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2.0 ABSTRACT

Prolog is a simple but powerful programming language founded on
symbolic logic. It encourages rapid, error-free programming and
clear, readable, concise programs. The basic computational mechanism
is a pattern matching process ("unification") operating on general
record structures ("terms" of logic). This report describes techniques
for implementing Prolog efficiently. In particular we show how to
compile the patterns involved in the matching process into
instructions of é low-level language. Our implementation is actually
a compiler (written in Prolog) from Prolog to DECsystem-10 assembly
language, but the principles involved are explained more abstractly in
terms of a "Prolog Machine". The code generated is comparable in speed
with that produced by existing DEC10 Lisp compilers. Comparison is
possible since pure Lisp can be viewed as a (rather restricted) subset
of Prolog. We argue that structured data objects, such as lists and
trees, can be manipulated by pattern matching using a '"structure
shafing" fepresentation as efficiently as by conventional selector and
constructor functions operating on linked records in ‘''heap" storage.
Moreover the pattern matching formulation actually helps the

implementor to produce a better implementation.

Kezwords

Prolog, programming, logic, implementation, compiler, data structures,

matching, unification.
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3.0 INTRODUCTIGN

This report describes techniques for efficiently implementing the
programming language Prolog. It is written mainly for those having
some familiarity with Prolog. For the benefit of a wider readership,
we begin by attempting to answer briefly the questions "Why implenment
yet another programming language?", "What is so different about
Prolog?". A precise definition of the basic Prolog language is given
in Section /4./. The sample programs listed in Appendix /5./ and

referred to in Section /10.1/ may be useful.

The second part of this introduction summarises the history and

nature of Prolog implementation.

3.1 Why

Prolog is a simple but powerful programming language developed at
the University of Marseille [Roussel 1975] as a practical tool for
"logic programming" [Kowalski 1974} [Colmerauer 1975] [van FEmden
1975]. From a user’s point-of-view one of Prolog’s main attractions is
ease of programming. Clear, readable, concise programs can be written
quickly with few errors. Prolog is especially suited to "symbol
processing' applications such as natural language systems [Colmerauer
1975] [Dahl & Sambuc 1976], compiler writing [Colﬁerauer 1975} [Warren
1977], algebraic manipulation [Bergman & Kanoui 1975] [Bundy et al.
19761, and the automatic generation of plans and programs [Warren

1974] {[Warren 1976].



Data structures in Prolog are general trees, constructed from
re§ords of various types. An unlimited number of different types may
be used and they do not have to be separately declared. Records with
any number of fields are possible, giving the equivalent of fixed
bound arrays. There are no type restrictions on the fields of a

record.

The conventional way of manipulating structured data is to apply
previously defined constructor and selector functions (cf. Algol-68,
Lisp, Pop-2). These operations are expressed more graphically in
Prolog by a form of "pattern matching'", provided through a process
called "unification". There is a similarity to the treatment of
"recursive data structures" advocated by Hoare [1973]. Unification can
also be seen as a generalisation of the pattern matching provided in
languages such as Microplanner [Sussman & Winograd 1970] and its

successors.

For the user, Prolog‘is an exceptionally simple language. Almost
all the essential machinery he needs is inherent in the unification
process. So, in fact, a Prolog computation consists of 1little more
than a sequence of pattern-directed procedure invocations. Since the
procedﬁre call plays such a vital part, it 1is necessarily a more
flexible mechanism than in other languages. Firstly, when a procedure
"returns" it can send back more than one output, just as (in the
conventional way) it may have received more than one input. Moreover,
which arguments of a procedure are inputs and which will be output
slots doesn’t have to bé determined in advance. It may vary from one
call to another. This .property allows procedures to be

“multi-purpose'". An additional feature is that a procedure may
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"return" several times sernding back alterrative results. Such
procedures afe called "nou-determinate”™ or '"multiple-result". The
process of reactivating a procedure which has already returned one
result is known as "backtracking'". Backtracking provides a high-level

equivalent of iterative loops in a conventional language.

There is no distinction in Prolog between procedures and what
would conventionally be regarded as tables or files of data. Program
and data are accessed in the same way and may be mixed together. Thus
in general a Prolog procedure comprises a mixture of explicit facts
and rules for computing further "virtual" data. This and other
characteristics give Prolog interesting potential as a query language
for a relational database (cf. [van Emden 1976] and Zloof’s '"Query by

Example" [1974]).

Earlier we compared unification with Microplanner-style pattern
matching. There is an important difference which we summarise in the
"equation':~-

unification = pattern matching + the logical variable
The distinction lies in the special nature and more flexible behaviour
of the wvariable in Prolog, referred to as the "logical' variable.
Briefly, each use of a Prolog variable stands for a particular,
unchangeable data item. Howevgr the actual wvalue need not be
specified immediately, and may remain unspecified for as long as is
required. The computational behaviour is such that the programmer
need not be concerned whether or not the variable ‘has been given a

-
value at a particular point in the computation. This behaviour is
entirely a consequence of constraints arising from logic, the language

on which Prolog is founded.
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By contrast, the variable in most other programming languages {is
a name for a machine storage location, and the way it functions can
only be understood in this 1light. The "assigning" of values to-
variables is the programmer’s responsibility and in many situations he
nmust guarantee that the variable is not left unassigned. This applies
equally to the variables wused in the Planner family of pattern
matching languages. There, each occurrence of a variable in a pattern
has to be given a prefix to indicate the status (assigned or
unassigned) of the variable at that point. The programmer mnust
understand details of the implementation and sequencing of the pattern
matching process, whereas Prolog’s unification is a "black box" as far

as the user is concerned.

There are some other programming languages where the variable
does not have to be thought of as a machine location, most notably
pure Lisp. In pure Lisp as in Prolog, the behaviour of the variable
is governed by an underlying formal mathematical system, in this case
Church’s lambda calculus. As a consequence, the machine-oriented
concepts of assigmment and references (pointers) are not an (explicit)
part of either language. These are just some of a number of close

parallels between Prolog and pure Lisp.

Now it is well known that pure Lisp 1is too weak for many
purposes. Various extensions to the language are a practical
necessity. In particular the operations rplaca and rplacd are
provided to ‘allow components of a data structure to be overwritten.
This immediately dintroduces into the language the concepts of

assignment and reference which were previously avoided.
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No similar extension is provided in Prolog, nor 1is it needad
owing to the special properiies of the logical variable. The main
point iz that a Preclog procedure may return as output an "incomplete"
data structure containing variables whose values have not yet been
specified., These "free" varishbles can subsequently be '"filled in'" by
other procedures. This 1is achieved in the course of the normal
matching process, but has much the same effect as explicit assigmments
to the fields of a data structure. A necessary corollary is that wvhen
two variables are matched together, they become 1linked as one. In
implementation terms, a reference to one variable is assigned to the
cell of the other. These references are completely invisible to the

user; all necessary dereferencing is handled automatically behind the

scenes.

In general, the logical variable provides much of the powe of
assignment and references, but in a higher-level, easier-to-understand

framework. This is reminiscent of the way most uses of goto can be

avoided in a language with "well-structured" control primitives.

There is an important relationship between co-routining aund the
logical  wvariable, Co~routining is the ability to suspend the
execution of one procedure and communicate a partial result to
another. Although not provided as such in Prolog, it is easily
programmed without resort to low-level concepts, because the logical
variable provides the means for partial results and suspended
processes to be treated as regular data structures. The main
difficulty is to determine when to co-routine, but this prcblem is

common to languages with explicit co-routining primitives.
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So far we have previewed Prolog as a '"set of features". The

‘features are significant primarily because they mesh together well to
make the task of programming less laborious. They can be looked on as
a useful selection and generalisation of elements from other
programming languages. However Prolog actually arose by a different
route. It has a unique and more fundamental property which largely
determines the nature of the other features. This property, that a
Prolog program can be interpreted declaratively as well as
procedurally, is the real reason why Prolog is an easier language to

use.

For most programming languages, a program is simply a description
of a process. The only way to understand the program and see whether
it is correct is to run it - either on a machine with real data, or
symbolically in the mind’s eye. Prolog programs can also be
understéod this way, and indeed this view is vital when considering
efficiency. We say that Prolog,‘ like other languages, has a
procedural semantics, one which determines the sequence of states

passed through when executing a program.

However, there is another way of looking at a Prolog program
which does not involve any notion of time. Here the program is
interpreted declaratively, as a set of descriptive statements about a
problem domain. From this standpoint, the "lines" of the program are
nothing more than a convenient shorthand for ordinary natural language
sentences, Each 1line is a statement which makes sense in isolation,
and which is about objects (concrete or abstract) that are separate
from the program or machine itself. The program is correct if each

statement is true.
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The natural declarative reading is possible, basically becausc
the procedural semantics of JProleog is governed by an additional
declarative semantics, inherited straight from logic. The statements
which make wup a Prolog pregram are in fact actually statements of
logic. The declarative semantics defines what facts can be dinferred
from these statements. It lays down the law as to what is a correct

result of executing a Prolog program. How the progran is executed 1is

the province of the procedural semantics.

The declarative semantics helps one to understand a program in
the same kind of way as the law of conservetion of energy helps one to.
understand a mechanical system without looking in detail at the forces

an '
anore

L,

involved. Analogously, the Prolog programmey can initially
procedural details and concentrate on the (declarative) essentials of
the algorithm. Having the program broken down dinto small
independently meaningful units makes it much easier to wunderstand.
This inherent modularity also reduces the interfacing problems when
several programmers are working on a project. Bugs are less likely,
perhaps because it is difficult to make a "logical errocr" in a program

wihen its logic is actually expressed in logic!

Of course there will always be errors due to typing mistakes,
oversights or plain muddled thinking. Such errors are, however,
relatively harmless because of one other very important property of

(basic) Prolog -~ that it has a totally defined (procedural) semantics.

This means that it is impossible for a syntactically correct piogram
to perform (or even attempt to perform) an illegal or undefined
operation. This is in contrast to most other programming languages

<

(ck. array indices out o©f bounds in Fortran, or car of an atom in
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Lisp). An error in a Prolog program will never cause bizarre
behaviour. Nor will the program be halted prematurely with an error

message indicating that an illegal condition has arisen.

3.2 Vhat

The first implementation of Prolog was an interpreter written in
Algol-W by Philippe Roussel [1972]. This work led to better techniques
for implementing the language, which were realised in a second
interpreter, written in Fortran by Battani and Meloni [1973]. A useful
account in English of this implementation is given by Lichtman [1975].
A notable feature of the design is the mnovel and elegant

"structure-~sharing"

technique [Boyer, Moore 1972] for representing
structured data inside the machine. The basis of the technique is to
represent a compound data object by a pair of pointers. One pointer
indicates a '"skeleton" structure occurring in the source program, the
other points to a vector of value cells for variables occurring in the
skeleton. The representation enables structured data to be created
and discarded very rapidly, in comparison with the conventional

"literal" representation based on linked records in '"heap" storage. A

further advantage is greater compactness in most cases.

More recently, Maurice Bruynooghe [1976] has implemented a Prolog
interpreter‘ in Pascal. He gives a good introduction to the
fundamentals of Prolog implementation and describes a space saving
technique using a '"heap'". Other Prolog interpreters have been
implemented at the University of Waterloo, Canada, (for IBM 370) and

at Budapest (in CDL for ICL 1900).




The main subject of this renort 1is a Prolog sysitem wriiten
specifically for the DECsysten=i(Q [BEC 1974] by the eauthny, in
ccollabovation with Luis Pereiva and Fernando Pzreira of rthe HNational
Civil Engineerinp baboratory, Lishbon. The system includes a conpiler

]

from Prolog into DECIO assembly language and a conversational Prolog

int

m
ael
"

rprefer. Tt wuses the =ame fundamental design, including the

IH

i

structure~sharing" techniqua, &as was developad for the  serond

[y

Marseilla intevpretci. However the idwmplementation is considerably
faster, owing to compilation, and also because it wss poscible to

capitalise on the elezant DEC!Q archivectuve which is particularly

favourable t¢ the structure-sharing technigue.

A variable in a structure ¢an be nicely represented by

a DEC10 'address word". This specifies the addiess of the variable’s
cell as an offsect relative to the contents of an index register. Any
DECLO instruction can obiain irs operand indirectly by referring to an
address word. This means that, once the /appfopriate index register

has been lecaded, each of the fields of a structure~-shared record can
b

be accessed in just one instruction.

It wes in fact the possibilities of compilation and the DECIO
which originally spired the writing of a new system. (A preliminary

y stage since

oot

version which compiled into BCPL was abandoned at an ear
it was found impossible to fully exploit the poterntial of the DECILO.)
The compiled code shows a 15 to 20~fold epeed iImprovement over the

Mar is quite compact at about 2 words per

w

-t

eiile dinterpreter.

source symbol. The cuvapiler itself is written in Prcleg and was

Y

"bootstrapped" using the Marseille interpreter. The new interpreter

.

is also largely implemented in Proloeg.
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Much of the material in this report will be a description of
techniques developed by others (although nowhere fully documented).
The main innovations are:-

(1) the concept of compiling Prolog,
(2) certain measures to economise on space required during execution,

(3) improved indexing of clauses.

The most important innovation is compilation. Now recall that a
Prolog computation is essentially just a sequence of unifications or

pattern matching operations. FEach upification involves matching two

" 11

terms or 'patterns'. One term is a "goal" (or "procedure call") and is
instantiated. The other is the uninstantiated "head" of a clause (or
"procedure entry point"). The principal effect of compilation is to
translate the head of each clause into Jow-level instructions which
will do the work of matching against any goal pattern. Thus there

remains little need for a general matching procedure. Specialised

code has been generated to replace most uses of it.

Much of the cede just amounts to simple tests and assignments.
In particular, all that has to be done for the first occurrence of a
variable is to assign the matching term to the variable’s cell. Thus

this very common case is also very fast.

The code generated for a compound subterm (or sub-pattern) splits
into two cases. If the matching term 1is a variable, a new data
structure is constructed (using structure-sharing) and assigned to the
variable. The code for the other case is responsible for accessing
subcomponents of the matching term, ie. it does the work of selectors

in a conventional language.



The main drewback of the Marseille interpreter  1is its
unacceptable appetite for working storage. Like Bruynooghe, wa have

devoted ceunsiderable attention te this problem., QOur solurion iz 1o

classify Trolog variables into "laecals" and 'globals". This isg
performed by the compiler and need be c¢f no concern to user. Storage

for the two types is allocated from different areas, the local aud

global stacks, analagous to the "stack™ end "heap'" of Algol 686, ien

" (e,

execution of a procedure has Dbeen compleied "determinately
there are no further wultiple results tc be produced), local storage
is recovered azuromatically by a srack mechanis

1, a¢ for a conventioazl

language. No garbage collector is needed for this process.

The space saving achieved through this process can be dmproved ic
the wuscy supplies optional pragmnatic information viz an innovation
known as '"mode decalarations". A mode devlaraticn declares @ a

restriction on the use of a procedure, ie. one or more arguments are

declared to be always "input" (a non-variable) or alwasys Toutput" (a

ariable) . Thus the wuser is forgoiuyg some of the
Prolog” s "multi~-purposze' procedures. This enables the svstem to plece
a higher proportion of wvariables 1in the more desivable Yiocal"
category and alsc helps to improve the compactness of the compiled

coda,

In addition to these weasures, our system can also recover
storage from the global stack by garbage collection, c¢f., Algol 68's
heap. The garbage collector used has to be quite intrincate even by

it

n crace

n principle a conventional

norimal standards. After what is
and mark", space is recovered by compacting global storage still in

use to the bettom of the stack. This dnvolves "remapping" all



o
=)

oo
§
s
wr

addresses pointing to the global stack.

It is important to notice that a garbage ccllector is not

essential for our sysren. If the user restricts himself to swmall
tasks the garbage collector need never be unsed. This 1is because a

stack mechaniem recovere all storage automatically on backtracking, or

wherr the overall task is complete, as for the Marseille interpreter.

An additional point of practical importance is that our implementation
1

autonmatically adjusts the sizes of the different storage areas during

executicn {remapping addresses ag necessary).

The combined effect of these space saving measures is a
substantial reduction din run-time storage neseded for programs which
ave totally determinate (eg. the ccnpiler itself) or partly
determinate  (most Prolog programs in practice). A 10-fold improvement
over the Marseille interpreter would seem to be not unusual, although
this depends very much on the actual program. (Even in the worst case
of a totally non-determinate program, therve 1is still a 2-fold
improvement due simply to a better packing of information into the

BECI0 word.)

In the Marseille interpreter, the clauses which make up both
program and data arc only indexed by the predicate (ie. procedure or
relation name) to wiich they relate. Our compiler indexes clauses
bothh by predicate and by the form of the first argument to this
predicare. This is tantamount, for a procedure, to casc selection by
a fast "switch" (or computed goto). For data, it amounts to storiny

informarion about a relation in an array (or hash table).
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Our description of Prelog implenentation wil the form of &

f—..l
[+5)
o

definition of a "Pralog machine” (FLI). The aim is to present, in zu

general a way as posaible, the essential featuvres of ouvr DECLO

o
[ R

implementation, especially coapilation. Althouch the structure of tha
PLi{ is directad specifically to the needs of Prolog, the result iz e
comparvatively low=level machine ith  an  archirecture of a guivc
convenltional form. If operates or data items of fined sizes, which
nay  be  srored in special vegisters, areas of consccutively addressaed
locations, and “push-down" lists. The machine has =z repertoire of
instructions, each taking a smail [fixed opusber of erganents of
P -

definite size. 1In most ¢ases, the processing of one instrucition

irvolves only a small and bounded amount cf computation.

The Proleg machiae has of course been designed primarily with tie
DECIO  in mind. As we bave previcusily mentionad, NECI0 s "effeciiva
address™ méchanisn groatly promotes the struciure-shoyving  technique,
Héwevet it should not be difficult fo implement the design ou @y
conveniional computer, although the result might not be quite o0

efficient, More exciting perhaps would be the possibilivy  of

realising the machine din microprogram or cven hairduare.

In ocur DECIO dimplementation, the effect of ecach Prolez machine

instruction 1is achieved partly by in-line code and partly by calls to

0
ol
jal
’s‘
,..4
f)
O

out-of~line subroutines. The optimal mixture is a tacti

whiclhh has wvaried considerably duving the ccurse ¢i implementution,

"

The efficient "indirect addressing' and subroutipe call of the

p—
[
T
=<
s
<

el
.
prs
(.
<

meen that operations can  be performad out-of-line with very lit

Lt
overhead.
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At present the Prolog compiler compiles directly dinto DECIO
$assembler. Since the compiler is itself written in Prolog, it could
easily be adapted to generate "Prolog machine code" as such. This
code could be interpreted by an autonomous program written in almost
any programming language. Alternatively it should not be difficult to
produce a version of the compiler which translates into the assembly
language of some other machine. The compiler itself is not described
here (see [Warren 1977] for a general discussion of compiler writing
in Prolog). However the function it performs should be clear from the
relationship between Prolog machine instructions and Prolog source

programs documented in Section /6.9/ and Appendix /2./.

Note: This report does  not attenmpt ‘to describe the
implementation of the "evaluable predicates' etc. which are essential
to a usable interactive system. These provide, among other things,
built=in arithmetic, input-output, file handling, state saving,
internal 'database", and meta-logical facilities. It is an
unfortunate fact that the major labour involved in implementing a

Prolog system is providing such "trimmings".
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4.0 THE PROLOG LANCUAGH

The basic Prolog language is best considered as being made up of

tvo parts. On the one hand, a Prolop program consists of a set of
P ’ & f &
logical statements, of the form known as lorn ~lauses. Clauses are

just a simple normal form, (classically}) ecguivalent to generval
statements. Horn clauses are an important sub-class, which amounts
essentially to dropping disjunction (Mor") from the logiec®. {% This

subclass appears to be common  ground betweecn classical and

intuvitionist logic.}

The second part of Prolog consists of a very elementary control
language, although '"language'" is really too strong a word. Through
this control information, the programmer determines how the Proleog
system 1s to set about constructing a preoof. ie. The programmer is

specifying exactly how he wants his computation done. The control

language consists wnerely of simple sequencing information, plus a
primitive which restricts the system from censidering unwanted

alternatives in constructing a proof.

There are two distinct ways of understanding the meanin

Prolog program, one declavrative and one imperative or vproced

far as the declarative reading is concerncd, one c<cen ignore the
control component of the program. The declarative readiag i3 uszed fto
see that tha nrogram is correct. The procedural reading is mnceessary

to see whaether the program is eificient or indeed practical.

Generally spcaxing, a Prolog program is first conceived declaratively,

and then control informavrion 1is added to obtain & satisfactory

procedural aspect.
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In the vest of this section we shall merely summarise the syntax
we wuse, and briefly describe the semantics (both declarative and
procedural} of the language. For a fuller discussion, see the
references on Prolog and logic programming quoted earlier. The reader
unfamiliar with Prolog may also find it ‘useful to look at the
comparative examplesg of Prolog, Lisp and Pop-2 listed in Appendix /4./

and discussed in Section /10.1/.

4.1 Syntax And Terminology

A Prolog program is a sequence of clauses. Each clause comprices

a head and a body. The body consists of a sequence of zero or more

goals (or procedurc calls). For example the clause written:-
P :-Q, R, S.
has P as its head and Q, R and S as the goals making up its body. A
unit clause is a clause with an empty body and is written simply as:-
P.
The head and goals of a clause are all examples of terms and are

referred to as boolean terms.

In general, a term is either an elementary term or a compound

term. An eclementary term is either a variable or a constant.

A variable is an identifier beginning with a capital letter or

————

4 ’

with the character (underline). For example:=-

Y, Tree, _LIMIT

are all variables. 1If a variable has just a single occurrence in the

clause this may be written simply as (underline):-




(Note that a variable is limited in gcope ro a single clause, so  that
variables with the same name in different clauses ave regardsd as

distincty.

A constant ie either an atom®™ or an intepger. {* Yot ta bhe

confused with the use of "atonm"

Ir resolution theory, cf. iustead
Lisp.} An atom is any sequence of cnarvacters, which must be written in
single «quotes wunless it is an identifier not confusable wilh a
variable or an integer. For example:-

a, nuell, =, »>=, “DEC systoem 107
are all atoms. Intepers are coastants distinct from aitoms. A
identifier consisting of only decimal digits will always represent an

irteger. For example:-

999, 0, 727

A compound term comprises a functor (called the priacipal furctror

of the term) and a list of one or wmore terms called ar

argument in the list has a pogition, numbered from Q wupwards. A

functor is characterised by its

e S et <

or number of arguments. TFor erxamnle the compound term, whosa functor
is named "point™ of arity 3, with arguments X,Y and Z is written:-
point (X,Y,Z)
In addition to this standard neotation for compound terms ~f:(zrtain
functors may be declared as prefix, infix or postfix cpevaetors
enabling alternative notation such as
XY, (P3Q), 3<4, not P, K factorial
instead of
H(X,Y), 1 (F,Q), <(3,4), not(P), factorial(M)

A constaut 1s considered to be a functor of arity

-
[N )
3
—r
fos
-
o

the

o
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principal functor of a constant is the constant itself.

The principal functor of a boolean term is called a predicate.
The sequence of clauses whose heads all have the same predicate is
called the procedure for that predicate. The depth of nesting of a

term in a clause is specified by a level number. The head and goals

of a clause are at level 0, their immediate arguments at level 1, and
so on for levels 2, 3, etc. In general we do not allow a level 0 term

to be a variable or integer. A compound term not at level 0 is called

a skeleton term.

Some sample clauses (for 1list concatenation and a rather
inefficient list reversal) are:-

concatenate(cons(X,L1),L2,cons(X,L3)) :-
concatenate(L1l,L2,L3).

concatenate(nil,L,L).

reverse(cons(X,L0),L) :-
reverse(LO,Ll), concaienate(Ll,cons(X,nil),L).

reverse(nil,nil).

4.2 Declarative And Procedural Semantics

The key to understanding a Prolog program is to interpret each
clause informally as a shorthand for a statement of natural language.
A non-unit clause:-

P :-Q, R, S.
is interpreted as:-
P if Q and R and S.
We now have to interpret each boolean term in the program as a simple

statement. To dec this, one should apply a uniform interpretation of
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eact: functor used in the program. eg. for the sample clauses above:-
nil = "the empty Jist"

cons{X,L) = "the list whose first element is X
and remaining elements arce L

concatenate(L]l,L2,1.3) = "Ll concatenated with L2 is L3"

reverse(L1,L2) = "the reverse of L1 is L2"

Each variable in a clause is to be interpreted as some arbitrary

object. Now ocur four «clauses are seen (o be shorthand for the

following stilted but otherwise intelligible Inglish sentences:-

"The list, whose first element is X and remaining elements are Li,
e

concatenated withh L2 1is the 1list, whose first lement is X ana
remaining elements are L3, if Ll concatenated with L2 is L3."

"The empty list concatenated with L is L."

"The reverse cf the list, whose first element dis X and remaining
elements are LO, is L if the reverse of LC is L1 znd Ll concatenatred
\

with the list, whose first element is X and remaining elements are fhe
enpty list, is L."

"Ibe reverse of the empty list is the empty list."

The declarative semaentics of Prolog defines the =set of boolean

terms which may be deduced to be true according tc the program. Ve

say that a boolean term is true if it is the hea of some clause

[N
[&

instance and each of the goals (if any) of that clause instacce

1y

true, vhere an instance o¢f a term (or clause) dis obtained by
substiruting, for each of zero or more of its variables, a new teim
for all occurrences of the variable. That ccmpletes the declarative

semantics of Frolog.

iote that this recurcive definition of truth makes no reference
to the sequencing of clavses or the sequencing of goals within a
clause. Such sequencing constitutes coatrol infeormation. It plays a
role din the procedural semantics, which describes the way the Prolog

system executes a program. iere, the head of a clause is interpreted
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as a procedure entry point and a goal is interpreted as a procedure
call., The procedural semantics defines the way a given goal is
executed ., The aim is to demonstrate that some instance of the given

goal is true.

1

To execute (or solve) goal P, the system searches for the first

clause whose head matches or unifies with P. The unification process
{Robinson 1965] finds the most general common instance of the two
terms (which is wunique if it exists). If a match is found, the
matching clause instance is then activated by executing in turn, from
left to right, each of the goals of its body (if any). If at any time
the system fails to find a match for a goal, it backtracks. ie. It
rejects the most recently activated clause, undoing any substitutions
made by the match with the head of the clause. Next it reconsiders
the original goal which activated the rejected clause, and tries to
find a subsequent clause which also matches the goal. Execution
terminafgs successfully when there are no more goals waiting to be
executed. (The system has found an instance of the original goal P
which must be true.) Execution terminates unsuccessfully when all
choices for matching the original goal P have been rejected.

Execution is, of course, not guaranteed to terminate.

In general, backtracking can cause execution of a goal P to
terminate successfully several times. The different instances of P
obtained represent different soluticns (usually). In this way the
procedure corresponding to P is enumerating a set of solutions by

iteration.
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¥We say that a goal (or the corvrespending procedure) has been

executed determinately 1if execution 1s complete and no alternative

clauses exist fcr any of the goals dinvoked during the execution

(including the criginal goal).

4,3 The Cut Opcration

Besides the sequencing of goals and clauses, Prolog provides omne
cther very important facility for specifying control information.
This is the "cut™ cperator, written “!7. {Originally written '/ and
dubbed ''slash"™.) It is inserted in the program exactly like a gecal,
but is not to be vegarded as part of the logic of the program and
should be ignored as far as the declarative semantics is concerned.
-

Examples of its use are:-

member(X,cons(X,”)):-!.
member(X,cons(_,L)) i~ member{X,L).

compile(S,C) :=- translate($,C),!,assenble(C).

The effect of the cut operator is as follows. Wien first
encountered as a ‘'‘goal™, cut succeeds immediately. If backtracking
should later return to the cut, the effect is to fail the goal which
caused the clause containing the cut to be activated. In other words,

the cut operation commits the system to all choices made since the

parent goal was invoked. it renders determinate all computation
performed since and including invocation of the parent goal, up until

the cut.
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Thus the second example above may be read declaratively as "C 1is

a compilation of S if C is a translation of S and C is assembled" and

procedurally as "In order to compile C, take the first translation of

C you can find and assemble it". If the cut were not used here, the
system might go on to consider other ways of translating C which,

although correct, are unnecessary or are unwented.

Such uses of cut do no violence to the declarative reading of the
program. The only effect is to cause the system to ignore superflucus
solutions to a goal. This is the commonest use of cut. However, it
is sometimes wused in such a way that part of the program can only be
interpreted procedurally. Often these cases suggest higher level
extensions that might ideally be provided. For example:-
property(X) :- exceptional(X),!,fail.
property(X).

might perhaps be better expressed as:-
property(X) :- unless exceptional(X).

Clearly it is not intended that “property(X)  should be a bona fide

solution for any X, as a declarative reading of the second clause

would indicate.

Even if better alternatives could be found for the controversial
uses of cut, there secems no reason to object to its legitimate use as
a purely control device. Consequently we shall treat cut as a basic

part of the Prolog language.
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5.0 OVERVIEW OF PROLCG 1JELEMENTATION

~

Prolog implementation rests on the design of processes for:i-—
(i) {recursive) procedure call,
(2} unification,
(3) backtracking,

(4) the cut opevation.

The {irst is a familiar problem in the implementation of

~
I

high~level launguages and is solved in rhe usual wey througn the use of

o]

cric or more stacks. However because of the nondeterminate natuve of

bPrelog, one cannot auromatically contract the stack{s) on procedure
exitr as is usual, In  general this process has to wait unti

backtracking has caused the proceduic to iterate threugh to itz last

resul i,

Unification tales the place of tests and assignuent in
corventional langueges. The major problem is heow to represont the new

terme (dara structuses) which are croated. The solution deviszad at

Marseiile is @ novel and elegant approach to the prcehiem  of
representing structured dara. 1t is essentially thc same as

Boyer-Mocre’s "etructure sharing with a valve arvay', develorned at

.

tdinburgh.

Backtracking requires the ability to remember and rapidly restore
an earlier state of couputation. Solutions have been deviced for a

number of experimental languages. Usually the implementation 1eflects

the fact that facilities for nondeterminate computation have heen
built or top of an exisring language. Backtracking 1is an integral

part of Prolog, and conzequently is less easily separated from the
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overall design of an implementation. Indeed it strongly influences
the choice of structure sharing, because of the speed with which new
data structure can be discarded as well as created through this

technique.

The cut operation restores conventional determinacy to a

" 1

procedure and allows the system to discard "red-tape'" information
required for backtracking. The internal state becomes closer to that
of a conventional high-level language implemeﬁtation, It will be seen
that the implementation of cut 1is closely bound up with that of

backtracking.

5.1 Structure Sharing

The key prcoblem solved by structure sharing is how to represent
an instance of a term occurring in the original source program. We
shall call the original term a source term® and the new instance a

constructed term. {*Also called input terms in the literature on

resolution.} The solution is to represent the constructed term by a
pair:-

< source term, frame >
where the frame is a vector of constructed terms representing the

values of the variables in the source term. Each variable is given a

number which indicates the position in the frame of its value. (Ve
shall also say the variable is bound to that value.) If the variable

is unbound, its value is a special construct called “undef”.
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Thus if we are given source terms:i-

thetal = tree{Xl,a,%2)

theta2 = tree(Y1,Y2,Y3)

then the constructed term pictured as:-—

/ : !
thetal | undefi & i
oo B 000 WS

e g
theta2 Lyndef {undef lundef‘

represents the termi- ¥

If the

constructed ferms.

source term is a constant then there is no need

tree(¥l,a,tree(Y1,Y2,Y3))

to provide a
so we shall treat constants as being both source terms and

Thus the construcied term pictured as:~

/ o tamann o

thetel L?uil &
PR / Z 1. Y
/'/ \L...., e s s g v ot
theta?2 ;ﬂggg£§ b gundef?

: i

represents the term:-

tree(null,a,tree(Yi,b,¥3))

Kotice also that the source part of a

variable

{ a constructed term wmay be a

zc that 1f, for example, X2 in thetal

is bound to X1 and X1

is in turn bound te “null’, then:-
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SN

thetal |null} =# { :

N

/N
X1
represents:-
tree(null,a,null)

In an actual implementation, a constructed term would generally
correspond to a pair of addresses, where one address would point to a

literal representation of the source term and the other to a vector of

storage cells. In practice we only use this form where the source
term is a skeleton, the resulting object being called a molecule. 1f

the source term is a variable, the constructed term corresponds simpiy
to the address of the variable’s cell and is called a reference. Thus

the constructed term:-

thetal ‘iund@fi_,ﬁk

‘@““wm//a~«<\ //“/*37 \>
p

o
/ e e e
// \\\ - ——
e —
/ ¥ ~_

theta2 | ¢ b

represents:-

tree(Xl,a,tree(X1,b,X1))

The advantage of the structure sharing representation is that the
cest (in terms of both time and storage) of constructing new terms
from skeletons occurring in a clause is, at worst, prcportional to the
number of distinct variables in those skeletons. If the same data
representation were used for constructed terms and source terms (as in
Lisp say), then the cost would be at least proportional to the total

number of subterme (or, equivalently, of symbols) in the skeletons.
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0f course the "dircet™ representarios

i
fs
O
jas}
3
54}
i
o
a4
o
oo}
2
]
]

a
o
o)
~T
=
o0
=h
~
©
™~
0
o
]
-
-

the c¢omponents of the data structure somewhat easier. However  for
most machines (particulariy these like the DECIO with good imdirect

addressing facilities) this loss of speed is quite small and amply

repaid by the savings of space and the speced of creating and

[oN

iscarding new data structure.

When complex terms are built up by wunification one ceapoot in
general prevent chains of references being created. When unifying twe
terms it is important to dercference both values by tracing down &ny

reference ~hains.

A firal point concerns what 1is knowm as the "occcur chec!

Strictiy a unification should not be zllowed which binds a variable to

a term containing that wvariable. This would result din "iufiaite
terms'”, for example consider:-

infinitelist(X,L) ¢~ L = cons{4,L).

In practice this conditicn never arises in wmost normal Prolos

programs. Where it does, the progrvammer saay well be vanting to
censider the infinite term as a legitimate data obicet {(although this

is dangerous fo several reasons). Acccrdingly, Prclog implemontations

do not hother to make the occur check, 25 it

te require an

.

inordinate amount of computation for liftle praciical benefit.
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5.2 Procedure Invocation And Backtracking

Just as structure sharing represents an instance of a source term
by a pair < source term, frame >, so we may notionally represent a
clause instance by a pair:-
< ¢clause, enviroament >
The environment consists of one or more frames containing the value
cells for each variable occurring 1in the clause, plus all other

information associated with this c¢lause instance ie. management

information. The environment is created in the course of unifying the

head of the clause with the activating goal. The information it
comprises may conveniently be stored on one or more stacks, as it is
created (by clause activation) and destroyed (by backtracking) on a
"

"last in  first out" basis. Ve may summarise the management

information as follows:-

s

# A record of the parent (activating) goal and its continuation, ie.

the goals to be executed when the parent goal is solved. This item
can be thought of as a molecule-like pair:-

< parent goal + continuation (both in source program form),
parent environnent >

* A list of the remaining source clauses which are alternative

candidates for matching the parent goal.

* The enviromment to backtrack to if the parent goal fails. ie. The
most. recent environment preceding the current one for which the clause
activated is not the only remaining alternative for the activating

goal.

* A list of variables bound in the course of unifying the parent goal

with the head of this clause. The list need not include variables
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whose cells would be disczrded anyway on backtracking eg. those in
the present environment.

The last three items are needed for backtracking. Effectively.

unification is allowed to side-effect existing variable cells {theroby
modifying the parent gcal and its continuation) btut has to leave &
record of the wvariables affected. Backtracking uses this list to
reset such variables to “undef’. Unification is also respcnsible for
>

setting every variable cell in the new environment to “undef

not otherwise initialised.

In our implementation, the enviromment is split into two iramesg,
local and global, allocated from, vrespeciively, Jlocal and global
stucks, plus some locaticns for the "reset list" on 2 pushdown Tizi
called the "trail™. The global frame contains the ceils for variables
occurring in skeletons. The local frame contains the cells for othe:
variables, plus all the managemeot information (apart from the resct
list). Uhen a procedure has been executed determinately, the local

frame is discarded automatically by a stack mechanisn.

5.3 Implementing The Cut Operation

o

To implement the cuf operation it suffices to take the parent’s
backtrack  environment as the current backtrack envivonmeot.
Optionaliy one may "tidy up" resetr lisis for the parent enviroament
onwards, by removing entries for variables which would now be

discarded anyway on backtranking.
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o4

In our inplesentation, the "tidying up" 1is mandatory, since

otherwise a "dangling refereance" to a discarded local frame may be
left in the list of reset variables. A similar argument applies to
the global frame 1if a garbage collector is used. All local frames
used in the execution of any geals preceding the cut symbol in the

clause concerned are discarded when the cut is effected.

5.4 Compilation

One of the chief innovations of our Prolog implementation is that
the clauses are compiled into sequences of simple instructions to be
execuied directly. This is in contrast to execution by a separate
interpreter, where clauses are stored in a more or less literal form.
The main effect of the compilation is to translate the head of each
clause into a sequence of instructions specialising the unification
algorithm to the case where cne of the terms to be unified is ihe head

of the clause concerned.

Before describing compilation in detail (see Section /[6.9/), it

may be helpful to give the flavour of the process through an example.
We shall translate Prolog clauses for 1list concatenation into an
informal Algol-style procedure. The clauses are:-

concalenate(cons(X,Ll),L2,cons(X,L3)) :- concatenate(LL1,L2,L3).
concatenate(nil,L,L).

The translation follows. The most important point to notice 1is that

nuch of the unificatrion process is translated into simple assignments.
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re concatenate is ¢
ry clawvsel;
try clause2;

prenateh skeleton cons(d,Ll) against term[l];

* XLl 1=
* if need then (
X

premareh 1) against term{31;

L3 := unde

* if need to match subterns then ¢(
* match value of X against subrermil];
* 1.3 = subterni2] )3

claim space for [X,LL,L7,L31;
.

succeed
clause2: (

temporary vari

match atom nil against termil]:

L 1= ter i

match val

succeed ) )

4
L

The arguments of the watching poa
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"concatenate’) ave referred to as “term[l]”. T The
arguments of each of these terms ave referred io as  “subterml[ij”,
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given

eceding “prematch skeleton .. instruction. “prenatch’  is only

ew)
~
m

respensible for watching at the
corresponding goal argument is a variable, “premauch” creates a new
molecular term and assigrs it to this variable. Otherwise “premateh’
merely checks for watching funstors; matching of aubterms is  handled

by the instructions which follow the “premartch’.

If the programmer can guarantee that the “concatenate” precedure

will enly be called with first argument as  “input™ (de. @

PR LY

non-variable) and third argument as "outrput" {(die. a wvariable), thon

the procedurc can be sorewnat simplified. Ussentially, the lines
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marked '"#" can be omitted and variable L1 becomes a local instead of a

global.
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6.0 THE PROLOG MACHINE

In the previous secticns, we have taken a general lock at the

in executring a Prolog program, and have secen how

s v

[}

complex tarms ave built up using the siructure-sharing technique . e
can now examine din wnore detail how ail this realised in the Prolog

machine, Full reference details of the machine are given in

Appendices /1./ and /2./.

6.1 The liain Data Areas

Each clause of a Prolog scurce probgram is represented by &

L

sequence of PLM # {* Not to be confused with

the use of "literal' in resolution theory.} Roughly speaking, there is

>

orie instruction or literal for each Prolog symbol (ie. wariable, atonm
or funector). Instructions are executa
fixed data. Both are stored in an area of the machine called the code

area. Unlike the other areas of the machine, information in the code

avea is gencrally accessed in a "read-only' mawner.

The two major writeable areas of the machine are the local stack

and the global stack. As their pnames imply, these areas are used a=z

ot

stacks, that is all storage befove a carrain point (tha "top" of the

stack) is in use and all storage afte- that point is not in use.

Furthermore the storage that i¢ in use to in a random

access manner. The top of each stack varics continually during the

course of a computation. Thus a stack amounts to a wvariable length

stcia

=

vaector « e.

o
o
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The global stack contains the value cells for global variables,

that is wvariables that occur in at least one skeleton, and which

therefore may play a role in constructing new molecules. Other

variables are called local variables and Fheir value cells are placed
in the 1local stack. These variables serve merely to transmit
information from one‘ gosl to another. In addition, the local stack
contains management information which determines what happens next in
the event of a goal succeeding or failing, and is also used to effect

a cut.

Both stacks increase in size when a new goal 1is tackled, and
contract on backtracking. Space can also be recovered from the top of
the local stack when a goal 1is successfully completed and no
alternative choices remain in the solution of that goal. It is for
just this reason that two stacks are wused rather than one. The
resulting saving of space can be very substantial for programs which
are determinate or partially determinate, as most in fact are. The
recovery of space occurs (a) when the end of a clause is reached and
the machine can detect that no other choices are cpen, (b) when a cut
is effected and at least one goal precedes the cut in the clause in
question. In the latter case all the local stack consumed during the

execution of the preceding goals is recovered.

The other maiﬁ writeable area of the PLM is called the trail.
This area is used as a push-down list, ie. it is like a stack, with
the difference that items are "pushed" on or "popped" off one at a
time on a last-in first-out basis, and are not accessed in any other

way. The trail is used to store the addresses of variable cells which

need to be vreset to “undef’ on backtracking. As with the local and




Page 38

global stacks, it generally increases in size with each new goal and

is reduced by backtracking. The cut operation may also have the

effect of removing items from the trail.

PLM data items and storage locations come in two sizes, namely
short and long. Each area of the PLM comprises a sequence of
locations of the same size identified by consecutive addresses.# {* As
the trail area 1is wused as a push down list, its locatijons do not
strictly need to be addressable.} A short location is btig enough to
hold at least one machine address. A long location has room for two
addressas., (NB. Short and long locations need not 1in practice he
differvent 1in sizé. In our DEC10 implementation they both correspond
to 36-bit locations.) Fach variable cell is a long location, so the
two stacks comprise 1long locations, while the frail is made up of
short lbcations‘ The 1locations din the code area are short;
instructions and literals should be thought of as short items, or

multipies thereof.

6.2 Special Registers Etc

Besides the main areas, the PLM has a number of special locaiions

called registers. In general these need only be short locations.

Registers V and V1 hold the addresses of the top of the 1local and
global stack respectively. legister TR holds a '"push-down list

pointer" to the top of the trail.

The environment for each clause instance 1is represented by a

local frame and a global frame, plus some trail entries. The layout

is shovn in Appendix !. The global frame is simply a vector of cells
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for the global variables of the clause. The local frame comprises a

vector of 1local wvariable cells, preceded by 3 long locations

containing management information.

For most of the time, the PLM is in the process of trying to

unify the head of some clause against an existing goal. Register A

- contains the address of a vector of 1literals representing the

arguments of the goal followed by its continuation. The continuation

is the instruction at which to continue execution when the goal is
solved. The enviromment of the current goal is indicated by registers
X and X1 which hold the addresses of, respectively, the 1local and
global frames for the clause instance in which the goal occufs,
Registers V and V1 therefore contain the corresponding information for
the environment that unification is endeavouring to construct. The
machine insures there is always a sufficient margin of space cn each
stack above V and V1 for the environment of any clause. It is only
when a unification is successfully completed that the V and V1

pointers are advanced.

Registeirs VV and VV1 indicate, in a similar way, the most recent
environment for which the parent goal could possibly be matched by
alternative clause(s). Usually we shall have VV=V and VV1=Vl, as there
will be other clauses in the current procedure which could potentially
match the current goal. In this case, register FL contains the
address of the instructtion at which to continue if unification should

fail.
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There ave two other important registers which may be set during a
unification : register B is set tc the address of a vector of literals
representing a skeleton, and register Y to the address ol the

corresponding global frame.

&

Note: 1t may be helpful to think of <A,X> as being a mnolecule
representing the current goal and <B,Y> as a molecule representing a

level ! subterm of that goal.

The 3 long locations of management information in each 1local
frame ccmprise 6 short item fields as illustrated below (the precise

arrangement is not really significant):-

A ; FL mJ
X , A ]
B Vi ' T%_Wj

The parent goal is indicated by the X and A fields, mirroring the

appropriate values for the X and A registers.

The V1 field contains the address of the corresponding global

frame mirvoring the V1 register.

The VV field contains the value of the VV register prior to the
invocation of the parent goal for this environment. It therefore

indicaies the most recent choice point prior to this environment.

The FL field contains the failure label for this environment, if
any, and 1s uncdefined otherwise. The failure label is the address of
an instruction at which to continue for an alternative match to the

parent goal.
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The TR field contains a value corresponding to the state of the

TR register at the point the parent goal was invoked.

The VV, FL and TR fields are needed primarily for backtracking

purposes.

6.3 Literals

Literals are PLM data items that serve as building blocks to
provide a direct representation for certain subterms of the original
Prolog source program. In particular they are needed to give skeleton
terms a concrete form so that structure sharing can be applied. We
shall not attempt to give more details of their internal structure
than is necessary; The different types of literal meuntioned are

assumed to be readily distinguishable.

A skeleton literal represents a skeleton term and is a structure

comprising a functor literal followed by a vecror of inner literals.

Each inner literal is a short item, typically an address which serves
as a pointer to the value of the subterm. The size of a functor
literal is left undefined, but it contains sufficient information for
it to be identified as the functor literal for a particular functor of
non-zero arity. It will be written as “fn(I)° where ‘I° uniquely
identifies the functor in question. (In our DEC1(Q implementation,
functors and atoms are numbered from 0 upwards and "I’ refers to this

number.)
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An irnner liteval is either an inner wvariasble 1literal or the

address of a skeleton literal, atom literal or integer literal. Atom
. e

4

and integer literals are long items written as “atom{I)’ or “int(N)’
where ‘1’ wuniquely identifies the atom in question and "N° is the
value of the integer in question. An inner variable literal will be
written ;var(I)' where I is a number identifying the corresponding
global variable in the clause concerned. For structure sharing

purposes this number 1is wused as an index to select the appropriate

cell from an associated frame of (glshbal) variable cells.

We shall write “[S]° for the address of a structure S. Thus the
address of the literal corresponding to the skeleton:—
tree(null,X, tree(Y,X,7))
might be written:-

[fu(tree),
latom(null) ],
var(l),
[fn(tree),
var(2),
vaw(l),
var{3)]]

and pictured as:-

fa(cree)) o (var(l) | & |
. /
I i |
[2ton(ualD)| |fn(tree) | var(2) {var(l), var(3)!

da

Besides inner 1literals, which represent the arguments of a

skeleton term, the PLM needs outer literals to represent the arguments

of a goal. An outer literal is eirher the address of an atom inte

ov skeleton literal, or is a local literal, a global lireral or =z wveid
: > < R
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literal. Like inner literals, outer literals are short items, which

serve as pointers to the values of the subterms they represent.

If a goal argument is & variable, and the variable occurs
somewhere else in the clause within a skeleton term, then the argument
is represented by a global literal, written “global(I)” where ‘I’ is
the number of that global variable. If a goal argument is a variable,
and that variable occurs nowhere else in the clause then the variable
is represented by a void literal, written “void’. Otherwise a variable
appearing as an argument of a goal is represented by a local literal,
written ‘local(l)’ where “I° is a number identifying the local

variable.

Thus the arguments of the second goal in the clause:-
compile(S,C) :- translate(S,D,E), assemble((E;D),0,N,C).
might be represented by:-
[[fn(i),var(l),var(Z)],[int(O)],void,local(Z)]

or pictured as:-

[ f J} Vi ivoid {local(Z)i .,.continqu{pg
iint(aﬂ

[fn(i) ivar(l):;var(isw

remembering that the continuation always follows immediately after the

last argument literal of the goal.
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6.4 Constructs

The set of PLM data items which c¢an appear as the values of
variable cells are called constructs. They secrve to represent
constructed terms in a structure-sharing manner. Once agaiun we shall
not attempt to give unnecessary details of their intermnal structure,

but will assume that they are long items and that the different types

are readily distinguishable.

The cell for an unbound variable contains the empty construct,

written “undef’. The cell for a variable which has been bound to

another variable contains a reference, written “ref(R)’ where R is the
address of the other variable’s cell. 1If a variable is bound to an
atom or an integer, iis value cell will contain the corresponding atom
or integer literal. Finally if a variable is bound to an instance of
scme skeleton, the corresponding construct is called a .ﬂélecule » and

written ‘mol(5,X)” where § is the address of the corresponding

skeleton and X is the address of the corresponding frame.

6.5 Dereferencing

In the following, the process of dereferencing a variable will

often be referred to. At any point in a Prolog compufation, this
process associates & certain non—empty construct with each wvariable.

This construct is said to be the (dereferenced) value of the variable

1

at that point. It is obtained by examining the contents of the
variable’s cell and repeatedly fcllowing any references until a cell
is reached which contains a nen-reference construct. 1f this

construct is “undef” the result of the dereferencing is a reference to

e i
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the cell which contains “undef’. Otherwise the result is the final

construct examined.

6.6 Unification Of Constructs

We are now in a position to see how wunification works out ia
practice. Unifying .two terms reduces to the task of unifying two
constructs which represent them. The first essential 1is to ensure

that the two constructs are fully dereferenced.

If neither construct is a reference, then unification will fail
unless we have two equal atoms or two equal integers or two molecules
with the same principal functor. In the last case the unification
process has to recurse and unify each of the arguments. (The action

to be taken on failure is described later.)

If just one of the constructs is a reference, then the other

construct has to be assigned to the cell indicated by the reference.

If both constructs are references, then clearly one reference
must be assigned to the cell of the other. It happens to be very
important that the more senior reference is assigned to the cell of

the more junior reference. A cell in the global stack is always more

senior than any cell in the 1local stack. Otherwise seniority 1is

determined by the cells” addresses - the one earlier in the stack is
considered more senior. These precautions are essential to prevent
"dangling references'" when space 1is recovered from the lbéal stack
following the determinate solution of a goal. (The '"dangling
reference"” 1is a well known nightmare where a location is left

containing the address of a part of =storage which  has been
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de-allocated from its original use.) The rules also play an important
role for efficiency in tending to prevent long chains of references
being built wup. In typical Proleg programs it is quite rare for
dereferencing beyond rhe first step to be necessary, 1if the above

scheme is applied.

Whenever a cell is assigned a (non-empty? Qalue, it is wusually
necessary to '"'remember" the assignment so that it can be "undone' on
subsequent backtracking. 7The exception is where the cell will in any
case be discarded on Dbacktracking. This condition can easily be
detected in the PLM by the fact that the c¢ell’s address will be
greater than the contents of register VV for a local cell or register
VV1l for a globalcell. When the assignment has to be remembered the
address of the cell concerned is trailed, ie. pushed on to the trail

push-down list pointed to by register IR.

6.7 Backtrackin&

When unification fails, the PLM has to Dbacktrack to the most
recent goal for which there are other alternatives ccill to be tried.
Any environments created since the backtrack point are to be erased
and the space occupied on the local stack, global stack and trail is
to be recovered. Before attempting another  unification, all
assigimments made ince the backtrack point to cells which existed
before the backtrack point must be undone by setting the values of

such cells to “undef’.
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local stack global stack trail
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iy //
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to be addresses
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|
TR——— "

]
|
!
;

The PLM keeps an up-to-date record of the enviromment to
backtrack to in registers VV and VVl1. VV contains the address of the
local frame, VV]1 the address of the global frame. Note that VV1 is
strictly superfluous since it merely shadows the contents of the Vi
field in the local frame indicated by VV. The state of the trail
corresponding to the backtrack point is indicated by the TR field.
The necessary undoing of assignments is achieved by popping addresses
of the trail until the original trail state is reached; each cell so
addressed is reset to “undef’. (Some of these cells are probably about
to be discarded anyway, but it is harmless to reset them regardless,

and this is likely to be simpler.)
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For the remaincer of the backtracking

g process, it is convenient

to consider two

Lp]

aseg.,

[;

he first is shallow backtracking, where there

or the current geal. This is of course easily

[

arc other alternatives

etected bv the fact that VV=V., All that has tc be done in this case

[aN

is to resume executiou at the instruction indicated by FL.
n the case of deep backtracking, V and Vi have to reset from VV
and VV1 respectively. Registers X, A and FL are reset according fo

the corresponding fields in the local frame indicated by VV. Register
X1 dis reset from the V1 field in the local frame corresponding to X.
p &

Finally, execution ig resumed at the instruction indicated by FL.

6.8 Succescsfiul Exit From A Procedurse

PR ———

Backiracking generally corresponds to a failure exit from a
procedure. A success exit occurs when tlhie end of a clause is reached
If the procedure exit is determinate, indicated by VV<{ and showing

thet no choices were made (or remain) idin the execution of the

proced

P

ire, then iocal etorage can be recovered by resetting V from X.
Registers X and A ave reset from the corresponding fields in the local
frame indicated by the present value cof X. Register Xl is then reset
from the Vi field of the locai frame now indicated by X. Finally
execution is resumaa ab the continuation instruction which follows the
n short items addressed by A, where n is the arity of the predicate

for the procedure concerned.
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6.9 Instructions

Having covered the basic structure and function of the PLM, it
remains to describe bhow the «clauses which drive it are actually
represented. It should be clear that a clause could be stored in a
very literal form (cf. a skeleton term) and interpreted directly.
This is precisely the way the Marseille interpreter operates. lowever
much of the work that such an interpreter would have to perform can be
eliminated by using extra information which is easily computed at the

time clauses are first introduced ('compile-time'"). This includes:-




rhat matching against toe firet ocaurrence

1

,_.
o
o

variable in the head of a clause is a special case. The var

obvicusly be as yet unbound and orne siwmply has te bind fthe matching

tern to it. There 1is nc need to have previously initialised the
varizbiz’s cell to “undef’. The whole operation is fsr gimpler than in

~

the general case of a subsequent occurrence of the variable.

(2) If ons is matching a variable in the head of & clause, and
that variable has no other occurrence in the clausc, no action at all

need be taken. Furtheimere if the occurrence is at level 1, no cell

neaed be created for thet variable. Similarly, no cell is needed fovr a
single~ocourvence variable at level 1 in a goal. Variables with a

1

single cccurrence, which is at level 1, ave called void variables.

{(3) The interpreter generally has to make & recursive call when

matching the arguments of a skeleton against a non-variable

This overhead can be avoided if the skeleton occurs in  the current

clause head, by associating information atout deprh of sesting (Jevel

number) with each symbol in the head of & clause. (The details will

be explained later.) Similarly, the need to keep a count of avgumenis
) _

{(of & skeleton or clause hzad) already matched can be avoided by

associating an argument number with each symbel in the head of a

clause. (The arguments of a functor are numbeved from 9 upwards.)

(4) Normally an interpreter would allocate, and initialisc to

“undef” . all cclls fo a clause before commencing unification. Ve

vt

have seen that much of this initialisation van be avoided. Also one
can postpone rhe remaining initialdisation, and the "red-tape" of
storage allocation, zs late as possible in the hope that a failure

'111 render them unpnecessary.
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(5) Verjables can be categorised intc different types (global,
loecal and temporary), depending on the way they occur in the clause,
so that the space occupied by certain variable cells can be recovered

earlier than is possible in general.

(6) By bringing together information from the different clauses
in a procedure one can optimise the selection of potentially matching
clauses and/or share part of the work involved in unifying with each
clause head, and in addition provide a means of detecting the
important case where the selection of =a particular clause is

determinate. (See the later section on "Optional Extras").

In general, one Prolog source symbol plus the relevant extra
information corresponds to a specific simple operation on the Prolog
Machine. 1If one discounts dereferencing and cases resulting in a
failure of wunification, the operation usually involves a strictly
bounded amount of processing. It is therefore natural to think of the

augmented syinbols as primitive machine instructions of the PLM.* {* In

fact the analogy with a convential machine like the DECI0 is quite

close if one compares dereferencing with the DECL0 s effective address

calculation and unbounded operations with DEC10”s block transfer (BLT)

and execute (XCT) instructions.}

No executable instructions are generated for the arguments and
subterms of a goal. These are represented purely by literal data as
indicated earlier. Also, no executable instructions are generated for
symbols deeper than the levels 1 and 2 in the head of a clause. Thie
is a purely arbitraxry limit based on considerations of

cost-effectiveness in practical examples of Prolog progranms.
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Before proceeding with a description of the instructions for the
head of a clause, we must first complete discussion of the different
categories of variable and the exact layout of an environment. The
variables of a clause are categorised according to expected

"lifetimes" which end when there is no longer any need to remember the

variable’s value. The categories are as follows:-

Name Lifetime ends Criterion

Global Backtracking. Occurs in a skeleton.

Local Procedure completed Multiple occurrences,
successfully and with at least one in the
determinately, ie. no body and none in a
choices remain within skeleton.

the procedure.

Temporary Completion of Multiple occurrences,
unification with the all in the head of the
head of the clause. clause and none in a
skeleton.
Void None. A single occurrence, not

in a skeleton.

The global variables of a clause are numbered in some arbitrary
order which determines their positions in the global frame. Similarly
local and temporary variables are numbered to determine their
positions in the 1local frame. The only constraint is that locals
precede temporaries. This is so that the temporary part of the local
frame can be discarded at the end of unification (see the diagram in
Appendix 1). Variables in either frame are numbered from 0 (zero)
upwards. No «cell is allocated for a void variable. In showing
exanples of Prolog machine code, we shall assume that the variables of
each type are numbered according to their order of appearance in the

source clause.
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We can now return to the discussion cof instructions for the head
of a clause. The head is terminated by an instruction “neck(I,J)’
where ‘I° is the number of local variables (= the number of the first

temporary if any) and “J° is the number of global variables.

The instructions for an occurrence of a varijable in the head
are:—

uvar(N,E,T) uvarl (N, E, 1)
uref(N,E,I) urefl (N, E, 1)

“uvar’ or “uvarl’ is used if it is the first occurrence, ‘uref’ or
“urefl’ otherwise. ‘uvar’ corresponds to level 1 and “uvar!’ to level

2, and similarly for all other pairs of instructions named “name” and

“namel”. ‘N’ dis the argument number of the occurrence, "E’ is the

frame (“local’ or “global’) containing the variable’s cell, and 17 is
the number of the variable. No instruction is needed for a variable

with a single occurrence.

Similarly there are instructions for an occurrence of an atom or

integer in the head:-

uaton(N,I) uatonml (N, 1)
uint(N,I) uinti(N,I)
Once again, ‘N’ is the argument number of the occurrence. For an

integer, ‘I’ 1is the actual value of the integer. For an atom, ‘I’

uniquely identifies that atom.

For a skeleton at level 1, the instructions are:-
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uskel(N,S)
init(I,J)
ifdone(L)

-

. argument
. instructions

L:

‘N’ is the argument number of the skeleton within the head. ‘S’ is
the address of a corresponding skeleton literal (which may be assumed
to be placed after the “foot” instruction). The global variables which
have their first occurrences within the skeleton are numbered from “I1°
through “J“~1. The effect of the “init’ instruction is to initialise
these variables to ‘undef’. If ‘I“="J°, the instruction is a
no-operation and may be omitted. The instruction “ifdone” causes the
instructions for the - arguments of the skeleton to be skipped if the

matching construct is a reference. ‘L° is the address of the

instruction following the last argument instruction.

Note that the arguments of the skeleton could be coded in  any
order since each instruction contains the argument number explicitly.
(A "first occurrence" of a variable would then mean the first
occurrence in the <code.) Similarly for the arguments of the head

boolean term itself.

A skeleton at level 2 is coded simply as:-
uskell (N, S)

where ‘N’ and S’ are analogous to the use in “uskel”.

Immediately before a  “neck’ instruction there are two

instructions:-

init(I1,J1)
localinit(I2,J2)

The global and local variables which have their first occurrences in
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the body of the clause are numbered respectively from “1I17 through
‘J1°=1 and from “I2° through "J2°-1. Once again, either instruction is

an omissable no-operation if the two numbers are equal.

The iustruction cerresponding to the cut symbol is “cut(l)’ where
“1° is the number of local variabes in the clause. There are a number
of instructions which simply replace some common combinations cf

instructions:~

neckfoot(J,N) : neck{0,J); footr(N)
neckcut(1,J) : neck(I,J); cut(l)
neckcutfoot (J,N) : neck(0,J); cut{d); foot(il)

That completes the basic instruction set of the PLM. We have not
described in detail the effect of each instruction, although this
should be clear from earlier discussion of how the PLM operates. Full

details are given in Appendix 2.

6.10 Examples Of Prolog Machine Code

Let us pow 1illustrate the way Prolog source clauses are

translated into Prolog Machine Code by considering some examples.

List membership is defined by the following straight-forward

member(X,cons(X,L)).
member(X,cons(Y,L)) :~ member(X,L).

The first clause has two global variables X and L. The second has orie
local X and two globals Y and L. The code for the clauses is as

follows. Addresses etc. are represented by underilined iddentifiers
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and vwhere appropriate the corresponding instruction is indicated by a

label as in conventional assembly languages.

clausel:

labell:
label?2:

clausel:

label3:

member:

6.10.2

An example of a use of “cut’

Code

uvar(0,global,0)
uskel(l, label2)
init(1,2)
ifdone(labell)
urefl(0,global,
neckfoot(2,2)
fn(cons)

var(0)

var(l)

0)

uvar(0,local,0)
uskel(l,}abel&)
init(0,2)
ifdone(labell)
uvarl (l,global,l)
neck(l,2)
call(member)
local(0)
global(l)

foot(2)

fn(cons)

var(0)

var(l)

enter
try(clausel)
trylast(g}auseZ}

maximum of two quantities:-

nmaximum(X,Y,Y) - X<y, !,
maximum(X,Y,X).

Source

member (X,
cons(

X,L)
).

member (X,
cons(Y,

L)

)i=

member (
X,

L)

is the following definition of the

(Here cut is not purely a contrecl device; the second clause can be

interpreted

the case that X is less than Y".)

as "the

maximum of X and Y is X by default if it is not

The first c¢lause has two local

variables while the second has one temporary X and one void Y. The
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corresponding code is:-—

Code . Source
clauscl: uvar(0,local,0) maximum (X,
uvar(i,local,l) Y,
uref(2,local,l) Y
neck(2,0) Yo
call(x) ’ <(
local{Q) X,
local(l) Yy,
cut(2) !
foot(3)
clause2: wuvar(0,local,0) maximun (X,Y,
— uref(2,local,0) X
neckfoot (0, 3) ).

maximum: enter
try(clausel)
trylast{clause2)

6.11 Mode Declarations

In the previous section we caw that the code fcr list membership
included skeleton literals. Now these skeleton literals are only
really used if the membership procedure needs to construct new lists,
ie. when the second argument in the call is (dercferences to) a
reference construct. This is unlikely to be the case. Ususally the
programmer will call “member’ simply to check whether something is a
nember of an existing list. 1In this case the “cons” subterms of the

,

“member’ procedure will serve only to decompose an existing data

structure, not to construct a new one.

If the programmer can uarantee to restrict the wuse of a
predicate in this kind of way, then the system can optimise the code

generated, The main potential improvements are:-
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* Unnecessary code can be dispensed with. If a skeleton term always
serves as a '"destructor'" then a skeleton literal is not needed. If it
always serves as a "constructor" then no executable instructions are

needed for the arguments.

)
..

* If these changes result in a variable no longer appearing in a
skeleton literal, then that variable no longer needs to be global.
Its cell can therefore be allocated on the 1local stack and space

N

recovered on determinate procedure exit.

Accordingly, the PLM allows the prcgrammer to specify an optional

mode declaration for each predicate. Some examples of the syntax used
are:- |
:-mode member(?,+).
:-mode concétenare(+,+,—),
The first declaration states that, in any call of “member’, the second
argument‘ will be a non-reference construct and the first argument is
unrestricted. The declaration for ‘“concatenate’ indicates that the
first two arguments are always non-reference constructs and the third
is always a reference. ie. ‘concatenate’ is applied to two given

lists to create a new third list.

These examples illustrate all the cases of mode information
currently accepted by, and useful to, the PLM. The idea could
obviously be extended. We should emphasise that the declarations are
optional and do not affect the visible behaviour of the program except
in regard to efficiency (provided the restrictions imposed are valid).
If no mode deciaration is given for a predicate, it is equivalent to a

declaration with all arguments “?7.
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The effect on the PLM of a mode declaration is limited to changes
to the code generaied for skeietons at level 1 and consequent
re-categorisation of variables. 1f a skeleton is in a “-° position,
it is playing a purely "constructive" role and the code is:=-

uskelc(N, S)
init(1,J)

ie. A “uskelc’ instruction replaces the ‘uskel” instruction and the

‘ifdone” and argument instructions are dropped.

e

If the skeleton is in a 4+’ position, it is playing a purely
"destructive'" role and the code is:-
uskeld(N,I)

.

. argument
‘ instructions

Here “1° uniquely identifies the functor of the skeleton. The ‘init’
and “ifdone” instructions are dropped and ne skeleton literal is
necessary. However if any argument of the skeleton is itself a
skeleton, the code for that argument becomes:-

init(1,J)
uskell (N, S)

‘N’ and “S’ are the argument number and address of a skeleton literal

i

for the subterm. "I’ through ‘J7-1 are the numbers of the global

variables having their first occurrences in “S°. As usual, the “init’

’

instruction can be omitted if "1°="J",

Note that if “uskelc’ encounters a non-reference, or ‘uskeld” a

reference, an error message is given and a failure cccurs.

|
|
|
|
i
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Finally we should observe that in the previously stated criteria
for categorising variables, 'occurrence in a skeleton'" should be
construed as "occurrence in a skeleton literal'". From a practical
point of wview it 1is the re-classification of variables into more
desirable categories which is of major importance. The full benefit
of wusing two stacks rather than one for variable cells can only be
obtained if mode declarations are used. For this reason we have not

treated mode declarations as one of the "optional extras" considered

later.

6.12 More Examples Of Prolog Machine Code

6.12.1
Let us now see how the declaration given for “member’
affects the code. There are no longer any global variables. Two of

them become voids, one temporary and one local:-

Code Source

clausel: wuvar(0,local,0) member (X,
uskeld(l, cons) cons(
urefl(0,local,0) X,L)
neckfoot(0,2) ).

clause2: wuvar(0,local,0) member (X,
uskeld(l,cons) cons(Y,
uvarl(l,local,l) L)
neck(2,0) )=
call(member) member (
local(ny X,
local(l) L)
foot(2)

member : enter

try(glausel)
trylasr(glausgg)
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6.12.2

A good example for illustrating many different features of code
generation is the following "quick-sort" procedure:-

t-mode sort(+,-).
<-mode qsort(+,-,+).
:-mode partition(+,+,-,=).

sort(L0O,L) :- gsort{(LO,L,nil).

gsort(cons(X,L),R,R0) :=
partition{L,X,L1,L2),
gqsort(L2,R1,R0),
gsort(Ll,R,cons(X,R1})).

gsort(nil,R,R).

partition(cons(X,L),Y,cons(X,L1),L2) :~
X =<Y, !, partition(L;Y,L1,L2).
partiticn(cons(X,L},Y,Ll,cons(X,L2)) :~-

partition(L,Y,LL1,L2).
partition(nil, ,nil,nil).

The code generated is as follows:=—

Code Source
clausel: wuvar(0,local,0) -sort(LO,
uvar(l,local,l) L
neck(2,0) )i-
local(0) LO,
local(l) L,
latom(nil)) nil)
foot(2) .
clause2: wuskeld(0,cons) gsort{cons(
uvarl(0,global,0) X,
uvarl(l,local,0) L),
uvar(l,local,l) R,
uvar(2,local,?2) RO
init(1l,2)
localinit(3,5)
neck(5,2) ):-
call(partition) partition(
local{0Q) L,
global(0) X,
local(3) L1,
local(4) L2),
call(gsort) gsort(
local(4; L2,
global(l) R1,
local(2) RO),
call(ggggi) gsort(
local(3) L1,



}9bell:

clause3:

clause4:

label2:

clauseb:

label3:

clauseb:

locai(2)
labell
foot(3)

fa(cons)
var(0)
var(l)

uatom(0,nil)
uvar(l,local,0)
uref(2,local,0)
neckfoot(0,3)

uskeld(0, cons)
uvarl(0,global,()
uvarl(l,local,9)
uvar(l,local,l)
uskelc(2,label2)
init(1l,2)
uvar(3,local,?2)
neck(3, 2)
call(:f)
global(0)
local(l)

cut(3)
call(partition)
local (0)
local(l)
global(l)
local(2)

foot(4)

fn(cons)

var(0)

var(l)

uskeld(0,cons)
uvarl(0,global,0)
uvarl(l,local,0)
uvar(l,local,l)
uvar(2,local,?2)
uskelc(3,label3)
init(l,2)
neck(3,2)
call(partition)
local(0)
local(l)
local(2)
global(l)
foot(4)

fn(cons)

var(0)

var{l)

uaton(0,nil)
uatom(Z,EET)
uatom(3,§zz)
neckfoot (0,0).

R,
cons(X,R1))

gsort(nil,
R,
R,
).

partition(cons(
X,

L),

Y,

cons(X,Ll),

L2
)=
=<(
X,
Y),

|
L ]

partition(

"L,

Y,
L1,
L2)

partition(cons(
X,

L),

Y,

L1,

cons(X,L2)

)=
partition(
L,

Y,

L1,

L2)

parrition(nil,_)
nil,
nil

).
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6.12.3

The following example illustrates

skeletons:~-

:-mcde rewrite(4,7).

the coding cf

rewrite(X or (Y and Z), (X or Y) and (X ox Z)):~!.

clausel:

labgiiz
label2:

label3:
label4:

label5:

Codg

uskeld(0,or)
uvarl(0,global,0)
init(l,3)
uskell (1, 1label2)
uskel (1, labcl3)
ifdone(iﬂhgik)
uskell (0, labeld)
uskell (1, label5)
neckcutfoot(3,2)
£n(and)

var{l)

var(2)

fn(and)

labeld

labe%i

fn(or)

var (0)

fn(or)

var(0)

var(2)

Source

rewrite(or(
X,

and{Y,2)),
and(

or(¥,Y),
or(X,2))
Y=t
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7.6 DECI0 IMPLEMENTATION DETAILS

In this section we shall indicate how the PLM can be efficiently
realised on a DECI0. A summary of the essential characteristics of
this machine is given in Appendix /3./. Fuller details of the
implementation of PLM instructions and literals are given in Appendix

/2./.

Short and long items both correspond to 36-bit words. A special
register corresponds to one of the sixteen fast accunulators. For
each writeable area there is set aside a (quasi-) fixed block of

storage in the low segment. The trail is accessed via a push-down

list pointer held in TR.

The DEC10 effective address mechanism contributes crucially to
the overall speed of the implementation. Each inner and outer literal
is represented by an address word which is generally accessed
indirectly. ie. The indirection bit is usually set in any DECLQ
instruction which refers to the address word. In particular, the
address word for a variable specifies the address of its cell as an
offset relative to an index register. The index register will be
loaded with the address of the appropriate frame. In other cases
(constant or skeleton), the address word will contain a simple
address. The net result is that, despite structure-sharing, it only
takes one instruction to access a unification argument. DMoreover, in
the majority of cases no further dereferencing of the argument will be
necessary. This can best be illustrated by looking at the code for an

example such as “uvar(3,glcbal,5)” :-
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MOVE T,@3(A} sindirect load of argument into T

TLNN T, MSKMA scheck construct is a molecule or constant

JSP C.SUVAR 3if not, call out-of-line subroutine

MOVEM T,5(V1) ;store argument in appiropviate cell
Thus in tie majority of cases only 3 instructions are executed to
conplete this unification step. The matching term might be
“global(4)” fepresented by:-

WD 4(X1i)
where WD’ indicates an address word with zero instruction field. If
the cell corresponding to this variable contains a molecule say, the
effect of the "MOVE’ dinstruction will be to load the molecule into
register T. Note: If the cell contained “undef’, subroutine “$UVAR’
would he responsible for recovering the address of the cell. This 1is
easily achieved by the instruction:-

MOVEI T,@-3(C)
which simply loads the result of the effective address calculation
into T. “=3(C)° refers back to the original “MOVE’ instruction. A

similar operation is needed if the matching term is a skeleton. More

generally, this illustrates how part (or all) of a PLM instruction can

)]
0

be performed out-of-line on the DECIQ with very 1little overhead,

the subroutine can easily refer back to the in-line code.

A molecule “mol(Skeleton,Frame)” is represented by a word:-
XWD frame,skeleton
The pair is inverted to facilitate accessing the arguments by
indexing. A reference construct corresponds to a simple address word
with left half zero. In passing, note that although all dereferencing
cculd be accomplished by a single instruction (with a different
representation of constructs and the indirecticn bit set in a

reference), this would not be cost-effective (multi-step dereferencing
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is too rare to justify the extra overheads). “undef’ is represented by

a zero word, as this value is easily initialised and recognised.

Both the “call” and “try’ instructions are represented simply by

‘JSP’s :-

JSP A,predicate j;call predicate

JSP FL,clause stry clause
other instructions are implemented as a mixture of in-line code ‘and
call to out-of-line subroutines via:-

JSP C,routine
The “uskel’ instruction, if it matches a non-reference has;the effect
of loading B with the address of the corresponding frame. If it
matches a reference, Y is set to zero and “ifdone’ is achieved by:-

JUMPE B,label

The TR field in a 1local frame holds the left-half of the
corresponding value for the TR register. This enables the trail to be
easily relocated since the TR fields will effectively contain trail

offsets rather than trail addresses.

Atom, integer and functor literals are represented by words:-
XWD SATOM,1i
XWD SINT,i
XWD S$SKEL, i
The left halves SATOM, SINT, $SKEL serve to label the different types
of literal. The right half “i” is either the value of the integer, or

a functor table offset. The functor table contains informaticn, such

as names and arities, associated with atoms and functors.
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8.0 OPTICNAL EXTRAS

In this section we discuss some '"optional extras" which can
substantially improve the efficiency of the PLM. Because they are not
strictly essential, we treat them separately 1in order to keep the
bagic description of the PLM as simple as possible. However since
both "extras" provide substantial benefits at comparatively little

cost, they should be regarded as standard.

8.1 Indexing Of Clausecs

The basic PLM eventually tries every clause in a procedure when

"cut" is used explicitly, or implcitly

seeking to match a goal (unless
when a prcof has been found). The code for each clause is actually
entered, although an early failure in unification may quickly re~-route
control to the next clause. This is fine so long as there are only a
few clauses in a procedure or when a high prdportion of the clauses
are going to match. However there are often cases where the clauses
for a predicate would conventionally correspond to an array or table
of information rather than a single procedure. Typically there are
many clauses with a variety of different non-variable terms in one or
more argument positions of the head predicate. An example might be
7

the clauses for a predicate phonenumber(X,N)’ where "N’ is the phone

number of person “X”.

Ideally one would 1like the system to access clauses
"associatively", tc achieve a higher "hit'" ratio of clauses matched to
clauses entered. In other words clauses should be indexed on a more

detailed basis than head predicate alone. However there is a danger
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of generating much extra indexing information which is not needed in
practice. For example a standard teiephone directory is indexed so as
to facilitate answering questions of the form
“ phonenumber (aperson,X)”’ . To cater for questions of the form
“phonenumber(X,anumber)’ would require another weighty volume which
would be useless to the average customer. So in designing an indexing
scheme one has to balance generality against the benefit realised in

practice from the extra information stored. Also the whole object of

the scheme will be nullified if the indexing process is not fast. In
Prolog, there is an additional constraint that the clauses must be
selected in the order they appear in the program, as this order

frequently constitutes vital control information.

Besides the main objective of speeding up the seiection of
clauses to match a goal, indexing also helps the machine to detect
that a choice 1is determinate because no further clauses in the
procedure will match. This is important for determining when space

can be reclaimed from the local stack.

The indexing scheme  we shall describe is relatively
straightforward, and results in clauses being indexed by predicate and
principal functor of the first argument in the head (if this term 1is
non-variable) . Tﬁis is achieved by replacing the first PLM instruction
in each clause by extra indexing instructions in the procedure code.
Much work is thereby telescéped, and clauses can often be selected by
a fast "table lookup". It is a simple compromise solution which 1is
perfectly adequate for many cases of practical interest, in particular
for compiler writing in Prolog. Moreover in many other cases it 1is

not difficult to rewrite the program to take advantage of the indexing




Page 70

proQided, cf. the way two dimenecional arrays are counventionally
nmapped onto one dimensional storage, in Fortren implementations say.
For example one might replace a set of unit clauses for ‘matrix’ by
unit clauses for “vector’ plus the clause:-

matrix(1,J,X) :— K is I%20+J, vector{(K,X).
provided we have:~

s=mode mateix(+,+,7).
The indexing then gives rapid access to the X such that
"matrix(I,J,X)° for given I and “J°. It also enables the machine to
take advantage of ‘matrix’ being a2 single valued function from ‘1 and
‘J° to ‘¥° and avoid retaining any local storage used in a call to
“matrix’ . Such rewriting can usually be done without greatly impairing

the "naturalness" and readability of rhe program.

We

[

shall now describe how the improved indexing scheme affects
the PLM instructions generated. Basically the first instruction in
each clause is to be omitted and the procedure code becomes more
conmplex. The clause sequence of a procedure is divided into sections
of consecutive clauses with the same ftype of argument at position 0 in
the head. The two types are 'variable" and "non~variable'. The former

corresponds to a general seciion and the latter to a special section.

The precedure code now takes the form of an “enter’ instruction

followed by alternating special and general sections:-
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enter

.

-

gsect

. general
. section
. code
ssect (L, C)
. special
. section
. code

Each general section commences with an instruction “gsect’. This
instruction 1is equivalent to ‘uvar(0,local,0)’. The clauses for a
general section’have at least this one mandatory local variable which
is bound to the term paésed as first argument in the call. If the
variable at position 0 in the head is global, an extra instruction:-

ugvar (1)
is placed at the beginning of the clause code. This instruction has
the same effect as “uvar(0,global,I)’. The code for the general
section is simply:-

gsect

try(Cl)
try(C2)

try(Cn)
where Cl through Cn are the addresses of the clauses in the section.

If it is the final section of the procedure, the last instruction is:=-

trylast(Cn)
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The code for a special section takes the form:-

ssect(Label,Next)

. non-reference

. code
Label: .

. reference

. code

endssect

Next:
‘ssect” is responsible for dereferencing the term passed as first
argument and if the result is a reference, control is transferred to

the reference code commencing at “Label’. The reference code 1is a

sequence of instructions, each of which is one of:-

tryatom(I,C)

tryint(I,C)

tryskel(S,C)
according to the form of the first argument in the head of the clause.
These instructions are respectively equivalent to:-

uatom(0,I); try(C)

uint(0,I); try(C)

uskel(0,S); try(C)
for the special case of matching against a reference. If it 1is the
final section of the procedure, the instruction ‘endssect’ is omitted
and one of:-

trylastatom(I,C)

trylastint(I,C)

trylastskel(S,C)
takes the place of the last instruction in the section. These
instructions are equivalent to:-

uatom(0,I); trylast(C)
ete. The instruction ‘endssect’ causes the following “gsect’

instruction to be skipped and takes over its role for the special case

concerned. The “endssect’ instruction is not strictly essential and
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could be treated as an ignorable no-operation instead.

The '"meat" of the improved indexing scheme lies in  the

non-reference code which immediately follows an ‘ssect’ instruction.

In general this code has the form:-

switch(N)
case(Ll)
case(L2)

.

case(LN)

. testcode

.

Basically, the code switches on a "hash code" determined by the
first argument in the call to some test code which finds (by a
sequence of tests against functors having the same "hash code") the
appropriate clause(s) (if any) for this functor. Each of these
clauses is then ‘“try“ed in turn. Usually there will be no more than
one clause per "hash code" wvalue and so the cost of finding this

clause is independent of the number of clauses in the section.

In more detail, instruction “switch’ computes a key determined by
the principal functor of the first argument in the call (which has

’

been dereferenced by “ssect’). ‘N’ is a certain power of 2 which is
the number of ‘case’ instructions following. The wvalue of N is
arbitrary and is currently chosen to be the smallest power of 2 which
is not less than the number of clauses in the section. A number M in
the range 0 to N-1 is derived from the key by extracting the least
significant I bits where N is 2 to the power I. ie. M is the key

modulo N. Control is then transferred to the address ‘L’ where the

(M+1) th. ‘case’ instruction is ‘case(L)’. If there are only a few
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clauses in the section (currently <5) then the

’ ’

switch and ’case’

e

instructions are cmitted and testcede as if for a single case follows.

In general the testcode indicated by the address ‘L° in a case

instruction is of the form:-

., "if’ dinstructions

-

goto(Next)
where ‘Next’” 1is the address of the next general section. An
instruction ‘goto{L)’ merely transfers control to address ‘L’. If the
list of “if" instructions would otherwise be empty (see below), all
the testcode 1is omitted and the corresponding case instruction is
‘case(Next)’. An “if’ dinstruction is one of:-

ifatom(I,Label)

ifint(I,Label)
ifskel(I,Label)

There is one “if” instruction for' each . different atom, integer or
functor which occurs as a principal functcor of the first argunent of
the head of a clause in this section, and whose key corresponds to the
case concerned. The “if’ instructions can be ordered arbitrarily.
"1’ uniquely identifies the atom, integer or functor concerngﬁﬁ Of ten
there will only be one clause for this counstant or functer, in which
case ‘“Label’ is the address of the clause’s code. The effect of the
“if’ ipstvuction 1is to transfer control to ‘Label” if the first
argument of the goal matches the constant or functor indicated by “I17.
Since ’ssect(_)Next)' will have set the FL field of the current
environment to “Next’, the net effect of the “if’ instruction is as if
(for example):-

uatom(0,I}; trv(Label)



Page 75

occurred immediately before the next general sectioi. If there is
‘more than one clause for a particular constant or functor, “Label’ is
the address of code of the following form:-

try(Cl)
try(C2)

éoto(Next)
[? Need “reload’ instructions if argument 0 is a skeleton. 7] Here
“Next’ 1is once again the address of the following general section and
the Ci are the addresses of the code for the different clauses, in

order of the source program.

If a special section is the final section in a procedure, the
opening instruction is:-
ssectlast(Label)
This instruction is like ‘ssect’ but if the first argument of the call
is a non-reference the machine is prepared for deep backtracking on

’

failure, (cf'< the relationship between ‘try and “trylast”). The
remaining code is similar to that for “ssect’, with an address “fail’
replacing all occurrences of the “Next” address. If control is
transferred to ‘fail”, the effect is to instigate deep backtracking.
If there is more than one clause for a constant or functor, the code
is:-

notlast

try(Cl)
try(C2)

trylast(Cn)
Instruction “nctlast’ prepares the machine for shallow instead of deep

backtracking.




Page 76

Firnally if the type of the first argument is restricted by a mode
declaration, part of the special section code can be omitted. If the
restriction is “+°, the reference code is omitted and the label in the
“ssect” instruction becomes “error’. If control is transferred to

“error’ a diagnostic message is given followed by deep backtracking.

¢ 4

If the restriction is “=", the non-retference code is replaced by the

instruction “goto(error)’. Thus the procedure code checks that the

type of tue first argument is consistent with any mode declaration.

8.1.1 Example -

We shall now illustrate the clause indexing by showing the
indexed procedure code for the following clauses:-

call(X or Y) :-= call(X).
call(X or Y) :-= call(Y).
call(trace) :- trace.
call(notrace) :- notrace.
call(read(X)) :- read(X).
call{write{X)) :~- write(X).
call(nl) :- nl.

call(X) :- ext(X).
call{call(X)) := call(X).
call(true).

call(repeat).

call(repeat) :- call(repeat).

The procedure code is as follows:-



call:

labell:
label2:
label3:

label4:

label5:

listl:

refl:

next:

list2:

ref2:

enter
ssect(refl,next)

. switch(8)

case(labell)
case(label2)
case(next)
case(label3)
case(label4)
case(label))
case(next)

case(next)
ifskel(gz,listl)
goto(next)
ifatom(trace,clause3)
goto(next)
ifskel(read,clauseb)
goto(next)
ifatom(notrace,clauseé)
ifskel(write,clauseb)
goto(next)
ifatom(nl,clause7)
goto(next)
try(clausel)
try(clause2)
goto(next)
tryskel(gE,clausel)
tryskel(or,clause2)
tryatom(??éce,clauseB)
tryatom(notrace,clause4)
tryskel(read,claused)
tryskel(write,clauseb)
tryatom(nl,clause7)
endssect

gsect

try(claused)
ssectlast(ref2)
ifskel(call,clause9)
ifatom(true,clausel()
ifatom(repeat,list2)
goto(fail)

notlast

try(clausell)
trylast(clausel2)
tryskel(call,clause9)
tryatom(true,clausel()
tryatom(repeat,clausell)
trylastatom(repeat,clausel?)
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8.2 Garbage Collecticn

We have already seen how 1local storage used during the
determinate execution of a procedure can be recovered at virtually no
cost. It is also possible to recover part of the global storage used,

though the garbage collection (GC) process needed is rather expensive,

hence the importance of classifying variables into locals and globals.
Neither of these techniques can reclaim storage from a procedure until
it has been completed determinately. While a procedure is still

active, there is little potential for recovering any of its storage.

Because of the cost, garbage collection should only be instigated
when there 1is no longer enough free space on the global stack. It

involves tracing and marking all the global .cells which are still

accessible to the program, and then compacting the global stack by
discarding inaccessible cells with remapping of any addresses which
refer to the global stack. A drawback, attributable to the structure
sharing representation, is that not all the inaccessible cells can be
discarded. They may be surrcunded in the frame by other accessible
cells, and the relative positions in the frame of all accéssible cells
must be preserved. This disadvantage relative to a "direct"
representation wusing ''heap" storage 1is nevertheless  probably
outweighed in most cases by the general compactness of

structure-sharing.

We say that a global frame is active if the corresponding local
frame still exists. Otherwise the frame 1is said to be passive.
Passive global f{rames correspond to procedures which have been
completed determinately. The aim of GC is to reduce the sizes of

passive global frames by discarding inaccessible cells from either end
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of the frame. If possible the frame is dispensed with altogether.

In order to perform the GC process, it is necessary to make some
slight changes to the format of the data on the two stacks:~
(1) An extra GC bit must be made available in (or associated with)
each global cell. This bit will be set during the trace and mark
phase if the cell is to be retained.
(2) An extra (long) location is needed at the beginning of each global
frame. This contains a special value of type ‘mark(N)’
distinguishable from other constructs. During GC, this location marks
the start of another global frame and the value of N indicates the
amount the frame is to be displaced when coﬁpaetion takes place. If
the frame is to be discarded altogether, the value in the location is
set to “discard(N)’, where N is the relocation factor which wouid
apply if the frame were not to be discarded.
(3) An extra l-bit of management information is needed in the local
frame. This indicates whether or not there is a corresponding global

frame.

The GC process needs to be able to trace all existing local
frames (and the corresponding active global frames). The information
needed resides in the X and VV fields of the local frames, with the VI
fields indicating the paired active global frames. The following
algorithm performs the enumeration:-

local frame pointer Parent := register X;
local frame pointer Alternative := register VV;
while Alternative >= root environment, do
(while Parent > Alternative, do
(select(Parent);
Parent := field X of Parent);
select(Alternative);
Parent := field X of Alternative;
Alternative := field VV of Alternative)
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root environment <0

\: X field
Y. VV field

N\

We can now outline the entire GC process:i-

preliminaries:
/* this step reduces recursion during tracetmarking */
for each active global frame,
mark the GC bit in each cell;
tracetmarking:
for each local frame
and corresponding active global frame if any,
(tracetmark each local cell;
tracetnark each global cell);
computing displacements:
for each global frame in ascending order,
compute its displacement and set mark(N) where
N := displacement of previous frame
+number of cells dropped from end of previous frame
+sizes of any intervening frames discarded
+number of cells dropped at start of this frame;
remapping of global addresses:
for each local frame,
(remap~-global-pointer for the V1 field;
remap each local cell);
for each global frame,
remap each global cell;
for each trail item,
remap the trailed reference;
also remap-global-pointers X1,Vi,VVl;
compacting the global stack:
physically mova the remaining global frames to their new
positions, unmarking the GC bit in each cell.

procedure tracet+mark(Cell):
uses a pushdown—-list set up in free space at the top of the
local stack; '
mark the GC bit in Cell;
if Cell contains a reference to a global cell, Geell,



Page 81

and Gecell is not already marked,
then tracet+mark(Geell)
else if Cell contains a molecule
then tracetmark each unmarked global cell
for the variables in its skeleton
else return.

procedure remap(Construct):
if Construct is a global reference,
then scan bacl through the frame to the preceding mark(N)
and subtract N from the reference
else if Construct is a molecule
and there is a variable in its skeleton,
then find the mark(N) preceding the variable’s cell
and subtract N from the frame field of the molecule
else return.

procedure remap-global-pointer(Address):
if the location before Address contains “discard(N)’
then subtract N from Address
else the location contains “mark(N)’ in which case subtract N=M
from Address where M is the number of unmarked cells
starting at Address.
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9.0 DESIGN FHILOSOPHY

Having described the main features of our Proclog implementation,
it dis perhaps worthwhile to comment on the criteria which influenced
design decisions. It is hoped this will provide some answer (o
inevitable questions of the form "Wouldn't it be better if......?" or

"Was it really necessary to......?7".

Firstly, software dimplementation has to be judged by the
standards of an engineering discipline rather than as an art or
science. One cannct hope to achieve an ideal solution to every
problem, but it dis essential to find adequate solutions to all the

major ones. Generally speaking simplest is best.

A good example is the contrast between earlier attempts to use
"theorem provers" as Gproblem solvers” and Prolog itself. The earlier
attempts failed because no adequate solution had been found teo the
problem of controlling the system in a reasonable way. Although the
simple solution adopted by the originators cf Prolog does not saticfy
all the aspirations of "logic programming", and so is perhaps not
"ideal™, it does transform logic into an adequate, indeed powerful,

programming tool.

In our experience of using Proleg we have not found any example
which demands nmore sophisticated control facilities. Nor have we felt
any overwhelming need for extensions to the language. By far the
worst practical drvavback has been the large amounts of working storage
required to run tlie Marseille interpreter. Also, although interpreted
Prolog is fast enbugh for most purposes, it is too slow for running

systems programs such as the Prolog 'supervisers". This is a pity
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since Prolog is otherwise an excellent language for software
implementation. Therefore improved efficiency, both of space and

time, has been the major aim.

In implementing any language, it is important to have in mind
some representative programs against whicﬁ to check the relevance of
design issues and on which to base decisions. For this purpose, we
have taken the existing Prolog supervisers and the new Prolog compiler
itself, as their efficiency is what ﬁatters most to the average Prolog
user, Looking at typical Prolog programs such as these, one finds
that the full generality of Prolog is brought into play only rarely.
At almost every step one is dealing with a special case that can be

handled more efficiently. Examples are the following:-

* Many procedures are determinate. We can capitalise on this to

recover nuch of the working storage used.

* Of the symbols which make up the head of a clause (functors,
constants and variables), the majority are typically variables, and
moreover are typically first occurrences of the variable. We have
seen that the code for this important case of the first occurrence of

a variable performs a relatively very trivial operation.

0

* In the source program, the arguments of a goal are almost
always variables. Hence the decision to genevate executable
instructions for terms in the head of a clause rather than those in

the body.
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o

* Predicates are usually used in a restricted mode with certain

arguments providing procedure inpu and others receiving procedure

=

output. Optional mode declarations eunable the system to avoid
gencrating unnecessary code and also to increase the amouni of storage

recovered automatically when a procedure exit is determinate.

* The first argument of a predicate is analogéus to. the subject
of a natural language sentence, and it is natural for this argument to
be zn "input" of the procedure. Often the clausesy of the procedure
councerned represent different cases according to the principal functor
of the term supplied. An efficient treatment of such "definiticn by
cases”"  is implemented which selects the correct case(s) by table

lockup. This feature is invaluable for writing compilers in a natural

and efficient way.

* Terms are rarely nested to any degree in clauses 1esponsible

for major computation. Hence the decision not to bother to generate

executable code for terms nested below level 2.

In short, it is the treatment of such special cases which is the

decisive factor in determining efficiency.

The design objectives may be summarised as being aimed towards
making Prolog a racticable systems programming language. It was

considered reasonable for the systems programmer to have to understand

)]

ome general facts about how the language has been implemented in
order to use it with maximum efficiency. eg. The systems programmer
is expected to be aware cf when his clauses can be compiled into a
table lookup and to appreciate the need for mode declarations.

However, as far as the naive programmer is concerned, none of this
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knowledge is necessary to write correct programs.

In most conventional programming languages, it 'is difficult to
separate the essentials of program design from the details cf
efficient implementation. One cannot state one without the other.
For example, PL/1 faces the programmer with choosing, at the outset,
the storage class of his data. The choice strongly affects the form
of the program. Similarly most languages have mandatory types for all
data items and the programmer cannot easily change a data type once
"coding" has commenced. This even applies to more high-level

"abstract" data structures have to

languages such as Lisp, where all
be mapped dinto concrete list structures. It is difficult to avoid

becoming committed to referring to some abstract component as CDDAR

say.

The approach we favour is to specify an algorithm as an essential
core, to which extra pragmas (pragmatic information) are added. The
pragmas need not be supplied until a later stage and give guidance on
how the core is to be implemented efficiently. They do not affect the
correctness of the program. An example of a pragma is the predicate
mode declaration supported by this implementation. There are numerous
other possibilities in the same vein which could make 1logic based
programs more efficient, while preserving the simplicity and ease of

use of the core language.

For example, more sophisticated clause indexing is clearly needed
in some cases, yet it is unrealistic to expect the system to arrive at
the optimal choice since, among other things, it depends on how the
clauses are going to be used. Plainly there is scope for the

programmer to give guidance through some new form of pragma.
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16.0 PRERFORMANCE

S e e

10.1 Resulgﬁ

Some simple benchmaik tests to assess Prolog performance are
presented in Appendix 5. The other languages chosen for ceomparison are
Lisp and Pop-2. The three languages have similar design aims and can
usefully be compared. All are intended for interactive use, and are
paricularly oriented towards non-nunerical applications, with the
emphasis on generality, simplicity and ease of programming rather than
absolute efficiency. (Also, all are in active use on the Edinburgh

DEC10.)

Each benchmark is intended to test a different aspect of Prolog.
No fixed criteria were used for selecting the "equivalents" in the
other languages, and so each example should be judged on its own
merits. One should observe that there is no absolute sense in which
the performance of different language implementations can be compared,
except where there 1is a clearly defined correspondence between the

programs of the two languages.

In the case of Prolog, Lisp and Pop~2, there is a subset of each
for which there is a fairly obvious, objectively defined
correspondence, namely the class of procedures which compute simple
functions over lists. This correspondence is illustrated by the first
benchmark, a "naive'" procedure for reversing a list. This procedure
is useful as a benchmark simply because it leads to heavy "list
crunching"”. The time ratios quoted are typical of the class. Thus it
is usual for compiled Prolog procedures which compute simple list

functions to run at 50-70% of the speed of the Lisp equivalents, for
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exanple.

The second benchmark is a '"quick-scrt" algorithm for sorting
lists. The auxiliary procedure ‘partition” shcws the worth of
multiple output procedures. For comparison, we have selected a Lisp
version which packages the two outputs into a list cell. Nested
lambda expressions are required for the unpacking. The Pop-2 version
is taken from p.235 of the Pop-2 handbook [Burstall et al. 19717,
omitting the refinement which caters for non-random input lists. Thus
we have essentially the same algorithm as the Prolog and Lisp
versions, but with gotos and explicit stack manipulation replacing
normal function calls. This transformation makes the functicn rather
difficult to understand, although evidently it improves the speed. It
is interesting to note that the more transparent Prolog formulation is

also appreciably faster.

The third benchmark is a much favoured example of non-numerical
programming - the differentiation of an algebraic expression. The
Lisp version is a slight extension of Weissman’s [1967, p.167] DERIV
function and the Pop-2 form is likewise extended from an example on
p-.26 of the Pop-2 handbook. TheAProlog formulation is concise and
echoes the textbook equations in a way which is immediately apparent.
It demonstrates the advantages of general record structures
manipulated by pattern matching where the record types do not have to
be explicitly declared. IlMoreover the timing data shows that the
Prolog version is fastest. Notice how the Prolog speed is most marked
in cases where a lot of data structure is created, eg. when a
quotient is differentiated. This characteristic 1is a result of

structure-sharing and will be discussed later.
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The fourth benchmark was chosen to test the implementation of the
logical variable, and was suggested by the kind of precessing which is
typical of a compiler. The task is to fraiislate a list of symbols
(here actuzliy numbers) into a corresponding list of serial numbers,
where the items are to be numbered in "alphabetical" order (here
actually numerical order). The ‘serialise” procedure pairs up the
items of the input list with free variables to produce both the output
list and an "association list". The elements of the associarion list
are then sorted and their serial numbers computed to complete the
output list. For comparison we show a Lisp implementation which
attempts as far as possible to satisfy the conflicting aims of
parvalleling the Prolog version and remaining close to pure Lisp. The
main trick is to operate on the cells of a duplicate list, eventually
overwriting the copied elements with their serial numbers. The choice
of a Pop-2 version seems even more arbitrary and we have not attempted

to provide one.

The final benchmark is designed to test the improvement gained by
indexing the clauses of a procedure. The task is to interrogate a
"database" to find countries of similar population density (differing
by less tﬁan 5%). The database contains explicit data on the areas and
populations of 25 countries. A procedure “density” fills in "virtual
data'" on population densities. As 1is to be expected, the speed
advantage of compiled code is considerably enhanced relative to either
Prolog interpreter, neither of which dindexes clauses within a
procedure. Thus the benefit of compilation is a factor of around 50

instead of th

6]

normal 15 to 20. The figures for the “deriv’ example
show a similar but less pronounced effect. To dillustrate the

correspondence between backtracking in Prolog and iterative loops in a
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conventional language, we show a Pop-2 version of the database
example. The demographic data is stored in Pop-2 'strips" (primitive
one-dimensional fixed-bound arrays), and the “query’ clause translates
into two nested forall loops. As the timing data shows, the speed of
Prolog backtracking can better that of a conventional iterative

formulation.

We shall now summarise the results of these benchmark tests and
other less direct performance data. Firstly, comparing Prolog
implementations, one can say that compilation has improved running
speed by a factor of (typically) 15 to 20 relative to the Marseille
interpreter. The improvement is greater where clause indexing pays
off, and somewhat less in certain cases .where terms are nested deeper
than level 2 in the head of a clause. The speed of our Prolog
interpreter implemented in Prolog 1is very similar to that of the
Marseille interpreter, and their times are remarkably consistent. <{In
fact, our interpreter could be mwmuch faster if the present clumsy

nethod for interpreting the "cut" operator were avoided, eg. through

1 "

'ancestral cut", ie. a "cut"

provision in the compiler of back to an

ancestor goal instead of the immediate parent.}

The results of comparing Prolog with a widely wused Lisp
implementation may be summarised as follows. For computing simple
functions over lists, compiled Prolog typically runs no more than
30-50% slower than pure Lisp. Of course such a comparison only
evaluates a limited part of Prolog and can’t be entirely fair since
Lisp 1is specialised to just this area. In cases where a wider range
of data types than simple lists is really called for (or where

"conses" outnumber ordinary function calls), Prolog can be




significantly faster. ¥or what

benchmarks (taking only the “ops8’ figuves for

speed at 0.75 times that of Lisp.

As regards Fop-2, in all trhe benchmark tests

at least 60% faster, even where the Pop~-2 version

it is worth, the mean of the 4

Page 90

common

’

deriv’) puts Prolog

cempiled Prolog

ran

was formulated using

more primitive language constructs such as gotos and '"strips'. The
mean for the 4 common benchmarks (again taking the “ops8 data) puts
Prolog 2.4 times faster than Pop-2.

Small benchmark tests c¢an only give a partial and possibly
biassed indication of efficiency; an implementation 1s better
evaluated from the performance of large-scale programs. On these
grounds it 1is perhaps useful to look into the performance of the

Prolog compiler. Recall that the compiler is

Prolo and furthermore is almost entirely "pure" Prolo ie.
p g

having & declarative semantics). In practice compilation

two phases, with DEC’s HACRO assembler
phase:-
Prolog Prolog Assembly
source compiler language MACRO
file ———emmme—————— > file W e
(Phase 1) {Phase 2)

The ratioc of the times for Phase 1 : Phase 2

of 3 to 2. It is surprising the times are

Phase 2 is a relatively simple process, and the

commercial

is only generating about 2 instructions

so it 1is not

Phase 2. An average figure for the compiletion

itself

is usually of

MACRO

software implemented in a low-level language.

speed

implemented in
clauses

proceeds  in

being used for the sccond

Relocatable

the order

not more different, since

assenbler 1is

The compiler

for each Prolog souice symbol,

simply a case of Phase | creating volumincus input to

of the Frolog
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compiler (Phase 1 only) is 10.6 seconds per 1000 words of code
generated. This includes input of the source file and ocutput of the

assembly language file.

So far we have only discussed performance in terms of speed.
From an historical point-of-view, space economy has been of far more
concern to the Preclog user, and accordingly was a major objective of
this implementation. It 1is therefore 1important to assess how
effective the new space-saving techniques have been. From the nature
of the techniques, an improvement will only obtain for determinate
procedures (apart from an overall 2-fold improvement due simply to
tighter packing of information into the machine word), so much depends
on how determinate programs are in practice. The compiler itself, a
highly determinate Prolog program, now rarely requires more than 5K
words total for the trail and two stacks. When the compiler was
interpreted by the Marseille interpreter (before it would
"bootstrap"), 75K words was not really adequate for the whole system,
of which roughly 50K would be available as working storage. This
suggests approximately a 10-fold space improvement for determinate

programs.

It is difficult to make more direct comparisons with either the
Marseille dinterpreter or the Lisp and Pop-2 systems, and we have not
attempted to do so. Firétly none of fhese systems provides an easy
means of determining how much working storage is actually in use (as
opposed to available for wuse). Secondly it 1is debatable what
measurements should be wused to. compare systems having different
storage allocation regimes, especially where memory 1is paged. For

exanple, how much free storage is "'necessary" in a system relying on
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garbage collection? {The fairest proposal might be to ascertain and
compare, for each benchmark, the smallest amount of non-sharable
physical wmemory in which the test will run without degrading
performance by more than a certain perceatage. This would be a

tedious task.}

It is probably fair to say that the '"average'" compiled Prolog
program requires considerably more working storage than Lisp or Pon-Z
equivalents, but that with careful and knowledgeable progranming
{(using mode declarations and ensuring determinacy) the Prolog
requirement need not be much different from the other two. (For
example, it is doubtful whether & Lisp or Pop-2 implementation of the
Prolog compiler would use less storage.) The difference between Prolog
and the other two is likely to be of less practical significance on a
virtual memory machine. The extra storage required by Prolog
typically represents groups of "dead" enviromments which are not in

active use, and which are also adjacent in memory by virtue of the

stack regime. Therefore they can generally be paged out.

From the coding of PLM instructions detailed in Appendix 2, we
see that the compiled code is relatively compact at about two words
per source symbol. For the record, the "high-segment" sizes of our
conpiler and interpreter are vrespectively 25K words and 14K words.
These sizes represent the ‘total sharable c¢ode including essential

run-time system.
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The above results show that Prolog speed compares guite wzll with
ther languages such as Lisp and Pop-2. Also the performance ci the
compiler suggests that sofiware implemented in Proiog c¢an reach an

o

acceptable ctandard of efficiency.

Now on the face of it, a 1language such as pure Lisp offers

+

simpler and more obviously machine-oriented facilities. How is it

that Prolog is not considerably slower?

The first point to notice is that Prolog extras - the

[}
o

f)
e

flexibilit of unificaticn with the logical variable and backtrackin
(&

aQ

- lead to very little overhead when net used, provided the program is
compiled. For example, consider the code generated for the
'concatenate"procedure (cf. Appendix 5.1) and assume it is called,
as for the corresponding Lisp function, with two arguments ground (ie,
teims containing no variables) and a variable as third argument. AL
unification on the first two argumenis cf “concatenate’ reduces to
simple type checks and direct assignments. Unification on the third
argument is somewhai more costly, as it is creating the new cutput
list (cf. the "conses" performed by the Lisp procedure). If indexed
procedure ccde is generated, the Prolog machine readily detects that
it is'executing a determinate procedure aud there are no significant
overheads attributable to "backtracking" .- the trail is never accessed
and all local storage is autowmatically recovered con procedure exit.
In short, the procedure is executed in much the same manner as one

would expect for a conventional language.
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Despite this, it is still surprising that Lisp 1is not several
times faster than Prolog. Lisp has only the eme record type and, more
importantly, it does not provide complete security against program
error - car and cdr are allowed to apply indiscriminately toc any
object. As a result no run-time checks are needed and the fundamental

selectors are effectively hardware instructions on the DECLO.

In analysing the recasons for Prolog’ s relative speed, we are led
to the following, perhaps unexpected, conclusions:-
(1) Specifying operations on struciured data by "pattern matching” 1is
likely to lead to a better implementation than use of conventional
selector and constructor functions.
(2) On a suitable machine, the "structure-sharing" representation for
structured data can result 1in faster execution than the standard
"literal" representation. To be more specific, it allows a "cons" to

be effected faster than in Lisp.

To illustrate the reasons for these conclusions, let wus compare
(a) an extract from the definition of evalquote given in the Lisp 1.5
Manual [McCarthy et al. 1962] with (b) the clause which is its Prolog
counterpart. We shall write the Prolog functor corresponding to cons
as an infix operator *.° :-
(a) applylfn;x;al

R

eqlcar{fn] ;LABEL] -> applylcaddr
conslc

Vo

fnl 5 x;
onsicadr[fn];caddr{fn]];all

¢

(b) apply(label,Name.Form,_}X,A,Result) -
apply(¥orn,X, (Nane.Form) .A,Result) .
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As an aside to our main argument, we may first of all observe
that "pattern matching" makes it mwuch easier to visualise what is
happening. The patterrn matching version alse invites a better
implementation. No location corresponding to the variable “fn’ needs
to be set aside and initialised. It is only the ferm  and
subcomponents of this  argument  which are of interest. The
decomposition is periormed initially once and for all by pattern
matching. In contrast, a straightforward implementation of the Lisp
version will duplicate much of the work of decomposition. The double
occurrence of caddr is the most noticeable cause, but we should also

remember that caddr and cadr share a common step.

A more technical consideration 1is  that pattern matching
encourages better use of index registers. A pointer to the structured
object is loaded just once into an index register and held there while
all the required subcomponents are extracted. Unless the Lisp
implementation is quite sophisticated it will be repeatedly reloading
the value of “fn”, and subcomponents thereof. A related issue
concerns run-time type checks needed in languages 1like Pop-2., (Lisp
manages to avoid such checks for the reasons nected above.) An
unsophisticated implementation of selector functions will have to
perform a type check before each appiication of a selector. With
pattern matching, one type check suffices £or all the components

extracted from an object.

Finally, for procedures such as “apply” above, pattern matching
also encourages the implementation to integrate type checking with

case selecticn, building in computed gotos where appropriate,
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To summarise, not only is pattern matching more convenient for
the wuser, it also 1leads the implementor directly to an efficient
implementation:-

(1) Procedure call and argument passing are no longer just '

'red tape"
~ they provide the context in which virtually all the "productive"
computation is performed.

(2) No location needs to be set up for an argument unless it is
explicitly referred to by name.

(3) One can select all the required components of a compound object in
one efficient process using a common index register.

(4) Type checking is performed once and for all at the earliest
opportunity.

(5) It is easier for the implementation to replace a sequence of tests
with a computed goto.

Hoare [1973) has proposed a more limited form of '"pattern matching"

for an Algol-like language and has advanced similar arguments for its

clarity and efficiency.

Let us now consider the impact of structure-sharing on
efficiency. Ironically, this technique was first devised by Boyer and
Moore as a means of saving space. However we shall argue that it is

even more important for its contribution to Prolog’s speed.

Clearly the direct representation of a compound data object, as
used in Lisp implementations and for source terms in Prolog, would
enable somewhat faster access to components. lowever, the
representation in our DECL0O implementation of a source term variable
by an indexed address word means that each argument of a constructed

term can likewise be accessed in just one machine instruction.



(Further dereferencing is sometimes needed, but this is comparatively

rare in practice.) Thus the only significant accessing overhead for

1

structure-shared objects is the necessity fcr preliminary loading of
the frame component of a molecule inte an index register. The great
advantage of structure-sharing lies in the supreme speed with which

complex new objects are created, and also the ease with which they can

be discarded when no longer -needed.

To see this, let us return to our evalquote example. The Lisp
version has to perform two 'conses" to construct the third argument of
the call to apply. Each "cons" involves:-

(1) grabbing a new free cell, after checking that the free list is not
exhausted;

(2) copying each component into the list cell obtained;

(3) saving the address of the new cell.

I1f, as Prolog, Lisp allowed more than one record size, step (1} would

have to be a lot more complex.

In contrast, Prolog has to perform absolutely mne work to

=
)]
Q

construct the third argument of the call to ;apply'
executable code is generated for the term ‘" (Name.Form).A”. Yell, this
is slightly misleading since the analogous computation will in fact
occur during the next invocation of “apply’. when unificaticen creates
a new mclecule to bind to the next generation of A", However,
creating this molecule merely involves bringing together two existing

pointers as the hLalves of the word to bLe stored in “A’s cell.
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The difference between the two methods can be summarised as
follows. Languages like Lisp assemble the information to construct a
new object on a stack (local storage), and then copy the information
into special records individually obtained from heap storage. Prolog
leaves the information idin situ on the stack(s) and relies on
structure-sharing for later procedures to locate the information as
needed. Prolog is substituting extra indirection, which is very fast,
for the relatively slow operations of copying and heap management.
The Prolog cost of constructing new objects from a set of skeletons in
a clause 1is, at worst, proportional to V, the number of distinct
variables in the skeletons. The cost for conventional methods 1is at
least proportional to S, the total number of symbels in those
skeletons. V can’t be any greater than S, and is often much smaller.

The smaller V is, the more advantageous the Prolog method.

Another point to notice is that each Lisp cell "consed" up must
ultimately be reclaimed by the expensive process of garbage
collection. In tight situations, a garbage collecting system can
"thrash", spending nearly all its time on garbage collection a;d
little on useful work. It is for this reason that systems programmers
prefer not to rely on garbage céllectors. With Prolog, the user can
usually rely on the stack mechanism associated with backtracking to
recover all storage at negligible cost. This advantage is, again,

even greater if one considers the complexities of garbage collection

in other languages admitting more than one size of record.

A final point 1is that the stack regime 1leads to better
exploitation of virtual memory, since, as noted above, it avoids the

random memory accesses inevitably associated with "heap" management.
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11.0 CONCLUSION

Pattern matching should not be considered an "exotic extra" when
designing a programming language. It is the preferable method for
specifying operations on structured data, from both the user’s and the
implementor’s point of view. This 1is especially so where many

user-defined record types are allowed.

For "symbol processing'" applications where a transparent and
easy-to-use language 1s required, Prolog has significant advantages
over languages such as Lisp and Pop-2. Firstly the Prolcg program is
generally easier to wunderstand, mainly because it is formulated in
smaller units which have a natural declafative reading. Secondly
Prolog allows a wider range of problems to be solved without resort to
machine~ or implementation-oriented concepts. The logical variable
and "iteration through backtracking" go a long way towards removing
any need for assignment in a program. Finally our implementation
shows that these advantages can be obtained with little or no loss of
efficiency. 1In fact in many cases the distinctive features of Prolog

actually promote better implentation.
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