
N o t e s o n n e w P r o l o g s , W F C 7/5/84

• Users want mixed language programming, w i th shared data structures. Only P O P L O G
and Salford L isp/Prolog offer th is at the moment. On ly P O P L O G has been tested on
substant ia l applications, however these tests have revealed l imitat ions which further
work w i l l overcome.
Which languages to users want? Prolog and L i s p are the first choice, w i th P O P
needed by those who have applications already in P O P . However, any members of
th is T^as^ly'* could be used. T h e family characteristics are: interactive, w i th run
t ime type che^ddng (other typechecking methods optional) and dynamic l o c a t i o n of
da ta structures, interpreted or incrementally compiled (other compilation methods
optional) . Other members of this family are Smal l ta lk and Snobol.

• Users want the L i sp component of a mixed language system to conform to some
recognised standard. There are several standards, w i th numei^ous dialects w i th in the
standards. P O P L O G does not conform to any. Function^name compatibil ity is not
enough: the semantics of atoms, for example, must he L isp l ike , and not POP l i k e .

• Performance is another issue, d iv ided jntcrspeed and memory requirements. T h e
compromises forced by miyedJaagUage means that speed wi l l be reduced from what
is possible if ^ r o u ^ i i y ^ i n T d ' ^ r example, Quintus Prolog).

-Q-^speedT As fast as possible: l O K L I P S is probably what one should expect on a
68000. T h e important point is that speed must not degrade disproportionally
as the program size increases. T h i s means that implementation techniques that
"scale up " appropriately must be used. P O P L O G has a wel l recognised problem
here, but it can be remedied. Prolog-X was designed from the start to scale up
well, but it does not attempt mixed language programming,

o memory. Contrary to popular thought, it is s t i l l important to have compact
representations of clauses and terms. I t is mostly paging which ki l ls P O P L O G ' s
performance, caused by bulky representations of terms and clauses. Prolog-X
was designed to hr.ve very compact clauses: code size ranges from 2 to about ICO
bytes, and is usually around 30.

• Memory management. A uniform heap is probably the most convenient for imple
menting mixed languages. T h i s is what P O P L O G , the A P M Proposal , and Salford
do. Conventional implementation techniques for high-performance Prologs do not use
a uniform heap, and instead use several stacks, each of which is managed in a par
t icular way. T h i s technique is very inconvenient for mixed language working, and
this is why Prolog-X and Quintus Prolog are not good substrates for mixed language
systems. Management of the uniform heap w i l l need to optimise recognised special
cases, such as long-term storage (Prolog clauses and L i s p functions) and short-term
storage (Prolog global terms and L i sp s-expressions) and act ivat ion storage (L i sp and
Prolog local stacks) .

Wha t is a good substrate? Cambridge L i sp is a high-performance implementation of
Standard L i sp , and is based on the P S L implementation method. A L i s p compiler emits
code for an abstract machine (C M A C R O) , which is then translated to machine code for the
processor. Implementations run on the 68000, 16032, G E C 63, and I B M 3081 . I t regularly

1

runs large programs such as R E D U C E . A n interactive programming environment based
on those favoured by A I programmers is available, and is used by A I programmers at
Cambridge. Implementation details of the systems are published in various articles in
Software Practice and Experience.

I suggest the Cambridge implementation of Standard L i s p to be an ideal substrate
from which to bui ld a mixed language system. A t the moment I (w i th R O K and A C N) a ^
investigating the feasibility of wr i t ing a Prolog compiler to be integrated w i th t h ^ > i ^ ^ -
bridge L i sp system. On ly relat ively minor changes in the exist ing s u b s t r a t e ^ ^ required
to produce a high-performance mixed system. For example, an ymexp^j^^^oonvLS is that
the current garbage collector already deals w i th locatives pomVm^j^ the middle of a cell.
T h i s saves implementation effort, and permits the most fffl^I^^^rrlmplementation of Prolog
variable bindings. We also expect to take advantage of experience gained by others at
Uppsala and S R I on implementing Prolog on the L M and Symbol ics L i s p machines. We
expect the performance to be the best possible i n the s i tuat ion.

/^6' ^Jie mn^P^^s o{ POFLDC) are /or Cotoiparhon

purports ohly^ ^i^d are Hot intended ns cnbasi^

of Pop/o^.

2

