Executing Prolog at Ten Times DEC-10 Speed

WFC (28 November 83)

. Because of the large corpus of existing applications software, a decent Prolog
) p o

system must include facilities to cnable compatibility with the existing DEC-10
implementation. The main problem is maintaining the ‘recorded’-style data-
base without degrading the rest of system performance. I'urthermore, a
sysytem should provide full garbage collection, which mcans doing better than
the current DEC-10 system. Providing a GC method that does not severely
impact performance is the subject of another note.

Having such facilitics causes overheads that scrve to reduce per{ormance
by unknown factors (estimated from between 10% to 40%). 1 shall ignore the
effects of such facilities on the performance estimates derived below, because
the facilities arc not used when the performance of the DEC-10 Prolog is meas-
ured. These facilities are not discussed further: suflice il to say that Prologs

not offcring these facilitics should not be seriously considered.

The ZIP Machine

The ZIP Machine is the virtual machine specification for a Prolog machine.
Jts simulator has been packaged as a Prolog system, and is called Prolog-X.
The simulator emulates byte codes taken from an instruction stream. A ver-
sion of Proleg-X written in PASCAL. running on a VAX-780, emulates about 5000
byltecodes per second. The same system running on an ICL 2980 emulates
about 10000 bytecodes per second. Translating Prolog-Xinto C would provide a
system at lcast 5 times faster. However, this is a rclatively minor specdup

compared with what is required -- ten times DEC-10 Prolog.

- How fast will ZIP go?

] shall estimate the speed required of a ZIP machine in the following way. 1

refuse to usc the informal term LIPS (Logic Inferences per Second), because il
is not defincd: many people have different conceptions about what it really
mcans. As no other proposzil has been made, 1 shall put forward one based on
the only docurnented evidence of DEC-10 Prolog performance: the benchmarks
listed in (Warren, 1877). We choose the naive reverse benchmark: although it
docs not require the full spectrum of Prolog capabilities, it is simple to per-
form and Lo measure, and it has a high concentration of procedure calls.
I shall define 1 drev as the speed of processor required to compule the naive
reverse of a list 30 elements in length in 53.7 milliseconds.
The unit drev stands for “DEC-10 reverse”™ the DEC-10 Prolog system com-
putes a naive reverse of a 30 clement list in 3.7 milliscconds, so we ratc a

DEC-10 as having o performance of 1 drev. Thus, a processor that can compute




al a rate of 10 drev will reverse a 30-clement list in 5.37 milliscconds or 5370
microscconds.

How fast must the components of a ZIP machine go in order to go at a rate
of 10 drcv? The ZIP compiler emits 306 instructions for the naive reverse pro-
gram. When a 30-clement list is reversed, 6648 instructions arc executed.
Thus. o perform at a rate of 10 drev, a ZIP instruction must be execuled every

808 nanoscconds on avcrage.

Of these 6648 instructions, 525 are procedure calls, the most expensive
instruction to exccule. The remaining instruction are relatively chcap, and
consist of fewer than 10 register transfers cach. The single instruction exe-
cuted most often (2775 times) consists of only 3 transfers (2 of them to main
memory). 1395 of the instruction cause only one register transfer -- easily
done in onc minor ALU cycle. The procedure calls are the real problem — new
actlivation records nced to be sct up (8 memory transfers), the procedure
must be located (about 10 memory transfers for naive reverse), and other new
contexts necd to be established (about 8 register transfers and S memory
transfers).

There is a difference between transfers to internal CPU registers, which
can be done on one ALU minor cycle, and transfers to main memory. Main
memory transfers depend on the comparatively slow main memory which has a
wide and unpredictable variance in cycle time. Let us assume that an average
cycle time of 500 ns is possible for main memory transfers.

Pure worst-case guesswork based on the above figures leads me to suggest
that with relatively modest hardware resembling a suitably microcoded HLH
Orion fitted with a faster main memory, the 30-clement reverse could be exe-
cuted in about 21,175 microseconds, which represents a rate of only under 2
drev. This figure has been derived in the absence of more detailed Z1P simula-
tor resulls (my instrumented simulator is on a VAX in Oxford, and not on
SERCnct!), and should underestimate performance, but should be good to
within 30%. 1 have crudely assumed that 1395 of the instructions are executed
in 500 ns cach, 4728 in 1000 ns cach and 525 in 30000 ns cach. The procedure
call is the Kkiller. If the time could be reduced to 10000 ns (quite feasible), then

this would increcase the speed to 5 drev.

Increasing the speed to 10 drev must be accomplished by providing faster
hardwarce. The memory cycle time is the problem. Even if the CPU could be
quadrupled in speed (by using ECL, say), I would predict roughly the same per-
formance. To achieve 10 drev, we must cither redesign the way that Prolog
systems in general use memory, or we must obtain much faster memory tech-
nology. ‘The problem will be exacerbated because improvements 1 wish to
make in the ZIP design will result in a system which requires cven more

memory accesses for a given computation.






