
R e f e r e n c e S u m m a r y o f P r o l o g - X
W F C l ocks in , Computer Labora tory , Un i v e r s i t y of Cambr idge

J u n e , 1984

reviZoJulyB^

S u m m a r y

Pro l og -X is a n implemented portable interact ive P ro log sys tem in wh i ch clauses are incremen­
ta l l y compiled for a v i r t u a l machine. A t present, the v i r t u a l machine i s emulated by software, but
i t has been designed to permi t easy implementat ion in microcode or hardware . Pro log -X runn ing
on the software-based emulator provides performance comparable w i th ex is t ing Pro log systems.

D e s i g n G o a l s

T h e goal of P ro l og -X is to provide a high-performance P ro l og implementat ion suitable for
large-scale commerc ia l and indus t r i a l appl icat ions. I t is apprec iated tha t applications of th is type
w i l l r u n on machines tha t have a large (at least 16 M b) direct ly-addressable v i r t u a l memory space.
Consequently, P r o l o g -X can only be r u n on machines hav ing a t least a 32-bit word length, of wh ich
at least 24 b i ts are avai lable for addressing.

To provide usable response w i th hea^y memory loading, P ro l og -X uses sophisticated imple­
mentat ion techniques to make efficient use of comput ing t ime and memory space. T h e s>'stem
uses an opt imis ing compiler to convert clauses into a compact byte-code instruct ion s tream for a
v i r t u a l machine wh ich can be emulated a i high speed. I n t e r n a l operat ions, such as da ta s t ruc tu i e
management, are uni formly designed to be of constant overhead or at least of low complexit>',
sca l ing up w i thout d is proport ion a l ly degrading performance. Fur the rmore , c r i t i ca l parts of the
P ro l og -X system are designed in such as way as to imp ly a stra ight forward re implementat ion in
assembly language, hardware , or microcode.

P ro l og -X is a compiler-based Pro log which , unl ike previous such systems, is reasonably portable.
P ro l og -X has been ported to the H L H Or ion, I C L P e rq , I C L 2980, QE0"<3», and D E C V A X .
T o demonstrate i t s efficiency, compatibi l i ty, and comprehensiveness of implementat ion, P ro log -X
has been used to compile and run CHAT and P ress , two large programs wr i t t en original ly for
D E C s y s t e m - 1 0 Pro log . T h e Pro log L i b r a r y can also be used, wh i ch makes avai lable development
tools and scientific routines such as an eirbitrary-precision ra t i ona l number ar i thmet ic package.

T h e U s e r L a n g u a g e

T h e dialect of P ro log avai lable to the user is intended to be compatible w i th the core language
as specified in Programming in Prolog (C locks in and Me l l i sh , 1981) , of wh ich widespread imple­
mentat ions exist for the D E C s y s t e m - 1 0 (B y r d , Pe re i ra , and War r en , 1980) , V A X (Pere i ra , 1981) ,
and P D P - 1 1 (Mel l i sh , 1980) .

Unres t r i c t ed s j T i t a x compatible w i t h the D E C s y s t e m - 1 0 implementat ion is used: overloaded
operator declarat ions w i t h precedences in the range 1..1200, c u r l y brackets , etc. To support large-
scale appl icat ions, P ro l og -X also offers l ex ica l modules and easy interface to procedures wr i t t en in
the base language (C) . P rog rams may contain G r a m m a r R u l e s .

Some relevant de^'iations f rom normal pract ice are as follows:

• D is junc t i ons w i t h i n clauses are interpreted ra ther t h a n compiled, and "cuts'* w i th in d is junc­
tions are interpreted correctly. T h e only interpretat ion overhead in t h b case is an e x t r a
procedure c a l l per goal.

• Debugging faci l i t ies are not bu i l t - in . Because clauses are compi led, some of the information
needed by a bu i l t - in debugger is lost, and to increase performance, clauses may be executed in
ways not obvious to the user. However, it is possible to use a n interpret ive debugger (a\'ailable
f rom the P ro log L i b r a r y) i n the usua l way, which imposes a conventional execution strategy.

• A normal P ro l og "top leveP is provided. A s clauses are compiled, the source clause is a k o
reta ined i n the database together w i th the names of var iables used w i th in the clause. T h i s
may be used, for example , to l is t clauses (us ing l i a t i n g) exac t l y as they were typed in .
However, the user has the option to compile clauses w i thout re ta in ing the source clause in the

database. T h e advantage is faster compi la t ion and less memory usage, but such clauses m a y
not be accessed by c l a n s • or r s t r a c t .

• I n p u t mus t be in upper- and lower-case, so the fol lowing syntact ic devices are considered
obsolete and have been discarded: ' L C \.

• Some commonly used predicates defined i n var ious P ro log l ibrar ies have been bu i l t - i n .

I m p l e m e n t a t i o n D e t a i l s
T h e cur ren t implementat ion includes the fo l lowing features:

• L a r g e address space (2^* bytes) .

• I n c r emen ta l garbage collection is per formed d u r i n g backt rack ing , and when clauses are re­
t rac t ed .

• A l l c lauses are compiled to a compact byte-code representat ion, w i t h automat ic var iab le mode
ana l ys i s and peephole opt imisat ions. Some bu i l t - in predicates are open-coded.

• T a i l recurs ion opt imisat ion, ear ly detect ion of determinacy, least-committment a l locat ion
strategy.

• A u t o m a t i c c lause indexing on first argument of goals.

• A r b i t r a r i l y long bit-str ings tha t a r c tested for equal ity dur ing unif icat ion (for compact str ings,
b ig numbers) .

T h e current release of F r o l u g - X does no.; Implement the following features. T h e y are recognised as
impor tant , and there b no reason other than lack of manpower why they cannot be implemented.
P ro l og -X has been designed w i t h the intent tha t these features could be easi ly added to the e xb t i n g

implementat ion :

• Compi l ed db junc t i on .

• I nc r ementa l garbage collection of global s tack in the absence of backtrack ing .

• F loa t ing-po in t a r i thmet i c .

• Improved clause indexing.

t Access to e x t e rna l databases of ground uni t c lauses.

D a t a S t r u c t u r e s
D a t a s t ruc tures used in P ro l og -X programs have the fol lowing restr ict ions:

• integerr. are in the range -134217728 to 134217727. Overfiow b not checked. A n integer to the
base iV (0 < iV < 9) may be represented as s tandard , but base 0 is reserved for represent ing
charac te r codes (for example , O'A = 8 ' 1 0 1) .

• stringr. pre%uous implementat ions convert these to I b t s of integers. P ro log -X represents t h e m
as a d b t i n c t d a t a s t ructure (a packed byte a r r ay) for greater efficiency. T h e m a x i m u m length
of a s t r ing b 16777215 characters , but in pract ice b subject to memory l imi ta t ions . T h e
m a x i m u m length of s t r ing tha t c a n be read by r e a d (I) b approx imate ly 255 , a l though t h b
can be changed. E a c h component of a s t r i n g may contain any ord ina l i n the range 0..255.

• atomr. A t o ms represent the ir name as a s t r ing , so the observations for s t r ings hold for a toms.

• variabler, A m a x i m u m of 255 di f ferently-named var iables may appear i n a c lause. T h b re­
s t r i c t i on c a n be l i f ted i n la ter releases b y the unl ike ly event of popular demand.

• compound terms: T h e m a x i m u m a r i t y of a functor b 16777215, but i n pract ice b subject
to memory l im i ta t i ons . O n l y functors ha\Tng arit>' less than 256 can be a s a e r t ed . T h b
res t r i c t ion c a n be l i f ted in later releases by popular demand.

E r r o r s

T h e error hand l ing mechanbm is accessible t o the user as a Pro log procedure e r r o r J i a n d l s r .
T h e default act ion for errors b to pr int a message and a cu lpr i t . Addi t iona l ly , s y n t a x errors cause
e x t r a in format ion to be pr inted . I f the current file b not the user, then the file name and l ine

number and column number in the file is printed. After a syntax error, recovery is attempted by
skipping to what is likely to be the end of the clause, and reading again.

T>'ping the interrupt key (control-C on Unix systems) causes the procedure break-handler
to be entered at the earliest opportunity. The default break handler provides a "top level" with
the prompt preceded by the word (Break). To exit from the break, type the end of file character
(control-D or control-Z on Unix systems). The break handler can also be modified by the user.

Input and Output

The Unix standard I /O library is used. Output is flushed only (a) when a newline is printed,
or (b) when input from the user is requested. The built-in procedure ttyf lush is provided. There
is a limit on the number of files than can be open at any one time.

Operator Declarations

These are the same as provided by DEC-10 Prolog. In Prolog-X, operator declarations are
subject to modulo scoping, and may be imported in the same way as procedures.

Built-in Predicates Exported to the User

The built-in predicates are fully explained in the DECsystem-10 manual, the CJ-Prolog manual,
or the Prolog textbook. In the middle column, an X means a predicate new in Prolog-X; L means a
Prolog librar>' predicate which has been built-into Prolog-X; O means that the compUer open-codes
the predicate (emits a specific machine instruction). The 'O' entry should not normally concern
the user.
abolish(F.N)
abort
arg(N.T.A)
a8sert (C)
aBBerta(C)
a8Bertz (C)
atoffi(T)
atomic(T)
bagof(X.P.B)
break-handler
call(P)
clauBe(P.q)
clauBe(P.q.R)
compare(C,X,Y)
compile(F)
COHBUlt(F)
diBplay(T)
endmodule(A)
eraBe(R)
error-handler (N.T)
f a i l
f indalKT.G.L)
f indalKT.G.S.L)
foralKP.q)
functord.F.N)
get(C)
getO(C)
halt
import(P,M)
integer(T)
T i B X
keyeort(L.S)

O

O
O

X
O

X

X
O
L
L
L
O

O
O

Retract all clauses for procedure F , arit>' N.
Abort execution of current directive
The Nth argument of term T is A.
Assert clause C.
Assert C as first clause.
Assert C as last clause.
T is an an atom.
T is an atom or an integer.
The bag of Xs such that P is provable is B .
Call the break handler.
Call procedure P.
There is a clause, head P, body Q.
There is a clause, head P, body Q, ref R.
C is the result of comparing terms X and Y .
Extend the program with clauses from file F , do not retain source.
Extend the program with clauses from file F .
Write term T in prefix form.
End of module A.
Erase the clause with ref R.
Call the error handler with error number N, culprit T .
Backtrack immediately.
Like bagof (T,G,L), but free variables existentially quantified.
Like f indalKT.G.Ll) , append (L I , S .L) , but cheaper.
For all P provable, prove Q.
The principal functor of term T is F with arity N.
The next non-blank input character is C.
The next input character is C.
Abort and exit Prolog.
Import procedure(s) P from module M.
T is an integer.
Y is the value of arithmetic expression X .
The list L sorted by key yields S.

3

length(L,M) L
liBting(F.A)
naj&e(A,L)
name-Bub(T,N,C) X
nl
nonvard) O
not(P)
numbervars(T,M,N)
op(P.T.A)
put(C)
read(T)
read(T.L) X
recorda(K,T,R)
recordedCK.T.R)
recordz(K,T,R)
repeat
retract(T)
Bave(F)
Bee(F)
Beeing(F)
seen
setof(X.P.S)
Biiapleterm(T) L
Bkip(C)
Bortd.S)
Btring(T) X
BTicc(M.N) L
systemCP) L
tab(N)
te l l (F)
telling(F)
told
true
unknown (0,N)
var(T)
viBa(L)
write (T)
writedepth(0,N)
writeq(T)
writewidthCO.N)
!
\-^(P)
P -> q ; R

-> q
< Y
=< Y
> Y
>= Y

Y
=\ Y
= Y
\ Y

O
X

X
O

o
o
o
o
o
0
o

== Y
\== 1
«< Y

The length of list L is M
List the clauses of predicate with functor F , arity A.
The name of atom or string or number A is list L .
C is the Nth character of atom or string T .
Output a newline.
Term T b a non-variable.
Like *G>), but a warning b printed if P b not ground.
Number the variables in term T from M to N-1.
Make atom A an operator of type T , precedence P.
Output the character C.
Read term T .
Read term T , with variable name Ibt L .
Record T first under key K , with ref R .
T b recorded under key K , with ref R .
Record T last under key K , with ref R .
Succeed.
Erase the first clause matching T .
Save the current state of Prolog in file F .
Make file F the current input stream.
The current input stream is name F .
Close the current input stream, revert to user.
The set of Xs such that P L pro\'able b S.
Term T b not a compound term.
Skip input characters until after character C.
The Ust L sorted into canonical order b S.
Term T b a string.
integer N b the successor of integer M.
P is a built-in predicate.
Output N spaces.
Make the current output stream F .
The current output stream b named F .
Close the current output stream, revert to UBer.
Succeed once.
Set the "unknown procedure" action from O to N.
T b a \'anab)e.
Confer permbsions on e:q)ortable procedures.
Write T .
Set the write depth from O to N .
Write T, quoting if necessary.
Set the output linewidth from O to N .
Cut any choices taken in the current procedure.
P b not provable.
If P b provable, the prove Q, ebe prove R.
Like P -> q ; f a i l .
As integer expressions, X b less than Y .
As integer expressions, X b less than or equal to Y .
As integer e3q)ressions, X b greater than Y .
As integer expressions, X b greater than or equal to Y .
As integer expressions, X b equal to Y .
As integer expressions, X b not equal to Y .
X unifies with Y .
X does not unify with Y .
The functor and arguments of T are elements of Ibt L .
Terms X and Y are strictly identical.
Terms X and Y are not strictly identical.
Term X precedes term Y in the canonical ordering.

4

I e=< y
I «> y
I (B>= y

Term X precedes or b identical with Y .
Term X follows term Y .
Term X follows or is identical with Y .

A r i t h m e t i c Expres s ions

The following expressions can make up arithmetic expressions to be used on the right-hand side
of an i s . X and Y are expressions. Open-code b generated for arithmetic expressions known
at compile-time. Variables in arithmetic expression may be bound to either integers or other
arithmetic expressions; in the latter case, the bound expression wUl be interpreted at run-time.
Arithmetic exceptions are not detected.

+x Unary addition.
- X Unary subtraction.
X + T Addition.
I - T Subtraction.
X * Y Multiplication.
X / T Divbion.
X mod T Remainder.
X / \ bit conjunction.
X \ y bit disjunction.
X « Y bit shift X left by Y bits.
X » Y bit shift X right by Y bits.
\ bit negation.
cput iae C P U time since the start of the session, in millbeconds.
c a l l s Number of Prolog procedure calls since the start of the session.
integer The value of any integer.
atom The A S C I I code of the first character of any atom.
string The A S C I I code of the first character of any string.
list The first element of the Ibt b evaluated as an expression.

5

