
PROLOG ON THE DECsystem-IO

David Warren

1. INTRODUCTION
Prolog [19] [16] is a simple and powerful programming language for non
numeric applications. It was originally devised around 1972 for the purpose
of implementing a natural language question-answering system [8] , by a team
under Alain Colmerauer at the University of Marseille. At Edinburgh, we have
produced a Prolog compiler/interpreter [23] for the DECsystem-IO [13]. This
implementation shows Prolog to have an efficiency comparable with (compiled)
Lisp.

Prologhas been put to practical use in a number of areas outside pure .research.
Examples include a package for doing algebraic "symbol crunching" [3] , an
architectural design aid to assist in planning the layout of a building [14], a
system to help predict the properties of organic compounds (needed in designing
drugs) [12], and the implementation of a compiler (DEC-10 Prolog itself) [24] .
Applications within Artificial Intelligence research include programs for plan
generation [22], equation solving [6], natural language analysis [10], and
solving mechanics problems [5] . All of the above are large and complex pro
grams which would probably never have got written at all with the available
manpower, were it not for the relative ease of writing them in Prolog.

The basic idea of Prolog is that a collection of logic statements of a restricted
form - clauses - can be regarded as a prl gram, and that the execution of such a
program is nothing other than a suitably controlled logical deduction from the
clauses forming the program.

It is, however, not necessary to know about logic to understand and use
Prolog. A Prolog program can be regarded simply as a collection of statements
of fact ·- the declarative view. The program can also be understood as a number
of procedure definitions -- the procedural view. The different clauses in a pro
cedure represent alternative cases of the procedure. The appropriate clause
(or clauses) is selected by a pattern matching operation (unification [18]),
according to the form of the procedure call. Pat-tern matching is the sole data
manipulation operation. Data items in Prolog are called terms, and may be
thought of as complex. record structure written in a textual, machine indepen
dent form, not involving the notion of reference or pointer.

From a practical point of view, programmers like Prolog because it enables ·
them to write clearer, more concise programs, with less effort, and with less
likelihood of error. The language could perhaps be summed up as " pointer
manipulation made easy".

2. THE LANGUAGE
Procedures
A Prolog program consists of a sequence of statements called clauses. Here is

PROLOG on the DECsystem-JO 113

a simple example, consisting of six clauses:

descendant (X, Y) :- offspring (X, Y) .
descendant (X, Z) :- offspring (X, Y), descendant (Y , Z).

offspring (abraham, ishmael). offspring (abraham, isaac).
offspring (isaac, esau). offspring (isaac, jacob).

Clauses can be understood in two ways. Firstly, they can be interpreted as
statements of fact. For instance the first clause says that, whatever may be the
values of the variables X and Y, "Y is a descendant of X if Y is one of the off
spring of X". And the last clause says that "Jacob is one of the offspring of
Isaac". Note that variables in different clauses are considered distinct, even if
they have the same name.

The second way to understand clauses is as pieces of program. Each clause
corresponds to a "case" of a procedure. Looked at in this way, the frrst clause
can be read as "To find a Y that is a descendant of X, find a Y that is one of
the offspring of X", and the last clause as "When seeking an offspring of Isaac,
return the solution Jacob". '

The six clauses of the example serve to define two procedures, named 'de
scendant' and 'offspring'. Each clause consists of a head, or "procedure entry
point", followed by a (possibly empty) body. The body consists of a number
of goals, or "procedure calls". A clause with an empty body is called a unit
clause.

How does a Prolog program actually work? To run the program , one provides
an initial goal such as:-

descendant (abraham, X)
The result of executing this goal will be to enumerate descendants of Abraham
and return them, one by one, as values of the variable X.

To execute such a goal, the Prolog system matches it against the head of some
clause and then executes the goals (if any) in the body of that clause, in left-to
right order . In seeking a match, Prolog tries the clauses of the procedure con
cerned in the order they appear in the program text. The matching process,
known technically as unification, succeeds if the goal and clause head can be
made identical by "filling in" suitable values for the variables. For example
the goal 'offspring (X, ishmael)' matches the first clause for 'offspring' if Xis
given the value 'abraham' . The variable X is then said to be instantiated to
'abraham'. When one solution to a goal has been finished with, or when no
match can be found for a goal, the Prolog system backtracks. That is, it goes
back to the most recently executed goal, and looks for an alternative match.
If backtracking generates more than one solution to a goal, the corresponding
procedure is said to be non-determinate .

So what happens when the initial goal 'descendant (abraham, X)' is executed?
Through matching the goal against the first clause for 'descendant', Prolog
starts off by looking for the immediate offspring of Abraham, and returns
successively X = 'ishmael' and X = 'isaac'. Then backtracking causes the second
clause for 'descendant' to be used. This results in the 'descendant' procedure

WARREN 114

being called recursively for each of the offspring of Abraham, giving further
descendants, Esau and Jacob.

Structures
Prolog data objects are called tenns. So far, the only kinds we have seen have
been variables, and unstructured constants (called atoms). Prolog also provides
for structured data objects (called complex tenns). An example is the binary
tree data type. The following procedure checks whether a particular item is
present in an ordered binary tree:

in (X, tree (Tl, X, T2)).
in (X, tree (Tl, Y, T2)) :- before (X, Y), in (X, Tl).
in (X, tree (Tl, Y, T2)) :- before (Y, X), in (X, T2).

Here 'tree' is a functor of 3 arguments. It can be thought of as a record type
with 3 fields. The arguments stand for the left subtree , the item at the root
node, and the right subtree. The first clause says that X is present in the ordered
binary tree <Tl, X, T2>, for any values ofX, Tl and T2. The last clause says
that X is present in the ordered binary tree <T 1, Y, T2> if Y is before X and
Xis present in T2, for any values ofX, Y, Tl and T2 .

Another, very commonly used, data type is the list. These are essentially
the same structures as in Lisp. For example, here is the Prolog procedure for
concatenating lists:

concatenate ([] , L, L).
concatenate ([XI Ll], L2, [XI L3]) :- concatenate (Ll, L2, L3).

We read these clauses as 'the empty list concatenated with L yields L' and 'a list
of the form X followed by L1 concatenated with L2 yields a list of the form X
followed by L3, where L1 concatenated with L2 yields L3'. Thus a Prolog list
is either the atom ' [] '(the empty list), or a structured object such as '[X I L] ',
where X is the first element of the list and L is a variable standing for the re
mainder , or "tail", of the list. In fact '[X I L] ' is just an ordinary term of two
arguments and a particular functor, written in a special syntax. The syntax also
allows one to write '[l, 2, 3]' instead of' [l I [2 I [3 I []]]] '. Executing the
procedure call:

concatenate ([l , 2, 3], [4, 5], L)
produces as value for L the list' [1, 2, 3, 4, 5] '. However the 'concatenate'
procedure can be used much more flexibly than this . For example, execution
of:

concatenate (Ll, L2, [1, 2, 31)
will return, as successive values for L1 and L2, all pairs of lists which when
concatenated give the list' [l, 2, 3) '.

As a final, more meaty, example, here is a Prolog version of Hoare's "quick
sort" algorithm:

PROLOG on the DECsystem-JO 115

qsort ([] , L, L).
qsort ([XI L], Rl, R) :-

split (L, X, Ll, L2), qsort (Ll, [XI R2] , R), qsort (L2 , Rl , R2).

split ([], Y, [], []).
split ([XI L], Y, [XI Ll] , L2) :- x.;;;Y, split (L, Y, Ll, L2) .
split ([XI L], Y, L1, [XI L2]) :- X > Y, split (L, Y, L1 , L2).

'X.,;; Y' and 'X > Y' are calls to built-in procedures which compare numeric
values. As an example of how "quick-sort" is used:

qsort ([1, 9, 8, 4), [], L)
returns ' [1, 4, 8, 9] ' as the value of L. The interested reader should be able to
figure out how the program works from what has been said already.

3. IMPLEMENTATION
At first sight, Prolog doesn't appear to be at all a machine-oriented language.
However, in terms of efficiency, it can compare very favourably with other
high-level languages.

I'll now describe some of the key ideas behind Prolog implementation, with
particular reference to the DEC-10 compiler/interpreter. Incidentally, interpreters
compatible with the DEC-10 system have been written at Edinburgh for PDP-11
[15) and (in IMP under EMAS) for ICL-system4 [11). Other Prolog interpreters
include implementations in Fortran [2], Pascal [4] and CDL [21), and systems
for IBM-370 [17) and the Motorola 6800 microprocessor [9]. Other, more
experimental, systems for logic programming also exist [7).

Compilation
Although most existing Prolog systems are interpreters, it is perfectly feasible
to compile Prolog into the kind of instruction set typical of present-day hardware.
The only case in which a call to an out-of-line routine is essential is in clauses
where a particular variable occurs more than once in the head. However. to
achieve compact in-line code, many other operations will typically need to be
performed out-of-line.

Each symbol (ie. functor or variable occurrence) in the head of the clause
will compile into instructions responsible for matching that symbol against
the corresponding term in the goal. In general a symbol will map into two
pieces of code. One piece will deal with the case of decomposing an existing
structure . The other will be needed in the case where a new structure has to be
created. However, this duplication of information can be avoided where a
procedure argument is known to be either always input (ie. instantiated to a
non-variable in the call) or always output (ie. instantiated to a variable in the
call). The user can notify such restrictions on procedure usage by supplying
optional mode declarations, e.g.

:- mode concatenate(+,+,-).
This declares that 'concatenate' will always be called with the first two arguments
as input and the last as output.

WARREN 116

The system can also exploit mode declarations to generate much faster
code, and to save run-time storage in "structure-sharing" implementations .
("Structure sharing" is one possible method for representing the new structures
(ie. complex terms) created during a Prolog execution, and is explained in
[25)).

Indexing
The number of clauses in a procedure is often quite large. This is typical of
"database" applications, where a relation is represented "extensionally" as
many unit clauses. See, for instance, the way 'offspring' was defined above.
However, even when a procedure is made up largely of non-unit clauses, there
can still be a lot of them, corresponding to a procedure with many "cases".
This is typical , for instance , of compiler writing applications.

With either type of procedure, one does not want the system to have to
run through all the clauses in order to find the ones which match . The DEC-10
compiler therefore indexes the clauses according to the atom or principal functor
of the first argument in the head . (Normally a user will choose this position
for the main input to a procedure). Then, provided the first argument in the
call is instantiated to a non-variable (ie. the argument actually is input), the
only clauses which need to be even considered for a match are those which
have the same functor, or a variable, in the indexed position. Often there will
be only one alternative. The list of potentially matching clauses is found by a
hash-coding technique in a time that does not depend on the number of clauses
in the procedure. This relatively simple indexing mechanism is quite adequate
in most practical cases.

Bookkeeping - the "Tail Recursion" Optimisation
As in most high-level languages, the Prolog system maintains a stack of frames,
one for each active procedure. Each frame contains bookkeeping information ,
together with the values of variables in the clause concerned.

Because of Prolog's non-determinacy, a procedure may remain active even
though it has successfully "returned" . For it may still be possible to back
track back into the procedure. In such cases the stack frame must be retained.
However when a procedure returns determinately - ie. with no choices remain-

1

ing inside it - it is possible to reclaim the stack frame, exactly as in a con-
ventional language. Stack frames are also reclaimed on backtracking, as are
any new structures created by the procedure. Since backtracking will always
occur eventually , a conventional garbage collector is not strictly essential with
Prolog (in contrast to most languages which allow a procedure to return struc
tures). Nevertheless, DEC-10 Prolog does include a garbage collector, because
the amount of structure created may grow too large to fit in available memory
before backtracking gets round to reclaiming it.

As I mentioned, each stack frame contains bookkeeping information. First,
there is the call information, a pair consisting of a pointer into the code for a
clause (indicating the arguments of the call, and the position at which to resume

PROLOG on the DECsystem-IO 117

execution : the return address), together with a pointer to the stack frame
associated with that clause. Secondly, there are four items needed principally
for backtracking. These are:

(a) a pointer to the clause (if any) which is the next alternative in this
procedure;

(b) a stack pointer indicating where to backtrack to should this pro
cedure fail;

(c) a pointer to a push-down list of variable addresses, called the trail,
which is used on backtracking to reset variables which have been assigned to
during unification;

(d) a pointer to a frame in an auxiliary stack, which contains the structures
(if any) created by this procedure.

With the current DEC-10 system, this information is created on procedure •
entry, and is discarded on backtracking or, if the procedure is determinate, on
reach1ng the end of a clause. However, it is possible to adopt a more sophisticated
strategy, which brings quite a profound improvement. The reclaiming of the
stack frame in the determinate case does not have to wait until the end of
clause. It can be accomplished immediately prior to executing the last goal
in the clause (provided no choices have been taken up until that point in the
procedure). This modification is analogous to what has been called a "tail
recursion" optimisation in other languages [20) .

I am currently working on a new DEC-10 Prolog compiler, which incor
porates this and other improvements . Most of the essentials are already complete,
but much detailed work remains to be done before it can be released as a usable
system.

To support the tail recursion optimisation, there . are some details to attend
to:

(a) The values of the procedure's arguments must be copied out into
registers, and later stored in the new frame as extra bookkeeping information
(looking exactly like ordinary variable cells).

(b) The call information now consists just of a return address and its
associated stack frame pointer. This pair is called a continuation. The return
address can no longer P?int to the end of a clause. Instead the system keeps
track of the actual goal to be executed next.

(c) There is a snag if one of the procedure's arguments is a pointer to an
uninstantiated variable in the frame about to be discarded . In practice this occurs
quite rarely, but some fix must be found.

The most obvious benefit of this optimisation is that it saves stack space.
'Quicksort' now only requires a stack of size order log N instead of order N.
And 'concatenate' now never uses more than one stack frame! Also, a deter
minate, tail recursive procedure which creates no new S!ructure can now recurse
indefinitely, without being limited by the size of the stack. However, in practice,
most Prolog procedures do create structure, so the effect on total working storage
requirements (which is what the user is aware of) is usually less dramatic.

The less obvious, but perhaps more important, benefit of this optimisation is

WARREN 118

that is saves time . When one frame is discarded and another overwrites it, most
of the bookkeeping information can be retained intact . The continuation remains
the same. And it turns out that none of the other items needs to be touched,
except perhaps the auxiliary stack pointer in cases where new structure has been
created.

"The net result is that the final call in a determinate procedure is little more
than a simple goto. For instance, if 'concatenate ' has mode'(+ ·, +,-)' , the main
clause:

concatenate ([X I L1] , L2 , [X I L3]) : - concatenate (Ll , L2, L3) .
compiles essentially into the following iteration:-

while Argl is a non-empty list
do

let List be a new record with 2 fields;
head (List) : = head (Argl);
field pointed to by Arg3: = the list List;
Arg3: = address of tail (List) ;
Argl: = tail (Argl)

repeat
Some systems for other languages, eg. SCHEME [20) , also automatically

perform a tail recursion optimisation. However , as far as I know, none of them
will produce iterative code for 'concatenate ' (for example), because it is only
in Prolog that the recursive call to 'concatenate' is the last thing to be done in
the procedure. In other languages, the last step is a call to cons (the built-in
function which creates a new list cell). The unique feature of Prolog which is
being capitalised on here is the ability to create a new structure before all the
parts are known, and to leave the unknown parts as variables.

Although obviously a programmer can write an iterative version of 'concate
nate' if he uses a sufficiently machine-oriented language, he will have to grapple
with pointers and pointer assignments, and it is easy to make mistakes . He'll
probably decide that it isn't worth the trouble, and will stick to the simple
recursive version. Thus by taking over responsibility for machine-oriented matters,
the Prolog compiler can actually produce better code than is likely from a
programmer in a low-level language.

Performance
The performance of the code produced by the current DEC-10 Prolog compiler
has been compared with that of the Stanford DEC-10 Lisp compiler, which is
recognised to produce quite fast code. For simple functions over lists , Prolog is
somewhat slower than Lisp (by a factor of about o:6). For examples requiring
more general structures , which have to be encoded as lists in Lisp, Prolog can be
significantly faster than Lisp (by a factor of as much as 2 or more) .

It is too early to say precisely how the new Prolog compiler will affect these
figures. However a hand calculation indicates that 'concatenate' will be 1.8 times
faster than before. Although this example is in some ways a best case, it is
nevertheless probably quite representative of the innermost cycle of a typical

PROLOG on the DECsystem-JO 119

Prolog program.
The improved speed comes partly from the tail recursion optimisation, and

partly from taking fuller advantage of mode declarations. Experiments with
handcoding 'concatenate ' , keeping the same data representation , suggest that
there is room for further improvement by only a factor of 2, and most of this
improvement comes from avoiding jumps to and from out-of-line routines ,
which greatly increases the size of the in-line code. The compiler, on the other
hand, strives to produce compact code, which is more important for most users
than speed.

Interactive Environment
Performance is all very well. What the programmer really needs is a good inter
active environment for developing his programs. To address this need , DEC-10
Prolog provides an interpreter in addition to the compiler .

The interpreter allows a program to be read in quickly , and to be modified
on-line , by adding and deleting single clauses, or by updating whole procedures.
Goals to be executed can be entered directly from the terminal. An execution
can be traced, interrupted, or suspended while other actions are performed. At
any time, the state of the system can be saved, and resumed later if required.
The system maintains , on a disk file, a complete log of all interactions with the
user's terminal. After a session, the 1.1ser can examine this file, and print it out
on hard copy if required.

4. CONCLUSION
Most so-called high-level languages still perpetuate low-level concepts that in
reality are a hangover from machine code programming. Examples are assign
ment , pointers , gotos and iteration . These concepts presuppose a particular
computer architecture , what John Backus h as called "the von Neumann
computer".

No such concepts exist in Prolog (as far as the user is con cerned) . One might
say that Prolog is a truly high-level langu age. But , as this paper has sought to
show, it is often possible to compile Prolog into code which is almost exactly
equivalent to that which would have been obtained by programming in a con
ventional language. In some cases, as an example has shown , the Prolog code is
actually likely to be better. In a sense, unification subsumes assignment and
pointers, while Prolog's procedure call subsumes gotos and iteration. And all
this can be achieved with a relatively simple compiler, without the need for
preliminary program transformation.

ACKNOWLEDGEMENTS
The suggestion for putting a tail recursion optimisation into Prolog came from
Keith Clark. I argued at first that the optimisation was not worthwile, because
the space saving would be barely perceptible in most cases, but changed my
mind when I realised the potential for improving speed as well.

My work is supported by a Science Research Council grant.

WARREN

REFERENCES
[1] Backus J.

[2]

[3]

[4]

[5]

[6]

.[7]

[8]

[9]

[10]

[11]

[12]

[13]

Can programming be liberated from the von Neumann style?
CACM21 (8): 613-641, August 1978.
Battani G and Meloni H.
/nterpreteur du langage de programmation Prolog.
Groupe d'Intelligence Artificielle, U. E. R de Luminy, Universite d'Aix

Marseille II, 197 5.
Bergman M and Kanoui H.
Sycophante: Systeme de calcul formel et d'interrogation symbolique

sur l 'ordinateur .
Groupe d'Intelligence Artificielle, U. E. R. de Luminy, Universite d'Aix

Marseille II, 197 5.
Bruynooghe M.
An interpreter for predicate logic programs: Part I.
Applied Maths & Programming Division, Katholieke Univ Leuven, Belgium,

1976.
Report CW 1 0.
Bundy A. et al.
Solving mechanics problems using meta-level inference.
(this volume)
Bundy A and Welham R
Using meta-level description for selective application of multiple rewrite

rules in algebraic manipulation.
Dept of Artificial Intelligence, Univ of Edinburgh, 1979. Working Paper

(forthcoming) .
Clark K.L. and McCabe F.G .
The control facilities of JC-PRO LOG.
(this volume)
Colmerauer A.
An interesting natural language subset.
Groupe d'Intelligence Artificielle, U. E. R de Luminy, Universite d'Aix-

Marseille II, 1977.
[To appear in CACM].
Colmerauer A, Kanoui H and van Caneghem M.
Etude et realisation d'un systeme Prolog.
Groupe d'Intelligence Artificielle, U. E. R. de Luminy, Universite d'Aix

Marseille II, 1979.
Dahl , V.
Un systeme deductif d'interrogation de banques de donnees en Espagnol.
Groupe d'lntelligence Artificielle, U. E. R de Luminy, Universite d' Aix-

Marseille II, 1977 .
Damas L.
[Information about EMAS Prolog is available from its author].
Dept of Computer Science, University of Edinburgh.
Darvas F, Futo I and Szeredi P.
Logic based program system for predicting drug interactions.
Int. J. of Biomedical Computing, 1977.
DEC.
DECsystem-IO System Reference Manual.
Digital Equipment Corporation, Maynard, Mass, 1974.

[14] Markusz Z.
Designing variants of flats.
IFIP Conference, 1977.

[15] Mellish C.
Minimal documentation of the PDP-I I Prolog system .
Dept of Artificial Intelligence, Univ of Edinburgh, 197 8.
[Informal note].

120 PROLOG on theDECsystem-10 121

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Pereira L M, Pereira F and Warren DH D.
User's Guide to DECsystem-IO Prolog.
Dept of Artificial Intelligence, University of Edinburgh, 1978.
Roberts GM .
An implementation of Prolog.
Master's thesis, Dept of Computer Science, Univ of Waterloo, Canada,

1977.
Robinson J A.
A machine-oriented logic based on the resolution principle.
JACM 12 (1): 227-234, December 1965.
Roussel P.
Prolog: Manuel de Reference et d'Utilisation.
Groupe d'lntelligence Artificielle, U. E. R. de Luminy, Universite d' Aix-

Marseille II, 197 5.
Steele G L.
RABBIT: A compiler for SCHEME.
Master's thesis, MIT, May, 19,78.
Al-TR-474.
Szeredi P.
Prolog - a very high level language based on predicate logic.
2nd Hungarian Conference on Computer Science, Budapest, June, 1977.
Warren DH D.
Generating conditional plans and programs.
AISB Summer Conference, Edinburgh, July, 1976.
Warren DH D.
Implementing Prolog - compiling predicate logic programs.
Dept of Artificial Intelligence, Univ of Edinburgh, 1977.
Research Reports 39 & 40.
Warren DH D.
Logic programming and compiler writing.
Dept of Artificial Intelligence, Univ of Edinburgh, 1977.
Research Report 44 [To appear in Software Practice and Experience].
Warren DH D, Pereira L Mand Pereira F.
Prolog - the language and its implementation compared with Lisp .
ACM Symposium on Al and Programming Languages, August, 1977.

