
CProlog User's Manual
Version 1. 2

Edited by Fernando Pereira*

SRI International, Menlo Park, California

from material by

David Warren·

SRI International, Menlo Park, California

David Bowen, Lawrence Byrd

Dept. of Artificial Intelligence, University of Edinburgh

Luis Pereira

Dept. de Informatica, Universidade Nova de Lisboa
This is a preliminary edition of the user's manual for CProlog,

a Prolog interpreter written in C for 32 bit machines.
CProlog is based on an earlier Prolog interpreter written

in IMP for the Er"IAS operating system
by Luis Damas, who borrowed many

aspects of the design from the DEC-10/20 Prolog system
developed by David Warren, Fernando Pereira, Lawrence Byrd

and Luis Pereira.
This manual is based on the Er"IAS Prolog manual, which

in turn was based on the DEC-10/20 Prolog manual.

* Formerly at EdCAAD, Dept. of Architecture, Universi­
ty of Edinburgh

September 4, 1984

- 2 -

1. Using CProlog

1. 1. Preface

This manual describes CProlog, a Prolog interpreter
written in C. CProlog was developed at EdCAAD, Dept. of
Architecture, University of Edinburgh, and is based on a
previous interpreter, written in IMP for the EMAS operating
system by Luis Damas of the Dept. of Computer Science,
University of Edinburgh. CProlog was designed for machines
with a large, uniform, address space, and assumes a pointer
cell 32 bits wide. At the time of writing, it has only been
tested on a VAX under

Prolog is a simple but powerful programming language
originally developed at the University of Marseilles, as a
practical 'tool for programming in logic. From a user's
point of view the major attraction of the language is ease
of programming. Clear, readable, concise programs can be
written quickly with few errors. Prolog is especially suit­
able for high level symbolic programming tasks and has been
applied in many areas of Artificial Intelligence research.

The system consists of a Prolog interpreter and a wide
range of evaluable predicates (system provided procedures).
Its design was based on the (Edinburgh) DEC10 Prolog system
and the system is closely compatible with DEC10 Prolog and
thus is also reasonably close to PDP-11 UNIX and RT11 Pro­
log.

This manual is not intended as an introduction to the
Prolog language and how to use it. For this purpose you
should study:

Programming in Prolog
W. Clocks in & C. Mellish
Springer Verlag 1981

This manual assumes that
principles of the Prolog
explain how to use CProlog,
able predicates provided by

you are familiar with the
language, its purpose being to

and to describe all the evalu­
CProlog.

1.2. Using CProlog - Overview

CProlog offers the user an interactive programming
environment with tools for incrementally building programs,
debugging programs by following their executions, and modi­
fying parts of programs without having to start again from
scratch.

The text of a Prolog program is normally created in a

September 4, 1984

- 3 -

number of files using a text editor. CProlog can then be
instructed to read-in programs from these files; this is
called "consulting" the file, To change parts of a program
being run, it is possible to "reconsult" files containing
the changed parts. Reconsulting means that definitions for
procedures in the file will replace any old definitions for
these procedures.

It is recommended that you make use of a number of dif­
ferent files when writing programs. Since you will be edit­
ing and consul ting/re-consulting individual files it is use­
ful to use files to group together related procedures; keep­
ing collections of procedures that do different things in
different files. Thus a Prolog program will consist of a
number of files, each file containing a number of related
procedures •

When your programs start to grow to a fair size, it is
also a good idea to have one file which just contains com­
mands to the interpreter to consult all the other files
which form a program, You will then be able to consult your
entire program by just consulting this single file .

.l.-l· Access to CProlog

In this manual, we assume that there is a command on
your computer

prolog

that invokes CProlog.

Since Prolog makes syntactic use of the difference
between upper and lower case it is important that you have
your terminal set up so that it accepts lower case in the
normal way. This means, for a start, that you must be using
an upper and lower case terminal - and not, for example, an
upper case only teletype. It is possible to use Prolog
using upper case only (see Section 1.14) but it is unneces­
sarily painful. We shall assume both upper and lower case
throughout this manual.

If you type the 'prolog' command, Prolog will output a
banner and prompt you for directives as follows:

CProlog
: ?-

version n

There will be a pause between the first line and the prompt
while the system loads itself. It is possible to type ahead
during this period if you get impatient.

If you give an argument to the 'prolog' command, CPro­
log will interpret it as the name of a file containing a

September 4, 1984

- 4 -

saved state created earlier, and will restore that saved
state. Saved states will be explained fully later.

prolog prog (Res tore "prog")

1 • 4. Rea ding-in Programs

A program is made up of a sequence of clauses,
possibly interspersed with directives to the inter­
preter. The clauses of a procedure do not have to be
immediately consecutive, but remember that their relative
order may be important.

To input a program from a file~. give the direc­
tive:

l ?- [file].

which will instruct the interpreter to read-in (or consult)
the program. The file specification file must be a Prolog
atom. It may be any file name, note that if this file name
contains characters which are not normally allowed in an
atom then it is necessary to surround the whole file
specification with single quotes (since quoted atoms can
include any character), for example

l ?- ['people/greeks'].

The specified file is then read in. Clauses in the file are
stored in the database ready to be executed, while any
directives are obeyed as they are encountered. When the end
of the file is found, the interpreter displays on the ter­
minal the time spent in reading-in and the number of
bytes occupied by the program.

In general, this directive can be any
filenames, such as:

l ?- [myprogram,extras ,testbits].

list of

In this case all three files would be consulted . If a
filename is preceded by a minus sign, as in:

?- [-testbits,-moreideas].

then that file is reconsulted. The difference between con­
sulting and reconsulting is important, and works as follows:
if a file is consulted then all the clauses in the file are
simply added to CProlog's database, If you consult the same
file twice then you will get two copies of all the clauses.
However, if a file is reconsulted then the clauses for all
the procedures in the file will replace any existing clauses
for those procedures, that is any such previously existing

September 4, 1984

- 5 -

clauses in the database get thrown away. Re consul ting is
useful for telling Prolog about corrections in your program.

Clauses may also be typed in directly at the terminal.
To enter clauses at the terminal, you must give the direc­
tive:

I ?- [user].

The interpreter is now in a st.ate where it expects input of
clauses or directives. To get back to the top level of
the interpreter, type the end-of-file* character.

Typing clauses directly into CProlog is only recom­
mended if the clauses will not be needed permanently,
and are few in number. For significant bits of program you
should use an editor to produce a file containing the text
of the program.

1.·2.• Directives: Questions and Commands

When Prolog is at top level (signified by an initial
prompt of "I ?- ", with continuation lines prompted with
"l ", that is indented out from the left margin) it reads
in terms and treats them as directives to the interpreter to
try and satisfy some goals. These directives are called
questions. Remember that Prolog terms must terminate with a
full-stop("."), and that therefore Prolog will not execute
anything for you until you have typed the full-stop (and
then <return>) at the end of the directive.

Suppose list membership has been defined by:

member(X,[Xl]).
member(X,[_lL]) :- member(X,L).

(Note the use of anonymous variables written "_").

If the goal(s) specified in a question can be satis­
fied, and if there are no variables as in this example:

?- member(b,[a,b,c]).

then the system answers

yes

and execution of the question terminates.

If variables are included in the question, then the

* Control-D, control-Z or some other, depending on
your tastes and the operating system.

September 4, 1984

final value of each
anonymous variables).

- 6 -

variable is displayed
Thus the question

?- member(X,[a,b,c]).

would be answered by

X '7 a

(except for

At this point the interpreter is waiting for you to indicate
whether that solution is sufficient, or whether you want it
to backtrack to see if there are any more solutions. Simply
typing <return> terminates the question, while typing "; 11

followed by <return> causes the system to backtrack looking
for alternative solutions. If no further solutions can be
found it outputs

no

The outcome of some questions is shown below, where a
number preceded by " 11 is a sys tern-generated name for a
variable.

l ?- member(X,[tom,dick,harry]).
X =tom;
X ""dick;
X,;: harry;
no
l ?- member(X,[a,b,f(Y,c)]),member(X,[f(b,Z),d]).
y ~ b,
X ':" f(b,c),
Z = C

% Just <return> typed here
yes
I ?- member(X,[f(_),gj).
X = f(_1728)
yes
: ?-

When CProlog reads terms from a file (or from the termj_nal
following a call to [user]), it treats them all as program
clauses. In order to get the interpreter to execute direc­
tives from a file they must be preceded by'?-', for ques­
tions, or':-', for commands.

Commands are like questions except that they do not
cause answers to be printed out. They always start with the
symbol":-". At top level this is simply written after the
prompted "?-" which is then effectively overridden. Any
required output must be programmed explicitly; for example,
the command

:- member(3,[1,2,3]), write(ok).

September 4, 1984

- 7 -

directs the system to check whether 3 belongs to the list
[1, 2, 3], and to output "ok" if so. Execution of a command
terminates when all the goals in the command have been
successfully executed. Other alternative solutions
are not sought (one may imagine an implicit "cut" at the
end of the command). If no solution can be found, the
system gives:

?

as a warning.

The main use for commands (as opposed to questions) is
to allow files to contain directives which call various pro­
cedures, but for which you don't want to have the answers
printed out. In such cases you only want to call the pro­
cedures for effect. A useful example would be the use of a
directive

1
in a file which consults a whole list of other

files, e .gT.

:-([bits, bobs, mainpart, testcases, data, junk]).

If this directive was contained in the file 'program'
then typing the following at top level would be a quick way
of loading your entire program:

l ?- [program].

When you are simply interacting with the top level of
the Prolog interpreter the distinction between questions and
commands is not very important. At the top level you should
normally only type questions. In a file, if you wish to exe­
cute some goals then you should use a command. That is, to
execute a directive in a file it must be preceded by":-"
otherwise it will. be treated as a clause.

1 .6. Syntax Errors

Syntax errors are detected when reading. Each
clause, directive or in general any term read-in by the
built-in procedure read that fails to comply with syntax
requirements is displayed on the terminal as soon as it
is read. A mark indicates the point in the string of sym­
bols where the parser has failed to continue its analysis.
For example, typing

T The extra parentheses, with the ':-' immediately
to them, are currently essential due to a problem
prefix operators (like ': - ') and lists. They are
required for commands that do not contain lists.
restriction will be eventually removed.

September 4, 1984

next
with

not
This

gives:

member(X, X L).

syntax error
member(X,X
here
L).

- 8 -

Syntax errors do not disrupt the (re)consulting of a
file in any way except that the clause or command with the
syntax error will be ignoredt. All the other clauses in the
file will have been read-in properly. If the syntax error
occurs at top level then you should just retype the ques­
tion. Given that Prolog has a very simple syntax it is usu­
ally quite straightforward to see what the problems is (look
for missing brackets in particular). See Section 1.13 for
details of the syntax of Prolog terms. The book "Program­
ming in Prolog" gives further examples.

1. 7. Saving_! Program

Once a program has been read, the interpreter will have
available all the information necessary for its execution.
This information is called a program state .

The state of a program may be saved on a file for
future execution. To save a program into a file~. per­
form the command:

?- save(file).

Save can be called at top level, from within a break level
(q.v.), or from anywhere within a program.

1 .8. Restoring!};_ Saved Program

Once a program has been saved into a file file, CPro­
log can be restored to this saved state by invoking it as
follows:

prolog file

After execution of this command, the interpreter will be in
EXACTLY the same state as existed immediately prior to the
call to save, except for open files, which are automati­
cally closed by save. That is to say execution will start
at the goal immediately following the call to save, just as

+ After all, it could not be read,

September 4, 1984

- 9 -

if save had returned successfully. If you saved
at top level then you will be back at top level,
explicitly called save from within your program
execution of your program will continue.

the state
but if you

then the

Saved states can only be restored when CProlog is ini­
tially run from command level. Version 1.2 provides no way
of restoring a saved state from inside CProlog.

Note that when a new version of CProlog is installed,
saved states created with the old version may become unus­
able. You are thus advised to rely on source files for your
programs and not on some gigantic saved state.

l•.2· Program Execution And Interruption

Execution of a program is started by giving the
interpreter a directive which contains a call to one of the
program's procedures.

Only when execution of one directive is complete
does the interpreter become ready for another direc­
tive. However, one may interrupt the normal execution of a
directive by hitting the interrupt key on your terminal. In
response to the prompt

Action (h for help):

you can type either "a",
The "a" response will
level, the "d" response
tinue the execution, and
the execution.

"d" or "c" followed by <return>.
force Prolog to abort back to top

will switch on debugging and con­
the "c" response will just continue

1.10. Nested Executions - Break and Abort

CProlog provides a way to suspend the execution of your
program and to enter a new incarnation of the top level
where you can issue directives to solve goals etc . When the
evaluable predicate break is called, the message

[Break (level 1)]

will be displayed. This signals the start of a break-level
and except for the effect of aborts (see below), it is as
if the interpreter was at top level. If break is called
within a break-level, then another recursive break-level is
started (and the message will say (level 2) etc). Break­
levels may be arbitrarily nested.

Typing the end-of-file character will close the
break-level and resume the execution which was suspended,
starting at the procedure call where the suspension took
place .

September 4, 1984

- 10 -

To abort the current execution,forcing an immediate
failure of the directive being executed and a return to the
top level of the interpreter, call the evaluable predicate
abort, either from the program or by executing the direc­
tive:

I ?- abort.

within a break. In this case no end-of-file character is
needed to close the break, because ALL break levels are dis­
carded and the sys tern returns right back to top level. The
"a" interrupt (described above) can also be used to force an
abort.

1 .11 • Exiting From The Interpreter

To exit from CProlog interpreter you should give the
directive:

I ?- halt.

This can be issued either at top level, or within a break­
level, or indeed from within your program.

If your program is still executing then you should
interrupt it and abort to return to top level so that you
can call halt.

Typing the end-of-file charater at top level also
causes CProlog to terminate.

1.12. Debugging facilities

The debugging facilities in version 1. 2 of CProlog are
still under development. The predicates described in Sec­
tion 2.11 are all available but their behaviour is somewhat
unsatisfactory. When better facilities become available
this section will be replaced by a supplement which will
provide a proper description .

..!.. ·..Ll.· Prolog Syntax

..!..•..Ll.·..!..• Terms

The data objects of the language are called terms. A
term is either a constant, a variable or a compound term.

The constants include numbers such as

0 999 5.23 0.23e-5

Version 1.2 reads numbers prefixed with a minus sign as full
terms (not negative numbers). That is

September 4, 1984

- 11 -

-77 -9-9

are read as the terms:

-(77) -(9.9)

However these are valid arithmetic expressions and will work
as expected with the arithmetic predicates, such as is or <.

Constants also include atoms such as

a void := 'Algol-68' []

The symbol for an atom can be any sequence of characters,
written in single quotes if there is possibility of confu­
sion with other symbols (such as variables or numbers). As
in other programming languages, constants are definite
elementary objects.

Variables are distinguished by an initial capital
letter or by the initial character 11 11

, for example

X Value A A1 _3 RESULT

If a variable is only referred to once, it does not need to
be named and may be written as an II anonymous II variable,
indicated by the underline character" 11

A variable should be thought of as standing for some
definite but unidentified object. A variable is not
simply a writeable storage location as in most pro­
gramming languages; rather it is a local name for some data
object, cf. the variable of pure LISP and constant
declarations in Pascal.

The structured data objects of the language are the
compound terms. A compound term comprises a functor (called
the principal functor of the tenn) and a sequence of one or
more terms called arguments. A functor is characterised by
its~' which is an atom, and its arity or number of argu­
ments. For example the compound term whose functor is named
'point' of arity 3, with arguments X, Y and Z, is written

point(X,Y,Z)

An atom is considered to be a functor of arity 0.

One may think of a functor as a record type and
the arguments of a compound term as the fields of a
record. Compound terms are usefully pictured as trees.
For example, the term

s(np(john),vp(v(likes),np(mary)))

September 4, 1984

- 12 -

would be pictured as the structure

s
I \

np vp
I I \ I

john V np
I I
I I

likes mary

Sometimes it is convenient to write certain functors as
operators 2-ary functors may be declared as infix opera­
tors and 1-ary functors as prefix or postfix operators.
Thus it is possible to write

X+Y (P; Q) X<Y +X P·
'

as optional alternatives to

+(X,Y) ; (P, Q) <(X,Y) +(X) ; (P)

Operators are described fully in the next section.

Lists form an important class of data
Prolo~ They are essentially the same
of LISP: a list either is the atom

[]

structures in
as the lists

representing the empty list, or is a compound term with
functor '. ' and two arguments which are respectively
the head and tail of the list. Thus a list of the
first three natural numbers is the structure

I \
1 •

I \
2

/ \J
which could be written, using the standard syntax, as

.(1,.(2,.(3,[])))

but which is normally written, in a special list notation,
as

[1,2,3]

The special list notation in the case when the tail of a
list is a variable is exemp+ified by

September 4, 1984

- 13 -

[x l1] [a,blL]

representing

I \ I \
X L a .

I \
b L

respectively.

Note that this list syntax is only syntactic sugar for
terms of the form'.'(_,_) and does not provide any addi­
tional facilities that were not available in Prolog.

For convenience, a further notational variant is
allowed for lists of integers which correspond to ASCII
character codes. Lists written in this notation are called
strings. For example,

"Prolog"

represents exactly the same list as

[80,114,111,108,111,103]

l·...!l.·3• Operators

Operators in Prolog are simply a notational conveni­
ence. For example, the expression

2 + 1

could also be written +(2,1). It should be noticed that
this expression represents the data structure

+

I \
2 1

and not the number 3. The addition would only be performed
if the structure was passed as an argument to an appropriate
procedure (such as is - see Section 2.2).

The Prolog syntax caters for operators of three main
kinds infix, prefix and postfix. An infix operator
appears between its two arguments, while a prefix operator
precedes its single argument and a postfix operator is writ­
ten after its single argument.

Each operator has a precedence, which is a number from

September 4, 1984

- 14 -

to 1200. The precedence is used to disambiguate
expressions where the structure of the tenn denoted
is not made explicit through the use of brackets. The
general rule is that the operator with the highest pre­
cedence is the principal functor. Thus if'+' has a
higher precedence than'/', then

are
the
with

a+b/c a+ (b/ c)

equivalent and denote the term "+(a,/(b,c))''.
infix form of the term "/(+(a,b),c)" must

explicit brackets

(a+b)/c

Note that
be written

If there are two operators in the subexpression having
the same highest precedence, the ambiguity must be
resolved from the types of the operators. The possible
types for an infix operator are

xfx xfy yfx

With an operator of type 'xfx', it is a requirement that
both of the two subexpressions which are the arglli~ents of
the operator must be of LOWER precedence than the opera­
tor itself, i.e. their principal functors must be of
lower precedence, unless the subexpression is explicitly
bracketed (which gives it zero precedence). With an
operator of type 'xfy', only the first or left-hand subex­
pression must be of lower precedence; the second can be of
the SAME precedence as the main operator; and vice versa
for an operator of type 'yfx'.

For example, if the operators '+' and ' ' both have
type 'yfx' and are of the same precedence, then the expres­
sion

a-b+c

is valid, and means

(a-b)+c i.e. +(-(a,b),c)

Note that the expression would be invalid if the
had type 'xfx', and would mean

a-(b+c) i.e. -(a,+(b,c))

if the types were both 'xfy'.

The possible types for a prefix operator are

fx fy

September 4, 1984

operators

- 15 -

and for a postfix operator they are

xf yf

The meaning of the types should be clear by analogy with
those for infix operators. As an example, if 'not' were
declared as a prefix operator of type 'fy', then

not not P

would be a permissible way to write "not(not(P))". If the
type were 'fx', the preceding expression would not be
legal, al though

not P

would still be a permissible form for "not(P)".

In CProlog, a functor named name is declared as an
operator of type~ and precedence precedence by calling
the evaluable predicate op:

The argument name can also be a list of names of operators
of the same type and precedence.

It is possible to have more than one operator of the
same name, so long as they are of different kinds, i.e.
infix, prefix or postfix. An operator of any kind may be
redefined by a new declaration of the same kind. This
applies equally to operators which are provided as standard
in CProlog, namely:

·- op(1200, xfx, t . - -->]). . '
: - op(1200, fx, . - ?-]). .

' :- op(1100, xfy, [;]).
:- op(1050, xfy, t ->])..
:- op(1000, xfy, I , I]) • /* See note below*/
:- op(900, fy, ~ not, \+, spy, nospy J).

op(700, xfx, is, = '::'':':', \== @<, @>, @=;:(' :- L 7,
M • • ' C " ' =·= -v= <, >, =:.=<,):;; :.;. . -· ' -:- ,; '

:- op(500, yfx,

i
+, -, /\, \/]) .

:- op(500, fx, +, -).
:- op(400, yfx, * /, //, <<, » J) .

' :- op(300, xfx, t mod]).
op(200, xfy, "]) . :-

Operator declarations are most usefuly placed in direc­
tives at the top of your program files. In this case the
directive should be a command as shown above. Another common
method of organisation is to have one file just containing
commands to declare all the necessary operators. This file

September 4, 1984

@>?"'
]) .

- 16 -

is then always consulted first.

Note that a comma written literally as a punctuation
character can be used as though it were an infix operator of
precedence 1000 and type 'xfy':

X, Y ' , '(X, Y)

represent the same compound term. But note that a comma
written as a quoted atom is NOT a standard operator.

Note also that the arguments of a compound term
written in standard s_.yntax must be expressions of pre­
cedence BELOW 1000. Thus it is necessary to bracket the
expression "P:-Q" in

assert ((P: -Q))

The following syntax restrictions serve to remove potential
ambiguity associated with prefix operators.

a)

b)

In a term written in standard syntax,
functor and its following "("
separated by any intervening spaces,
Thus

point (X, Y,Z)

the principal
must NOT be
newlines etc.

is invalid syntax.

If the argument of
+bi " (" t be .. s mus,
least one space or

a prefix operator starts with a " (",
separated from the operator by at

other non-printable character. Thus

:-(p;q) ,r.

(where ':-' is the prefix operator) is invalid syntax ,
and must be written as

:- (p;q) ,r.

c) If a prefix operator is written without an argu­
ment, as an ordinary atom, the atom is treated
as an expression of the same precedence as the prefix
operator, and must therefore be bracketed where
necessary. Thus the brackets are necessary in

X =::: (?-)

1.14. Using!: Terminal without Lower-Case

The syntax of Prolog assumes that a full ASCII

September 4, 1984

- 17 -

character set is available, With this "full character set"
or 'LC' convention, variables are (normally) distinguished
by an initial capital letter, while atoms and other
functors must start with a lower-case letter (unless
enclosed in single quotes).

When lower-case is not available, the "no lower-case"
or 'NOLC' convention has to be adopted. With this conven­
tion, variables must be distinguished by an initial under­
line character "_", and the names of atoms and other func­
tors, which now have to be written in upper-c&se, are impli­
citly translated into lower-case (unless enclosed in sin­
gle quotes). For example:

VALUE2

is a variable, while

VALUE2

is 'NOLC' convention notation for the atom which is identi­
cal to:

value2

written in the 'LC' convention.

The default convention is 'LC'. To switch to the "no
lower-case" convention, call the built-in procedure 'NOLC',
e.g. by the directive:

?- 'NOLC I.

To switch back to the "full character set"
call the built-in procedure 'LC', e.g. by:

?- 'LC I •

convention,

Note that the names of these two procedures consist of
upper-case letters (so that they can be referred to
on all devices), and therefore the names must AllvAYS be
enclosed in single quotes.

It is recommended that the 'NOLC' convention only be
used in emergencies, since the standard syntax is far easier
to use and is also easier for other people to read.

2. Built-in Procedures

Built-in procedures are also referred to as evaluable
predicates.

This section describes all the built-in predicates

September 4, 1984

- 18 -

available in CProlog. These predicates are provided in
advance by the system and they cannot be redefined by the
user. If you try to add clauses for a built-in predicate
(with the exception of expand_term) then this will cause an
error message, and the built-in predicate will be unaf­
fected. The CProlog provides a fairly wide range of built­
in predicates to perform the following tasks:

Input/Output
Reading-in programs
Opening and closing files
Reading and writing Prolog terms
Getting and putting characters

Arithmetic
Affecting the flow of the execution
Classifying and operating on Prolog terms (meta-logical facilities)
Sets
Term Comparison
Manipulating the Prolog program database
Manipulating the additional indexed database
Debugging facilities
Environmental facilities

The the built-in predicates will be described according to
this classification. Appendix I contains a complete list of
the built-in predicates.

2.1. Input/ Output

A total of 15 I/0 streams may be open at any one time
for input and output. This includes a stream that is always
available for input and output to the users terminal. A
stream to a file! is opened for input by the first see(_!)
executed. F then becomes the current input stream. Simi­
larly, a stream to file His opened for output by the first
tell(H) executed. H thenbecomes the current output stream.
Subsequent . calls to see(!) or to tell(H) make! or.!! the
current input or output stream, respectively. Any input or
output is always to the current stream,

When no input or output stream has been specified, the
standard ersatz file 'user', denoting the user's tenni­
nal, is utilised for both. When the terminal is waiting for
input on a new line, a prompt will be displayed as follow:

1 Prompt when
:-..... , --- ,-,-------------------
' 1 top-level continuation line. 1
l n I n () l I .. I " during consult user • (f) I
1 1: read from user program de aul t . 1

'-----------------------~

When the current input {or output) stream is closed, the

September 4, 1984

- 19 -

user's terminal becomes the current input (or output)
stream.

The only file that can be simultaneously
input and output is the ersatz file 'user'.

open for

e.g.
A file is referred to by its name, written~~~'

myfile
'F123'
data 1st
'tom/ greeks'

All I/0 errors normally cause an abort, except for the
effect of the evaluable predicate nofileerrors decribed
below.

End of file is signalled on the
issuing the end-of-file character.
requests for a file whose end has been
error failure.

2.1.1. Reading in Programs

consult(!_)

user's terminal by
Any more input

reached causes an

Instructs the interpreter to read-in the program which
is in file F. When a directive is read it is immedi­
ately executed. When a clause is read it is put after
any clauses already read by the interpreter for that
procedure.

reconsult(!_)

Like consult except that any procedure defined
in the "reconsulted" file erases any clauses for
that procedure already present in the interpreter.
reconsult makes it possible to amend a program without
having to restart from scratch and consult all the
files which make up the program.

[File l Files]

This is a shorthand way of consul ting or re consul ting a
list of files. A file name may optionally be preceded
by the operator ' ' to indicate that the file
should be "reconsulted" rather than "con­
sulted" . Thus

?- [file1,-file2,file3].

is merely a shorthand for

September 4, 1984

- 20 -

?- consult(file1), reconsult(file2), consult(file3).

2.1.2.

see(_f)

File Handlin g

File F becomes the current input stream.

seeing(!)

Fis unified with the name of the current input file.

seen

Closes the current input stream.

tell(!)

File F becomes the current. output stream.

telling(F)

Fis unified with the name of the current output file.

told

Closes the current output stream.

close(!)

File!, currently open for input or output, is closed .

fileerrors

Undoes the effect of nofileerrors.

nofileerrors

After a call to this predicate, the I/0 error
conditions "incorrect file name ••• ", "can't see file
••• ", "can't tell file ••• " and "end of file ••. " cause
a call to fail instead of the default action, which
is to type an error message and then call abort.

exists (F)

Succeeds if the file F exists .

rename(F,N)

If File Fis renamed to N. If N is ' []', the file is
deleted . If F was a currently open s tr.earn, it is

September 4, 1984

- 21 -

closed first.

~·..l•l· Input and Output of Terms

read(!)

The next term, delimited by a full stop (i.e. a "."
followed by a carriage-return or a space), is read
from the current input stream and unified with X. The
syntax of the term must accord with current operator
declarations. If a call read(X) causes the end of the
current input stream to be reached, ! is unified with
the atom 'end of file'. Further calls to read for
the same stream will then cause an error failure.

write(~)

The term X is written to the current output stream
according to operator declarations in force.

display(X)

The term Xis displayed on the terminal in standard
parenthesised prefix notation.

wri teq(Term)

Similar to write(Term), but the names of atoms and
functors are quoted where necessary to make the result
acceptable as input to read.

print(Term)

Print Term onto the current output. This predicate
provides a handle for user defined pretty printing. If
Term is a variable then it is written, using
wri te(Term). If Term is non-variable then a call is
made to the user defined procedure portray(Term). If
this succeeds then it is assumed that Term has been
output. Otherwise print is equivalent to write.

~._l.4. Character Input/Output

nl

A new line is started on the current output stream.

getO(Ii)

N is the ASCII code of the next character from the
current input s tream.

get(~_)

September 4, 1984

- 22 -

N is the ASCII code of the next. non-blank
character from the current input stream.

printable

skip(_~_)

Skips to just past the next ASCII
from the current input stream.
expression.

put(N)

character code N
! may be an integer

ASCII character code! is output to the current output
stream. N may be an integer expression.

tab(N)

N spaces are output to the current output stream. N
may be an integer expression.

2.2. Arithmetic

Arithmetic is performed by built-in procedures which
take as arguments arithmetic expressions and evaluate
them. An arithmetic expression is a term built from
evaluable functors, numbers and variables. At the time
of evaluation, each variable in an arithmetic expression
must be bound to a number or to an arithmetic expression.
The result of evaluation will always be converted back to an
integer if possible.

Each evaluable functor stands for an arithmetic opera­
tion. The adjective "integer" in the descriptions below
means that the operation only makes sense for integers, and
will fail for floating point numbers .

The evaluable functors are as
and Y are arithmetic expressions.

X+Y

addition

X-Y

subtraction

X*Y

multiplication

division

September 4, 1984

follows, where X

~//Y

integer division

X mod Y

- 23 -

X (integer) modulo Y

-X

unary minus

exp(X)

exponential function

log(_!)

natural logarithm

log1 O(X)

base 10 logarithm

sqrt(X)

square root

s in(X)

sine

cos(X)

cosine

tan(X)

tangent

as in(X)

arc sine

a cos(~)

arc cosine

atan(X)

arc tangent

floor(X)

September 4, 1984

- 24 -

the largest integer not greater than X

X"Y

X to the power!

integer bitwise conjunction

integer bitwise disjunction

X«Y

integer bitwise left shift of_! by Y places

X»Y

integer bitwise right shift of_! by_! places

integer bitwise negation

cputime

CPU time since CProlog was started, in seconds.

heapused

[x]

Heap space in use, in bytes .

(a list
is an
list of
to be
behaves
integer

of just one element) evaluates to X if X
integer. Since a quoted string is just a
integers, this allows a q_uoted character
used in place of its ASCII code; e.g. "A"

within arithmetic expressions as the
65.

The arithmetic built-in procedures are as follows,
where X and Y stand for arithmetic expressions, and Z for
some term. Note that this means that is only evaluates- one
of its arguments as an arithmetic expression (the right-hand
side one), whereas all the comparison predicates evaluate
both their arguments.

Z is X

Arithmetic expression Xis evaluated and the result, is
unified with z. Fails if X is not an arithmetic

September 4, 1984

- 25 -

expression.

X =: =;= y

The values of X and Y are equal.

X ~=: y

The values of X and Y are not equal,

X < y

The value of X is less than the value of Y.

X > y

The value of X is greater than the value of Y.

X 17(y

The value of X is less than or equal to the value of Y.

X >"':' y

The value of X is greater than or equal to the value of
Y.

~-2· Convenience

p , .s

p Q

true

X , y

P and ..9,.

P or ..9..

Always succeeds.

Defined as if by the clause " Z=;=Z. " that is X and Y
are unified.

2.4, Extra Control

\+ p

Cut (discard) all choice points made since the parent
goal started execution.

September 4, 1984

- 26 -

If the goal p has a solution,
succeed. It is defined as

\+(P) :- P, ' fail. . '
\+(_) .

p -> _g_ ; !

Analogous to

"if P then _g else R"

i.e. defined as if by

P -> Q; R :- P, ! , Q.
P-> Q; R : - R.

if by
fail,

When occurring other than as one of the
tives of a disjunction, is equivalent to

P -> _g; fail.

otherwise

alterna-

repeat

Generates
choices.

an infinite
It behaves as

sequence of backtracking
if defined by the clauses:

repeat.
repeat :- repeat .

fail

Always fails.

~-.2.· Meta-Lo gical

var(.~)

Tests whether Xis currently instantiated to a vari­
able.

nonvar(X)

Tests whether Xis currently instantiated to a non­
variable term.

atom(X)

September 4, 1984

- 27 -

Checks that Xis currently instantiated to an atom
(i.e. a non-variable tenn of arity O, other than a
number or database reference).

number(~)

Checks that Xis currently instantiated to a number.

integer(X)

Checks that Xis currently instantiated to an integer.

atomic(~)

Checks that! is currently instantiated to an atom ,
number or database reference.

primitive(_!)

Checks that Xis currently instantiated to a number or
database reference.

db_reference(X)

Checks that Xis currently instantiated to a database
reference.

functor(_!,F ,_!)

The principal functor of term _! has name ! and ari ty N,
where F is either an atom or, provided N is O, a
number. Initially, either T must be instantiated to a
non-variable, or F and N -must be instantiated to,
respectively, either an atom and a non-negative
integer or an integer and O. If these conditions are
not satisfied, an error message is given. In the case
where T is initially instantiated to a variable, the
result of the call is to instantiate T to the most
general term having the principal functorindicated.

arg(!_,_!,X)

Initially, _! must be instantiated
and T to a compound term. The
to unify X with the Ith argument
arguments are numbered from 1
tial conditions are not satisfied
the call merely fails.

X =.:= •• y

to a positive integer
result of the call is
of term T. (The

upwards.) If the ini­
or I is out of range,

Y is a list whose head is the atom corresponding to the
principal functor of X and whose tail is the argument
list of that functor in-X. E.g.

September 4, 1984

- 28 -

product(0,N,N-1)

N-1 = •• [-,N,1]

= ' .. [product,O,N,N-1]

product~ •• [product]

If Xis instantiated to a variable, then Y must be
instantiated either to a list of determinate length
whose head is an atom, or to a list of length whose
head is a number.

If Xis an atom or a number then Lis a list of the
ASCII codes of the characters comprising the name of X.
E.g.

name(product, [11 2, 114, 111 , 100, 11 7, 99, 11 6])

i.e. name(product,"product")

name(1976,[49,57,55,54])

name(hello,[104,101,108,108,111])

name([],"[]")

If Xis instantiated to a variable, L must
tiated to a list of ASCII character codes.

?- ·name(X,[104, 101,108,108,111])).

X "'f hello

?- name(X, "hello").

X 7' hello

be instan­
E.g.

call(X)

X

If Xis instantiated to a term which would be accept­
able as body of a clause, the goal call(X) is exe­
cuted exactly as if that term appeared textually in
place of the call(X), except that any cut (" ! ") occur­
ring in X will remove only those choice points in X.
If Xis not instantiated as described above, an error
message is printed and call fails.

(where_! is a variable) Exactly the same as call(X).

September 4, 1984

- 29 -

2. 6. Sets

When there are many solutions to a problem, and when
all those solutions are required to be collected
together, this can be achieved by repeatedly back­
tracking and gradually building up a list of the solutions.
The following evaluable predicates are provided to automate
this process.

setof(X,_!:,~)

Read this as "S is the set of all instances of X such
that P is provable, where that set is non-empty".
The term P specifies a goal or goals as in call(P). S
is a set of terms represented as a list ofthose
terms, without duplicates, in the standard order for
terms (see Section 4.3). If there are no instances of
X such that P is satisfied then the predicate fails.

The variables appearing in the tenn X should not
appear anywhere else in the clause except within the
term P. Obviously, the set to be enumerated should be
finite, and should be enumerable by Prolog in finite
time. It is possible for the provable instances to
contain variables, but in this case the list Swill
only provide an imperfect representation of what is in
reality an infinite set.

If there are uninstantiated variables in P which do not
also appear in X, then a call to this evaluable
predicate may backtrack, generating alternative
values for S corresponding to different instantia­
tions of the free variables of_!:. (It is to cater
for such usage that the set Sis constrained to be
non-empty.) For example, the call:

I ?- setof(X, X likes Y, s).

might produce two alternative solutions via backtrack­
ing:

Y " beer,
Y ':" cider,

The call :

S = [dick, harry, tom]
S . [bill, jan, tom]

?- setof((Y,S), setof(X, X likes Y, S), SS).

would then produce:

SS ~ [(beer,[dick,harry,tom]), (cider,[bill,jan,tom])]

Variables occurring in P will not be treated as free

September 4, 1984

X"'P

- 30 -

if they are explicitly
existential quantifier. An
tion is written:

bound within
existential

P by an
quantifica-

meaning "there exists a! such that _g_ is true" , where
Y is some Prolog variable. For example:

i ?- setof(X, Y--(X likes Y), S).

would produce the single result:

X ~ [bill, dick, harry, jan, tom]

in contrast to the earlier example.

This is exactly the same as setof except that
the list (or alternative lists) returned will not be
ordered, and may contain duplicates. The effect of
this relaxation is to save considerable time and space
in execution.

The interpreter recognises this as meaning "there
exists an X such that P is true", and treats it as
equivalent to call(P). -The use of this explicit
existential quantifier outside the setof and bagof con­
structs is superfluous.

2. 7. Comparison..£!: Terms

These evaluable predicates are meta-logical.
They treat uninstantiated variables as objects with
valu~s which may be compared, and they never instan­
tiate those variables. They should NOT be used when what
you really want is arithmetic comparison (Section 4.2) or
unification.

The predicates make reference to a standard total
ordering of terms, which is as follows:

variables, in a standard order (roughly, oldest first
the order is NOT related to the names of variables);

Database references, roughly in order of age;

numbers, from -"infinity" to +"infinity";

atoms, in alphabetical (i.e. ASCII) order;

September 4, 1984

- 31 -

complex terms, ordered first by ari ty, then by the
name of principal functor, then by the arguments (in
left-to-right order).

For example, here is a list of terms in the standard
order:

[X, -9, 1, fie, foe, fum, X? Y, fie(0,2), fie(1,1) J
' These are the basic predicates for comparison of arbitrary

terms:

X 'if~ y

Tests if the terms currently instantiating X and Y are
literally identical (in particular, variables in
equivalent positions in the two terms must be identi­
cal). For example, the question

l ?- X :.::;;, y.

fails (answers "no") because X and Y are distinct
uninstantiated variables. However, the question

l ?- X = Y, X 7~ Y.

succeeds because the first goal unifies the two vari­
ables (see page 42).

X \="' y

Tests if the terms currently instantiating X and
Y are not literally identical.

T1 @< T2

Term T1 is before term T2 in the standard order.

T1 @> T2

Term T1 is after term T2 in the standard order.

T1 @=< T2

Term T1 is not after term T2 in the standard order.

T1 @>= T2

Term T1 is not before term T2 in the standard order.

Some further predicates involving comparison of terms
are:

compare(.Q.£,.!.!._, T2)

September 4, 1984

- 32 -

The result of comparing terms T1 and T2 is .Qp_, where
the possible values for .Qp_ are:

'=' if T1 is identical to~,

I< I if T1 is before T2 in the standard order,

I) I if T1 is after T2 in the standard order.

Thus compare('::',_!l,T2) is equivalent to T1 =';= T2.

so rt(.!:!_, 12)

The elements of the list 11 are sorted into the stan­
dard order, and any identical (i.e. •=~•) elements are
merged, yielding the list 12. (The time taken to do
this is at worst order (N logN) where N is the length
of l!l·)

keysort (~, 12)

The list 11 must consist of items of the form Key­
Value. These items are sorted into order according to
the value of Kef, yielding the list 12. No merging
takes place. The time taken to do this is at worst
order (N log N) where N is the length of 11.)

2.8. Modification of the Program

The predicates defined in this section allow modifica­
tion of the program as it is actually running. Clauses can
be added to the program ("asserted") or removed from the
program ("retracted"). Some of the predicates make use of
an implementation-defined identifier or database reference
which uniquely identifies every clause in the interpreted
program. This identifier makes it possible to access
clauses directly, instead of requiring a search through the
program every time. However these facilities are intended
for more complex use of the database and are not required
(and undoubtedly should be avoided) by novice users.

assert(_Q_)

The current instance of C is interpreted as a clause
and is added to the program (with new private variables
replacing any uninstantiated variables). The position
of the new clause within the procedure concerned is
implementation-defined . C must be instantiated to a
non-variable.

assert (Clause ,Ref)

Equivalent to assert(_) where Ref is the database
reference of the clause asserted.

September 4, 1984.

- 33 -

asserta(,9_)

Like assert(_), except that the new clause becomes
the first clause for the procedure concerned.

asserta(Clause ,Ref)

Equivalent to asserta(_) where Ref is the database
reference of the clause asserted.

assertz(,9_)

Like assert(_), except that the new clause
the last clause for the procedure concerned.

assertz(Clause ,Ref)

becomes

Equivalent to assertz(_) where Ref is the database
reference of the clause asserted.

clause(P ,_g)

P must be bound to a non-variable term, and the
program is searched for a clause whose head matches P.
The head and body of those clauses are unified with P
and Q respectively. If one of the clauses is a unit
clause, ..9, will be unified with 'true'.

Equivalent to clause(_) where Ref is the database
reference of the clause concerned.If Ref is not given
at the time of the call, Head must be instantiated to a
non-variable term. Thus this predicate can have two
different modes of use, depending on whether the data­
base reference of the clause is known or unknown.

retract(_f)

The first clause in the program that matches C is
erased. C must be initially instantiated to a non­
variable. The predicate may be used in a non­
determinate fashion, i.e . it will successively retract
clauses matching the argument through backtracking.

abolish(N ,A)
Completely remove all clauses for the procedure with
name N (which should be an atom), and arity ! (which
should be an integer).

The space occupied by retracted or abolished clauses
will be recovered when instances of the clause are no
longer in use.

September 4, 1984

- 34 -

See also erase (Section 2.10) which allows a clause to
I be directly erased via its database referenceT.

~-.2.· Information about the State of~ Program

listing

Lists in the current output stream all the clauses in
the program.

listing(!)

The argument A may be a predicate specification of the
fonn Name/Arity in which case only the clauses for the
specified predicate are listed. If_! is just an atom,
then the interpreted procedures for all predicates of
that name are listed as for listing/0. Finally, it is
possible for!, to be a list of predicate specifications
of either type, e.g.

?- listing([concatenate/3, reverse, go/0]).

current_atom(Atom)

Generates (through backtracking) all currently known
atoms, and returns each one as Atom.

current_functor(Name,Functor)

Generates (through backtracking) all currently known
functors, and for each one returns its name and most
general term as Name and Functor respectively. If Name
is given, only functors with that name are generated.

current_predicate(Name,Functor)

Similar to current functor, but it only generates func­
tors corresponding-to predicates for which there exists
a procedure.

2.10. Internal Database

This section describes predicates for manipulating an
internal indexed database that is kept separate from the
normal program database. They are intended for more sophis­
ticated database applications and are not really necessary
for novice users. For normal tasks you should be able to
program quite satisfactorily just using assert and retract.

This is a lower level facility, required only for com­
plicated database manipulations.

September 4, 1984

- 35 -

recorded(Key, Term,Ref)

The internal database is searched for terms recorded
under the key Key. These terms are successively unified
with Term in the order they occur in the database. At
the same time, Ref is unified with the database refer­
ence of the recorded item. The key must be given, and
may be an atom or complex term. If it is a complex
term, only the principal functor is significant.

The term Term is recorded in the internal database as
the first item for the key Key, where Ref is its data­
base reference. The key must be given,~nd only its
principal functor is significant.

recordz(Key, Term,Ref)

The term Term is recorded in the internal database as
the last item for the key Key, where Ref is its data­
base reference. The key must be given, and only its
principal functor is significant.

erase(Ref)

The recorded item or clause whose database reference is
Ref is effectively erased from the internal database or
program. An erased i tern will no longer be accessible
through the predicates that search through the data­
base, but will still be accessible through its database
reference, if this is available in the execution state
after the call to erase. Only when all instances of the
item's database reference have been forgotten through
database erasures and/or backtracking will the item be
actually removed from the database .

erased(R)

Suceeds if Risa database reference to a database item
that has been erased, otherwise fails.

instance (Ref, Term)

A (most general) instance of the recorded term whose
database reference is Ref is unified with Term. Ref -- --must be instantiated to a database reference. Note that
instance will even pick database items that have been
erased.

2.11. Debugging

The debugging package in version 1. 2 of CProlog is

September 4, 1984

- 36 -

preliminary and likely to be improved. The appearance of
the debugging aids is thus likely to change; however, the
predicates described here will not change - rather they will
gradually be made more effective.

debug

Debug mode is switched
retained for debugging
require more space.

on. Information will now be
purposes and executions will

nodebug

trace

Debug mode is switched off. Information is no longer
retained for debugging, and spy points are removed.

Debug mode is switched on, and an immediate CREEP deci­
sion is made for the next user goal, so that tracing
will start with the very next port through which con­
trol passes. If trace was given in a command on its
own, the goal(s) traced will be those of the next com­
mand. Since thiS is a once-off decision, a call to
trace is necessary whenever tracing is required right
from the start of an execution. (The assumed decision
is otherwise LEAP).

spy Spec

Spy-points will be placed on all the procedures given
by Spec. All control flow through the ports of these
procedures will henceforth be traced. If debug mode
was previously off, then it will be switched on. Spec
can either be a predicate specification of the form
~/ Ari ty or Name, or a list of such specifications.
When the Name is given without the Ari ty this refers to
all predicates of that name which currently have defin­
itions. If there are none, then nothing will be done.
Spy-points can be placed on particular undefined pro­
cedures only by using the full form, ~/Arity.

nospy Spec

Spy-points are removed from all the procedures given by
Spec (as for spy).

debugging

Outputs information concerning the status of the debug­
ging package. This will show whether debug mode is on,
and if it is -

September 4, 1984

- 37 -

what spy-points have been set

what mode of leashing is in force.

2.12. Environmental

'NOLC'

'LC '

F.stablishes the "no lower-case" convention described
in Section 1.14.

Establishes the ti full character set" convention
described in Section 1.14. It is the default setting.

op(priority,~,~)

Treat name~ as an operator of the stated ~
priority (refer to Section 1.13.2). name may also
list of names in which case all are t~e treated
operators of the stated ~ and priority.

and
be a

as

break

abort

Causes the current execution to be interrupted at
the next l?rocedure call. Then the message ti [Break
(level 1) J" is displayed. The interpreter is then
ready to accept input as though it was at top
level. If another call of break is encountered, it
moves up to level 2, and so on. To close the break and
resume the execution which was suspended, type the
end-of-file character. Execution will be resumed at
the procedure call where it had been suspended. Alter­
natively, the suspended execution can be aborted by
calling the evaluable predicate abort. Refer to Section
1. 10.

Aborts the current execution taking you back to top
level. Refer to Section 1.10.

save(F)

The system saves the current state of the system into
file F. Refer to Section 1.7.

The sequence of characters (prompt) which indicates

September 4, 1984

- 38 -

that the system is waiting for user input is
represented as an atom, and matched to Old; the atom
bound to New specifies the new prompt.In particular,
the goal

prompt(X,X)

matches the current prompt to X, without changing it.
Note that this only affects the prompt issued for
read's in the user's program; it will not change the
propmts used by the system at top level etc.

system(String)

sh

Calls the operating system with string String as argu­
ment. For example

system("ls")

will produce a directory listing on Unix.

Suspends CProlog and enters a recursive command inter­
preter. On Unix, the shell used will be that specified
in the environment variable SHELL.

3.·.Ll.· Pre-Processing

expand_ term(!l_,~)

When a program is read in, some of the terms read are
transformed before being stored as clauses. If T1 is a
term that can be transformed, T2 is the result. Other­
wise T2 is just T1 unchanged .-The only transformation
available in version 1. 2 translates grammar rules into
clauses. This means that grammar rules are automati­
cally accepted, and read-in properly, by consult and
reconsult. The user may define his own term rewri tting
for read-in by adding clauses to expand_term with
asserta.

September 4, 1984

- 39 -

Appendix_! - Summary of Evaluable Predicates

abolish(F ,_!)
abort
arg(N,T,A)
assertTc;
ass ert(C,R)
assertaTc-Y
asserta(C ,R)
assertz(C)­
assertz(C,R)
atom(T) - -
atomic(T)
bagof(X,P,B)
break
call(P)
clause(P,Q)
claus e(P,Q ,R)
close(F;-­
compare(C,X,Y)
consul t(F)- -
current atom(A)
current-functor(A,T)
current-predicate(A,P)
db reference(T) - -
debug -
debugging
display(T)
erase(R)­
erasedTR)
expand term(T,X)
existsTF) - -
fail
file errors
functor(T, F ,N)
get(C) - - -
getoTc)
halt -
instance(R, T)
integer(T) -
y is X -
keyso-i::t(L,S)
leash(M)- -
listing
listing(P)
name(_!, L)
nl
nodebug
no file errors
nonvar(T)
nospy P
numberTT)
op(P ,_!,A)

Abolish the procedure named F arity N.
Abort execution of the current directive.
The _!th argument of term Tis A.
Assert clause C.
Assert clause C, ref. R.
Assert C as first clause.
Assert C as first clause, ref. R.
Assert C as last clause.
AssertC as last clause, ref. R.
Term Tis an atom.
Term Tis an atom or integer.
The bag of Xs such that P is provable is B.
Break at the next procedure call.
Execute the procedure call P.
There is a clause, head _!:, body _g_.
There is an clause, head_!:, body _g_, ref R.
Close file F.
£ is the result of comparing terms_! and_!.
Extend the program with clauses from file F.
One of the currently defined atoms is A. -
A current functor is named!, m.g. term!·
A current predicate is named_!, m.g. goal.!:·
T is a database reference.
Switch on debugging.
Output debugging status information.
Display term Ton the terminal.
Erase the clause or record, ref.!·
The object with ref. R has been erased.
Term T is a shorthand which expands to term X.
The file F exists •
Backtrack immediately.
Enable reporting of file errors.
The top functor of term_! has name_!, ari ty !•
The next non-blank character input is C.
The next character input is C.
Halt Prolog, exit to the monitor.
A m.g. instance of the record ref. R is T.
Term Tis an integer.
!_ is the value of arithmetic expression!·
The list~ sorted by key yields~-
Set leashing mode to M.
List the current program.
List the procedure(s) P.
The name of atom or number A is string 1•
Output a new line.
Switch off debugging.
Disable reporting of file errors.
Term Tis a non-variable.
Remove spy-points from the procedure(s) P.
Term Tis a number.
Make atom_! an operator of type! precedence P.

September 4, 1984

primi tive(T)
print(T) -
promptTA,B)
put(C) - -
read{T)
recoooul t(F)
recorda(K,T,R)
recordei(K--;-T--:-R)
recordz(K~T-;-R"J
rename(F ,_£; -
repeat
retract(C)
save(F) -
see(FJ
seeing(!)
seen
setof(X ,P, B)
sh ---
skip(C)
sort(L,S)
spy P- -
system(S)
tab(N) -
teli"°[F)
telling(!)
told
trace
true
var(T)
write(T)
wri teqTT)
'LC' -
'NOLC'

T= •• L - -X:;:,;::y

X\=:==;=Y
X@<Y-
X®=f<Y - -X@>Y
X@>=:Y
TFIR1

- 40 -

Tis a number or a database reference
Portray or else write the term T.
Change the prompt from! to!· -
The next character output is C.
Read term T. -
Update the-program with procedures from file F.
Make term T the first record under key K, ref. R.
Term Tis recorded under key K, ref. R.-
rti.ake term T the last record under key-!, ref. R.
Rename file F to G.
Succeed repeatedly.
Erase the first clause of form C.
Save the current state of Prolog in file F.
Make file F the current input stream.
The current input stream is named F.
Close the current input stream.
The set of Xs such that P is provable is B.
Start a recursive shell -
Skip input characters until after character C.
The list L sorted into order yields S. -
Set spy-points on the procedure(s) f·
Execute command S.
Output N spaces.-
Make file F the current output stream.
The current output stream is named F.
Close the current output stream. -
Switch on debugging and start tracing.
Succeed.
Term T is a variable.
Write the term T.
Write the term_!, quoting names if necessary.
The following Prolog text uses lower case.
The following Prolog text uses upper case only.
Cut any choices taken in the current procedure.
Goal Pis not provable.
As numbers, X is less than Y.
As numbers, X is less than or equal to Y.
As numbers, Xis greater than Y.
As m.m1bers, X is greater than or equal to Y.
Terms X and Y are equal (i.e. unified). -
The functor and args. of term T comprise the list L.
Terms X and Y are strictly identical.
Terms X and Y are not strictly identical.
Term X-precedes term Y.
Term X precedes or is-identical Y.
Term X follows term Y. -
Term X follows or is-identical to term Y.
Perform the (re)consult(s) specified by-[FIR].

September 4, 1984

oat introduotion

