In this section 
we will use elementary geometric arguments (with y a scalar), and in 
the next section we will develop a more formal approach that can be 
generalized more easily. If we look at a graph of f (regarded as a 
function of x alone along the true trajectory) we see that the Eulerian 
interval approximation computes the area under it as the interval 
[mdx,Mdx] as shown in Fig 5.la , with an "uncertainty" (M-m)dx 
where m and M are bounds generated by the natural interval 
extension of the original formulation of f. 

Ml------~--+ 

f nn ···························· ···•················•······· ·················•·········· ····•·•············•········ 
··················•········· ..............•....•........ ......•...•................. .............•.•............ ..........•................. ...........•................ ......•..................... ......•...•....•............ ............................ 
····-··········-············ ............................ .............•...•.......... 
··•························· ···························· ............................ 
···························· ............................ ............................ ...................•........ ...............•............ ............................ 

dx 

Figure 5.la 
Eulerian approximation 

··•························· ··•························· ···························· ............................ 
···························· ···························· . •••....•••.......•••...•.•. 
···························· •··•··•••··········••···••·· . .......................... . 
·•••·•·•••··•·•······•····•• ························-··· ···························· ········•··················· ···························· . .......................... . ............................ 
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·••··•··•·····•··•••····•••• •.•......••••......•.•...•.. . •......•.•.....•.•••....••. 
···························· . .......................... . 

dx 

Figure 5.lb 
Trapezoidal approximation 

Geometrically speaking, trapezoidal integration would use the 
approximation given in Figure 5.1 b, which uses the average of the 
values of f at the beginning (fo=f(xo,yo)) and end (ft =f(x 1 ,y 1 )) of the 
interval. (For simplicity let us assume that we know both of these 
values exactly; this assumption will be relaxed later.) If the ·total 
derivative of f with respect to x is co~_stant in the interval, this result 
is obviously exact. But in general- as shown- there is an error 
represented by the area between the graph of f and this straight line 
interpolation. 

If we have bounds [b,B] for the total derivative of f, we get a picture 
as in Figure 5.2, where the graph of f is now constrained to lie within 
the parallelogram P formed by the linear equations: 

• 



m(x -xo) ~ y(x)-xo ~ M(x-xo) 
m(x 1 - x) ~ y(x)-x 1 ~ M(x 1-x) 

for xo ~ x ~ x 1· Since the average slope line segement from YO to Yl 
line bisects the parallelogram, the true value of the integral is 
bounded by (1/2)*(fo+f 1 )*dx ± 1/2 area(P). 

XO X1 

Figure 5.2 
Graph of f lies in shaded region, 

which represents the uncertainty in the integral 

It remains to calculate the area of the paralleclgram P. It is shown in 
Figure 5.3 that P can be rearranged by slicing a bit off the top and 
sticking it on the bottom, so as to make the tops and bottoms level. 
The area can then conveniently computed as the product of the base 
and height as shown. With J.L= (Y1 - yo)/dx being the average slope, 
and assuming that J.1. is greater than or equal to the average of M and 
m, the height h can be computed as 

h = M dx - J.1. dx = (M- J.L) dx. 
(The reverse case leads event_ually to the same formula.) 
Similarly the base b can be computed from 

YO+ Mb = Yp = YI( dx -b) 
so Mb = J.1. dx - m( dx - b) 
so (M - m)b = ( J.1. - m) dx 

and finally b = dx ( J.1. - m)/{M - m). 
Hence the area of P is given by the pleasantly symmetric form: 
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area = dx 2 ( ll - m)(M- ll)/(M - m). 
This can be expressed more conveniently by introducing p (O~p~ 1) 

defined by 1-L= p m + (1-p )M, so 
area= p(l-p) (M - m) dx 2 . 

Note that the error vanishes whenever p =0 or p = 1, since the 
parallelogram degenerates into a line segment, implying that the 
graph of f is a straight line. This formula gives a maximum error 
(half of the area) , which occurs at p= 0.5 , of 

error = (1/2)(1/4) (M - m) dx 2 . 

X~ 

b 

area= bh 

dx 

Figure 5.3 
Bounding the error 

6. Trapezoidal Integration by Taylor Series 

In this section we will develop the second order error estimate by 
analytical means. We assume that f has a continuous total derivative 
with respect to x. in the interval [xo,x I]. If we expand y in a Taylor 
series with remainder about x=xo we get exactly 
(5.1) y(x) =YO + fo (x -xo) + oR2 
about x=xt we get exactly 
(5 .2) y(x) = Yl + ft (x -XI) + 1R2 
where oR2 and 1 R 2 are the respective remainder terms. Taking the 
difference of (5.1) evaluated at x=xt and (5.2) evaluated at x=xo 
gives the identity 

2(yl -yO) = fo (XI -xo)- ft (XQ-XI) +( oR2- 1R2) 
2(yl - yO) = (fo + ft)(xo-x t) +( oR2 - 1R2) 

yielding 



(5 .3) yl - yO = (1/2)(fo + fi)(xo-x I) +(1/2)( oR2 - 1 R2). 

We recognize the first term on the right as the truncated trapezoidal 
formula. So it remains to generate an interval estimate of the 

· remainder "error" quantity E=(l/4)( oR2 - 1R2). 

To do this, it is helpful to review the derivation of (5.1) to see the 
ongm of the remainder term. We start with: 

(5 .4) y(x) = YO + f y'(t) dt 

where the integral is from xo to x, and apply integration by parts to 
get 

y(x) = YO + [ y'(t)(t-x) - J (t-x) y"(t) dt ] 

evaluated from t=xO to t=x, giving 

y(x) = YO - y'(xo)(xo-x) - J [xO.x] (t-x) y"(t) dt 

(5.5) y(x) = YO + y'(xo)(x-xo) - J [xO.x] (t-x) y"(t) dt . 

Since y'(xo)= f(xo,Yo)= fo , this agrees with (5.1) if we set 

(5.6) oR2 = f [xO,xl] (x1-t) f(t) dt. 

Similarly, we get 

(5.7) 1R2 = J (xl.xO] (xo-t) f(t) dt. 

Then 

E=(l/2)( 0R2 - 1R2) = (l/2)J [xO,xl] (xo + Xl - 2t) f(t) dt 

= J (xO,xl] ((xo + XI)/2 - t) f(t) dt. 

The integrand is a product of f and the ramp shown in figure 6.1. 

Figure 6.1 
Error term is integral of the product of f and a ramp 
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We estimate this integral by breaking it into its two parts at the 
midpoint xm=(xo + x 1 )/2 and estimating each separately: 

E = J (xO,xm] (xm - t) f(t) dt - J [xm,xl] (t-Xm) f(t) dt 

so E E (1/8 )[m,M] (x 1 - xo)2 - (1/8) [m,M] (x 1 - xo)2, 
since xm - xo = Xm - xo = (x 1 - xo)/2, where [m,M] are bounds for f 
over [xo,x 1 ]. Thus the interval error term can be expressed as 

E= (1/8) [m-M,M-m] (x 1 - xo)2 
or as E= (1/4) o(R) (xi - xo)2 

where the symmetric interval o(R) ( := (R - R)/2 ) represents the 
width of interval R=[m,M]. Note that this simplified formula agrees 
with that of the previous section, although the processes by which 
they were arrived at are quite different. 

A more precise treatment of this one would be to use e.g. separate 
estimates of f over the two halves of the interval. On the other hand. 
the geometric argument suggests looking at where the average slope 
falls between the bounds, as a way of improving the estimate. 

7. Trapezoidal Implementation 

In this section we develop an implementation for the trapezoidal 
integration routine, which will require some symbolic differentiation. 
Using the same ideas and notation as was used earlier in in euler we 
can implement the integration step based on the previous two 
sections as: 

trapezoidal( (XO,YO], [Xl,Yl], Flowbox, [Xl,Yl]):
XOl: real(XO,Xl), 
YOl : Flowbox, % range of Y in interval DX 
ex is Xl - XO, 
DX : real(O,Dx), 
f( XO,YO, FO), % 
f( Xl,Yl, Fl), % 
{Fm is (FO + Fl)/2}, 
df( X01,Y01, R), 
{YOl - YO == Fm*DX + 
{Yl - YO - Fm*Dx == 

slope at xO 
slope at xl 
% average slope 
% aprox f' over interval DX 
(1/4) d(R) DX**2 }, 
(1/4) 4jR) Dx**2 }. 

Here we used the notation d(R) to represent the continuous 
symmetric "delta" of interval R. Note that if f is constant over the 
interval, d(R)=O. Also, we are here using a (nonexistent) vector CLP 
language for readability . 
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The only new feature that this adds is the creation of a predicate df 
to compute the derivative of f with respect to x along the trajectory, 
i.e. the convective derivative: 

Dx (y'j) = Dx (f(x,y)j) = ax(Yj) + 1:i y'iayifj 

= ax(fj) + ri fiayifj . 
This requires the use of a symbolic differentiation package; the one 
used here uses 'I>' as a general infix partial differentiation operator in 
harmony with our previous use. Also we have used the inclusion."<=" 
in computing the output. Using this we can implement the necessary 
operations as: 

setup ode( X I> Ys := Exps, trapezoidal):-
-retractall( Srhs( .. )), 
assert( Srhs(X,Ys:-Fs) :- [Fs := E:-:ps] ), 
retractall( Sdf( , , )), 
second derivatives( X I> Ys := Exps, Ds, Body), 
assert( Sdf(X,Ys,Dsl :-Body). 

second derivatives( X I> Ys := Es, Ds, Body):
convective_derivative( Es, X :> Ys := Es, Ds, Sody). 

convective derivative( 
convective-derivative( 

{DD ::= X :> E, 
J :: = Ys ! > E, 
ID : := Fs +"' J, 

[],X I>Ys :=Es, [], []). 
[E,Es .. ] ,X:>Ys := Fs, [D,Ds .. ], [S<= Ex,3s .. ]) :

% cc~p~:e direct derivative 
% ccmp~~e gradie~t 
% dct. wi~h veloci~y 

Ex : :=DDT ID }, % add ~o direct deriva~ive 
Es,X i> Ys := Fs,Ds,Bs). convective_derivative( 

Using this implementation we can repeat the earlier examples. 
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1.0~--~------------------------~ 

y 

0.0~~--------------------------~ 0.0 X 1 
dy/dx .- (( -2 • x) " y) 

Case la: Initial Value problem, YO=l.O, Control=3. 

Even with half as many points, the uncertainties are under much 
better control. In order to see the error bars, we will drop to usmg 
only four points (Control=2), as shown below: 

1.0~----------------------------~ 

y 

0.0~:--:----------------' 0.0 X 1 
dy/dx := ((-2 * x) • y) 

• 



Case 2. Final value problem, Yl = l/e=0.36788 , Control=2. 

1.0~------------------------------~ 

y 

0.0~~----------------------------~ 0.0 X 1 
dy/dx .- ((-2 * x) * y) 

Case 3. Both together, YO=l.O, Yl=l/e = 0.36788 ., Control=2. 

8. Concluding Remarks 

In this paper we have taken the first small steps towards developing 
a relational interval arithmetic approach to the integration of 
ordinary differential equations. We have explored very slightly the 
issue of containing tru-ncation errors, and demonstrated with simple 
examples some of the qualitative properties possessed by this 
approach: the formal correctness of the solution and its trade-off 
against growing uncertainty in initial value problems, the symmetry 
of use, and the use of redundant boundary conditions. 

More sophisticated techniques, such as higher order and adaptive 
algorithms, and more sophisticated applications, such as two-point 
boundary conditions as well as the more complex boundary ~ 
conditions that often appear in control theory problems, will be the .l 
subject of a subsequent paper . 
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A modified vers1on of this paper appeared in the Proceedings of the 
CLP Workshop of the International Logic Programming Symposium 
held in Ithaca, N. Y. in November, 1994. 
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CLP(BNR)/ Scheduling 

Scheduling 

Scheduling and related resource allocation problems are among the 
technically hardest problems which the average person is likely to 
encounter in ordinary circumstances. Such problems occur almost 
everywhere, and most of them are at least NP hard or NP complete, 
and the most important ones are very large. It is not surprising then 
that there is a large literature on such problems, nor that much of 
the practical focus has been on heuristic algorithms which aim to 
give merely "good" results rather than complete or optimal ones. 
This area has also been a fruitful one for the application of CLP 
techniques (mostly of the finite domain variety), although the 
practical focus here also has been on heuristics for the larger 
problems. 

The emphasis in this section, however, will be on the exact solution 
of small (but not necessarily easy) problems. There are several 
points which provide justification for this emphasis. First, some 
important and hard problems are in fact now within reach of exact 
methods, given the right approach and adequate computing 
resources. Second, large problems usually consist of a large and 
intertwined set of small problems of the sort dealt with here; in this 
case it is plausible that a good formulation of the large problem can 
be constructed directly from good and complete formulations of the 
subproblems. Third, only exact/ complete solutions can be rigorously 
compared with one another. Finally, many of the large practical 
problems appear to be very heavily constrained, sometimes so much 
so that it is possible that some exact methods may in fact be 
practically useable. 

It appears that much of the scheduling work done using CLP 
techniques has been in the context of CLP technology of the finite 
domain sort such as CHIP and its derivatives, such as Charme and 
COSYfEC, and the CLP approach has been quite successful in this area. 
In this framework the scheduling medium variables (time or space) 
are discretized and eventually enumerated like everything else. This 
discretization of time and space is usually problematic, being both a 
conceptual distortion of the problem and a source of added decisions 
concerning the resolution needed. More important, it has also tended 
to obscure the very nature of scheduling problems in important 
ways. In this discussion we will treat the scheduling medium, and 
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CLP(BNR)/ Scheduling 
sometimes resources as well, as continuous quantities, which cannot 
be enumerated. This would seem to make the problems much more 
difficult, if not impossible, but in fact leads to significant 
simplifications. 

Critical Path Scheduling 

The Critical Path Method (CPM) is one of the most important 
traditional scheduling methodologies for the simple reason that it is 
one of the few subclasses of scheduling problems for which efficient 
(linear time) classical algorithms exist. It was also one of the earliest 
problems to be tackled by interval-based CLP techniques. 

The problem is described as a set of activities, where each activity 
has a start time, a duration, and a fmish time (= start+ duration). 
The constraints are generated by a set of precedence rules which 
state that one task must fmish before another starts. As with most 
scheduling problem there is a feasibility variant and an optimization 
variant. In the feasibility variant, all activities start after some 
initial time TO and must finish before some deadline TF. In the 
optimization variant, the object is fmd the minimum span or distance 
between initial time and deadline, usually by minimizing TF with TO 
constant. With TF at its minimal value, the start time (and finish 
time) intervals of some activities become point values; these 
activities are said to form the "critical path" and give the method its 
name. The residual intervals at non-critical activities (traditionally 
called "floats") represent some leeway or latitude in the 
starting/finishing/ duration of the non-critical activities; small 
changes (within float) of timing of non-critical activities will not 
impact the total span. 

Given the following problem specification: 

activity duration follows 
a 10 start 
b 20 start 
c 30 start 
d 18 a,b 
e 8 b,c 
f 3 d 
g 4 e,f 
finish g 

a direct CLP(BNR) encoding of the problem is: 
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op(700,xfx, before). 
CLP(BNR)/ Scheduling 

activity( Name, Duration, task(Name,Start,Finish)):
{ Finish = Start + Duration}. 

task(_,_,F) before task(_,S,_) :- { F =< S }. 

% specific data for a project: 
project( Start, Finish, [A,B,C,D,E,F,G]):

activity(a,10,A), Start before A, 
activity(b,Z0,B), Start before B, 
activity(c,30,C), Start before C, 
activity(d,18,D), A before 0,8 before D, 
activity(e, 8,E), 8 before E,C before E, 
activity( f, 3, F), D before F, 
activity(g, 4,G), E before G, F before G, 
G before Finish. 

The feasibility variant, with a deadline of 60, is then posed as: 

?- project(task(start,0,0),task(finish,60,60),L). 
?- project(task(start, 0, 0), 

YES 

task(finish, 60, 60), 
[task(a, [0.0000, 25.001], [10.000, 35.001]), 
task(b, [0. 0000, 15. 001] , [20. 000, 35. 001]), 
task(c, [0.0000, 18.001], [30.000, 48.001]), 
task(d, [20.000, 35.001], [38.000, 53.001]), 
task( e, [30. 000, 48. 001] , [38. 000, 56. 001]), 
task(f, [38.000, 53.001], [41.000, 56.001]), 
task(g, [ 41.000, 56. 001], [ 45.000, 60. 001])]). 

The optimization variant can also be done very easily as: 

?- project(task(start,0,0),task(finish,E,E),L), lower_bound(E). 
?- [project(task(start, 0, 0), 

YES 

task(finish, [45.000, 45.001], [45.000, 45.001]), 
[task(a, [0.0000, 10.001], [10.000, 20.001]), 

task(b, [0.0000, 3.0518e-5], [20.000, 20.001]), 
task(c, [0.0000, 3.0001], [30.000, 33.001]), 
task(d, [20.000, 20.001], [38.000, 38.001]), 
task( e, [30. 000, 33. 001], [38. 000, 41. 001]), 
task(f, [38.000, 38.001], [41.000, 41.001]), 
task(g, [ 41.000, 41. 001] , [ 45.000, 45 . 001])]) , 

lower_bound([45.000, 45.001])]. 

In general problems, optimization may be more difficult to do than 
feasibility and require, for example, the branch-and-bound 
technique discussed earlier, so the simplicity of this needs both 
explanation and justification. One way to justify it is simply to note 
that this is the way the classical algorithm does the problem, so we 
can recycle whatever the classical justification was: the problem 
decouples into a problem of calculating lower bounds of all intervals 
from TO, and a separate problem of calculating upper bounds back 
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CLP(BNR)/ Scheduling 
from TF, and if lower bounds are always less than upper bounds the 
problem is feasible, and fmally because of the additivity of the delay 
constraints, a shift of TF translates into an equal shift of all upper 
bounds, hence setting TF back to equal the computed lower bound of 
the fmal activity generates the minimal solution. 

The classical argument is quite problem specific and also does not 
involve CLP explicitly, so applying it here tacitly assumes that the 
CLP calculation of the lower bound of the final activity is in fact the 
same as the classical computation (modulo rounding differences). 
Showing this rigorously then requires formulating both the classical 
algorithm and the internal CLP mechanism in ways that can be 
compared usefully. This can be done, but is not really easy, because 
the CLP framework does not imply any particular sequence of 
operations. 

It is useful therefore to find another way to tackle this problem, one 
that is both more general and more CLP oriented. This leads to the 
theoretical notion of interval convexity, which is explored in the next 
section. 

Interval Convexity 

The concept of interval convexity was introduced very informally by 
]. Cleary in the first paper on relational interval arithmetic, but was 
not formalized nor explored in any depth until Benhamou & Older 
(1992) and Older (WCLP, Marseille, 1993), which is the source for 
much of the material presented here. The context used for theory is 
that of relational interval arithmetic with intervals defined with real 
bounds, i.e. the infmite precision case. 

Defmition: A relation R is interval convex in a state X iff for every 
subs tate Y of X, RIIY has all of its projections intervals. 

That is, the interval hull closure operation can be omitted, and the 
interval representation is the same as the set representation. When 
the state X is the top state of the lattice, the state qualification is 
usually omitted. From this definition it is clear that interval 
convexity is persistent, that is, if true in a state it is true in every 
substate; it is also preserved under projections (since they are spedal 
cases of subtates). 

There are a couple of useful theorems for recognizing interval convex 
relations: 
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Theorem: Convex relations and solvable relations are interval 
convex. 

A relation is convex if for every two points in it, the line segment 
between them is also in it; it is said to be solvable if it can be solved 
(uniquely) for each of its variables as a continuous function of the 
remaining variables. 

Many of the primitive relations are interval convex everywhere: 
==,=<, +-, max, min, the odd powers, exp/ln. Most of the rest of the 
primitives are interval convex over slightly smaller states: abs and 
even powers on either the + or - half line, *I when the sign of at 
least one factor is known, trigonometric relations when confined to a 
region in which they are strictly increasing or decreasing. 

A narrowing operator is said to have the sequential instantiation 
property (SIP) if for any choice of order of its variables, any 
sequential choice from the current domains of those variables will 
succeed. Here sequential choice means that one variable is 
instantiated, and only after the system has computed a new stable 
state, one picks the next variable from the new domain. The 
connection between interval convex relations and narrowing 
operators satisfying the sequential instantiation property is: 

Theorem: R is the canonical narrowing operator for an interval 
convex relation R if and only if R has the sequential instantiation 
property. 

This only holds completely in the infinite precision case; for floating 
point implementations the forward implication still holds, but of 
course nothing can be implied about R below the precision limit. 
Because of this theorem, there is a tendency to confuse the interval 
convexity of the relation with the SIP property of its narrowing 
operator, and speak loosely of interval convex narrowing operators, 
which is permissible so long as the other condition (canonical, i.e. 
minimal) holds. 

Another sometimes useful theorem is:-

Theorem: If two narrowing operators over different sets of variables 
each have SIP, and a single variable from one set is linked to a single 
variable from the other by a narrowing operator with SIP, then the 
whole network has SIP. Furthermore, if it fails it does so after at 
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most one primitive operation, and if it succeeds it will do so in time 
linear (or less)· in the size of the combined network. 

Since most primitives are interval convex and their operators 
therefore have SIP, constraint networks which are trees are likely to 
have SIP. To be more precise, a network of primitive relations is said 
to be locally interval convex in state X, if each primitive in the 
network is interval convex in X. Then: a locally interval convex tree 
has SIP, by recursive application of the above result. 

One way to show that an operator has SIP is to first show that its 
relation is interval convex (because e.g. it is convex), and then show 
that the operator is tight, i.e. that the bounds of its stable states are 
in fact solutions. Hence it must be the canonical narrowing operator, 
and then one can apply this theorem to derive SIP. In particular, this 
applies to the CPM problem: since it is composed of additions and 
inequalities only, its solution set is convex; it can be shown to be 
tight by instantiating to lower bounds sequentially from the earliest 
task start and instantiating to upper bounds in order of latest finish, 
so that there is no propagation possible from the instantiation. 

Finally we note that if a feasibility problem can be reduced to a 
residual problem known to have SIP, we can regard the residual 
problem itself as a generalized solution, since it contains all the 
particular solutions (uncountably many of them in general), and any 
one of them can be generated easily (in quadratic time or less). For 
optimization problems which can be reduced to an SIP residual, one 
need only instantiate the appropriate bound of the objective variable 
to form the most general solution. 

Serially Reusable Resources- Disjunctive Scheduling 

The activities to be scheduled often require the exclusive use of some 
resource, and this requires serialization of the tasks using the same 
resource. One way of handling this is by using booleans to force 
serialization: for each pair of activities P and Q using the same 
resource we require that either P precedes Q or Q precedes P. This 
can be done with a constraint of the form: 

Sdisjunct(task(P,Sl,Fl), task(Q,SZ,FZ), B):- B:boolean, 
{ B == (Fl=< SZ), -B== (FZ=<Sl)}. 

where S is the start time and F the fmish of a task. The code to 
serialize all pairs from a list then follows the pattern of the distinct 
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predicate: 

serialize( List, Bs):- Sseri.alize(List,Bs, 0). 

Sseri.ali.ze( [XIXs], Bs, EndB):
Sseri.a li.ze_l( Xs, X, Bs, E), 
Sseri.ali.ze( Xs, E, EndB). 

Sseri.ali.ze_l(O,_, B, B). 
$seri.a1i.ze_l([XIXs],Y, [BIBs],EndB):

Sdi.sjunct(X,Y,B), 
Sseri.ali.ze_l(Xs,Y,Bs,EndB). 

Enumeration of the booleans then determines the service order of 
the tasks; when all the booleans have been enumerated, the residual 
problem is of the CPM type, and the interval convexity results can be 
applied to determine the minimal span for that particular task order. 

Example: job-Shop Scheduling 

As an example we will consider a classical Job-Shop Scheduling 
problem: this consists of a set of tasks, each involving a sequence of 
operations, where each operations needs the use of a machine of a 
certain type, and there is only one machine of each type available. 
The problem is fmd an ordering of operations at each machine such 
that all the tasks complete before a given time, or to find the 
minimal time to complete all tasks. The particular example here has 
5 tasks of 10 operations each and 5 machines, with a raw search 
space (all possible orderings) of about (10!)**5 or about 10**31. 

The simplest direct specification of the specific problem 
(deadline/feasibility version) is given below: 

jss(Deadli.ne,F):-

?? 

{5=0, F=<Deadli.ne}, % S i.s start time 
A=[A0,Al,A2,A3,A4,A5,A6,A7,A8,A9], 
8=[80,81,82,83,84,85,86,87,88,89], 
C=[C0,Cl,C2,C3,C4,C5,C6,C7,C8,C9], 
D=[D0,D1,D2,D3,D4,D5,D6,D7,D8,D9], 
E=[E0,E1,E2,E3,E4,E5,E6,E7,E8,E9], 
sequence(S,F,a,A,[29,78, 9,36,49,11,62,56,44,21]), 
sequence(S,F,b,B,[43,90,75,11,69,28,46,46,72,30]), 
sequence(S,F,c,C,[91,85,39,74,90,10,12,89,45,33]), 
sequence(S,F,d,D,[14, 7,23,61,35,18,52,29,11,69]), 
sequence(S,F,e,E,[37,84, 6,43,22,61,27,17, 9,73]), 
sertaltze([A0,A5,80,85,C1,C7,D4,D7,E1,E9], 8s0, m0), 
sertaltze([A1,A6,83,88,C0,C6,D0,D9,E2,E8], 8s1, m1), 
seri.alize([A2,A7,81,86,C4,C8,D1,D6,E0,E7], Bs2, m2), 
seriali.ze([A3,A8,84,89,C2,C9,D3,D5,E4,E6], 8s3, m3), 
serialize([A4,A9,82,87,C3,CS,D2,D8,E3,E5], Bs4, m4), 
enumerate(8s0), 
enumerate(8s1), 
enumerate(Bs2), 
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enumerate(Bs3), 
enumerate(Bs4), 
lower_bound(F). 

CLP(BNR)/ Scheduling 

The first block of code just sets up the start and deadline times and 
defines the lists of variables which will be the operations. The calls 
to sequence create the operation data structure, impose the 
sequencing constraints for the task, and ensure that the first 
operation occurs after the start time and the last finishes before the 
the value F. The code is: 

sequence(Start,Finish,Label,List,Ourations):
Ssequence(List,Durations,Label,Start,Finish,0). 

Ssequence(O,O,_,PreF,Fin,_):- { PreF =< Fin}. 
Ssequence([task(Id,St,Fin)ITs],[DIDs],Label,PreF,F,N):- Nl is N +1, 

swrite(Id,Label,N), 
{ PreF =< St,Fin= St + 0 }, 
Ssequence(Ts,Ds,Label,Fin,F,Nl). 

Then come the calls to serialize to set up the disjunctive constraints, 
followed by enumeration of the 275 boolean variables, and finally 
the use of lower _bound to calculate the actual time required by the 
interval convex residual problem. Considering the raw size of the 
search space and the apparent simplicity of this approach, the 
performance is surprising: the constraint setup (prior to 
enumeration) requires (on a 25Mhz 68030; Sun4 times are roughly 
half of these) 6.2 seconds in the current version of CLP(BNR). (This 
would be expected to drop by an order of magnitude in the 
foreseeable future.) Enumeration time for the first solution in the 
worst successful case (with deadline set to the minimal span of 634) 
is 1.383 seconds (with only 23 backtracks!). (A careful choice of 
enumeration order (busiest machines frrst) can reduce this to about 
0.6 seconds.) More surprising even is that the worst failing case (with 
deadline=633, which requires searching the entire space) only 
required 2. 7 83 seconds of enumeration time. 

In order to compute the minimal span one can use the branch-and
bound technique. Because there can be a very large number of 
different schedules with the same span, the continuation method is 
not very useful, and it is better to restart the search after each 
solution ( constraint setup needs to be done only once of course) with 
a deadline strictly lower than the best seen so far. Also, since there 
are many solutions with only slightly better spans, it helps to 
retarget agressively (e.g. 90% of previous span), and then use 
bifurcating search as soon as a failing value is discovered. With this 
approach the minimal span was discovered (and proved) in 9.9 
seconds of search time (statistics after setup are accumulative): 
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setup costs: [90530, 6712, 1357, 1224, 6200] 
target : 720 
[1588, 150, 5395, 53, 616] [719.0, 720.0] 
target : 647 
[3763, 396, 20468, 172, 2366] [642.0, 647.0] 
target : 577 
[4054, 426, 21992, 173, 2633] fai.l(577) 
target : 609 
[4767, 457, 25574, 174, 3133] fai.l(609) 
target : 625 
[5921, 573, 40854, 229, 4850] fail(625) 
target : 633 
[8947, 961, 69997, 448, 7983] fail(633) 
target : 637 
[11538, 1208, 86645, 566, 9916] : [634.0, 637.0] 
succeeds at:634.0 
fat led at: 633 

Serially Reusable Resource - Non-deterministic Sort Method 

An alternative approach to the resource scheduling problem is based 
on sorting. The idea here is that if we knew the start times of the 
tasks and the fmish times of the tasks in order of time, we could 
ensure feasibility by requiring that the start times and finish times 
interleave: first start followed by first finish followed by second start 
etc. If this is done the nth fmish is preceded by n starts for all n, and 
by induction one can then show that the nth start and nth finish 
must belong to the. same task. (This formulation may seem slightly 
odd, but we shall see later that it has its uses.) For sorting intervals 
we can use a declarative version of Quicksort, in which the binary 
comparison imposes an inequality constraint down each branch; with 
intervals, of course, both branches may succeed. Once we have an 
output from each of the sorts, we can impose the interleaving 
constraints; arrangements that survive are then again in CPM form 
and we can apply interval convexity to minimize the span. 

This algorithm just described is very inefficient because one must do 
two non-deterministic sorts (worst case (N!)**2) before applying the 
interleaving constraints which prune the space, and it is obviously 
better to do both the sorts and the interleaving constraints together. 
When this is done the basic sort decision becomes that of ordering 
two tasks just as in the disjunctive constraint version. The code looks 
like: 

serialsort(X,Y):- ssort(X,Y,[J). % uses difference list 

ssort([] ,A,A). 
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ssort([XIXs],A,C):
part(Xs,X,Low,High), 
ssort(Low,A,[XIB]), 
ssort(High,B,C). 

CLP(BNR)/ Scheduling 

part(O,_, 0,0). 96 partition on U, last 2 args are di.f li.st 
part([XIXs], U, [XIlow], High):- before(X, U), part(Xs,U,low,Hi.gh). 
part([XIXs], U, low, [XIHi.gh]):- before(U, X), part(Xs,U,low,Hi.gh). 

before( task(_,Sl,Fl), task(_,S2,F2)):- { Fl=<S2 }. 

This was tested on a single resource benchmark (with 12 operations) 
and found to be more than an order of magnitude slower than the 
disjunctive approach given earlier. This would imply that on a 
problem such as the 50-operation job-shop problem given above it is 
likely to be at least 10**5 times slower and probably much worse. 
Yet, in an abstract sense, it is the "same" algorithm (expressed partly 
in Pro log rather than in CLP } . This underscores the importance of 
being able to postpone choices until they are forced, and reminds us 
that measurement of actual code of algorithms is absolutely 
necessary. 

Serially Reusable Resource - Deterministic Sort Method 

The basic sort method was not very efficient because of the non
determinism and the fact that it was necessary to postpone the 
interleaving inequalities until the sorts were done. We have seen 
one way to partly get around this. Another, very different, way is to 
do the sort deterministically using constraints. The key here is to 
realize that a 2-element sort function can be constructed using mi.n 
and max in ordinary arithmetic. A standard recursive algorithm 
based on bitonic sequences can be used to defme a general sort (of a 
power of 2 elements) from the 2 -element sort. By changing the low 
level min/max to a constraint primitive, we can "lift" this algorithm 
into the CLP realm and it will still be a sort, an interval sort. The 
output list of intervals gives the bounds for the frrst, second, third, 
etc event in time order for every possible instantiation of the original 
list.. But, since this sort is now deterministic, we can sort the start 
and fmish times and express the interleaving inequalities between 
the sorted lists, as in: · 

i.serialize( Tlist ,SS, SF):-
Ssplit(Tlist, Starts, Fi.ns, Durations), 
isort(Starts,SS), 
isort(Fins, SF), 
Sinterleave(SS,[01SF]). 
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Ssp lit([],[],[] , []). 
$split( [task(_,O,S,F)ITs], [S ISs], [F IF s] , [O IDs]):- Ssplit(Ts,Ss,Fs). 

$interleave([],_). % each start must be preceded by a finish 
Sinterleave([SISs],[FIFs]):- {F=<S}, Sinterleave(Ss,Fs). 

However, the interval sort is not interval convex, so there is a price 
yet to pay, as we cannot just instantiate the lower bound of the last 
finish to find the miminal span, and we need an instantiation 
method, and non-determinism will be reintroduced during 
instantiation. (A really good instantiation method for optimal 
schedules is still being sought. ) 

The possible advantage of using this interval sort approach is that 
given intervals for the time ordered start and finish times, it is 
possible to impose constraints on these ordered times which can help 
prune the space during instantiation. As an example, the simple 
interleaving inequalities can be augmented by recognizing that the 
sum of the previous idle time of the resource plus the amount of 
work done so far must be equal to the finish time of the current 
operation ( a"conservation of time" law): 

Sconservation([],[F],IdleSum, [Work],Finish):
{ F = IdleSum + W, F=< Finish}. 

Sconservation([SISs],[FIFs], IdleSum, [WIWs],Finish):- Idle:real(0,_), 
{Idle = S - F, % this is equivalent to {F=<S}, 
{ S1.111=IdleSum + Idle } , 
{ F = IdleSum + W}, 

Sconservation(Ss,Fs, Sum,Ws,Finish). 

The work estimate vector can be approximated from the list of 
durations (here assumed to be ordinary numbers) by sorting it in 
both ascending order WL and descending order WH,so the work done 
at the jth step is bounded between WL{j) and WH{j), and then 
defming a the estimated work vector by partial summation: 

estimate_work_done(Ourations, [01Ws]):
sort( Durations, Wl), 
reverse( Wl,WH), 
Sest_work( Wl,WH,0, Ws). 

Sest_work([], D, S1.111, []). 
Sest_work([llls],[HIHs], Sum, [WIWs]):- W:real(L,H), 

{Suml=zSum + W}, 
Sest_work(ls,Hs,Suml,Ws). 

Note that the last value is the total work (the sum of the durations) 
and is a point value, so that the base clause of $conservation is very 
strong: the last finish time will be pushed out past the total amount 
of work to be done initially, and pushed out further everytime a idle 
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definite idle period is created during instantiation. This is important: 
since the last fmish time in every serial sequence must be less than 
the span, pushing out the fmal fmish time makes the lower bound of 
the span a more accurate estimate and can lead to much earlier 
failure with tight deadlines. (Compare with Traveling Salesman.) The 
conservation equations above serve therefore much the same 
function as the global Carlier-Pinson inequalities in the traditional OR 
approach to job-Shop Scheduling; it is apparently weaker in the 
middle operations (in terms of forcing local orderings of activities) 
than the local earlier-Pinson inequalities (which use the specific 
durations of operations in each cluster instead of best/worst case 
bounds), but is stronger for fmal activities because it includes the 
effects of any forced idle periods, which seem to be common in real 
job-shop problems. 

Narrowing of the outputs of an interval sort do not in general 
percolate back to the inputs (except at the two ends) since 
narrowings will not propagate backwards very well through min and 
max primitives of overlapping intervals. A partial exception occurs 
at the first and last intervals in a cluster in the ordered list: if 
instantiated, the propagation will percolate back to the original 
operations whenever there is a unique solution (i.e., when only one 
of the original operations could have had such an early/late value). 
This suggests the possibility that there may be an effective time
ordered instantiation strategy. However, once a choice of ordering is 
made during enumeration of the original operations, their intervals 
may become disjoint, and then the narrowings stuck in the sort 
network can trigger failure earlier than would otherwise be the case. 
Overall, however, this approach has not been very 
effective( compared with disjunctive scheduling) on benchmarks with 
busy machines. It may be more useful (especially at detecting 
infeasibile problems) in cases where the operations are of about the 
same duration and where there are many external constraints on 
time which produce many idle periods. · 

Serially Reusable Resources - Multiple Identical Resources 

The method of disjunctive scheduling does not apply when there are 
multiple equivalent servers of the same type, since the several 
servers can perform overlapping operations. However, the method of 
deterministic interval sorting, interleaving equations, and 
conservation laws, does generalize fairly easily. (Older and Van 
Emden 1994-95) All that is required is that the shift ( the 
prepended 0 on lists of fmishes and work estimates) be changed to 
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reflect the number of servers. For example: 

Sinterleave(SS,[0JSF]) 

becomes: 
shift(Nservers,SF,ShF), 
Sinterleave(SS,ShF), 

where 

shift(0,F,F):-!. 
shift(Nservers,F,[01Fs]):- N is Nservers -1, shift(N,F,Fs). 

Note that failure during the setup of these equations implies the 
infeasibility of the scheduling problem (just from the correctness 
property of CLP), so it becomes feasible to adjust the number of 
servers during setup to values for which a solution may be possible. 
The choice of a good enumeration strategy to be used with the 
interval sort-based algorithm is still open. Based on the single-server 
case, the method described in the next section may be a good 
candidate. 

General Resource Scheduling -
Cumulative Constraint 

The previous method handles the common case of each task 
requiring one instance of a resource, or more generally, where each 
requires the same amount of the resource. But for the general case 
where different tasks make different resource demands, one needs a 
more general formulation. A useful interface to this general case is 
the so-called "cumulative constraint" introduced by COSITEC. 

The general form of the cumulative constraint is 

cumulative( Ss,Ds,Ws,Limtt) 

where ss,Ds,ws are lists of length N of numeric values representing 
the start times, durations, and resource requirements respectively 
(of a certain type) for N tasks, and _·Limi.t is the total amount of 
resource available. The interpretation is that at all points in the 
schedule the total resource usage must be less than L tmt t. (We use 
the language of time scheduling here for convenience, but any one 
dimensional space will do.) Usually the starts are intervals and 
durations and weights and limit are all constants, but all may be 
intervals if desired, although this does sometimes complicate the 
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interpretation of the results. When durations and weights are 
intervals there may also be side constraints, e.g. that the product of 
duration and weight be constant. The starts, durations, weights etc. 
are here taken usually as real values, but can be used with integer 
variables also if some slight modifications are made. 

The form of the cumulative constraint, i.e. with separate lists for the 
arguments, makes it convenient to apply it in more complex 
situations. Where there are several sorts of resources used by the 
same tasks, each will need a separate cumulative call in which the ss 
and os are the same, but ws and Limit are different (corresponding to 
the different resource usages) on each call. In a two dimensional 
placement problem formulated with cumulative, there will be a call 
for placement on the X-axis and one for the Y-axis with different 
starts (X-starts and Y-starts) and with duration and weights (i.e. 
heights) interchanged. 

In the COSYfEC implementation, cumulative is a complex "black-box" 
primitive, the implementation of which is not described in detail. For 
CLP(BNR), it can be implemented in terms of the more basic facilities 
as a utility, and this can have advantages in terms of increased 
flexibility to adapt to problem demands. 

Simple Formulation in CLP(BNR) 

The semantics of this constraint is that at each point along the time 
axis (from the earliest to latest time mentioned), the sum of the 
resources in use at that time must be less than the limit. The 
geometrical picture is the familiar one of the Gantt chart, with weight 
shown as height. This can be expressed as: 

That is, at each point we sum the Ws of just those tasks currently 
holding resources. Of course, this is impractical (for continuous time) 
since it represents an uncountable infinity of summations. However, 
we note that the resources being used only change at start and finish 
times of the tasks, so it suffices to check at only these values. 

Hence we reformulate ( 1) in two steps: first defme the finish times 

then require: 

?? 14 



CLP(BNR)/ Scheduling 

(2b) for each Tin {Sk} or {Fk} : 
Limit >= Sunlk ( Wk *( T £ [Sk ,Fk] ). 

Altogether there are N constraints in 2a and 2N in 2b. 

We can compute the boolean expression T £ [Sk,Fk] in CLP(BNR) as: 
{ Bk = (T >= Sk) and (T =< Fk ) } 

or more explidtly as: 
{Bkl = (T >= Sk), 
Bk2= (T =< Fk ) , 
Bk i.s Bkl and Bk2}, 

where Bk,Bkl,Bk2 are booleans. Note that with the substitutions 
envisioned for T, the low level boo leans become 

Bssi.k:=(Si. > Sk),Bsfi.k:=(Si. < Fk ) 

and Bfsi.k:=(Fi. > Sk),Bffi.k:=(Fi. < Fk ) 

so there is some overlap between them (Bfsi.k=Bsfki., 

Bssi.k=Bsski. ,Bffi.k=Bffki.), which should be exploited by the common 
subexpression folding feature in CLP(BNR). There are also various 
dependencies such as Bssi.k-> Bfsi.k and Bffi.k->Bsfi.k, which also help 
reduce the effective complexity. 

A couple of special points are important. First, the "diagonal 
elements" such as Sk £ [Sk,Fk] and Fk £ [Sk,Fk] should be replaced by1, 
which helps to get the algorithm started. Second, usually one permits 
a new task to start at the same time instant that an old one finishes, 
but this is prohibited by the formulation above. To fix this, we must 
alter the formulation slightly so that we exclude cases where a start 
and fmish are equal. This can be done using (forT a start timeS) 

{Bkl = (S >= Sk), 
Bk2== -( Fk =< S), 
Bk i.s Bkl and -Bk2}, 

and for T a fm.ish time as: 
{Bkl == -(Sk >= T) , 
Bk2= (T =< Fk ) , 
Bk i.s -Bkl and Bk2} • 

Now consider the effect of the sum constraint in eq. (2b). Depending 
on the extent to which start and fmish times are known, we may 
know that some start or finish time of necessity occurs during some 
task, thus setting the booleans to 1, or alternatively, that they follow 
or precede serially thus setting the booleans to 0. 
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In the other direction, suppose we focus on one term, say: 

Limit >= Wk•(Bssik and Bsfik) + Rest 
for a case where Rest is so large (because of existing placements) that 
adding Wk to it would exceed Limit. Then the boolean value (Bssi.k 
and Bsfik) would neccessarily narrow away from 1 and hence 
become 0. If either Bssik or Bsfik is 1, the other must become 0, i.e. 
the task k will be forced either to strictly follow task i (Bsfik = 1) (if it 
already starts later) or to start before thus narrowing a start time 
and ensuring that one of the booleans associated with start k is 1. In 
this way a tight resource constraint can deterministically force 
serialization of tasks. 

The remaining case forces (Bssik and Bsfik) to 0, but both 
constituents are indeterminate. If either becomes 1, then the other 
is forced to 0 deterministically. But otherwise, we need to introduce 
a choice point of the form: 

(Bssik=0);(Bsfik=0). 

These are the only choice points required; physically they correspond 
to the classical disjunctive scheduling form of serial resource use in 
which one must choose a serial order. Since N tasks have N! possible 
serial orders, one expects that there can be at most about 
log2(N!)=Nlog2(N) such choices to make. 

When all the choices have been made so that the resource 
summations are determined, then the remaining active constraints 
(since the booleans have become "dead") are all either the addition 
constraints from (2a) or a coherent set of inequalities as in a CPM 
problem, and hence possesses the sequential instantiation property. 
Narrowing of a time normally propagates only a short distance in 
such a network, but will be at worst of order N when successful. 
However, the creation of a directed cyclic graph, which corresponds 
to a cyclic precedence relation and hence eventually fails, may at 
worst require several iterations to do so, but in fact is usually quite 
fast. 

CLP(BNR) Implementation 

The implementation is now quite straightforward. This version is for 
a single resource problem with continuous variables; the booleans 
are exported for separate enumeration. 
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cumulative( Ss, Ds, Ws, Limit, Bs):

-Sadd( Ss, Ds, Fs), 
Sresource_constraints(Ss,Fs,l, Ws, Ss, Fs,Limit, Bs). 

$add( 0 , 0 , 0) 
$add( [SISs],[DIDs], [FIFs]):- {F==S + D},Sadd( Ss, Ds, Fs). 

It is more efficient to do the sums for both starts and finishes in one 
pass since the overhead can be shared; this also keeps the booleans 
dealing with the same two items together. We have also changed the 
encoding of the booleans so that the standard enumeration (which 
tries 0 first) will attempt to force tasks to be concurrent first. 

Sresource_constraints(O, 0, K, Ws, Sl, Fl, Limit,O). 
Sresource_constraints([SISs],[FIFs], K, Ws, Sl, Fl, Limit, B):-

Kl is K + 1, 
Ssum_at( Ws,l, Sl,Fl, S,F, K, Suml, SumZ, B,EB), % print(Sum), 
{Suml =< Limit, Sum2=<Limit}, 
Sresource_constraints( Ss, Fs, Kl, Ws, Sl, Fl, Limit, EB). 

$sum_at( 0, J, 0, 0, Sl, Fl, K, Suml, SumZ, EBs, EBs):-
{Sum1==0,Sum2==0}. 

Ssum_at( [WIWs],J, [SISs],[FIFs], Sl,F1,J, Sum1,Sum2, Bs,EBs):-!, 
Jl is J + 1, 
{Suml = W + Sum_l, SumZ--W + Sum_Z}, 
Ssum_at( Ws,Jl, Ss,Fs, Sl,Fl, J, Sum_l,Sum_Z,Bs,EBs). 

$sum_at([WIWs],J,[SISs],[FIFs],Sl,Fl, K, Suml, Sum2, 
[Q,Ql,Q2,P,P1,P21Bs], EBs):-!, 

{ Q1== (F1=<S), QZ =(F1=<F), 
Q ==(Q1 or -QZ), 
Sum2= W*(-Q) + Sum_Z, 
Pl== (S=<Sl), PZ ==(F=<Sl), 
P ==( -Pl or PZ) , 
Sum1== w•c -P) + Sum_l } , 

Jl is J + 1, 
Ssum_at( Ws,Jl, Ss,Fs, Sl,F1, K, Sum_l,Sum_Z,Bs,EBs). 

For many, and perhaps for most, purposes a good enumeration order 
is the one which enumerates the largest demands ( duration*weight) 
first. This can be done by preordering the arguments. 

Application to the Squares Puzzle 

A classic benchmark which illustrates- the use of cumulative is the 
squares problem: arrange a list of squares within a large square of 
given size. As a two dimensional layout problem, this will use 
cumulative along both the X- and Y- axis. This has been done with a 
version modified to work with integer variables (and integer 
summations), but we will not be doing any enumeration on the 
integer variables at all. Since the total area of the little squares just 
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equals that of the big square in this problem, it is also very 
advantageous to be able to modify the code for cumulative to make 
the resource limit constraint an equality: 

Sresource_constraints(O, 0, K, Ws, S1, F1, Limit, 0). 
Sresource_constraints([SISs],[FIFs], K, Ws, S1, F1, Limit, 8):-

K1 is K + 1, 
Ssum_at( Ws,1, S1,F1, S,F, K, Sum1, Sum2, 8,E8), % print(Sum), 
{Sum1 = Limit, SI.III2=L imi t}, % exact fit 
Sresource_constraints( Ss, Fs, Kl, Ws, S1, F1, Limit, E8). 

The compatibility connection between the X and Y solutions is that no 
squares overlap. This can be forced by imposing some additional 
constraints between the enumeration maps of the X and Y 
subproblems: by checking which booleans in each cluster of 6 
encode finish=< start disjointness conditions, we can ensure that at 
least one of the four conditions is true: 

meld([],[]). 
meld([_,Qx1,_,_,_,Px21As],[_,Qy1,_,_,_,Py218s]):-

{ 1== Qx1 or Px2 or Qy1 or Py2}, % non-overlapping 
meld(As,8s). 

Here is the code for a small problem of this type: 

squares(9, [5,4,4,3,2,2,2,1,1,1]). 

pack( Size):- stats, 
squares( Size, Sqs), 
location( Sqs, Size, Xs, Ys), 
cumulative( Xs, Sqs, Sqs, Size, 81), 
cumulative( Ys, Sqs, Sqs, Size, 82), 
stats(l,P,O,I,OT), nl, write([l,P,O,I,OT]), % setup time 
stats, 
meld(B1,B2), 
enumerate( 81), 
stats{l1,P1,01,Il,Dn), nl, write([l1,P1,01,Il,OT1]),% 1st x sol 
nl,write('Xs:'),print(Xs), 
enumerate( 82), 
stats(l2,P2,02,I2,DT2), nl, write([l2,P2,02,I2,0T2]),% 1st y sol 
nl,write('Ys:'),print(Ys). 

The execution trace is: 

[291952,20705,4510,2894,15883] % set up costs 

[57645,7203,259794,4322,25350] % time to get first solution in X 
Xs: [4, 5, 0, 2, 2, 0, 0, 4, 0, 1] 

[68318,9134,263546,5154,26584] % total time for solution in X and Y 
Ys: [4, 0, 5, 0, 3, 3, 0, 3, 2, 2] 
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Times are for 25Mhz 68030. The enumeration time to find the first X 
solution is almost 27 seconds. The final enumeration list of 540 
boo leans for X is: 

001100 100111 100010 100111 100111 100111 100010 100111 100111 
001010 100111 100111 100111 100111 100111 100111 100111 100111 
111100 111100 001100 001100 100010 100010 111100 100010 100100 
001100 111100 100010 100010 100111 100111 001100 100111 100111 
111100 111100 001010 001010 100111 100111 111100 100111 100111 
111100 111100 001010 111100 111100 001010 111100 100010 001100 
111100 111100 001010 111100 111100 001010 111100 100010 001100 
001010 111100 100111 001010 100111 100111 100111 100111 100111 
111100 111100 001010 111100 111100 001010 001010 111100 111100 
111100 111100 001010 111100 111100 001010 001010 111100 100111 

• 
Note also that only a little more than an extra second is then 
required to find the first right fit in the Y direction because of the 
constraints between the enumeration lists, even though the 540 Y 
booleans are initially unknown when Y enumeration begins. (Note 
that there will be several Y solutions for each X solution because of 
symmetries.) 

The cross-coupling between the X- andY-enumerations suggests that 
it might be a good idea to interleave the two enumerations. Doing 
this on a block-by-block basis (i.e. the block of 6 booleans dealing 
with one pair of squares), leads to much better times, requiring only 
5.2 seconds to jointly enumerate both: 

[291952,20705,4510,2894,15984] 
[63905,6193,21808,2232,5216] 
Xs: [4, 5, 0, 2, 2, 0, 0, 4, 0, 1] 
Ys: [4, 0, 5, 0, 3, 3, 0, 3, 2, 2] 

There are several open questions at this point. One has to do with 
resolution: the same problem, also expressed as integers, but with 
everything increased by a factor of 10, was much slower on the 
original formulation (227 sees enumeration), suggesting that 
(although integer variables are not enumerated) integer rounding is 
playing a major hidden (and not understood) role. Curiously, the 
interleaved version showed only a slight increase (to 5.7 sees). 

Another question is whether the use. of cumulative is necessary at 
all, or would the systematic enumeration of just the no-overlap 
conditions be suffident and perhaps even better? A step in this 
direction is to eliminate half of the sums from cumulative, retaining 
just the sums at the start of each task, since the rest are redundant. 
At the same time, half of the enumeration booleans are dropped, the 
revised code looking like: 
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Ssum_at( 0, J, 0, 0, S1,F1,K, Sum1,EBs,EBs):-
{Sum1==0}. 

Ssum_at( [WIWs],J, [SISs],[FIFs], S1,F1,J, Sum1, Bs,EBs):-!, 
J1 i.s J + 1, 
{Sum1 == W + Sum_1} , 
Ssum_at( Ws,J1, Ss,Fs, S1,F1, J, Sum_1,Bs,EBs). 

Ssum_at([WIWs],J,[SISs],[FIFs],S1,F1,K,Sum1,[P,Q1,P21Bs],EBs):-!, 
{ Q1== (F1=<S), 

P1== (S=<S1), P2 ==(F=<S1), 
P i.s ( -P1 or P2) , 
Suml== W*(-P) + Sum_1 }, 

J1 i.s J + 1, 
Ssum_at( Ws,J1, Ss,Fs, S1,F1, K, Sum_1,Bs,EBs). 

This version- with all real variables-- cut setup costs almost in half 
and produced slightly better enumeration times as well: 

?- pack(9). 
[167154,12067,2184,1628,9184] 
[53520,4378,23368,1497,4600] 
Xs:[4.0, 3.0, 0.0, 0.0, 7.0, 7.0, 0.0, 3.0, 2.0, 2.0] 
Ys: [4.0, 0.0, 5.0, 2.0, 0.0, 2.0, 0.0, 4.0, 0.0, 1.0] 

It is possible that even simpler and better versions may exist. 
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ABSTRACT 

This paper describes the development of several CLP(BNR) exact algo
rithms for the well-known traveling salesman problem. Although none of 
these algorithms are efficient enough for serious practical use, their devel
opment illustrates several principles of constraint logic programming: the 
difficulties posed by optimizations, the need for intrinsic characterizations 
of optima, the use of branch-and-bound techniques, and the occasional ad
vantages of solutions which use a mixture of Prolog and CLP techniques. 

This paper describes in detail how relational interval arithmetic can be ap
plied to give a complete solution to a classical NP-complete problem, the fa
mous "traveling salesman" problem. This problem is of intrinsic interest 
because of its numerous practical applications as well as its theoretical sig
nificance. But it also easy to describe and understand, so it is an interesting 
example to illustrate the application of CLP methods. Because it is usually 
thought of as an essentially combinatorial problem, a useful formulation of 
this problem in interval arithmetic terms is not completely obvious. It ap
pears that this problem is not a "natural" candidate for the application of re
lational interval arithmetic. This has several advantages when it is viewed 
as a teaching example. First, most real-world problems will also not be en
tirely "natural" for this technology, and will sometimes require some inge
nuity to formulate in CLP terms, or will require hybrid solutions. Also, the 
difficulties are themselves illuminating; it is just as important to see what 
cannot be conveniently done in CLP as it is know what can be done. 

We will begin by describing the problem and then give two versions of a tra
ditional Prolog solution, and then describe the practical performance diffi
culties with these solutions. In section 2 we will describe a reasonable 
(deterministic) sub-optimal heuristic solution, and examine its shortcom
ings. In section 3 we will extend the heuristic solution to a complete (non
deterministic) solution using interval arithmetic. Finally, in section 4, we 
extend this solution to get an effectively prunable branch and bound algo
rithm. 



1. Traveling Salesman Problem 

The general problem may be stated as: given N points in a metric space, find 
the shortest tour which visits all the points, where a tour is a path where the 
initial point is the same as the terminal point and which visits each point ex
actly once. In the sped.fic case dealt with here, the metric space will be a 
region of the Euclidean 2 -plane. 

It will be convenient to take the input data as consisting of the locations of 
the N points, in the form of a relation: 

point( Label, X, Y ) . 
The output can be represented most conveniently as a list of labels. The ini
tial (and terminal) point will be labeled 0 by convention. 

We will need a relation to compute distances: 

distance( J, K, D) :
point(J, XJ,YJ), 
point(K, XK,YK), 
0 is sqrt( (XJ-XK)**Z + (YJ-YK)**2). 

If a tour is represented as a list of point labels, the total length of a tour is 
easily computed by: 

tourlength( Tour, 0, 0.0, Length) % 0 is standard ori.gi.n 

where 

tour length( [ ], Last, Di.st, Total):-
distance( Last, 0, D), 
Total is Oist + D. 
[X,Xs .. ], Last, Dist, Total) :-
distance( Last, X , D), 

tour length( 

Newdist is Dist + 0, 
tourlength( Xs, X, Newdist, Total). 

A naive Prolog program (in the traditional declarative style) for computing 
the lengths of all paths is then easily written: 

tour _ancLlength( Tour , Length):-
findall( P, poi.nt(P,_,_) , List ), 
permutation( List, l), 
tourlength( l, 0 , 0.0, Length). 

permutation( 0, 0). 
permutation( List, [X,Xs .. ] ):

delete( List, X, Newlist), 
permutation( Newli.st, Xs). 

delete( [X,Xs .. ] , X, Xs ) . 
delete( [Y,Xs .. ], X, [Y,Ys .. ] ):- delete( Xs, X, Ys). 



The time required to generate all solutions is then aproximately proportional 
to (N-1)! * N. The extra factor of N (for computing the length of the tour) 
can be largely eliminated by interleaving the length computation with the 
permutation generation. This eliminates the recalculation of the the cost of 
the early steps of the tour for each tour. This can be done easily by "splic
ing" the two programs together with an editor ( and possibly relabeling 
some variables). 

tour_and_length( Tour , Length):-
findall( P, point(P,_,_) , List ), 
perm_length( List, L, 0, 0.0, Length). 

perm_ length( D, 0, Last, Dist, Total ): -
distance( Last, 0, D), 
Total is Dist + D. 

perm_length( List, [X,Xs .• ], Last, Dist, Total) 
delete( List, X, Newlist), 
distance( Last, X , D), 
Newdist is Dist + D, 
perm_length( Newlist, Xs, X, Newdist, Total). 

Both of these procedure can be used with a general minimization search al
gorithm which records in state space any solution which is better than any 
previous solution: 

min_search( Generator( MinResult, Solution, Parms .. ) ):-
forget_all( Generator(_,_)), 

Generator( Res, So 1, Pa nns .. ) , 
update_best( Generator, Res, Sol ) , 

fail. 
min_search( Generator(MinResult, Solution, Panns .. ) ) :

recall( Generator( MinResult, Solution) ) . 

update_best( G,R,S):-
once(recall( G(OR,_) )), 

OR=< R,!. %worse, so cut 
update_best( G, R, S):-

remembera( G(R,S) ) . 

The result is, of course, still much too slow to use for problems with more 
than a few points. With N=11, ( N-1)! is already over three and half million, 
and the running time of this algorithm would be about an hour. Then 12 
points would require about a work day; 13 about a week, 14 a season, and 
16 about a half century. 

One problem is that interval arithmetic, like Prolog, is naturally oriented to
wards determining feasibility, i.e., existential propositions of the form 

exists(x) such that P(x) 
for some vector of variables x and some predicate P. Optimization problems, 
however, have quite a different structure of the form: 

exists(x) such that P(x) & forall(y) { P(y) => X<<Y}} . 
A search program of the above sort is the direct translation ( assuming the 
comparison relation is transitive) of this formulation, and, in general, such a 
search will be necessary. The best approach in such a case is usually to dis-



cover intrinsic properties Q that any optimum point must have, and then re
strict the search to the space of points satisfying Q as well as P: 

exists(x) such that {P(x) & Q(x) & forall(y) { P(y) => X<<y}} . 
Later we will see how we can apply this idea to the traveling salesman prob
lem, but fJISt we need to look at a somewhat different algorithmic approach. 

2. Heuristic Algorithm 

Faced with this combinatorial intractability, one can relax the problem and 
seek only a "good" tour. There is no formal defmition for what constitutes 
a "good" tour, nor generally is there any way to judge just how far from the 
optimum it may be. There are many ways to fmd good tours- a human be
ing with a pencil and a large sheet of paper often does very well! In this 
paper we will consider only one such heuristic algorithm, one probably re
discovered many times. 

The starting point is the observation that the shortest tour will tend to be 
made of the shortest point-to-point segments, or "legs." An obvious "greedy" 
heuristic is therefore to construct a tour by picking legs in order of size. The 
most economical way to do this is to construct all the M=N(N-1 )/2 legs and 
sort them by length to form a list. Items can then be sequentially picked 
from the list, subject to the constraint that the picked items must form a val
id tour. Since this produces a list of selected legs in order of size, a step is 
needed to assemble the legs of the tour into the proper sequence. This 
yields: 

heuristic( Tour, Length ) :-
construct_legs( Leglist , N), 
sort( Leg list, Ascending ) , 
select( N, Ascending, Selected ), 
sequence( Selected, Tour, 0, 0.0, Length). 

We will see that these steps will have execution times roughly proportional 
toM, M*ln(M), M, and N, respectively, where M=N*(N-1)/2. 

In order to use the standard sort predicate, we must construct the term for 
a leg so that the sort key (distance) is fJISt; we will want to know which 
points are on each leg as well, so we consi9er the term with structure: 

leg( Distance, PointA, PointB ) . 

(Note that legs are unoriented; the leg AB is to be regarded as the same as 
leg BA. This cuts the number of legs in half, but means that the proper ori
entation must be done as part of the sequencing.) 

With these ideas in mind we can code the first predicate thus: 

~ 
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construct_legs( Leglist ):-
findall( pt( Label, Component, [Next, Prev], [X,Y]), 

mk_pt( Label, Component, [Next, Prev], [ X, Y]), 
Point_l ist ) , 

list_length( Point_list,N), 
distance_list( Point_list, Leglist). 

mk_pt( Label, Component, [Next,Prev], [X,Y]):- point( Label,X,Y). 

list_length( [], N, N). 
list_length( [X,Xs .. ],M,N):- Ml is M + 1, 1ist_length(Xs,M1,N). 

dist( pt(_,_,_,[X1,Y1]), pt(_,_,_,[X2,Y2]), D):-
0 is sqrt( (X2-X1)**2 + (Y2-Y1)**2. 

% form the list of N*(N-1)/2 pairs 
distance_l ist( [] , [] ) . 
distance_list( [C,Cs .. ], DL ):- dist_from( Cs,C, DL,EL), 

distance_list( Cs, EL). 
% legs from 1 ist of points to a point 

dist_from( [], P, L, L ). 
dist_from( [X,Xs .. ],Y, [leg(D,X,Y),Ls .. ], E):

dist(X,Y,D), 
dist_from(Xs,Y,Ls, E). 

The key issue is to ensure that only collections of legs forming valid tours 
are selected. One constraint is then that each point must be visited exactly 
once; i.e. used in exactly two legs. This can be accomplished most easily in 
Pro log by associating two unbound variables [Next, Prev] with each point, and 
then binding them as legs are selected. 

The second constraint is to ensure that the tour forms a single cycle rather 
than several smaller cycles. This can be restated as a rule that a leg should 
never be chosen if it will connect to points which are already connected, un
less this is the last leg to be selected. A Prolog implementation of this is to 
add an unbound variable Component to each point, and unify these variables 
for the points connected by a leg ( so the variables represent connected com
ponents of the graph), but only if they are not already identical(@=), except 
for the last leg. 

The main algorithm now has a very simple structure: 

select( 0, List, 0 ):-! .% stop when N are selected 
select( N, [L,Ls .. ], [L,Rs .. ]):- check_constraints(L,N),!, 

N1 is N - 1, 
select(Nl,Ls, Rs). 

select( N,[L,Ls .. ], R):- select(N, Ls, R). % else skip 

check_constraints(leg(_, pt(P, Cl, Pli.nk,_),- pt(Q, CZ, Qli.nk,_)),N):
di fferent_components( C1, CZ, N), 
link(P, Qlink), link(Q,Plink). 

link( X, [X, _]). 
link( X, [...., X]). 

different_components(C1,C2,N):- N<>l, Cl@=CZ,!,fail. 
different_components(C, C, N). % succeed and unify components 



The final sequencing is also straightforward: 

sequence( D, D, 0 , D, D):-!. %last leg returns to ori.gi.n 
sequence( li.st, [P,Ps .. ], P, length_so_far, length):-

delete_leg( li.st, leg(D, pt(P,_ .. ),pt( Next,_ .. ), Rest),!, 
02 i.s length_so_far + D, 
sequence( Rest, Ps, Next, 02, length). 

delete_leg( [X,Xs .. ], Y, Xs):- rnatch_leg(X,Y),!. 
delete_leg( [X,Xs .. ], Y, [X,Ys .. ]):- delete_leg(Xs,Y,Ys). 

match_leg( leg(D,A,B), leg(D,A,B)). 
match_leg( leg(D,A,B), leg(D,B,A)). 

If we run this algorithm on our test problem, we get a tour length of about 
84.2, not far from the optimal tour of 77.54 7 . If we examine the tour itself, 
we fmd that it agrees with the optimal tour (or its reverse, which is also op
timal) almost everywhere. However, unlike the optimal tour, its path cross
es itself. This suggests that we take a closer look at self-crossings. 

A Geometrical Lemma 

Recall that a metric d satisfies the axioms: 
d(X,Y) >= 0 
d(X, Y) = d(Y ,X) 
d(X,Z) =< d(X, Y) = d(Y,Z). 

In any metric space we can defme the 3-ary relation 
between(X,Y,Z) iff d(X,Z) = d(X,Y) + d(Y,Z). 

(There may not be any points between two given points, depending on the 
particular metric space. ) 

Lemma: If points A,B,C,D in a metric space are such that there is a point W 
where between(A,W,C) and between(B,W,D), then 

d(A,D) + d(B,C) =< d(A,C) + d(B,D) 
and d(A,B) + d(C,D) =<d(A,C) + d(B,D). 
Proof: From the triangle inequality we have 

d(A,D) =< d(A,W) + d(W,D) 
and d(B, C) =< d(B,W) + d(W,C), 
so d(A,C) + d(B,D) =< d(A,W) + d(W,C) + d(B,W) + d(W,D) 

= d(A,C) + d(B,D), . 
since W is between A and C, B and D. The other inequality is proved simi
larly. 

In ordinary two-dimensional Euclidean space, for any four points, no three 
of which are colllinear, there will be at most one of the three pairs of seg
ments (with distinct endpoints) which has a crossing. The situation can be 
more complex with non-Euclidean metrics, but this theorem remains valid. 
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Figure 1: Self-crossing removal 

Now suppose we have an optimal tour in the Euclidean plane with a self
crossing, for example leg A-c crosses leg B-D. Removing these two legs 
breaks the tour into two pieces, and suppose A and B are in one piece and C 
and D in the other. We can then construct a new tour by adding legs from 
A-D and B-D, and by the above the result will be better (or the same) as the 
original tour. Thus we infer that a minimal tour ( but not neccessarily all 
minimal tours) are non-self-crossing; so "non-self-crossing" is a possible in
trinsic property that can be used to reduce the search space. 

One way that we might try to use this property is this: whenever we select 
a leg, any leg which crosses it becomes inelgible for selection. In this way 
we would only generate tours free of crossings. This requires that the selec
tion algorithm be non-deterministic and we must remove the cut in the sec
ond clause. 

3. Basic Constraint Algorithm 

In this section we begin formulating a constraint based algorithm. The first 
problem is to fmd a representation of the problem in terms of "arithmetic" 
variables, including integer and boolean. Since the problem involves a per
mutation, one thinks naturally of a permutation matrix, that is, a matrix p(i,j) 
(denoting "from i goto j") with boolean entries such that row and column 



sums are equal to 1. However, proper tours have additional constraints: (a) 
the diagonal entries p(i,i) are 0, and (b) if p(i,j)=l then p(j,i)=O. These added 
constraints can be used to reduce the number of variables by more than a 
factor of two, if we use instead of the p(i,j) the new variables p'(i,j) := p(i,j) 
or p(j,i) for i<j. These are easily seen to be essentially equivalent to the un
oriented "legs" used above. The row and column sum constraints are re
placed with: the sum of all leg variables attached to a point is 2, as shown in 
fig. 1. (This replaces the link fields used earlier.) 

The same strategy that was used before for ensuring only single-cycle per
mutations are generated can be used here also. In fact, there does hot ap
pear to be any practical way of achieving the same result using CLP 
techniques at all. Here is one of the places where a hybrid aproach is necces
sary. 

The previous algorithm can now be transformed easily into an equivalent 
constraint- based algorithm (changed parts are shown in italics, some sec
ondary simplification has also been done): 

salesmanl( Tour, Length ) :-
construct_legs( Leglist , N), 
sort( Leg list, Ascending ) , 
select( N, Ascending, Selected ) , 
sequence( Selected, Tour, 0, 0.0, Length). 

construct_legs( Leglist ,N):-
fi.ndall( pt( Label, Component, [X, Y]), 

mk_pt( Label, Component, X, Y), 
Point_l i.st ) , 

list_length( Poi.nt_list,N), 
di.stance_li.st( Poi.nt_list, Leglist), 
N is N - 1, 

setup_dst_constraints( N, Leglist). % nl, print( Legl ist). 

mk_pt( Label, Component, X, Y):- point( Label, X, Y). 

di.st( pt(_,_, [X1, Y1]), pt(_,_, [XZ, YZ]), D):-
D is sqrt( (X2-X1)**2 + (Y2-Yl)**2. 

" form the list of N*(N-1)/2 pairs 
di.stance_li.st( 0, 0 ) . 
di.stance_list( [C,Cs .. ], DL ):- dist_from( Cs,C, DL,EL), 

distance_list( Cs, EL). 
" legs from l i.st of points to a poi.nt 

dist_from( D, P, L, L ) . 
di.st_from( [X,Xs .. ],Y, [leg(D,P,X,Y),Ls .. ], E):-

P:boolean, " make boolean constraint variable to record choices 
dist(X,Y,D). 

setup_dst_constraints( -1, L ):- ! . 
setup_dst_constraints( N, L ):- N1 is N - 1, 

incident(L, N, LN ), 
sum( LN, S ), 
S = Z, % total degree in tour is exactly Z 
setup_dst_constraints( N1, L ). 

incident( a. -· Q). 



incident( [X,Xs .. ], N, [P, Ys .. ]):- incid(X,N,P),!, 
incident(Xs,N,Ys). 

incident( [X,Xs .. ], N, Ys):- incident(Xs,N, Ys). 

incid( Zeg(D,P, pt(N,_ .. ),_), N, P). 
incid( Zeg(D,P, _,pt(N,_ .. )), N, P). 

sum( [X], 5):-S X,!. 
sum( [X,Xs .. ], N ):- S:integer, N = X + S, sum( Xs,S ). 

select( 1, [leg(D,l,P,Q),_ .. ], [leg(D,P,Q)] ):-!. 
% stop when last one is selected 

select( N, [leg(_,l, P, Q),Ls . . ] , [leg(D, P, Q), Rs .. ]):
check_components(P, Q),! , 

N1 is N - 1, 
select(N1,Ls, Rs). 

select( N,[leg(_,e,_ .. ), Ls .. ], R):-
select(N, Ls, R). % else skip 

check_components(pt(_, Cl,_), pt(_, CZ,_)):
different_components( Cl,CZ). 

different_components(Cl,CZ):- Cl@=CZ,!,fail. 
different_components(C, C ). % succeed and unify components 

This constraint-based algorithm can now be extended to use the crossing
blocking strategy discussed above. For this we need to first move the cut out 
of select; for a heuristic algorithm we can keep the cut around the call for 
select. Secondly, we need to impose an additional constraints for each pair 
of crossing legs. These changes transform the main predicate into: 

salesman2( Tour, Length ) :-
construct_legs( Leglist , N), 
sort( Legl ist, Ascending ) , 
crossover _constraints( Ascending ) , 
select( N, Ascending, Selected ),!, 
sequence( Selected, Tour, 0, 0.0, Length). 

where we have added 

crossover_constraints( D ). 
crossover_constraints( [L,Ls .. ]):

cross_constrain_all( Ls, L), 
crossover _constraints( Ls). 

cross_constrain_all( [],_). 
cross_constrain_all( [L,Ls .. ] , K) 

cross_constrain( L, K), 
cross_constrain_all( Ls, K). 

cross_constrain( L, K ) :- crosses( L, K), ! , notboth( L, K). 
cross_constrain( _, _ ). 

notboth( leg(_,P,_ .. ), leg(_,Q,_ .. ):- P+Q =< 1. 

The crossing test, once adjacent legs are eliminated, can also make effective 



use of interval arithmetic: 
crosses( leg(_,_,pt(I,_,[X0,Y0]), pt(J,_,[X1,Yl]) ), 

leg(_,_,pt(K,_,[XZ,YZ]), pt(L,_,[X3,Y3]) ) ):-
not( adjacent_legs( I,J,K,L) ), 

[S,T]: real(0,1), 
S*X0 + (1-S)*X1 = T*XZ + (1-T)*X3, 
S*Y0 + (1-S)*Yl = T*YZ + (1-T)*Y3, 
solve(S,T). 

adjacent_legs(X,J,X,L). 
adjacent_legs(X,J,K,X). 
adjacent_legs(I,X,X,L). 
adjacent_legs(I,X,K,X). 

Note, however, that the setup costs for these constraints are fourth order inN, so 
that computing all these crossovers becomes quite expensive. 

Figure 2 : Leg c is skipped because of 
the interaction between constraints 

With crossover prohibition constraints in place one fmds that there is sometimes a 
significant amount of pruning of the search space which appears surprising at 
first. For example, in Figure 2. above, we have a case where the algorithm first 
chooses leg a, then leg b, and suppose leg c would then be the next choice. How
ever, when leg cis chosen, the constraints trigger an immediate failure, so leg c 
is skipped. The reason for this failure is that choosing leg c requires that all the 
legs crossing c must become inelgible, but since this includes all the remaining 
legs incident at point p, this leads to a contradiction with the requirement that 
we must choose two legs incident at p. 

Because of this interaction between crossover constraints and incidence con
straints (and in general with other constraints to be added later) the algorithm 
begins to exhibit new and sometimes surprising properties. This synergy phe
nomenon, in which separate (and often weak) constraints interact to produce a 
strong and surprising result, is a novel characteristic of CLP programming .. Note 



that, had we not moved the incident restrictions into the constraint network, 
this synergy would not have happened, but that after choosing leg c, all 
branches of select would have eventually failed. 

In view of this, and the geometrical lemma above, one might expect that the 
first solution of the crossing-blocked algorithm would be better than the 
first solution with crossovers. However, generally the reverse is true: the ad
ditional constraints make the first solution worse rather than better. So, as 
a heuristic algorithm, we are now worse off. The benefits of blocking cross
overs only appear when we run the algorithm non-deterministically, be
cause it reduces the search space. 

4. Branch and Bound 
At this point we would like to remove the cut and return to a complete. non
deterministic algorithm. However, the number of crossover-free tours 
(which is the set we are searching with this algorithm) is still too large to be 
practical for any but very small values of N. 

In order to prune the search space further we introduce a constraint version 
of the branch and bound strategy. This requires that we maintain an inter
val estimate of the length of a tour and a global bounding value based on the 
best tour seen so far with the intent that we thereby cut off the search 
whenever the estimate's lower bound is above the global bound. Each new 
(and better) solution must then alter (as a side-effect) the global bound. 

For this purpose we add two additional fields SP (an integer variable) and 
SPD ( a real variable) to the leg structure: leg( o, P, SP, SPD, x, v ). 

The variable SP represents the partial sum of the P booleans for this and all 
previous legs, while SPD is the partial sum of P*D for this and all subsequent 
legs. This additional constraint structure is constructed by a call to bnb_con
straintsC Leglist, Number, Nsofar, Total_Oist). 

The mainline of the algorithm is then changed to call this additional setup 
routine, set up the global bound inequality, and to update the global bound 
for each new solution. It uses a special CLP(BNR) primitive ( set_ upper_
bound) for performing this last action as a side-effect, which will not be un
done by backtracking. At the end, the optimal (i.e. the last) solution is 
retrieved from state space. 

salesman_bnb( Tour, Length ) :-
construct_legs( Leglist , N), 
sort( Legl ist, Ascending ) , 

crossover_constraints( Ascending), 
bnb_constraints( Ascending, N, B, Total)), 

Bound: reol(B,_), 
Total =< Bound, 

foreach( selectl( N, Ascending, Selected, Ct) 



do [ remembera( tour( Selected) ), 
range(Total,[_,U]), 
set_upper_bound( Bound,U) ]), 

recall( tour( Selected)), % get fi.nal answer 
sequence( Selected, Tour, 0, 0. 0, Length) . 

One possibility for the setup routine would be this: 

bnb_constrai.nts( 0, _, _, 0.0). 
bnb_constrai.nts( [ leg(D,P,SP,SPO,_,_), Ls .• ], Number, OSP, SPD):

SP = OSP + P, 
bnb_constrai.nts( Ls, Number, SP, OSPD), 

SPD = OSPD + P*D, 
SPD >= (N1.111ber - SP)*D. 

Notice that the fli'St line in the second clause computes SP as a partial sum 
of previous P's, while the third line computes SPD as a partial sum of subse
quent P*D's . 

.._.,.. ----tl SPD ~~ -
Figure 3.A portion of the constraint network 

This is not good enough, however, since the lower bound of SPD will be 0.0 
so long as no subsequent P's are equal to 1; for this reason the total value 
returned by bnb_constraints has a lower bound which just reflects the currently 
chosen legs. This lower bound is too low to get much pruning from the global 
bound. For this reason, the last line in the second clause adds a bounding 



constraint: the rest of the choices ( of which there are: Number- SP) are 
each at least as big as D, so SPD >= (Number- SP)*D. Note that this estimate is 
applied at every stage so that many lower bounds are being computed "in 
parallel" and the largest of these becomes the lower bound of the total cost 
of the tour. The largest ofthese bounds would come from legs with large D, 
except that past the current choosing point of the select algorithm, the other 
factor (Number- SP) becomes increasingly uncertain because of SP. Usually, 
the effective bound will comes from at or just ahead of the choosing point. 

With this mechanism in place the number of choices K1 drops rather dra-
matically. Direct measurements yield: · 

N 
(N-1)! 
K1 

7 
720 

18 

8 
5040 

55 

9 10 11 
40320 362880 3628800 

230 448 1378 

These mechanisms have thus reduced the complexity of the problem signif
icantly, from (N-1)! to a mere approximate 2**(N-1). Practically speaking, 
however, the cost of the constraint processing, which seems to be roughly 
proportional to N*N, means that the running times to do not show the same 
improvement. For the N=11 case, for example, the improvement is only 
about a factor of 10. Thus despite the fact that on larger problems one might 
be able to reduce the running time from say a century to a mere few 
months, this is not a practical solution in the usual sense. 

Therefore, in order to improve the pruning in the branch and bound, and re
duce the constraint costs for doing estimates, in our last version we will 
move the bounding estimation back into Prolog. We no longer need to have 
the SP variables, so we can simplify: 

bnb_constraints( [], 0.0). 
bnb_constraints( [ leg(O,P,SP,SPO,_,_), Ls .. ], SPO):

bnb_constraints( Ls, OSPO), 
SPO - OSPO + P*O. 

The select algorithm, however, becomes more complex: 

select( 1, (leg(0,1,_,_,P,Q),_ .. ], [leg(O,P,Q)] ):- !. 
select( N, [leg(O,S,SPO,P,Q),Ls .. ] , R):-

var(S) -> [ estimate(N, Ls,O, TO), 
SPD:- TO ~ connect estimate to constraint net 

], 
sel( S, leg(O,P,Q), N, N1, R,R1), 
select1( N1, Ls, R1). 

sel( 1, leg(O,P,Q), N, N1,[leg(O,P,Q),Ls .. ],Ls):
check_components(P,Q), 

N1 is N - 1 
sel( 0, Leg, N,N, L,L). 



In this hybrid solution we compute an explicit lower bound by summing 
over the next n possibly chooseable legs; since this ignores any constraints 
between them, it is obviously a lower bound. 

estimate(1,_, D,D):-! 
estimate(N, [leg(D,S,_ .. ),Ls .. ], 01, TO):- 5@=0,!, estimate(N,Ls,D1,TD). 
estimate(N,[leg(D,S,_ .. ),Ls .. ],D1,TD):-

N1 is N - 1, DO is 01 + D, 
estimate( N1, Ls, DO, TO). 

This lower bound is then connected directly into the SPD variable, where it 
propagates back to the comparison against the global bound. With this ver
sion, which computes a slightly tighter lower bound, we get a further reduc
tion in the number of choices K2. 

N 
(N-1)! 
Kl 
K2 

7 
720 

18 
16 

8 
5040 

55 
46 

9 
40320 

230 
166 

10 
362880 

448 
287 

11 
3628800 

1378 
911 

12 13 
39916800 479001600 

') ') 

3403 9805 

This version is also somewhat better in time because of the reduction in the 
amount of constraint activity devoted to lower bounds, with the search time 
for N= 11, for example, reduced to a couple of minutes versus the hour re
quired by the naive algorithm. The lower bound estimator is still very 
crude, however, and an investment in finding a tighter lower bound estima
tor would most likely produce large benefits. 

Conclusion 

In this paper we have gone through the frrst steps of an iterative develop
ment cycle for a partially constraint-based approach to a difficult problem. 
We have examined several strategies for pruning search spaces and looked 
at the mechanism for implementing branch-and-bound, and seen how these 
act to reduce the amount of non-determinism by large factors. The resulting 
algorithm is, of course, still exponential as it must be (unless P=NP). In any 
particular problem, depending on the details of the formulation, the result
ing algorithm may or may not be useable for realistic-sized problem instanc
es; only by doing the experiment can we tell what the practical limits will be. 
CLP(BNR), which makes the job of writing correct and complete solutions 
very easy, makes such empirical investigation feasible. Each improvement 
in the algorithm permits larger sample problems to be handled, and these 
serve as test cases for the next generation algorithm. Finally, and most im
portant, each advance in theoretical knowledge (such as the geometry lem
ma in this example) translates directly into additional constraints and hence 



a reduced search space. 
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