
:Memory Rcprcscdation Issues for Prolog Implementation 

Introduction 

W F Clocksin 

Computer Laboratory 

University of Cambridge 

Corn Exchange Street 

Cambridge CB2 3QG 

The slack-based Prolog implementation of Warren (1977) has been effective 

and int1uential. However, when considering future implementations of Prolog

likc languages, the problem of incremental garbage collection must be 

addressed. Program sizes arc increasing, and there is more use of sophisti

cated programming techniques (Warren, 1982; Shapiro, 1983) which prevent 

the use of the conventional expedient of explicitly backtracking to reclaim 

data space. Moreover, a more comprehensive GC method than Yfarren's is 

required. Such sizes and techniques, together with expectations of system 

performance, conspire to restrict the effectiveness of conventional GC 

methods such as mark-and-sweep and stop-and-copy. In this paper we discuss 

the design issues implied by considering the use of a real-time incremental GC 

method (Baker, 1978; Leibermann and Hewitt, 1983). 

The Heap 

Real-time incr~mcntal GC methods have been designed for use with the 

heap-based memory used by LISP systems. It is instructive to consider the 

impact of heap-based memory for Prolog. Heap-based memory for Prolog is 

not new (see MicroProlog (McCabe) and P0PL0G O,iellish)), but conventional 

mark-and-sweep techniques are used. Problems do not. arise on a system with 

limited address space or for small applications, but realistically large applica

tions arc more demanding, and seem to require a more sophisticated treat

ment of heap GC 1. 

We shall consider a conventional heap memory, the contents of which are a 

finite number of cells. Each cell consists of N components (N > 0), and is 

referred to by a unique integer called a pointer. A component of a cell is at 

1• The problem is not resolved by using a separc!lc GC processor: access lo the shurcd 

rncmo1·y is a bolllcncck. !f the CC processor operates concurrently with the Prolog processor, 

then severe memory contention results. Ir lhe GC processor docs not operate concurrently 

with the l'ro!og processor, lhcTt GC t.ime is limited by memory cycle time, and little is gained 

by using a sepa.rnt.e processor. 



least large enough to contain one pointer. We identify three rules to observe 

when transacting with a heap-based memory system: 

• A legal pointer to a cell points only to a' conventional (usually the first) 

address of the cell. This restricts the possible implementation of Prolog 

variables: variables are often implemented as a pointer to the variable 

component within a cell. P0PL0G gets around this problem by creating a 

separate variable cell to which variables ref er. Although GC methods have 

been devised to support within-cell references (Wegbreit, 1974), we restrict 

our discussion to conventional heaps. 

• It is not possible to compare addresses to determine lifetimes. In a slack

based system, cell addresses can be compared to determine, for example, 

whether or not the current activation is determinate. Comparisons are 

also used to support other optimisations based on determinacy. If the 

local slack (used to hold activation records in a variation of the Italian 

manner (Bobrow and Wegbreil, 1973)) is not placed in the heap, then most 

of the relevant comparisons can be performed (this is discussed further 

below). 

• All components of a cell must be valid during the time GC is permitted. 

This rule prevents certain optimisations performed by Prolog-X (Clocksin, 

1982) for example, in which certain component updates are deferred until 

the are absolutely necessary, in the hope that they will not become neces

sary due to subsequent discovery of determinism. 

Feasibility 

Using an incremental GC causes a bounded amount of garbage collection to 

occur for each construction of a new heap cell. This aff_ects the performance 

profile of a Prolog system. It is becoming popular to measure performance in 

units of LIPS (logical inferences per second), although this unit has not yet 

been well defined, where LIPS units are derived from measuring the time taken 

to run a small program such as naive reverse (Wilk, 1983). However, a LIPS 

raling conferred on a Prolog system in this way merely indicates that the sys

tem is a "sprinler"2 . A Prolog system using an incremental GC will therefore 

have a lower LIPS rating than if the same system had no GC. However, a sys

tem with incremental GC is likely to be more desirable lo use, and it is possible 

to design an incremental GC which can be deactivated for short periods when 

"sprints" are necessary. 

During the execution of a Prolog program, two patterns of memory use can 

be identified: long-term storage of clauses and on the global slack. Short

term storage has a high rate of turnover and more dense interconnection of 

2 Pursuing lhis analogy lo excess, equipping such a syslem wilh a convenlional {not in

crcrnenlal} CC will cause the sprinter lo lake lenglhy "'rest slops" when running a "long dis-



references. Clearly, to achieve optimum performance, an incremental GC 

method musl treat the two patterns of memory usage appropriately. The simi

lar case which arises in Lisp has only rece1nlly received serious attention. 

While Baker·s method treats the heap uniformly (turning over all cells 

indiscriminanlly), the intent of Lciberman and Hewitt's method is to prevent 

'Unnecessary turnover of long-term storage. Results of the Leibermann/Hewitt 

method are inconclusive, and require further design and simulation. 

For the purpose of gaining more performance, further special cases can be 

accommodalcd. For example, it is not necessary to place the local stack in 

the heap. Garbage is not created in the local stack. If the local stack is 

implementacd as a stack, then address comparisons for detecting determin

ism can be performed, and faster access is possible. However, the stack must 

be explicitly considered as a source of roots for the GC. 

Benefits 

Providing a uniformly addressable heap with an incremental GC confers a 

few beneficial side-effects. First, the system is easier to interface to heap

based langu.iges such as Lisp and Smalltalk. Second, there is safe and timely 

recovery of the space used by retracted clauses. This is a problem in non

heap-based Prolog systems (O'Keefe, 1983), for example, space is unexpectedly 

occasionally not recovered in DrXsystem-10 Prolog (because recovery is 

related to backtracking), and it is possible to generate dangling pointers in 

certain rare cases in Prolog-X. C-Prolog requires a large (> 10%) overhead in 

managing the clause database, even when no retracts are used. This is related 
lo the overhead required to maintain a reference-counting GC method 

specifically for the clause database. 

lance". 




