
t-..
~-

'

........ ,.,., ,,,

·-~~-·

~~1Hi½'~•t•~

,,,,.\,,a,~••·•

': ,,\/,,

'it .. ,~,.,, ..
.,._,...,.,;;,,,. . """~' ,.

1111•··•~•

rt!· '"......,.., '
!flll· .,,,,MN,·

•·· .,.,.,,.,,

II<

Wed Nov 28 13:26:47 1979 iMPl

SHORT GUIDE TO UNIX F'ROLOG IMPLEMENTATION
lO UNI

X PROLOG IMPLEMENTATION

1. Int. roduct ion

C.S.Mell ish,
25 October 1 979

•;,•. • Th•i0 <.r· ,is a ver1:1 short. note to help an1:1bod1:1 who Might. wish to alt.er •Jr make
additions t.o UNIX PROLOG. A fuller descriPtion Ma'::I aPPear later, but for now
this suMMar1:1 is all that is available. The descriPtion aPPlies to version NU4
,of t,,he ,,s1ir1st.e111, alt.hough Man'::I details are 111ore or less independent of' the
version. It is suggested that the reader have available the code of the s1:1steM
and use this docuMent. PriMaril'::1 as <."l wa!:I of sret.t.ing a srlobal PidrJre of the
iMPlementation and of understanding whatever obscurities the code and its
comMents Ma'::I have.

/
SoMe of the design decisions now look rather strange in hindsight, but this

Is not t,.he Place for .just. ifi,:at ions or suggest. ions for iMProveMents.

SHORT

11 , ,,, • .,. The PROLOG sYsteM is an i nterPreter, and so the storage of user PrograMs
•· ~ ... ,,...,.,.,,,_ .. ,.,,,,,i<f:\vol.1111Hi,.,l.itt..le t11or-e than representing in a l i•near forM the s'::lntact ic structure
"' . .,. ,,. of the clauses • ..
•· •~t<· ,A fundaMental coMPonent of the represent.at. ion s'::lst.eM is the represent.at ion of
Ill!;, ,.,,ll",···· atoms. Whenever an atom is read (through DOREAD>, its characters are stored and
.,,,..,_,,_._. ~•·IJ&ed,"'to .. p,roduce a hash nuMber- (this haPPens in GETATOM). This nuMber is then
•· ··- used -as an index to look up a word in the hash table (which extends froM
►,,.,., ,, .HASHSTART to HASHEND>. Each word in the hash table contains either- zero or the
• .~,,,~•(,Jtc address of a d ict. ionar'::.I entr!:I for an at.oM. If the word that. is obtained
• "'-•····•·· contains zero, this Means that the atoM has not been Previousl'::.1 encountered. In
.- . .,.. •~, ... ,.,.. .th.-is case a new diet. ionar'::.I entr'::I is created and the word in the table n1ade to
• -·-··. Point t.o that. On the other hand, if the word obtained is non-zero, it. is
.,, ... ,,,,. necessary t.o check whether the dictionar'::I entr'::.I Pointed to is the one for the
.. ,,.,...,_, atom read. (This is done b'::I coMParing the characters that were read with the
•· ·-!'-·•"-" ,.. .characters stored in the diet ionar-Y ent.r-1:1) If the entry is for soMe other atoM,
• ,_ the s1:1steM looks a fixed nuMber of words (31) further on in the table to try
•· •· and set ·.soMe success there. This Process continues unt i 1 the s!:lsteM has f i nall'::.1
• :-,•-·· " . located a word in the table that. Points to the d ict ionar\:I ent.r>::1 for the atoM (a
lfl.!' ~ .. ,.... "new ent.rY being created if ever a zero word is encountered). The Posit, ion of
., . .,.~""'~·•,· -· the word in the table ((its addr - HASHSTART-)/ 2) is called the ATOM NUMBER and
•. - · .,., ,., , ls .used in various Places t.o characterise that at.oM •
• ···•-;;.c.

• ~•. •·· • • ,, , , The format. of' the di ct i onar~ ent. ry for an at. OM is shown in f' i g 1. The first
•·,,., ,,, .. ,.,,.).,,. '·""" ~4c,., .. ,.o,f,,.ti,he entr1:1 contains either zero or the address of the t' irst. clause with
* .. ~ .. ~•,··· .,,, .. , t.hat. -atom as its Main Predicate. That clause Points to the second clause, and
,,l'f:

~. -

:~ ··\

. -~

;.,¢.t~--,,

·~'~----'-~~-;, __

,, tt~:i . =•l''.,l!IW[~-'c'--. '' \ .

!~ ,,~~--,-~,>' ,{:

,,'1/f,

Jj!lf,· • ' . ~illfij1-,- ,,

--
., ,..c -l'ik/111'•·'

'
1::-'-,- ~- ,w~•>if'·,-;

Oll!I_-••,.-

.,,_.,.,..,

I,·- . ..,..

Low addr:

High addr:

i---------------------i
: Addr of first clause:
:. -- . -----------------. :

Before
lF'recedence:Precedencel
:---------------------:
: 1st char l Length
: ---------------------:
: 3rd char : 2nd char :
:---------------------:
I
t •••••

. :. --------------------:
0 : nth char : j __________ j _________ j

1

Figur& 1: Did ionar'::I Entr-':1 for AtoM

so on until a zero Point.er is found. The next two b':!tes give Precedence
inforMation about how the al:.oM behaves as an operator. The':! usuall"" contain
zero, but can be filled b"" the routine OP. The 'length' stored in a did ionr::tr':!
entr!::I is the nuMber of characters in the naMe (n, sa'::I) +1, all rounded UP to a
Mull:. iPle of 2. If n is even, the did ionar':! ,:;mtr':::I is Padded out with a null
b1::1te at the end.

•l.he.r,ePresentation of a clause is illustrated in figure 2.

i-------- -------------i
Low addr: : Addr of next clause l

:--------------~------:
l Nuntber of Variables l
:---------------------:

Head of cl a.use

:---------------------:
1st goal

:---------------------:

:---------------------!
High addr-: nth goal

j _____________________ ;

Figure 2: Clause Representation

,the ma,.in coMPonents of the f'GPresentat ions of clauses are the rePresentat ions
of the head ter-M and the goals in the bod':1 of the clause. Each one of these Ma~

2

Fisur<:

, .. c
.,,.... , '•'·< occupy several words. It.s ext.ent/is well defined because of the wa!:J t.erMs are
•~"""''It- .represented. The represent.at.ion of an!:J goal in a clause happens to besiin with a
,0!1,0,,.,.,,. word contain im1 an odd nuMber whereas each atoM entr':I or clause beg ins with an
• .,_._, ·-··-·· •&.flen .value •. Hence the end of a clause does not. have to be sPec iall'::1 Marked.

; .. -~;;l,",j!(IIJ::_,.->1•'•Cp;• •"!!If•","'"• -

.... ~ ... ,,,_ , .. , .. ,The · rePresent.at. ions o--f the t.erMs that are the head and the goals of clauses
1111- ,,._. ,.,, -,, .. ---4re called SKELETONS and are forMed b!:J the following rules:

:{~::::::,."'.~- :·: .. _·"···"'~"~'an- integer - t.he represent.at ion takes the form of 1 word in the
.. ~.,,...,,L ·-•.,_._ ,, ,.,,\ • .,.,r,ort11at. (14 bits>01, where the 14 bits give the value of the integer.

• -..._.,, r,.f"or a variable - t.he represent.at. ion takes the for-M of' 1 word
..,.,.,....._. ,._,...,., .. __ .,,,., .. ,.;a,,..,,,i~,in-+o9-, .. t.Ju1 uolwe 2*n., wh-e.re ·i!l···•i•s ·t..he nUMber of' the variable in
<Ii· ~-- ,.,,_,,, ___ .,,, .,· - ., ,t.he -clause (1 <= n <= nuMber of vars).
• ~-7/il!j.'!"~*-·~ ~ . .,, ... , .•.. -.

ll!, ,,;_,, .. , ..•.• ,. .• ..,, &:or an anon!:IMous uariable (a variable that. onl'::1 occurs once in a
.,.;,._,,, .. ~--•, 0 -.--·•11•'""''""""'C['lMJU&e, .. a,nd ,hence does not. ji\ave t.o be a-illecated an':I space) .., a sin9le
..... ~. . .,.,,., ,,.word cont..aining O.

""' .,.._, .. ,.,..,
.:$-,_-:,..1.,.~·'>'.'t·.

-. ,A."·

,il!I"'-.-,~ . -~•

: c-:.·"":~-,~
'ill- ,...,,_n• ..
., ;-... .,,,,.,,
'""'ii,. __ ;_;

. ,t '' ";,':"' ~,J

~ For an at.oM the rePresent.ation is a single word with t.he forMat
., .. ,.(4. bit.s> <10 bits>11, where the first 4 bits are zero and the 10 bits

are the atoM nuMber.

- For a COMPlex t.erM - this is rePresent.ed in a sequence of words,
,stving t.he Prefix Polish -structure oft.he t.erM. Thus it. besins wit.ha

,, ... , -.,,.~-d,,nePresent-ins t.-he functor -of the t.,erM and cont t·nues with t.he
rePresentat ions of t.he arsiuMent-s in turn. (The arguftlent s Ma':I, of

- course, l:.heMselves be coMPlex terMs). The forMat of a word
•.e,.rePresentins a-functor is (4 bit.s}(10 bits>11, where the 4 bits sive

>.-,, .. ,,the. ar it!:I and the 10 b it.s give the atoM nUMber of t.he functor.

*,~...,,~. An exaMPle of the representation of a terM is given in figure 3. -\
,._,<...,,.·. ·~-.. ,. •"-

.... _._ .. _

•t~.,-. , ___ ,_,, .,, ..
,,. _,.:.,""'~"
<,II·- -W"l!ll,.

·•~-t~
.{ ,.,,_
,.,,,,...,..,.,,.,,n •·· -·

i-------- -------i
Low addr: :00110011010001111 < ,3, f >

:----------------:
:0000000000000101: (1)

:----------------:
l00000000000000101 (var 1)

:----------------:
I 0010010001011111 : (2, :1)

:----------------~
10000000000000010: (var 1)

:----------------:
High addr: 100000000000000001 (anon) j ________________ j

......

-~c:- - Figure 3: Skeleton for f{1,X,:1<X,Y)) Fi Sil,.- e
•,t • _sff!ffl~

... ~-- .,_

ExaMPles of at.oM entries and clauses can b.e seen at the end of the PROLOG
sYsteM code. Even where the~ have sPecial s':lsteM-defined Properties (ie when

3

the!:J corresPond to evaluable Predicates) all atoMs and clauses must be

--~-/ .

•\. •. --•~Mfll_.

-~ /ks ;-,f'1~•J .. ~.

. ~--,_,.

lll!!A......,..•'•

-~•-···""'•
- \....~, =·•·ti,,11,. '-~-,

..... ~~-'""""

.., .. \.....,.,., ..

'""')ii...-. ~_,,,, . .,

""'
'ilfl. ~•-~ .. ,

>Iii~·-•·

i'lKt .. , •t:•-jjlll:. · .. ~.i,;,.,,,

~ r'i,,,~, h,'-'•• .

••·•·•·i•:111!>f-•»a-,,,,, ,··

•· .. ""c~l'!III, ..

'Jla\r-·P·~~"-.,·.;~· :!,-.'

.,.,~,,--, .. c , ,,. .. -,.
•rt,-•"""' · ·,.:•,~-:-.~· ·-~•• ..

·r:- , . .. ,.__,_,-.,,, ... -,

represented as above. If a Predicate is associated with a S'=lsteM function, the
address of the routine Must be Placed in the word before the start of a duMM'='
clause for the Predicate. The clause Must. also aPPear before the label SFSTART
(and onl'=I such clauses can aPPear there). Then when the head of the clause is
Matched, instead of looking at the bod'=/ of the clause the s'=lsteM calls the
sPecial routine.

3. Storage of Data in Execution

When the user runs a PrograM, he assigns values to variables corresponding to
invocations of clauses. When a clause is invoked, the s'=lsteM assigns a block of

-st.orose,, -with 1 word for each -Yariable of the clause. The initii::tl value of each
variable is 'undefined', which is represented b'=I the value O. During the
execution, the value Ma'=/ change to one of the following:

,... The address of another variable. This haPPens when two uninstantiated
variables are unified. The later instantiation of the second one Must
result with the saMe value being associated with the first. The

··,,,Presence of an address where the value of a variable should be sa1:1s
effect.iveh, "To get the value, look in this other Place·· •

- An atomic item (integer or atoM). In this case the representation of
the iteM (being the saMe as in a skeleton) is Put in the word •

- A coMPlex term. CoMPlex terMs created during execution <DS's) are
Placed in the global stack. If a variable is giqen such a value, a
Pointer to the structure is Placed in the variable's word. A DS is
effecti1Jel'::J a coP'::.I of a skeleton with values like those we are
aurrentl'=I discussing substituted for the variables that occur in it.

4. Col"e All ocat..-i on

The organisation of core allocation has been designed to Make the Most of the
-<rather inaPProPriate) facilities that UNIX offers in this area. The s'::.lsteM
attet11Pts ne1Jer to deMand More froM the OPerat ing s'=lst.eM than it is 1 ikel'::.1 to
need. First of all, the overall la'::Jout of core is illustrated in figure 4. At
ani::, Point, the F'ROLOG s1::1steM must be able to access the area between l:.he lowest
address ., and GTOF', as well as the area between LTOF' and TOP. The fort1ter of
these is in general allocated as UNIX data area, with DATLIM giuing the address
of the highest. location that can currentl'=I be accessed. The latter is in
general allocated as UNIX stack area, with STLIM giuing the address of the next
word below this area. When the stack area atteMPl:.s to ~xPand over 4K words
further expansion is Prevented and the data area expands instead to Meet it.
The flag CONNECTED indicates whether l:.his condition holds. Although the PROLOG
s'::.lstem relinquishes control of data sPace that it does not imMediatel'=I need
(through TRIMCORE), it is unfortunatel'::.1 not Possible to do this with stack

4

Lowest Address: S'=JsteM code

HASHSTART: Hash table for atoMs

ri,,1,"< ,~.:'lte•-·

.c,,.,""
'""" ·,,..,.,·-,, -

:o:: ::,.,,,~ '
Ill-, ··•·>'1'•tlli''''''' ,, ..

~-" ,,,.,. --.
:·e:·:~·:. ·',
11j!l,,· ,:t,',~,.~'11'

·"'1 C.-•••', '" 'c'"' .. ,

·-·~•·'
.\;

:::er-:. ~ ~-'": ...
" .. ,,.,,,,

·•·- '"
..... C..-."' ..

C

HASHEND:

FREESTART:

HTOP-->

HLIMIT-->

-6START-->

-GBOT-->

GTOF'-->

LTOP-->

LBOT-->

TOP-->

S!:ls.t.eM clauses and at.OMS

User's clauses and at.OMS (heap)

~ree area above heap

Previous global stack areas

Current goal clause and DS

Current slobal stack

Free area between stacks

Current local stack

Previous local stack areas

ToP of core

Fisure 4: Core La'::lout

space. Since it is 1Jseful to keeP the SP register t.o handle subroutine calls
within the interpreter, SP is not. used as a Pointer to the stacks at the toP of
core except when More sPace needs to be allocated there. In seneral, SP Points
inside a sPecial workspace area extending downwards froM WSTART.

Because of the facilit'::I to do nested 'consult's and 'breaks', it is Possible
that the user Ma'::I have several different execution environMent.s acti11e at the
saMe tiMe. The Main ParaMeters of the current environMent are to be found
bet.ween ENVSTART and ENVEND. The ParaMeters for Previous environMent.s are kePI:.
on the global stack.

Withi-n the space that the S'.:lsteM uses, t,here are basicall'::1 three Main data
areas:

1. The 'heap'. This is not. real l '.:1 a heap, because it is not garbage
collected. Instead 1t is a stack containing all the PerManent
clauses and at.OM dict.ionar'::I entries. This area starts al:. FREESTART
and its top is given b'.:I HTOP. The expansion is lin1ited to below
HLIMIT, which is where the 1:1lobal stacks start. If expansion further
is al:.teMi:>ted, the 9lobal stacks are automat icall'.:1 Moved UP to Make
space. An'.:lthing Placed on the heap n1ust start with a word with an
even value (because there are no exPlicit clause tern1inators). Note
t.hat.thefunctionl:.ocheckl:.heavailabilit':I of sPace on the heap
(HALLOC) does not update HTOP. Th is is so that it is Poss i bl•? to p1Jt
values there but to Post.Pone making theM PerManent until the last

5

minute. In this wa':I one can avoid Pern1anentl':l Messing up the heap if
an error occurs half way through Putt.ins soMething on.

2. The global stack areas. There is one global stack for each active
user execution. The first. one's start is siven b':l HLIMIT and the

Fi;Jre

,, _,

\
j

_,

I,

...... C-~,

... -~--1"~:;li!,! ·,

. :~, t,,,,h:~,li;jj)ij>j ' .. , ~

::,=·,:.:~.:: ,, ... ,, '
l.':•:·.0:~r,.,iv<-.,· . .--,, .. ,

.. , • .,, ·,, :0-... ~. "~' ,, '

,,., .. ,

current. one's by GBOT. The t.oP of the current one is gi•.,1en bY GTOP.
,,The global stack is used to store ter111s constructed during the

execution (ref'erred to in Many cot11111ents as DS's). In add it ion, the DS
and clause associQted with the current user goal are kept Just below
where GBOT Points, Pointed to b'=i GSTART. A second f'unct.ion of the
global stack is to contain the trail - the list of variables whose
values Must be reset on backtracking. Trail entries are interspersed
with DS's on the global stack; they can be told apart because a trail
entr'=I is a single address (even value) whereas a DS starts with an
odd value. If the stack is Moved UP, the Pointers GBOT, GSTART,
OPSTART, HLIMIT and GTOP are UPdated, as are any Pointers into the
global stack froM it.self or the local stack. No other Pointers are
updated. Putting anything on the global stack Must be Preceded by an
aPProPriate call of GALLOC.

3. ,The local stack areas. There is one local stack for each active user
execution. The local stacks expand downwards, whereas the global
stacks and heaps exPand upwards. The first local stack begins at the

, .. ,address given in TOP. The current one begins at the value of LBOT and
extends to the value of LTOP. Local stacks are used to contain
ad111inistrative inforMation about the user's execution as well as
cells .for variable values. These are allocated in groups called stack
fraMes. Puttim anything on the local stack Must be Preceded b'=I an
aPProPriat.e call of LALLOC. Note that the Part of the stack used
durin9 the sat isfact. ion of a goal will be reclaiMed if this succeeds
deter111inatel1:1 •

5. Keep i ng track of Execut, ion

The code for the Main loop of the interpreter (froM CONTINUE to GOON) is
fair 11:1 well co111111ent ed, but the Main st ruct 1Jre can be SUMMar- i sed here.

Given the skeleton for a goal to be satisfied (at GOTCALL) the systeM obtains
1,i', ~~ ~ .. : ': ~ .. ·:•', .. '. :, ,,,_ ,.~, ... _ ,, ... ,, the atoM whi,:h acts as its functor and finds the fir·at clause with !",hat atoM as
.. ..,, .. _, ., ~, .. Pred,ic.ate ,(,now,-at GOTCLAUSE). It Must then allocate a stack fra111e on the local
•"'!fH~ stack , .. for a new invocation of the clause. It star-ts off b'=i recording
•,r!iiOS''!':~,-, - ,,_.~ .. ,ad111in istrat i ve infort11at ion and then (at ENTER> allocates sPace for the
,,.i......,,,,,_,., -C• ~--,,vcar .. i,ables,. ,of. the clause. It then invokes the unification routine <UNIFY). One
,_,.__.'",,.,.,.,,._,. .. ar9uMent to this is a Pointer to the skeleton that Mentioned this goal,

•:c~.::,,~::::~ ,,:_ ~~::;~:~~~~t~he ask:~!~~~: ~~e ~~~er s;;~~ftU?~~a7: :h !~~n~!;e:o t~~e "':~~~=~~~ t:~
,,.,, • .,.""II" .. ~••''¥ t.he .. head of the clause, together with the address of the new stack fraMe

,.," ,, .•.
~tr111r--~· .t~~ :~-!

•
f

(giving t.he values of the variables for the new invoocation).
6

If uni f i cat ion succeeds, (now at CONTINUE) it Must first be checked to see if
a s~steM clause has been activated. If not, the search for the next goal can
take Place iMMediat.elY. The first Place to look is aft.er t.he head of the new
clause <now at TRYCALL>. If there is a goal there, that is fine; otherwise we
have cot11Pleted the current goal. In this case (now at RETURN) we Must look back
to the goal that this was a subgoal of, and so on until a reMaining unsatisfied
goal can be found. If this Process goes back right to the original user goal,
,we have been successful (SUCCESS).

.J

·:.i

)

)

)

)

J

J

f ~~
,..,c

•J,•<~1/f-;•,"cj•

1,f~,[J;.,,,jll!i'!ii•H .. ic0

•· ~:.i: .. ~!;:j;,';f'lr" -~'

.. c,.,J;.,

,i;,,,,,,_

•<i.111'1,,

,,,..,, •. ,,,
~--1 ,ii...,_, ••

,-'.t:::;:.~'.'41:..-~1~".• .c..

,~1' · -,, - .. ·.-of,!iifC:· .,

,.C..;-c:,-/111;~-

•
I

,,.,.,,\

~-------------·---- -

lf unification fails, or there are no cl,:wses for the Predicate, backtracking
takes Place (FAIL>. After resetting the ualues of the variables given in the

· trafl., the swst.em looks for the last choice Point (The address of its stack
frame is given in NB). If there is none, the user goal cannot be satisfied
(FAILURE>. Otherwise NB is reset t.o the Previous choice Point and a new clause
fs Picked for the Place where the choice was made. (Now back to GOTCLAUSE).

How does the execution Process start. (at. EXECUTE)? The goal that the user
giues is 'asserted' as t.he body of a clause for the Predicate '' (the atom with
an emPtY name). That. is, the at.om entry for '' Cat EDUMMY> is made to Point to
a dumM'::I clause at the start of the global stack. The system then gets the
,1ddress ([ICALU ,Jf ,::t duMM'::I goal of " ,::tnd st.arts the interpret.er c'::lcle at
GOTCALL.

'fhe details of t.he interpret.er loop ,:ctn only really be understood if l~he
format. of stack frames is explained. Fisure 5 does this.

6. Un i f i cat. i on

')

During the execution of a user's PrograM, there are two ways in .whi,:h

instantiations of the skeletons in his clauses can be characterised. Firstly, ~
giving the address of a skeleton pl1Js the address of a stack frame (norntall'::1
the 'base' address) gives enough inforntation to specify the terM denoted,
because the skeleton g/ues the basic structure and the stack frat11e giues the 1
values of the variables that fit into that structure. Secondly, giuing the
address of ,:i concrete DS is also ,:i coMPlete specification. The b,::tsic
unification routines make use of the sintilarities in the rePresentat.ion of))
skeletons and DS's and work for both l:,ypes of r,ipr;?sent.at ion. The onl'::1
difference is that if the number of ,::t variable is encorJntered (which ,:inl'=l
haPPens in a 'ikelet.on> !:.he aPProPri,1te enuironMent. (stack fraMe) must be 'l
available, -~o that the ualue •::>f the var io.ble can be looked uP. The 11.:>cat ions
E, El and E2 are used to hold currently used enuirant11ent Pointers.

The routine !DENT is fundat11ental for 1Jn ificat, ion. Hs funct. ion is to
interpret the data rePresentations. IDENT is called to identif'::I the t.YPe of a
term and also to return ,::tn aPProPr iate ualU<~ result. It. can be aPPl ied to a ~
var io.ble cell or t.o Part of 1::t skeleton ,::,r DS. If it is used on a skeleton, the
environment Pointer E Must. be set aPPrOPriatel'::J. The Poss.ibl,i result.s that
Ir!ENT can return are given in fig 6. Most of what !DENT does is just following l­
Pointers, decoding the last two bit.,s of words i.'md looking UP the values of

Low addr:
j-------------------i
: Cell for vo.r n
:-------------------:

:-------------------[
: Cell for var 1
:-------------------:

Addr ,::,f clause
: being used

7

)

.if!,.C.-::i·C~oa _

--Cf.,r~,; l'le·'--

mf,•'-h~.-l-' -,

,-tl!,-~r,·,- e-}il11ll.,i:

c,,,.,,,.,

.. ~.~~-'ll\!l11.·~·-"'''

"~'''·-· ·~·"'"·"""""'"'"~'·.
·•:::«:::.::,, ..

•··
.,jjk,·,

... ,.
'•111,;s;i'

·•··

~--------- ----------:
l Addr of call of
: this soal
:-------------------:
: Base of fraMe for :
l Parent soal

:-------------------~
l Base of frame for·:
: last choice Point l

:-------------------:
l Value •:>f GTOF'

«== Base of stack fr•lMe (FRAME)

} Onl1=1
} Present
l- f,::,r

For an anon':ll'llous variable (a variable that onl':l occurs once in a
clause and hence does not have to be allocated an':l sPace) - •l sin'9le
word containing 0.

For an atoM the rePresentat ion is a single word wil:.h the f,JrMat
<4 bits) {10 bits}ll, where l:.he first 4 bits are zero and the 10 bits
are the atom nuMber.

- For a coMPlex terM l:.his is represented in a sequence of words,
giving the Prefix Polish structure of the l:.erM. Thus ii:. begins with a
word representing the functor ,::tf the term and continues with the
rePr·esentations of the ,1rguMents in turn. (The arguMents Ma'::I, of
course, themselves be coMPlex terMs). The forMat of a word
rePresentins a functor is (4 bits) {10 bits)11, where the 4 bits sive
t.he arit'::I and the 10 bits give the at.oM nuMber of the fund..or.

An ,ixaMPle of the rePresentat ion of ,1 terM is given in f i sure 3.

i----------------i
Low addr: 10011001101000111: < 3, f)

:----------------:
l 00000000000001 01 I (1 i
~----------------:
l0000000000000010l (var 1)
:----------------:
10010010001011111: (2, s)

:----------------r
l0000000000000010l (var 1)

:----------------:

)

)

,,...... Hi <Jh addr: 10000000000000000! (anon)

,...,. ','

.... L

••. -, •. ,',~l:l,ij\:;\i('"-;;:•;''f"'·,,·,_ . .;-•·<

~-,A.---v~-' ~~t't'I"-·

•
•

j ________________ i

Figure 3: Skeleton for f(1,X,s(X,Y)) F r·aure

ExaMPl es of at OM entries and clauses can be se,in ,Jt the end of I:. he PROLOG ~
s'::lsteM code. Ei.•en where they have special s':lst,eM-defined ProPert ies (ie when

3
J

they correspond to evaluable Predicates) ,::tll o.toMs and clauses Must be
..-.epresented as above. If a Pl"•?dicat:.e is •:tssociated with a s'::.lsteM function, t.he l
address of the routine Must. be Placed in the word before the start of a dUMM'::I
clause for the Predicate. The clause must also aPPear before the label SFSTART
,(and onl':I such clauses can aPPear there). Then when t.he head of the clause is ~
Matched, instead of looking at. the bod'::! of th•? clause t.he s'::!st,eM calls the

'OI··

~,.,, :..•J ,,_.' '

~:~•o./JV!l""f•·.'''/'1:;•",''!···

:.::::•/' ..

,ii;

,,i;••~,e·•

e;,,, /l,'.""ir•ll\lf '•

,,.,e_,.,,.,, ·;,

:: •.. /

-:I•-,:·• ',.if,-J•''

special routine.

3. Storage of Data in Execution

When the user runs a PrograM, he assigns values to variables corresponding to
invocations of clauses. When a clause is invoked, the s'::lsteM assigns a block of
storage with 1 word for each variable of the clause. The initial value of each
variable is 'undefined', which is represented b'::I the value O. During the
execution, the value Ma'::I change to one of the following:

- The address of another variable. This haPPens when two uninstantiated
'-'Jariables are unified. The later instcrnt.iation of the second one 111ust.
result with the saMe value being associated with the first. The
Presence of an address where the value of a variable should be sa'::ls

-effect i vel'::1 "To get the value, look in th is other Place··.

- An atoMic iteM (integer or atoM). In this case the representation of
the iteM (being the saMe as in a skeleton) is Put in the word.

- A coMPlex terM. CoMPlex terMs created during execution ([!S's) are
Placed in the global stack. If a variable is given such a value, a
Pointer to the structure is Placed in the variable's word. A DS is
effectivel'::1 a coP~ of a skeleton with values like those we are
currentl~ discussing substituted for the variables that occur in it..

4. Core Allocation

·-·, ,.,The,organisation of core allocation has been designed to Make the Most. of the
(rather inaPProPriate) facilities that UNIX offers in this area. The s~st.eM
at.teMPts never to deMand More froM the operating s'::lsteM than it is likel~ to

...,,----.,~:·, .. ,, ·, , .. ., need. ·First. of all,· the overall la~out of core is illustrated in figure 4. At

·:.:::: ... ,.·· an~ Point, the PROLOG s~st.eM Must be able to access the area between the lowest
address and GTOF·, as well as the area between LTOP and TOP. The forn1er of

,._,..._.,.,,., .. •. ,,, these is in seneral allocated as UNIX data area, with DATLIM giving the address

::c~:··

'"""""'
~~·,~.t.:.

_,a,,,,tll •',',,

of the highest location that can current!~ be accessed. The latter is in
general allocated as UNIX stack area, with STLIM giving the address of the next
word below this area. When the stack area atteMPts to expand over 4K words
further expansion is Prevented and the data area expands instead to Meet it.
The flag CONNECTED indicates whether this condition holds. Although the PROLOG
s'::lsteM relinquishes control of data space that it does not iMMediatel~ need
(through TRIMCORE), it is unfortunatel~ not Possible to do this with stack

Lowest. Address:

HASHSTART:

HASHEND:

FREESTART:

4

s~st.en1 code

Hash table for atoMs

s~st.eM clauses and atoms

User's clauses and atoMs (heap)

,,,· ...
·1

•

••

•

•

t

f

l•l;i .. ,M1JMJriw-•· ., .•.. ,~;.lt•,· .,

., ,
.• ~!ff-. .,, •.

1•¥♦,•·:·: ·/••'l''•·••.,,1 c,·.,i•·,<·-,•,

i::'•~, c''· •~'""!1+),,c '"'

1 ·i}~'~·• ·•1[1:',~, ¥

HTOP-->

HLIMIT-->

GSTART-->

GBOT-->

GTOF'-->

•LTOf'-->

LBOT-->.

TOP-->

Free area above heaP

Pre•J i ous d obal stack areas

Cur·rent goal clause and DS

Current global stack

Free area between stacks

Current local stack

Previous local stack areas

ToP of core

Figure 4: Core La':lout

space. Since it is useful to keep the SF" register t.o handle subroutine calls
· within ,the interpreter, Sf' is not used as a Pointer to the stacks at the top of

core except, when more sPace needs to be allocated there. In general, SP Points
inside a special workspace area extending downwards froM WSTART.

'
,.

•
Because of the fac il n,'=' to do nested ~consult 's and 'breaks', ii:. is Possible

that the user ma'::l have several different execution environments active at the '
same time. The main Parameters of the current environment are to be found
between ENVSTART and ENVENti. The Parameters f,::>r Previous environments are kePt
on the global stack. '

Within the space that the S':lstem uses, there are basically three main data
areas: "'-

1. The 'heaP'. This is not really a heap, because it is not garbage
collected. Instead it is a stack containing all the Permanent
clauses and at.om dictionary entries. This area starts at FREESTART
-and ,its t.oP i·s given b'::J HTOF'. The expansion is limited to-below
HLIMIT, which is where t.he '!!llobal stacks st.art. If exPansion f1Jrther
is attempted, t.he global stacks are aut.omat ically Moved UP t.o Make

•SP.ace. ,An1::1t.hing Placed on the heaP Must st.art with a word with an
• even value (because there are no exPl ic it clause terMinat.ors). Note

that. the function to check the ai,,ailabilitY of sPace on the heap
(HALLOC) does not. update HTOF'. This is so that it. is Possible to Put
values there but to PostPone making them PerManent. 1Jntil the last

5

fflinut.e. In this wa1::1 one can avoid Permanently messing UP the heap if
an error occurs half wa'::I through Put.ting something on.

2. The global stack areas. There is one global stack for each actii,,e
user execution. The first. one's start. is given b'::J HLIHIT and the
current one's b':l GBOT. The t.oP of the current. one is stiven b1.:1 GTOF'.
The global stack is used to st.ore terms constructed during the
-execution (referred to in Man'::l comments as DS's). In addition, the DS
and clause associated with the current. user goal are kePt just below
where GBOT Points, Pointed to b'::J GSTART. A second fund ion ,::>f the

•
•
•
'

•
'
'

i .. ,. :-':~~"l\>t~•r-;,,-a.

!'•~•.,•·.,,,.,.

ff!@¾- :-?1~~i-""'''

:•ij~~•:~•~~\:l\'l!•os ••

;;"'*l.t-91.t~ ,,.,
'-~--~;,.--.';;$'"' "'I

~....,_,.
i~l\'"-~1'~'-"''"'"

-~~-~ .. ;_.-:t .,:!'-'~.--·

..•. i...,

•~!,f'r"'!,- l}•"i!I, •;:<,~•-'

/-f.!&~ ... -

, ,.

;!I.J,;,'!~:.... ',\

; ,,_ .•..

,,Jlobal stack is to conl:.ain the trail - the 1 isl:. of variables whose
values Must be reset on backtracking. Trail entries are interspersed
with DS's on the global stack; th•?'=' can be told aPart because a trail
entry is a single address (even value) whereas a DS starts with an
odd value. If the stack is Moved UP, l:.he Poinl:.ers GBOT, GSTART,
OPSTART, HLIMIT and GTOP are uPdated, as are 1.·m'::I Pointers into the
9lobal stack from it.self or the local stack. No other Pointers are
updated. Putting an1::1th in-si on the global stack n1ust be Preceded b!:I an
aPe>roe>r i ate call of GALLOC.

3. The local stack areas. There is one local stack for each active user
executton. The local stacks expand downwards, whereas the global
stacks and heaps expand upwards. The first local stack begins at the
address given in TOP. The current one begins at the value of LBOT and
e)Ctends to the value of LTOP. Local stacks are used to contain
adMinist.rat.ive inforMat.ion about the user's execution as well as
cells for variable values. These are allocated in grouPs called stack
fraMes. PJJtt ing anl:lth i ng on the local stack Must be Preceded b':,.1 an
aPProPriate call of LALLOC. Note that. the Part. of the stack used
during the satisfaction of a goal will be reclaiMed if this succeeds
det erm i nat el""'·

5. KeePing track of Execution

The code for the Main loop of the int.erPret.er (froM CONTINUE to GOON> is

'

'

•
,i~.~---!r'}[i!J\:ii!":,"·

,,._. .•. ,m,,.,., .. fairl1::1 well coMmented, but l:.he Main structure can be summarised here. '
;,..,.. """'"'''

,wc,~~1,1!,,,,

•IJi!lii,L,Wlc.,

~:.:::·::

• ..

Given the skeleton for a goal to be satisfied (at, GOTCALU the s':lsteM obtains
t,he atoM which act.s as its functor and f'inds the first clause with that atom ,1s
Pred i cat. e (now at. GOTCLAUSE). n Must t. hen allocate a stack frame on I:. he 1 ocal
stack for a new invocation of the clause. It. st.arts off bl:-1 recording
adMinistrative inforMation and then (at, ENTER) allocates space for l:.he
variables of the clause. II:. then invokes l:.he unification routine (UNIFY). One
arguMent. to this is a Pointer t.o the skeleton that. mentioned this goal,
together with a Pointer l:.o the stack f'raMe which gives the values of l:.he

. ,.,, ·11ttr·iables in the skeleton. The other arguMent is a Point.er to the skeleton at
t,,he ,·head Qf the clause, tosether with the address of the new stack fra111e
(giving the values of the variables for the new invoocation) •.

6

If unificat.ion succeeds, (now at CONTINUE) it Must first be checked to see if
a -s~st.eM clause has been activated. If not, the search for the next goal can

,. '"'"'''" take Pl,ace iMMediateh1. The first Place to look is aft.er the head of the new
clause <now at. TRYCALU. If there is a goal there, that is fine; otherwise we
have coMPleted the current. goal. Int.his case (now at RETURN) we must look back

- ,,t.o t·he 9oal that this was a subgoal of, and so on until a rentaining unsatisfied
goal can be found. If this Process goes back right, to the original user goal,
we have been successful (SUCCESS).

,·~· . If un•i f i cation fa i 1 s, or t, here are no clauses for the Pred i cat. e, backt. rack i m,
takes Phtce <FAIL>. After resetting the values of the variables given int.he
trail, t.he s1::1sl:.ent looks for the last choice Point. (The address of its stack

· fraMe is given in NB>. If there is none, the user goal cannot be satisfied

•
•

•
•
•
f

f

'"' . : ,.~< __ ,~,,

i•'f11M

- - - -- - ~-~----~--

'
<FAILURE). Otherwise NB is reset to the Previous choice Point 1.1nd i::t new cl,:tuse \.
is Picked for the Place where the choice was Made. (Now back to GOTCLAUSE).

,How does the execution Pr,:Jcess start (at EXECUTE)? The soal that the user \.
give-s is 'asserted' as t.he bod'.::I of a clause for the Predi,:,1te n (the atom with
an eMPt'::I naMe). That is, th•:? atoM entr':I f,:>r '' (at EDUMMY) is !l'lade t,:J Point to
t, dUMM'.::I clause at the st.art of the global -:stack. The s1:1steM then ·3ets the \
,;.1.ddress (DCALL) of a duMM'::l goal of '' cmd starts the interPri?ter c:1cle at
GOTCALL.

The details of the interpreter loop ,:an onl'::l reall':J be understood if the
forn1at of stack fraMes is explained. Fisure 5 does this.

6. Unification

(lurin'::I the execution of a user's PrograM, there are two wa'::.ls in which
instartt iat. ions •Of the skeletons in his clauses can be charad.erised. Firstl'::.I,

.. g i vi ng the address of a skel 1?t on Pl us the address of ,:1 stack fr ante (norn1al l Y

the 'base' ,::1.ddress) gives enough infortitat.ion to sPecif':J the ter111 denoted,
b.e.c;au.se the.skeleton '::lives the basic :.t.ructure and the stack fra111e sives the
values of t.he variables t.hat fit into that structure. Secondh1, giving the

'
,.

"",,,,,_, • . address of ,::t concrete DS is al so a comPl et e specification. Th& basic
,_ ,.,.,,,,.,.,.., .. ,~. -~n i,f i cat. ion routines Make use of the s i rn i lar it i es in the rePresentat i ,:m of

·.· -~·,., .. ,.,,,. ,,,.,,
~>•-···••·;;fe-,

,,~ ~'fi::.··:se'fl,r,4!\,

.,._,,-le,.-,,:-.~t'<',·f'I,:

, ,-,i.•-':,_-;,:c_,,,,i,~•it'''- '

, .. ,,,.:1, ... ilf' .. ,,.~;,,:J,,-,-iJ,."'-',-

,•j~·-'-'·~·-.,.,.\,.:.;:~

•!!i·••<ililll'e'',

'·,-· >.--·,•· ,,,.,

·.i11~f;wa_!tr-rJ~~··"'

l,!').'·•: .. ~.~,#i,,,.,,,,

t

•

skeletons and DS's and work f'or both t.:1Pes of represent.at ion. The onh.1
,difference is that if the nrJMber •Jf a variable is encountered (which onl'::J
haPPens in a skeleton) the aPProPriate environtitent (stack fratite) Must be
available, so that the value of the variable can be looked UP. The locations
E, E1 and E2 i::tre used to hold ,:urrentl'::J used ,,mvir,-:>nMent Pointers.

The routine I!tENT is funda111ento.l for unifii:c1t ion. Its frJnct. ion i·;:; t.c
int.erPret the data representations. IDENT is called to identif'::J the f:.ype of a
t.erM and 11lso to return an aPPr·m>riate value result.. It can be •lPPl ied 1:,o a
variable cell or to Part of a skeleton or DS. If it is used on a skeleton, the
environMent Point.i?r E Must b•? set aPProPrio.telY. The PQSsible results that
IDENT can return are given in fig 6. Most of what IDENT does is .just follow i li-3

Pointers, decoding the last two bits of words and looking UP the valui?s of

· Low addr:
i-------------------i
: Cell for var n
:-------------------:

:-------------------:
: Gell for var 1
:-------------------:
: Addr of cl o.use
: being used

:-------------------:
: Addr of call of
: t.h is goal

7

'

•
•
••
f,

•
:-------------------: f
: Base of franti? for : <<== Base of stack fraMe (FRAME)

',,,,.,, .•
1!41t,""l;J",,"i",}~1"'c~,,

..... , , ...

-.~.· ;,•·,-,_ .. _ .• ""'' ~-·~
,-:,w··, ... _i,~il<ilo!' •. ~-

1.,_,£....,,,, ,,,
/ ·"-'· ,,,...,.,,.,,
~ ' •l~~~-:,:•~r" ,
1••1,i,,L..,,,,, '""''

,,·ffr;¾

.IQl.,bii!\1,·••·

,,,..,.,

···\••
.. ,____, ·~,,---~

,

L:

M,i:1h addr:

l Parent goal
:-------------------:
: Base of fraMe for :
l last choice Point l
:-------------------:
l Value of GTOP
l when fraMe created: j ___________________ j

...
)- Onl1::1
)· Present
)- for
)- Choice
r Po int.s

Fisiure 5: Stack Fran1e Representation Fi:1~e

T'::IPe result
(in RO)

0
2
4

8

I.Jal ue result
(in R1)

The representation of an inte:1er
The address of an undefined uariable
The rePr esent at ion of ,1n at on1
The address of a con1Plex skeleton/DS
The location of an anon'::IMous uariable

Fisiure 6: Possible Results of IDENT

uariables in environn1ents.

'

The 111ain unification routine UNIFY is nor111al1':I cr::tll•.?d with two skeletons and •
environn1ent Pointers. These corresPond to the call of the current soal in
another clause ,:md the head of the new cl(."l.use that is beinsi tried. In fad it
wiU, .. work with an'::I two things that HIENT can i nterPret. The Proces!E, of •
unification involves following the tree structur·e of the two tern1s, checking
that functors are eciual, and then doing sPec ial act ions whenever ,1 leaf of o.
tree• is encountered. If UNIFY Perf,.JrMs a norn1al subroutine return, unifi,:ctt ion '
has been successful and all the necessar'::I substitutions haue taken Place. The
onlY other Possible action is for a jun1P to FAIL to take Place.

' IJNIFY starts b1::1 ,:all ins !DENT for each arsu111ent, and t.hen jun,ps to an
aPProPrit1te routine according to the con1bination c>f t'::IPes. Son1e routines .Just

8 ~

involve coMParing two values CfESTEQh son1e Mean in1n1ediat,? f 11ilure <UNIFAilh •
and son1e involve siMPlY assisnins a value to a variable <VT01, VT02, ASS2V). If
one variable is Made to Point to another, it n1ust be ensured that Pointers so
in such a direction that if Pieces of stack are reclain1ed there will be no •
Pointers into li111bo. The rules for ASS2V Make sure of this (In this context, a
'local' variable cell is a cell in the local stack whereas a 'global' cell is
one that aPPears as Part. of a DS on the slobal stack). Moreove,~, whenever an1::1 •
value is assisned to a variable, the address of that variable n1ust be Put on
the trail 1f the value has to be reset on backtracking (Routine TRAIL>.

The More difficult cases occur when ,:on1Plex tern1s ,::tre involved. If two
coMPlex terms are being unified (SA12) rl certain i:1111ount. of n,anoerJvring is
necessary t,.J tak,? ,1ccount, of whet.her the t.ern1s are Part of larger t.ern,s in •
Prefix forMat or not. Then uni f i cat ion is cal 1 ed recurs i vel '::I on ,:orresPond ins
arguMents (assuMing ident it'::I cf functors>. If a con1Plex tern, is unified with an
uninstantiated variable, t.wo Possible cases arise, according to whether the •
tern1 is in the forn1 of a skeleton (when it aPPears below GBOT) or a DS. If it

•

",I~--- '

.Z.

'""1:-"'"•:·_
•,; - - ------

'"'~--~\-<>'

,.,.& -

,. 1., •,• . .;,,'.;,,:·,,-,_'

,, . .,,..,.

1-''"~' ""~.-•,t\1;111.1~,~

•~v.-,:!~:,.,0-.,i, -'

is ct DS, it. is ,::t sin1Ple Matter to Put its address in the variable ci?ll. ~'
Otherwise ,:,. COP'::! of the skeleton is Put. on the '3lOb(.il stack (routine FLESH),
with aPProPriate values substituted for the variables. (This is where DS's are
created). The 1Jariable can then PiJint to this. C

7. Routines for Evaluable Predicates

The wa'.:! in which special p,::wtines are invoked for evaluable pr,::dicates was
discussed in earlier sections. This section siues soMe suidelines for writ.ins
such routines.

When a routine for an evaluable Predicate is called, Rl Points to the
'variable 1' slot. cf the current stack fraMe. The variable ARGPTR also holds
this address. The norMal Procedure is to st.art b'.:! checkins the t'::!Pes of the
arsuMents, throush IDENT, storin'3 the values as necessarw <All the resisters
except. SP are available in these routines>. The the work for the Predicate is
done, and a nor-Mal subroutine exit indicates successful satisfaction of the
soal.

If the
to FAIL.

goal is not satisfiable, it suffices for the routine to cause a jumP
FAIL will clear UP various bits and Pieces, and does not require anv

re<:1isters tiJ be set. AH.ernat.iv,:?lv, if a serious error ,:,ccurs, the rout.ine
ERROR should be called. This must be a Proper subroutine call, even thoush the
call will never return. The number oft.he error should be Placed in the word
aft er the sub rout i ne cal 1, so that it can •:lPP•::ar in ,::rr,:,r Messages.

•
•
•
•
f'

./
General Points to note when writ.in'3 evaluable Predicate routines are the

followins. Firstl':J, if a value is assisned to ,:my v,:triable cell, TF:AIL must, be ~­
caHed .. -Secondl'::!, an'.:! additions to the stacks or heap should be Prec,?ded b'::!
calls of the aPProPriate ALLOC functions and Must. tctke into account how il:.,?MS
in these areas are interpreted. Thirdly, if HALLOC is called, the global stacks t
Ma~ have shifted b'.:! the tin1e it returns - so if one has Pointers into the

9

global stack in such situations it is necessan, l:..o use OPSTART or k<?eP
addresses relative to some Point,::r that will be updated (e9 GBOn. Finall'::.I, th,::
fact. that the user can sPecif'::.I '•::tbor·t' to haPPen it11Mediat.eh.1 ,:,.ft.er an interrr;pt
means that. evaluable Predicate routines must be Prepared to be discontinued at
an'::.I Point. This Means that. Permanent add it ions to the heaP or changes to
svsteM variables Must be carefully tin1ed or interruPts disallowed for their
duration (throu<:1h INTROFF and INTRON).

Finally there is the task of Producing duMMY clauses and atom entries for new
evaluable Predicates, and in Particular of obtaining the atom number cf a new
Predicate. Unfortunat.el'::! there is no way of doing this PraPerlY (yet). The best
way to discover· what. the ,::tton1 nuMber of an ,::ttoM is seeMs f:.o be to run PROLOG,
t'.:!Pe in a siMPle clause with the atoM as Predicate and then lock at the core
i-n1ase (with DB, DDT ,Jr 1,1hatever) t,:J inl::.erPr,::t what has aPP•::o.red after
FREESTART.

•
•

