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2.0 ABSTRACT 

Prolog is a simple but powerful programming language founded on 

symbolic logic. It encourages rapid, error-free programming and 

clear, readable, concise programs. The basic computational mechanism 

is a pattern matching process ("unification") operating on general 

record structures ("terms" of logic). This report describes techniques 

for implementing Prolog efficiently. 

compile the patterns involved in the 

In particular we show how to 

matching process into 

instructions of a low-level language. Our implementation is actually 

a compiler (written in Prolog) from Prolog to DECsystem-10 assembly 

language, but the principles involved are explained more abstractly in 

terms of a "Prolog Machine". The code generated is comparable in speed 

with that produced by existing DEClO Lisp compilers. Comparison is 

possible since pure Lisp can be viewed as a (rather restricted) subset 

of Prolog. We argue that structured data objects, such as lists and 

trees, can be manipulated by pattern matching using a "structure 

sharing" representation as efficiently as by conventional selector and 

constructor functions operating on linked records in "heap" storage. 

Moreover the pattern matching formulation actually helps the 

implementor to produce a better implementation. 

Keywords 

Prolog, programming, logic, implementation, compiler, data structures, 

matching, unification. 
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3.0 INTRODUCTION 

This report describes techniques for efficie1,tly impleTienting the 

programming .language Prolog. It is written nainly for those having 

some familiarity with Prolog. For the benefit of a wider readership, 

we begin by attempting to answer briefly the questions "Why implement 

yet another programming language?", "What is so different about 

Prolog?". A precise definition of the basic l'rolog language is given 

in Section /4./. The sample programs listed in Appendix /5./ and 

referred to in Section /10.l/ may be useful. 

The second part of this introduction summarises the history and 

nature of Prolog implementation. 

3.1 Why 

Prolog is a simple but powerful programming language developed at 

the University of Marseille [Roussel 1975] as a practical too1 for 

"logic programming" [Kowalski 1974] [Colmerauer 197 5] [van Emden 

1975]. From a user's point-of-view one of Prolog's main attractions is 

ease of programming. Clear, readable, concise programs can be written 

quickly with few errors. Prolog is especially suited to "symbol 

processing'' applications such as natural language systems [Colmerauer 

1975] [Dahl & Sambuc 1976], compiler writing [Colmerauer 1975] [Warren 

1977), algebraic manipulation [Bergman & Kanoui 1975] [Bundy et al . 

1976], and the automatic generation of plans and programs [Warren 

197!+] [Warren 1976). 
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Data structures in Prolog are general trees, constructed from 

records of various types. An unlimited number of different types may 

be used and they do not have to be separately declared. Records with 

any number of fields are possible, giving the equivalent of fixed 

bound arrays. There are no type restrictions on the fields of a 

record. 

The conventional way of manipulating structured data is to apply 

previously defined constructor and selector functions (cf. Algol-68, 

Lisp, Pop-2). These operations are expressed more graphically in 

Prolog by a form of "pattern matching", provided through a process 

called "unification". There is a similarity to the treatment of 

"recursive data structures" advocated by Hoare [1973]. Unification can 

also be seen as a generalisation of the pattern matching provided in 

languages such as Microplanner [Sussman & Winograd 1970] and its 

successors. 

For the user, Prolog is an exceptionally simple language. Almost 

all the essential machinery he needs is inherent in the unification 

process. So, in fact, a Prolog computation consists of little more 

than a sequence of pattern-directed procedure invocations. Since the 

procedure call plays such a vital part, it is necessarily a more 

flexible mechanism than in other languages. Firstly, when a procedure 

"returns" it can send back more than one output, just as (in the 

conventional way) it may have received more than one input. Moreover, 

which arguments of a procedure are input; s and which will be output 

slots doesn't have to be determined in advance. It may vary from one 

call to another. This property allows procedures to be 

"multi-purpose". An additional feature is that a procedure may 
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"return" several times sending back altereative results. Such 

procedures are called "non-determinate 11 or "multiple-result". The 

process of reactivating a procedure which has already returned one 

result is known as "backtracking". Backtracking provides a high-level 

equivalent of iterative loops in a conventional language. 

There is no distinction in Prolog between procedures and what 

would conventionally be regarded as tables or files of data. Program 

and data are accessed in the same way and may be mixed together. Thus 

in general a Pro log procedure comprises a mj_xture of explicit facts 

and rules for computing further "vj_rtual" data. This and other 

characteristics give Prolog interesting potential as a query language 

for a relational database (cf. 

Example" [ 1974)). 

[van Emden 1976) and Zloof' s "Query by 

Earlier we compared unification with Hicroplanner-style pattern 

matching. There is an important difference which we summarise in the 

"equation":-

unification = pattern matching + the logical variable 

The distinction lies in the special nature and more flexible behaviour 

of the variable in Prolog, referred to as the "logical" variable. 

Briefly, each use of a Prolog varinble stands for a particular, 

unchangeable data item. However the actual value need not be 

specified immediately, and may remain unspecified for as long as is 

required. The computational behaviour is such that the programmer 

need not be concerned whether or not the variable has been given a 

-value at a particular point in the computation. This behaviour is 

entirely a consequence of constraints arising from logic, the language 

on which Prolog is founded. 
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By contrast, the variable in most other programming languages is 

a name for a machine storage location, and the way it functions can 

only be understood in this light. The II assigning" of values to· 

variables is the programmer's responsibility and in many situations he 

must guarantee that the variable is not left unassigned. This applies 

equally to the variables used in the Planner family of pattern 

matching languages. There, each occurrence of a variable in a pattern 

has to be given a prefix to indicate the status (assigned or 

unassigned) of the variable at that point. The programmer must 

understand details of the implementation and sequencing of the pattern 

matching process, whereas Prolog's unification is a "black box" as far 

as the user is concerned. 

There are some other programming languages where the variable 

does not have to be thought of as a machine location, most notably 

pure Lisp. In pure Lisp as in Prolog, the behaviour of the variable 

is governed by an underlying formal mathematical system, in this case 

Church's lambda calculus. As a consequence, the ma~hine-oriented 

concepts of assignment and references (pointers) are not an (explicit) 

part of either language. These are just some of a number of close 

parallels between Prolog and pure Lisp. 

Now it is well kno-wn that pure Lisp is too weak for many 

purposes. 

necessity. 

Various extensions to the language are a practical 

In particular the operations rplaca and rplac,Q_ are 

provided to allow components of a data structure to be overwritten. 

This immediately introduces into the language the concepts of 

assigrm1ent and reference which were previously avoided. 

------------------- ---- - -----------------------------------
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No similar extension is provided in Prolog, nor is it neecL:od 

owing to the special prope-::-ti.es of the. logical variable. The mai.n 

point is that a Prclog procedure r.:iay return as output an "incomplete" 

data str.ucture containing var.iables whose values bave not yet been 

specified. These "freen variables can subsequently be "filled in" by 

other procedures. This is achieved in the course of the normal 

matching process, but has much the same effect as explicit assigm1c•nts 

to the fields of a data structure. A nece~3Sa:::-y coro1L,r:-y is that \:hen 

two variables are matched together, they become linked as one. In 

implementation terns, a reference to one variable is assigned to the 

cell of the other. These referenc~s arc completely invisible to the 

user; all necessary dereferencing is hanrlled automatically behind the 

scenes. 

In general, the logical vc!rit1ble providc~s r;iuch of the power of 

assignment and references, but in a higher-level, easier-to-understand 

framework. This is reminiscent of the way most uses of ~ can be 

avoided in a language with "well-sn tw tu red II c:ontrol primitives. 

There is aa important relationship between co-routining and the 

logical variable. Co-routining is the ability to suspend the 

execution of one procedure and comraunicate a partial result to 

another. Although not provided as such in l'rolog, it is easily 

programmed without resort to low·-level concepts, because the logical 

variable provides the means for partial results and suspended 

processes to be treated as regular data structures. The ma~.n 

difficulty is to determine when to co-routine, but this problei~: is 

common to languages with explicit co-routining primitives. 
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So far we have previewed Prolog as a "set of features 11 • The 

"features are significant primarily because they mesh together well to 

make the task of programming less laborious. They can be looked on as 

a useful selection and generalisation of elements from other 

programming languages. However Prolog actually arose by a different 

route. It has a unique and more fundamental property which largely 

determines the nature of the other features. This property, that a 

Prolog progran can be interpreted declaratively as well as 

procedurally, is the real reason why Prolog is an easier language to 

use. 

For most programming languages, a program is simply a description 

of a process. Th~ only way to understand the program and see whether 

it is correct is to run it - either on a machine with real data, or 

symbolically in the mind's eye. Prolog programs can also be 

understood this way, and indeed this view is vital when considering 

efficiency. We say that Prolog, like other languages, has a 

procedural semantics, one which determines the sequence of states 

passed through when executing a program. 

Howevert there is another way of looking at a Prolog program 

which does not involve any notion of time. Here the program is 

interpreted declaratively, as a set of descriptive statements about a 

problem domain. From this standpoint, the "lines" of the program are 

nothing more than a convenient shorthand for ordinary natural language 

sentences. Each line is a statement which makes sense in isolation, 

and which is about objects ( concrete or abstract) that are separate 

from the program or machine itself. The program is correct if each 

statement.is true. 
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The natural declarative readL1g is possible, basically because· 

the procedural semantics of Prolog is governed by an additional 

declarative semantics, inherited straight from logic. The statements 

which make up a Prolog program are in fact actually statements of 

logic. The declarative semantics defines wlwt facts can bn inferred 

from these statements. It lays down the law as to 1.;hat is a correct 

result of executing a Prolog program. How the program is exccut·ed is 

the province of the procedural semantics. 

The declarative senantics lielps one to understand a progran in 

the same kind of way as the law of conservation of energy helps one to 

understand a mechanical system without looking in detail at t!ie for.c,,s 

involved. Analogously, the Prolog programmer can initially igr:ore 

procedural details and concentrate on the (declarative) essentials of 

the algorithr.,. Having the program broken dcwn iato s,ac1ll 

ind,~pendently meaningful units makes it much easier to understand. 

This inherent modularity also reduces the interfacing problems whc:'n 

several prograr.1mers are working Oi1 a project. Bugs are less l:i.kely, 

perh&ps because it is difficult to raake a "logical error" in a program 

when its logic is actually expressed in logic! 

Of course tbere will always be errors due to typing mistakes, 

oversights or plain muddled thinking. Such errors are, however, 

relatively harmless because of one other very important property of 

(basic) Prolog - that it has a totally defined (procedural) semantics. 

This means that j_t is impossible for a syntactically correct program 

to perform ( or even at tempt to perfonn) an illegal or undefined 

operation. This is in contrast to most other programming ianguagcs 

(cf. array iuclices out of bounds in Fortran, or car of an atom in 
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Lisp). An error in a Prolog program will never cause bizarre 

behaviour. Nor will the program be halted premat1rrely with an error 

message indicating that an illegal condition has arisen. 

3.2 What 

The first implementation of Prolog was an interpreter written in 

Algol-\/ by PL.i lippe Roussel [1972]. This work led to better techniques 

for implementing the language, which were realised in a second 

interpreter, written in Fo1:tran by Battani and .Meloni [1973]. A useful 

account in English of this implementation is given by Lichtman [1975]. 

A notable feature of the design is the novel and elegant 

11 struc ture-sharin;;" technique [Boyer, H:rnre 1972] for representing 

st:ruc tured data inside the machine. The basis of the technique i.s to 

represent a compound data object by a pair of pointers. One pointer 

indicates a "skeleton" structure occurring in the source program, the 

other points to a vector of value cells for variables occurring in the 

skeleton. The representation enables structured data to be created 

and discarded very rapidly, in comparison with the conventional 

"literal" representation based on linked records in "heap" storage. A 

further advantage is greater compactness in most cases, 

Hore recently, Maurice Bruynooghe [1976) has implemented a Prolog 

interpreter in Pascal. He gives a good introduction to the 

fundamentals of Prolog ir:1pler1entation and describes a space saving 

technique using a "heap". Other Prolog interpreters have been 

implemented at the University of Waterloo, Canada, (for IBH 370) and 

at Budapest (in CDL for ICL 1900). 



The main su\ject of this report is a Prolog system ~ritrc~ 

specifically for the DEC:,.,yc~tc:1·-lC [lJEl~ 197!.,] l.,,; the eutb,,i.', i.n 

collabor:::tion with Ix.is Pcreire 3.nd Fetnnndo I''c•rc:-ira of rhe tiat:L:mal 

Civil Engineeri.ng Lahoratc.11.y, ~lsbon~ The; sy\-;tc1..: incl.ud·::!s a cor11p:i.ler 

from Prolog into DiClO assembly langu3ge nod a ronvorsntional Prolog 

interpre':e:r:. It t~s2s the f.,·u:1e fundar:wJ1t2L dr:csizn, incl1~ding the 

si2cond 

lbrseille interpret~l Howev E:1' the fr1plemen tat ion is c ems id c t sb 1 y 

faster, owing to compilation, and also because it ½as pos2ible to 

capitalL-,e on e l e•o ant 
-- i..Y 

favourable tu the i;tructure-sharing technique. 

A variable in 3 "sl~clc~tou" .:::tructur·e can bt:: nicely repre.se:1tcd by 

a DEClO "address word". This sp,,cifics the address of the va,ial,le' s 

cell as au offset relative to thee contents of an index register. A_--iy 

DSClO instruction can obtain its operand indirectly by rcfcrrinE to an 

address ,,,ord. This me,rns that, once.the appropriate index tc';d,;~c,r 

has been loaded, 0ach of the fields of a 2t1ucture-shared record can 

be accessed in ; ust _, on·:: instruction. 

It \vi':S in fact the possi.bU:Llies c:f c:::::1piL1tion anci thl' DfCi0 

which originally inspired the writing of a n0w systew. (A prel~1innry 

version h'hich compiled into BCPL vas abandoned at an early stage since 

it was found impossible to fully exploit thl~ pctectial of the DECl(J.) 

The cor.1pi1e:i code sbowE, a 15 to 20-fold speed ic1pro'.remc1Jt over t\ie 

J½rsei]le i~terprctcr. It is quite con:pac t at about 2 110rds per 

source The co~?iler itself is written ia Prcl og and was 

"bootstrapped" using the l:hrseiJ le intr:1:'pretEoJ:. The new interpreter 

is also l2rgely irnplcrae~t2d in Prolog. 
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}~eh of the material in this report will be a description of 

techniques developed by others (although nowhere fully docu.'11ented). 

The main innovations arc:-

( 1) the concept of compiling Prolog, 

(2) certain measures to econo1:1ise on space required during execution, 

(3) improved indexing of clauses. 

The most important innovation is compilation. Now recall that a 

Prolog computation is essentially just a sequence of unifications or 

pattern matching operations. Each ur:ification involves r.iatching two 

terms or "patten:s". One term is a 11 goal 11 (or "procedure call11 ) and is 

instantL'lted. The other is the uninstantiated "head" of a clause (or 

"procedure entry point 11 ). The principal effect of col:lpilation is to 

translate the head of each clause into low-level instructions which 

will do the work of matching Against any goal pattern. Thus there 

remains little need for a general matching procedure. 

code has been generated to replace cost uses of it. 

Specialised 

Much of the code just amounts to simple tests and assignments. 

In particular, all that has to be done for the first occurrence of a 

variable is to assign the matching term to the variable's cell. 

this very common case is also very fast. 

Thus 

The code generated for a corJpound subterm (or sub-pattern) splits 

into two cases. If the matchi_ng term is a variable, a new data 

structure is constructed (using structure-sharing) and assigned to the 

variable. The code for the other case is responsible for accessing 

subcomponents of the matchinz term, ic. it does the work of selectors 

in a conventional language. 

--- ---- ----------------·----------------



The main drawback of th2 :.n tcrpr et er is 

unacceptrrble appetite for workir:g stor·a:;e Like Fruyriooghr~, 1:J.?. hc:r·?E~ 

devoted rcn;r;iderab1c att·cntion to thi~-; pr(;blcm, Our soluti:-rn i~; to 

clasd.fy Frolog vti1i;:,bles jnto "iocals" and "globals". T::i.'; J~; 

pcrfon:,ed by the, COJrrpiler and need b~ of no concl:'rc. to user. 

for the two typ,-'s is al located fro,J cliffet0nt n;_e8.s, t\-:e 1,v:2} ;;i;d 

global sLwks, analagous to the "stack.: end "hEr1p" of L\lgol u;. 

execution of a procedure ha::; been compll',·ed "detcnnlnately" (ir::. 

there ,.ffe no further r,1111 tiple r<=sults tc be--'. prc-cluccd), local stinag<2 

language. No garhuge collector is needed for this process. 

The space savir!f; achieved through this pl,)CC'.? c:=-,•1 oe :i1'1pn:;\'<::·:.i :if 

the user supplies optional pragnatic intnroation vin an innov~lion 

knm-m as "r:10de deci.llaration:,;". ,, r:;ode t:e•. J.aration decL>res a 

restriction on the use nf a procr:>durP, ie. one or r1o;_·e arg 1F:('tltf: ,:re 

v:::riable). Thus the user is for~;r,iu;c, ~;ot:1e of the flc,xtb:U_jiy cf 

l'r olog' s "rnul ti-purpo:::e" proceduLes, !f, is en;:bles the sys te:J to pluce 

a higher p1:oportion of var.iab.let; ir:. ti1c more 0c~;ii:c1b] 1° ".local" 

catPgory and also help::, to i,~prov,~ th:• cornpa2tncss of t ne cm,']nl0d 

cod~. 

In addition to these weasures, our sys-i-en can als1..J 1ec0-./er 

storage from the global stack by gaL'bage coll('ctian, cf. Algal 6U's 

heap. The garbage collector used hc.s to be CJ!lit·e int1i11cc1t(' even by 

no:ti;W.1 standards. 

and mark'', space is recovered by corpacting global storage stil 1 in 

use to the bottom of the stack.. Tl1is :invol'vf'S 11 1:er:iapping'r all 
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addresses pointing to the global stack. 

It is i;;1portant tC\ notice that a garbage collector is riot 

essential for our systeo. If the user restricts himself to smell 

tasks tbe grirbaze collector ncc0 d never· be 11sed. This is because a 

stPck mecb;inj_E'm recovers 3.'..:!J. ::,torage autor:H1tic 31.ly on boc:ct r-acking, or· 

when tbe ovcra11 task is co;,q;lcte, as for the H,,rseille interpreter. 

An addit ic>rl'"Jl point of practical impo·ctance is that ,.,,.:r inplei:!entation 

auto~atically adjusts the sizes of the different storoge areas during 

execution (rcoopping addresses as necessary). 

The conbined effect of these space saving measures is a 

substantial rcrh1ction in run-tir:i.e storage r..ecdod for progr£,1:1s which 

ate totally determinate (eg. the compiler itself) or partly 

dete1min,1t0 ( 0:iost l'rolog programs in pract·ice). A 10-fold ir.1prove1:1e,:it: 

over the rkin:icille interpreter ,11ould Df'C:!m to be rwt unusual, although 

this dependb very 1,,~1ch on the actual progrDm. (Even in the ,,orst case 

of a totally non-deter~inate program, there is still a 2-fold 

ir,1proveL,ent due simply to a better packing of information into the 

DEClO word.) 

In the Mnrseille interpreter, the clauses \1hich make up both 

program and data a,·0 only indexed by the predicate (ie. procedure or 

relation name) to whirh they relate. Our compiler indexes c] auses 

b ,,,-1-, '--~ ... .,,. ,. by predicate and by the form of the first argument to this 

pr~d.i.cat-e. This is tanlaLwunt, for a proceciure, to case selection by 

a fost "suitch" (or coi1puted _goto). For data, it amounts to storie;_~ 

infon~a:·ion about a relation in an array (or hash table). 



The a.in1 is to present~ l n ::::~J 

general a way as pos:dblc, ttw (_:.c;sential feattn,-'cl of OLT DU.I.I; 

convc,n t i onnl fo rr;. 

locat:inns, a1•d "pash-down" lists. Tl1e machine i1as repcrtoJ_~ .. ·c~ 

ir;si.Tnc t ions, each ta Ung a fi.xed of 

In nost cases, 

:Lcvolves on.1 y ., small iJ.nd b,,1md2d ar.,ount of cor1puteticr.. 

DFClO in mind. 

efficient. 

instruction is achieved partly by in-line code and pnrtly hy calls ln 

out-ot-·line sulnoutincs. The optir:1cl mixture :L~, a t.1cticaJ dc,cJsi.c:! 

which· l1as \'Hried con,;iderably during the cc:c:rse cZ iuplc,:,cnt.Jti..1,n. 

rnecn that ,,p,"rations nm hC:! performed oui.··of-linc ;_,i_tl1 \'e::ty little 

ovc;·head. 
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At present the Prolog co□ piler compiles directly into DECIO 

assembler. Since the compiler is itself written in Prolog, it could 

e2-sily be adapted to generate "Prolog machine code" as such. This 

code could be interpreted by an autonomous program written in almost 

any prograrnmin8 language. Alternatively it should not be difficult to 

produce a version of the compiler which translates into the assembly 

language of some other r:1achine. The compiler itself is not described 

here (see [\Jarren 1977] for a general discussion of compiler writing 

in Prolog). However the function it performs should be clear fror:1 the 

relationship between Prolog 1:1achine instructions and Prolog source 

prograrns docurJented in Section /6. 9/ and Appendix /2. /. 

Note: This report does not attempt to describe the 

implementation of the "evaluable predicates" etc. which are essential 

to a usable interactive system. These provide, among other things, 

built-in arithmetic, input-output, file handling, state saving, 

internal "database", and 1:1eta-logical facilities. It is an 

unfortunate fact that the 1:1aj or labour involved in implementing a 

Prolog system is providing such "trimmings". 

- -- ------------------------------------------



4,0 TH!t PROLOG LAUCU/IGE 

The baD-ic Prolog language is b,:c,st consirlcred as t,,.:,·inp, made up ,Jr· 

t~·o p2rts. On the one hand, a Prolog program consists of a set of 

logical statements, of the form known as !.lorn ".la:.ises, Clauses c1tf! 

just a Sirr1plc P..or1nal form, (classically) ec;:1ivale.~_1t to geric1_'Al l.o§_:i.c~.tl 

statements. Horn clauses are an irnf.H1rtcmt sub•-c1aEis, which ammF, r-s 

c;.sentially to dropping disjuncb.a:m ("or") fr_·.1rn the logl.('*. {* n, ;:, 

subclass appears to be common ground between classical Pnd 

intuitionist logic.} 

The seco~d part of Prolog consists of a very elementary control 

language, although "language" is reall.y too strong a word. Thr,:;t•gh 

this contL·ol infonnation, the progr,rnrner deterr.ines how the Prolc•g 

system is to set abo~t constr0cting a proof. ie. The programmRr 1s 

specifying JX~_y how he wants his computation done. The control 

language consists merely of simple sequencing info1~ation, plus a 

prim:Ltive which restricts the system from ccnsic\e1 ing unwanted 

alternatives in constructing a proof. 

There are t1,•o distinct 11ays of understanding O:e 1:1ennL,g of a 

Prolog program, one declarative and one? inper.stivP 

far as the declarative reacting is co:1cerncc!, one c:2n 1gnore the 

control component of the program. The declarative rc2J~a~ 

see that th2 ;,rograra is correct. Th2 procedural ref:id.lng it; nccc.c;sary 

to seP. whether the program j_s efficient or i.ndced pracLicaJ. 

Generally srca~ing, a Prolog program is first conceived declaratively, 

and then control infonrrarion is added to obtain a satisfactory 

pr,1ceclural aspect. 
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In the rest of this section ,,1e shall merely summarise the syntllx 

we use, and briefly describe the semantics (both declarative and 

procedural) of the lanr,uage. For a fuller discussion, see the 

references on Prolog and logic programming quoted earlier. The reader 

unfamiliar with Prolog Day also find it useful to look at the 

comparat:i.ve exaoples of Prolog, L:isp and Pop-2 listed in Appendix /4./ 

and discussed in Section /10.1/. 

4.1 Syntax And Terminology 

A Prolog pr~~ is a sequence of clauses. Each clause coDpri,:es 

a head and a body. Tht.: body consists of a sequence of zero or r:10H, 

_goals ( or rrocedur~'.:. ea lls). For exa'.Ylple the clause written:-

P : ·- Q, R, S. 

has Pas its head and Q, Rand Sas the goals making up its body. A 

unit clause is a clause with an er:ipty body and is written simply as:-

P. 

The head and goals of a clause are all exarc1ples of ten1s and are 

referred to as boolean terms. 

In general, a tel""i!l is either an elementary term or a cor:1pou12.9. 

term. A11 clern:::ntary te~ is either a variable or a constant. 

A ~Jab le is an identifier beginning with a capital letter or 

with the character '_, (underline). For exanple:-

X, Tree, LH!IT 

are all variables. If a variable has just a single occurrence in the 

clause this may be written simply as (underline):-



(Note ,:hat a vatiable iB lir:dtc,d .i.ri 1:;,ope rn a s:.,1glc C'lause, sn l"'.tdt 

distinct). 

A c0nstant 1~ either dn atu~~ {* :-Jot u, be 

confused wi.tb the use of resolution thPory, 

Lisp.} h1 atom is any sequencEc o.: cr•.Jracters, ,:h;ch i:rnc>t· be inii.:ten in 

single quot(:)S un.Jess i.t is a~-1. 1dGnt j_fie:r 1:.ot cc,nfusAblc t.r:i ~ h a 

variable or an integer. For exa~plc:-

a,·c al 1 atoms. In_t_r~ 1,crs are ('.(h!stants distL1ct· frn:.1 at·om,cl. 

identifie1 consistin~ of only dcci~aJ digirs will always re0rcsent 2n 

:Lriteger, For exr,nr,l e: -

999, 0, 727 

of the term) ,md a l:i.st of on2 or nore ter:,·,:.; called argu.::cnt3. 

functor is character:i.c.,ed by its~• which is an ator:1, 

or number of argt1,'11<"ntr:. For exanDle the compound terr:i, wh,)s2 functa 1 

is nGmecl "point" of arity 3, ~litb r,rgur:1ent,:3 X, 'i and Z i.,, wcittcm:-

point 0~, Y, Z) 

In addition to this ',tandard notation fCJr crn:i1x1 ulld terrns CC'rtai.n 

functors may be declared as prefix, infix or po~tfix cpe~2turs 

enabling ~lternativc notation such as 

X+Y, (P;cn, 3<4, not P, N factorial 

instc;;d of 

+(X,Y), ;(P,Q), <(3,4), not(P), factoria!(N) 

to be a functor of arity (\ 
v • the 
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principal functor of a constant is the constant itself. 

The principal functor of a boolean term is called a predicate. 

The sequence of clauses whose heads all have the same predicate is 

called the procedure for that predicate. The depth of nesting of a 

terr.1 in a clause is specified by a level number. The head and goals 

of a clause are at level O, their immediate arguments at level 1, and 

so on for levels 2, 3, etc. In general we do not allow a level O term 

to be a variable or integer. A compound term not at level O is called 

a skeleton term. 

Some sample clauses (for list concatenation and a 

inefficient list reversal) are:­

concatenate(cons(X,Ll),L2,cons(X,L3)) :­
concatenate(Ll,12,13). 

concatenate(nil,L,L). 

reverse ( cons(X, LO) , L) 
reverse(LO,Ll), concat~nate(Ll,cons(X,nil) ,L). 

reverse(nil,nil). 

4.2 Declarative And Procedural Semantics 

rather 

The key to understanding a Prolog program is to interpret each 

clause informally as a shorthand for a statement of natural language. 

A non-unit clause:-

P : - Q, R, S. 

is interpreted as:-

P if Q and Rand S. 

We now have to interpret each boolean term in the program as a simple 

statement. To do this, one should apply a uniform interpretation of 



--- -------~- ------

Page 2:Z 

each functor used in the program. eg. for the sarnpl~ clauses 2bove:-

nil "'" "the empty J ist" 

cGrn3(X,L) = "the 1isr whos2 firc~t ele:,'<cni: is X 
and n,maining (,J.u:,e11ts ar2 Lfl 

concatenate(Ll,L2,L3) = "Ll ,:oncatenated with L2 i'-' L3" 

reverse(Ll,L2) = "the reverse of Ll is L21l 

Each variable in a clause jg to be L1te1 pretcd some Brbitu11y 

object. Now our four clauses are sc,en to be shorthand for th,->. 

following stilted but otherwise intelligible English sentences:-

"The list, whos2 first eler..cnt i3 X and remaining eleraents are Li, 
c0,1catenated with 12 is the list:, whose first elc.i,1 ent i <_; X anc: 
remaining elenents are L3, if Ll concatenated with L2 i.s L3." 

11 The e:'.lpt_i' lisr- concatenated with L is L." 

r;The reverse of the list, whose first element i~: X and rcna:i.:nng 
el~nents are LO, is L if the reverse of LO is Ll 2nd Ll concatenate~ 
with the list, whose first element is X and remaining elements an: the 
enpty list, is L. 11 

"The reverse of the empty list is the empty list." 

The declarative semantics of Prolog defines the :::et of boolean 

terras which nHiY be de:ducecl to be true according tc the program. Pe 

say that a boolean term is true if it is the head of some clause 

instance and each of the goals (if any) of that clause instacce ~s 

true, Fhere an instance of a term (or clauc,e) is obtained by 

substituting, for each of zero or more of iU; variables, a new term 

for all occurrences of the varj_ab le. T~rnt completes the declnrative 

semantics of Prolog. 

Note that this recursive definition of truth makes no reference 

to the sequencing of clauses or tlie seqt:encing of goals within a 

clclusr.:. Such sequencin2, c•1nstitutes control informntion. It plays a 

role i.n the proceJural se1:·,nntics, which describes the wny the Prolog 

systrnn executes a program. Here, th~ head of a clause is interpreted 
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as a procedure entrv point and a goal is interpreted as a procedur': 

call. The procedural semantics defines the way a given goal is 

executed. The aim is to demonstrate that some instance of the given 

goal is true, 

To execute (or solve) goal P, the system searches for the first 

clause whose head r.iatches or unifies with P. The unification process 

[Robinson i965) finds the most general common instance of the two 

terms (which is unique if it exists). If a r.iatch is found j the 

matching clause instance is then activ2ted hy executing in turn, from 

left to right, each of the goals of its body ( if any) , If at any t irne 

the system fails to find a match for a goal, it barktracks. ie. It 

rejects the □ ost recently activated clause, undoing any substitutions 

made by the match with the head of the clause, Next it reconsiders 

the original goal which activated the rejected clause, and tries to 

find a subsequent clause which also matches the goal. Execution 

ten:linates successfully when there are no more goals waiting to be 

executed. (The system has found an instance of the original goal P 

which must be true.) Execution terminates unEuccessfully when al.l 

choices for matching the original goal P have been 

Execution is, of course, not guaranteed to terminate. 

rejected. 

ln general, backtracking can cause execution of a goal P to 

terminate successfully several times. The different instances of P 

obtained rep:cesent different solutions (usually). In this way the 

procedure corresponding to P is enumerating a set of solutions by 

iteration. 

-----~ -----------



- •~.~-~ -----~----- -- -

_He say that a goal ( or the co1-respcnding i1rocedure) has t 2.cn 

executed determinat-elv if exe,,ution is compl2tc, and no alt2rnat ive 

clauses exist fer any of the goals invoked during the execution 

(including the original goal). 

Besides the sequencing of go3ls and clauses, Prolog provides one 

other very imi:ortant facility for specifying control infomaticm. 

This is the "cuti' operator. 1.ffitt2n '!'. (Originally written '/' and 

dubbed "slash".) It is inserted Ln the program exactly like a goal, 

but is not to be regard(~d as pa rt of the logic of the pror,n;n and 

should bs ignored as far as the declarative semantjcs is concerned. 

ExBmples of its use are:-

meJ;1ber(X,cons(X,_)):-!. 
member(X,cons(_,L)) :- member(X,L). 

compile(S, C) : - transL1t2(S, C), ! ,asse,ablf'( C). 

The effect of the cut operator is as follows. When first 

encountered as a "goal", cut Fucceect's immediately. It bacln-ra.cking 

should later return to tbe cut, the effect is to fail the goc1.l which 

caused the clause containing the cut to be activated. In other words, 

the cut operation c·ommits the systen to all choices made since the 

parestt goal was invoked. It renders deternin2te all cc;;1put2.tion 

performed since and including invocation of th,:c• parent 80al, up until 

the cut. 
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Thus the second example above may be read declaratively as "C is 

a compilation of S if C is a translation of S and C is assembled" and 

procedur.111,;;· as "In order to compile C, take the first translation of 

C you can find and assemble it". If the cut were not used here, the 

system might go on to consider other ways of translating C which, 

althonr:h correct, ate unnecessary or 2re unw2.nted. 

Such uses of cut do no violence to the declarative reading of the 

program. The only effect is to cc>.use the system to ignore superfluo:1s 

solutions to a goal. This is the commonest use of cut. However, it 

is sor:1etimes used in such a way that part of the prograr:1 can only be 

interpreted procedurally. Of ten these cases suggest higher level 

extensions that might ideally be provided. For exarnple:­

property(X) - exceptional(X),! ,fail. 

property(X). 

might perhaps be better expressed as:­

property(X) :- unles~ exceptional(X). 

Clearly it is not intended that 'property(X)' should be a bona fide 

solution for any as a declarative reading of the second clause 

would indicate. 

Even if better alternatives could be found for the controversial 

uses of cut, there seems no reason to object to its legitimate use as 

a purely control device. Consequently we shall treat cut as a basic 

part of the Prolog language. 



5. 0 OVI:RVIE\l OF _!)ROLOC l ;u",J.:::lfE~;TA'I'TOt\ - --c-- ,_..,, __ ..... _,_,,...__..~-•;,.-,--

Prolog Ir~plement.2tion rests on the design uf prc,c 1::.:::L~e~ for:-

(l) (recurFivc) procedure•. call, 

(2) unific<1tion, 

(3) backtracki~g, 

(4) the cut ope~vtion. 

Thl~ first is ., 
u. far:liliar probJ.em in the irnplerncntation (1f 

high·-level lr,nguages and :Ls solved in tlte w~ua1 w2y through the use of 

one ur more stacks. However because of the ncnJcterminate nu. t· U t· f?. C 
(LL 

Prc1-c,g) one cctnr~ot c1.ur-umatical]y contract the st~-:ck(s) on procedure.~ 

exJt as is usual. In general th:is process has to 1-:alt until 

back_t: rac kfng has caused tLe proced u,.c to itu ate throug': to 

res:_l_1;-

Unification take:,, the place cf tests and 

..: ... ~. 
;.__ t ._; 

in 

i:la,~seiJ le :Ls a nove] and elegant approach to llk! prcbl.2,.1 oC 

represcnttng struct1rred dara. ;,1.3 

Boye:r.-Hor;rc' s "struc turc sharing with a val,.-e ::.n:ay", dc✓ c~or,2J. ell: 

Ed in.burgh~ 

Dacktracking requires the ability to reme:;--,1,cr and rapidl:: restore 

an earlier state of C'Offiputation. 

nurnbcr of experimental 13:tguages. Usually the iH,p1,:n,enta,·ion 1ef_; ect·s 

the fact tliBt· facil.i:·iec~s for nondetcrmindte ccr:1put::;.tion have lH::>c~ 

built on tc•p o:= c1n exi!--:dn,;_,; language. 

part F o. Prolog, and consequerttly :Ls Jc~,~~ e~::::ily ~;eparated tror:1 the 
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overall design of an implementation. Indeed it strongly influences 

the choic0 of structure sharing, because of the speed with which new 

data structure can be discarded as well as created through this 

technique. 

The cut operation restores conventional determinacy to a 

procedure and allows the system to discard "red-tape" infon:1dtion 

required for backtracking. The inten1t1l state becomes closer to that 

of a conventional high--level language implementation. It will be seen 

that the implementation of cut is closely bound up with that of 

backtracking. 

5.1 Structure Sharing 

The key problem solved by structure sharing is how to represent 

an instance of a term occurring in the original source program. \.Je 

shall call the original ten:1 a source term* and the new instance a 

constructed term. {*Also called in_put terms in the literature on 

resolution.} The solution is to represent the constructed term by a 

pair:-

< source term, frame> 

where the .f~ is a vector of constructed terms representing the 

values of the variables in the source term. Each variable is given a 

number which indicates the position in the frame of its value. (\le 

shall also say the variable is bound to that value.) If the variable 

is unbound, its value is a special construct called 'und_ef'. 



Thus j f we. a.re givc:1 source ter:-1.c:::-

thctal t rci:, ( X 1, a, X2) 

theta2 tree(Y 1, Y2, Y3) 

then the constructed term pictured as:-

f \ I \\ _________ ---- --, 
t-h(?(·al i undc,f; f.1 i ,. . - - ! _:,.: ___ ~_; / \ ! ---·- -1;-\ -

I 1- ---··r---•-···• .. --· ~ ------. 
theta2 Lu,1de_ £ I under 1. __ u_ndef I 

--·--L ... ----- ---- I 

r0p.r:rfscnts the. te1:1n:-• 

trec(Xl,a,tree(Yl,Y2 1 Y3)) 

lf the source? term l.s a const,mt then there is no n0ed to provide a 

frm:1e, so we shall treat constants as being both source ten:1s and 

constructed terms. Jh~s the co~stcucted teLm pictured as:-

/'\ 
\ 
\ 

thet2.l 
'r. ---··· ·-- ... ' ---~ 
' - l L I I r>'' i c;> ; L ---~~-~-- _J_\ ______ J 

/ I 

_./ 'L ________ ------··-------
theta2 unrlcf, b undef ' 

·---- - : __________ I -----~·-----~,_ 

represents the term:-

trec(null,a,tree(Yl,b,Y3)) 

liotice alRo that the R0urce part of a constructed ter~ ~2y be a 

variable c~c tlw.t if, for example, X2 Ln thetn 1 is bcimd to Xl a.nd Xl 

is in tu~n bound to 'null', then:-



(1 

/ 
thetal 

'\ / .. 

¥-- ,---··, 
11 n ul 1 i ~ .I __ __,.,_ ~1 

/ \ 
Xl 

represents:­

tree(null,a,null) 
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In an actual i1r1pler.1entation, a constructed term would generally 

correspond to a pair of addresses, where one address \vould point to a 

literal representation of the source te~·m and the other to a vector of 

storage cells. In practice we only use this form where the source 

term is a skeleton, the resulting object being called a r:«)lecule. If 

the source term is a variable, the constructed term corresponds simp_ly 

to the address of the variable's cell a0d is called a reference. Thus 

the constructed tern:-

represents:-

tree(Xl,a,tree(Xl,b,Xl)) 

The advantage of the structure sharing representation is thet the 

cost (in terms of both time and storage) of constructing new terms 

from skeletons occurring in a clause is, at worst, proportional to the 

number of distinct variables in those skeletons. If the same data 

representation were used for construe ted terms and source terms ( as in 

Lisp say), thsn the cost would be at le'lst proportional to tbe total 

number of subtcrms (or, equivalently, of symbols) in the skeletons. 
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Of course the "direct" represent-:.:rL,n maKc:~s s11b:~eqiwnt refet'(?PCC t.:. 

the ccrnponents of the data structure s•:Jm,:::;•Jhat e2sie.r .. 

r.wst machines (particularly those Uke the DEC}O with gocd ind irtc'.'t 

addressing facilities) this loEs of speed ts quite sr:1al1 and m:,pJy 

repHid by the savings of space and the sp0ed of creating and 

discarding new data stc..1c ture. 

Uhc-,n cornpJ.ex tenns are b,iil t up by unification one c,:::mi~it in 

general prevent chains of referew:es bc,ing created. \Jhen unifying ti:c 

tenas it .l.s important to dercferer,ce lrnth valu0:s by •::r,,cing down i"ny 

refereace ~hains. 

A fir:~~1 p8int concerns \chat is knmm the "occur c hcc k'' 

Str.Lctly a unificatio:1 should not bf'-'. allowed 1.hLch h:Lncls i1 vm:iablc tD 

a ten~ containing that variable. 

tcn~s", for 0:xampl2 consid2r:-

infinitelist(X,L) :- L COlL,(X, \..). 

X X. 

l ~1 practice this condi.ticn never arises norna L 
.... ., 
t'l'O J.. f);!i 

programs. iJhere it does, th2 prog1',;r:r:er ;:1uy 1-.,eJl Ll(~ 11,1.uting to 

consider the infinil'E: t•s'.rrn c.s a lcg:iti,aate dst:1 ob,::,ct (nJtbot:gh trns 

do nc:t botner to make the occur check, os l.t :::ec:c.3 t,, rcq:..Jire 31~ 

.inordinate Drnot:nt of :::n::iputation for little p1:r:c1'.:ical L0 nefit. 
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S,2 Procedur~_~nvocation And Backtracking; 

Just as structure sharing represents an instance of a source term 

by a pair < source term, frame >, so we may notionally represent a 

clause instance by a pair:-

< clause, environment> 

The euvironment consists of on.e or more frames containing the value 

.££._~ls_ for each variable occurring in the clause, plus all other 

informaticn associated witb this clause instance ie. management 

inforr:1;::ti•:,11. Tile enviromrent is created in the course of Lmifying the 

head of the clause with the activatir,g goal. The informatton it 

comprises may conveniently be stored on one or more stacks, as ir is 

created (by clause activation) and destroyed (by backtracking) on a 

"last in first out" basis. He may summarise the manager.1ent 

infoniation as follows:-

* A record of the parent (activating) goal and its continuation, ie. 

the goals to be executed when the parent goal is solved. This item 

can be thought of as a molecule-like pair:-

< parent goal + continuation (both in source program form), 
parenr environment> 

* A list of the rer:iaining source clauses which are alternative 

candidates for ~atching the parent goal. 

* The environment to bac!ctrack to if the parent goal fails. ie. The 

most- recent environment preceding the current one for which the clause 

activated is not the only remaining alternative for the activating 

goal. 

* A list of variables bound in the course of unifying the parent g,oal 

with the head of this c Ja use. The list need not include variables 



whose cells would be disc 01nled anyway on back':rackfr,g eg. 

the present environ□ent. 

The last three items are needed fur backtracking. 

unification i.s allowed to side-effect rc:xif,ting varin.ble 1·ells (ti1c,reL"· 

modifying the parent goal and its continuation) but has to 

record of the variables affected. B<1cktrackiHg uses this list tL·, 

reset such variables to 'undef'. Unification is also respu11sJhJc {01 

setting every variable cell in th~ ne\v environment to 'under' if it is 

not otherwise initialised. 

In our ir:1pleHwntation, the cnvironr:icnt is spJ_it into two -r_r:p:,,:;t., 

lu('dJ and global, allocated frcm, r0sp,a·ct·iv~,1.y, lo,nl am; f;.!,/~,,,, 1. 

stacLss p~_us SODC locations for th2 "rc~Eet li.~;tn on pusiv:cJ\:;, Ji:-;t 

c:il1cd the "tr[dln. Tne global fnit1e conta:Lrrn :he ceJls for \'c,rL.:.t1.,::c:; 

occut·i ie;,; in skeletons. The local frame contain1:; t·iie celL, f,,r: ,;; [1,'1 

variahJes, plus all the r.1crnage,,iE:llt informc1tion (apart frorc t;,e res,.t 

list). Uhen a procedure has been executed deterrni.,1.'.ltely, r1~" L1:-cJi 

frame is discarded autonatically by a st::,ck r::echc1,1i[;r,1. 

To implement the cut operatior: Jt suffices to tak-2 i·he :)arr:nt' ,':: 

bac kt rack env .i.ronraent as current backtrHc k envi t:"Jnf•,,,nt. 

OptionalLy one r:1dy "tidy up" reset ljs• s for the parent enviu-'''"·ent 

onwards, by removing entries for variables wlticlt would nm; be, 

discarded any1vay on hac ktuv· kin£;. 
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Jn our in~llC'.;;;entation, the "tidying up" is r1andatory, since 

otbc1·w_Lse a "dangling refer~.;nce" to a discarded local frame r.1ay b2 

left: in tbe list of reset variable13. A si~lilar argument applies to 

the global fraue if a garbage collector is used. All local frwnes 

us2d in tlt::: execution of any goals preceding the cut symbol in the 

clause concerned are discar~od when the cut is effected. 

One of the chtef innovations of our Prolog jnpler:1ental 1011 i.::; that 

the clauses are compiled into sequences of simple instructions to he 

executed directly. This is in contrast to execution by a separate 

interpreter, ~1ere clauses ate stored in a more or less literal fonn. 

The main effect of the cor.ipilation is to translate the head of each 

clause into a sequence of instructions specialising the un.ificatiou 

algorithm to the case where one of the terms to be unified is the head 

of the clause concerned. 

Tiefore descr-·:ibing cor:ipilation in detail (see Section /6. 9/), it 

may be helpful t-o give the flc1vour of ti1e process through an example. 

He shall translate Prolog clauses for list conratenation into an 

info~Jal Algo~-style proceJure. The clauses are:-

conca i. enate( cons(X, L l) ,12, cons (X, L3)) : - concatenate(L 1, 1.2, L3). 
concatenate(nil,L,L). 

The translation follows. The most important point to notice is that 

r:iurh of the un:Lfi.cation process is t ran::;lated into siri,ple assignuents. 



* 
* 

.,. 
" 
* 
* 

nroc~tlure concatenate is ( 
try cla1:sel; 
try cLrnse2; 
f a:i :;_; 

cLrnse i: 
loc·:..L varia'Jle L2; 
glob~l varlahl~ X,Ll,LJ; 
prematch skRlerun cons(X,Ll) against tHrm[l]; 
X,Ll :,~ :;:_n~ief; 
i_f ne.ed to tiatch f::ubtz.-~rrus 1~hcu ( 

~l : ::;: S l; !) t L" ·:~_ i~-t f i_ J ; 
I, 1 : =, s t<tn.:: rm [ ~,_} 

:"' ternl2J; 
prc~r:-:,.1.tc·i1 s]..:,:::·1eton cons(X!LJ) ngain~..:t term[3]; 
L3 : ~ undc:f; 
if need to 1;1atch subten:is the:-: ( 

r.,atch value of X against s 1.1brerm[l] ~ 

L 3 : 0= ~; 11 b t- (~ 1 r: [ 2 ) ) ; 
claim ::Jp2.c.: for [X.~ LJ.,L'2,L3J .: 
call concatenare(L1,L2,LJ); 
sue ccP.d ) ; 

clause2: ( 
te11porm:y v;:.r:i&ble L; 
rnRtch atom nil again~t term[!]; 
1 : ""' t e. rm [ 2 } ; 
match value l·.• r ,.L ~. a.g3.inEc:t tcr,:,[3]; 
succeed ) 

The grgurnents of the matching goal (,, a C ;· J 1 

'concatenate') ~~e referred ta ~s 'tcc~[l]', 

a.rgurJcnts of ea.eh of thc~se ternis nrc: - , rc~:t errc.ci to as 

to 

. :-_ ,._ '-.. -

'subter;:·1[2]', .... .. ere, The context for the J.att(~r is givt~n by ~:1.10 

pre~cding 'prematch 2kclet0n 

responsible for wa tc hi r,g at the, 

corre~ponding goal ri.rznment is a variable, 'pn-'nwrch' 

ooJ.ecular tPrm aGd aE,ngrs ir to this \'ariable. Otherwise 'preLl2tch' 

by the inst rue t :ions vhich folJ.ow : he 'prcr:,.~rch' 

If the prograr.,n1c2r ca,1 fU2r·~;_ntee that the· 'co:1catenate'· p 1:c,c ed :ire 

will only he called with first D.rgur:H,t•t as "input" (ie. 

nop_-,variabl.e) and tbi_,·,l arguI',cnr :,:, ''output'' (ic. a va:t:iabl.e), n:2:: 
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marked "*" can be o,:1itted and variable Ll becomes a local in£,tead of a 

global. 
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6.0 THE FlWLOG IlACIHi:;E 

In the prcv:i.cnw sections, we have taken a general look at tbe 

proccssi,:,s involved in executing a Prolog pror;ran, and have seen hcv 

can nm1 ex:11:,:i.ne in nore deta:i 1 how ail this realised L1 the Prc1ng 

machine. Full reference details of the moch:i.ne are gi·.rcn in 

Appet1dLces /1./ and /2./. 

Lach clause of a Pro.log source prcbgr&1 is reutescuted t:.y a 

the use of "literal" in 1esolutjon theory.} Roughly ,;peakin;;, tllcre is 

one instruction or literal for each Prolog sy~bol (ie. variable, ato~ 

or funr:tcr). Instrnctions a1~e E!XCCL't3b1.e wLereas literals rcpresei;t 

fjxcd date. Hoth are stored in an area of the m2cl:in(~ called the .:'.ode 

area. Unlike the other areas of the machine, infon1ati0u in the cede 

and the l;_~Jb~!_ stac.l:'.:, As their r,,:ues :in.pl.y, these ureas ,L.e used ;.,~: 

stc1cks, that is all storage before a c,2rtain point (the "top" of the 

stack) is in U c,:i ..... \ .. and all 

Furtl:11:n:10;:-c the storage tli:,L Js ir1 use is rcfe,·red to in a rand or:1 

nccess e1anncr. I'he t:Jp of eac~h stack vati•:e:s cot~_ti.nually during tbc; 

course of a co~putation. v;iriahle lcng th 

vector of sto1nge. 
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The global stack contains the value·cells for global variables, 

that is variables that occur in at least one skeleton, and which 

therefore may play a role in constructing new molecules. Other 

variables are called local variables and their value cells are placed 

in the local stack. These variables serve merely to transmit 

information from one goal to another. In addition, the local stack 

contains management information which determines what happens next in 

the event of a goal succeeding or failing, and is also used to effect 

a cut. 

Both stacks increase in size when a new goal is tackled, and 

contract on backtracking. Space can also be recovered from the top of 

the local stack when a goal is successfully completed and no 

alternative choices remain in the solution of that goal. It is for 

just this reason that two stacks are used rather than one. The 

resulting saving of space can be very substantial for programs which 

are determinate or partially determinate, as most in fact are. The 

recovery of space occurs (a) when the end of a clause is reached and 

the machine can detect that no other choices are open, (b) when a cut 

is effected and at least one goal precedes the cut in the clause in 

question. In the latter case all the local stack consumed during the 

execution of the preceding goals is recovered. 

The other main writeable area of the PLH is calleci the trail. 

This area is used as a push-down list, ie. it is like a stack, with 

the difference that items are "pushed" on or "popped" off one at a 

time on a last-in first-out basis, and are not accessed in any other 

way. The trail is used to store the addresses of variable cells which 

need to be reset to 'undef' on backtracking. As with the local and 
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global stacks, it generally increases in size with each new goal and 

i.s rt',duced by backtracking, The cut operation may also have tte 

effect of removing items frorn the trail. 

PLi-1 data items an.d storage locations come in two sizes, na:iely 

short and long. Each area of the PLM comprises a sequee('.2 of 

locations of the same size identified by consecutive addresses.*{* As 

the trail area is used as a push down list, its locatjocs do not 

strictly need to be addressable.} A short location is big enough to 

hold at least one machine address. A long location has room for two 

addresses, (NB. Short and long locations need not in practice he 

different in size. In our DEClO implementation they both correspond 

to 36-bit locations.) Each variable cell is a long location, so the 

two sta:::ks comprise long locations, while the tra.i.l is made up of 

short locations. The locations in the code area are short; 

:Lnstruc tions and literals sh.ould be thought of as short ite1:1s, or 

multiples thereof. 

6.2 ~pecial Registers Etc 

Besides the main areas, the PLH has a number of spec:Lal loca ti0ns 

called registers. In general these need only be short locations. 

Registers V and Vl hold the addresses of the top of the local and 

global stack respectively. Register TR holds a "push-down list 

pointer" to the top of the trail. 

The envi:tonment for each clause instance is represented by a 

lo:·aJ_ frar;-;e and a _a1obal !E.<!.:'!.£• plus sor:ie trail entries. The layout 

is shown in Appendix 1. The global frame is simply a vector of c:e11s 
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for the global variables of the clause. The local frame comprises a 

vector of local variable cells, preceded by 3 long 

containing management infonnation. 

locations 

For most of the time, the PLM is in the process of trying to 

unify the head of some clause against an existing goal. Register A 

contains the address of a vector of literals representing the 

arguments of the goal followed by its continuation. The continuation 

is the instruction at which to continue execution when the goal is 

solved. The environment of the current goal is indicated by registers 

X and Xl which hold the addresses of, respectively, the local and 

global frames for the clause instance in which the goal occurs, 

Registers V and Vl therefore contain the corresponding information for 

the environment that unification is endeavouring to construct. The 

machine insures there is always a sufficient margin of space on each 

stack above V and V 1 for the environment of any clause. It is only 

when a unification is successfully completed that the V and Vl 

pointers are advanced. 

Registers VV and VVl indicate, in a similar way, the most recent 

environCTent for which the parent goal could possibly be matched by 

alternative clausc(s). Usually we shall have VV=V and VVl=Vl, as there 

will be other clauses in the current procedure which could potentially 

match the current goal. In this case, register FL contains the 

address of the instructtion at which to continue if unification should 

fail. 
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There m:e two other important registers which may be set durin6 a 

unificati~n : register Bis set to the address of a vector of literals 

repr·esPnt ing a skeleton, and register Y to 

correspondir.g global frame. 

the addresB 
,. o,_ the 

Note: It may be helpful to think of <A,X> as being a molecule 

representing the current goal and <E,Y> as a molecule representing a 

level 1 subterm of that goal. 

The 3 long locations of management information in each local 

frame ccrnprise 6 short iter~ fields as illustrated. below ( the precise 

arrangement is not really significant):-

The parent goal is indicated by the X and A fields, mirroring the 

appropriate values for the X and A registers. 

The Vl field contains the address of the correspon<liilg global 

frame mirroring the Vl r~gister. 

The VV field contains the value of the VV register prfor to the 

invoc.;tion of the parent goal for this environment, It therefore 

indicates the most receat choice point prior to this environment. 

The FL field contains the failure label for this environment, if 

any, and is undefined otherwise, The failure label is the address of 

an instruction at ~1ich to continue for an alternative match to the 

parent goal. 
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The TR field contains a value corresponding to the state of the 

TR register at the point the parent goal was invoked. 

The VV, F1 and TR fields are needed primarily for backtracking 

purposes. 

6. 3 Literals 

Literals are PLM data iteir1s that serve as building blocks to 

provide a direct representation for certain subterms of the original 

Prolog source program. In particular they are needed to give skeleton 

terms a concrete form so that structure sharing can be applied. 'We 

shall not attempt to give more details of their internal structure 

than is necessary. The different types of literal mentioned are 

assumed to be readily distinguishable. 

A skeleton literal represents a skeleton terr.i and is a structure 

comprising a functor literal followed by a vector of inner literals. 

Each inner literal is a short item, typically an address which serves 

as a pointer to the value of the sub term. The size of a functor 

literal is left undefined, but it contains sufficient information for 

it to be identified as the functor literal for a particular functor of 

non-zero arity. It will be written as 'fn(I)' where 'I' uniquely 

identifies the functor in question. (In our DEClO implementation, 

functors and atoms are numbered from O upwards and 'I' refers to this 

number.) 
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An ir.ner lite:.:al is either an inner v;.:r-iable lit2ral or the 

address of a skeleton literal,.§_!_~ -~,.Heral or _in~ literal. Atom 

and integer literals are long items written as '.::.tom(I)' or 'int(N)' 

where 'I' un:i.quelJ' identifies tlF" a tern in question and ':-i' is the 

value of the intt>ger in question. An inner variabJ.e literal will be 

written 'var(I)' where I is a number identifying the corresponding 

global variable in the clause concerned. For structure, ' . s,1arinr, 

purposes this number i$ used as an index to sdect the appropriate 

cell from -<in assor.iated frame of (gl,'Jbal) vari;ihle ce] ls. 

We shnll \n-Hc '[S]' for the address of a structure S. Thus the 

address of the literal corresponding to the skeleton:-

tree(null,X,tree(Y,X,Z)) 

might be ,,ritt-en:-

[ fn( tree), 
[ a t71rr1 (}~l 11) ] , 
var(l), 
( fn( tree), 
var(2f; 
va::(1), 
v ar ( 3) J ] 

and pictured as:-

L--.---- ------------. 
: var(l) ' };'.: ___ J 

/ 
f'>> 

j fn(_E_~) i var( 2) i var(l) 1 ;;~(3)7 
~·--··----- . -----------·-·--------

Bcs:idf:S inner literals, which represeat the n.rgm:ients of a 

skeleto::1 tern, the PLN needs outer li tends to re.present the argurr:ents 

of a goal. An outer U terul is either th2 address of an atom inte;:;er 

or skeleton literal, or is a loca} ~j.t,,:,ral, a _l'..i.~hal Lit2ral or s. "Oid 
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literal. Like inner literals, outer literals are short items, which 

serve as pointers to the values of the subterms they represent. 

If a goal argument is a variable, and the variable occurs 

somewhere else in the clause within a skeleton ten:i, then the argument 

is represented by a global literal, written 'global(I)' where 'I' is 

the number of that global variable. If a goal argument is a variable, 

and that variable occurs nowhere else in the clause then the variable 

is represented by a void literal, written 'void'. Otherwise a variable 

appearing as an argur.1ent of a goal is represented by a local literal, 

written 'local(l)' where 'I' is a number identifying the local 

variable. 

Thus the arguments of the second goal in the clause:­

compile(S,C) :- translate(S,D,E), assemble((E;D) ,O,N, C). 

might be represented by:-

[ [fn(j_) ,var(l) ,var(2)], [int(O)] ,void,local(Z)] 

or pictured as:-

0 void local( 2) I ... continuation 

t -f int(O)i 

[fn(;) j var(l) var(2)7 

remembering that the continuation always follows immediately after the 

last argument literal of the goal. 
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6.4 Constructs 

The set 0£ PLH data items which can appear as the values of 

variable cells are called constructs. They serve to represent 

construe ted terms in a structure-sharing manner. Once agai:1 we shall 

not attempt to give unnecessary details of their internal structure, 

but will assume that they are long items and that the different types 

are readily distinguishable. 

The cell for an unbound variable contains the 

w!·itten 'unclef'. The cell for a variable which has been bound to 

an::>ther variable contains a reference, written 'ref(R)' where R i.s the 

address of the other variable's cell. If a variable is bound to an 

atom or an integer, its value cell will contain the corresponding atom 

or integer literal. Finally if a variable is bound to an instance of 

scme skeleton, the corresponding construct is called a molecule , and 

written 'mol(S, X)' ,vhere S is the address of the corrr~sponding 

skeleton and X is the address of the corresponding frame. 

6.5 Dereferencing 

In the following, the process of dereferencin~ a variable •• 1 
WLl.~ 

often be referred to. At any point in a Prolog co,.1pu:-at ion, this 

process associates a certain non-empty construct with each variable. 

This construct is said to be the (de_!-eferenced) value of th,:, variable 

at that point. It is obtained by examining the contents of th2 

variab1'2' s cell and repeatedly follo1Jing any refe::-ences until a eeJ.l 

is reached which contcd,w a non-reference construe t. If this 

construe t is '1md~f' the result of the <lereferen~inz is a reference to 
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the cell which contains 'undef'. Otherwise the result is the final 

construct examined. 

6.6 Unification Of Constructs 

We are now in a position to see how unification works out in 

practice. Unifying . two tenns reduces to the task of unifying two 

constructs which represent ther.i. The first essential is to ensure 

that the two constructs are fully dereferenced. 

If neither construct is a reference, then unification will fail 

unless we have two equal atoms or two equal integers or two molecules 

with the same principal functor. In the last case the unification 

process has to recurse and unify each of the arguments. (The action 

to be taken on failure is described later.) 

If just one of the constructs is a reference, then the other 

construct has to be assigned to the cell indicated by the reference. 

If both constructs are references, then clearly one reference 

must be assigned to the cell of the other. It happens to be very 

important that the r.iore senior reference is assigned to the cell of 

the more junior reference. A cell in the global stack is always more -
senior than any cell in the local stack. Otherwise seniority is 

determined by the cells' addresses - the one earlier in the stack is 

considered more senior. These precautions are essential to prevent 

"dangling references" when space is recovered from the local stack 

following the determinate solution of a goal. (The "dangling 

reference'' is a well known nightmare where a locatLm is left 

containing the address of a part of storage which has been 
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de-allocated fro~ its orlgi~al use.) The rules also play an iGrortant 

role for efficiency in tending to prev0nt long chains of references 

being built up. In ty~!cal Prolog p~ograms it fs quire rare for 

dereferencing beyond th,~ first st·c-qi to be ne,:cssr;ry, if the above 

scheme is applied. 

Wheneve:r a cell is c~ssigned a ( non-empty) value, it is usually 

necessary to "renembcr" the assigm:cc::1t so that it can be "undone." 0::1 

subsequent backtracking. 'l'he exception is whellc the cell will in any 

case he discarded on backtrackic~. This condition can easily be 

detected in the PLM by the fact that the cell's address will be 

greater than the contents C 0,1. register VV for a local cell or register 

VVl fe>r a globalcell. \Jhen the assignnent has to be remer.1bered tbe 

address of the cell concerned is ,tra:iled, ie. pushed on to tbe trail 

push-down list pointed to by register IR. 

6.7 Backtrackin& 

When unification friil:,, the PUI has to backtrack to the most 

recent goal for which there are other alternatives scill ta be tried. 

Any envirorn::ents created since the backtrack point .'.lre to be erased 

and the space occupied on the local stack, global stack and trail is 

to be recovered. Before attempting another unification, all 

assigrn'.lents r.1cde 2inc(-> the backtrack point to cells which existed 

befo~ tee backtrack point r.mst be undone h:7 setting the values cf 

such cells to 'undef'. 
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local stack global stack trail 

X '--"".---.- Xl '-;,.,,._ ___ _ 

j : 
I vr:--

( 
xr 

/ 

// 

V' • \ Vl', 
VV--~ 

\ 
VVl--f IR!--f 

t 
-- --

I x.:'-r , he ✓ 
/ 

' TR• / ' 
space reset 
to be addresses 
recovered 

i i 
I 

v ~. Vl--P--, TR--b-,--
j 

The PU1 keeps an up-to-date record of the environment to 

backtrack to in registers VV and VVl. VV contains the address of the 

local frame, VVl the address of the global frame. Note that VVl is 

strictly superfluous since it merely shadows the contents of the Vl 

field in the local frame indicated by VV. Tne state of the trail 

corresponding to the backtrack point is indicated by the TR field. 

The necessary undoing of assigm:ients is achieved by popping addresses 

of the trail until the original trail state is reached; each cell so 

addressed is reset to 'undef'. (Some of these cells are probably about 

to be discarded anyway, but it is harr:iless to reset them regardless, 

and this is likely to be simpler.) 
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For tlie rc~mainncr of the backt:-::-aclci.ng process, it is corrvenient 

arc other a.ltt!t'T12ti·ves for- the cut·rent goal< 'J.'hls i.s of cour.se easily 

detected b ✓ the fAct that VV=V. All that has to be done in this case 

is to resume t~xecution at the inst-ruction indir:at·<:d by FL. 

lr, 
h the case. of .9~.~.E backtracking, V 1.rnd V1 have <:o reset from VV 

and VVl respectively. Reg ister.s X 
' 

A and FL a::-e reset according to 

th2 corresponding fields in the local ±r.lme indicated by VV. Register 

Xl is n,s,c't from the Vl field in the local fram.e corresponding to X. 

Finally, execution is resumed at the instruction i~dicated by FL. 

6. 8 Successful ;;~xit Frm, A Proc2dun:: 

E&ck~ r.c:cking g~ne1:ally corresponde to a failure c~xit frora a 

procedure. A succesD exit occur·s 'Jhen tlie end of a clause is reached 

If the prou,dure exi.t is 5leterm:i.na!5;, inc!i ec:1. s.:d by \TV<:/.. and showi:1g 

thct no cho::.2u: were made (or rer:1ain) u;_ the e::ecution nf the 

procedure, then local storage can be recovered by resetting V fro□ V ,. . 

Registers X a 1 1d A are res~t from the corre.sp0nc!ing fields i11 the local 

frame ind:icated by thr: present vaJ.w, of X. Peg:ister Xl is then reset 

frnrn the Vl field of the locai frame nov indicated by X. Finally 

execution is resur.1e . .:l at" the contir:.uation L:1struction which follows the 

n short iter.is =1ddre3s2d by A, ,:here n is the a:.:it"y of t;1e .pred:i.cat.-:: 

for the procedure concerned. 
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6.9 Instructions 
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I 
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global stack 
,- ___ , ___ ! 

I 

Xl '-fo.+--·----1 

/-;! 
// 

Xl '-t-: 

Vl 

Having covered the basic structure and function of the PU!, it 

remains to describe how the clauses which drive it are actually 

represented. It should be clear that a clause could be stored in a 

very literal forr:1 (cf. a skeleton term) and interpreted directly 

This is precisely the way the 1hrseille interpreter operates. However 

much of the work that such an interpreter would have to perform can be 

eliminated by using extra information which is easily computed at the 

time clauses are first introduced ("compile-time"). This includes:-



(1) R.ecogn~sing tl12t r.1atchiug against the fir~;t ocn,L!:<.'nce of ::i 

variable in the head of a clause is 8 sp2cial case. The variah]e ~u~t 

obvious] y be as yet unbound and one . ' Slhq)_1y has tc! bind the 

t err.1 There Js nc need to have pl'evi,)usly initialised the 

the gc;1eral case of a subsequent occurrence of the variable. 

(2) If on2 is matching a variable in the head of a claus~, and 

that variable has no other occur::ence in the clause, no action ar all 

need he U:ken. Furtheunore if the occurrence is at lt?vel ]_, no cell 

need be created for rnet variable. Sjmi)arly, no cell is needed f0~ a 

Variables witt a 

single occurrence, which is at 1 ev el .l, are called ·voi..d vari ab] ("'..t-: ~ 

(3) The interpreter generally lws to •'.:dku a recursive call wlwn 

Th.::.i, overhead carr be a·Joided if the skejJ.;ton ·'.}CClffS in the currer;t 

cL:rnse head, by associating information about depth of rH~st:.Lng (~c,ve.L 

number) with each symbol in the head of a clause. (The detaiis will 

be explained latf'l'.) Similarly, the need to keep a cou,1 t of a , .. gur:,er,:.: :::. 

(of a r;keleton or clw .. 1se head) al;:eady matched crn be .:woic}r;.:; by 

associating an _a1:,_r,u:-:1cnt number i.'i th each sy::ibcl in the bead of a 

clause. (The argur.i.ents of a functor ar.·e numbe:~·ecl from 'J upwards.) 

(4) Non:,n.lly ar, inter.pn,tcr would aI locate, and initialis,-2 to 

'undef', all cells for a clause before con□encing unification. Ue 

have seen th,lt mac!.: cf this.initialisation l'an be .:}voided. Al. so one 

can postpone rhe: rerrni.iling 'initialis:1t.i.0n, and the 11 red-tape 11 of 

storage allocation, 2s late cs p0ssibl2 Jn the hope that a falluca 

~ill render them unnecessary. 
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(5) V~riables can be categorised into different types (global, 

local md ter.,porary), depending on the 1,ay they occur in the clause, 

so that the space occupied by certain variable cells can be recovered 

earlier than is possible in general. 

(6) By bringing together information from the different clauses 

in a procedure one can optimise the selection of potentially matching 

clauses and/ or share part of the work involved in unifying with each 

clause head, and in addition provide a means of detecting the 

important case where the selection of a particular clause is 

determinate. (See the later section on "Optional Extrasfi). 

In general, one Pro log source symbol plus the relevant extr3 

inforr:iat ion corresponds to a specific simple operation on the Pro log 

Machine. If one discounts dereferencing and cases resulting in a 

failure of unification, the operation usually involves n strictly 

bounded amount of processing. It is therefore natural to think of the 

augmented syr1bols as prinitive machine instructions of the PLH.* {* In 

fact the analogy with a convential machine like the DEClO is quite 

close if one compares dereferencing with the DEClO's effective address 

calculation and unbounded operations with DEClO's block transfer (BLT) 

and execute (XCT) instructions.} 

No executable instructions are generated for the arguments and 

subterms of a goal. These are represented purely by literal data as 

indicated earlier. Also, no exe,~utable ins true tions are generated for 

symbols deeper than the levels 1 and 2 in the head of a clause. This 

is a purely arbitrary limit based on considerations 0 -F ,_ 

cost-effectiveness in practical examples of Prolog programs. 
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Before proceeding with a description of the instructions for the 

head of a clause, we must first complete discussion of the different 

categories of variable and the exact layout of an environment. The 

variables of a clause are categorised according to expected 

"lifetir:1es" which end when there is no longer any need to remember the 

variable's value. The categories are as follows:-

Name 

Global 

Local 

Lifetir:1e ends 

Backtracking. 

Procedure completed 
successfully and 
determinately, ie. no 
choices re~ain within 
the procedure. 

Temporary Completion of 
unification with the 
head of the clause. 

Void None. 

Criterion 

Occurs in a skeleton. 

Multiple occurrences, 
with at least one in the 
body and none in a 
skeleton. 

Multiple occurrences, 
all in the head of the 
clause and none in a 
skeleton. 

A single occurrence, not 
in a skeleton. 

The global variables of a clause are numbered in some arbitrary 

order which determines their positions in the global frame. Similarly 

local and temporary variables are numbered to determine their 

positions in the local frar:1e. The only constraint is that locals 

precede temporaries. This is so that the teoporary part of the local 

frar:1e can be discarded at the end of unification (see the diagram in 

Appendix 1). Variables in either frame are numbered from O (zero) 

upwards. No cell is allocated for a void variable. In showing 

exaoples of Prolog machine code, we shall assume that the variables of 

each type are n1~bered according to their order of appearance in the 

source clause. 
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We can now return to the discussion of instructions for the head 

of a clause. The head is terminated by an instruction 'neck(l,J)' 

where 'I' is the nur.iber of local variables (= the nrn;1ber of the first 

temporary if any) and 'J' is the number of gJobal variables. 

The instructions for an occurrence of a v~riable in the head 

are:-

uvar(N,E,I) 
uref(N,E,I) 

uv a r1 ( N , E , I ) 
urefl (N, E, I) 

'uvar' or 'uvarl' is used if it is the first occurrence, 'uref' or 

'urefl' otherwise. 'uvar' corresponds to level 1 and 'uvad' to level 

2, and similarly for all other pai0::, of instructions named 'n2c,:1e' and 

'namel' . 'N' is the argtm1ent number of thG occurrence, 'I::' is the 

frame (' local' or 'global') containing the variable's cell, and 'I' is 

the number of the variable. No instruction is needed for a variable 

with a single occurrence. 

Similarly there are instructions for an occurrence of an atom or 

integer in the head:-

uaton(N,I) 
uint(N,I) 

uatoml (N, I) 
uin t l (l~, I) 

Once again, 'N' is the argur.ient number of the occurrence. For an 

integer, 'I' is the actual value of the integer. For nn atoi:i, 'I' 

uniquely identifies that atom. 

For a skeleton at level 1, the instructions are:-
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uskel(N,S) 
init(I,J) 
ifdone(L) 

argument 
, instructions 

'N' is the argument number of the skeleton within the head. 
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'S' is 

the address of a corresponding skeleton literal (which may be assumed 

to be placed after the 'foot' instruction). The global variables which 

have their first occurrences within the skeleton are numbered from 'I' 

through 'J '-1. The effect of the 'init' instruction is to initialise 

these variables to 'undef'. If 'I'='J', the instruction is a 

no-operation and may be omitted. The instruction 'ifdone' causes the 

instr11ctions for the arguments of the skeleton to be skipped if the 

matching construct is a reference. 'L' is the address of the 

instruction following the last argrn:1ent instruction. 

Note that the arguments of the skeleton could be coded in· any 

order since each instruction contains the argument number explicitly. 

(A "first occurrence" of a variable would then r.iean the first 

occurrence in the code.) Similarly for the arguments of the head 

boolean term itself. 

A skeleton at level 2 is coded simply as:-

uskell (N, S) 

where 'N' and 's' are analogous to the use in 'uskel'. 

Immediately before a 'neck' 

instructions:-

init(Il,Jl) 
localinit(I2,J2) 

instruction there are two 

The global and local variables which have their first occurrences in 
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the body of the clause arc numbered respectively from 'II' through 

'Jl'-1 and from '12' through 'J2'-l, Once again, either instruction is 

an omissabie no-operation if the two numbe1:s are equal, 

The instruction ccrresponding to the Clit sy1:1bcil is 'cut(I)' wticre 

'I' is the number of local variabes in the clause. There are a nw:;bc;r 

of instructions which simply replace some comwon combinations of 

inst rue t ions:•· 

neckfoot(J,N) 
neckcut(I,J) 
neckc ut foot (J, i'~) 

neck(O,J); foot(l'J) 
neck(I, J); cu-c (I) 

neck(O,J); cut(O); footUn 

That completes the basic instruct-Jon sc,t of the PUL We have not 

described in detail the effect of each instruction, although this 

should be clear from earlier discussion of hDw the PU[ operates. Full 

details are given in Appendix 2. 

6.10 Exar'.!2le_s Of Prolog I-Lqchine Code 

Let us now illustrate the way Prolo~ source clauses are 

transl2ted ir:to Prolog Machine CodE: by considering [;or:",2 exar:iples. 

6 .10. 1 

List oenbership is defined by the following straight-forward 

claw,2s :-

member(X,cons(X,L)). 
r.1e:,1ber(X,cons(Y, L)) :- member(X, L). 

The first clause has ti,o global variables X a,:d L. Thr~ second has orte 

local X and tv.10 globals Y and L. The code for tr1(' clam;,?s is aS 

follows. Addresses etc. are represented by underlined identifiErs 



Page 57 

and where appropriate the corresponding instruction is indicated by a 

label as in conventional asst•mbly languages. 

Code 

clausel: uvar(0,global,0) 
uskel(l, label2) 
init (1 , 2_) ___ _ 

ifdone(labell) 
urefl(0,glohal,0) 

labell: neckfoot(2,2) 
1abe12: fn(~) 

var(0) 
var(l) 

clause2: uvar(0,local,0) 
us ke 1 (1 , lab e 14 ) 
init(0,2) 
ifdone( labe13) 
uvarl(l,global,1) 

label3: neck(l,2) 

member: 

6.10.2 

call( □ember) 

local(0) 
global (1) 
foot(2) 
fn(cons) 
var~ 
var(l) 

enter 
try(clausel) 
trylast(clause2) 

Source 

member (X, 
cons( 

X,L) 
) . 

member (X, 
cons(Y, 

L) 
) : -
member( 
X, 
L) 

An example of a use of 'cut' is the follmdng definition of the 

maximum of two quantities:-

r.iaximum(X, Y, Y) :- X<Y, l. 
maximum (X, Y, X). 

(Here cut is not purely a coutroJ device; the second clause can be 

interpreted as "thl, maximur:i of X and Y is X by default if it is not 

the case that X is less tban Y".) Tbc first clouse has two Joe al 

variables while the second has one tcnporary X Dnd one void Y. The 
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corresponding code is:-

Code Source 

clauscl: uvar(O,local,O) 
uvar(l ,local, 1) 
uref(2,local,l) 
neck(2,0) 
call(<) 
local(O) 
local (1) 
cut(2) 
foot(3) 

clause2: uvar(O,local,O) 
t1ref(2,local,O) 
neckfoot (0, 3) 

maximum: enter 
try(clausel) 
trylast(clause2) 

6.11 ~~de Declarations 

maximum (X, 
Y, 
y 

) ;­
< ( 
X, 
Y), 

r:1c1ximur:1 (X, Y, 
X 
) . 
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In the previous sect :Lon we saw that the code fer list membe1·ship 

included skel2ton literals. Now these skeleton literals are only 

really used if the me~bership procedure.needs to construct new lists, 

ie. \,hen the secc1 nd ai.'guL1ent in the call is ( dereferences to) a 

reference construct. This is unlikely to be the case. Usually the 

programmer will call 'r.1er.1ber' simpJy to check whether something is a 

mehlber of an existing list. In this case the 'cons' subterns of the 

·'member' procedure will serve only to decompose an existing data 

structure, not to construct a new one. 

If the programmer can guarantee to restrict the use of 

predicate in this kind of way, then the 2yst21~ can optinise the cede 

generated. The main potential improvements are:-



Page 59 

* Unnecessary code can be dispensed with. If a skeleton term always 

serves as a "destructor" then a skeleton literal is not needed. If it 

always serves as a "constructor" then no executable instructions are 

needed for the arguments. 

* If these changes result in a variable no longer appearing in a 

skeleton literal, then that variable no longer needs to be global. 

Its cell can therefore be allocated on the local stack and space 

recovered on determinate procedure exit. 

Accordingly, the PLH allows the programmer to specify an optional 

mode declaration for each predicate. Some examples of the syntax used 

are:-

:-mode member(?,+). 

:-mode concatenate(+,+,-). 

The first declaration states that, in any call of 'member', the second 

argument will be a non-reference construct and the first argument is 

unrestricted. The declaration for 'concatenate' indicates that the 

first two arguments are ahvays non-reference construe ts and the third 

is al ways a reference. ie. • concatenate' is applied to two given 

lists to create a new third list. 

These examples illustrate all the cases of mode information 

currently accepted hy, and useful to, the PLH. The idea could 

obviously be extended. \Je should emphasise that the dee larations are 

optional and do not affect the visible behaviour of the program except 

in regard to efficiency (provided the restrictions imposed are valid). 

If no mode declaration is given for a predicate, it is equivalent to a 

declaration ,~1ith all argunicnts '?' .. 
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The effect on the PLH of a mode declaration is limited to changes 

to the code generated for skeletons at level 1 and consequent 

re-c~tegorisation of variables. If a skeleton is in a 

it is playing a purely ".s:_or.structive" role and the code is:­

uskelc(N, S) 
init{I,J) 

position, 

ie. A 'uskelc' instruction replaces the 'uskel' instruction and the 

• ifdone' and argument instructions are dropped. 

If the skeleton is in a •+• position, it is playing a purely 

"des true tive" role and the code is:-

uskeld(N, I) 

argument 
instructions 

Here 'I' uniquely identifies the functor of the skeleton. The 'init' 

and 'if done' inst rue tions are dropped and no skeleton literal is 

necessary. However if any argument of the skeleton is itself a 

skeleton, the code for that argtm1ent becor:1es:-

init(I,J) 
uskell (N, S) 

'N' and 'S' are the argu'Tient number and address of a skeleton literal 

for the subterm. 'I' through 'J '-1 are the numbers ot the global 

variables having their first occurrences in 'S'. As usual, the 'init' 

instruction can be omitted if 'I'='J'. 

Note that if 'uskelc' encounter8 a non-reference, or 'uskeld' a 

reference, an error message is given and a failure occurs. 
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Finally we should observe that in the previously stated criteria 

for categorising variables, "occurrence in a skeleton" should be 

construed as "occurrence in & skeleton literal". From a practical 

point of view it is the re-classification of variables into more 

desirable categories which is of major importance. The full benefit 

of using two stacks ratber than one for variable cells can only be 

obtained if mode declarations are used. For this reason we have not 

treated mode declarations as one of the "optional extras" considered 

later. 

6.12 Hore Examples Q!_ Prolog Hachine Code 

6.12.1 

Let us no-w see how the mode declaration given for 'member' 

affects the code. There are no longer any global variables. Two of 

them become voids, one temporary and one local:-

Code Source 

clausel: uvar(O,local,O) member(X, 
uskeld(l ,~) cons( 
urefl(O,local,O) X,L) 
neckfoot(0,2) ) . 

clause2: uvar(O,local,O) member(X, 
uskeld(l, cons) cons(Y, 
uv arl (1, local, 1) L) 
neck(2, 0) ) : -
call ( mer:iber) member( 
local(O) X, 
local(l) L) 
foot(2) 

member: enter 
try(clausel) 
t ryl ast (_c lausel_) 

----- ·--- ~~·· -----------



--------------------------- --~--~------------- -
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6.12.2 

A good example for illustrating many different features of code 

generation is the following "quick-sort" proce<lurl:':-

:-mode sort(+,-). 
·:-mode qsort(+, -,+). 
:-mode part5tion(+,+,-,-). 

sort(LO,L) :- qsort(LO,L,nil). 

qsort(cons(X,L),R,RO) :­
partition(L,X,Ll,12), 
qsort(L2, Rl, RO), 
qsort(Ll,R,cons(X,Rl)). 

qsort(nil,R,R). 

partition(cons(X,L),Y,cons(X,Ll),12) :­
X =< Y, ! , partition(L; Y, Ll, L2). 

partition(cons(X,L),Y,Ll,cons(X,L2)) :­
partition(L,Y,Ll,L2). 

partition(nil,_,nil,nil). 

The code generated is as follows:-

Code 

clausel: uvar(O ,local, 0) 
uvar(l,local,l) 
neck(2, 0) 
local(O) 
local(l) 
[atom(nil)] 
foot (2-) --

clause2: uskeld(O,~) 
uvarl(O,glob&l,0) 
uvarl (l ,local,O) 
uvar(l ,local,l) 
uv ar(2, local, 2) 
init(l, 2) 
localinit(3,5) 
neck(5, 2) 
call(partition) 
local (0) 
glob2l(O) 
local{3) 
local( 4) 
call( gsor_t) 
local(4) 
global (1) 
1 oc al ( 2.) 

call <x~.E!) 
loc.:11 (3) 

Source 

sort(10, 
L 
) :-
LO, 
1, 
nil) 

qsort(cons( 
X, 
L), 
R, 
RO 

) : -
partition( 
L, 
X, 
Ll, 
12), 
qsort( 
12, 
Rl, 
RO), 
qsort( 
L 1, 
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local (2) R, 
la bell cons(X,Rl)) 
£oot(3) 

la bell: fn(~) - var(O) 
var(l) 

clause3: uatom(O,nil) qsort(nil, 
uv ar (1 , 1 oc al, 0) R, 
uref(2,local,O) R, 
neckfoot(O, 3) ) . 

clause4: uskeld(O ,~) partition( cons( 
uvarl(O,global,0) X , 
uvarl(l,local,O) L), 
uv ar ( 1 , local, 1) Y, 
uskelc(2,label2) cons(X, 11), 
init(l,2) 
uvar(3,local,2) 12 
neck(3,2) ) : -
call(=<) =<( 
global(O) X, 
local(l) Y), 
cut(3) I . , 
call( partition) partition( 
local(O) 1, 
local (1) Y, 
global(l) 11, 
local(2) 12) 
foot(4) 

label2: fn(~) 
var(O) 
var(l) 

clause5: uskeld(O,~) partition( cons( 
uvarl(O,global,O) X, 
uvarl(l,local,O) 1), 
uvar(l,local,l) Y, 
uvar(2,local,2) 11, 
uskelc(3,label3) cons(X, 12) 
init(l,2) 
neck(3, 2) ) :-
call( part it ion) partition( 
local(O) 1, 
local (1) Y, 
local(2) 11, 
global(l) 12) 
foot(4) 

label3: fn(~) 
var(O) 
var( 1) 

clause6: ua tor:1(O, nil) partition(nil, , -"'~-- -uatom(2, nil) nil, 
u atom ( 3 , -; U ) nil 
neckfoot(O,O). ) . 
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6.i2.3 

The following exa~ple illustrates the coding of nested 

s ke 1 et ons : -

:-mode rewrite(+,'?). 

rewrite(X or (Y and Z), (X or Y) and (X or Z)):-!. 

Code Source 

clausel; uskeld(O, or) rewrite(or( 
uvarl (Cl, global, 0) X, 
init(l, 3) 
uskell(l,label2) and(Y,Z)), 
uskeJ ( 1, labc:13) and( 
ifdone( lat:~) 
uskell (0, labc.14) or(X, Y), 
eskelJ (1, label5) or(X, Z) ) 

labell: neckcutfoot(3, 2) ) • - I ... 
label2: fn( a!ld_) L 

var(l) 
var(2) 

label3: fn( and) 
labe-14 
labelS ---

label4: fn( or) 
var(O) 
_var(l) .. 

labelS: fn( or) 
var(O) 
var(2) 
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7.0 DEC]O IlPLEtlliNTATION DETAILS 

In this section we shall indicate how the PLM can be efficiently 

realised on a DEClO. A summary of the essential characteristics of 

this machine is given in Appendix /3. /. Fuller details of the 

implementation of PLM instructions and literals are given in Appendix 

/2./. 

Short and long items both correspond to 36-bit words. A special 

register corresponds to one of the sixteen fast accumulators. For 

each writeable area there is set aside a (quasi-) fixed block of 

storage in the low segment. The trail is accessed via a push-down 

list pointer held in TR. 

The DEClO effective address mechanism contributes crucially to 

the overall speed of the inplementation. Each inner and outer literal 

is represented by an address word which is generally accessed 

indirectly. ie. The indirection bit is usually set in any DEClO 

instruction which refers to the address word. In particular, the 

address word for a variable specifies the address of its cell as an 

offset relative to an index register. The index register will be 

loaded with the address of the appropriate frame, In other cases 

(constant or skeleton), the address word will contain a simple 

address. The net result is that, despite structure-sharing, it only 

takes one instruction to access a unification argument. Moreover, in 

the majority of cases no further dereferencing of the argument will be 

necessary. This can best be illustrated by looking at the code for an 

example such as 'uvar(3,global,5)' :-



MOVE T,@3{A) 
TLNN T, HSKMA 
JSP C,$UVAR 
MOVEH T,5(V1) 
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;indirect load of argument into T 
;check construct is a molecule or constant 
;if not, call out-of-~line subroutine 
;store argument in appropriate cell 

Thus in the majority of cases only 3 instructions are executed to 

complete this unification st"ep. The matching term might be 

'globa1(4)' ~epresented by:-

WD 4 (Xi) 

where •im• indicates an address W')rd with zero instruction field. If 

the cell corresponding to this variable contains a molecule say, the 

effect of the • .MOVE' instruction will be to load the molecule into 

register T. Note: If the cell contained 'undef', subroutine '$UVAR' 

would be responsible for recovering the address of the cell. This is 

easily achieved by the instruction:-

MOVE I T ,@-3 (C) 

which simply loads the result of the ·effective address calculation 

into T. '-3(C)' refers back to the original •~10VE' instruction. A 

similar operation is needed if the matching term is a skeleton. Hore 

generally, this illustrates how part (or all) of a PU! instruction can 

be performed out-of-line on the DECIO with very little overhead, as 

the subroutine can easily refer back to the in-line code. 

A molecule 'mol(Skeleton,Frame)' is represented by a word:­

XWD frame,skeleton 

The pair is inverted to facilitate accessing the arguments by 

indexing. A reference construe t corresponds to a simple address word 

with left half zero. In passing, note that although all dereferencing 

could be accomplished by a single instruction (with a different 

re_presentation of constructs and the indirection bit set in a 

reference), ·this would not be cost-effective (multi-step dereferencing 
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is too rare to justify the extra overheads). 'undef' is represented by 

a zero word, as this value is easily initialised and recognised. 

Both the • call' and • try' instructions are represented simply by 

'JSP's :-

JSP A,predicate ;call predicate 

JSP FL,clause ;try clause 

other instructions are implemented as a mixture of in-line code and 

call to out-of-line subroutines via:-

JSP C,routine 

The 'uskel' instruction, if it matches a non-reference has_ the effect 

of loading B with the address of the corresponding frame. If it 

matches a reference, Y is set to zero and 'ifdone' is achieved by:-

JUHPE B,label 

The TR field in a local frame holds the left-half of the 

corresponding value for the TR register. This enables the trail to be 

easily relocated since the TR fields will effectively contain trail 

offsets rather than trail addresses. 

Atom, integer and functor literals are represented by words:-

XWD $ATOH,i 
XWD $INT, i 
XWD $SKEL,i 

The left halves $ATOM, $1NT, $SKEL serve to label the different types 

of literal. The right half 'i' is either the value of the integer, or 

a functor table offset. The functor table contains information, such 

as names and arities, associated with atoms and functors. 
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8.0 OPTIONAL EXTRAS 

In this section we discuss sor.e "optional extras" which c,rn 

substantic::lJy improve the efficiency of the PUI. Because they are not 

strictly essential, \-le treat them separately i_n order to keep the 

basic description of the PU1 as simple as possible. However since 

both "extras" provide substantial benefits at comparatively little 

cost, they shou1d be regarded as standard. 

8.1 Indexing Of Claus2s 

The basic PLN event·ually tries every claus8 in a procedure when 

seeking to matr:h a goal (unless "cut" is used explicitly, or implcitly 

when a proof has been found). The code for each clause is actually 

entered, although an early failure in unification may auickly re-route 

control to the next clause. This is fine so long as there are only a 

few clauses in a procedure or when a high proportion of the clauses 

are going to match. However there are often cases where the clauses 

for a predicate v:ould conventionally correspond to an array or table. 

of information rather than a single procedure. Typically there are 

many clauses with a variety of different non-variable tenns in one or 

more argu□ ent positions of the head predicate. An exanple □ight be 

the clauses for a predicate 'phonenur.iber(X,N)' where 'N' is the phone 

number of pe;.·son 
, ,r,. 

A • 

Ideally one would like the system to access clauses 

"associatively", to achieve a higher "hit" r.atio of clauses r.iatched t0 

clauses entered. In other words clauses should be indexed on a more 

detailed basis than head predicate alone. However there is a danger 
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of generating much extra indexing 5_nformation which is not needed in 

practice. For example a standard telephone directory is indexed so as 

to facilitate answering questions of the fom 

'phonenumber(aperson,X)'. To cater for questions of the form 

'phonenumber(X,anumber)' would require another weighty volume which 

would be useless to the average customer. So in designing an indexing 

scheme one has to balance generality against the benefit realised in 

practice from the extra infonnation stored. Also the whole object of 

the scheme will be nullified if the indexing process is not fast. In 

Prolog, there is an additional constraint that the clauses must be 

selected in the order they appear in the program, as this order 

frequently constitutes vital control information. 

Besides the main objective of speeding up the selection of 

clauses to match a goal, indexing also helps the machine to detect 

that a choice is determinate because no further clauses in the 

procedure will match. This is important for determining when space 

can be reclaimed from the local stack. 

The indexing scheme we shall describe is relatively 

straightforward, and results in clauses being indexed by predicate and 

principal functor of the first argument in the head (if this term is 

non-variable). This is achieved by replacing the first PUI instruction 

in each clause by extra indexing instructions in the procedure code. 

Huch work is thereby telescoped, and clauses can often be selected by 

a fast "table lookup". It is a simple compromise solution which is 

perfectly adequate for many cases of practical interest, in particular 

for compiler ,;vriting in Prolog. Pbreover in many other cases it is 

not difficult to rewrite the program to take advantage of the indexing 

----- --------- -----------------------
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provided, cf. the way two dir:ien1:.·ional arra.ys are conventionally 

1:iapped onto one dimensional f,torage, in Fortr2r1 implementations say. 

For example one might replace a set of unit clauses for 'rr1atrix' by 

unit clauses for 'vector' plus the clause:-

matrix(l ,J, X) : - K is I*20+J, vector(K, X). 

provided we have:-

: -mod e m n t c ix ( -r , +, ? ) • 

The indc:-dng then gives rapid access to the X such that 

'matrix(l,.T,X)' for given 'I' and 'J', It also enables the machine to 

take advantage of 'f'.latrix' being a single valued function fro□ 'I' and 

'J' to 'X' and avoid retaining any local storage used in a call to 

'matrix'. Such rewriting can usually be done without greatly impairing 

the "naturalness" and reaciability of rhe program. 

We shall now describe how the ir.iproved indexing scher:ie affects 

the PLM instructions generated. Basically the first instruction in 

each clause is to be omitted and the procedure code becomes more 

complex. The cl:wse sequence of a procedure is divided into sections 

of consecutive clauses with the saiDe type of argument at position O in 

the head, The two types are "variable" and "non-·;ariable". The forr:ier 

corresponds to a general section and the latter to a special section. 

The procedure code now t!lkes the fom of an 'enter' instruction 

followed by alternating special and general sections:-



·. 

enter 

gsect 

general 
section 
code 

ssect (L, C) 

special 
section 
code 
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Each general section commences with an instruction 'gsect'. This 

instruction is equivalent to 'uvar(O,local,O)'. The clauses for a 

general section have at least this one mandatory local variable which 

is bound to the term passed as first argument in the call. If the 

variable at position O in the head is global, an extra instruction:-

ugvar(I) 

is placed at the beginning of the clause code. This instruction hai 

the same effect as 'uvar(O,global,I)'. The code for the general 

section is simply:-

gsect 
try(Cl) 
try(C2) 

try( Cn) 

where Cl through Cn a~e the addresses of the clauses in the section. 

If it is the final section of the procedure, the last instruction is:-

trylast( Cn) 



The code for a special section takes the form:-

Label: 

Next: 

ssect(Label,Next) 

non-reference 
code 

reference 
code 

endssect 
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'ssect' is responsible for dereferencing the tenn passed as first 

argument and if the result is a reference, control is transferred to 

the reference code ccr.nnencing at 'Label' . The reference code is a 

sequence of instructions, each of which is one of:-

tryatorn (I, C) 
tryint(I,C) 
tryskel(S, C) 

according to the form of the first argtnnent in the head of the clause. 

These instructions are respectively equivalent to:-

uatom(O,I); try(C) 
uint(O,I); try(C) 
uskel(O,S); try(C) 

for the special case of matching against a reference. If it is the 

final section of the procedure, the instruction 'endssect' is omitted 

and one of:-

trylastatom(I, C) 
trylastint (I, C) 
t rylast skel ( S, C) 

takes the place of the last instruction in the section. 

instructions are equivalent to:-

uatorn(O,I); trylast(C) 

etc. The instruction 'endssect' causes the following 

These 

'gsect' 

instruction to be skipped and takes over its role for the special case 

concerned. The 'endssect' instruction is not strictly essential and 
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could be treated as an ignorable no-operation instead. 

The "meat" of the improved indexing scheme lies in the 

non-reference code which immediately follows an 'ssect' instruction. 

In general this code has the form:-

switch(N) 
case(Ll) 
case(L2) 

case(LN) 

testcode 

Basically, the code switches on a "hash code" determined by the 

first argument in the call to some test code which finds (by a 

sequence of tests against functors having the same "hash code") the 

appropriate clause(s) (if any) for this functor. Each of these 

clauses is then 'try'ed in turn. Usually there will be no more than 

one clause per "hash code" value and so the cost of finding this 

clause is independent .5:?.f the number of clauses in the section. 

In more detail, instruction 'switch' computes a key determined by 

the principal functor of the first argument in the call (which has 

been dereferenced by 'ssect'). 'N' is a certain power of 2 which is 

the number of 'case' instructions following. The value of N is 

arbitrary and is currently chosen to be the smallest power of 2 which 

is not less than the number of clauses in the section. A number Hin 

the range Oto N-1 is derived from the key by extracting the least 

significant I bits where N is 2 to the power I. ie. Mis the key 

modulo N. Control is then transferred to the address 'L' where the 

(M+l)th. 'case' instruction is 'case(L)'. If there are only a few 
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clauses in the se~tion (currently <5) then the 
, • ~ 1 , 

SW]_ LC fl and case 
, 

instructions are emitted and testcode as if for a single case follows. 

In general the testc8de indicated by tile address 'L'. in a case 

instruction is of the forn:-

'if' instructions 

goto(Next) 

whP.re 'Next' is the address of the next general section. An 

instruction 'goto(L)' merP.ly transfers control to address 'L'. If the 

list of 'if' instructions would otherwise be empty ( see below), all 

the testcode is omitted and the correspohding case instruction is 

'case(Next)'. An 'if' instruction is one of:-

ifa tmn( I, Label) 
ifint (I, Label) 
ifskel(I, Label) 

There is one 'if' instruction for each different atom, integer or 

functor which occurs as a principal functor of the first argw:ient of 

the head of a clause in this !:;ection, and whose key cor:r:esponds to the 

case concerned. The ~if' instructions can be ordered arbitrarily. 

,:.~--

,I' uniquely identifies the atom, integer or functor cone:erne·d. Of ten 

there will only be one clause for this constant or functor, in which 

case 'Label' is the address of the clause's code. The effect of the 

'if' instructioQ is to transfer control to 'Label' if the first 

argument of the goal matches the cor,stant or functor indicated by 'I'. 

Since 'ssect(_,Next)' will have set the :FL fieJ.d of the current 

environment to 'Next', the net effect of the 'if' instruction is as if 

( for example) : -

11atom(O, I); try(Lab2l) 



Page 75 

occurred immediately before the next general section. If there is 

more than one clause for a particular constant or functor, 'Label' is 

the address of code of the following form:-

try(Cl) 
try(C2) 

goto(Next) 

[? Need 'reload' instructions if argument O is a skeleton. ?] Here 

'Next' is once again the address of the following general section and 

the Ci are the addresses of the code for the different clauses, in 

order of the source program. 

If a special section is the final section in a procedure, the 

opening instruction is:-

ssectlast(Label) 

This instruction is like 'ssect' but if the first argument of the call 

is a non-reference the machine is prepared for deep backtracking on 

failure. (cf. the relationship between 'try' and 'trylast'). The 

remaining code is similar to that for 'ssect', with an address 'fail' 

replacing all occurrences of the 'Next' address. If control is 

transferred to 'fail', the effect is to instigate deep backtracking. 

If there is more than one clause for a constant or functor, the code 

is:-

notlast 
try( Cl) 
try ( C2) 

t rylast ( Cn) 

Instruction 'notlast' prepares the machine for shallow instead of deep 

backtracking. 
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Finally if the type of the first arg1Jr.1ent is restricted by a mode 

declaration, part of the special section code can be omitted. If the 

restriction is'+', the refer~nce code is omitted and the label in the 

'ssect' instruction becomes 'error' If control is transferred to 

• error' a diagnostic message is given followed by deep backtracking. 

If the restriction is the non-reference code is replaced by the 

instruction 'goto(error)'. Thus the Drocedure code checks that the 

type of the first argument is consistent with any moJe declaration. 

8. L 1 Example -

\Je shall now illustrate the clause indexing by shoving the 

indexed procedure code for the following clauses:-

call(X or Y) : - call(X). 
call(X or Y) :- call(Y). 
call(traee) :- trace. 
call(notrace) :- notrace. 
call(read(X)) :- read(X). 
call(write(X)) :- write(X). 
call(nl) : - nl. 
call(X) :- ext(X). 
call(call(X)) :- call(X). 
call(true). 
call(repeat). 
call(repcat) :- call(repeat). 

The procedure code is as follows:-



call: 

la bell: 

label2: 

label3: 

label4: 

labels: 

listl: 

refl: 

next: 

list2: 

ref2: 

enter 
ssect (refl ,~!) 
swi tch(8) 
case( labell) 
case (label2) 
case(next) 
case (~13) 
case(label4) 
case(label5) 
case(next) 
case(next) 
ifskel( or, list 1) 
goto(nert) 
ifato~ace,clause3) 
goto(next) 
ifskel(read,clauseS) 
goto( next) 
ifatom(notrace,clause4) 
ifskel(write,clause6) 
goto( next) 
ifatom(nl,clause7) 
goto(next) 
try( clausel) 
try(clause2) 
goto(next) 
tryskel(or,clausel) 
t ryske 1 (or, c lause2) 
tryatom(hace,clause3) 
tryatom(notrace,clause4) 
tryskel(read,clause5) 
tryskel(~e,clause6) 
tryatom(nl,clause7) 
endssect 
gsect 
try(clause8) 
ssectlast(ref2) 
ifskel(cal~ause9) 
ifatom(true,clauselO) 
ifatom(repeat,list2) 
goto( fail) 
notlast 
try(clausell) 
trylast(clausel2) 
tryskel(call,clause9) 
tryatorn(true,clauselO) 
tryatom(~at,clausell) 
trylastatom(repeat,clausel2) 
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8.2 Garbage Collecticn 

We have already seen hot•' local storage used during the 

detc;..-rninate execution of a procedure can be recovered at virtually no 

cost. It is also possible to recover part of the global storage used, 

though the garbage 5ollection (GC) process needed is rather expensive, 

hence the importance of classifying variables into locals and globals. 

Neither of these techniques can reclaim storage from a procedure until 

it has been completed determinately. While a procedure is still 

active, there is little potential for recovering any of its storage. 

Because of the cost, garbage collection should only be instigated 

when there is no longer enough free space on the global stack. It 

involves tracinz and marking all the global . cells which are still 

accessible to the program, and then compacting the global stack by 

discarding inaccessible cells with ~appin_,£ of any addresses which 

refer to the global stack. A drawback, attributable to the structure 

sharing representation, is that not all the inaccessible cells can be 

discarded. They may be surrounded in the frame by other accessible 

cells, and the relative positions in the frame of all accessible cells 

must be preserved. This disadvantage relative to a "direct" 

representation using "heap" storage is nevertheless probably 

outweighed in most cases by the general c m,1pac tness of 

st rue t ure-sharing. 

1,e say that a global frame is active if tbe corresponding local 

frame still exists. Otherwise the frame is snid to be passive. 

Pas1c:ive global frames correspond to procedutes which have bee:1 

completed determinately. The aim of GC is to reduce the sizes of 

passive global frames by discarding inacce.ss.ib1e ceJ 1_s frora either end 
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of the frame. If possible the frame is dispensed with altogether. 

In order to perform the CC process, it is necessary to make some 

slight changes to the format of the data on the two stacks:-

(1) An extra GC bit must be made available in (or associated with) 

each global cell. This bit will be set during the trace and mark 

phase if the cell is to be retained. 

(2) An extra (long) iocation is needed at the beginning of each global 

frame. This contains a special value of type 'mark(N)' 

distinguishable from other constructs. During GC, this location marks 

the start of another global frame and the value of N indicates the 

amount the frame is to be displaced when compaction takes place. If 

the frame is to be discarded altogether, the value in the location is 

set to 'discard(N)', where N is the relocation factor which would 

apply if the frame were not to be discarded. 

(3) An extra 1-bit of management information is needed in the local 

frame. This indicates whether or not there is a corresponding global 

frame. 

The GC process needs to be able to trace all existing local 

frames (and the corresponding active global frames). The information 

needed resid~s in the X and VV fields of the local frames, with the Vl 

fields indicating the paired active global frames. The following 

algorithm performs the enumeration:­

local frame pointer Parent := register X; 
local frame pointer Alternative := register VV; 
while Alternative >= root environment, do 

(while Parent> Alternative, do 
(sclect(Parent); 
Parent := field X of Parent); 

select(Alternative); 
Parent := field X of Alternative; 
Alternative := field VV of Alternative) 



root environment 

;!\. 
J 

vv X 

\_Vf"ld ''\i\. ie_,._ 

' 
\~ VV field 

\ 

We can now outline the entire GC process:-

preliminaries: 
/* this step reduces recursion during trace+marking */ 
for each active 3lobal frame, 

mark the GC bit in each cell; 
trace-I-marking: 

for each local frame 
and corresponding active global frame if any, 

(trace+mark each local cell; 
trace+□ark each global cell); 

computing displacements: 
for each global frame in ascending order, 

compute its displacement and set rr.ark(N) whe!."e 
N := displacement of previous fra:ne 
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+nL'!,1ber of eel.ls dropped fro," end of previous frame 
+sizes of any intervening frar:1es discarded 
+number of cells dropped at start of this frame; 

remapping of global addressPs: 
for each local frame, 

(remap-global-pointer for the Vl field; 
remap each local cell); 

for each global frame, 
remap each global cell; 

for each trail item, 
_remap the trailed reference; 

also ~_map-global-poiT2_ter_:_s Xl, Vl, VVl; 
compacting the global stack: 

physically r.10v? tlle rer:1aining global frames to their new 
positions, unr:iarking the GC bit in each cell. 

procedure trace+mark(Cell): 
uses a pusiidown-list set up in free space at the top of the 
local stack; 
mark the GC bit in Cell; 
if Cell contains a reference to a global cell, Gcell, 



and Gcell is not already marked, 
then trace+r.1ark(Gcell) 

else if Cell contains a molecule 
then trace+mark each unmarked global cell 

for the variables in its skeleton 
else return. 

procedure remap(Ccnstruct): 
if Construe t is a global reference, 
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then scan back through the frame to the preceding mark(N) 
and subtract N from the reference 

else if Construct is a molecule 
and there is a variable in its skeleton, 

then find the mark(N) preceding the variable's cell 
and subtract N from the frame field of the molecule 

else return. 

procedure remap-global-pointer(Address): 
if the location before Address contains 'discard{N)' 

then subtract N from Address 
else the location contains 'mark(N)' in which case subtract N-M 

from Address where M is the number of unmarked cells 
starting at Address. 

-----------------------------
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9.0 DESIGN PHILOSOPHY 

Having described the mai.n features of our Prolog imple:-:1entation, 

it is perl,D.ps v1cntliwhile to corament on the criteria which influenced 

design decisions. It is hoped this will provide some answer to 

inevitable questions of the fona "Houldn' t it be better if ..•• ,.? 11 or 

"Was it really necessary to ..•••. ?". 

Firstly, software implementation has to be judged by the 

standards of an engineering discipline rather than as an art or 

science. One cannot hope to achieve an ideal solution to every 

problem, but it is essential to find a.dequate solutions to all the 

major ones. Gener;illy speakinli simplest is best. 

A good example is the contrast between earlier attempts to use 

"theorer1 provers" as "problem solvers" and Prolog itself. The earlier 

attempts failed because no adequate solution had been found to the 

problem of controlling the syster:J in a reasonable way. Al t11ongh the 

simple solution adopted by the originators of Prolog does not satisfy 

all the aspirations of "logic programming", and so is perhaps not 

"ideal", it does transform logic into an adequate, indeed powerful, 

programming tool. 

In our experience of using Prolog we have not found any example 

which d2mantls more sophisticated control facilities. Nor have we felt 

any overwheJ,:iing need for extensions to the language. By far the 

worst practical clr·;:iwback. has been the large amounts of working storage 

required to run the Marseille interpreter. Also, although interpreted 

Prolog is fast enough for most purposes, it is too slow for running 

systems programs such as the Prolog "supervisers". This is a pity 
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since Prolog is otherwise an excellent language for software 

implementation. Therefore improved efficien~y, both of space and 

time, has been the major aim. 

In implementing any language, it is important to have in mind 

some representative programs against which to check the relevance of 

design issues and on which to base dee is ions. For this purpose, we 

have taken the existing Prolog supervisers and the new Prolog compiler 

itself, as their efficiency is ~1at matters most to the average Prolog 

user. Looking at typical Prolog programs such as these, one finds 

that the full generality of Prolog is brought into play only rarely. 

At almost every step one is dealing with a special case that can be 

handled more efficiently. Examples are the following:-

* Many procedures are determinate. \le can capitalise on this to 

recover much of the working storage used. 

* Of the symbols which make up the head of a clause (functors, 

constants and variables), the majority are typically variables, and 

moreover are typically first occurrences of the variable. We have 

seen that the code for this important case of the first occurrence of 

a variable performs a relatively very trivial operation. 

* In the source program, the arguments of a goal are almost 

always variables. Hence the decision to generate executable 

instructions for terms in the head of a clause rather than those in 

the body. 
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* Predicates are usually used in a restricted c:oae wi!:h certain 

arguments provic:ing procedure :input and others receiving procedure 

output. Opt.ional T'lOde dec}nrations euable the system to avoid 

ger!c:c,rating unnecessary code and also to increase che amount of storA.ge 

recovered autooatically when a procedure exit is determinate. 

* The first argunent of a predicate is analogous to the subject 

of a natural language sentence, and it is natural for this argur.1ent to 

be en "input" of the procedure. Often the clauses of the procedure 

coucerned represent different cases according to the principal functor 

of the terr.1 supplied. An efficient treatr.ient of such "definition by 

.. ~eses'' is implemented which selects the correct case(s) by table 

lookup. This feature is invaluable for writing compilers in a natural 

and efficient way. 

* Terrns are rarely nested to any degree in clauses responsible 

for major computation. Hence the decision not to bother to generate 

executable code for tenas nested below level 2. 

In short, it is the treatment of such special cases which is the 

decisive factor in determining efficiency. 

The design objectives may be sur.imarised as being aimed towards 

making Pro log a prnc t icable systems progranming language. It was 

considered reasonable for the systems progranmer to have to understand 

some general facts about how the language has been implemented in 

order to use it with maximum ef:fidency. eg. The systems programmer 

is expected to be aware of when his clauses can be compiled into a 

table lookup ' ano to tb.e need for mode declarations. 

Hov.,cver, as far as the naive program1~1er is cDncerned, none of this 
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knowledge is necessary to write correct programs. 

In most conventional programming languages, it is difficult to 

separate the essentials of program design from the details cf 

efficient impler:1entation. One cannot state one without the other. 

For example, PL/1 faces the programmer with choosing, at the outset, 

the storage class of his data. The choice strongly affects the form 

of the program. Similarly most languages have mandatory types for all 

data items and the programmer cannot easily change a data type once 

"coding" has cor.1menced. This even applies to more high-level 

languages such as Lisp, where all "abstract" data structures have to 

be mapped into concrete list structures. It is difficult to avoid 

becoming committed to referring to some abstract component as CDDAR 

say. 

The approach we favour is to specify an algorithm as an essential 

core, to which extra pragr:ias (pragmatic information) are added. The 

pragmas need not be supplied until a later stage and give guidance on 

how the core is to be implemented efficiently. They do not affect the 

correctness of the program. An example of a pragma is the predicate 

mode declaration supported by this implementation. There are numerous 

other possibilities in the same vein which could make logic based 

progrnms more efficient, while preserving the simplicity and ease of 

use of the core language. 

For example, more sophisticated clause indexing is clearly needed 

in some cases, yet it is unrealistic to expect the system to arrive at 

the optimal choice since, among other things, :it depends on how the 

clauses are going to be used. Plainly there is scope for the 

progra1:i.mer to give guidance through some new £011:1 of pragma. 
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10. 0 PF.KFORM/-\_~·/CE 

10. l RestL:.ts 

Some simple benchmrnk tests to assess Prolog performnnce are 

presented in Appendix 5. The other languages chosen for ccr.1parison are 

Lisp and Pop-2. The three languages ha'.re sinilar design aims and can 

usefully be compared. All are intended for interactive use, and are 

paricularly oriented towards nor.-rm".1erical applications, with the 

emphasis on generality, simplicity and ease of programming rather than 

absolute efficiency. (AJ.so, all are in active use on the Edinburgh 

DEClO.) 

Each benchr.iark is intended to test a different aspect of Prolog. 

No fixed criteria were used for selecting the "equivalents" in the 

other languages, and so each example should be judged on its own 

ncd_ts. One should observe that there is no absolute sense in which 

the performance of different language implementations can be compared, 

except where there is a clearly defined correspondence between the 

proz1·ar:is of th2 two lan3uages. 

In the case of Prolog, Lisp and Pop-2, there is a subset of each 

for which there is a fairly obvious, objectively defined 

correspondence, namely the class of procedures which compute sir:iple 

functions over lists. This correspondence is illustrated by the first 

benchmark, a "naive" procedure for reversing a list. 11tis procedure 

is useful as a benchmark simply because it leads to hea.vy "list 

crunching". The time ratios quoted are typical of the class, Thus it 

is usual for comp5led Prolog procedures which compute silTlple list 

functions to run at 50-70% of the speed of the Lisp equivalents, for 
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example. 

The second benchmark is a "quick-sort" algorithm for sorting 

lists. The auxiliary procedure 'partition' shows the worth of 

multiple out!mt procedures. For comparison, we have selected a Lisp 

version which packages the two outputs into a list cell. Nested 

lambda expressions are required for the unpacking. The Pop-2 version 

is taken from p. 235 of the Pop-2 handbook [Burstall et al. 1971], 

omitting the refinement which caters for non-random input lists. Thus 

we have essentially the same algorithm as the Prolog and Lisp 

versions, but with ~s and explicit stack manipulation replacing 

normal function calls. This transformation makes the function rathe1 

difficult to understand, although evidently it improves the speed. It 

is interesting to note that the more transparent Prolog formulation is 

also appreciably faster. 

The third benchmark is a much favoured example of non-nllf:lerical 

programming the differentiation of an algebraic expression. The 

Lisp version is a slight extension of Weissman's [1967, p.167] DERIV 

function and the Pop-2 form is likewise extended from an example on 

p.26 of the Pop-2 handbook. The Prolog formulation is concise and 

echoes the textbook equations in a way which is immediately apparent. 

It demonstrates the advantages of general record structures 

manipulated by pattern matching where the record types do not have to 

be explicitly declared. l1oreover the timing data shows that the 

Prolog version is fastest. Notice how the Prolog speed is most marked 

in cases where a lot of data structure is created, eg. when a 

quotient is differentiated. This chRracteristic is a result of 

s true ture-sharing and will be discussed later. 
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The fourth benchmark \/as chosen to test the implr:mentation of the 

logical vari;:i_ble,, and was suggested by the kind of proeessing which is 

typical of a cor:1piler. The task is to !:'tai,sl.ate a list of symbols 

(here actually numbers) into a co:t-rP.sponding list oi s2rial nwnbers, 

where the. items are to be numbered in "alphabetic:a:L 11 ord-~r (here 

actually numerical order). The 'serialise' pr<1cedure pairs up the 

items of the input list with free variables to produce both the output 

list and an "association list". lbe eler.ients of tl1e association list 

are then sorted and their serial numbers co1,1puted to complete the 

output list, For comparison we show a Lisp implern2ntation which 

attempts as far as possible to satisfy the conflicting air.is of 

paral]eling the Prolog version and rcr.i.sining close to pure Lisp. The 

main trick is ta operate on the cells of a duplicate list, eventually 

overwriting the copied elements with their serial 11umbers. The choice 

of a Pop-2 version seems even more arbi trnry and He have not nt tempted 

to provide one. 

The final benchmark is designed to test the improvement gained by 

ind~xing the clauses of a procedure. The task is to Jnterrogate a 

"database" to find countries of similar populntion density (differing 

by less than 5%). The database contains explicit data on the areas and 

popdations of 25 countries. A procedure ~ density' fills in "virtual 

data" on population densities. As is to be expected, the speed 

advantage of compiled code is considerably enhanced relative to either 

Prolog interpreter, neither of vhich indexes clauses \Ji.thin a 

pro,.-edure. Thus the benefit of compilation is a factor of arouPd 50 

instead of the normal 15 to 20. The figures f():r.: the 'Jeriv' example 

show a similar but less pronounced effect. To illustrate the 

correspondence between backtracking i11 Prolog and iterative loops in a 
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conventional language, we shcn1 a Pop-2 version of the database 

exar.:iple. The dcr.10graphic clc1t2 is stored in Pop-2 "strips" (primitive 

one-dimensional fixed-bound arrays), and the 'query' clause translates 

into two nested forall loops. As the timing data shows, the speed of 

Pro log backtracking can better that of a conventional iterative 

formulation. 

We shall now summarise the results of these benchmark tests and 

other less direct perfo1macce data. Firstly, co::1pdring Prolog 

implementations, one can say that compilation has improved running 

speed by a factor of (typically) 15 to 20 relative to the l~rseille 

interpreter. The improvement is greater where clause indexing pays 

off, and someuhat less in certain cases -where terms are nested deeper 

than level 2 in the head of a clause. The speed of our Prolog 

interpreter irnpler.1ented ir, Prolog is very similar to that of the 

l~rseille interpreter, and their tir.:ies are remarkably consistent. {In 

fact, our interpreter could be much faster if the present clumsy 

oethod for interpreting the "cut" operator were avoided, eg. through 

provision in the compiler of "ancestral cut", ie. a "cut" back to an 

ancestor goal instead of the immediate parent.} 

The results of comparing Prolog with a widely used Lisp 

ir:1plementation may be summarised as follows. For computing Sii;-iple 

functions over lists, compiled Prolog typically runs no more than 

30-50% slower than pure Lisp. Of course such a comparison only 

evaluates a limited part of Prolog and can't be entirely fair since 

Lisp is specialised to just this area. In cases where a wider range 

of data types than simple lists is really called for (or where 

11 conses" outnumber ordinary functio11 calls), Prolog can be 

-------- ---------- -----------------
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significantly faster. For who.t Jt is worth, the mean of the 4 cor:imon 

benchmarks ( taking only the 'ops8' figures for 'deriv') pc1t" s Pro log 

speed at 0.75 times that of Lisp. 

As regards Pop-2, in all the benchmark tests cor:1piled P:rolog ran 

at least 60~~ faster, c,ven where the Pop-2 version ·.vas formulated using 

more primitive language constructs such as go!52_s and "strips". The 

mean for the 4 comr.10,1 benchr.iarks (again taking the 'ops8' data) putE; 

Pro log 2. I+ t irnes faster than Pop-2. 

Small bcnchr:iark tests can only give a partial. and possibly 

biassed indication of efficiency; an irnplement=1tion is better 

evaluat·ed from the perfonnance O r ,_ large-scale programs. On these 

grounds it is perhaps usefnl to look into the performance of the 

Prolog compiler. Recall that ths cor':ipiler is i.Lself ir,1pler,iented in 

Prolog (and furthermore is almost entirely "pure" Prolog, ie. clauses 

havjng a declarative semantics). In practice COi:ipilation procr,cd.s in 

two phases, with DEC' s Ki\CRO assembler being used for the second 

phase:-• 

Pro log Pro log 
source compiler 

file --------------> 
(Phase 1) 

Assetnbly 
language 
file 

i1ACRO 
Relocatable 
code 

-------------> file 
(Phase 2) 

The ratio of the tir.1es for Ph&se 1 : Phase ?. is usually of the order 

of 3 to 2. It is surprising the times are not more different, since 

l~ase 2 is a relatively simple process, and the l~CRO assenbler 1s 

commercial software implemented in a 101~·-level languc1ge. The compiler 

1s only generating about 2 instructions for each Prolog ~ource symbol, 

so it is not simply a case of Phase l. creating voluminous input to 

Phase 2. An nverr:gc f:igt,l.'f~ for the ccnpi12t:i.on speed of the Ptolog 
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compiler (Phase 1 only) is 10.6 seconds per 1000 words of code 

generated. This includes input of the source file and output of the 

assembly language file. 

So far we have only discussed perfonnance in terms of speed. 

From an historical point-of-view, space economy has been of far more 

concern to the Prolog user, and accordingly was a major objective of 

this implementation. It is therefore important to assess how 

effective the new space-saving techniques have been. From the nature 

of the techniques, an improvement will only obtain for determinate 

µraced ures ( apart from an overall 2-fold improvement due simply to 

tighter packing of infom,ation into the machine word), so much depends 

on how determinate programs are in practice. The compiler itself, a 

highly determinate Prolog program, now rarely requires more than SK 

words total for the trail and two stacks. When the compiler was 

interpreted by the Marseille interpreter (before it would 

"bootstrap"), 75K words was not really adequate for the whole system, 

of which roughly SOK would be available as working storage. This 

suggests approximately a 10-fold space improvement for determinate 

programs. 

;Lt is difficult to make more direct comparisons with either the 

.Marseille interpreter or the Lisp and Pop-2 syster.1s, and w~ have not 

attempted to do so. Firstly none of these systems provides an easy 

means of determining how r.1uch working storage is actually in use (as 

opposed to available for use). Secondly it is debatable what 

measurements sli;:.1uld be used to compare systems having different 

storage allocation regimes, especially where mer.iory is paged. For 

example, how much free storage is "necessary" in a system relying on 

--- ------- ------------~----
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garbage collection? {The fairest proposal might be to ascertain and 

compare, fnr each benchr;,ark, the s□al.le:st amount of non-sharab1e 

test 
. , , 

Wl1 .. L 1::un without deg r2-d ing 

performanee hy more than a certain perce,1tn.r;e. This uould be a 

tedious to_sk.} 

It i3 probably fair to say that the "average" compiled Prolog 

program requires considerabJy more working storage than Lisp or Pop-2 

equivaler:ts, but that with careful and k;:wwl2dgeable progra1:1ming 

(using mode decldrations and ensuring deter1,1inacy) the Prolog 

requirement need not he much different from the other two. (For 

example, it is doubtful whether a Lisp or Pop-2 implementation of the 

Pro log compiler wouJ d use less storage.) The difference between Prolog 

and the other two is likely to be of less practical significance on a 

virtual memory rnachin2. The extra storage required by Prolog 

typically represents groups of "dead" environments which are not in 

active use, 2.nd which are also adjacent in rne,:wry by virtue of the 

stack regime. Therefore they can generally be paged out. 

From the coding of PU1 instruction::; detailed in Appendix 2, ,Je 

see that the coopiled code is relatively cor:1pact at about two wor(ls 

per source symbol. For the record, the "high-segment" sizes of our 

ccmpi ler and interpreter are resp2ctively 25K words and 14K words. 

These sizns represent the total sharable code including essential 

run-time bystem. 
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10. 2 D incussion 

The above results t,how that Prolog :::pc,eri conparcs qilite \/::~11 with 

othe~ lang11ages such as Lisp and Pop-2. Also the pl:'.rfon::iance o ,- the 

comr,il~r suggests that soflware imple,:iented in Pro]o:_-', e:ari reach an 

accept3hle 11tc:L1dard of efficiency. 

Nov on the face of it, a language ouch as pure T • .,isp offers 

simpler and more obviously 1:iachinc·-odc;nted L!cilities. Jfo,,.; is it 

that Proloz is not considerably slower? 

The first point to notice is that Prolog extras the ful.J 

flexibility of unification with the logical variable and uackt:rack:i.ng 

- lead to V,':.ry little overhe;::id when not used, provided the prograF1 is 

compiled. For example, consider the code generatad f0r the 

'conratenate' procedure (cf, AppE:ndix 5 .1) and .qssur.1e it .... L~ r,alled, 

as for tbe corresponding Lisp function, \\_1ith t\-JO argt~1euts ground (ie~ 

ter.r1s containing no variables) and a variable as thlrd argw:ient. All 

unification on the first two arg1..unents cf 'concatenate' reduces to 

simple type. checks and direct assigrnrients. Unificatj_on on the t\1ird 

argument is sor.iewhat more eostly, as it is creating the new output 

list (cf. the "conses" psrforr:1ed by tlie Lisp proce,lure). If indexed 

procedure code is generated, the Prolog machine readily detects that 

:Lt is ·e):ecut ing a deteruina~e procedure and there a::-e no signLficant: 

overheads attributabl.e to "backtracki:-ig" •· the traiJ_ is never accesseo. 

and all local storage is autor,;atic:ally recovered on procedure exit. 

In short, the procedure is executed in much the sane oanner as one 

would expect for a conventional language. 
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Despite this, it is still surprising that Lisp is not several 

times faster than Pro log. Lisp has only the 0'Ile record type and, more 

importantly, it does not provide complete security against program 

error car and cdr are allowed to apply indiscr:i.minately to any 

object. As a result no run-time checks are needed and the fundamental 

selectors are effectively hardware instructions on the DEC:10. 

In analysing the reasons for Pro.log's relative speed, we are led 

to the following, perhaps unexpected, conclusions:-

(l) Specifying operations on struc i:ured data by "pattern 1;i2tching" is 

likely to lead to a better inplementation than use of conventional 

selector and constructor functions. 

(2) On a suitable machine, the "structure-sharing" representation for 

structured data can result in faster execution than the standard 

"literal" representation. To be nore specific, it allows a "cons" to 

be effected faster than in Lisp. 

To illustrate the reasons for these conclusions, let us compare 

(a) an extract from the definition of evalquote given in the Lisp 1. 5 

}~nual [l~Carthy et al. 1962] with (b) the clause which is its Prolog 

counterpart. \Je shall write the Pro_log functor corresponding to cons 

as an infix operator :-

(a) apply[fn;x;a] = 

eq[car[fn];LABEL] -> apply[caddr[fn] ;x; 
cons[cons[cadr[fn] ;caddr[fn] j ;a] J 

(b) apply(lahel.Narie.Form._,X,A,Result) :­
apply ( Fo rr:1, X, (Name. Form) . A, Result) . 
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As an aside to our r:•ain argument, we m2y first of all observe 

that "pattern matching" r,iakes it much easier to vist:alise what is 

I • aappening. The pattern matching version also invites a bei-ter 

implementation. No location corresponding to the variable 'fn' needs 

to be set aside and initialised. It is only the form and 

subcomponents of this argument which are of interest. Tne 

decomposition is performed initially once and for all by pattern 

matching. In contrast, a straightforward implementation of the Lisp 

version will duplicate much of the work of decomposition. The double 

occurrence of caddr is the most noticeable cause, but we should also 

remember that caddr and cadr share a common step. 

A more technical consideration is that pattern matching 

encourages better use of index registers, A pointer to the strue tured 

object is loaded just once into 2.n index register and held there while 

all the required subcomponents are extracted. Unless the Lisp 

implement at j_on is quite sophisticated it will be repeatedly reloading 

the value of 'fn', and subcomponents thereof. A related issue 

concerns run-time type checks needed in languages like Pop-,2. (Lisp 

manages to avoid such checks for the reasons noted above.) An 

unsophisticated impleraentati.on of selector functions will. have to 

perform a type check before each aprllication of a seiector. With 

pattern matching, one type check suffices for all the components 

extracted from an object. 

Finally, for procedures such as 'ripply' above, pattern matching 

also encourages the implementation to integrate type checking with 

case selecticn, building Jn com;:mted .K~.to_s where apprcpri'3te. 
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To summarise, not only is pattern matching more convenient for 

the user, it also leads the irnplementor directly to an efficient 

implementation:-

(1) Procedure call and argument passing are no longer just rrred tape" 

they provide the context in which virtually all the "productive" 

computation is performed. 

(2) No location needs to be set up for an argmnent unless it is 

explicitly referred to by name. 

(3) One can select all the required components of a compound object in 

one efficient process using a common index register. 

(4) Type checking is performed once and for all at the earliest 

opportunity. 

(5) It is easier for the implementation to replace a sequence of tests 

with a computed goto. 

Hoare [1973) has proposed a more limited form of rrpattern matching" 

for an Algol-like language and has advanced similar argmnents for its 

clarity and efficiency. 

Let us now consider the impact of structure-sharing on 

efficiency. Ironically, this technique was first devised by Boyer and 

rbore as a means of saving space. However we shall argue that it is 

even more important for its contribution to Prolog's speed. 

Clearly the direct representation of a compound data object, as 

used in Lisp implementations and for source terms in Prolog, would 

enable somewhat faster access to components. However, the 

representation in our DEClO implementation of a source term variable 

by an indexed address word means that each argument of a construe ted 

term can likewise be accessed in just one machine instruction. 
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(F•n-ther dereferencing ls sometimes needed, but this is comparatively 

rare in practice.) Thus the only significant accessing overhead for 

structure-shared objects is the necessity for preliminary 1 ' • .LOGC: l.ng uf 

the frame component of a molecule into an index register. The r.rreat 0 

advantage of struc tur<c!-sharing lies in the supreme speed with which 

complex new objects are created, and also the ease with which th8y can 

be discarded when no longer -needed. 

To see this, let us return to our evalquote example. The Lisp 

version has to perform two II conses" to construe t the third argu!".1ent of 

the call to~.El:_z. Each "cons" involv·2s:-

(1) grabbing a new free cell, after checking that the free list is not 

exhausted; 

(2) copying each component into the list cell obtained; 

(3) saving the address of the new cell. 

If, as Prolog, Lisp allowed more than one record size, step (1) ·,10uld 

have to be a lot more complex. 

In contrast, Proloz has to perform absolutely no wo:ck to 

construe t the third argument of the call to 'apply' ! ie. No 

executable code is generated for the term '(Name.Form) .A'. Uell, this 

j_s slightly misleading since the analogous co□putation will in fact 

occur during the next invocation of 'apply'. when unification creates 

a new molecule to b:tnd to the next generation of Haweve~, 

creath,g this molecule r:wrely involves bringing together th'O existing 

pointers as the halves of the word to be stored irr 'A' s cell. 
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The difference between the two methods can be summarised as 

follows. Languages like Lisp assemble the information to construct a 

new object on a stack (local storage), and then copy the information 

into special records individually obtained from heap storage. Prolog 

leaves the information in situ on the stack(s) and relies on 

structure-sharing for later procedures to locate the information as 

needed. Prolog is substituting extra indirection, which is very fast, 

for the relatively slow operations of copying and heap management. 

The Prolog cost of constructing new objects from a set of skeletons in 

a clause is, at worst, proportional to V, the nur.1ber of distinct 

variables in the skeletons. The cost for conventional methods is at 

least proportional to S, the total number of symbols in those 

skeletons. V can't be any greater than S, and is often much smaller. 

The smaller Vis, the more advantageous the Prolog method. 

Another point to notice is that each Lisp cell 11 consed 11 up must 

ultimately be reclaimed by the expensive process of garbage 

collection, In tight situations, a garbage collecting system can 

"thrash", spending nearly all its time on garbage collection and 

little on useful work. It is for this reason that systems programr;iers 

prefer not to rely on garbage collectors. With Prolog, the user can 

usually rely on the stack mechanism associated with backtracking to 

recover all storage at negligible cost. This advantage is, again, 

even greater if one considers the complexities of garbage collection 

in other languages admitting more than one size of record. 

A final point is that the stack regime leads to better 

exploitation of virtual r:ier:10ry, since, as noted above, it avoids the 

random 1:-iemory accesses inevitably associated with 11 heap" management. 
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11. 0 CONCLUSION 

Pattern matching should not be considered an "exotic extra" when 

designing a programming language. It is the preferable method for 

specifying operations on structured data, from both the user~s and the 

implementor's point of view. This is especially so where many 

user-defined record types are allowed. 

For "symbol processing" applications where a transparent and 

easy-to-use language is required, Prolog has significant advantages 

over languages such as Lisp and Pop-2. Firstly the Prolog program is 

generally easier to understand, mainly because it is fonnulated in 

smaller units which have a natural declarative reading. Secondly 

Prolog allows a wider range of problems to be solved without resort to 

machine- or implementation-oriented concepts. The logical variable 

and "iteration through backtracking" go a long way towards removing 

any need for assiglli~ent in a program. Finally our implementation 

shows that these advantages can be obtained with little or no loss of 

efficiency. In fact in many cases the distinctive features of Prolog 

actually promote better implentation. 
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