What is Prolog-X?
W F Clocksin

Computer Laboratory

Prolog-X is a portable design for a high-performance Prolog system intended
for large-scale applications. The terms portable and high performunce may
seem contradictory, but the intent is to try hard to maximise both. At the
time Prolog-X was designed, the only high-performance system in existence
was Lhe (non portable) DECsystemn-10 compiler by David Warren. With the
impending demise of the DEC-10, together with the wish to run big programs
on machines such as the VAX and 68000, I sct out to design a system based on

Lawrence Byrd's ZIP abstract instruction set, and having the following objec-

tives:

« High performance. We would use the compiler technology introduced by
Warren's implementation, together with some improvements devised by us.
Improvements include: compiling byte codes for an abstract machine (the
ZIP machine), which is potenially casily implemented by a choice of emula-
lion, microcode, hardware, etc.; carly checking for determinacy; 'lazy’
stack allocation; tail x*ccursi‘on optimisation; no neced for modec decldara-

tions; automatic indexing on the first argument of a clause.

« Portability. The DEC-10 system is impractical to port. We wanted a port-
able system, but were willing to sacrifice some performance. A system
kernal would be written in a high-level language, and the rest of the systein
would be written in Prolog.

« Large applications. Needing to run large applicaifons mecans that the
design should use mcthods that scale up cheaply. Some existing Prolog
systems use implementation techniques that lead to disproportional losses

in performance as the size of an application grows.

« Improved user interface. Compiled procedures should ‘look’ the same as
interprcted ones. In the' DEC-10 implementation, clauses cannot be com-
piled incrementally and cannot be retracted or listed, for example. VWe
would improve on this by having incrementally compiled clauses and
sacrificing performance.

« Improved features. We would offer proper strings, garbage collection,
floating poinl numbers, better error handling and hooks for future pro-

gramming aids.

Starting around March 1982 | implemented as much as [could, time permit-
ting. in Pascal on a VAX under VMS. Although | would have preferred to use the
C language. Pascal was used fer two rcasons: (a) it was the only suitable

language available to mc al the time, and (b) the strong type-checking wouid

help to catch blunders. The' consequent effectiveness of reason (b) was aston-
ishing. The implementation was intended to be a runnable specification rather
than a finely-tuned product. The reason was that 1 nceded an instrumented
prototype to lest the new ideas, and I wanted to make explicit the design's
modularity so that future implementation decisions could be more rationally
made. In any case, it was unlikely that a final implementation would be written
in Pascal. The result, a ncarly complecte implemcntationl. consisted of about
5000 lines of Pascal plus about 1000 lines of Prolog.

As expected, the execution speed is slow, approximalely comparable with a
popular Prolog interpreter written in C. The ZIP emulator (written in Pascél)
exccutes about 6000 bytecodes per second on a VAX 780, and about double that
on an JCL 2980. The slowness is for Lwo rcasons: (a) the Pascal compilers used
emit poor code, and more importantly, (b) Pascal prevents the expression of
certain low-level concepts in a way that can be effeciently exccuted by typical
machine instructions. Translating the design into a more suitable language
such as BCPL or C should rcalise a speedup of at least 5-fold.

An exarnple of why Pascal is unsuitable is as follows. Consider the following
declarations:

bytevect = packed array[0..3] of 0..255; { overlay bytes per word |

overlay = 0..2; { number of variants |

word = packed record { machine word overlays |

casc overlay of

0 : (raw : integer);

1: (byle : bytevect);

2 : (val: 0..16777215; tag : 0..255);
cnd;

var m : array[1..100000] of word;

Array m is considered to be a memory array of 32-bit words which can be
accessed cither as a tagged value, an integer, or a byte vector. To fetch the
next bytecode instructionz, the ZIP emulator must recad a byte from the byte
address PC: b := m[PC div 4].byte[PC mod 4]. Most Pascal compilers emit
some 20-odd instructions for this statement, including multiplics and divides.
In 'C' this would simply be b = *PC, and the compiler would emit the one or two
instructions actually nceded.

The last release was Relcase 1.6 (August, 1983). Since that time I have
reconsidered many of my original design decisions in the light of experience.
The relative importance of some fcatures has been reevaluated. In particular,

memory management must be reconsidered, and this is the subject of another

! Not implemented: full garbage collection, floaling point arithmetic, and the newest DEC-

10 Prolog built-in predicales.
2 petehing the next instruction is the most often used operation, an obscrvation which is

consistent with previously known von Neumann style architectures.

report. The remainder of tHis report describes what needs to be redesigned

and rcimplemented.

(1)

{3)

(1)

(7)

(8)

Cut must work within disjunctions. At the moment, the ‘cul’ operation
does nol work properly within disjunctions. The compiler must be changed
to compile culs correctly inside disjunctions, and the ZIP emulator must

be changed to implement the new instructions.

Redesign of clause heap. Release 1.6 implements clause by decompilation.
This is undesirable. An experimental alternative performs better under
most condilions but cannot be prevented from occasionally producing dan-
gling clause references. The real answer is to redesign the heap at the
same Llime that GC is added to the global stack, perhaps combining the
two. Another report discusses the problems raised here.

Garbage Colleclion of global stack in the absence of backtracking. At one
time considered unneccessary in principle, this is now considered essential
to support the use of programming techniques (suspended processes,
iteration by tail recursion, token scanning) that are becoming widely used.
In fact, a general-purpose ‘heap is considered desirable now, and perfor-

mance must again be sacrified.

leewrite parser in Prolog. The read predicate is implemented in Pascal. It
is fast, but, like many Prolog parsers, cannot parse the full Prolog gram-
mar. IUis also bulky, and accounts for about 25 percent of the bulk of the
sascal code. The official Prolog parser is written in Prolog, and is freely
available. It should replace the existing one, which will mean wriling a tok-
eniser. The implementation of operators will be much improved as a side

effect, but there will be a greater need for a garbage collector.

Compiled arithmetic operations. Although compilation will be more expen-
sive, cxccution speed will be faster and global stack space will not be
required (for copying the expression).

Floating-point arithmetic. The DEC-10 does not have this, but almost
every other competitive system (C-Prolog, POPLOG) docs. The ZipMachine
design doces this casily by having a 40-bit word, so the Noating value can be
held in the 32-bit val. For ZIP, we must use one of the several possible

hacks: usc global stack (then need GC), or use a scparate arca (not good).

Compilation into native CPU code. Although emulation overhcad is not
particularly high, native code compilation can be used to “buy back' some
of the performance lost when the new memory redesigns are implemented.
The almost undeserved speed of the POPLOG system shows that this trick

is “¢ffective. The new Prolog systems under development by Quintus
apparently rely on genceration of pood native code. The Z1P codes are more

suitable if the underlying hardware executes the ZIP instruction set.

Add debugging features. There are several ways to offer this:

(a)

(b)

{c)

(9)

An ecmbedded interpretdr in Prolog. Given proper disjunction and GC, this
should be adequate. Clause would need to be very fast.

Automatic advising of pgoals as in InterLisp. Requires compiler change,
scems awkward, but easy Lo interface to user trace code in Prolog.

Hooks in the ZIP virtual machine. Probably impossible to interface to user
lrace code in Prolog.

Non-incremental compilation. Currently clauses are compiled separately
and linked together. increased performance can result by compiling a
group of clauses as one indivisible unit, so there is less overhead for sclect-
ing the next clause in a procedure. This pays ofl substantially when com-
piling into a native code. This is what the DEC-10 system does. The penalty
is that it is then impossible to retract clauses or to otherwise inspect
clauses separately. This penaltly is worth accepting for built-in predicates
wrilten in Prolog, because they cannot be inspected or retracted anyw-a);.
and would benefit by increased speed.

