Constraint Arithmetic on Real Intervals

William Older
André Vellino

Abstract

Constraint interval arithmetic is a sublanguage of BNR Prolog which offers
a new approach to the old problem of deriving numerical consequences from
algebraic models. Since it is simultaneously a numerical computation technique
and a proof technique, it bypasses the traditional dichotomy between (numeric)
calculation and (symbolic) proofs. This interplay between proof and calculation
can be used effectively to handle practical problems which neither can handle
alone. The underlying semantic model is based on the properties of monotone
contraction operators on a lattice, an algebraic setting in which fixed point
semantics take an especially elegant form.

1 Introduction

Procedural arithmetic spoils the declarative nature of pure Prolog programs. Pro-
grams written in pure Prolog should be readable declaratively and the order of logical
expressions (conjunctions, disjunctions and negations) should be semantically irrele-
vant. Moreover, they should preserve the following properties:

e narrowing (the answer is a substitution of the question)
e idempotence (executing the answer adds nothing) and

e monotonicity (the more specific the question is, the more specific the answer

will be).

Relational arithmetic in constraint logic programming languages typically applies
to either finite or integer domains (CHIP) [5,11] rationals (Prolog-III) [3] or floating
point numbers (CLP(R)) [7]. In these systems the set of constraints is effectively
restricted to linear equations or inequalities, for which there are well-known solution
algorithms.

Another approach suggested by John Cleary in [2] and also proposed indepen-
dently by Hyvonen in [6], considers relational arithmetic on continuous domains by
adapting techniques from interval arithmetic. These ideas for constraint interval

Y

(a) (b)
Figure 1: Conventional Fixed-Point Iteration

arithmetic were first fully developed and integrated into BNR Prolog in 1987 at Bell-
Northern Research (BNR). We have also recently implemented constraint interval
arithmetic in generic Prolog in order to have a portable version which could be exe-
cuted independently of BNR Prolog.

Constraint interval arithmetic can be difficult to describe adequately because its
conceptual framework is quite different from either conventional numerical analysis
or algebraic and symbolic approaches. Section 2 of this paper describes the basic
ideas in a direct, intuitive and operational fashion. Section 3 compares the constraint
interval arithmetic with other approaches and discusses its practical ramifications.
Section 4 approaches the subject from a rather different angle. The object here is to
describe a lattice-theoretic framework in which to understand the properties of both
the primitive interval operations and the constraint propagation networks created
from them. This formalises some of the intuitions that are alluded to in the earlier
sections but this material is self-contained and may be omitted on first reading.

2 Interval Iteration

One of the oldest and most widely used general methods for numerically solving
non-linear equations is the basic fixed point iteration. Figure 1(a) shows how it is
supposed to work in the simplest interesting case, that of finding a solution to the pair
of equations {y = f(x),y = g(x)} where f is decreasing and ¢ increasing. Successive
evaluations according to y' = g¢(x), 2’ = f~'(y') are expected to converge to the

(unique) solution of the two equations.

Y
g
. f
A AN Y v
b X
X X’

Figure 2: Interval Failure

Unfortunately, in practice, one often encounters behavior like that shown in Fig-
ure 1(b). After appearing to converge at first, the iterations of @ wander away from
the desired solution. Eventually the iterations may find another, unexpected, solu-
tion or may become periodic, or even chaotic. Whether the iteration converges or not
depends on just about everything: the shape of the curves, the starting point, which
function is applied first, the choice of coordinate system. Making the right choices
for all these factors so as to guarantee convergence can require considerable analy-
sis. Often in interactive contexts it is expedient to just try something at random,
and if it appears to converge, accept the result. But the appearance of convergence
(as this example shows) is not necessarily convergence, and there have been some
cases of serious errors due to accepting such approximate solutions. Some more so-
phisticated techniques, such as the well-known Newton’s method. consist of doing a
symbolic transformation on the problem, and then iterating the transformed problem.
The transformation serves to speed the convergence (if it converges), but since the
iteration technique is the same it has the same qualitative difficulties.

If, however, the fixed point iteration is performed not on floating point values but
on interval-valued variables, these difficulties vanish. An interval iteration is shown
in Figure 2. Start with an interval X of values for z, and find the image interval
Y’ = ¢g(X), then the pre-image of that X’ = f~'¢(X) and then intersect it with the
original interval. In this case the intersection is empty, and it follows that there was
no solution in the original interval X.

It is important to see that this interval iteration is a proof that no solution exists
and that it is justified by the fact that the functions f and ¢ are monotonically

Y Y
\ g g
¢ s/
f f
N A\ N
X X

(a) (b)
Figure 3: Interval Iteration

increasing or decreasing.

Proof: Assume z; < z < zy and x is a solution to z = f~'g(z).
Then g(x) < g(x) < g(ay) since g is monotonically increasing and
= fTlg(ay) > f~lg(x) > f~lg(xy) = 2/ since f is monotonically
decreasing. Hence « € [vp,xgy]| N [2}, 2] but since the intersection is
empty, the assumption that 7 < & < xpy is a solution must be false.

For an initial interval that does contain a solution, Figure 3 shows the first two steps of
a converging iteration in which the starting interval includes the solution and at each
step the interval gets narrower. Ideally this iteration could be continued indefinitely
and in the limit it converges to the solution. But practically speaking, few iterations
often suffice to narrow the initial interval to a small final interval.

An argument similar to the above proof shows that if there is a solution in the
intteal interval, then there is a solution in the final interval. Of course, in this case,
we might be inclined to believe that there is a solution because we believe in the
completeness of the real numbers, but the constructive proof does not assume com-
pleteness thus cannot draw so definite a conclusion.

If this procedure is carried out using finite precision arithmetic, such as ordinary
floating point, it does not generally work since rounding errors will often cause the
intervals to miss each other. To avoid this problem with finite precision it is necessary
to make each interval slightly bigger by “outward rounding” after every arithmetic
operation. When this is done, the iteration stops automatically when it hits the limits
imposed by the precision being used.

<
=

Y,— >) \ g . \ g
’ v v
) f / f
~— €
N ™ {
X X

(a) (b)
Figure 4: Inconsistent Initial Intervals

Figure 4 shows a more complex case leading to a contradiction. In this case both
X and Y have initial intervals. There are a number of different ways in which one
can apply the iteration. One can start with X and fold in the interval for Y after the
first half-iteration (as indicated by the arrows in the figure), or start with Y and fold
in the interval for X, or do both in parallel and merge the results. Whichever way
one chooses, the result (in this case “failure”) is the same. Even in non-failure cases
the final intervals will have the same bounds regardless of the sequence chosen.

After studying some examples like this, one begins to suspect that, unlike tradi-
tional fixed point iterations, there are no pathological cases. The worst thing that
can happen is that the initial interval does not narrow at all, which simply indicates
that the original hypothesis is not strong enough to reach any useful conclusion.

3 Constraint Interval Arithmetic

In general terms, constraint interval arithmetic can be described as a method for tak-
ing a set of mathematical relations between certain quantities, and constructing from
them a process which maps initial intervals on all quantities to final intervals for these
quantities. It does this by constructing a proof (using interval fixed point iteration)
that any solutions in the initial intervals must lie in the final intervals. The mapping
from initial to final intervals is contracting (the final intervals are subintervals of their
initial values), idempotent (repeating the same constraint has no effect on the interval
values), and inclusion monotone (smaller initial intervals yield smaller final intervals).
Moreover, the mapping from initial to final intervals is independent of the order in

which constraints are imposed and of the details of the implementation.

3.1 The Prolog Setting

Our implementation of constraint interval arithmetic is embedded in an experimental
Prolog system, BNR Prolog, which serves as a meta-language for formulating math-
ematical models, posing the questions, and displaying the answers. Thus interval
expressions form a distinct sublanguage of Prolog in this model, rather than being
integrated at the level of unification, and this facilitates the use of Prolog as a meta-
language. The language of model formulation includes all the basic operations on
reals (+, —, *, /, exp, min, max, abs, sin, cos, etc.), the relations of equality (==),
definition (is), and inequality (<), as well as some specialized “meta-predicates” for
declaring intervals and querying the current size of intervals. The constraint sys-
tem is fully incremental: any interval relation encountered during Prolog execution
is automatically added to the constraint network.

To maintain backwards compatibility with conventional floating point arithmetic
in Prolog, the convention is used that arithmetic statements encountered during a
Prolog execution are treated as interval constraints if they refer to any interval ob-
ject, and as conventional arithmetic otherwise. This allows conventional arithmetic
programs to be used in “interval mode” by simply calling them with interval in-
puts/outputs.

The constraint interval language is fully relational, so that, for example, execution
of a statement such as

R*¥R == X*X + Yx*Y

(with X,Y,R intervals) can be used to calculate not only R from X and Y, but X from
R and Y, and Y from R and X as well, depending on circumstances. The use of a
relational arithmetic language, as with relational programming in Prolog, can greatly
simplify the formulation of problems while at the same time making code much more
general.

Interval arithmetic in BNR Prolog is integrated into the Prolog backtracking mech-
anism, so that a contradiction discovered in the constraint network automatically
triggers backtracking to the last Prolog choice point, and “undoes” any subsequent
changes to the constraint system (interval narrowings or addition of constraints).
Consider, for example, the program that defines the intersection of the folium of
Descartes and an exponential decay.

folium_exp(X,Y) :-
range(X,_),
range(Y,_),
X*xX/Y + YxY/X == 2,
Y == exp(-X).

The question 7- folium_exp(X,Y) produces the answer

X
Y

[-44.362, 1.8440e+19],
[0.0000, 1.8440e+19]

which is insufficiently precise to be useful. However, the answer to the question 7-
folium_exp(X,Y),(X >= 0.5 ; X =< 0.5) produces two point solutions:

Y = [0.41961, 0.41962],

X = [0.86841, 0.86842] ;
Y = [0.74485, 0.74486],

X = [0.29456, 0.29457]

Thus the integration of interval constraints with backtracking is particularly useful
for writing numerical search algorithms, or dealing with problems that have both
combinatorial and continuous aspects. A more complete description of the surface
syntax and operational appearance of constraint interval arithmetic can be found in
[10], which also includes examples illustrating various features and [1] which compares

BNR Prolog with other CLP systems.

3.2 Comparisons

It is helpful to contrast constraint interval arithmetic both with other constraint sat-
isfaction techniques and with conventional methods. In the following subsections we
note the differences from symbolic methods, procedural interval arithmetic and con-
ventional error analysis methods. Moreover we emphasise the fact that constraint
interval computations are proofs, which cannot be said of traditional numeric tech-
niques.

3.2.1 Symbolic methods

It is crucial to note that constraint interval arithmetic is fundamentally a numeric and
not a symbolic technique. The “program” is defined by mathematical relations, but
questions are always numeric (the initial intervals) and solutions are always numeric
(final intervals). This is quite unlike (for example) the behaviour of CLP(®) on non-
linear problems, where the questions are the relations themselves, and the answers
will be a reduced set of symbolic relations.

Symbolic methods have, of course, the great advantage of generality, when they
can be applied. But a numeric approach is often necessary because there is no sym-
bolic solution, such as roots of polynomials of degree greater than 4, or because
the symbolic solution is too unwieldy, as with linear systems. Furthermore, numeric
methods can take advantage of the specific quantitative situation in ways that are
not available to general symbolic techniques. For example, constraint relations which

are topologically close (in the sense of having “nearby” graphs) will generally behave
in a qualitatively similar fashion, although one may be symbolically tractable and
the other symbolically intractable. In particular, the difference between a linearized
model and a “nearby” mildly non-linear refinement (a commonly occurring case in
engineering) does not significantly change the nature of the problem from the perspec-
tive of constraint interval arithmetic; indeed, experience suggests that the non-linear
problem will often work better.

Even though interval arithmetic is a numeric technique it enhances any symbolic
methods with which it is made to cooperate. Unlike conventional floating point, in-
terval arithmetic formally honors the algebraic axioms of real arithmetic, in the sense
that symbolic transformations based on those axioms can never lead to bogus contra-
dictions due to rounding problems. Thus “redundant” relations, which conventionally
can cause problems because of such bogus contradictions, become a positive enhance-
ment instead of a problem. For example, in a linear system problem in constraint
interval arithmetic, a pivoting operation produces an additional redundant equation
rather than a replacement for one of the original relations.

The numeric nature of this technique implies that any system of finite precision
floating point arithmetic with which it is implemented renders the precise bounds of
computed intervals sensitive to the specific formulation of the problem. For example,
Y1 is (A4+B)+(C+D) and Y; is (((A4+B)+C)+ D) may result in different computed
bounds for Y because of the non-associativity of floating point arithmetic. However,
since both Y] and Y; are supersets of the answer Y,) £ Y C Y] NY; is always true.
Given a particular one of the many mathematically equivalent formulations (i.e. a
specific set of parentheses for an expression) the theory developed in section 4 then
implies that final bounds are independent of the order in which the constraints are
processed.

3.2.2 Functional interval arithmetic

Constraint interval arithmetic obviously has much in common with the classical in-
terval arithmetic developed by Moore in the 1960’s, and much of the classical interval
literature can be very useful [8,9]. However, as a whole, they are extremely different
paradigms.

The major difference is that constraint interval arithmetic is a relational language
while the classical interval arithmetic is functional. This difference affects not only
the formal structure of the language, but has a major impact on problem formulation.
The second difference is the notion of a constraint as something which can be “im-
posed” once, but which continues to “operate” so as to maintain its truth; classical
interval arithmetic merely provides an abstract data type for intervals, and each in-
dividual calculation must be explicitly coded. Finally, the Prolog metalanguage with
integrated backtracking and the logic programming paradigm radically changes the
way in which one formulates problems.

3.2.3 Error analysis

Since interval based techniques effectively perform an error analysis along with each
computation, numerically fragile formulations and even conditionally fragile behaviour
for specific inputs show up immediately as unexpectedly wide intervals which refuse
to “narrow” even when inputs are narrowed. This provides a useful indicator of pos-
sible problems with a model (or of the system being modeled) for which there is no
simple conventional equivalent.

For many numerical applications much of the work lies in determining that the
model is sufficiently robust for small variations in many parameters. Traditional
methods of sensitivity analysis based on error-propagation formulae, calculus or just
repeated evaluations, are laborious, error-prone, and often inconclusive because they
cannot provide the desired guarantees. A wide range of sensitivity /stability analyses
can be done very easily using interval arithmetic without requiring any additional
code. Furthermore, unlike traditional methods, such interval calculations can guar-
antee (modulo the correctness of the model) that if some parameters (e.g. component
specifications) are within certain ranges, then some other variables (e.g. overall sys-
tem parameters) will be within certain ranges under worst-case conditions.

Since interval fixed point iterations stop automatically when they reach the reso-
lution limit of the underlying arithmetic, there is no need to use specific convergence
tests which are such a common and often problematic feature of conventional numer-
ical programming.

3.3 Computations as Proofs

The other aspect of constraint interval arithmetic, and one which makes it very differ-
ent from traditional numerical techniques, is that its computations represent proofs,
and these are always proofs of the non-existence of solutions. As proofs, they carry
a degree of logical force generally absent from traditional floating point numerical
computing, which is, by comparison, concerned only with heuristics. The fact that
its proofs are always non-existence proofs also makes it very different from traditional
exact (rational) arithmetic, in which computations can be thought of as constructive
proofs of existence.

It is precisely because interval proofs are non-existence proofs that they can be
interpreted as referring to the mathematical reals, even though only bounded precision
constants actually appear in the proofs themselves and the constraint system itself
has no notion of “real number” in the full mathematical sense. (Of course, these
proofs refer as well to the rationals, computable reals, and non-standard reals.)

To take full advantage of this proof aspect of the technique, it is sometimes neces-
sary to formulate problems negatively, so that a “failure” indicates a successtul proof.
Thus in the problem of formal system verification mentioned above, one asks ques-
tions of the form: if components all lie within their specified tolerance intervals, can

a system parameter lie outside its specification? A “no” answer then indicates that
a successful proof of compliance has been constructed, thus achieving a formal veri-
fication for all systems characterized by the model and initial intervals. If, however,
a contradiction is not found, then the final intervals indicate conditions in which the
specifications might not be met, and thus provide a direct indication of where the
design may be marginal.

The art of computation-as-proof is particularly striking in interval search tech-
niques, as in problems of global non-linear optimization, where it is used to eliminate
subregions where the optimum cannot occur. These algorithms, essentially of the
branch-and-bound type, were originally developed in the context of functional inter-
val arithmetic, but become much more elegant in the context provided by Prolog and
relational interval arithmetic where Prolog backtracking automatically manages the
housekeeping chores associated with branching, while the interval machinery provides
the necessary bounds automatically.

3.4 Implementation Considerations

Individual interval primitives such as addition (subtraction) and multiplication (di-
vision) can be implemented in a manner which requires on average less than three
floating point operations per execution, not including comparisons. However, since
a considerable number of comparison operations are involved in each operation, it is
important to use a floating point representation such as the IEEE standard which
supports cheap comparisons.

The complete insensitivity of the result of the computation to the order in which
the individual primitive operations are done would seem to make constraint interval
arithmetic an excellent candidate for low-level parallel implementations. The com-
putation is so confluent that it is possible to take a totally relaxed attitude about
synchronization of everything except failure and the subsequent backtracking.

Comparison of memory costs between constraint interval arithmetic and alter-
native systems is difficult. With regard to static costs, the mathematical model is
represented in constraint systems by a data structure while conventionally it may be
largely represented by an algorithm and counted as code. It should be noted that
since a constraint corresponds to each execution instance of an arithmetic expression,
the size of the constraint system is not related in any simple way to the size of the
arithmetic part of the program which creates it, and in fact the largest problem we
have dealt with so far has a program of only four pages in which only about six lines
even mention arithmetic.

Memory management overheads—chiefly the overheads of “trailing” changes so
that states can be restored on backtracking-naturally seem to be higher than in
conventional numeric contexts until one considers that these effectively replace ini-
tialization code. These overheads are much smaller than the usual implementations
of floating point arithmetic in Prolog, which tend to produce substantial amounts of

10

garbage which may require collection.

3.5 Complexity Issues

For constraint networks that are acyclic it is possible to bound the number of op-
erations required to achieve a fixed point, and the bound is linear in the size of the
network. To restore a fixed point after a change requires much less work, and, in
particular cases, may require only a few operations.

There i1s a somewhat wider class of constraint networks that are essentially func-
tional in that if the individual constraints were to be executed functionally in some
particular order, they would produce the required fixed point.

Empirically it has been observed that such networks seem to evaluate in linear
(or near-linear) time, but this probably depends on the specific details of the internal
scheduling mechanism being used to guide propagation and is not a general property
of the technique. One example of this kind is linear systems which are (both row
and column) permutations of a triangular system, with some interesting special cases
in polynomial multiplication, reversion of series, and matrix factorization. A more
subtle example is with PERT/CPM scheduling problems, where the algorithm seems
to “find” its way to the classical canonical decomposition into separate upper and
lower-bound potential construction problems regardless of the order in which the
problem is stated. This ability to find and exploit hidden functional pathways (which
seem to be quite common in industrial problems) may be one of the main explanations
for the otherwise puzzling fact that this technique has worked better than expected
on realistic problems. It should be noted, also, that whether such functional pathways
exist and which way the data flow goes depends on the relative sizes of intervals, and
the optimal order of evaluation may be quite different for different initial conditions.

For general constraint networks containing loops, it is very difficult to predict
performance theoretically, even for specific problems, just as it is generally difficult to
predict the number of iterations to convergence in conventional fixed point iterations.
It is also unclear how to formulate a useful complexity measure for constraint interval
arithmetic in general. Since termination is governed by the actual precision being
used, a complexity model must take the precision into account. Worst-case perfor-
mance for fixed precision in general has an upper-bound that depends exponentially
on the number of variables but is independent of the problem being solved. This
bound, which is on the order of the number of different states of the system, is so
large as to be practically useless, and there are some relatively simple problems that
come close to achieving it. For example:

abs(X) =< M, abs(Y) =< M,
AxX + BxY == C
AxX + B*Y == C’

where C and C’ are disjoint intervals which differ by some small . This eventually

11

results in failure, but effectively does so by counting from -M to +M by steps of size
0, which can be an enormously large number. On the other hand, it has been our
experience that, in practice, quite respectable industrial-sized problems with hun-
dreds of variables and constraints, will, in most cases, converge to a fixed point in a
reasonable amount of time. In particular, if the constraints are inconsistent, failure
usually occurs fairly quickly unless the initial conditions are very near the boundary
of the failure region.

4 Theory

The general theory of constraint interval arithmetic falls naturally into three distinct
layers. The top layer is concerned with the conversion from the external source
language to an internal data structure or constraint network. The bottom layer is
a simple abstract theory for the implementation of primitives. The middle layer
concerns the interval iteration and relates the properties of the primitive operations
to that of the constraint network as a whole. It is to this middle layer (subsection 4.3)
that this section is mainly devoted, since its theory is rich.

4.1 Compilation

The compilation step that transforms an arithmetic expression into a set of nodes in
the constraint network is much like a conventional compilation process in that input
expressions are broken down into atomic operations corresponding to the primitives,
which are then mapped directly. As in conventional compilation, this can be done
either very simply (as in the current BNR Prolog implementation) or in complex ways
designed to optimize performance. In the BNR Prolog implementation, for example
the expression

Y x (Y+1) == X x (Y - 1)

(with X, Y intervals) is transformed internally into the conjunction of primitive interval
constraint relations

add(Y, 1, Y1),
multiply(Y, Y1, Y2),
add(y3, 1, Y),
multiply (X, Y3, X1),
equal (Y2, X1)

(where Y1, Y2, Y3, X1 are new interval terms).

Many of the optimizing principles of standard compilation techniques, such as
factoring of common subexpressions, can be applied here too. The major difference
from conventional numerical compilation lies in the fact that such mathematically
justified transformations cannot lead to incorrect behavior due to round-off problems.

12

4.2 Primitives

The theory behind the primitive relations (add, multiply, etc.) is straight-forward.
Given a relation R of arity n over the reals, and n intervals X (j) with representable
bounds, intersect R with the Cartesian product of the X (j), project the result back
onto each coordinate axis and then round outward to the smallest containing inter-
val whose bounds are representable in the underlying machine representation. It is
evident that this procedure is safe (never losing a possible solution), and that each
output interval is smaller (in the sense of set inclusion) than it was originally. The
result for each argument is an inclusion monotone set function of all its inputs since
it is a composition of inverse projection maps, intersection, projections, and a closure
operation, each of which is itself inclusion monotone. Finally, the operation can also
be shown to be idempotent, essentially because everything that can be trimmed gets
trimmed the first time.

4.3 Fixed Point Semantics

The major theoretical component concerns the interval iteration process and relates
the properties of primitive operations to that of the constraint network as a whole.
A general theory, which must apply to all constraint networks formed from such
primitives, must be based only on the common properties of the primitives and is
necessarily rather abstract. The key question for such a general theory is to char-
acterize the nature of the interval iteration process and its fixed points, relate these
to initial conditions, and show how these properties are affected by the addition of
new constraints. Since new constraints are merged by the same method that primi-
tive operations are handled within a single constraint, a single analysis covers both
situations.

4.3.1 States

For a fixed constraint network, the only things that change during the iteration process
are the bounds of intervals: these are the natural states of the network. Since the
intersection of two intervals is an interval (or failure) and since intervals can be
partially ordered by set inclusion, and given that these properties can be extended to
network states, it is useful to treat states as a meet semi-lattice £ with the partial
order denoted by < and meet (intersection) denoted by A (for an introduction to
lattice theory see [4]). A bottom element L (representing Prolog failure) is also
added so that meet is always defined. A top element T represents the largest possible
state, e.g. with all intervals ranging from —oo to 4o0.

Most states thus correspond to “boxes” in R", that is closures of the basic open
neighbourhoods in the box topology in R". We assume that states are also closed
under arbitrary meets, i.e. the semi-lattice of states is meet-complete. Of course,
if finite-precision arithmetic is used the number of states is finite and completeness

13

holds trivially, but the more general theory has the advantage that it can be applied
also to the infinite-precision case.

Since the semi-lattice has a top element and is assumed to be meet-complete, a
standard construction allows us to define a join operation, V, by saying that the join
of a collection is the meet of all elements larger than each item of the collection, and
with this operation £ becomes a complete lattice.

One theoretical advantage in using only closed intervals, and hence topologically
closed states, is that if the top state is required to be compact then the states in-
herit the finite intersection property: if an arbitrary meet of states is L, a finite
subcollection of those states meets at L.

4.3.2 Operators

The transition operators on states are represented as maps p : £ — L such that the
product of two maps is their composition, which is therefore associative. The identity
map is denoted by 1, and the constant map to L is denoted 0. The lattice structure
(and partial order) of £ can be lifted into a lattice structure on operators by the usual
pointwise definitions:
for all states A:
p=q < p(A)=q(4)
(PAg)(A) = p(A)Ag(A)
(Pva)(A) = p(A)Vq(4)

However, we are only interested in those maps which can be formed by compo-
sition of constraint interval primitives, and, as we noted above, these primitives are
monotone and contracting:

N1. (contracting): p(A) =< A

N2. (monotone): A< B=— p(A) < p(B)

Since the product of contractions is a contraction and the product of monotones is
monotone, we restrict our attention to the semi-group of monotone contractions on
L, denoted MC(L).

MC(L) contains 1, so it is a monoid, and 0 is an algebraic zero. MC(L) is also
partially ordered in the induced order and closed under the induced lattice operations,
and 0 is its least and 1 its largest element. As a direct consequence of N1 and N2, the
product operation is monotone in both variables: p < p’ and ¢ < ¢’ implies pg < p'q’.
By definition,

(pV@)r(X) =p(r(X))Vq(r(X))
r(X)Vgr(X)
= (prVqr)(X)

so right (but not left) multiplication distributes over join.

=D
=D

14

A similar argument shows that right multiplication distributes over meet. The
monotonicity of product provides a substantial amount of right/left symmetry to the
theory, but this symmetry is broken by the lack of left distribution laws.

4.3.3 Idempotents

In addition to satisfying N1 and N2, primitives are idempotent:
N3. (idempotent): p(p(A4)) = p(A)

We will call such operators (those satisfying N1-N3) narrowing operators on £, and
denote the set of all narrowing operators by N(L). N(L) contains 0 and 1 and is
partially ordered by =<, and we will be mainly concerned with its closure properties
with respect to product and the lattice operations.

In any semi-group there are two relations that can be defined which capture the
relative strength of idempotents:

plq = pg=p
pRqg <= qp=p

Clearly L is reflexive; it is transitive since pg = p and gr = ¢ implies pr = (pq)r =
p(qr) = pq = p, and similarly for R. In general, there may be no connection between
the two relations, nor need they be partial orders. In N(L), however, we have that
pq = q (since p contracts) so pg = p implies p < ¢ and conversely if p is an idempotent,
p = q implies p = pp = pg. So pg = p and hence pLq <= p < ¢. (Note that only
p needs to be idempotent.) A similar proof applies to R, so both the left and right
absorption orders are equivalent to <.

If p and ¢ are contractions, then since p(X) =< X and ¢(X) = X, we have by the
least upper-bound property that p(X) < p(X)V¢(X) = X, and if p is also monotone
then p(X) = p(p(X) V ¢(X)) = p(X) so p(p(X) V q(X)) = p(X) and similarly for g.
If p and ¢ are both also idempotent, then

V q)(p(X) VvV q(X))
p(X)Vq(X))Vq(p(X)Vq(X))
X)Vq(X)

Vg)(X)

(pVa)pVe)(X) =(p

(
(

<

P
P
=(p
o (pV q) is also idempotent.

4.3.4 Commutativity

Two primitive operations p and ¢ which do not directly share any variables commute,
pg = qp, so commutativity is very common in practice. If p and ¢ are commutative
idempotents, then pq is an idempotent since

15

(rq)(pq) = plap)qa = p(pa)q = (pr)(9q) = pq

A fully commutative consistent network has an interesting structure related to
Prolog. Since there are a finite number n of generating primitives, all of which
commute, there are at most 2" distinct products (including 1, but 0 is not in the
generated set because we're assuming consistency). Some of these may be the same,
however, as consequences of the order relation which is completely captured in the
multiplicative structure by the absorptive relations. The absorption relation yx =
ry = x (where x and y are products of primitives) can be decomposed into those
of the form pr = xp = x where p is primitive, since x =< pq if and only if both
= pand x =< ¢. These can then be expressed in the form of Horn clauses (p « z),
or, equivalently, as a set of functional dependencies. Thus the monoid structure of
a consistent finite commutative constraint network is given by a finite propositional
Horn logic.

4.3.5 TIteration

We need to iterate non-idempotent operators in order to create idempotent ones.
Intuitively we would like to define iteration by
« def 4. n
p" = lim (p)

Since the sequence of powers of p is decreasing, the same effect is achieved by the
definition

« def N n
P = N\(p)

n=1

which exists because £ is complete. We can then define the iterated product of p and
q by

p*q=(pq)
Note that if p and ¢ commute, then p * ¢ = pq.

The operator determined by a constraint network can now be formally expressed
as the * product of all its primitives, so every constraint network satisfies N1-N3. The
loose statement that the result of interval iteration is “independent of the ordering”
of operations can now be expressed (in part) by the assertion that * is commutative
and associative. Although these proofs can be carried out directly in MC(L), a much
more elegant proof proceeds indirectly via fixed points.

16

4.3.6 Fixed Points

A fixed point of a narrowing operator p is an element = of £ such that p(z) = z.
We will use the relation fp(p,) to say that x is a fixed point of p. The relation fp
induces a Galois connection between sets of fixed points and operators which we will
now investigate. For each narrowing operator p we define its family of fixed points

by F(p) = {xz: fp(p,z)}.

Lemma: For p in N(L), F(p) satisfies:
Al. L € F(p)
A2. A; € F(p) — \/ZAZ € F(p)

Proof: Al is immediate. For A2 we note that since A; <X V; A;
p(A;) 2 p(V; Ai). So, from the definition of join, V; p(4;) < (\/Z A; but
since all A; are fixed points of p, \V; A; < p(V; Ai), and p(V; 4;) <V

since p is contracting; it follows that p(\V; A;) = V; A..

Note that collections satisfying Al and A2 are closed under arbitrary intersections
in the power set of £. Given a collection F' in £ satisfying Al and A2, define an
operator by G(F)(z) = { largest « € F : a =< x}. This makes sense because of
A2, and it is easily seen that G(F') is top preserving, contracting, monotone, and
idempotent, so it is a narrowing operator. It is easily verified that these constructions
define a bijective correspondence: G(F(p)) = p and F(G(F)) = F.

The fixed points of p * ¢ are precisely the common fixed points of p and ¢. For
if @ is a common fixed point of p and ¢, then pg(z) = 2 so p* ¢(x) = x, and
conversely if p x g(x) = « then pg(z) = x (since x = p * ¢(x) = pg(z) <), so
p(x) = ppq(x) = pg(z) = x and also © = pg(z) = g(x) = 2 so ¢(x) = x. Then since
p * g corresponds to the common fixed points of p and ¢, we have

p*q=G(F(p)N F(q))

so p * ¢ is idempotent and N(L) is closed under *. In particular the operator cor-
responding to a constraint network is idempotent and satisfies N1-N3. Furthermore
(N(L),*) is isomorphic to the meet semi-lattice of sets (in £) which satisfy A1-A2.
In particular, * is commutative and associative. However, this representation for p*¢
also implies that any (composition) product of primitives which achieves a common
fixed point when applied to any state x, will have computed the iterated product
evaluated at x, and this confluence property provides a much stronger form of order
independence and this what is actually used in practice.

Since the set of collections satisfying A1-A2 is closed under intersection and has a
top element (the set of all elements in £), it is possible to define a new join operation
in the usual way, and transfer it to N(L£) via G to make N(L) a complete lattice.

17

Pg A Qp

pPap v dpq

AN

pap apq

Figure 5: Lattice of Idempotents

This join operation is operationally the same as V., since p V ¢ is the least upper-
bound in MC(L) of p and ¢, and since it is idempotent it must therefore be the least
upper-bound in N(L) as well.

As an application of confluence, Figure 5 shows part of the lattice generated from
two idempotents p and ¢ by applying monotonicity and lattice properties. Confluence
implies that there is exactly one idempotent in the diagram below pAg, from which we
can infer that (i) (pAq)* = (pgVqp)* = p*q; (ii) pAqis idempotent = pAq = pg = qp
is idempotent; (iii) (p A ¢)(p A q) = pg A ¢p is idempotent = pgp = gpq is idempotent;
(iv) pq is idempotent = pg A ¢p = pg = pgp is idempotent; (v) (pg)" = (¢p)™ = both
are idempotent, etc.

4.3.7 Compactness

If the underlying lattice is meet compact, then we get a finite failure principle. For
if some finite constraint system ultimately fails on state x, then confluence implies
that the iteration of the simple product p of all the primitives in the system fails,
(p*)(x) = L. But by the definition of iteration, this is equivalent to a meet of all
p"(x) failing, and meet compactness then implies that p"(x) = L for some finite n.

4.3.8 Constraint Graphs

The theory presented so far has been quite abstract and therefore somewhat remote
from actual implementations. Something much closer to an implementation viewpoint
can be constructed by defining an abstract graph or network associated with a definite

18

constraint system, given as a set of primitives. The nodes of this graph are the
primitive operators; there is a undirected edge from one node to another whenever
they do not commute. Figure 6 shows a such a graph for a model of paramagnetism
in which Y = a* X, Y = tanh(X) and where boxes represent primitives and edges
connect non-commuting primitives.

Figure 6: Constraint Network

Since each element of a connected component of the graph commutes with ev-
erything not in that component, the iterated product for the total network is just
the commutative product of the iterated products over each separate component.
Furthermore, when a node in a connected graph is evaluated, only its immediate
neighbors may need to be reevaluated, so the graph serves to direct the reevaluation
strategy. This network representation of a system of constraints plays a pivotal role
in relating the abstract theory to concrete algorithms and specific problems.

4.3.9 Relation to Prolog

Constraint interval arithmetic is in some sense analogous to Prolog, or more precisely
the non-backtracking part of BNR Prolog. In this analogy one takes £ to be the space
of terms with A corresponding to unification and L to failure, and takes the state of
a computation (along each separate branch of the non-deterministic computation) to
be represented by a term (roughly the “goalstack”).

Each call instance, including external primitives, is then conceived of as a nar-
rowing operator on the state. Axiom N1 then holds because variables are only bound
and never unbound. Axiom N2 eliminates “impure” constructs (such as instantiation
tests and traditional arithmetic). Axiom N3 must be be replaced by

P3. (persistence) A <X p(B) = p(A) = A
which captures the “write once” property of logic variables (and also eliminates prim-
itives like var/1). P3 clearly implies N3. The set of operators satisfying {N1, N2,
P3} will be denoted by P(L).

The abstract theory of P(L) is very simple, consisting of a single theorem:

19

Universal Answer Theorem: p € P(L) = p(X) =X Ap(T).

Proof: p(X) =< X by N1 and p(X) < p(T) by N2, s0 p(X) < X Ap(T).
But from p(X) < XAp(T) = X we get p(X) < p(XAp(T)) < p(X) by N2
so p(X) = p(X Ap(T)). Since X Ap(T) = p(T), P3 gives p(X A p(T)) =
X Ap(T).

//

Thus persistence is a very strong axiom when combined with N1 and N2. However,
N1 and P3 without N2 are satisfied by conventional Prolog arithmetic, which suffers
from the problems which constraints are designed to eliminate.

5 Conclusion

The principal application domains for constraint interval arithmetic (of which we are
aware) have been in the following areas: scheduling, interval temporal logic, protocol
performance modeling. industrial design, parametric estimation in crystallography,
and bounds analysis. It is significant that the interval approach to many of these
problems is not comparable to conventional solutions, because either there are no
known algorithms or conventional approaches are too difficult to apply in practice.

It is important to recognize that the basic technique of constraint interval arith-
metic is relatively weak. This weakness reflects both its generality—which allows
it to be applied usefully in situations in which no particular conventional algorithm
is suitable—and the locality and simplicity of its primitives—which permit efficient
implementations. For the same reason, however, there are relatively few problems
for which it will be sufficient as a solution technique, just as there are relatively few
problems in logic programming for which unification alone is a sufficient technique.
The true power of the concept lies not so much in what it can accomplish in isolation
but the way in which it combines synergistically with complementary techniques such
as symbolic transformations and backtracking.

References

[1] Brown, R. G., Chinneck, J.W. and Karam, G. “Optimization with Constraint Pro-
gramming Systems” in Impact of Recent Computer Advances on Operations Research,
North Holland, January 1989.

[2] Cleary, J. C. “Logical Arithmetic”, Future Computing Systems, 2 (2), pages 125-149,
1987.

[3] Colmerauer, A. “An introduction to Prolog TI1”, Communications of the ACM
33(7):69, 1990.

[4] Davey B. A. and Priestley H. A., Introduction to Lattices and Order, Cambridge Uni-
versity Press, Cambridge, 1990.

20

Dincbas M., Simonis H. and van Hentenryck P. “Solving Large Combinatorial Problems
in Logic Programming”, Journal of Logic Programming 8, (1&2), pages 72-93, 1990.

Hyvoénen, E. (1989) “Constraint Reasoning Based on Interval Arithmetic”, Proceedings
of IJCAT 1989, pages 193-199.

Jaffar, J. and Michaylov, S. “Methodology and Implementation of a CLP system”,
Proc. Jth Int. Conf. on Logic Programming, J-L. Lassez (Ed.), MIT Press, 1987.

Moore, R. E. (Ed.) Interval Analysis, Prentice Hall, New Jersey, 1966.
Nickel K. L. E. (Ed.) Interval Mathematics, Academic Press, New York, 1980.

Older W. and Vellino A. “Extending Prolog with Constraint Arithmetic on Real Inter-
vals” Proceedings of the Canadian Conference on Electrical and Computer Engineer-
ing, 1990.

van Hentenryck, P. Constraint Satisfaction in Logic Programming, MIT Press, 1989.

21

