
Research Report

- cor.:piling predicate logic programs

Volume 1

by

David E D Warren

D. A. I. Research fiepo:ct lJo . 39

Department of Artificial Intelligence
University of Edinburgh

/

cor.:piling predicate logic prograns

Volume 1

by

David H D Warren

D.A. I. Research Iiepo1'i:. IJo. 39

May 1977

l.O CONTENTS

Volume 1

LO
2.0
3.0

. 1

.2
4.0

. 1

. 2
• 3

5.0
. 1
. 2
.3
.4

6.0
. l
• 2
• 3
. 4
• 5
.6
. 7
.8
• 9
.10
.11
.12

7.0
8.0

. 1

. 2
9.0
10.0

. 1
• 2

11.0
12.0
13. 0

Contents
Abstract
Introduction

\Jhy
llh2ct

The Prolo~ language
Syntax and terminology
Declarative and procedural s0nantics
The cut operation

Overview of Prolog implementation
Structure sharing
Procedure invocation and backtracking
Implementing the cut operation
Conpilation

The Prolog ~achine
The main data areas
Special registers etc .
Literals
Construe ts
Dereferencing
Unification of constructs
Backtracking
Successful exit from a procedure
Instructions
Examples of Prolog ?~chine Code
lbde Declarations
More examples of Prolog lhchine Code

DEClO Implementation Details
Optional Extras

Indexing of clauses
Garbage collection

Design Philosophy
Performance

Results
Discussion

Conclusion
Ac knowl edgemen t s
References

Volune 2 Ap[:ePdices (D.A. I. Reses.rch J1eport ITo. l+o}

1. 0 PLM Registers, Data Areas and Data structures
2.0 PLM Instructions and Literals
3.0 Synopsis of the DECsysternlO
4.0 Timing D2ta for PLM Instructions on DECIO
5. O BenchrJark Tests

2
3
4
lt

11
Hl
19
21
24
26
27
31
32
33
36
36

46
49
56
58
61
65
68
68
·re
B2
86
86
93
99

100
1()1

2

Page 2.

Page 3

2.0 ABSTRACT

Prolog is a simple but powerful programming language founded on

symbolic logic. It encourages rapid, error-free programming and

clear, readable, concise programs. The basic computational mechanism

is a pattern matching process ("unification") operating on general

record structures ("terms" of logic). This report describes techniques

for implementing Prolog efficiently.

compile the patterns involved in the

In particular we show how to

matching process into

instructions of a low-level language. Our implementation is actually

a compiler (written in Prolog) from Prolog to DECsystem-10 assembly

language, but the principles involved are explained more abstractly in

terms of a "Prolog Machine". The code generated is comparable in speed

with that produced by existing DEClO Lisp compilers. Comparison is

possible since pure Lisp can be viewed as a (rather restricted) subset

of Prolog. We argue that structured data objects, such as lists and

trees, can be manipulated by pattern matching using a "structure

sharing" representation as efficiently as by conventional selector and

constructor functions operating on linked records in "heap" storage.

Moreover the pattern matching formulation actually helps the

implementor to produce a better implementation.

Keywords

Prolog, programming, logic, implementation, compiler, data structures,

matching, unification.

-------------·------ -------------

Page. 4

3.0 INTRODUCTION

This report describes techniques for efficie1,tly impleTienting the

programming .language Prolog. It is written nainly for those having

some familiarity with Prolog. For the benefit of a wider readership,

we begin by attempting to answer briefly the questions "Why implement

yet another programming language?", "What is so different about

Prolog?". A precise definition of the basic l'rolog language is given

in Section /4./. The sample programs listed in Appendix /5./ and

referred to in Section /10.l/ may be useful.

The second part of this introduction summarises the history and

nature of Prolog implementation.

3.1 Why

Prolog is a simple but powerful programming language developed at

the University of Marseille [Roussel 1975] as a practical too1 for

"logic programming" [Kowalski 1974] [Colmerauer 197 5] [van Emden

1975]. From a user's point-of-view one of Prolog's main attractions is

ease of programming. Clear, readable, concise programs can be written

quickly with few errors. Prolog is especially suited to "symbol

processing'' applications such as natural language systems [Colmerauer

1975] [Dahl & Sambuc 1976], compiler writing [Colmerauer 1975] [Warren

1977), algebraic manipulation [Bergman & Kanoui 1975] [Bundy et al .

1976], and the automatic generation of plans and programs [Warren

197!+] [Warren 1976).

Page 5

Data structures in Prolog are general trees, constructed from

records of various types. An unlimited number of different types may

be used and they do not have to be separately declared. Records with

any number of fields are possible, giving the equivalent of fixed

bound arrays. There are no type restrictions on the fields of a

record.

The conventional way of manipulating structured data is to apply

previously defined constructor and selector functions (cf. Algol-68,

Lisp, Pop-2). These operations are expressed more graphically in

Prolog by a form of "pattern matching", provided through a process

called "unification". There is a similarity to the treatment of

"recursive data structures" advocated by Hoare [1973]. Unification can

also be seen as a generalisation of the pattern matching provided in

languages such as Microplanner [Sussman & Winograd 1970] and its

successors.

For the user, Prolog is an exceptionally simple language. Almost

all the essential machinery he needs is inherent in the unification

process. So, in fact, a Prolog computation consists of little more

than a sequence of pattern-directed procedure invocations. Since the

procedure call plays such a vital part, it is necessarily a more

flexible mechanism than in other languages. Firstly, when a procedure

"returns" it can send back more than one output, just as (in the

conventional way) it may have received more than one input. Moreover,

which arguments of a procedure are input; s and which will be output

slots doesn't have to be determined in advance. It may vary from one

call to another. This property allows procedures to be

"multi-purpose". An additional feature is that a procedure may

Page 6

"return" several times sending back altereative results. Such

procedures are called "non-determinate 11 or "multiple-result". The

process of reactivating a procedure which has already returned one

result is known as "backtracking". Backtracking provides a high-level

equivalent of iterative loops in a conventional language.

There is no distinction in Prolog between procedures and what

would conventionally be regarded as tables or files of data. Program

and data are accessed in the same way and may be mixed together. Thus

in general a Pro log procedure comprises a mj_xture of explicit facts

and rules for computing further "vj_rtual" data. This and other

characteristics give Prolog interesting potential as a query language

for a relational database (cf.

Example" [1974)).

[van Emden 1976) and Zloof' s "Query by

Earlier we compared unification with Hicroplanner-style pattern

matching. There is an important difference which we summarise in the

"equation":-

unification = pattern matching + the logical variable

The distinction lies in the special nature and more flexible behaviour

of the variable in Prolog, referred to as the "logical" variable.

Briefly, each use of a Prolog varinble stands for a particular,

unchangeable data item. However the actual value need not be

specified immediately, and may remain unspecified for as long as is

required. The computational behaviour is such that the programmer

need not be concerned whether or not the variable has been given a

-value at a particular point in the computation. This behaviour is

entirely a consequence of constraints arising from logic, the language

on which Prolog is founded.

Page 7

By contrast, the variable in most other programming languages is

a name for a machine storage location, and the way it functions can

only be understood in this light. The II assigning" of values to·

variables is the programmer's responsibility and in many situations he

must guarantee that the variable is not left unassigned. This applies

equally to the variables used in the Planner family of pattern

matching languages. There, each occurrence of a variable in a pattern

has to be given a prefix to indicate the status (assigned or

unassigned) of the variable at that point. The programmer must

understand details of the implementation and sequencing of the pattern

matching process, whereas Prolog's unification is a "black box" as far

as the user is concerned.

There are some other programming languages where the variable

does not have to be thought of as a machine location, most notably

pure Lisp. In pure Lisp as in Prolog, the behaviour of the variable

is governed by an underlying formal mathematical system, in this case

Church's lambda calculus. As a consequence, the ma~hine-oriented

concepts of assignment and references (pointers) are not an (explicit)

part of either language. These are just some of a number of close

parallels between Prolog and pure Lisp.

Now it is well kno-wn that pure Lisp is too weak for many

purposes.

necessity.

Various extensions to the language are a practical

In particular the operations rplaca and rplac,Q_ are

provided to allow components of a data structure to be overwritten.

This immediately introduces into the language the concepts of

assigrm1ent and reference which were previously avoided.

------------------- ---- - -----------------------------------

Page 8

No similar extension is provided in Prolog, nor is it neecL:od

owing to the special prope-::-ti.es of the. logical variable. The mai.n

point is that a Prclog procedure r.:iay return as output an "incomplete"

data str.ucture containing var.iables whose values bave not yet been

specified. These "freen variables can subsequently be "filled in" by

other procedures. This is achieved in the course of the normal

matching process, but has much the same effect as explicit assigm1c•nts

to the fields of a data structure. A nece~3Sa:::-y coro1L,r:-y is that \:hen

two variables are matched together, they become linked as one. In

implementation terns, a reference to one variable is assigned to the

cell of the other. These referenc~s arc completely invisible to the

user; all necessary dereferencing is hanrlled automatically behind the

scenes.

In general, the logical vc!rit1ble providc~s r;iuch of the power of

assignment and references, but in a higher-level, easier-to-understand

framework. This is reminiscent of the way most uses of ~ can be

avoided in a language with "well-sn tw tu red II c:ontrol primitives.

There is aa important relationship between co-routining and the

logical variable. Co-routining is the ability to suspend the

execution of one procedure and comraunicate a partial result to

another. Although not provided as such in l'rolog, it is easily

programmed without resort to low·-level concepts, because the logical

variable provides the means for partial results and suspended

processes to be treated as regular data structures. The ma~.n

difficulty is to determine when to co-routine, but this problei~: is

common to languages with explicit co-routining primitives.

Page 9

So far we have previewed Prolog as a "set of features 11 • The

"features are significant primarily because they mesh together well to

make the task of programming less laborious. They can be looked on as

a useful selection and generalisation of elements from other

programming languages. However Prolog actually arose by a different

route. It has a unique and more fundamental property which largely

determines the nature of the other features. This property, that a

Prolog progran can be interpreted declaratively as well as

procedurally, is the real reason why Prolog is an easier language to

use.

For most programming languages, a program is simply a description

of a process. Th~ only way to understand the program and see whether

it is correct is to run it - either on a machine with real data, or

symbolically in the mind's eye. Prolog programs can also be

understood this way, and indeed this view is vital when considering

efficiency. We say that Prolog, like other languages, has a

procedural semantics, one which determines the sequence of states

passed through when executing a program.

Howevert there is another way of looking at a Prolog program

which does not involve any notion of time. Here the program is

interpreted declaratively, as a set of descriptive statements about a

problem domain. From this standpoint, the "lines" of the program are

nothing more than a convenient shorthand for ordinary natural language

sentences. Each line is a statement which makes sense in isolation,

and which is about objects (concrete or abstract) that are separate

from the program or machine itself. The program is correct if each

statement.is true.

Page 10

The natural declarative readL1g is possible, basically because·

the procedural semantics of Prolog is governed by an additional

declarative semantics, inherited straight from logic. The statements

which make up a Prolog program are in fact actually statements of

logic. The declarative semantics defines wlwt facts can bn inferred

from these statements. It lays down the law as to 1.;hat is a correct

result of executing a Prolog program. How the program is exccut·ed is

the province of the procedural semantics.

The declarative senantics lielps one to understand a progran in

the same kind of way as the law of conservation of energy helps one to

understand a mechanical system without looking in detail at t!ie for.c,,s

involved. Analogously, the Prolog programmer can initially igr:ore

procedural details and concentrate on the (declarative) essentials of

the algorithr.,. Having the program broken dcwn iato s,ac1ll

ind,~pendently meaningful units makes it much easier to understand.

This inherent modularity also reduces the interfacing problems whc:'n

several prograr.1mers are working Oi1 a project. Bugs are less l:i.kely,

perh&ps because it is difficult to raake a "logical error" in a program

when its logic is actually expressed in logic!

Of course tbere will always be errors due to typing mistakes,

oversights or plain muddled thinking. Such errors are, however,

relatively harmless because of one other very important property of

(basic) Prolog - that it has a totally defined (procedural) semantics.

This means that j_t is impossible for a syntactically correct program

to perform (or even at tempt to perfonn) an illegal or undefined

operation. This is in contrast to most other programming ianguagcs

(cf. array iuclices out of bounds in Fortran, or car of an atom in

Page 11

Lisp). An error in a Prolog program will never cause bizarre

behaviour. Nor will the program be halted premat1rrely with an error

message indicating that an illegal condition has arisen.

3.2 What

The first implementation of Prolog was an interpreter written in

Algol-\/ by PL.i lippe Roussel [1972]. This work led to better techniques

for implementing the language, which were realised in a second

interpreter, written in Fo1:tran by Battani and .Meloni [1973]. A useful

account in English of this implementation is given by Lichtman [1975].

A notable feature of the design is the novel and elegant

11 struc ture-sharin;;" technique [Boyer, H:rnre 1972] for representing

st:ruc tured data inside the machine. The basis of the technique i.s to

represent a compound data object by a pair of pointers. One pointer

indicates a "skeleton" structure occurring in the source program, the

other points to a vector of value cells for variables occurring in the

skeleton. The representation enables structured data to be created

and discarded very rapidly, in comparison with the conventional

"literal" representation based on linked records in "heap" storage. A

further advantage is greater compactness in most cases,

Hore recently, Maurice Bruynooghe [1976) has implemented a Prolog

interpreter in Pascal. He gives a good introduction to the

fundamentals of Prolog ir:1pler1entation and describes a space saving

technique using a "heap". Other Prolog interpreters have been

implemented at the University of Waterloo, Canada, (for IBH 370) and

at Budapest (in CDL for ICL 1900).

The main su\ject of this report is a Prolog system ~ritrc~

specifically for the DEC:,.,yc~tc:1·-lC [lJEl~ 197!.,] l.,,; the eutb,,i.', i.n

collabor:::tion with Ix.is Pcreire 3.nd Fetnnndo I''c•rc:-ira of rhe tiat:L:mal

Civil Engineeri.ng Lahoratc.11.y, ~lsbon~ The; sy\-;tc1..: incl.ud·::!s a cor11p:i.ler

from Prolog into DiClO assembly langu3ge nod a ronvorsntional Prolog

interpre':e:r:. It t~s2s the f.,·u:1e fundar:wJ1t2L dr:csizn, incl1~ding the

si2cond

lbrseille interpret~l Howev E:1' the fr1plemen tat ion is c ems id c t sb 1 y

faster, owing to compilation, and also because it ½as pos2ible to

capitalL-,e on e l e•o ant
-- i..Y

favourable tu the i;tructure-sharing technique.

A variable in 3 "sl~clc~tou" .:::tructur·e can bt:: nicely repre.se:1tcd by

a DEClO "address word". This sp,,cifics the address of the va,ial,le' s

cell as au offset relative to thee contents of an index register. A_--iy

DSClO instruction can obtain its operand indirectly by rcfcrrinE to an

address ,,,ord. This me,rns that, once.the appropriate index tc';d,;~c,r

has been loaded, 0ach of the fields of a 2t1ucture-shared record can

be accessed in ; ust _, on·:: instruction.

It \vi':S in fact the possi.bU:Llies c:f c:::::1piL1tion anci thl' DfCi0

which originally inspired the writing of a n0w systew. (A prel~1innry

version h'hich compiled into BCPL vas abandoned at an early stage since

it was found impossible to fully exploit thl~ pctectial of the DECl(J.)

The cor.1pi1e:i code sbowE, a 15 to 20-fold speed ic1pro'.remc1Jt over t\ie

J½rsei]le i~terprctcr. It is quite con:pac t at about 2 110rds per

source The co~?iler itself is written ia Prcl og and was

"bootstrapped" using the l:hrseiJ le intr:1:'pretEoJ:. The new interpreter

is also l2rgely irnplcrae~t2d in Prolog.

Page 13

}~eh of the material in this report will be a description of

techniques developed by others (although nowhere fully docu.'11ented).

The main innovations arc:-

(1) the concept of compiling Prolog,

(2) certain measures to econo1:1ise on space required during execution,

(3) improved indexing of clauses.

The most important innovation is compilation. Now recall that a

Prolog computation is essentially just a sequence of unifications or

pattern matching operations. Each ur:ification involves r.iatching two

terms or "patten:s". One term is a 11 goal 11 (or "procedure call11) and is

instantL'lted. The other is the uninstantiated "head" of a clause (or

"procedure entry point 11). The principal effect of col:lpilation is to

translate the head of each clause into low-level instructions which

will do the work of matching Against any goal pattern. Thus there

remains little need for a general matching procedure.

code has been generated to replace cost uses of it.

Specialised

Much of the code just amounts to simple tests and assignments.

In particular, all that has to be done for the first occurrence of a

variable is to assign the matching term to the variable's cell.

this very common case is also very fast.

Thus

The code generated for a corJpound subterm (or sub-pattern) splits

into two cases. If the matchi_ng term is a variable, a new data

structure is constructed (using structure-sharing) and assigned to the

variable. The code for the other case is responsible for accessing

subcomponents of the matchinz term, ic. it does the work of selectors

in a conventional language.

--- ---- ----------------·----------------

The main drawback of th2 :.n tcrpr et er is

unacceptrrble appetite for workir:g stor·a:;e Like Fruyriooghr~, 1:J.?. hc:r·?E~

devoted rcn;r;iderab1c att·cntion to thi~-; pr(;blcm, Our soluti:-rn i~; to

clasd.fy Frolog vti1i;:,bles jnto "iocals" and "globals". T::i.'; J~;

pcrfon:,ed by the, COJrrpiler and need b~ of no concl:'rc. to user.

for the two typ,-'s is al located fro,J cliffet0nt n;_e8.s, t\-:e 1,v:2} ;;i;d

global sLwks, analagous to the "stack.: end "hEr1p" of L\lgol u;.

execution of a procedure ha::; been compll',·ed "detcnnlnately" (ir::.

there ,.ffe no further r,1111 tiple r<=sults tc be--'. prc-cluccd), local stinag<2

language. No garhuge collector is needed for this process.

The space savir!f; achieved through this pl,)CC'.? c:=-,•1 oe :i1'1pn:;\'<::·:.i :if

the user supplies optional pragnatic intnroation vin an innov~lion

knm-m as "r:10de deci.llaration:,;". ,, r:;ode t:e•. J.aration decL>res a

restriction on the use nf a procr:>durP, ie. one or r1o;_·e arg 1F:('tltf: ,:re

v:::riable). Thus the user is for~;r,iu;c, ~;ot:1e of the flc,xtb:U_jiy cf

l'r olog' s "rnul ti-purpo:::e" proceduLes, !f, is en;:bles the sys te:J to pluce

a higher p1:oportion of var.iab.let; ir:. ti1c more 0c~;ii:c1b] 1° ".local"

catPgory and also help::, to i,~prov,~ th:• cornpa2tncss of t ne cm,']nl0d

cod~.

In addition to these weasures, our sys-i-en can als1..J 1ec0-./er

storage from the global stack by gaL'bage coll('ctian, cf. Algal 6U's

heap. The garbage collector used hc.s to be CJ!lit·e int1i11cc1t(' even by

no:ti;W.1 standards.

and mark'', space is recovered by corpacting global storage stil 1 in

use to the bottom of the stack.. Tl1is :invol'vf'S 11 1:er:iapping'r all

Pngc 15

addresses pointing to the global stack.

It is i;;1portant tC\ notice that a garbage collector is riot

essential for our systeo. If the user restricts himself to smell

tasks tbe grirbaze collector ncc0 d never· be 11sed. This is because a

stPck mecb;inj_E'm recovers 3.'..:!J. ::,torage autor:H1tic 31.ly on boc:ct r-acking, or·

when tbe ovcra11 task is co;,q;lcte, as for the H,,rseille interpreter.

An addit ic>rl'"Jl point of practical impo·ctance is that ,.,,.:r inplei:!entation

auto~atically adjusts the sizes of the different storoge areas during

execution (rcoopping addresses as necessary).

The conbined effect of these space saving measures is a

substantial rcrh1ction in run-tir:i.e storage r..ecdod for progr£,1:1s which

ate totally determinate (eg. the compiler itself) or partly

dete1min,1t0 (0:iost l'rolog programs in pract·ice). A 10-fold ir.1prove1:1e,:it:

over the rkin:icille interpreter ,11ould Df'C:!m to be rwt unusual, although

this dependb very 1,,~1ch on the actual progrDm. (Even in the ,,orst case

of a totally non-deter~inate program, there is still a 2-fold

ir,1proveL,ent due simply to a better packing of information into the

DEClO word.)

In the Mnrseille interpreter, the clauses \1hich make up both

program and data a,·0 only indexed by the predicate (ie. procedure or

relation name) to whirh they relate. Our compiler indexes c] auses

b ,,,-1-, '--~,,. ,. by predicate and by the form of the first argument to this

pr~d.i.cat-e. This is tanlaLwunt, for a proceciure, to case selection by

a fost "suitch" (or coi1puted _goto). For data, it amounts to storie;_~

infon~a:·ion about a relation in an array (or hash table).

The a.in1 is to present~ l n ::::~J

general a way as pos:dblc, ttw (_:.c;sential feattn,-'cl of OLT DU.I.I;

convc,n t i onnl fo rr;.

locat:inns, a1•d "pash-down" lists. Tl1e machine i1as repcrtoJ_~ .. ·c~

ir;si.Tnc t ions, each ta Ung a fi.xed of

In nost cases,

:Lcvolves on.1 y ., small iJ.nd b,,1md2d ar.,ount of cor1puteticr..

DFClO in mind.

efficient.

instruction is achieved partly by in-line code and pnrtly hy calls ln

out-ot-·line sulnoutincs. The optir:1cl mixture :L~, a t.1cticaJ dc,cJsi.c:!

which· l1as \'Hried con,;iderably during the cc:c:rse cZ iuplc,:,cnt.Jti..1,n.

rnecn that ,,p,"rations nm hC:! performed oui.··of-linc ;_,i_tl1 \'e::ty little

ovc;·head.

Page 17

At present the Prolog co□ piler compiles directly into DECIO

assembler. Since the compiler is itself written in Prolog, it could

e2-sily be adapted to generate "Prolog machine code" as such. This

code could be interpreted by an autonomous program written in almost

any prograrnmin8 language. Alternatively it should not be difficult to

produce a version of the compiler which translates into the assembly

language of some other r:1achine. The compiler itself is not described

here (see [\Jarren 1977] for a general discussion of compiler writing

in Prolog). However the function it performs should be clear fror:1 the

relationship between Prolog 1:1achine instructions and Prolog source

prograrns docurJented in Section /6. 9/ and Appendix /2. /.

Note: This report does not attempt to describe the

implementation of the "evaluable predicates" etc. which are essential

to a usable interactive system. These provide, among other things,

built-in arithmetic, input-output, file handling, state saving,

internal "database", and 1:1eta-logical facilities. It is an

unfortunate fact that the 1:1aj or labour involved in implementing a

Prolog system is providing such "trimmings".

- -- --

4,0 TH!t PROLOG LAUCU/IGE

The baD-ic Prolog language is b,:c,st consirlcred as t,,.:,·inp, made up ,Jr·

t~·o p2rts. On the one hand, a Prolog program consists of a set of

logical statements, of the form known as !.lorn ".la:.ises, Clauses c1tf!

just a Sirr1plc P..or1nal form, (classically) ec;:1ivale.~_1t to geric1_'Al l.o§_:i.c~.tl

statements. Horn clauses are an irnf.H1rtcmt sub•-c1aEis, which ammF, r-s

c;.sentially to dropping disjuncb.a:m ("or") fr_·.1rn the logl.('*. {* n, ;:,

subclass appears to be common ground between classical Pnd

intuitionist logic.}

The seco~d part of Prolog consists of a very elementary control

language, although "language" is reall.y too strong a word. Thr,:;t•gh

this contL·ol infonnation, the progr,rnrner deterr.ines how the Prolc•g

system is to set abo~t constr0cting a proof. ie. The programmRr 1s

specifying JX~_y how he wants his computation done. The control

language consists merely of simple sequencing info1~ation, plus a

prim:Ltive which restricts the system from ccnsic\e1 ing unwanted

alternatives in constructing a proof.

There are t1,•o distinct 11ays of understanding O:e 1:1ennL,g of a

Prolog program, one declarative and one? inper.stivP

far as the declarative reacting is co:1cerncc!, one c:2n 1gnore the

control component of the program. The declarative rc2J~a~

see that th2 ;,rograra is correct. Th2 procedural ref:id.lng it; nccc.c;sary

to seP. whether the program j_s efficient or i.ndced pracLicaJ.

Generally srca~ing, a Prolog program is first conceived declaratively,

and then control infonrrarion is added to obtain a satisfactory

pr,1ceclural aspect.

Page 19

In the rest of this section ,,1e shall merely summarise the syntllx

we use, and briefly describe the semantics (both declarative and

procedural) of the lanr,uage. For a fuller discussion, see the

references on Prolog and logic programming quoted earlier. The reader

unfamiliar with Prolog Day also find it useful to look at the

comparat:i.ve exaoples of Prolog, L:isp and Pop-2 listed in Appendix /4./

and discussed in Section /10.1/.

4.1 Syntax And Terminology

A Prolog pr~~ is a sequence of clauses. Each clause coDpri,:es

a head and a body. Tht.: body consists of a sequence of zero or r:10H,

_goals (or rrocedur~'.:. ea lls). For exa'.Ylple the clause written:-

P : ·- Q, R, S.

has Pas its head and Q, Rand Sas the goals making up its body. A

unit clause is a clause with an er:ipty body and is written simply as:-

P.

The head and goals of a clause are all exarc1ples of ten1s and are

referred to as boolean terms.

In general, a tel""i!l is either an elementary term or a cor:1pou12.9.

term. A11 clern:::ntary te~ is either a variable or a constant.

A ~Jab le is an identifier beginning with a capital letter or

with the character '_, (underline). For exanple:-

X, Tree, LH!IT

are all variables. If a variable has just a single occurrence in the

clause this may be written simply as (underline):-

(Note ,:hat a vatiable iB lir:dtc,d .i.ri 1:;,ope rn a s:.,1glc C'lause, sn l"'.tdt

distinct).

A c0nstant 1~ either dn atu~~ {* :-Jot u, be

confused wi.tb the use of resolution thPory,

Lisp.} h1 atom is any sequencEc o.: cr•.Jracters, ,:h;ch i:rnc>t· be inii.:ten in

single quot(:)S un.Jess i.t is a~-1. 1dGnt j_fie:r 1:.ot cc,nfusAblc t.r:i ~ h a

variable or an integer. For exa~plc:-

a,·c al 1 atoms. In_t_r~ 1,crs are ('.(h!stants distL1ct· frn:.1 at·om,cl.

identifie1 consistin~ of only dcci~aJ digirs will always re0rcsent 2n

:Lriteger, For exr,nr,l e: -

999, 0, 727

of the term) ,md a l:i.st of on2 or nore ter:,·,:.; called argu.::cnt3.

functor is character:i.c.,ed by its~• which is an ator:1,

or number of argt1,'11<"ntr:. For exanDle the compound terr:i, wh,)s2 functa 1

is nGmecl "point" of arity 3, ~litb r,rgur:1ent,:3 X, 'i and Z i.,, wcittcm:-

point 0~, Y, Z)

In addition to this ',tandard notation fCJr crn:i1x1 ulld terrns CC'rtai.n

functors may be declared as prefix, infix or po~tfix cpe~2turs

enabling ~lternativc notation such as

X+Y, (P;cn, 3<4, not P, N factorial

instc;;d of

+(X,Y), ;(P,Q), <(3,4), not(P), factoria!(N)

to be a functor of arity (\
v • the

Page 21

principal functor of a constant is the constant itself.

The principal functor of a boolean term is called a predicate.

The sequence of clauses whose heads all have the same predicate is

called the procedure for that predicate. The depth of nesting of a

terr.1 in a clause is specified by a level number. The head and goals

of a clause are at level O, their immediate arguments at level 1, and

so on for levels 2, 3, etc. In general we do not allow a level O term

to be a variable or integer. A compound term not at level O is called

a skeleton term.

Some sample clauses (for list concatenation and a

inefficient list reversal) are:­

concatenate(cons(X,Ll),L2,cons(X,L3)) :­
concatenate(Ll,12,13).

concatenate(nil,L,L).

reverse (cons(X, LO) , L)
reverse(LO,Ll), concat~nate(Ll,cons(X,nil) ,L).

reverse(nil,nil).

4.2 Declarative And Procedural Semantics

rather

The key to understanding a Prolog program is to interpret each

clause informally as a shorthand for a statement of natural language.

A non-unit clause:-

P : - Q, R, S.

is interpreted as:-

P if Q and Rand S.

We now have to interpret each boolean term in the program as a simple

statement. To do this, one should apply a uniform interpretation of

--- -------~- ------

Page 2:Z

each functor used in the program. eg. for the sarnpl~ clauses 2bove:-

nil "'" "the empty J ist"

cGrn3(X,L) = "the 1isr whos2 firc~t ele:,'<cni: is X
and n,maining (,J.u:,e11ts ar2 Lfl

concatenate(Ll,L2,L3) = "Ll ,:oncatenated with L2 i'-' L3"

reverse(Ll,L2) = "the reverse of Ll is L21l

Each variable in a clause jg to be L1te1 pretcd some Brbitu11y

object. Now our four clauses are sc,en to be shorthand for th,->.

following stilted but otherwise intelligible English sentences:-

"The list, whos2 first eler..cnt i3 X and remaining eleraents are Li,
c0,1catenated with 12 is the list:, whose first elc.i,1 ent i <_; X anc:
remaining elenents are L3, if Ll concatenated with L2 i.s L3."

11 The e:'.lpt_i' lisr- concatenated with L is L."

r;The reverse of the list, whose first element i~: X and rcna:i.:nng
el~nents are LO, is L if the reverse of LO is Ll 2nd Ll concatenate~
with the list, whose first element is X and remaining elements an: the
enpty list, is L. 11

"The reverse of the empty list is the empty list."

The declarative semantics of Prolog defines the :::et of boolean

terras which nHiY be de:ducecl to be true according tc the program. Pe

say that a boolean term is true if it is the head of some clause

instance and each of the goals (if any) of that clause instacce ~s

true, Fhere an instance of a term (or clauc,e) is obtained by

substituting, for each of zero or more of iU; variables, a new term

for all occurrences of the varj_ab le. T~rnt completes the declnrative

semantics of Prolog.

Note that this recursive definition of truth makes no reference

to the sequencing of clauses or tlie seqt:encing of goals within a

clclusr.:. Such sequencin2, c•1nstitutes control informntion. It plays a

role i.n the proceJural se1:·,nntics, which describes the wny the Prolog

systrnn executes a program. Here, th~ head of a clause is interpreted

Page 23

as a procedure entrv point and a goal is interpreted as a procedur':

call. The procedural semantics defines the way a given goal is

executed. The aim is to demonstrate that some instance of the given

goal is true,

To execute (or solve) goal P, the system searches for the first

clause whose head r.iatches or unifies with P. The unification process

[Robinson i965) finds the most general common instance of the two

terms (which is unique if it exists). If a r.iatch is found j the

matching clause instance is then activ2ted hy executing in turn, from

left to right, each of the goals of its body (if any) , If at any t irne

the system fails to find a match for a goal, it barktracks. ie. It

rejects the □ ost recently activated clause, undoing any substitutions

made by the match with the head of the clause, Next it reconsiders

the original goal which activated the rejected clause, and tries to

find a subsequent clause which also matches the goal. Execution

ten:linates successfully when there are no more goals waiting to be

executed. (The system has found an instance of the original goal P

which must be true.) Execution terminates unEuccessfully when al.l

choices for matching the original goal P have been

Execution is, of course, not guaranteed to terminate.

rejected.

ln general, backtracking can cause execution of a goal P to

terminate successfully several times. The different instances of P

obtained rep:cesent different solutions (usually). In this way the

procedure corresponding to P is enumerating a set of solutions by

iteration.

-----~ -----------

- •~.~-~ -----~----- -- -

_He say that a goal (or the co1-respcnding i1rocedure) has t 2.cn

executed determinat-elv if exe,,ution is compl2tc, and no alt2rnat ive

clauses exist fer any of the goals invoked during the execution

(including the original goal).

Besides the sequencing of go3ls and clauses, Prolog provides one

other very imi:ortant facility for specifying control infomaticm.

This is the "cuti' operator. 1.ffitt2n '!'. (Originally written '/' and

dubbed "slash".) It is inserted Ln the program exactly like a goal,

but is not to be regard(~d as pa rt of the logic of the pror,n;n and

should bs ignored as far as the declarative semantjcs is concerned.

ExBmples of its use are:-

meJ;1ber(X,cons(X,_)):-!.
member(X,cons(_,L)) :- member(X,L).

compile(S, C) : - transL1t2(S, C), ! ,asse,ablf'(C).

The effect of the cut operator is as follows. When first

encountered as a "goal", cut Fucceect's immediately. It bacln-ra.cking

should later return to tbe cut, the effect is to fail the goc1.l which

caused the clause containing the cut to be activated. In other words,

the cut operation c·ommits the systen to all choices made since the

parestt goal was invoked. It renders deternin2te all cc;;1put2.tion

performed since and including invocation of th,:c• parent 80al, up until

the cut.

Page 25

Thus the second example above may be read declaratively as "C is

a compilation of S if C is a translation of S and C is assembled" and

procedur.111,;;· as "In order to compile C, take the first translation of

C you can find and assemble it". If the cut were not used here, the

system might go on to consider other ways of translating C which,

althonr:h correct, ate unnecessary or 2re unw2.nted.

Such uses of cut do no violence to the declarative reading of the

program. The only effect is to cc>.use the system to ignore superfluo:1s

solutions to a goal. This is the commonest use of cut. However, it

is sor:1etimes used in such a way that part of the prograr:1 can only be

interpreted procedurally. Of ten these cases suggest higher level

extensions that might ideally be provided. For exarnple:­

property(X) - exceptional(X),! ,fail.

property(X).

might perhaps be better expressed as:­

property(X) :- unles~ exceptional(X).

Clearly it is not intended that 'property(X)' should be a bona fide

solution for any as a declarative reading of the second clause

would indicate.

Even if better alternatives could be found for the controversial

uses of cut, there seems no reason to object to its legitimate use as

a purely control device. Consequently we shall treat cut as a basic

part of the Prolog language.

5. 0 OVI:RVIE\l OF _!)ROLOC l ;u",J.:::lfE~;TA'I'TOt\ - --c-- ,_..,, __ _,_,,...__..~-•;,.-,--

Prolog Ir~plement.2tion rests on the design uf prc,c 1::.:::L~e~ for:-

(l) (recurFivc) procedure•. call,

(2) unific<1tion,

(3) backtracki~g,

(4) the cut ope~vtion.

Thl~ first is .,
u. far:liliar probJ.em in the irnplerncntation (1f

high·-level lr,nguages and :Ls solved in tlte w~ua1 w2y through the use of

one ur more stacks. However because of the ncnJcterminate nu. t· U t· f?. C
(LL

Prc1-c,g) one cctnr~ot c1.ur-umatical]y contract the st~-:ck(s) on procedure.~

exJt as is usual. In general th:is process has to 1-:alt until

back_t: rac kfng has caused tLe proced u,.c to itu ate throug': to

res:_l_1;-

Unification take:,, the place cf tests and

..: ... ~.
;.__ t ._;

in

i:la,~seiJ le :Ls a nove] and elegant approach to llk! prcbl.2,.1 oC

represcnttng struct1rred dara. ;,1.3

Boye:r.-Hor;rc' s "struc turc sharing with a val,.-e ::.n:ay", dc✓ c~or,2J. ell:

Ed in.burgh~

Dacktracking requires the ability to reme:;--,1,cr and rapidl:: restore

an earlier state of C'Offiputation.

nurnbcr of experimental 13:tguages. Usually the iH,p1,:n,enta,·ion 1ef_; ect·s

the fact tliBt· facil.i:·iec~s for nondetcrmindte ccr:1put::;.tion have lH::>c~

built on tc•p o:= c1n exi!--:dn,;_,; language.

part F o. Prolog, and consequerttly :Ls Jc~,~~ e~::::ily ~;eparated tror:1 the

Page 27

overall design of an implementation. Indeed it strongly influences

the choic0 of structure sharing, because of the speed with which new

data structure can be discarded as well as created through this

technique.

The cut operation restores conventional determinacy to a

procedure and allows the system to discard "red-tape" infon:1dtion

required for backtracking. The inten1t1l state becomes closer to that

of a conventional high--level language implementation. It will be seen

that the implementation of cut is closely bound up with that of

backtracking.

5.1 Structure Sharing

The key problem solved by structure sharing is how to represent

an instance of a term occurring in the original source program. \.Je

shall call the original ten:1 a source term* and the new instance a

constructed term. {*Also called in_put terms in the literature on

resolution.} The solution is to represent the constructed term by a

pair:-

< source term, frame>

where the .f~ is a vector of constructed terms representing the

values of the variables in the source term. Each variable is given a

number which indicates the position in the frame of its value. (\le

shall also say the variable is bound to that value.) If the variable

is unbound, its value is a special construct called 'und_ef'.

Thus j f we. a.re givc:1 source ter:-1.c:::-

thctal t rci:, (X 1, a, X2)

theta2 tree(Y 1, Y2, Y3)

then the constructed term pictured as:-

f \ I \\ _________ ---- --,
t-h(?(·al i undc,f; f.1 i ,. . - - ! _:,.: ___ ~_; / \ ! ---·- -1;-\ -

I 1- ---··r---•-···• .. --· ~ ------.
theta2 Lu,1de_ £ I under 1. __ u_ndef I

--·--L ... ----- ---- I

r0p.r:rfscnts the. te1:1n:-•

trec(Xl,a,tree(Yl,Y2 1 Y3))

lf the source? term l.s a const,mt then there is no n0ed to provide a

frm:1e, so we shall treat constants as being both source ten:1s and

constructed terms. Jh~s the co~stcucted teLm pictured as:-

/'\
\
\

thet2.l
'r. ---··· ·-- ... ' ---~
' - l L I I r>'' i c;> ; L ---~~-~-- _J_\ ______ J

/ I

_./ 'L ________ ------··-------
theta2 unrlcf, b undef '

·---- - : __________ I -----~·-----~,_

represents the term:-

trec(null,a,tree(Yl,b,Y3))

liotice alRo that the R0urce part of a constructed ter~ ~2y be a

variable c~c tlw.t if, for example, X2 Ln thetn 1 is bcimd to Xl a.nd Xl

is in tu~n bound to 'null', then:-

(1

/
thetal

'\ / ..

¥-- ,---··,
11 n ul 1 i ~ .I __ __,.,_ ~1

/ \
Xl

represents:­

tree(null,a,null)

Page 29

In an actual i1r1pler.1entation, a constructed term would generally

correspond to a pair of addresses, where one address \vould point to a

literal representation of the source te~·m and the other to a vector of

storage cells. In practice we only use this form where the source

term is a skeleton, the resulting object being called a r:«)lecule. If

the source term is a variable, the constructed term corresponds simp_ly

to the address of the variable's cell a0d is called a reference. Thus

the constructed tern:-

represents:-

tree(Xl,a,tree(Xl,b,Xl))

The advantage of the structure sharing representation is thet the

cost (in terms of both time and storage) of constructing new terms

from skeletons occurring in a clause is, at worst, proportional to the

number of distinct variables in those skeletons. If the same data

representation were used for construe ted terms and source terms (as in

Lisp say), thsn the cost would be at le'lst proportional to tbe total

number of subtcrms (or, equivalently, of symbols) in the skeletons.

Page ~, r,
.)\.,l

Of course the "direct" represent-:.:rL,n maKc:~s s11b:~eqiwnt refet'(?PCC t.:.

the ccrnponents of the data structure s•:Jm,:::;•Jhat e2sie.r ..

r.wst machines (particularly those Uke the DEC}O with gocd ind irtc'.'t

addressing facilities) this loEs of speed ts quite sr:1al1 and m:,pJy

repHid by the savings of space and the sp0ed of creating and

discarding new data stc..1c ture.

Uhc-,n cornpJ.ex tenns are b,iil t up by unification one c,:::mi~it in

general prevent chains of referew:es bc,ing created. \Jhen unifying ti:c

tenas it .l.s important to dercferer,ce lrnth valu0:s by •::r,,cing down i"ny

refereace ~hains.

A fir:~~1 p8int concerns \chat is knmm the "occur c hcc k''

Str.Lctly a unificatio:1 should not bf'-'. allowed 1.hLch h:Lncls i1 vm:iablc tD

a ten~ containing that variable.

tcn~s", for 0:xampl2 consid2r:-

infinitelist(X,L) :- L COlL,(X, \..).

X X.

l ~1 practice this condi.ticn never arises norna L
.... .,
t'l'O J.. f);!i

programs. iJhere it does, th2 prog1',;r:r:er ;:1uy 1-.,eJl Ll(~ 11,1.uting to

consider the infinil'E: t•s'.rrn c.s a lcg:iti,aate dst:1 ob,::,ct (nJtbot:gh trns

do nc:t botner to make the occur check, os l.t :::ec:c.3 t,, rcq:..Jire 31~

.inordinate Drnot:nt of :::n::iputation for little p1:r:c1'.:ical L0 nefit.

Page 31

S,2 Procedur~_~nvocation And Backtracking;

Just as structure sharing represents an instance of a source term

by a pair < source term, frame >, so we may notionally represent a

clause instance by a pair:-

< clause, environment>

The euvironment consists of on.e or more frames containing the value

.££._~ls_ for each variable occurring in the clause, plus all other

informaticn associated witb this clause instance ie. management

inforr:1;::ti•:,11. Tile enviromrent is created in the course of Lmifying the

head of the clause with the activatir,g goal. The informatton it

comprises may conveniently be stored on one or more stacks, as ir is

created (by clause activation) and destroyed (by backtracking) on a

"last in first out" basis. He may summarise the manager.1ent

infoniation as follows:-

* A record of the parent (activating) goal and its continuation, ie.

the goals to be executed when the parent goal is solved. This item

can be thought of as a molecule-like pair:-

< parent goal + continuation (both in source program form),
parenr environment>

* A list of the rer:iaining source clauses which are alternative

candidates for ~atching the parent goal.

* The environment to bac!ctrack to if the parent goal fails. ie. The

most- recent environment preceding the current one for which the clause

activated is not the only remaining alternative for the activating

goal.

* A list of variables bound in the course of unifying the parent g,oal

with the head of this c Ja use. The list need not include variables

whose cells would be disc 01nled anyway on back':rackfr,g eg.

the present environ□ent.

The last three items are needed fur backtracking.

unification i.s allowed to side-effect rc:xif,ting varin.ble 1·ells (ti1c,reL"·

modifying the parent goal and its continuation) but has to

record of the variables affected. B<1cktrackiHg uses this list tL·,

reset such variables to 'undef'. Unification is also respu11sJhJc {01

setting every variable cell in th~ ne\v environment to 'under' if it is

not otherwise initialised.

In our ir:1pleHwntation, the cnvironr:icnt is spJ_it into two -r_r:p:,,:;t.,

lu('dJ and global, allocated frcm, r0sp,a·ct·iv~,1.y, lo,nl am; f;.!,/~,,,, 1.

stacLss p~_us SODC locations for th2 "rc~Eet li.~;tn on pusiv:cJ\:;, Ji:-;t

c:il1cd the "tr[dln. Tne global fnit1e conta:Lrrn :he ceJls for \'c,rL.:.t1.,::c:;

occut·i ie;,; in skeletons. The local frame contain1:; t·iie celL, f,,r: ,;; [1,'1

variahJes, plus all the r.1crnage,,iE:llt informc1tion (apart frorc t;,e res,.t

list). Uhen a procedure has been executed deterrni.,1.'.ltely, r1~" L1:-cJi

frame is discarded autonatically by a st::,ck r::echc1,1i[;r,1.

To implement the cut operatior: Jt suffices to tak-2 i·he :)arr:nt' ,'::

bac kt rack env .i.ronraent as current backtrHc k envi t:"Jnf•,,,nt.

OptionalLy one r:1dy "tidy up" reset ljs• s for the parent enviu-'''"·ent

onwards, by removing entries for variables wlticlt would nm; be,

discarded any1vay on hac ktuv· kin£;.

Page 33

Jn our in~llC'.;;;entation, the "tidying up" is r1andatory, since

otbc1·w_Lse a "dangling refer~.;nce" to a discarded local frame r.1ay b2

left: in tbe list of reset variable13. A si~lilar argument applies to

the global fraue if a garbage collector is used. All local frwnes

us2d in tlt::: execution of any goals preceding the cut symbol in the

clause concerned are discar~od when the cut is effected.

One of the chtef innovations of our Prolog jnpler:1ental 1011 i.::; that

the clauses are compiled into sequences of simple instructions to he

executed directly. This is in contrast to execution by a separate

interpreter, ~1ere clauses ate stored in a more or less literal fonn.

The main effect of the cor.ipilation is to translate the head of each

clause into a sequence of instructions specialising the un.ificatiou

algorithm to the case where one of the terms to be unified is the head

of the clause concerned.

Tiefore descr-·:ibing cor:ipilation in detail (see Section /6. 9/), it

may be helpful t-o give the flc1vour of ti1e process through an example.

He shall translate Prolog clauses for list conratenation into an

info~Jal Algo~-style proceJure. The clauses are:-

conca i. enate(cons(X, L l) ,12, cons (X, L3)) : - concatenate(L 1, 1.2, L3).
concatenate(nil,L,L).

The translation follows. The most important point to notice is that

r:iurh of the un:Lfi.cation process is t ran::;lated into siri,ple assignuents.

*
*

.,.
"
*
*

nroc~tlure concatenate is (
try cla1:sel;
try cLrnse2;
f a:i :;_;

cLrnse i:
loc·:..L varia'Jle L2;
glob~l varlahl~ X,Ll,LJ;
prematch skRlerun cons(X,Ll) against tHrm[l];
X,Ll :,~ :;:_n~ief;
i_f ne.ed to tiatch f::ubtz.-~rrus 1~hcu (

~l : ::;: S l; !) t L" ·:~_ i~-t f i_ J ;
I, 1 : =, s t<tn.:: rm [~,_}

:"' ternl2J;
prc~r:-:,.1.tc·i1 s]..:,:::·1eton cons(X!LJ) ngain~..:t term[3];
L3 : ~ undc:f;
if need to 1;1atch subten:is the:-: (

r.,atch value of X against s 1.1brerm[l] ~

L 3 : 0= ~; 11 b t- (~ 1 r: [2)) ;
claim ::Jp2.c.: for [X.~ LJ.,L'2,L3J .:
call concatenare(L1,L2,LJ);
sue ccP.d) ;

clause2: (
te11porm:y v;:.r:i&ble L;
rnRtch atom nil again~t term[!];
1 : ""' t e. rm [2 } ;
match value l·.• r ,.L ~. a.g3.inEc:t tcr,:,[3];
succeed)

The grgurnents of the matching goal (,, a C ;· J 1

'concatenate') ~~e referred ta ~s 'tcc~[l]',

a.rgurJcnts of ea.eh of thc~se ternis nrc: - , rc~:t errc.ci to as

to

. :-_ ,._ '-.. -

'subter;:·1[2]', ere, The context for the J.att(~r is givt~n by ~:1.10

pre~cding 'prematch 2kclet0n

responsible for wa tc hi r,g at the,

corre~ponding goal ri.rznment is a variable, 'pn-'nwrch'

ooJ.ecular tPrm aGd aE,ngrs ir to this \'ariable. Otherwise 'preLl2tch'

by the inst rue t :ions vhich folJ.ow : he 'prcr:,.~rch'

If the prograr.,n1c2r ca,1 fU2r·~;_ntee that the· 'co:1catenate'· p 1:c,c ed :ire

will only he called with first D.rgur:H,t•t as "input" (ie.

nop_-,variabl.e) and tbi_,·,l arguI',cnr :,:, ''output'' (ic. a va:t:iabl.e), n:2::

Page 35

marked "*" can be o,:1itted and variable Ll becomes a local in£,tead of a

global.

Page 36

6.0 THE FlWLOG IlACIHi:;E

In the prcv:i.cnw sections, we have taken a general look at tbe

proccssi,:,s involved in executing a Prolog pror;ran, and have seen hcv

can nm1 ex:11:,:i.ne in nore deta:i 1 how ail this realised L1 the Prc1ng

machine. Full reference details of the moch:i.ne are gi·.rcn in

Appet1dLces /1./ and /2./.

Lach clause of a Pro.log source prcbgr&1 is reutescuted t:.y a

the use of "literal" in 1esolutjon theory.} Roughly ,;peakin;;, tllcre is

one instruction or literal for each Prolog sy~bol (ie. variable, ato~

or funr:tcr). Instrnctions a1~e E!XCCL't3b1.e wLereas literals rcpresei;t

fjxcd date. Hoth are stored in an area of the m2cl:in(~ called the .:'.ode

area. Unlike the other areas of the machine, infon1ati0u in the cede

and the l;_~Jb~!_ stac.l:'.:, As their r,,:ues :in.pl.y, these ureas ,L.e used ;.,~:

stc1cks, that is all storage before a c,2rtain point (the "top" of the

stack) is in U c,:i \ .. and all

Furtl:11:n:10;:-c the storage tli:,L Js ir1 use is rcfe,·red to in a rand or:1

nccess e1anncr. I'he t:Jp of eac~h stack vati•:e:s cot~_ti.nually during tbc;

course of a co~putation. v;iriahle lcng th

vector of sto1nge.

Page 37

The global stack contains the value·cells for global variables,

that is variables that occur in at least one skeleton, and which

therefore may play a role in constructing new molecules. Other

variables are called local variables and their value cells are placed

in the local stack. These variables serve merely to transmit

information from one goal to another. In addition, the local stack

contains management information which determines what happens next in

the event of a goal succeeding or failing, and is also used to effect

a cut.

Both stacks increase in size when a new goal is tackled, and

contract on backtracking. Space can also be recovered from the top of

the local stack when a goal is successfully completed and no

alternative choices remain in the solution of that goal. It is for

just this reason that two stacks are used rather than one. The

resulting saving of space can be very substantial for programs which

are determinate or partially determinate, as most in fact are. The

recovery of space occurs (a) when the end of a clause is reached and

the machine can detect that no other choices are open, (b) when a cut

is effected and at least one goal precedes the cut in the clause in

question. In the latter case all the local stack consumed during the

execution of the preceding goals is recovered.

The other main writeable area of the PLH is calleci the trail.

This area is used as a push-down list, ie. it is like a stack, with

the difference that items are "pushed" on or "popped" off one at a

time on a last-in first-out basis, and are not accessed in any other

way. The trail is used to store the addresses of variable cells which

need to be reset to 'undef' on backtracking. As with the local and

Page 38

global stacks, it generally increases in size with each new goal and

i.s rt',duced by backtracking, The cut operation may also have tte

effect of removing items frorn the trail.

PLi-1 data items an.d storage locations come in two sizes, na:iely

short and long. Each area of the PLM comprises a sequee('.2 of

locations of the same size identified by consecutive addresses.*{* As

the trail area is used as a push down list, its locatjocs do not

strictly need to be addressable.} A short location is big enough to

hold at least one machine address. A long location has room for two

addresses, (NB. Short and long locations need not in practice he

different in size. In our DEClO implementation they both correspond

to 36-bit locations.) Each variable cell is a long location, so the

two sta:::ks comprise long locations, while the tra.i.l is made up of

short locations. The locations in the code area are short;

:Lnstruc tions and literals sh.ould be thought of as short ite1:1s, or

multiples thereof.

6.2 ~pecial Registers Etc

Besides the main areas, the PLH has a number of spec:Lal loca ti0ns

called registers. In general these need only be short locations.

Registers V and Vl hold the addresses of the top of the local and

global stack respectively. Register TR holds a "push-down list

pointer" to the top of the trail.

The envi:tonment for each clause instance is represented by a

lo:·aJ_ frar;-;e and a _a1obal !E.<!.:'!.£• plus sor:ie trail entries. The layout

is shown in Appendix 1. The global frame is simply a vector of c:e11s

Page 39

for the global variables of the clause. The local frame comprises a

vector of local variable cells, preceded by 3 long

containing management infonnation.

locations

For most of the time, the PLM is in the process of trying to

unify the head of some clause against an existing goal. Register A

contains the address of a vector of literals representing the

arguments of the goal followed by its continuation. The continuation

is the instruction at which to continue execution when the goal is

solved. The environment of the current goal is indicated by registers

X and Xl which hold the addresses of, respectively, the local and

global frames for the clause instance in which the goal occurs,

Registers V and Vl therefore contain the corresponding information for

the environment that unification is endeavouring to construct. The

machine insures there is always a sufficient margin of space on each

stack above V and V 1 for the environment of any clause. It is only

when a unification is successfully completed that the V and Vl

pointers are advanced.

Registers VV and VVl indicate, in a similar way, the most recent

environCTent for which the parent goal could possibly be matched by

alternative clausc(s). Usually we shall have VV=V and VVl=Vl, as there

will be other clauses in the current procedure which could potentially

match the current goal. In this case, register FL contains the

address of the instructtion at which to continue if unification should

fail.

Page 40

There m:e two other important registers which may be set durin6 a

unificati~n : register Bis set to the address of a vector of literals

repr·esPnt ing a skeleton, and register Y to

correspondir.g global frame.

the addresB
,. o,_ the

Note: It may be helpful to think of <A,X> as being a molecule

representing the current goal and <E,Y> as a molecule representing a

level 1 subterm of that goal.

The 3 long locations of management information in each local

frame ccrnprise 6 short iter~ fields as illustrated. below (the precise

arrangement is not really significant):-

The parent goal is indicated by the X and A fields, mirroring the

appropriate values for the X and A registers.

The Vl field contains the address of the correspon<liilg global

frame mirroring the Vl r~gister.

The VV field contains the value of the VV register prfor to the

invoc.;tion of the parent goal for this environment, It therefore

indicates the most receat choice point prior to this environment.

The FL field contains the failure label for this environment, if

any, and is undefined otherwise, The failure label is the address of

an instruction at ~1ich to continue for an alternative match to the

parent goal.

Page L;l

The TR field contains a value corresponding to the state of the

TR register at the point the parent goal was invoked.

The VV, F1 and TR fields are needed primarily for backtracking

purposes.

6. 3 Literals

Literals are PLM data iteir1s that serve as building blocks to

provide a direct representation for certain subterms of the original

Prolog source program. In particular they are needed to give skeleton

terms a concrete form so that structure sharing can be applied. 'We

shall not attempt to give more details of their internal structure

than is necessary. The different types of literal mentioned are

assumed to be readily distinguishable.

A skeleton literal represents a skeleton terr.i and is a structure

comprising a functor literal followed by a vector of inner literals.

Each inner literal is a short item, typically an address which serves

as a pointer to the value of the sub term. The size of a functor

literal is left undefined, but it contains sufficient information for

it to be identified as the functor literal for a particular functor of

non-zero arity. It will be written as 'fn(I)' where 'I' uniquely

identifies the functor in question. (In our DEClO implementation,

functors and atoms are numbered from O upwards and 'I' refers to this

number.)

-----------·-~-

Page 42

An ir.ner lite:.:al is either an inner v;.:r-iable lit2ral or the

address of a skeleton literal,.§_!_~ -~,.Heral or _in~ literal. Atom

and integer literals are long items written as '.::.tom(I)' or 'int(N)'

where 'I' un:i.quelJ' identifies tlF" a tern in question and ':-i' is the

value of the intt>ger in question. An inner variabJ.e literal will be

written 'var(I)' where I is a number identifying the corresponding

global variable in the clause concerned. For structure, ' . s,1arinr,

purposes this number i$ used as an index to sdect the appropriate

cell from -<in assor.iated frame of (gl,'Jbal) vari;ihle ce] ls.

We shnll \n-Hc '[S]' for the address of a structure S. Thus the

address of the literal corresponding to the skeleton:-

tree(null,X,tree(Y,X,Z))

might be ,,ritt-en:-

[fn(tree),
[a t71rr1 (}~l 11)] ,
var(l),
(fn(tree),
var(2f;
va::(1),
v ar (3) J]

and pictured as:-

L--.---- ------------.
: var(l) ' };'.: ___ J

/
f'>>

j fn(_E_~) i var(2) i var(l) 1 ;;~(3)7
~·--··----- . -----------·-·--------

Bcs:idf:S inner literals, which represeat the n.rgm:ients of a

skeleto::1 tern, the PLN needs outer li tends to re.present the argurr:ents

of a goal. An outer U terul is either th2 address of an atom inte;:;er

or skeleton literal, or is a loca} ~j.t,,:,ral, a _l'..i.~hal Lit2ral or s. "Oid

Page 43

literal. Like inner literals, outer literals are short items, which

serve as pointers to the values of the subterms they represent.

If a goal argument is a variable, and the variable occurs

somewhere else in the clause within a skeleton ten:i, then the argument

is represented by a global literal, written 'global(I)' where 'I' is

the number of that global variable. If a goal argument is a variable,

and that variable occurs nowhere else in the clause then the variable

is represented by a void literal, written 'void'. Otherwise a variable

appearing as an argur.1ent of a goal is represented by a local literal,

written 'local(l)' where 'I' is a number identifying the local

variable.

Thus the arguments of the second goal in the clause:­

compile(S,C) :- translate(S,D,E), assemble((E;D) ,O,N, C).

might be represented by:-

[[fn(j_) ,var(l) ,var(2)], [int(O)] ,void,local(Z)]

or pictured as:-

0 void local(2) I ... continuation

t -f int(O)i

[fn(;) j var(l) var(2)7

remembering that the continuation always follows immediately after the

last argument literal of the goal.

Page 1..i.t..

6.4 Constructs

The set 0£ PLH data items which can appear as the values of

variable cells are called constructs. They serve to represent

construe ted terms in a structure-sharing manner. Once agai:1 we shall

not attempt to give unnecessary details of their internal structure,

but will assume that they are long items and that the different types

are readily distinguishable.

The cell for an unbound variable contains the

w!·itten 'unclef'. The cell for a variable which has been bound to

an::>ther variable contains a reference, written 'ref(R)' where R i.s the

address of the other variable's cell. If a variable is bound to an

atom or an integer, its value cell will contain the corresponding atom

or integer literal. Finally if a variable is bound to an instance of

scme skeleton, the corresponding construct is called a molecule , and

written 'mol(S, X)' ,vhere S is the address of the corrr~sponding

skeleton and X is the address of the corresponding frame.

6.5 Dereferencing

In the following, the process of dereferencin~ a variable •• 1
WLl.~

often be referred to. At any point in a Prolog co,.1pu:-at ion, this

process associates a certain non-empty construct with each variable.

This construct is said to be the (de_!-eferenced) value of th,:, variable

at that point. It is obtained by examining the contents of th2

variab1'2' s cell and repeatedly follo1Jing any refe::-ences until a eeJ.l

is reached which contcd,w a non-reference construe t. If this

construe t is '1md~f' the result of the <lereferen~inz is a reference to

Page ti 5

the cell which contains 'undef'. Otherwise the result is the final

construct examined.

6.6 Unification Of Constructs

We are now in a position to see how unification works out in

practice. Unifying . two tenns reduces to the task of unifying two

constructs which represent ther.i. The first essential is to ensure

that the two constructs are fully dereferenced.

If neither construct is a reference, then unification will fail

unless we have two equal atoms or two equal integers or two molecules

with the same principal functor. In the last case the unification

process has to recurse and unify each of the arguments. (The action

to be taken on failure is described later.)

If just one of the constructs is a reference, then the other

construct has to be assigned to the cell indicated by the reference.

If both constructs are references, then clearly one reference

must be assigned to the cell of the other. It happens to be very

important that the r.iore senior reference is assigned to the cell of

the more junior reference. A cell in the global stack is always more -
senior than any cell in the local stack. Otherwise seniority is

determined by the cells' addresses - the one earlier in the stack is

considered more senior. These precautions are essential to prevent

"dangling references" when space is recovered from the local stack

following the determinate solution of a goal. (The "dangling

reference'' is a well known nightmare where a locatLm is left

containing the address of a part of storage which has been

Page 4 6

de-allocated fro~ its orlgi~al use.) The rules also play an iGrortant

role for efficiency in tending to prev0nt long chains of references

being built up. In ty~!cal Prolog p~ograms it fs quire rare for

dereferencing beyond th,~ first st·c-qi to be ne,:cssr;ry, if the above

scheme is applied.

Wheneve:r a cell is c~ssigned a (non-empty) value, it is usually

necessary to "renembcr" the assigm:cc::1t so that it can be "undone." 0::1

subsequent backtracking. 'l'he exception is whellc the cell will in any

case he discarded on backtrackic~. This condition can easily be

detected in the PLM by the fact that the cell's address will be

greater than the contents C 0,1. register VV for a local cell or register

VVl fe>r a globalcell. \Jhen the assignnent has to be remer.1bered tbe

address of the cell concerned is ,tra:iled, ie. pushed on to tbe trail

push-down list pointed to by register IR.

6.7 Backtrackin&

When unification friil:,, the PUI has to backtrack to the most

recent goal for which there are other alternatives scill ta be tried.

Any envirorn::ents created since the backtrack point .'.lre to be erased

and the space occupied on the local stack, global stack and trail is

to be recovered. Before attempting another unification, all

assigrn'.lents r.1cde 2inc(-> the backtrack point to cells which existed

befo~ tee backtrack point r.mst be undone h:7 setting the values cf

such cells to 'undef'.

. .

Page 4 7

local stack global stack trail

X '--"".---.- Xl '-;,.,,._ ___ _

j :
I vr:--

(
xr

/

//

V' • \ Vl',
VV--~

\
VVl--f IR!--f

t
-- --

I x.:'-r , he ✓
/

' TR• / '
space reset
to be addresses
recovered

i i
I

v ~. Vl--P--, TR--b-,--
j

The PU1 keeps an up-to-date record of the environment to

backtrack to in registers VV and VVl. VV contains the address of the

local frame, VVl the address of the global frame. Note that VVl is

strictly superfluous since it merely shadows the contents of the Vl

field in the local frame indicated by VV. Tne state of the trail

corresponding to the backtrack point is indicated by the TR field.

The necessary undoing of assigm:ients is achieved by popping addresses

of the trail until the original trail state is reached; each cell so

addressed is reset to 'undef'. (Some of these cells are probably about

to be discarded anyway, but it is harr:iless to reset them regardless,

and this is likely to be simpler.)

Fage L,3

For tlie rc~mainncr of the backt:-::-aclci.ng process, it is corrvenient

arc other a.ltt!t'T12ti·ves for- the cut·rent goal< 'J.'hls i.s of cour.se easily

detected b ✓ the fAct that VV=V. All that has to be done in this case

is to resume t~xecution at the inst-ruction indir:at·<:d by FL.

lr,
h the case. of .9~.~.E backtracking, V 1.rnd V1 have <:o reset from VV

and VVl respectively. Reg ister.s X
'

A and FL a::-e reset according to

th2 corresponding fields in the local ±r.lme indicated by VV. Register

Xl is n,s,c't from the Vl field in the local fram.e corresponding to X.

Finally, execution is resumed at the instruction i~dicated by FL.

6. 8 Successful ;;~xit Frm, A Proc2dun::

E&ck~ r.c:cking g~ne1:ally corresponde to a failure c~xit frora a

procedure. A succesD exit occur·s 'Jhen tlie end of a clause is reached

If the prou,dure exi.t is 5leterm:i.na!5;, inc!i ec:1. s.:d by \TV<:/.. and showi:1g

thct no cho::.2u: were made (or rer:1ain) u;_ the e::ecution nf the

procedure, then local storage can be recovered by resetting V fro□ V ,. .

Registers X a 1 1d A are res~t from the corre.sp0nc!ing fields i11 the local

frame ind:icated by thr: present vaJ.w, of X. Peg:ister Xl is then reset

frnrn the Vl field of the locai frame nov indicated by X. Finally

execution is resur.1e . .:l at" the contir:.uation L:1struction which follows the

n short iter.is =1ddre3s2d by A, ,:here n is the a:.:it"y of t;1e .pred:i.cat.-::

for the procedure concerned.

local stack
,..--·---{;- -·---~· .. ,

i ·------, =-=· ~- 11' args.
I

1-----)

continuation

X '•-..c.:·--+--~---!

~------ (... v __ l _ __.

---------------- ~

space to be
recovered
by V:=X
if VV<X.

6.9 Instructions

r
l

--- -------...., -----___

X ·--t+•·--·+i-l !
h·•-1----- J Xo , A .-i---

V ·--1c·,
I

Page 49

global stack
,- ___ , ___ !

I

Xl '-fo.+--·----1

/-;!
//

Xl '-t-:

Vl

Having covered the basic structure and function of the PU!, it

remains to describe how the clauses which drive it are actually

represented. It should be clear that a clause could be stored in a

very literal forr:1 (cf. a skeleton term) and interpreted directly

This is precisely the way the 1hrseille interpreter operates. However

much of the work that such an interpreter would have to perform can be

eliminated by using extra information which is easily computed at the

time clauses are first introduced ("compile-time"). This includes:-

(1) R.ecogn~sing tl12t r.1atchiug against the fir~;t ocn,L!:<.'nce of ::i

variable in the head of a clause is 8 sp2cial case. The variah]e ~u~t

obvious] y be as yet unbound and one . ' Slhq)_1y has tc! bind the

t err.1 There Js nc need to have pl'evi,)usly initialised the

the gc;1eral case of a subsequent occurrence of the variable.

(2) If on2 is matching a variable in the head of a claus~, and

that variable has no other occur::ence in the clause, no action ar all

need he U:ken. Furtheunore if the occurrence is at lt?vel]_, no cell

need be created for rnet variable. Sjmi)arly, no cell is needed f0~ a

Variables witt a

single occurrence, which is at 1 ev el .l, are called ·voi..d vari ab] ("'..t-: ~

(3) The interpreter generally lws to •'.:dku a recursive call wlwn

Th.::.i, overhead carr be a·Joided if the skejJ.;ton ·'.}CClffS in the currer;t

cL:rnse head, by associating information about depth of rH~st:.Lng (~c,ve.L

number) with each symbol in the head of a clause. (The detaiis will

be explained latf'l'.) Similarly, the need to keep a cou,1 t of a , .. gur:,er,:.: :::.

(of a r;keleton or clw .. 1se head) al;:eady matched crn be .:woic}r;.:; by

associating an _a1:,_r,u:-:1cnt number i.'i th each sy::ibcl in the bead of a

clause. (The argur.i.ents of a functor ar.·e numbe:~·ecl from 'J upwards.)

(4) Non:,n.lly ar, inter.pn,tcr would aI locate, and initialis,-2 to

'undef', all cells for a clause before con□encing unification. Ue

have seen th,lt mac!.: cf this.initialisation l'an be .:}voided. Al. so one

can postpone rhe: rerrni.iling 'initialis:1t.i.0n, and the 11 red-tape 11 of

storage allocation, 2s late cs p0ssibl2 Jn the hope that a falluca

~ill render them unnecessary.

Page 5 l

(5) V~riables can be categorised into different types (global,

local md ter.,porary), depending on the 1,ay they occur in the clause,

so that the space occupied by certain variable cells can be recovered

earlier than is possible in general.

(6) By bringing together information from the different clauses

in a procedure one can optimise the selection of potentially matching

clauses and/ or share part of the work involved in unifying with each

clause head, and in addition provide a means of detecting the

important case where the selection of a particular clause is

determinate. (See the later section on "Optional Extrasfi).

In general, one Pro log source symbol plus the relevant extr3

inforr:iat ion corresponds to a specific simple operation on the Pro log

Machine. If one discounts dereferencing and cases resulting in a

failure of unification, the operation usually involves n strictly

bounded amount of processing. It is therefore natural to think of the

augmented syr1bols as prinitive machine instructions of the PLH.* {* In

fact the analogy with a convential machine like the DEClO is quite

close if one compares dereferencing with the DEClO's effective address

calculation and unbounded operations with DEClO's block transfer (BLT)

and execute (XCT) instructions.}

No executable instructions are generated for the arguments and

subterms of a goal. These are represented purely by literal data as

indicated earlier. Also, no exe,~utable ins true tions are generated for

symbols deeper than the levels 1 and 2 in the head of a clause. This

is a purely arbitrary limit based on considerations 0 -F ,_

cost-effectiveness in practical examples of Prolog programs.

; or
-uu5ffc<.1ti0r:.

' i I .
l_ ·,·n~ck·'=)n,;t1-tw t j:·~~d
l 1
I !

' 11' · - t· l ea___ insrr1-1c ·ior;s 1

2ac h fol lc,Fed by I
outer literals I

(ii:'
i
i
I ----~---· _,_.,._, -- __ ,

hct1d (' -F ,._. __ tl:c cldUS(~

body of the clause

transfe1s contrcl to parent
goat·" f3 continuatic1.1

d;J_tct (;ll·lich could

be 1,lc~ced cl se~~-1her2)

Ea~fl goal is rr;pre~:cnted by a11 instruction 'call(P)' fclL'Hed by a

list of ou:sr]it01cls f~r its argurne~ts.

enter·
tr~1 (Cl)
try (~,'?)

t'h:i t pr Eel icate. Trds t2J·f:'s the fo~:1:-

so tha~ 'enter'

Cl to

'.ih·." 1-·"st exec-utable instrit,~•:ion in a clauroe i.::

Page 53

Before proceeding with a description of the instructions for the

head of a clause, we must first complete discussion of the different

categories of variable and the exact layout of an environment. The

variables of a clause are categorised according to expected

"lifetir:1es" which end when there is no longer any need to remember the

variable's value. The categories are as follows:-

Name

Global

Local

Lifetir:1e ends

Backtracking.

Procedure completed
successfully and
determinately, ie. no
choices re~ain within
the procedure.

Temporary Completion of
unification with the
head of the clause.

Void None.

Criterion

Occurs in a skeleton.

Multiple occurrences,
with at least one in the
body and none in a
skeleton.

Multiple occurrences,
all in the head of the
clause and none in a
skeleton.

A single occurrence, not
in a skeleton.

The global variables of a clause are numbered in some arbitrary

order which determines their positions in the global frame. Similarly

local and temporary variables are numbered to determine their

positions in the local frar:1e. The only constraint is that locals

precede temporaries. This is so that the teoporary part of the local

frar:1e can be discarded at the end of unification (see the diagram in

Appendix 1). Variables in either frame are numbered from O (zero)

upwards. No cell is allocated for a void variable. In showing

exaoples of Prolog machine code, we shall assume that the variables of

each type are n1~bered according to their order of appearance in the

source clause.

Page 54

We can now return to the discussion of instructions for the head

of a clause. The head is terminated by an instruction 'neck(l,J)'

where 'I' is the nur.iber of local variables (= the nrn;1ber of the first

temporary if any) and 'J' is the number of gJobal variables.

The instructions for an occurrence of a v~riable in the head

are:-

uvar(N,E,I)
uref(N,E,I)

uv a r1 (N , E , I)
urefl (N, E, I)

'uvar' or 'uvarl' is used if it is the first occurrence, 'uref' or

'urefl' otherwise. 'uvar' corresponds to level 1 and 'uvad' to level

2, and similarly for all other pai0::, of instructions named 'n2c,:1e' and

'namel' . 'N' is the argtm1ent number of thG occurrence, 'I::' is the

frame (' local' or 'global') containing the variable's cell, and 'I' is

the number of the variable. No instruction is needed for a variable

with a single occurrence.

Similarly there are instructions for an occurrence of an atom or

integer in the head:-

uaton(N,I)
uint(N,I)

uatoml (N, I)
uin t l (l~, I)

Once again, 'N' is the argur.ient number of the occurrence. For an

integer, 'I' is the actual value of the integer. For nn atoi:i, 'I'

uniquely identifies that atom.

For a skeleton at level 1, the instructions are:-

L:

uskel(N,S)
init(I,J)
ifdone(L)

argument
, instructions

'N' is the argument number of the skeleton within the head.

Page 55

'S' is

the address of a corresponding skeleton literal (which may be assumed

to be placed after the 'foot' instruction). The global variables which

have their first occurrences within the skeleton are numbered from 'I'

through 'J '-1. The effect of the 'init' instruction is to initialise

these variables to 'undef'. If 'I'='J', the instruction is a

no-operation and may be omitted. The instruction 'ifdone' causes the

instr11ctions for the arguments of the skeleton to be skipped if the

matching construct is a reference. 'L' is the address of the

instruction following the last argrn:1ent instruction.

Note that the arguments of the skeleton could be coded in· any

order since each instruction contains the argument number explicitly.

(A "first occurrence" of a variable would then r.iean the first

occurrence in the code.) Similarly for the arguments of the head

boolean term itself.

A skeleton at level 2 is coded simply as:-

uskell (N, S)

where 'N' and 's' are analogous to the use in 'uskel'.

Immediately before a 'neck'

instructions:-

init(Il,Jl)
localinit(I2,J2)

instruction there are two

The global and local variables which have their first occurrences in

Page 56

the body of the clause arc numbered respectively from 'II' through

'Jl'-1 and from '12' through 'J2'-l, Once again, either instruction is

an omissabie no-operation if the two numbe1:s are equal,

The instruction ccrresponding to the Clit sy1:1bcil is 'cut(I)' wticre

'I' is the number of local variabes in the clause. There are a nw:;bc;r

of instructions which simply replace some comwon combinations of

inst rue t ions:•·

neckfoot(J,N)
neckcut(I,J)
neckc ut foot (J, i'~)

neck(O,J); foot(l'J)
neck(I, J); cu-c (I)

neck(O,J); cut(O); footUn

That completes the basic instruct-Jon sc,t of the PUL We have not

described in detail the effect of each instruction, although this

should be clear from earlier discussion of hDw the PU[operates. Full

details are given in Appendix 2.

6.10 Exar'.!2le_s Of Prolog I-Lqchine Code

Let us now illustrate the way Prolo~ source clauses are

transl2ted ir:to Prolog Machine CodE: by considering [;or:",2 exar:iples.

6 .10. 1

List oenbership is defined by the following straight-forward

claw,2s :-

member(X,cons(X,L)).
r.1e:,1ber(X,cons(Y, L)) :- member(X, L).

The first clause has ti,o global variables X a,:d L. Thr~ second has orte

local X and tv.10 globals Y and L. The code for tr1(' clam;,?s is aS

follows. Addresses etc. are represented by underlined identifiErs

Page 57

and where appropriate the corresponding instruction is indicated by a

label as in conventional asst•mbly languages.

Code

clausel: uvar(0,global,0)
uskel(l, label2)
init (1 , 2_) ___ _

ifdone(labell)
urefl(0,glohal,0)

labell: neckfoot(2,2)
1abe12: fn(~)

var(0)
var(l)

clause2: uvar(0,local,0)
us ke 1 (1 , lab e 14)
init(0,2)
ifdone(labe13)
uvarl(l,global,1)

label3: neck(l,2)

member:

6.10.2

call(□ember)

local(0)
global (1)
foot(2)
fn(cons)
var~
var(l)

enter
try(clausel)
trylast(clause2)

Source

member (X,
cons(

X,L)
) .

member (X,
cons(Y,

L)
) : -
member(
X,
L)

An example of a use of 'cut' is the follmdng definition of the

maximum of two quantities:-

r.iaximum(X, Y, Y) :- X<Y, l.
maximum (X, Y, X).

(Here cut is not purely a coutroJ device; the second clause can be

interpreted as "thl, maximur:i of X and Y is X by default if it is not

the case that X is less tban Y".) Tbc first clouse has two Joe al

variables while the second has one tcnporary X Dnd one void Y. The

----------------------------------~--------

corresponding code is:-

Code Source

clauscl: uvar(O,local,O)
uvar(l ,local, 1)
uref(2,local,l)
neck(2,0)
call(<)
local(O)
local (1)
cut(2)
foot(3)

clause2: uvar(O,local,O)
t1ref(2,local,O)
neckfoot (0, 3)

maximum: enter
try(clausel)
trylast(clause2)

6.11 ~~de Declarations

maximum (X,
Y,
y

) ;­
< (
X,
Y),

r:1c1ximur:1 (X, Y,
X
) .

Page 58

In the previous sect :Lon we saw that the code fer list membe1·ship

included skel2ton literals. Now these skeleton literals are only

really used if the me~bership procedure.needs to construct new lists,

ie. \,hen the secc1 nd ai.'guL1ent in the call is (dereferences to) a

reference construct. This is unlikely to be the case. Usually the

programmer will call 'r.1er.1ber' simpJy to check whether something is a

mehlber of an existing list. In this case the 'cons' subterns of the

·'member' procedure will serve only to decompose an existing data

structure, not to construct a new one.

If the programmer can guarantee to restrict the use of

predicate in this kind of way, then the 2yst21~ can optinise the cede

generated. The main potential improvements are:-

Page 59

* Unnecessary code can be dispensed with. If a skeleton term always

serves as a "destructor" then a skeleton literal is not needed. If it

always serves as a "constructor" then no executable instructions are

needed for the arguments.

* If these changes result in a variable no longer appearing in a

skeleton literal, then that variable no longer needs to be global.

Its cell can therefore be allocated on the local stack and space

recovered on determinate procedure exit.

Accordingly, the PLH allows the programmer to specify an optional

mode declaration for each predicate. Some examples of the syntax used

are:-

:-mode member(?,+).

:-mode concatenate(+,+,-).

The first declaration states that, in any call of 'member', the second

argument will be a non-reference construct and the first argument is

unrestricted. The declaration for 'concatenate' indicates that the

first two arguments are ahvays non-reference construe ts and the third

is al ways a reference. ie. • concatenate' is applied to two given

lists to create a new third list.

These examples illustrate all the cases of mode information

currently accepted hy, and useful to, the PLH. The idea could

obviously be extended. \Je should emphasise that the dee larations are

optional and do not affect the visible behaviour of the program except

in regard to efficiency (provided the restrictions imposed are valid).

If no mode declaration is given for a predicate, it is equivalent to a

declaration ,~1ith all argunicnts '?' ..

Page 60

The effect on the PLH of a mode declaration is limited to changes

to the code generated for skeletons at level 1 and consequent

re-c~tegorisation of variables. If a skeleton is in a

it is playing a purely ".s:_or.structive" role and the code is:­

uskelc(N, S)
init{I,J)

position,

ie. A 'uskelc' instruction replaces the 'uskel' instruction and the

• ifdone' and argument instructions are dropped.

If the skeleton is in a •+• position, it is playing a purely

"des true tive" role and the code is:-

uskeld(N, I)

argument
instructions

Here 'I' uniquely identifies the functor of the skeleton. The 'init'

and 'if done' inst rue tions are dropped and no skeleton literal is

necessary. However if any argument of the skeleton is itself a

skeleton, the code for that argtm1ent becor:1es:-

init(I,J)
uskell (N, S)

'N' and 'S' are the argu'Tient number and address of a skeleton literal

for the subterm. 'I' through 'J '-1 are the numbers ot the global

variables having their first occurrences in 'S'. As usual, the 'init'

instruction can be omitted if 'I'='J'.

Note that if 'uskelc' encounter8 a non-reference, or 'uskeld' a

reference, an error message is given and a failure occurs.

Page 61

Finally we should observe that in the previously stated criteria

for categorising variables, "occurrence in a skeleton" should be

construed as "occurrence in & skeleton literal". From a practical

point of view it is the re-classification of variables into more

desirable categories which is of major importance. The full benefit

of using two stacks ratber than one for variable cells can only be

obtained if mode declarations are used. For this reason we have not

treated mode declarations as one of the "optional extras" considered

later.

6.12 Hore Examples Q!_ Prolog Hachine Code

6.12.1

Let us no-w see how the mode declaration given for 'member'

affects the code. There are no longer any global variables. Two of

them become voids, one temporary and one local:-

Code Source

clausel: uvar(O,local,O) member(X,
uskeld(l ,~) cons(
urefl(O,local,O) X,L)
neckfoot(0,2)) .

clause2: uvar(O,local,O) member(X,
uskeld(l, cons) cons(Y,
uv arl (1, local, 1) L)
neck(2, 0)) : -
call (mer:iber) member(
local(O) X,
local(l) L)
foot(2)

member: enter
try(clausel)
t ryl ast (_c lausel_)

----- ·--- ~~·· -----------

--------------------------- --~--~------------- -

Page 62

6.12.2

A good example for illustrating many different features of code

generation is the following "quick-sort" proce<lurl:':-

:-mode sort(+,-).
·:-mode qsort(+, -,+).
:-mode part5tion(+,+,-,-).

sort(LO,L) :- qsort(LO,L,nil).

qsort(cons(X,L),R,RO) :­
partition(L,X,Ll,12),
qsort(L2, Rl, RO),
qsort(Ll,R,cons(X,Rl)).

qsort(nil,R,R).

partition(cons(X,L),Y,cons(X,Ll),12) :­
X =< Y, ! , partition(L; Y, Ll, L2).

partition(cons(X,L),Y,Ll,cons(X,L2)) :­
partition(L,Y,Ll,L2).

partition(nil,_,nil,nil).

The code generated is as follows:-

Code

clausel: uvar(O ,local, 0)
uvar(l,local,l)
neck(2, 0)
local(O)
local(l)
[atom(nil)]
foot (2-) --

clause2: uskeld(O,~)
uvarl(O,glob&l,0)
uvarl (l ,local,O)
uvar(l ,local,l)
uv ar(2, local, 2)
init(l, 2)
localinit(3,5)
neck(5, 2)
call(partition)
local (0)
glob2l(O)
local{3)
local(4)
call(gsor_t)
local(4)
global (1)
1 oc al (2.)

call <x~.E!)
loc.:11 (3)

Source

sort(10,
L
) :-
LO,
1,
nil)

qsort(cons(
X,
L),
R,
RO

) : -
partition(
L,
X,
Ll,
12),
qsort(
12,
Rl,
RO),
qsort(
L 1,

Page 63

local (2) R,
la bell cons(X,Rl))
£oot(3)

la bell: fn(~) - var(O)
var(l)

clause3: uatom(O,nil) qsort(nil,
uv ar (1 , 1 oc al, 0) R,
uref(2,local,O) R,
neckfoot(O, 3)) .

clause4: uskeld(O ,~) partition(cons(
uvarl(O,global,0) X ,
uvarl(l,local,O) L),
uv ar (1 , local, 1) Y,
uskelc(2,label2) cons(X, 11),
init(l,2)
uvar(3,local,2) 12
neck(3,2)) : -
call(=<) =<(
global(O) X,
local(l) Y),
cut(3) I . ,
call(partition) partition(
local(O) 1,
local (1) Y,
global(l) 11,
local(2) 12)
foot(4)

label2: fn(~)
var(O)
var(l)

clause5: uskeld(O,~) partition(cons(
uvarl(O,global,O) X,
uvarl(l,local,O) 1),
uvar(l,local,l) Y,
uvar(2,local,2) 11,
uskelc(3,label3) cons(X, 12)
init(l,2)
neck(3, 2)) :-
call(part it ion) partition(
local(O) 1,
local (1) Y,
local(2) 11,
global(l) 12)
foot(4)

label3: fn(~)
var(O)
var(1)

clause6: ua tor:1(O, nil) partition(nil, , -"'~-- -uatom(2, nil) nil,
u atom (3 , -; U) nil
neckfoot(O,O).) .

Page 64

6.i2.3

The following exa~ple illustrates the coding of nested

s ke 1 et ons : -

:-mode rewrite(+,'?).

rewrite(X or (Y and Z), (X or Y) and (X or Z)):-!.

Code Source

clausel; uskeld(O, or) rewrite(or(
uvarl (Cl, global, 0) X,
init(l, 3)
uskell(l,label2) and(Y,Z)),
uskeJ (1, labc:13) and(
ifdone(lat:~)
uskell (0, labc.14) or(X, Y),
eskelJ (1, label5) or(X, Z))

labell: neckcutfoot(3, 2)) • - I ...
label2: fn(a!ld_) L

var(l)
var(2)

label3: fn(and)
labe-14
labelS ---

label4: fn(or)
var(O)
_var(l) ..

labelS: fn(or)
var(O)
var(2)

Page 65

7.0 DEC]O IlPLEtlliNTATION DETAILS

In this section we shall indicate how the PLM can be efficiently

realised on a DEClO. A summary of the essential characteristics of

this machine is given in Appendix /3. /. Fuller details of the

implementation of PLM instructions and literals are given in Appendix

/2./.

Short and long items both correspond to 36-bit words. A special

register corresponds to one of the sixteen fast accumulators. For

each writeable area there is set aside a (quasi-) fixed block of

storage in the low segment. The trail is accessed via a push-down

list pointer held in TR.

The DEClO effective address mechanism contributes crucially to

the overall speed of the inplementation. Each inner and outer literal

is represented by an address word which is generally accessed

indirectly. ie. The indirection bit is usually set in any DEClO

instruction which refers to the address word. In particular, the

address word for a variable specifies the address of its cell as an

offset relative to an index register. The index register will be

loaded with the address of the appropriate frame, In other cases

(constant or skeleton), the address word will contain a simple

address. The net result is that, despite structure-sharing, it only

takes one instruction to access a unification argument. Moreover, in

the majority of cases no further dereferencing of the argument will be

necessary. This can best be illustrated by looking at the code for an

example such as 'uvar(3,global,5)' :-

MOVE T,@3{A)
TLNN T, HSKMA
JSP C,$UVAR
MOVEH T,5(V1)

Page 66

;indirect load of argument into T
;check construct is a molecule or constant
;if not, call out-of-~line subroutine
;store argument in appropriate cell

Thus in the majority of cases only 3 instructions are executed to

complete this unification st"ep. The matching term might be

'globa1(4)' ~epresented by:-

WD 4 (Xi)

where •im• indicates an address W')rd with zero instruction field. If

the cell corresponding to this variable contains a molecule say, the

effect of the • .MOVE' instruction will be to load the molecule into

register T. Note: If the cell contained 'undef', subroutine '$UVAR'

would be responsible for recovering the address of the cell. This is

easily achieved by the instruction:-

MOVE I T ,@-3 (C)

which simply loads the result of the ·effective address calculation

into T. '-3(C)' refers back to the original •~10VE' instruction. A

similar operation is needed if the matching term is a skeleton. Hore

generally, this illustrates how part (or all) of a PU! instruction can

be performed out-of-line on the DECIO with very little overhead, as

the subroutine can easily refer back to the in-line code.

A molecule 'mol(Skeleton,Frame)' is represented by a word:­

XWD frame,skeleton

The pair is inverted to facilitate accessing the arguments by

indexing. A reference construe t corresponds to a simple address word

with left half zero. In passing, note that although all dereferencing

could be accomplished by a single instruction (with a different

re_presentation of constructs and the indirection bit set in a

reference), ·this would not be cost-effective (multi-step dereferencing

----- ----

Page 6 7

is too rare to justify the extra overheads). 'undef' is represented by

a zero word, as this value is easily initialised and recognised.

Both the • call' and • try' instructions are represented simply by

'JSP's :-

JSP A,predicate ;call predicate

JSP FL,clause ;try clause

other instructions are implemented as a mixture of in-line code and

call to out-of-line subroutines via:-

JSP C,routine

The 'uskel' instruction, if it matches a non-reference has_ the effect

of loading B with the address of the corresponding frame. If it

matches a reference, Y is set to zero and 'ifdone' is achieved by:-

JUHPE B,label

The TR field in a local frame holds the left-half of the

corresponding value for the TR register. This enables the trail to be

easily relocated since the TR fields will effectively contain trail

offsets rather than trail addresses.

Atom, integer and functor literals are represented by words:-

XWD $ATOH,i
XWD $INT, i
XWD $SKEL,i

The left halves $ATOM, $1NT, $SKEL serve to label the different types

of literal. The right half 'i' is either the value of the integer, or

a functor table offset. The functor table contains information, such

as names and arities, associated with atoms and functors.

Page 68

8.0 OPTIONAL EXTRAS

In this section we discuss sor.e "optional extras" which c,rn

substantic::lJy improve the efficiency of the PUI. Because they are not

strictly essential, \-le treat them separately i_n order to keep the

basic description of the PU1 as simple as possible. However since

both "extras" provide substantial benefits at comparatively little

cost, they shou1d be regarded as standard.

8.1 Indexing Of Claus2s

The basic PLN event·ually tries every claus8 in a procedure when

seeking to matr:h a goal (unless "cut" is used explicitly, or implcitly

when a proof has been found). The code for each clause is actually

entered, although an early failure in unification may auickly re-route

control to the next clause. This is fine so long as there are only a

few clauses in a procedure or when a high proportion of the clauses

are going to match. However there are often cases where the clauses

for a predicate v:ould conventionally correspond to an array or table.

of information rather than a single procedure. Typically there are

many clauses with a variety of different non-variable tenns in one or

more argu□ ent positions of the head predicate. An exanple □ight be

the clauses for a predicate 'phonenur.iber(X,N)' where 'N' is the phone

number of pe;.·son
, ,r,.

A •

Ideally one would like the system to access clauses

"associatively", to achieve a higher "hit" r.atio of clauses r.iatched t0

clauses entered. In other words clauses should be indexed on a more

detailed basis than head predicate alone. However there is a danger

Page 69

of generating much extra indexing 5_nformation which is not needed in

practice. For example a standard telephone directory is indexed so as

to facilitate answering questions of the fom

'phonenumber(aperson,X)'. To cater for questions of the form

'phonenumber(X,anumber)' would require another weighty volume which

would be useless to the average customer. So in designing an indexing

scheme one has to balance generality against the benefit realised in

practice from the extra infonnation stored. Also the whole object of

the scheme will be nullified if the indexing process is not fast. In

Prolog, there is an additional constraint that the clauses must be

selected in the order they appear in the program, as this order

frequently constitutes vital control information.

Besides the main objective of speeding up the selection of

clauses to match a goal, indexing also helps the machine to detect

that a choice is determinate because no further clauses in the

procedure will match. This is important for determining when space

can be reclaimed from the local stack.

The indexing scheme we shall describe is relatively

straightforward, and results in clauses being indexed by predicate and

principal functor of the first argument in the head (if this term is

non-variable). This is achieved by replacing the first PUI instruction

in each clause by extra indexing instructions in the procedure code.

Huch work is thereby telescoped, and clauses can often be selected by

a fast "table lookup". It is a simple compromise solution which is

perfectly adequate for many cases of practical interest, in particular

for compiler ,;vriting in Prolog. Pbreover in many other cases it is

not difficult to rewrite the program to take advantage of the indexing

----- --------- -----------------------

Page 70

provided, cf. the way two dir:ien1:.·ional arra.ys are conventionally

1:iapped onto one dimensional f,torage, in Fortr2r1 implementations say.

For example one might replace a set of unit clauses for 'rr1atrix' by

unit clauses for 'vector' plus the clause:-

matrix(l ,J, X) : - K is I*20+J, vector(K, X).

provided we have:-

: -mod e m n t c ix (-r , +, ?) •

The indc:-dng then gives rapid access to the X such that

'matrix(l,.T,X)' for given 'I' and 'J', It also enables the machine to

take advantage of 'f'.latrix' being a single valued function fro□ 'I' and

'J' to 'X' and avoid retaining any local storage used in a call to

'matrix'. Such rewriting can usually be done without greatly impairing

the "naturalness" and reaciability of rhe program.

We shall now describe how the ir.iproved indexing scher:ie affects

the PLM instructions generated. Basically the first instruction in

each clause is to be omitted and the procedure code becomes more

complex. The cl:wse sequence of a procedure is divided into sections

of consecutive clauses with the saiDe type of argument at position O in

the head, The two types are "variable" and "non-·;ariable". The forr:ier

corresponds to a general section and the latter to a special section.

The procedure code now t!lkes the fom of an 'enter' instruction

followed by alternating special and general sections:-

·.

enter

gsect

general
section
code

ssect (L, C)

special
section
code

Page 71

Each general section commences with an instruction 'gsect'. This

instruction is equivalent to 'uvar(O,local,O)'. The clauses for a

general section have at least this one mandatory local variable which

is bound to the term passed as first argument in the call. If the

variable at position O in the head is global, an extra instruction:-

ugvar(I)

is placed at the beginning of the clause code. This instruction hai

the same effect as 'uvar(O,global,I)'. The code for the general

section is simply:-

gsect
try(Cl)
try(C2)

try(Cn)

where Cl through Cn a~e the addresses of the clauses in the section.

If it is the final section of the procedure, the last instruction is:-

trylast(Cn)

The code for a special section takes the form:-

Label:

Next:

ssect(Label,Next)

non-reference
code

reference
code

endssect

Page 72

'ssect' is responsible for dereferencing the tenn passed as first

argument and if the result is a reference, control is transferred to

the reference code ccr.nnencing at 'Label' . The reference code is a

sequence of instructions, each of which is one of:-

tryatorn (I, C)
tryint(I,C)
tryskel(S, C)

according to the form of the first argtnnent in the head of the clause.

These instructions are respectively equivalent to:-

uatom(O,I); try(C)
uint(O,I); try(C)
uskel(O,S); try(C)

for the special case of matching against a reference. If it is the

final section of the procedure, the instruction 'endssect' is omitted

and one of:-

trylastatom(I, C)
trylastint (I, C)
t rylast skel (S, C)

takes the place of the last instruction in the section.

instructions are equivalent to:-

uatorn(O,I); trylast(C)

etc. The instruction 'endssect' causes the following

These

'gsect'

instruction to be skipped and takes over its role for the special case

concerned. The 'endssect' instruction is not strictly essential and

Page 73

could be treated as an ignorable no-operation instead.

The "meat" of the improved indexing scheme lies in the

non-reference code which immediately follows an 'ssect' instruction.

In general this code has the form:-

switch(N)
case(Ll)
case(L2)

case(LN)

testcode

Basically, the code switches on a "hash code" determined by the

first argument in the call to some test code which finds (by a

sequence of tests against functors having the same "hash code") the

appropriate clause(s) (if any) for this functor. Each of these

clauses is then 'try'ed in turn. Usually there will be no more than

one clause per "hash code" value and so the cost of finding this

clause is independent .5:?.f the number of clauses in the section.

In more detail, instruction 'switch' computes a key determined by

the principal functor of the first argument in the call (which has

been dereferenced by 'ssect'). 'N' is a certain power of 2 which is

the number of 'case' instructions following. The value of N is

arbitrary and is currently chosen to be the smallest power of 2 which

is not less than the number of clauses in the section. A number Hin

the range Oto N-1 is derived from the key by extracting the least

significant I bits where N is 2 to the power I. ie. Mis the key

modulo N. Control is then transferred to the address 'L' where the

(M+l)th. 'case' instruction is 'case(L)'. If there are only a few

Page 7 L1

clauses in the se~tion (currently <5) then the
, • ~ 1 ,

SW]_ LC fl and case
,

instructions are emitted and testcode as if for a single case follows.

In general the testc8de indicated by tile address 'L'. in a case

instruction is of the forn:-

'if' instructions

goto(Next)

whP.re 'Next' is the address of the next general section. An

instruction 'goto(L)' merP.ly transfers control to address 'L'. If the

list of 'if' instructions would otherwise be empty (see below), all

the testcode is omitted and the correspohding case instruction is

'case(Next)'. An 'if' instruction is one of:-

ifa tmn(I, Label)
ifint (I, Label)
ifskel(I, Label)

There is one 'if' instruction for each different atom, integer or

functor which occurs as a principal functor of the first argw:ient of

the head of a clause in this !:;ection, and whose key cor:r:esponds to the

case concerned. The ~if' instructions can be ordered arbitrarily.

,:.~--

,I' uniquely identifies the atom, integer or functor cone:erne·d. Of ten

there will only be one clause for this constant or functor, in which

case 'Label' is the address of the clause's code. The effect of the

'if' instructioQ is to transfer control to 'Label' if the first

argument of the goal matches the cor,stant or functor indicated by 'I'.

Since 'ssect(_,Next)' will have set the :FL fieJ.d of the current

environment to 'Next', the net effect of the 'if' instruction is as if

(for example) : -

11atom(O, I); try(Lab2l)

Page 75

occurred immediately before the next general section. If there is

more than one clause for a particular constant or functor, 'Label' is

the address of code of the following form:-

try(Cl)
try(C2)

goto(Next)

[? Need 'reload' instructions if argument O is a skeleton. ?] Here

'Next' is once again the address of the following general section and

the Ci are the addresses of the code for the different clauses, in

order of the source program.

If a special section is the final section in a procedure, the

opening instruction is:-

ssectlast(Label)

This instruction is like 'ssect' but if the first argument of the call

is a non-reference the machine is prepared for deep backtracking on

failure. (cf. the relationship between 'try' and 'trylast'). The

remaining code is similar to that for 'ssect', with an address 'fail'

replacing all occurrences of the 'Next' address. If control is

transferred to 'fail', the effect is to instigate deep backtracking.

If there is more than one clause for a constant or functor, the code

is:-

notlast
try(Cl)
try (C2)

t rylast (Cn)

Instruction 'notlast' prepares the machine for shallow instead of deep

backtracking.

Page 76

Finally if the type of the first arg1Jr.1ent is restricted by a mode

declaration, part of the special section code can be omitted. If the

restriction is'+', the refer~nce code is omitted and the label in the

'ssect' instruction becomes 'error' If control is transferred to

• error' a diagnostic message is given followed by deep backtracking.

If the restriction is the non-reference code is replaced by the

instruction 'goto(error)'. Thus the Drocedure code checks that the

type of the first argument is consistent with any moJe declaration.

8. L 1 Example -

\Je shall now illustrate the clause indexing by shoving the

indexed procedure code for the following clauses:-

call(X or Y) : - call(X).
call(X or Y) :- call(Y).
call(traee) :- trace.
call(notrace) :- notrace.
call(read(X)) :- read(X).
call(write(X)) :- write(X).
call(nl) : - nl.
call(X) :- ext(X).
call(call(X)) :- call(X).
call(true).
call(repeat).
call(repcat) :- call(repeat).

The procedure code is as follows:-

call:

la bell:

label2:

label3:

label4:

labels:

listl:

refl:

next:

list2:

ref2:

enter
ssect (refl ,~!)
swi tch(8)
case(labell)
case (label2)
case(next)
case (~13)
case(label4)
case(label5)
case(next)
case(next)
ifskel(or, list 1)
goto(nert)
ifato~ace,clause3)
goto(next)
ifskel(read,clauseS)
goto(next)
ifatom(notrace,clause4)
ifskel(write,clause6)
goto(next)
ifatom(nl,clause7)
goto(next)
try(clausel)
try(clause2)
goto(next)
tryskel(or,clausel)
t ryske 1 (or, c lause2)
tryatom(hace,clause3)
tryatom(notrace,clause4)
tryskel(read,clause5)
tryskel(~e,clause6)
tryatom(nl,clause7)
endssect
gsect
try(clause8)
ssectlast(ref2)
ifskel(cal~ause9)
ifatom(true,clauselO)
ifatom(repeat,list2)
goto(fail)
notlast
try(clausell)
trylast(clausel2)
tryskel(call,clause9)
tryatorn(true,clauselO)
tryatom(~at,clausell)
trylastatom(repeat,clausel2)

Page 77

Page 78

8.2 Garbage Collecticn

We have already seen hot•' local storage used during the

detc;..-rninate execution of a procedure can be recovered at virtually no

cost. It is also possible to recover part of the global storage used,

though the garbage 5ollection (GC) process needed is rather expensive,

hence the importance of classifying variables into locals and globals.

Neither of these techniques can reclaim storage from a procedure until

it has been completed determinately. While a procedure is still

active, there is little potential for recovering any of its storage.

Because of the cost, garbage collection should only be instigated

when there is no longer enough free space on the global stack. It

involves tracinz and marking all the global . cells which are still

accessible to the program, and then compacting the global stack by

discarding inaccessible cells with ~appin_,£ of any addresses which

refer to the global stack. A drawback, attributable to the structure

sharing representation, is that not all the inaccessible cells can be

discarded. They may be surrounded in the frame by other accessible

cells, and the relative positions in the frame of all accessible cells

must be preserved. This disadvantage relative to a "direct"

representation using "heap" storage is nevertheless probably

outweighed in most cases by the general c m,1pac tness of

st rue t ure-sharing.

1,e say that a global frame is active if tbe corresponding local

frame still exists. Otherwise the frame is snid to be passive.

Pas1c:ive global frames correspond to procedutes which have bee:1

completed determinately. The aim of GC is to reduce the sizes of

passive global frames by discarding inacce.ss.ib1e ceJ 1_s frora either end

Page 79

of the frame. If possible the frame is dispensed with altogether.

In order to perform the CC process, it is necessary to make some

slight changes to the format of the data on the two stacks:-

(1) An extra GC bit must be made available in (or associated with)

each global cell. This bit will be set during the trace and mark

phase if the cell is to be retained.

(2) An extra (long) iocation is needed at the beginning of each global

frame. This contains a special value of type 'mark(N)'

distinguishable from other constructs. During GC, this location marks

the start of another global frame and the value of N indicates the

amount the frame is to be displaced when compaction takes place. If

the frame is to be discarded altogether, the value in the location is

set to 'discard(N)', where N is the relocation factor which would

apply if the frame were not to be discarded.

(3) An extra 1-bit of management information is needed in the local

frame. This indicates whether or not there is a corresponding global

frame.

The GC process needs to be able to trace all existing local

frames (and the corresponding active global frames). The information

needed resid~s in the X and VV fields of the local frames, with the Vl

fields indicating the paired active global frames. The following

algorithm performs the enumeration:­

local frame pointer Parent := register X;
local frame pointer Alternative := register VV;
while Alternative >= root environment, do

(while Parent> Alternative, do
(sclect(Parent);
Parent := field X of Parent);

select(Alternative);
Parent := field X of Alternative;
Alternative := field VV of Alternative)

root environment

;!\.
J

vv X

Vf"ld ''\i\. ie,._

'
\~ VV field

\

We can now outline the entire GC process:-

preliminaries:
/* this step reduces recursion during trace+marking */
for each active 3lobal frame,

mark the GC bit in each cell;
trace-I-marking:

for each local frame
and corresponding active global frame if any,

(trace+mark each local cell;
trace+□ark each global cell);

computing displacements:
for each global frame in ascending order,

compute its displacement and set rr.ark(N) whe!."e
N := displacement of previous fra:ne

Page 80

+nL'!,1ber of eel.ls dropped fro," end of previous frame
+sizes of any intervening frar:1es discarded
+number of cells dropped at start of this frame;

remapping of global addressPs:
for each local frame,

(remap-global-pointer for the Vl field;
remap each local cell);

for each global frame,
remap each global cell;

for each trail item,
_remap the trailed reference;

also ~_map-global-poiT2_ter_:_s Xl, Vl, VVl;
compacting the global stack:

physically r.10v? tlle rer:1aining global frames to their new
positions, unr:iarking the GC bit in each cell.

procedure trace+mark(Cell):
uses a pusiidown-list set up in free space at the top of the
local stack;
mark the GC bit in Cell;
if Cell contains a reference to a global cell, Gcell,

and Gcell is not already marked,
then trace+r.1ark(Gcell)

else if Cell contains a molecule
then trace+mark each unmarked global cell

for the variables in its skeleton
else return.

procedure remap(Ccnstruct):
if Construe t is a global reference,

Page 81

then scan back through the frame to the preceding mark(N)
and subtract N from the reference

else if Construct is a molecule
and there is a variable in its skeleton,

then find the mark(N) preceding the variable's cell
and subtract N from the frame field of the molecule

else return.

procedure remap-global-pointer(Address):
if the location before Address contains 'discard{N)'

then subtract N from Address
else the location contains 'mark(N)' in which case subtract N-M

from Address where M is the number of unmarked cells
starting at Address.

Page 82

9.0 DESIGN PHILOSOPHY

Having described the mai.n features of our Prolog imple:-:1entation,

it is perl,D.ps v1cntliwhile to corament on the criteria which influenced

design decisions. It is hoped this will provide some answer to

inevitable questions of the fona "Houldn' t it be better if ..•• ,.? 11 or

"Was it really necessary to ..•••. ?".

Firstly, software implementation has to be judged by the

standards of an engineering discipline rather than as an art or

science. One cannot hope to achieve an ideal solution to every

problem, but it is essential to find a.dequate solutions to all the

major ones. Gener;illy speakinli simplest is best.

A good example is the contrast between earlier attempts to use

"theorer1 provers" as "problem solvers" and Prolog itself. The earlier

attempts failed because no adequate solution had been found to the

problem of controlling the syster:J in a reasonable way. Al t11ongh the

simple solution adopted by the originators of Prolog does not satisfy

all the aspirations of "logic programming", and so is perhaps not

"ideal", it does transform logic into an adequate, indeed powerful,

programming tool.

In our experience of using Prolog we have not found any example

which d2mantls more sophisticated control facilities. Nor have we felt

any overwheJ,:iing need for extensions to the language. By far the

worst practical clr·;:iwback. has been the large amounts of working storage

required to run the Marseille interpreter. Also, although interpreted

Prolog is fast enough for most purposes, it is too slow for running

systems programs such as the Prolog "supervisers". This is a pity

Page 83

since Prolog is otherwise an excellent language for software

implementation. Therefore improved efficien~y, both of space and

time, has been the major aim.

In implementing any language, it is important to have in mind

some representative programs against which to check the relevance of

design issues and on which to base dee is ions. For this purpose, we

have taken the existing Prolog supervisers and the new Prolog compiler

itself, as their efficiency is ~1at matters most to the average Prolog

user. Looking at typical Prolog programs such as these, one finds

that the full generality of Prolog is brought into play only rarely.

At almost every step one is dealing with a special case that can be

handled more efficiently. Examples are the following:-

* Many procedures are determinate. \le can capitalise on this to

recover much of the working storage used.

* Of the symbols which make up the head of a clause (functors,

constants and variables), the majority are typically variables, and

moreover are typically first occurrences of the variable. We have

seen that the code for this important case of the first occurrence of

a variable performs a relatively very trivial operation.

* In the source program, the arguments of a goal are almost

always variables. Hence the decision to generate executable

instructions for terms in the head of a clause rather than those in

the body.

P2ge 84

* Predicates are usually used in a restricted c:oae wi!:h certain

arguments provic:ing procedure :input and others receiving procedure

output. Opt.ional T'lOde dec}nrations euable the system to avoid

ger!c:c,rating unnecessary code and also to increase che amount of storA.ge

recovered autooatically when a procedure exit is determinate.

* The first argunent of a predicate is analogous to the subject

of a natural language sentence, and it is natural for this argur.1ent to

be en "input" of the procedure. Often the clauses of the procedure

coucerned represent different cases according to the principal functor

of the terr.1 supplied. An efficient treatr.ient of such "definition by

.. ~eses'' is implemented which selects the correct case(s) by table

lookup. This feature is invaluable for writing compilers in a natural

and efficient way.

* Terrns are rarely nested to any degree in clauses responsible

for major computation. Hence the decision not to bother to generate

executable code for tenas nested below level 2.

In short, it is the treatment of such special cases which is the

decisive factor in determining efficiency.

The design objectives may be sur.imarised as being aimed towards

making Pro log a prnc t icable systems progranming language. It was

considered reasonable for the systems progranmer to have to understand

some general facts about how the language has been implemented in

order to use it with maximum ef:fidency. eg. The systems programmer

is expected to be aware of when his clauses can be compiled into a

table lookup ' ano to tb.e need for mode declarations.

Hov.,cver, as far as the naive program1~1er is cDncerned, none of this

Page 85

knowledge is necessary to write correct programs.

In most conventional programming languages, it is difficult to

separate the essentials of program design from the details cf

efficient impler:1entation. One cannot state one without the other.

For example, PL/1 faces the programmer with choosing, at the outset,

the storage class of his data. The choice strongly affects the form

of the program. Similarly most languages have mandatory types for all

data items and the programmer cannot easily change a data type once

"coding" has cor.1menced. This even applies to more high-level

languages such as Lisp, where all "abstract" data structures have to

be mapped into concrete list structures. It is difficult to avoid

becoming committed to referring to some abstract component as CDDAR

say.

The approach we favour is to specify an algorithm as an essential

core, to which extra pragr:ias (pragmatic information) are added. The

pragmas need not be supplied until a later stage and give guidance on

how the core is to be implemented efficiently. They do not affect the

correctness of the program. An example of a pragma is the predicate

mode declaration supported by this implementation. There are numerous

other possibilities in the same vein which could make logic based

progrnms more efficient, while preserving the simplicity and ease of

use of the core language.

For example, more sophisticated clause indexing is clearly needed

in some cases, yet it is unrealistic to expect the system to arrive at

the optimal choice since, among other things, :it depends on how the

clauses are going to be used. Plainly there is scope for the

progra1:i.mer to give guidance through some new £011:1 of pragma.

Page 86

10. 0 PF.KFORM/-_~·/CE

10. l RestL:.ts

Some simple benchmrnk tests to assess Prolog performnnce are

presented in Appendix 5. The other languages chosen for ccr.1parison are

Lisp and Pop-2. The three languages ha'.re sinilar design aims and can

usefully be compared. All are intended for interactive use, and are

paricularly oriented towards nor.-rm".1erical applications, with the

emphasis on generality, simplicity and ease of programming rather than

absolute efficiency. (AJ.so, all are in active use on the Edinburgh

DEClO.)

Each benchr.iark is intended to test a different aspect of Prolog.

No fixed criteria were used for selecting the "equivalents" in the

other languages, and so each example should be judged on its own

ncd_ts. One should observe that there is no absolute sense in which

the performance of different language implementations can be compared,

except where there is a clearly defined correspondence between the

proz1·ar:is of th2 two lan3uages.

In the case of Prolog, Lisp and Pop-2, there is a subset of each

for which there is a fairly obvious, objectively defined

correspondence, namely the class of procedures which compute sir:iple

functions over lists. This correspondence is illustrated by the first

benchmark, a "naive" procedure for reversing a list. 11tis procedure

is useful as a benchmark simply because it leads to hea.vy "list

crunching". The time ratios quoted are typical of the class, Thus it

is usual for comp5led Prolog procedures which compute silTlple list

functions to run at 50-70% of the speed of the Lisp equivalents, for

Page 87

example.

The second benchmark is a "quick-sort" algorithm for sorting

lists. The auxiliary procedure 'partition' shows the worth of

multiple out!mt procedures. For comparison, we have selected a Lisp

version which packages the two outputs into a list cell. Nested

lambda expressions are required for the unpacking. The Pop-2 version

is taken from p. 235 of the Pop-2 handbook [Burstall et al. 1971],

omitting the refinement which caters for non-random input lists. Thus

we have essentially the same algorithm as the Prolog and Lisp

versions, but with ~s and explicit stack manipulation replacing

normal function calls. This transformation makes the function rathe1

difficult to understand, although evidently it improves the speed. It

is interesting to note that the more transparent Prolog formulation is

also appreciably faster.

The third benchmark is a much favoured example of non-nllf:lerical

programming the differentiation of an algebraic expression. The

Lisp version is a slight extension of Weissman's [1967, p.167] DERIV

function and the Pop-2 form is likewise extended from an example on

p.26 of the Pop-2 handbook. The Prolog formulation is concise and

echoes the textbook equations in a way which is immediately apparent.

It demonstrates the advantages of general record structures

manipulated by pattern matching where the record types do not have to

be explicitly declared. l1oreover the timing data shows that the

Prolog version is fastest. Notice how the Prolog speed is most marked

in cases where a lot of data structure is created, eg. when a

quotient is differentiated. This chRracteristic is a result of

s true ture-sharing and will be discussed later.

Page 88

The fourth benchmark \/as chosen to test the implr:mentation of the

logical vari;:i_ble,, and was suggested by the kind of proeessing which is

typical of a cor:1piler. The task is to !:'tai,sl.ate a list of symbols

(here actually numbers) into a co:t-rP.sponding list oi s2rial nwnbers,

where the. items are to be numbered in "alphabetic:a:L 11 ord-~r (here

actually numerical order). The 'serialise' pr<1cedure pairs up the

items of the input list with free variables to produce both the output

list and an "association list". lbe eler.ients of tl1e association list

are then sorted and their serial numbers co1,1puted to complete the

output list, For comparison we show a Lisp implern2ntation which

attempts as far as possible to satisfy the conflicting air.is of

paral]eling the Prolog version and rcr.i.sining close to pure Lisp. The

main trick is ta operate on the cells of a duplicate list, eventually

overwriting the copied elements with their serial 11umbers. The choice

of a Pop-2 version seems even more arbi trnry and He have not nt tempted

to provide one.

The final benchmark is designed to test the improvement gained by

ind~xing the clauses of a procedure. The task is to Jnterrogate a

"database" to find countries of similar populntion density (differing

by less than 5%). The database contains explicit data on the areas and

popdations of 25 countries. A procedure ~ density' fills in "virtual

data" on population densities. As is to be expected, the speed

advantage of compiled code is considerably enhanced relative to either

Prolog interpreter, neither of vhich indexes clauses \Ji.thin a

pro,.-edure. Thus the benefit of compilation is a factor of arouPd 50

instead of the normal 15 to 20. The figures f():r.: the 'Jeriv' example

show a similar but less pronounced effect. To illustrate the

correspondence between backtracking i11 Prolog and iterative loops in a

Page 89

conventional language, we shcn1 a Pop-2 version of the database

exar.:iple. The dcr.10graphic clc1t2 is stored in Pop-2 "strips" (primitive

one-dimensional fixed-bound arrays), and the 'query' clause translates

into two nested forall loops. As the timing data shows, the speed of

Pro log backtracking can better that of a conventional iterative

formulation.

We shall now summarise the results of these benchmark tests and

other less direct perfo1macce data. Firstly, co::1pdring Prolog

implementations, one can say that compilation has improved running

speed by a factor of (typically) 15 to 20 relative to the l~rseille

interpreter. The improvement is greater where clause indexing pays

off, and someuhat less in certain cases -where terms are nested deeper

than level 2 in the head of a clause. The speed of our Prolog

interpreter irnpler.1ented ir, Prolog is very similar to that of the

l~rseille interpreter, and their tir.:ies are remarkably consistent. {In

fact, our interpreter could be much faster if the present clumsy

oethod for interpreting the "cut" operator were avoided, eg. through

provision in the compiler of "ancestral cut", ie. a "cut" back to an

ancestor goal instead of the immediate parent.}

The results of comparing Prolog with a widely used Lisp

ir:1plementation may be summarised as follows. For computing Sii;-iple

functions over lists, compiled Prolog typically runs no more than

30-50% slower than pure Lisp. Of course such a comparison only

evaluates a limited part of Prolog and can't be entirely fair since

Lisp is specialised to just this area. In cases where a wider range

of data types than simple lists is really called for (or where

11 conses" outnumber ordinary functio11 calls), Prolog can be

-------- ---------- -----------------

Page 9(.)

significantly faster. For who.t Jt is worth, the mean of the 4 cor:imon

benchmarks (taking only the 'ops8' figures for 'deriv') pc1t" s Pro log

speed at 0.75 times that of Lisp.

As regards Pop-2, in all the benchmark tests cor:1piled P:rolog ran

at least 60~~ faster, c,ven where the Pop-2 version ·.vas formulated using

more primitive language constructs such as go!52_s and "strips". The

mean for the 4 comr.10,1 benchr.iarks (again taking the 'ops8' data) putE;

Pro log 2. I+ t irnes faster than Pop-2.

Small bcnchr:iark tests can only give a partial. and possibly

biassed indication of efficiency; an irnplement=1tion is better

evaluat·ed from the perfonnance O r ,_ large-scale programs. On these

grounds it is perhaps usefnl to look into the performance of the

Prolog compiler. Recall that ths cor':ipiler is i.Lself ir,1pler,iented in

Prolog (and furthermore is almost entirely "pure" Prolog, ie. clauses

havjng a declarative semantics). In practice COi:ipilation procr,cd.s in

two phases, with DEC' s Ki\CRO assembler being used for the second

phase:-•

Pro log Pro log
source compiler

file -------------->
(Phase 1)

Assetnbly
language
file

i1ACRO
Relocatable
code

-------------> file
(Phase 2)

The ratio of the tir.1es for Ph&se 1 : Phase ?. is usually of the order

of 3 to 2. It is surprising the times are not more different, since

l~ase 2 is a relatively simple process, and the l~CRO assenbler 1s

commercial software implemented in a 101~·-level languc1ge. The compiler

1s only generating about 2 instructions for each Prolog ~ource symbol,

so it is not simply a case of Phase l. creating voluminous input to

Phase 2. An nverr:gc f:igt,l.'f~ for the ccnpi12t:i.on speed of the Ptolog

Page 91

compiler (Phase 1 only) is 10.6 seconds per 1000 words of code

generated. This includes input of the source file and output of the

assembly language file.

So far we have only discussed perfonnance in terms of speed.

From an historical point-of-view, space economy has been of far more

concern to the Prolog user, and accordingly was a major objective of

this implementation. It is therefore important to assess how

effective the new space-saving techniques have been. From the nature

of the techniques, an improvement will only obtain for determinate

µraced ures (apart from an overall 2-fold improvement due simply to

tighter packing of infom,ation into the machine word), so much depends

on how determinate programs are in practice. The compiler itself, a

highly determinate Prolog program, now rarely requires more than SK

words total for the trail and two stacks. When the compiler was

interpreted by the Marseille interpreter (before it would

"bootstrap"), 75K words was not really adequate for the whole system,

of which roughly SOK would be available as working storage. This

suggests approximately a 10-fold space improvement for determinate

programs.

;Lt is difficult to make more direct comparisons with either the

.Marseille interpreter or the Lisp and Pop-2 syster.1s, and w~ have not

attempted to do so. Firstly none of these systems provides an easy

means of determining how r.1uch working storage is actually in use (as

opposed to available for use). Secondly it is debatable what

measurements sli;:.1uld be used to compare systems having different

storage allocation regimes, especially where mer.iory is paged. For

example, how much free storage is "necessary" in a system relying on

--- ------- ------------~----

Page 92

garbage collection? {The fairest proposal might be to ascertain and

compare, fnr each benchr;,ark, the s□al.le:st amount of non-sharab1e

test
. , ,

Wl1 .. L 1::un without deg r2-d ing

performanee hy more than a certain perce,1tn.r;e. This uould be a

tedious to_sk.}

It i3 probably fair to say that the "average" compiled Prolog

program requires considerabJy more working storage than Lisp or Pop-2

equivaler:ts, but that with careful and k;:wwl2dgeable progra1:1ming

(using mode decldrations and ensuring deter1,1inacy) the Prolog

requirement need not he much different from the other two. (For

example, it is doubtful whether a Lisp or Pop-2 implementation of the

Pro log compiler wouJ d use less storage.) The difference between Prolog

and the other two is likely to be of less practical significance on a

virtual memory rnachin2. The extra storage required by Prolog

typically represents groups of "dead" environments which are not in

active use, 2.nd which are also adjacent in rne,:wry by virtue of the

stack regime. Therefore they can generally be paged out.

From the coding of PU1 instruction::; detailed in Appendix 2, ,Je

see that the coopiled code is relatively cor:1pact at about two wor(ls

per source symbol. For the record, the "high-segment" sizes of our

ccmpi ler and interpreter are resp2ctively 25K words and 14K words.

These sizns represent the total sharable code including essential

run-time bystem.

Page 9 3

10. 2 D incussion

The above results t,how that Prolog :::pc,eri conparcs qilite \/::~11 with

othe~ lang11ages such as Lisp and Pop-2. Also the pl:'.rfon::iance o ,- the

comr,il~r suggests that soflware imple,:iented in Pro]o:_-', e:ari reach an

accept3hle 11tc:L1dard of efficiency.

Nov on the face of it, a language ouch as pure T • .,isp offers

simpler and more obviously 1:iachinc·-odc;nted L!cilities. Jfo,,.; is it

that Proloz is not considerably slower?

The first point to notice is that Prolog extras the ful.J

flexibility of unification with the logical variable and uackt:rack:i.ng

- lead to V,':.ry little overhe;::id when not used, provided the prograF1 is

compiled. For example, consider the code generatad f0r the

'conratenate' procedure (cf, AppE:ndix 5 .1) and .qssur.1e it L~ r,alled,

as for tbe corresponding Lisp function, _1ith t\-JO argt~1euts ground (ie~

ter.r1s containing no variables) and a variable as thlrd argw:ient. All

unification on the first two arg1..unents cf 'concatenate' reduces to

simple type. checks and direct assigrnrients. Unificatj_on on the t\1ird

argument is sor.iewhat more eostly, as it is creating the new output

list (cf. the "conses" psrforr:1ed by tlie Lisp proce,lure). If indexed

procedure code is generated, the Prolog machine readily detects that

:Lt is ·e):ecut ing a deteruina~e procedure and there a::-e no signLficant:

overheads attributabl.e to "backtracki:-ig" •· the traiJ_ is never accesseo.

and all local storage is autor,;atic:ally recovered on procedure exit.

In short, the procedure is executed in much the sane oanner as one

would expect for a conventional language.

Page 94

Despite this, it is still surprising that Lisp is not several

times faster than Pro log. Lisp has only the 0'Ile record type and, more

importantly, it does not provide complete security against program

error car and cdr are allowed to apply indiscr:i.minately to any

object. As a result no run-time checks are needed and the fundamental

selectors are effectively hardware instructions on the DEC:10.

In analysing the reasons for Pro.log's relative speed, we are led

to the following, perhaps unexpected, conclusions:-

(l) Specifying operations on struc i:ured data by "pattern 1;i2tching" is

likely to lead to a better inplementation than use of conventional

selector and constructor functions.

(2) On a suitable machine, the "structure-sharing" representation for

structured data can result in faster execution than the standard

"literal" representation. To be nore specific, it allows a "cons" to

be effected faster than in Lisp.

To illustrate the reasons for these conclusions, let us compare

(a) an extract from the definition of evalquote given in the Lisp 1. 5

}~nual [l~Carthy et al. 1962] with (b) the clause which is its Prolog

counterpart. \Je shall write the Pro_log functor corresponding to cons

as an infix operator :-

(a) apply[fn;x;a] =

eq[car[fn];LABEL] -> apply[caddr[fn] ;x;
cons[cons[cadr[fn] ;caddr[fn] j ;a] J

(b) apply(lahel.Narie.Form._,X,A,Result) :­
apply (Fo rr:1, X, (Name. Form) . A, Result) .

Page 95

As an aside to our r:•ain argument, we m2y first of all observe

that "pattern matching" r,iakes it much easier to vist:alise what is

I • aappening. The pattern matching version also invites a bei-ter

implementation. No location corresponding to the variable 'fn' needs

to be set aside and initialised. It is only the form and

subcomponents of this argument which are of interest. Tne

decomposition is performed initially once and for all by pattern

matching. In contrast, a straightforward implementation of the Lisp

version will duplicate much of the work of decomposition. The double

occurrence of caddr is the most noticeable cause, but we should also

remember that caddr and cadr share a common step.

A more technical consideration is that pattern matching

encourages better use of index registers, A pointer to the strue tured

object is loaded just once into 2.n index register and held there while

all the required subcomponents are extracted. Unless the Lisp

implement at j_on is quite sophisticated it will be repeatedly reloading

the value of 'fn', and subcomponents thereof. A related issue

concerns run-time type checks needed in languages like Pop-,2. (Lisp

manages to avoid such checks for the reasons noted above.) An

unsophisticated impleraentati.on of selector functions will. have to

perform a type check before each aprllication of a seiector. With

pattern matching, one type check suffices for all the components

extracted from an object.

Finally, for procedures such as 'ripply' above, pattern matching

also encourages the implementation to integrate type checking with

case selecticn, building Jn com;:mted .K~.to_s where apprcpri'3te.

Page 96

To summarise, not only is pattern matching more convenient for

the user, it also leads the irnplementor directly to an efficient

implementation:-

(1) Procedure call and argument passing are no longer just rrred tape"

they provide the context in which virtually all the "productive"

computation is performed.

(2) No location needs to be set up for an argmnent unless it is

explicitly referred to by name.

(3) One can select all the required components of a compound object in

one efficient process using a common index register.

(4) Type checking is performed once and for all at the earliest

opportunity.

(5) It is easier for the implementation to replace a sequence of tests

with a computed goto.

Hoare [1973) has proposed a more limited form of rrpattern matching"

for an Algol-like language and has advanced similar argmnents for its

clarity and efficiency.

Let us now consider the impact of structure-sharing on

efficiency. Ironically, this technique was first devised by Boyer and

rbore as a means of saving space. However we shall argue that it is

even more important for its contribution to Prolog's speed.

Clearly the direct representation of a compound data object, as

used in Lisp implementations and for source terms in Prolog, would

enable somewhat faster access to components. However, the

representation in our DEClO implementation of a source term variable

by an indexed address word means that each argument of a construe ted

term can likewise be accessed in just one machine instruction.

Page 97

(F•n-ther dereferencing ls sometimes needed, but this is comparatively

rare in practice.) Thus the only significant accessing overhead for

structure-shared objects is the necessity for preliminary 1 ' • .LOGC: l.ng uf

the frame component of a molecule into an index register. The r.rreat 0

advantage of struc tur<c!-sharing lies in the supreme speed with which

complex new objects are created, and also the ease with which th8y can

be discarded when no longer -needed.

To see this, let us return to our evalquote example. The Lisp

version has to perform two II conses" to construe t the third argu!".1ent of

the call to~.El:_z. Each "cons" involv·2s:-

(1) grabbing a new free cell, after checking that the free list is not

exhausted;

(2) copying each component into the list cell obtained;

(3) saving the address of the new cell.

If, as Prolog, Lisp allowed more than one record size, step (1) ·,10uld

have to be a lot more complex.

In contrast, Proloz has to perform absolutely no wo:ck to

construe t the third argument of the call to 'apply' ! ie. No

executable code is generated for the term '(Name.Form) .A'. Uell, this

j_s slightly misleading since the analogous co□putation will in fact

occur during the next invocation of 'apply'. when unification creates

a new molecule to b:tnd to the next generation of Haweve~,

creath,g this molecule r:wrely involves bringing together th'O existing

pointers as the halves of the word to be stored irr 'A' s cell.

Page 98

The difference between the two methods can be summarised as

follows. Languages like Lisp assemble the information to construct a

new object on a stack (local storage), and then copy the information

into special records individually obtained from heap storage. Prolog

leaves the information in situ on the stack(s) and relies on

structure-sharing for later procedures to locate the information as

needed. Prolog is substituting extra indirection, which is very fast,

for the relatively slow operations of copying and heap management.

The Prolog cost of constructing new objects from a set of skeletons in

a clause is, at worst, proportional to V, the nur.1ber of distinct

variables in the skeletons. The cost for conventional methods is at

least proportional to S, the total number of symbols in those

skeletons. V can't be any greater than S, and is often much smaller.

The smaller Vis, the more advantageous the Prolog method.

Another point to notice is that each Lisp cell 11 consed 11 up must

ultimately be reclaimed by the expensive process of garbage

collection, In tight situations, a garbage collecting system can

"thrash", spending nearly all its time on garbage collection and

little on useful work. It is for this reason that systems programr;iers

prefer not to rely on garbage collectors. With Prolog, the user can

usually rely on the stack mechanism associated with backtracking to

recover all storage at negligible cost. This advantage is, again,

even greater if one considers the complexities of garbage collection

in other languages admitting more than one size of record.

A final point is that the stack regime leads to better

exploitation of virtual r:ier:10ry, since, as noted above, it avoids the

random 1:-iemory accesses inevitably associated with 11 heap" management.

Page 99

11. 0 CONCLUSION

Pattern matching should not be considered an "exotic extra" when

designing a programming language. It is the preferable method for

specifying operations on structured data, from both the user~s and the

implementor's point of view. This is especially so where many

user-defined record types are allowed.

For "symbol processing" applications where a transparent and

easy-to-use language is required, Prolog has significant advantages

over languages such as Lisp and Pop-2. Firstly the Prolog program is

generally easier to understand, mainly because it is fonnulated in

smaller units which have a natural declarative reading. Secondly

Prolog allows a wider range of problems to be solved without resort to

machine- or implementation-oriented concepts. The logical variable

and "iteration through backtracking" go a long way towards removing

any need for assiglli~ent in a program. Finally our implementation

shows that these advantages can be obtained with little or no loss of

efficiency. In fact in many cases the distinctive features of Prolog

actually promote better implentation.

Pago 100

12. 0 ACPlOHLEDGEifI;;NTS

I am indebted to me□bers of the Grot,;:ie d'lntelligcnce

Ar tific ielle, Marseille• especially Alain Coimerc.uer and Philippe

Rous3el. They were entirely respo:1Sible for conceiving the Prolog

language and developed the fundamental implementcition techniques.

Ny colleagues, Luis Pereira and .Fernando Pereira, have provided

great encourage~ent throughout this project, and took on much of the

hard work. which is needed to make an im1:,lernentation practically

usable, In particular, Fernnndo Pereira was responsible for

imrlc,nrmtiag the garbage collector and routines to adjust the sizes of

the main areas automatically during execution.

Gottfried Eder was an e.:,:cly "guinea-pig 11 user, nnd hnppJ_ly

survived,

Keith CLirk and Sten-1\ke Tarnlund spurred me to \11'ite this rq,ort

and many peorle gave helpful comments or. earlier drafts.

The woik was inspired by the. ideas of Ro:J2rt Kowalski, and was

directed and en.:ouraged by Prof. Bernard :,1el tzer with support fro::"l an

SRC resecirch studeutship and SKC grant B/RG 9972,

Page 101

13. 0 REFERENCES

Battani G and tbloni H [1973]
Interpreteur du langage de programmation Prolog.
Groupe d'Intelligence Artificielle,llarseille-Luminy. 1973.

Bergman Hand Kanoui H [1975)
Sycophante: Systeme de calcul forinel et d' integration symbolique
sur ordinateur.
Groupe d'Intelligence Artificielle, Narsei1le-Luminy. Oct 1975.

Boyer R S and Moore J S [19/ 2]
The sharing of structure in theorem proving programs.
Machine Intelligence}_ (ed.Meltzer & Michie) ,Edinburgh UP. 1972.

Bruynooghe M (1976]
An interpreter for predicate logic programs : Part I.
Report Cil 10, Applied Maths & Programming Division,
Katholieke Universiteit Leuven, Belgium. Oct 1976.

Bundy A, Luger G, Stone Mand \Jelham R [1976)
MECHO: year one.
DAI Report 22, Dept. of AI, Edinburgh. Apr 1976.

Burstall RM, Collins JS, Popplestone R-J (1971)
Programming in Pop-2.
Edinburgh University Press. 1971.

Colmerauer A [1975)
Les grar.maires de metamorphose.
Groupe d'Intelligence Artificielle,1larseille-Luminy. Nov 1975.

Dahl V and Sambuc R [1976)
Un systeme de banque de donnees en logique du premier ordre,
en vue de sa consultation en langue naturelle.
Groupe d' Intelligence Art if icielle, tlarseille-Luminy. Sep 1976.

DEC [1974)
DECsystem-10 System Reference }lanual (3rd. edition).
Digital Equipment Corporation, llaynard, a:1s s. Aug 1974.

van Emden H H [1975)
Programming with resolution logic.
Report CS-75-30, Dcpt.of Computer Science,
University of Waterloo, Canada. Nov 1975.

van Er:iden .M H [1976]
Deductive information retrieval on virtual relational databases.
Report CS-76-t,2, Dept. of Computer Science,
University of \Jaterloo, Canada. Aug 1976.

Hoare CAR [1973)
Recursive data structures.
Stanford AI Her:;o 223, Calif. Nov 1975.

Kow2lski RA [1974)
Logic for problem solving.

DC, .. Mrnno 75, Dept of Al, Ed:i_nburgh. if.ea· 74.

Lic-ht1r1.J.n B J,1 [197.JJ
Fea,·1.n:e,-; of very high-level prc,g:.·ar:mi.ng -_.Jit:1 Fr,,.lug.
MSc dissertation, Dept,of Co~putirg and Control,
I1:·1pcrisl Coller,e, Lo1!dcn. ;Jc::p }.97j,,

McCart'.1.y .: et cl. [1962]
LISP I .. ~; l)rogra1:~E?.2r"s }1A.nu2l ..
HIT I'ress, l'iIT, Cw1bridgc, i!as~,. ALi?, 1962.

RobL,:;,;n J 1'. [1965]

l\J.ge J 02

A rri;-1cbine-oriC>ntcd l.ogic ba1"ed on the u::solutio;1 p:r:L·1z:i.plc .
.JACH vol 12, pp .. /3-44. 1965.

Roussel P (1912]
D2f:J.ni1-.ion et traitenent de l"c.ga.litf! £orr:1ellr-: ,~r'l clc-::·1::i;1.::.~trafioT1

au t m1 at i q ue .
'iherie :;,11(~. cyc:0, UER de Luminy, rhr3.~.Ute. 19/!..

Hou;"::sel P (1975]
J'rolot' : :hnue1 de reference et d'ut:i.Jisat:ion.
Groupe d'In,e}ligence ArtificL:"112, fla:rseiLie--Lurn:l:-.v. Se;.: :i.':llS.

Sussr:1:~'1 G J and iJi 1,ograd T [1970)
:·1ICHD--!)]_.l_i·-JNJ~R reference. r~r:nu'.:il.
Al i'lei:w 203, '.iIT '.0 roject 11AC Jul 1970.

\'12-rre:1.1 JJ 1; D [1:)7!t]
\Jarrl~r!.: a system fer gc•nc.:1-at:ing pl.sn;3~
lJCL Memo 76, Dept. of Al, SC::inburgh .. }un 197t._

\i a r re;; P 11 l) [i 9 7 6}
l.:::nei.:Hi.ng condit-ion.:iJ plni,:·, ,1:1d Jffo6 rar:,s.
fro;:S, A·r.s;1 C·.1nf.' pp.Yii,-35/,, i~dL1bu~gh. Ju 1 . 1976.

Har>:·cn iJ ll n [197 7]
Corn~-'.iJ.e:.r 't:1rit-:L~:-:g 0.nd lo3ic 7-1 ror.rar.1;Jing.

fortk·o•rd.ng rep,,rt, Jkpt. of AI, E-iinlrn1·gh.. 1977.

Wejss~an C [196)]
LL,p l. 5 Pr :k,er
Dickenson Pt:Cli.Ji.1ing Co .. 1907.

Zl oof J:[[1 97 1+]
Qqer.y by Ex-:u:1pl e ..
}'.C !.,917 (21862), ILtl Thor;;as J iiatson Resea1d1 Centre,
YorktOim Heights, l-;p·,1 York 10598. 197/f.

