
Compiler Modules 

ZADMNO {compiler) DW+ 

The master module for the compiler. Handles compile-time directives. Manages compilation of 
modules. 

ZADMN1 (compiler) OW+ 

Manages and eventually compiles the "functors file" (which contains information common to a set of 
modules). 

ZADMN2 {compiler) ow 
Assembles and outputs Macro code generated by the compiler. 

ZBLOCS {compiler) ow 
Compiles the "blocks" code which is generated for each procedure to provide access to its clauses. This 

code docs U1e clause indexing. 

ZCLAUS (compiler) ow 

Compiles code for a single clause. Is ultimately responsible for the layout of variables - globals, locals, 
temporaries. 

I 
'.ZCSTAT (compiler) . FP 

Produces compilation statistics as a courtesy to the user. 

lZDCG {compiler) DW 
I 

Prcproccsscs grammar rules into a form suitable for compilation as ordinary clauses. 

ZEVAL 1 (compiler) . OW+ 

Generates code for arithmetic expressions in general (including some pseudo-Prolog features). 

ZEVAL2 (compiler). ow 
Compiles code for specific binary (2-placc) operators (including some pseudo-Prolog operators). 

ZEVAL3 (compiler) DW+ 

Compiles code for specific unary (1-place) operators, plus some code of dubious correctness for N-place 
pscudo-Prolog operators. 



2 

ZFLAG (compiler) DW 

Translates functors and predicates into corresponding internal codes, addresses etc. 

ZGOAL 1 (compiler) DW 

Compiles code for the goals which make up t.he body of a clause. A number of evaluable predicates are 
treated specially. 

ZGOAL2 (compiler) DW 

Handles disjunctions and contains other procedures auxiliary to ZGOALL The trace code generated is 
buggy and obsolete. 

ZGOAL3 (compiler) DW 

Compiles pseudo-Prolog control primitives, but not 'if..then .. e1se . .' which is in ZGOALL 

ZLTERS (compiler) DW 

Compiles unification code for tenns on the LHS of a clause. 

ZMREAD (compiler) ow 
Parses a list of tokens as a term, and returns this term in the special "meta-read" fonnat used by the 

compiler. Essentially it avoids actually constmcting the new functors, by representing the terms in 
decomposed form as lists. cf. ZREAD. 

ZOPSC (compiler) DW 

Remembers user-defined operator declarations using old-fashioned "tag". Incorporates the compiler's 
standard operators. cf. ZOPSI. 

ZRECAL (compiler) DW+ 

Implements the stripped-down database facilities ("tag" and "untag") used by the compiler. cf. 
ZDBASE. 

ZRTERS {compiler) ow 
Translates terms into skeletons and also compiles code for the first term in the head of a clause (which is 

involved in the indexing). 

ZSCAN {compiler) FP 

Handles compiler command switches (coming from the user). 



3 

ZTMPCO (compiler) FP 

Sets up "tempcor" files, so the compiler can call Macro to assemble its output. Defines a predicate 
'run(-, - , - )' to call a program from Pro log (via the RUN Ul:JO). 

EQS2.MAC (compiler) DW 

Defines the Macro symbols required for the assembly of compiler output. 



4 

Interpreter Modules 

ZDBASE (interpreter) ow 
Manages the internal database of interpreted clauses and other recorded items. Implements 'assert', 

'retract' etc. Provides access to interpreted clauses. 

ZEGALF (interpreter) ow 
Implements the evaluable predicates'==' and'\==' (formal identity, non-identity of terms). 

ZENCOO (interpreter) DW 

Encodes the body ofan interpreted clause as a special tcnn to reduce the space occupied. 

ZKNOW (inte rp rete r) ow 
The heart of the interpreter. Executes goals, evaluates arithmetic expressions, supports the (about to be 

superseded) tracing facilities. 

ZLIST (inte rp rete r) FP 

Implements the listing facilities (and contains some goodies for enumerating current atoms and 
functors). 

ZOPSI (inte rp rete r) ow 
Remembers user-defined operator declarations and incorporates the interpreter's standard operators. cf. 

ZOPSC. 

ZREAD (inte rp rete r) ow 
Implements evaluable predicate 'read'. Parses a Jist of tokens according to current operator 

declarations, and constructs the corresponding term. cf. ZMREAD. 

ZSAVE (interpreter) FP 

Provides interface to Macro routines for evaluable predicates ·save' and(?) 'morespace'. 

ZSTATS (inte rp rete.r) FP 

Produces statistics for the interactive user. 

zsvwx {interpreter) DW+ 

·n1c master module for the interpreter. Is responsible for 'consult'-ing files, for executing directives, and 
for translating grammar rules into ordinary clauses (for the last, cf.ZDCG). 



5 

ZUNIV (interpreter) ow 
Implements evaluable predicates'= . .' (alias "univ") and 'functor'. 

ZWRITE (interpreter) ow 
Implements evaluable predicate 'write'. 

CTRAP.MAC (inte rp rete r) FP 

Handles control C interrupts. 

SAVE.MAC (interpreter} FP 

Implements ·save' and 'restore'. 

ZNOEXT.MAC (interpreter) DW 

Dummy module needed to create the naked interpreter (unextended by user-defined compiled 
modules). 

·····"""'W!IIIIIII 



6 

Common Modules 

ZINHTA (common) ow' 
Initialises the hash table, functor table and properties table (which arc used inter alia by ZNAME and 

ZUNIV) .. 

ZIOCTL (common) FP 

Provides interfaces for input-output evaluable predicates implemented in Macro. 

ZMISC (common) DW 

Odds and ends called from various places. 

ZNAME (common) DW 

Implements 'name'. Maintains correspondence betwcen'atoms and their names via a hash table. 

ZSYNER (common) ow 
Informs the user of the location of a syntax error. Supports ZREAD, ZMREAD. 

ZTOKE (common) DW 

Inputs a string of characters (te1minatcd by "full-stop") and maps them into a list of tokens. Is 
responsible for keeping a symbol table of variables occurring in the token lisL Has been drastically 
doctored to speed the beast up as much as possible; there is an older more readable version. Supports 
ZREAD, ZMREAD. 

IOLIB2.MAC (common) FP 

Implements the evaluable predicate 'display'. 



7 

Basic Modules 

GARBGE.MAC (basic) FP 

Garbage collector for the global stack. Called from SHIFT.MAC. 

IDENS2.MAC (basic) DW 

Symbol definitions for PLLII32.MAC. 

IDENSF.MAC (basic) FP 

Symbol definitions for other Macro modules. 

MHEAP.MAC (basic) FP 

Manages the heap used by database evaluable predicates. Requests more space from the frecspace 
routines in PLRUN2.MAC. • 

PLIN12.MAC (basic) FP+DW 

After initialising various locations, initiates Prolog execution. Also sets traps for pushdown list 
overflow. 

PLL1B2.MAC (basic) ow 
Contains the Macro routines which support the_ compiled code. The bulk of the code is to handle 

special cases of unification, and is tuned for maximum speed. Routine UNIF handles the most general 
case of unification. and is commented (!). The other unification routines arc variants of UNIF. PLLIB2 
also contains code for some very basic evaluable predicates, such as'=· and 'arg'. 

PLMAC2.MAC (basic) FP 

Contains Macro macros used by the garbage collector etc. 

PLRUN2.MAC (basic) FP 

lNISTA - Manages various locations which keep run-time statistics. 
COREJM - Implements the evaluable predicate ·core-image'. 
UUOLIB - Interfaces several UUOs to Prolog; also computes core usage (used by ZSTATS, ZCSTATS 
and others). 
LUUOS - Local UUO handler. 
LOCO RR - Handles core allocation for the stacks segment. 
SPACE - Manages the data segment (used for buffers, database heap and maybe other purposes ... ). 
SIX OUT - Outputs on the 1TY a sixbit quantity. 
IOI.I B - Macro code for the TIO evaluable predicates. 
STATIC - Interfaces a LUUO (SPACE) to the routines in SPACE above(!). 
PAGES - ls this really needed? (Well if you don't know, who docs? :DW.). 



8 

PROLOG.BLI (basic) FP 

Contains 131iss macros and symbol definitions. 

SHIFT.MAC {basic) FP 

Dynamically re-allocates space between the different stacks. Handles stack overflows. 

TRIM.MAC (basic) FP 

Interface for the Bliss implementation of the 'trimcore' routine. 

TRIMCO.BLI (basic) FP 

Reduces the free space on the stacks to a minimum (relocating the stacks) and reduces the total core 
allocation. 


