
r
,~~-·-~--·--

l

The ZIP Virtual Machine

W F Clocksin

January 1983, with subsequent revisions

Prolog-X is an implementation of Prolog which makes use of an abstract

(virtual) machine called the ZIP Machine. The ZIP Machine is defined by a

pointer formal, 32 registers, the format of storage areas, an instruction set,

and assumptions about the layout of data structures in memory.

POINTERS

Every data structure is represented by a (T+V)-bil word which is divided

into a tag field of T bits in length, and a val field of V bits in length. The tag

field should be 8 bits long. The present software simulator (Prolog-X) reserves

8 but uses about 4. The val field is ideally 32 bits long so that floats can be

represented directly. The present software simulator uses a 24-bit val and

does not implement floats.

The following formals denote data structures:

TAG MNEMONIC VAL PURPOSE

0 INT integer value integer

1 FLOAT float value float

2 BOX pointer lo a block cell raw byte string

3 ATOM pointer lo an atom cell atom

4 TERM pointer lo a term instance term

5 LINK pointer to variable referent instantiation

6 reserved reserved

7 UNDEF uninstantiated variable variable

8 FUNCTOR pointer lo a functor cell functor

9 BLOCK byte count cell header

10 EMPTY don't care lo catch bugs

11 TERMIN don't care terminate chains

12 CLAUSE pointer to a clause cell clause

13 TABLE word count + 1 cell header

14 TAOREF pointer to a table cell vector

15 PROC pointer to a fixture procedure

Some of the above tags arc not strictly necessary. It is possible to represent

procedures, clauses, tables, and funclors as general terms. This would provide

a more uniform and simple set of data structures, but would cost more in

memory fetches. For example, lo lest whether something is a CLAUSE. we lest

--~---- -----

I·
I

the tag, which is very fasl. Representing u clause as a term would mean test

ing for a clause by fetching and testing its term header (a functor pointer).

With little extra effort we could make clauses, etc, seem like terms lo the user,

and this is done most of the time.

LAYOUT OF DATA CELLS

In common with other systems used in LISP and POP-2, multiword storage

cells arc accessed by a pointer to the first word in the cell. The most obvious

difference is that LINK pointers arc allowed to point directly to words within a

cell. Other pointers to within cells are stored in the Trail, discussed below.

[ATOM I ---]------> [ATOM I ---]---> (hash chain)

(FUNC I --]---> (functor chain)

(BOX I ---]---> (name string)

(FUNC I ---]------> [ATOM I ---)---> (atom backpointer)

[INT I arity]

[FUNC I ---]---> (next functor)

[PROC I ---]---> (procedure chain)

[PROC I ---]------> [INT I flags]

[ATOM I ---)---> (defining module)
[ATOM I ---]---> (visible module)

[FUNC I ---]---> (functor backpointcr)

[PROC I ---]---> (next procedure)

[I] (clauses l:t'ff or TABREF)

[CLAUI ---]------> [INT !flags]

[I] (index key (various))

[PROC I
[BOX I
[TABR I
[I
[I

---]---> (proc backpointcr)

---]---> (code block)

---]---> (XR table)

] (clause backpointer)

) (next clause)

[TlmM I ---]------> [FUNC I ---]---> (functor pointer)

[I J --+

------------ -------- ---

I
I (N components)

I
[] --+

[BOX I ---]------> [BLOC I N]
[] --+

I
I (N bytes, 0 padded)

I
[] --+

[TABR I ---]----->
[

[TABL I N] --+
I] I

I
I (N words, incl header)

I
[] --+

Rl~GISTERS

The major registers are:

XC current clause pointer

XR external references pointer

D current data pointer

PC current program counter

L current (target) local frame

CL current (source) local frame

CP fonvard continuation program counter

CLO forward continuation local frame

G global stack allocated top

GO global stack committed top

ll heap f reelist
BL backtrack continuation local fro.me

BG backtrack global slack top

I3P backtr.::1ck conlinualion clause

TR trail allocated lop

TRO trail commilled lop

Other rcgislcr·s arc internal tcmpora,ics or status bits, etc.

(

I
I

I
j
!

I

DATA STRUCTURES

Sloragc is allocalcd in four main areas, allhough small scralchpad slacks

arc used for general unificalion, reading terms, and other housekeeping lhal is

nol a parl of lhe ZIP .Machine. The four areas arc summarised here, and more

dclailcd discussion is given below.

• Activation records are allocated on lhe Local slack, which is implemented

as a true slack with contiguous storage but allowing indexing into il. Local

stack frames do nol require garbage collection, as this is done automati

cally as a resull of certain ZIP instructions. Variable slots in the local

frames are the source of all roots to data structures.

■ The Global slack, in which most temporary data structures are allocated,

should also be a true slack, but il is also necessary lo index from arbitrary

pointers into the slack. Space is automatically recovered on backtracking.

although garbage collection is nowadays considered necessary to recover

space in silualions where backtracking can never occur. Garbage collec

tion of the global slack is discussed below. Persistent data structures are

allocated in the Heap, which should be implemented as a heap. Allocations

and deallocations are programmed explicitly (for example asserting and

retracting clauses), so a simple reference bit garbage collection scheme

discussed below is used. The ZIP machine secs the heap only in that regis

ters PC, CP, XR, XC. and BP point into it.

• The Trail is an historical record of variable instantiations. When a variable

is inslanliatcd, a pointer lo the variable is entered on lhe Trail so thal lhe

variable can be resel when backtracking. The trail also holds other infor

mation of a chronological nature required for garbage collection. This is

also a lrue slack, wilh pushes and pops being done by the ZIP machine.

In addition, the ZIP machine uses a small scralchpad slack when executing

code between lhe FUNCTOR and POP instructions.

Local slack frames, called activation records, are offset from CL. The

order of the fi.rst eight entries is unimportant bul must be consistent. A com

plete slack frame stores lhe following entries, although in some cases (deter

minacy), nol all register save entries arc used. An ordering could be imposed

lo increase speed, as registers CP, CLO, XC, and GO arc saved or restored al lhe

same lime by several of the machine inslruclions.

0 (reserved)

1 CP

2 CLO

3 I3P

4 GO

5 BL
6 THO

7 XC

'
(argumcnls and local variables)

(lemporary local variables)

• The argument slols hold lhe actual parameters of lhe procedure call. If a vari-

nble appears al lhe lop-level in lhe head of a clause, then ils valu<(!ysimply /.5,
thal of lhc corresponding actual parameter, and lhcre is no need lo allocate a

variable slol for il. Locals classified by lhe compiler as temporaries are allo-

cated nearest lhe lop of lhe slack, so lhal lhe slack space occupied by tem

poraries can be recovered automatically when lhe neck of a clause is exe-

cuted.

INSTRUCTIONS

The ZIP Machine is always in one of three stales called Processor Modes:

ARG, COPY, or MATCH. Many of lhe below instructions have alternative

intcrprclations depending on lhe current Processor Mode. Some of lhe

inslruclions switch lhc Processor Mode.

Each instruction is encoded by a byle containing a number 0 .. 63, which is

combined with the conlcnls of the PM register (2-bit Processor Mode). Argu

ments, if any, follow in the succeeding zero, one, or two bytes. The argument

bytes encode eilhcr an XR-poinler offset, a CL-pointer offset, or a literal value

0 .. 255.

In lhe description of each instruction, we will use the verb 'to mode' lo

mean 'lo take approprialc action depending on the current Processor Mode'.

Depending on the current Processor Mode, moding involves: constructing argu

ments on lhc local stack (ARG), or unifying individual data structures with oth

ers (MATCII), or constructing new individual data slruclures (COPY). The D

Register is normally maintained al the destination of the moding operation.

How much work lhe processor docs depends on what is rnodcd. For example,

moding anonymous variables involves little or no work.

All of lhcsc instructions arc generated by an optimising compiler. The

compiler is capable of idcnlifying cases where full unification is nol required,

where data structures should migrate to olher areas, where lail recursion is

used, where unil and doublet clauses require less housekeeping, and where

certain built-in predicates are translated directly as ZIP instructions (instead

of gcncrnting calls). Special-purpose instructions are generated in th~s~

cases. IL has been found thal over 80 percent of code generated is special

purpose. Thus when lhc description below refers lo a 'general case', il does

not mean 'fast and mosl popular', bul usually means 'slower and rarer'.

immed n

constant n

functor n a

Modes the integer n.

Modes a conslant al XR+n.

Modes a funclor of arily a al XR-t-n. This inslruclion is fol

lowed by inslruclions that mode each component of the

laslfunclor n a

void

voidn n

skipvar

skipvn n

firstvar v

glovar v

gloftrvar v

var v

I

functor, and then a matching 'pop' instruction.

Modes a leaf functor of arity a at XR+n, but no matching

'pop' required.

Modes an anonymous variable. Under certain conditions no

operation is performed.

The next n modings are with anonymous variables.

The variable at D is known lo be modcd later (if al all!), so

we can ignore it now. Under certain conditions no operation

is performed.

The next n variables starling at D are known to be moded

later (if al all), so they are ignored now.

Mode the first occurrence of a temporary or local variable

at CL+v which is known to need moding now.

Mode a variable al CL+v, and migrate it to the global area.

Mode the first occurrence of a variable CL+v and migrate it

to the global area.

The general case: mode a variable at CL+v. The most com

mon use of this instruction, during ARG mode, entails very

litlle work. A var in ARG mode is also the most popular

instruction, being used almost ten limes more than the next

most popular instruction.

pop, popmatch, popurg

return a

argmode a

enter a

proceed n a

depart n a

call n

callx v

exit

These three instructions pop the mode context pushed by

the FUNCTOR instruction. Some of them change the Proces

sor Mode.

Enter lhe neck of a unit clause, slack frame !:iize a.

Enter the neck of a doublet clause, stack frame size a.

The general case: enter lhe neck of a clause having more

than one goal. Slack frame size is a.

Call lhe only goal in a doublet clause. The procedure- of

arity a is at XR+n. If deterministic, then single solution is

implied.

Cull the last goal in a clause. The procedure of arily a is al

XR+n. If deterministic, then single solution is implied.

General case: cull a goal XR+n.

The lerrn al CL+v is lo be considered us u goal, und called.

The really really general case (interpreted higher-order

functions; a 'call(X)' compiles into this).

The lilsl goill is an open coded conslrucl, so this forces an

exit from the currcnl procedure.

I
I

I
I
I

I

cul a

fail

The aclivalion in lhc current frame of size a is lhe only solu

tion (a 'cut' compiles inlo this).
I

The current aclivalion is not a solution (a 'fail' compiles into

lhis).

provar v, prononvar v, proalom v, proint v

In-line tests of CL+v for var, nonvar, atom, and integer (the

built-in predicates var, nonvar, atom, integer compile into

these). The compiler also attempts where legal to tran

splant these lo the left of an ENTER instruction for better

performance.

There are no instructions defined for disjunction or arithmetic. These

facilities arc currently written in lhe base language, and called using pro

cedure calls This actually gives an incorrect definition of disjunction, for

which it is necessary to do tricks with the activation rec,9rd~tended

to define inslructions lo speed up nrilhmelic and to prop-crly1mplement dis

junction. Al minimum, inslruclions will be required for add, subtract, multi

ply, divide, r<'mainder, bit and, bit or, bit not, bil xor, shift left, and shift right.

These insln.i< lions would use either CL or XR offsets lo obtain arguments, and

we must lhcr·eforc also provide a hack to permit passing expressi<;ms though

vnriables to be interpreted al run-lime.

NOTES ON USE: OF STORAGE AREAS AND GARBAGE COLLECTION

Local Stack. When a goal succeeds determinately. its local frame is dis

carded. If lhc procedure is determinate al the point where lhe last goal in lhe

body of the clause is about lo be called, lhen the frame for that goal replaces

lhe frame for the procedure. This is how tail recursion optimisation is imple

mented. One problem is as follows. Suppose a goal replaces a frame lhat has

variables lhnl refer lo lhc goal. In this special case, which is detected during

compilation, space for the aflccted vnriablcs is migrated lo lhc global stack.

Global St.1ck. As mentioned above, garbage collection is required for the

global slack only when inaccessible structures arc created in the absence of

backlrackin1: If il is necessary lo garbage collect lhe global slack, lhen a nor

mal mark-swccp-rcallocalc algorithm con be used. References lo data in lhe

global slack ,ire rooted in the local stack variables. A refinement of lhe usual

algorithm recognises lhal it it not strictly necessary lo mark accessible slruc

lui-es if il is known that the local variable will not be used subsequently in the

current goal This has the cfTccl of reclaiming much space lhal normally

would nol become inaccessible unlil u determinism has been committed.

Heap. CL1uses, which arc stored in lhe heap, arc garbage collected after

they have bct·n rclracled. Two bils for each clause arc required for lhis pur

pose: a REFI::,ENCI-:D bit and a DOO\ll:D bil. ~-1_1xbuill-in pr·cdicalc tJ-1a__t-_rct_urns

a clause point er checks the m:r1,:m:\Cl:D bil. If the bil is set then no action is

la-ken. ·1r lhc bil -i-s clear, then we must scl lhe bil and reconi a Lr ail entry.

-------- ------~ ~~~

When a clause is rclraclcd, lhc lffFEJmNCED bil is checked. lf Lhe RF.FER

ENCED bil is clear (rnosl oflen the case), Lhcn Lhe space occupied by Lhe

cbuse is 1·ecovered immedialcly. If lhe REF'EHENCED bil is set, then it is nol

possible l.o immediately rec9vcr the space for il. Instead, lhe DOOMED bit is
Cl'-~< I"''_,,_ " ~ iZ~-;c~

sel. When backlracking pasl a:p.rai! ent-ry, theJ_bil is cleared. If at this time the

DOOMF:D bil is set, then the space occupied by Lhe clause is recovered.

IL is possible that references t.o cells on Lhe heap may continue lo be refer

enced afler lhe clause in which th;(y appear has been removed. Instead of

adopting a reference count for such cells, it is possible to scan the trail for

rcf crenccs lo variables lhal ref er lo the cells. This is possib!J expensive for

long trails, but the simplicily of the scheme may outweigh the alternative of

full z·cfcrence counts and some new inst.ructions, as has been proposed else

where.

Ideas on garbage collection and storage allocation have changed since this

was writ.Len. The later notes are in a separate paper.

