WARPLAN:

A SYSTEM FOR GRNERATING PLANS.

by

David H. D. Warren

Memo NHo 76

WARPLAN:
A SYSTEM YCR GRNERATING PLANS.

by

David H. D. Warren

Memo Ko 76

June 1974.

CONTENTS

ABSTRACT

PREFACE

1. INTRODUCTION

2. THE 3 BLOCKS PROBLEM

3. SPECIFYING A PRbBLEﬁ

4. A 5 BLOCKS PROBLEM AND ITS SOLUTION
5. IMPLEMENTATION OF THE SYSTEM

6. DEFICIENCIES OF THE SYSTEM

7. COMPLETENESS AND IRREDUNDANCY

8. CONCLUSIONS.

APPENDIX I. - LISTING OF THE PROGRAM
APPENDIX II. - TEST PROBLEMS

APPENDIX ITI. - SUMMARY OF PROLOG
ACKNOWLEDGEMENTS . .

REFERENCES.

10

13

16

23

28

31

41

44

45

o

ABSTRACT

The system is intended to be a general purpose plan generator for
domains described in a formalism close to that of STKRIPS, The method
used is in many ways similar to STRIFS, but the search space is complete,
unlike STRIPS and several similar systems, However the present purely
depth-first search strategy is obviously incomplete although it produces

3

good solutions to many problems.

The system is implemented in PROLOG, an elegant programming language
essentially identical in syntax and semantics to Predicate Calculusz in
clausal form, The entire WARPLAN program comprises 46 clauses and aims
at conciseness and clarity rather than efficiency. Nevertheless the
present implementation solves some "standard'" problems roughly 8 times
faster than STRIPS, or roughly 5 times slower than LAWALY (a system

designed primarily to be efficient).

WARPLAN is perhaps interesting as a system implemented in First

Order Logic which solves problems in First Crder Logic.

bt}

PREFACE

This memc is an interim report con a pregram I implemented and
tested during the last two weeks of a visit to the University of
Marseille. I am obviously hoping to develop the program further,
but as a number of people have expressed interest in the work, it seems

worthwhile to present the basic ideas now.

The most important part of this memo is Appendix I.

1. INTRODUCTION

Many problem domains can naturally be formalised as a world with a
set of actions which transform that world from one state to another. A

particular problem is then specified by describing an initial state and

a desired goal state, The problem solver is required to generate a plan,
a simple sequence of actions which transforms the world from the initial
state to the goal state (strictly speaking, from any state satisfying the

initial description to some state satisfying the goal description).

Such problem domains include, but are not restricted to, applications
to robot planning. More generally the problem can be regarded as one éf
compiling a high level goal description into a low level program, albeit of
an extremely simple structure, given a formal description of the target

language (ie. target machine, ie. "world").

Writing special purpose plan generators (for a pérticular world or
target machine) is at best tedious, and at worst near impossible, if the
specification of the world is liable to change. A number of systems
(including STRIPS£3} LAWALYflA} HACKER{lé}

attempt in varying degrees to be general, ie. applicable to any domain.

) have been implemented which

A common failing of present systems is that they require that a
conjunction of goals can be solved under the linear assumption., That is,
goals 'x1 & Xz' can be solved starting from some state 'start' by a plan
of the form 'start; Tl; T2' where Tl is the action sequence of a minimal®
plan to achieve X1 frog 'start' and T2 is the sequence of a minimal plan to
achieve X2 from the state resulting from the plan 'start; Tl'. If 'Xl & X2'
is unsolvable in that order, the goals are typically permuted to 'Xz & X1’
and another attempt is made. There is no facility to interleave subplans,
This frequently means that an optimal solution is not even theoretically
attainable - it is not in the search space. At worst, there is no sclution
in the search space even though there is a solution in the intended inter-

pretation (see the 3 Blocks Problem below). We shall call such systems linear.

WARPLAN can be regarded as a simple extension to STRIPS sufficient to
attain completeness. The extension obviates the need to permute goals in a
conjunction., The extension is also irredundant, that is the identical plan
cannot be generated in two different ways. However there is still the
underlying redundancy that re-ordering independent actions produces a

distinct plan.

* For a definition of minimal (not to be confused with optimail) see Section 7.1.

2. THE 3 BLOCKS PROBLEM (of Austin Tate)

This is possibly the simplest example of a protlem which is not
solvable (optimally) by a linear planning systems. It was first noted
{16}

as such by Austin Tate, although it appears in Sussman's thesis as an

"anomalous situation'.

Given an initial state of 2 biccks as shown below, we want to achieve

a final state in which 'a' is on 'b' and 'b' is on ‘c' :-

a b E::> on (a,b) & on (b,c) .

Typically, a STRIPS-like system would go through the following steps:-=

28

P-‘q//»b a '

b : FIRST GOAL ACHIEVED

= : PROTECTION VIOLATION

:

>

The system is now trying to clear the top of 'b' so that it can put 't' on
'e', But this would destroy an already achieved subgoal: 'on(a,b)’.

Typically, the system tries again with permuted subgoals:=

(@

a f}:} C:i:> on(b,c) & on{a,b)

T L g gt e 1 2 ® Sraem

c ' : FIRST GOAL ACHIEVED

»
===

¢ : PROTECTICN VICLATION

.

L I | it

' so that it can put 'a' on 'b',

|

The system is trying to clear the top of 'a

and to do this it first needs to remove 'b' - another protection violation,

this time of 'on(b,c)'.

The system is now in a dilemma since all paths in its search space
lead to a protection violation. It either concludes, falsely, that the
problem is unsolvable,or else permits a protection violation which (for

this problem) allows a non-optimal solution to be obtained. .

T

The optimal solution is of course:-

move ¢ from a to floor;
move b from floor to c;

move a from floor to b

The reason linear planning systems get into difficulties is that the solutions
to the two main goals are interleaved in the optimal plan. ie. the first and

third steps achieve 'on(a,b)' and the second achieves 'on(b,c)'.

SPECIFYING A PROBLEM

Note: Refer to Appendix III for details of PROLOG syntax.

All data items manipulated by WARPLAN are represented as PC (Predicate
Calculus, First Order Logic) terms. The main data types are a conjunction
of facts (cr goals) and a plan. A conjunction is constructed from certain
primitive data items called facts using the binary function '&'. Similarly

a plan is constructed from primitive data items called initial states and

actions using the binary function ';'. '&' and ';' are declared as infix

operators so that:-

X&Y&Z=X8& (Y &2 =8, & (Y,Z)

1]
]

T, U V=(T;W;vVv=7;0 U,V

PROLOG treats the above identities as different external representations of
the same internal object.
Interpret: 'y & Y' as !xand y'

1 !

T U as 'the state after doing y in T'.

and ;

Note that, for brevity of exposition, we will identify a conjuncticn of a
single fact with that fact and will *frequently not distinguish between a plan

and the state resulting from that plan.

A problem domain is specified to WARPLAN azs a set of clauses, the problem

database. This contains essentially the same information as STRIPS add-lists,

delete-lists,preconditions and initial world wif. Certain information in thek
problem database may be represented procedurally, ie. as non-unit clauses.
Usually, however, the clauses will be unit assertions. The following predicates.

are used:-

+ add(X,U) : fact X is added by action J; 1ie. X is true in any state
resulting from |j (and |y is a possible action in some

state in which X is not true).

+ del(X,U) ¢ fact X is "deleted" by action |J; 1ie. it is not the
case that X is preserved by (. (X is preserved by |
if and only if X is not added by U and X is true in a
state resulting from (J whenever X is true in the

preceding state.)

+ can(y,C) ¢ the conjunction of facts ¢ is the preconditions of

action |J; le. | is possible in any state in which

C is true,
+ always(X) ¢ fact ¥ is true in any state.
+ imposs(C) ¢ the conjunccion of facts ¢ is impossible in any state.

+ given(T,X)

fact X is true in the initial state T (but it is not

the case that ¥ is true in all states).

Note the following points:-

(1) Only actions which are sufiiciently "primitive" can be formalised

using the above predicates.

(2) 1In particular, any variable in an.action's preconditions must appear
as a parameter of that action. This is so that each action has a

unique preconditions.

(3) The intended interpretation of 'del' is rather broader than that of
STRIPS' delete-lists. Any fact may be vegarded as deleted by an
action so long as it is not pos&tively preserved by that action.

For efficiency, it is desirable to make 'del' assertions as powerful
as possible. For example, we might assert 'del(on(robot,7),
climboff (B)) ' if we knew that no fact of the form 'on(robot,7?)'

. could remain true after the robot has climbed off a box B. It would

not be necessary to instantiate 7 to B, the particular box climbed off.

(4) Similarly, although it is not necessary to specify that certain
conjunctions of facts are impossible, this can yield a huge

[3 3 3
improvement in performance for certain domains.

(5) Finally, notice that a fact cannot be both added and preserved by an
action, so if a fact already holids before en action which adds the
same fact, the previous instence should be regarded as deleted. This

is important to avoid redundancy - sze Section 7.
A particular problem is posed to WARPLAN by a procedure call of the follpwing

form:

-plans(C,T) : output any plans which achieve the conjuncticn of

facts ¢ fcom initial state T.

4.

A 5 BLOCKS PROBLEM AND IIS SCLUTLON

As an illustraticn of the preceding points, we will give the database
for a blocks world, and then cutline how WARPLAN would solve the problem
of stacking up & blocks. In cbraining the solution, WARPLAN also solves

the 3 blocks problem of Austin Tate.

4.1 The Database

+ add (on(U,W), move(y,V,W).
+ add (clear(y), move U,V,W/) -

+del (on(y,2), meve(U,V,W))-
+ del (clear(W), move(y,V,W)).

+ can (move(y,V,flcor), on(y,y %V # floor & clear ()).
+ can (move(y,V,W) , clear(y)@on (U,VI&U#¢clear(y)).

+ imposs (on(y,Y) & cleax(y))
+ imposs (on(X,Y) & on(X,2) &Y # 7).
+ imposs (on(X,X)).

given (start, on(a,floor)).
given (start, on(b,flocr)).

given (start, on(c,a)).

given (start, on(d,flcor)).

. - C e
given (start, on(e,d)). T

given (start, clear(‘é)).

given (start, clear(c)). floor

+ 4+ + + + o+ o+ o+

given (start, clear(e)).

4.2 The Problem
- plans (on(a,b) & on(b,c) & on(c,d) & on(d,e), start).

The computation performed by WARPLAN in obtaining a solution can be
interpreted as generating a sequence of approximations to the final solutiorn.

The first approximation is the Initial state:-

(0) Start

We now attempt to solve the first goal '

oaf{a,b)"'. It is not true
in 'start', so we attempt to achieve it using the only operator available

'move(a,V,b) "', abbreviatesd to 'm(a,V,b)"':-

(1) start ; m(a,V,b)

(Changes tc the plan are underlined.) We must now make sure that
the preconditicns of 'm(a,V,b}' are satistied, inserting extra actions if
necessary. The first precondition, ‘clear(b)', is true in 'start', and
the second, 'on(a,V)', is true if 'V := floor', giving the second
approximation:-
(2) start ; m(a,floor,b)

'a#b' is true (formai inequaliity of PC terms), so we have one
remaining precenditcicn to satisfy : 'clear(a)'. This is not already true
in 'start', so we attempt to achieve it using the only available operator:-

(3) start ; m(U,a,W) ; m{a,floar,d

s

All the preconditions zz: satisfied immediately if we choose suitable
instantiations:-

(4) start ; m(c,a,flccr) ; m(a,fiosr,b)

We have ncw achieved the first main goal and so far the steps have
been identical tc STRIPS., Tne se:ond goal 'on{b,c)' is not true in the
state produced by the plan so far, so we attempt to achieve it using the
only available cperato:r 'm{(b,V.,)'. As STRIPS, we first try to introduce
the new action at the end of the :u‘:rent.plano However, we notice that a
precondition of 'm(b, V,,b) is "1ear\b)' and this is inconsisteﬁt with the
already achiecved gcal 'on{a,b)’ Hence. the action cannot be introduced at

that point. We next try trazing back thrcugh the current plan trying to

find a suitable peint to insert the aztion, taking care that the goal we

are achieving, 'on(b,z)', is not deleted by any already generated actions
to the right. We find that & possible point to insert is immediately
before the last acticmi-
(5) start ; m(c,a,floor) ; m(b,V,,c) ; m(a,floor,b)

All the preconditions c¢f 'm(b,V;,c)' are satisfied at the point of

o

insertion if 'V, := flocr' :-
(6) start j; m(c,a,ficor) ; m(b,flccr,c) ; m(a,flocr,b)
We have now solved the first two main goals, sc we have a solution to

the 3 Blocks Prcblem. The principal steps remaining to the final solutlon

.
- . v

of the 5 Blocks Problem are listed below:- A
(7) start ; m(c,a,ficor) ; m(=,flzzr,d) 3 m(b,fl:or,c) ; m(a,floor,b)

(8) start ; m(c,a;fleer) 3 m{z,d,flccr) ;3 m(c,floor,d) ;
m(b,flecr,e)

(9) start ; m(c,a,flcor)

.

m{a,flocr,b)

ve

m(e,d,ficor) ; m(d,ficoc,e) ;

m(a,flcer,b)

we

m(cgfioor,d) m(b,tlcor,c)

we
“e

10 .

The present implementation rcaches this solution in a total of 52 sccends
CPU time. The search strategy used at present is purely depth first, with
conventional back tracking. The steps described above, assume that the order
of main goals, operator preconditions, and '+can' assertions are as presented
in Section 4.1, Notice that the above solution is obtalned essantially
without backtracking, and is not quite optimal. Further solutions,
including the optimal one, could be obtained if different chcices were made
at the choice points. Notice that the origirnal goals are achieved in the
plan in the reverse order to that in which they are stated, but they are

solved by the plan generator in the original order.

IMPLEMENTATION OF THE SYSTEM

Note: The rzader is recommended to examine the examples in Appendix II
before proceeding with this Section. Refer to Appendix 1 for & complete
listing of the program and to‘Appeﬁdix 111 for details of PRCLOG. It may

well be easier to understand the program listing that this explanaticn!

The central predicate is 'Plan,(C;P;'f;Tl)', the procedure entry

point to the main recursive loop.
It has four arguments:-

C is a conjunction of goals to be solved;

T is an (already generated) partial plan;

P is a conjunction of goals already solved by T
which must be protected;

Ti is a new plan, which contains T as a subplan
and preserves the already solved goals P,

and which also solves the new goals C.

As interpreted by PROLOG, C,P,T behave as input variables and T, as an

output variable. The clauses defining 'plan' are:- f

+plan (X % C,P,T,T,) -/- solve(X,P,T,P,,T,) —plan (C,P,,T,,T,),
+plan (X,P,T,T1) - solve (X,P,T,Py,T;).

Essentially this states that a 'plan' can be produced by 'solve'-ing each
goal in the order given. The effect cof the '~/' is to tell PROLOG not to

consider the second clause if it has successfuily "matched" the fuirst literal

of the first clause. 1In this case it could be omitted without affecting the

semantics of the program; it is needed to prevent the substantial jpefticicucies

of trying to 'solve' a conjunction of goals, which is in fact impossible.

11

'solve(x;PJT,PI,Tl)'is true if:-

[

s an atomic goal;

X

s a partial plan;

—
e

P is a conjunction of goals achieved by T;

T

P1 is a conjunction comprising P and X where X is not repeated.

[V

s a plan, containing T as a subplan, which solves P, s

X,P,T will be input variables and P,»T, output.
There are three ways in which a goal may be 'solve'-d:-

+solve (X,P,T,P,T) = always (X). ‘
+ solve (X,P,T,Fﬂ,T) - holds (X,T) - and(XlPlPl)' S :
+solve (X,P,T,X & P,T,) - add(X,U) - achieve (X,U,P,T,T,),

It may be 'always' true in the world. It may be that it already 'holds' in
the state produced by the current partial plan: Finally we may look in the
database for an action |J which 'add'~s the goal ¥ and then 'solve' ¥ by

'achieve'-ing (J .

. ¢ .
There are two methods to 'achieve' an action, which we will call

extension and insertion. If we were to omit the clause for insertion, we

would get a system almost identical to STRIPS without the ability to permute

goals. The clause for extension is:-

+acllieve()(,UJP,T,T1;U) <
- preserves(U,P) :
- can(y, C)
- consistent (C,P)
-plan(c,P,7,T,)

- preserves(U,P),

We first check that the action |J preserves (ie. does not delete) the protected
facts p. Then we lookup the preconditions ¢ in the database and check that ¢
is consistent with the protected facts. All being well, we call 'plan'
recursively to modify the current plan T to a new plan T, which.produces a
state in which ¢ is attained as well as P. | can then be applied in T,,
corresponding to the plan resulting from this call of 'achieve'. Finally,

we repeat the check that |J preserves P. The reason for this is that {j and P

may not have been instantiated to ground terms at the time of the original check.

12

Lacking the ability to co-routine in PROLCG at present, we have to be
satisfied with an incomplete first check folliowed by a second check "to
make sure'. Even so there is still a2 slight flaw in the program, as Y

and P may still not be fully instantiated by the time of the second check.

The clause for the second method of 'achieve'-ing an acticn,

insertion, is:-

+achhwe(X,U,P,T)V,T1JV)
-preserved(x,v)
-retrace(P,V,Pl)
-adﬁevdx,U,Pl,T,Tl)
—preserved(xjv),

If the last action VY in the current partial plan doesn't delete the current
goal X, we can try to insert the action |j somewhere befora y, provided we
'retrace' the set of protected facts to the point before y. P is 'retrace'-d

to p, beforey if
P, =P~ (addset of V) + (preconditions of V).

As mentioned previously, in WARPLAN, plans and states of thé world are
virtually synonymous. Everything that 'holds' in a state of the world can
be determined from the plan which produces that state of the world. The
system chains backwards through the sequence of actions, so long as none cf
these actions deletes the sought-for fact, until the fact is found in the

'add'-set of an action or was ‘'given' in the initial state:-

+holds (X,T;V) - add (X,V),
+holds (X,T;V) -/
-preserved(x,v)
-holds(x,T)
- preserved(X,V).
+holds (X,T) - siven (T,X),

This method avoids the overhead of generating a net set of facts for each
state of the world considered, as do STRIPS, PLANNER {6}, etc. albeit in a
structure-shared form. However, to balance against this, there is more
computation involved in accessing a fact (see Section 6 for possible

improvements) .

[
(3]

To prove that a fact X is preserved by an action Y, WARPLAN essentially

tries to satisfy itself that it can't prove that y delétes ¥ :-

+ preserved (X,V) - mkground (¥ §& V,0,N) = del (X,V)-/- fail.
+preserved(x,v).

'mkground' substitutes "arbitrary constants" for any varizbles in the terms
currently bound to X and V. If we can now prove that X is 'del'-eted by V¥,
we call '/' to prevent any further choices being taken for 'preserved' and
then call 'fail'. This is an arbitrary predicate which can't be proved true;,
since we supply no definition for it. The net effect is that the original
attempt to prove 'preserved(va)' fails, and subsequent backtracking of course
"undoes" the effects of 'mkground'. 1In the other case we can't prove that ¥
is 'del'-eted by Vv and the second clause allows the proof of 'preserved(x)v)'
to succeed. Unlike previous uses of '/', this use actually changes the
meaning of the two clauses. As a "hack'", the technique is rather powerful

and not without a certain appeal.

The remainder of the WARPLAN axioms define some fairly straightforward

auxiliary procedures. .

DEFICIENCIES OF THE SYSTEM

Some deficiencies of the system are listed below. They range from
relatively minor details to problems which suggest that a totally new approach

is needed.

(1) The 'holds' axioms could be made more efficient by using knowledge
of action preconditions to avoid always chaining back to the point at
which a fact was added, as is done for 'inroom(robot,rocm(l))' in the
fourth STRIPS problem (Appendix II, 1.3) for example. If a fact
occurs as a precondition of an action in a plan, we know that the
fact must hold immediately prior to that action in the plan. So it
is only necessary to chain back as far as the last time the fact was
"used". Thus every time a fact were 'used" it would become more
"accessible'" for further use. However it is difficult to do this
without introducing redundancy. . ‘

(2) There is a similar possible efficiency improvement associated

with the consistency checks. When an inconsistency has been found,

the system should immediately retrace as far as is necessary to

(3)

(4)

(5

(6

@)

(8)

14 .

remove one of the already-achieved goals which "cause'" the

inconsistency.

In the current PROLOG, there is only direct access to a group
of clauses with the same leftmost predicate, and not to clauses
within such a group. Thus WARPLAN is continually chaining through
its entire list of 'add' clauses, for example, to find a suitable
action to add a certain fact. More direct access could be
achieved with the current PROLOG at the expense of some loss of
clarity in the WARPLAN axjoms. This should yield a substantial

improvement in speed.

The system needs a more intelligent search strategy. Most of
the problems which it has solved involved little or no backtracking.
Backtracking frequently results in crazy alternatives being tried
next. This arises particularly because there is nothing to prevent
WARPLAN from constructiné a plan to achieve a fact which is already

true in the current state. (This facility is needed, in some cases
s

.

at least, for completeness.)

An automatic check for loops could alleviate this and other

problems; but would probably slow the system down substantially.

At the moment, goals, action preconditions and 'add' clauses
can be pre-ordered by hand to give the best results. It would be
nice if the system could do the analysis necessary for this (cf. the
way LAWALY determines its hierarchies). It would of course be batter

if the orderings were determined dynamically.

Actions which add several facts frequently need "augmented"
preconéitions for some of them. (Two versions of 'take' were used
in the Keys and Boxes Problem (Appendix II.2) to bypass this problem.)
It should not be too difficult to provide this facility.

There are a number of ways in which PROLOG might be enhanced to
WARPLAN's benefit. The inability to put 'restrictions" cn variables
results in some flaws in the program. This is a special case of the
need for co-routining - more flexiblé choice of which literal to cancel

next (ie. which goal to solve next).

€))

(10)

15

ABSTRIPS {13} mzy bpe regzrded as a technique ¢o enabie STRIFS
to perform co-routiniag as it generates a plan, and zomethiug
similar is ¢brvicesly nzeded in WARPLAN, For example, consider

a world similar to Appendiws 1I.1 :-

#

Ve
l/
o
i b'.‘xx N
DULX Z
' aoor
bcx 3
12bot
room i rocm 2

with the goal:-

inroom{rcbot,room 2) & nextto{robot,box3)
for which the ¢ptimal scliotivn might be:-
start
gete (bex 3) ‘
shuntthru(box 3,dosr,rcom 1,room 2) ;

goto(box 3, room Z)

where 'shuncthru' does not leave the robot 'mextto' the shunted
object. WARPLAN bas to first produce a complete soluticn to one of
the two top-level ‘gcals, and, for it to subsequentiy find the optimal
solution, it Is mecessavyy that this partial sciution be a subplan of
the optimal pian . Suppose the tep icvel goals are ordered as above.

Then the initiai subplan needed for 'inrocm{robst, room 2)' is:-

start; goto(bcx 3); chuntthru(bex 3, door, room 1, room 2)

2 H

! (We are assuming theve is a ‘gothco

a rather unlikely solution!
operator, and ot course therc are several boxes.) If, cn the other
hand, 'nextto(rcbot, bcx 3)' 1s ordered tirst, then the partial plan
needed is the complere plan itself! The problem is that WARPLAN is
generating toc much detail in its sclurvicn to une subgcal beiore

going c¢n tc¢ cocnsider a dependent subgoal.
Like STRIPS, WARPLAN gen-ratves a plan by a mixture of backward
(from the goal) and forward (from the 1titial state) anaiysis. For

many problems, particulacly "ditficalt" cnes such as in (9) above ot

(11)

(12)

16

block stacking or impcssible tasks, it appears that a completely
backward analysis sclves the prceblem better. One starts with the
given conjunction cof gecals and applies operators "in reverse" to
generate a new canjunzilcn of .goals. Each new conjunction of goals
is checked fcr consistency, and pcssibly for tubsumpzicon by other
conjunctiuns of goals whicvh have been gencrated. A solution is
found when the conjunction ¢f pgoals is satisfied in the initial state.
The problem with this technique is that more and more variables get
introduced into suczessive gecals and these need to be restricted in
complex ways; the initial state only gets "used" in the final step
(although it would presumably direct the search strategy). The
advantags of the STRIPS-iike analysis is that variables get quickly
instantiated making the system much more amenabie to implementaticn

in the present PROLOG.

WARPLAN is unablzs to generate conditicnal plans; nor is it

therefure able to generate iteractive plans.

[\8]

Pl
Plans generated by WARPLAN are totaliy ordered, often arbitrarily.

Besides unnecessarily zestricting the freedom of the plan executer,

this also mzans that there is potential redundancy in the search space.

COMPLETENESS AND 1KREDUNDANCY

7.1 Preliminary Definiticns

For definitions of added, preserved, preconditicns, see Section 3.

A plan of length N vomprizes an initial state T, and a sequence of
actions ApsA,s oAy It will be written 'TO;AI;AZ;Q..;AN'. We
require that the plan be executable, ie. the state resulting from
'To;.c.;Al_l' satisfies the preconditions of Aps for T from 1 to N,
A problem is a pair < C,T, > comprising a conjunction ¢ of facts
which are main gozls and an initial state T, - A plan T solves
the problem < C,T,” if To is the initial state of T and ¢ holds in

the state resulting fzom T,

A plaﬁ is optimal for a problem if there is no plan of lower length

which e2ives the preblem,

[
“~t

A plan gz=nerator iz complets if [t will eventuaily generare an

optimal plan for azy pribiem,

preblem) 1f every aztion 1o needed. An

&

A pian is minimal (for

action in a plan is aezded 1t It adds a fact which 1s a main goal

or a preccadition ¢f & needed aztion.

n T is a subplen of a pian T,

(1) T and T, have ths same initial state
) the acticns of T are a scbset cf the actions of T,-
prcp

5 the acticns of T are a proper subset

be o

rcpir subplen of T

of the actions of 7,. ,

7 2 Coroilaries cf t

jon
[N

Definmiticns

Any plan which scives a preblem has & unique minimal subplan which
solves the problem. (It is unique becacse we do not allow a fact

to be both added and preserved by an acticn.)

An optimil plan muzt pe minimal.

A plan genvratcr which can generate ali minimzl plans is complete

7.3 Example

Given the problem:-

a far from optimal plan which deoes in fact solve the problem is:-

start § move(e,d,flscr) ; move(d,floor,b) ; movel(c,a,d) ; move(a,floor,:)
The correspcnding minimal subplan is:-

start ; move(e,d,fio>x) ; move(c,x,d) 3 movela,flocr,c)

Pmove(a,flcor,c)' jie nezded since it athieves 'om(a,c)'. R

‘move(csa,d)® is mesded sin.e ic achieves 'clear(e)' which is a
preccenditiza of e(a,ticcr,c) ' which is needed,

N °

'move(e,d,floar)' is necedad since it achileves 'ciear(d)' which is
a preconditicn of '"move{s,a,a)’. .

The c¢nly action nct veeded is ’m:xe(d,tlcar,b)‘,]

18

7.4 Outline of a Completeness Proot

The compieteness cf WAKPLAN fcilows from the fact that
'plan (C, true, T, T)' is a valid deducticn from the WARPLAN
axicms and problem datzbase 1f and only if T is a minimal plan
which solves the problem <C,'R3>. To get a complete
implementation of WARPLAN, one wculd need to
(1) provide a proper implementation of formal inequality

("restricticns" on variables) in PROLOG and modify

the clauses for 'preserved' etc. to take advantage of

this;

(2) make the PRCLOG search Ssirategy ccmplete. For instance,

every time a choice point 1s encountered (more than one

input clause maiches the current literal) set up the
different choice: as '"parallel (independent) processes'.
In outlining the proof, we shall only discuss the part played by
the primary clause:, those labeiled Pl, P2, S1, S2, S3, Al, A2, Hl,

H2, H3 in Appendix 1. We assume that the seccndary clauses
(the remaining WARPLAN clauses and the problem aatabase) are a

complete and correct rormulatcion of their intended interpretations.

We wish tc show that, tor any problem <C,E)>,given a minimal
plan T, there exists a derivation of 'plan (¢, true, T°,1')’ from

the WARPLAN axioms and problem database.

A derivation of a fact X from a set of Horn clauses § is a tree of

instances of clauses from §, such that

(1) the top (or root) clause 1instance has +¥ as its positive
literal;

(2) for each negative literal - | occurring in a clause instance,

/ there is exactly cne subtree at that node which is a

derivation of | .
A clause is a Horn clause 1f it has at most cne positive literal.

The proof proceeds by inducticn on the length of the minimal plan T.

The proposition for procf by induction is:-

For any ¢ = G,&6G. & ... &GM’ Ty s and minimal plan T of length N,
there exist derivations of 'solve(GI, Pioys Ti-ys Pyo Tl)'for 1 from 1
to M

where P. = traue,
- - [B |
PI = GI& Ve e ?IU-; [l Irem o Vo MJ ’

TI ig the min.m=i :ubp:an of T which sclves P..
. : Fe

(From this propositicn and ciauses Pi, P2 the finei :onclusicn follews

The propisicicn hotds trivially wsing instsnces of 2iauses Sl and S2,

Laft

We must now assume the prepesition holds tor N end prove 1f for N+1 .
We shail mezely des~c:ibe the zonstruiticn needed tfor this step. A

rigorous proof wouid smwolve checking all the details.

Let T = (7" ; U)-

By minimality, {j achieves at least cume oI the goals Co

Let Gy be the firsv such goel, '

Let K,& /4, &’K.j be che goels of ¢ which appzar after Gy in the

cenjunction and which aze not achieved by s

[

Let H: &H.& ?"& H14b' the preconditicns of j.

Let ¢ = 6,8,4.8 6, . &H: 2.1 & H 8 Ko & RK
d

'S
i

Then clearly T' is 2z miaimal plau for th2 probYem < C,; TO> .
By the ind:ctive bypothesis, there exists a derivatiza of
‘plan (¢', teue, T.. T')'. We shall shiw how to use this

devivaticn o constrict e dezivaticn of 'plan (¢, true, To’ ™'

The construztion 1s .iiustrated belows~—

.

939000006 0 O

IR EEERE]

20

A derivaticn is 5 tree LF insvenzes of WARPLAN <hauses.

o
o
o
m
4]
bS]
pee
"t
=
o
3
[¢1]
o)
N
e
-t
i~
Er,
'
fag
g
o
—
~
-0
N~
.

occurrence of a sat of P; cia
A subtres s inalceteg by & trolangle. Those xn the diagram abuve
reprzsent derivaticns of 'sorve(X,,,.)' where X Iz the label
inside the triengle. Mcst of the subtrees in the "output"

zedm the corresponding subtree in the "iluput"

L]

derivation are copled
derivation, It remaias to show how the ssbirees for Gyyp Lo Gy ave

constructed:i-

[ig G, ic a goal achieved by | then

S2
. ZéfEX'is of the form I
Hi

else G, has besn given the nams K for scme y g

iflfé>k 1¢ of the torm §y then 49\\ is of the form §1
- — [7x

. e1seifZ522S is of thz form §2 then Z{ZEX is cof the form §2

.y
N

[72]
(¥9)

o
&)
h

elseif{é 1s the form S§3 then A is of the form

A2

]' ' Z{ééi

That ccmpletes the wvutline of the proof.

7.5 Irredindancy

A plan ganerator is lrredsnaznt if, in generating plans, it never

generates the same plan mors than Cnee.

in

A set of (Horn) w¢leusss § is irredundani, if, for any fact X, there

exists at most one derivzvion of ¥ frem § .

21

The irredundancy of WARPLAN as & plian genersior is equivalent
to the irvedundancy ot a sev of clsuszs comprising the WARPLAN exioms
and an irredundznt preblem databuse, In ract WARPLAN 1: irceduundant
provided that
(1) lalwaye(X)' precisdes 'add{x,U) ' or Tgivea(T,X) " 3
(2) fada(x,U) " and "p.eszrivediy,yr' are muiuzily exziusive

1

16

(3) facts of ths torm “given(T,x) " are ouly suppiied whex

Cnie again we shall crly oonsider the primery clsuces, assuming
the secondary ciasvses zra irredundant. We huve to show that it is
impossible for ther: to be fwo diztinct derivations of ‘plan{C,trve,T_ ,T)'
o

where C,Tb,1‘are ground LLrins -

For most ¢f the priwsry predicates, it is cleavr by inspecticn t
for ground instantiaticn: of the first and last arguements, there is only
cne clausz which Zan be used to derive thet Litcral; given the assumptions

listed abuve.

The unly case zn whizh there iz dirbicelry 13 tor the clauses §2 and

Wy

o

S3. Suppose they can borh e tsed to derive the same Siteral

'solve (X;P;T}F’lng) Y, whzire X,;P,1,P1,T, are ground terms. Frem
S2, T = T, . But consideriung S3, it is zlezr that o dexivation of
the 'achieve' literal iz cniy pessible 1t the lengin of T, is at least

one grester than T - a2 wontradiction.

Thesrefure the irvedundancy has been demonstrated.

7.6 Ancthsr Exsmple

To further elucidate the completeness ot WARPLAN, the diagvam below
indizates how WAKPLAN wovld arzive zt the optumsl soluticn o the 5 Biocks

Problem (the colutviuvm desuribad in Secticn & iz the onz which would be

found firsit by a depth-tirst search strategy)-

The diagrem represznts the sltuaticn calculus proct of the optimdl

plan which is impiicitly geaeraved by WAKFLAN. A biack dot represents

an add/przconditicns axiom wheress a white dob tepresents a frame axiom,

) .

The numoers 1abeliirg cach aot Indicate the oider in which the procf is

G

ef z2a cperateor 18 only

bt

21l

(g

Q.

bailt up. Th: provi ¢1r rhe prez.indit

"

generated onzzj hence The provi of preconditvions of s iater use of the

. . e L o
action ig 1ndivatz2a by ab upward alrow.

v

EZC) cata,0) &onb,) &eal:,d) &onld,e)

Acticns {(in veverze ords=1)

« Preconditicns

(in ordar
given)

'move (c,a,d) " resutting iu a nzed vo fllzar(d) .
that 'move(.,a,d)’ happens

althcugh the optimal

m(a,i,b) wib,i,¢; wiz,a,s) mld,e,f) mle,d,f) start
0 91 ’313 ,3 .29 :6 02
on (a,b) joaa,f)
13 4 29 6 4
S - A @
clesx{al 2 (,a)
29 6 5
clear (=)
29 [7
— , <
. clear{a) on {e,;d)
8
& 2y
clear(e)
13 9 29 10 11
clear (b)
12 13 14 29 15 16\
on (b,2) on (p,1)
17 9 18 19
2 3 I x4
: ~iear(b)
20 29 21 22
clear{c)
23 24 25 ﬁ
< () wewim L
on (¢,d)
26 27 28 29 30 31
on (d,e) on (d,t1)

In crder to tind this prool,

a rather unnatursl

EX)

2

vlearid)
33 34

S w

clear(e)

WaKPLAN has *c elsct to “clear(a)' by a

1t tater "discovers"
Thus,

te ccniz.e vhe maiu geai 'on(e,d)'.

sCiutivn 1s in “he szerch space, it 1s discovered by

Process.,

CONCILUSTIONS

8.1 Predicate Calcuivs as Programming Languaps

a0

WARPLAN is a program implement2d in Predicate Caiculus. I believe

the use of thic langcsge made the program shorter, cicarer and easier Lo

implemznt, with Iittie (if any) sacrifice of efticiency. 1 doubt whether
a shorter program could be produced by rewriting the algorithm in another

preogramming ianguage,

More gemeraiiy, 1 support Kewaiski's {8},(10)} contention that PC is
a superior high-level pregramming language suitabie for wide use, particu-
lacly in AY. Experienze with PROLOG zaggzst: that any program that can
be form:lat<d im LISP can be fcrmulaizd at l=2ast as essily im PRCLOG.

Frequently fhe naturainess >f FC can suggest a m:ore elegant formulation.

So far this is only assuming an interpreter such as PROLOG with an

unscphisticated (bat tast) prceccf pruzedure, which gives PC programs a

.

rather conventionzl conivrcl Struliurce. Inference systems such as

o

Kowalski's in principle, control

u

ctentiel advzutage, but much

(@]
~
=]
ol
L)
~
P,
-
G
=]
[
-~
o
o
jmn
r
A ~\
(\e)
—
[
[
Gu
ou
[
w
(4
o R -
u

strustures might be iiberalis:zd tc great
remains £o be done to make this a practiecsl reality.

o <

Wherein iies the advantage of FC over other languages? One might
N
attribute it to the feactures which PC doesn't provids. High-level
languages have progressed by successively transfe:ring responsibilities
frem the uszer to the spftwa:a engineer. The user is reiieved of certain

machine-cvrientsd tzsks which wiuld make his prcgram clumsy to formulate and

difficule to debug, ieaving him free to concenirvate on the problem—oriented

aspacis, Onc of the first =zuch tasks to come under software control was
the mapping of data into actual machine addresses. Laver advances made
the early machine-oriented con:ept cf a goto redundant (though still
widely used to the detrimznt of clear pregramming).

1 balieve a similar :itaation exisis with tegard to assignment (the
ability to "re-use" 3 variaple to dencte more than one vaiue during the
course of a computation). Experience with ALGOL 68 zcavinced me that
true assignment 1s rarely needed, and its avoldancs results in programs
which are casier to unders:zand. There is of ccurse no assigmment in PC,

o

and it's &11 the better tc: 1it!

24

Among the nice features of PC which might be menticred ave:-

(1) o¢ne languzge tor program and datag
(2) the wsua)l tree data~structures, but with a
beautifully nztiial wsy to manipulate them
via thz generality of unificaticn;g
(3) nc explicit distinciion between input and output
variables, so that a single predicate may ftunction
&s several different procedures.
As an illustration of the elegance of PC programming, zonsider the definition
of 'intersect' from Appendix I ¢~
+intersest (§; , S,) = elem (X:8;) = elem (X,5,)
This simply makes precise the natural language statement tha% "twou sets
intersect if they have &u e<lemexnt in common". Thz detiaition is concelved
before consideration is given to its prcocedural aspe.is iz. now it will be

used by the PRCIOG incarprete’. In fact, given full lasrtentie.lons for

[

S, and S;, PROLOG will proceed to generate ncn~determiniztisally the elements
of §, and thea check tc seze whither thsy are elemente ot §, (le. ‘elem' is
S——— s

functioning as two discinct pru:edures). This exauple demcnstraves the

ot

closeness c¢f PC tc natura nguage. The much-mz=ligred claussl torm seems

quite natural when PC is giwen a precedural inverpretation,

An interesting aspect of PC 1s the way cne set cf <lauses really

Chns, For exampie, in

H

represeats an equivalence class of different algot
Appendix I, if we intefthange the two clauses for ‘achieve®, PRCLCG gives
a different "version" of WARPLAN in which acticns are (first) inserted as
far left as pessible in the current plan, rathsr than tirst trying to tag
the new actizn on tu the end of a plan. Similerly, changing the order of

literals in a clatse can produce ditferent but reasonabie algorithms.

A factor hindering the progress of AI secms to bs that Al programs are
not produzed in a foim suitable for easy comprehension by himans., The
essential ideas underiying the prugram become obscured when it is 'coded".
Consequently the programs themselves are rarely publiszhed, but ars oniy
described, leading inevitsbly to vagueness and awbiguity. A case in point
is the literazture on STRIPS, which by ccmparison with mcst papers is a

madel of clarity, and yet the number of hours I know T znd cchers have speut

FEY

in arguing about "what STRIPS realiy doss" ...

Pregrams nead tc be pabiished. For this cne tequires a language
with the simplicity and universality of PC. The @im cof progysiming

should be towards an ideai of tezuty and clarity. A program should aot

have to be "explained" by flowcharts or interspersed comments.

8.2 Legic in Logic

The WARPLAN prcgrzm vees FC terms to represent conjunctions of facts
: p J
(or goals). Thus the objects of diszoursz iaciude sentences of logic.

In addition, theére 1s a one-to-one corresponacnce between pians and the

. . L . * - i -
proofs that thess plans achiszve the desired goals . The "proot™ of a
plan is, as in Secction 7.6, a tree construcred from instances of 'agd'

axioms, 'can' zxioms and lwpiicit Irveme axiows derived from the 'dei'
axioms.) Thus vhe terms representuing plans can equalily w2ll be said te

represent prootrs of these piang; the cbjects of discourse include proofs

of sentences of lcgiz,

Azcordiugly, WARPLAN may® be described as a thecrem-provec implemeated
in a theorem-prover. (cf. for exemple, an ALGOL compiler written in ALCOL.)
1 believe this techriqoe may have considerzble potential and answers to soms:
extent the criticism that Higher Ocder Logic 1¢ peeded to express certzin

problems,

8.3 The Utility of Tuconsisiency Tests in Planning

~

WARPLAN can make effective use of negative statements about the worid.
Typically these statemeats ot impossibility refiect the "physics” of the
world whereas the actious represen: "engineering" in accordance with rhis
physics. 1ln particular the "delete 1list" of an action ought to be
computable from a knowledge of the physics of the world, rather rhan being
spelled out explicitly. (cf the 'dei' facts for the Machine Code

Generation prcblem in Appendix 1I.3.2.)

The positive and negative aspects of problem statemeat and problem
solving merit further investigaticn. The systzm DUISPROVER of Siklossy and
Roach {15} tries t¢ show that a goai is an engineering impcossibility whereas
WARPLAN can only look fur physical impessibilities. (A man cn the Moon

was an englneering impossibility last century but net a physical

*This requivexmzut is the rool reason why certsin 3a-tions need paramciers
which appear "unnecesssry' from th: STRIPS sztaendpcint. (Sce Sectiecn 3)

o

26

impossibility, like perpetual motion; it only needed a few more operators

to be added to che world!)

8.4 The Frame Problem

The frame problzm {12} {5} has frequently been cited as an argument

"eniform proof procedures". Since it is hard to

against the use of
imagine a prcof procedure more "uniform" than PROLOG, it is interesting
to consider whether or nzt the frame problem arises when the WARPLAN

clauses are interpreted.

As Kowalski has poinced cut {10}, there are two aspects to the frame

problem as it spplies to the traditional situation calculus formulation.,

"

The first is the iInconvenieace cf having to explicitly state ail the frame
axioms. The second is the prcblem of inefficiency arising from the frame

axicms.

The approach to thc first problem in WARPLAN is much the same as in
STRIPS. One specifies only #¥hich facts are deleted by an action and
assumes that all other facts are preserved. Morecver, in WARPLAN, the
specificaticn dcesn't have to be explicit = delete information may be
represented procedurally. Nctice however that frame.axicms are stiil
used implicitly in WARPLAN's deductiovms. For example, the second 'holds'
clause in Appendix I is cleariy a universal frame axicm which can become

instantiated to different f:rame axioms for varicus actions.
The efficiency problem is tackied by:-

(1) only using the frame 2xicms "top~down', and
(2) the ability to {implicitiy) insert frame axioms into

the proof of the current partial plan.

The "top-down' use of a frame axiom contrasts with a "bottom—up" use in
which it 1s used to generzte facts about a new state. In WARPLAN a fact
about a state is only deduced when needed from the history of the state.
To see how WARPLAN inserts trame axicme intc a proof, consider say SL

resolution {7} cperating with the goai state clause of a situation calculus

problem as top clause. In cancelling, the selected literal, it has to choeose

between an "add" axiom sr a frame axiom, and the chcice 1is irrevocable
(without backtracking). In the analagous situaticn in WARPLAN, only an

"add" axiom ccuid be chzo:en. Later, and without backtracking, any number

27

of frame axicms could be inserted between the negative goal literal and

the positive literal of the "add" axiom.

There are still, however, difficulties which mignht be ascribed to the
frame problem, in particular the redundancies and inefficiencies in sclving
a conjunction of goals relating to "independent sub-worlds'". I think it
is important to note that the frame problem is not peculiar to PC
formulations. There are analogues of frame axioms in all systems which
maintain a record of more than one state or context with information

structure-shared between them.

28

APPENDIX I, LISTING OF THE PROGRAM.

NOTE:

P1:
P2:

S1°
S2:
S3:

Al:

A2:

Hl:
H2:

H3:

the labels "P1:" etc. are referenced in Section 7 and are not

part of the program.

operator ('&', right to left, 1).
operator (';', left to right, 3).

plan (X&CJP}T/Tz) -/- 501VG(XJP;T;P11T1)‘plan(C)vpx‘;Tl‘:Tz),
plan (X}PJTJTI) - solve (X;P,nT;Pl)Tl)r

solve(X,P,T,P,T) —always (}),

+ solve(X,P,T,P,,T) -~ holds(x,T) -and (X,P,P).

+

solve(X,P,T,X & P,T,) -add (X,U) - achieve(X,U,F,T,T,).
achieve (X}UJPJTJTI J U)

- preserves (U,P)
- can (UJC)
consistent(C,P)
plan (C,P,T,T,) |
- preserves (U,P) ' N
achieve(x,UJP,T;V,Tl,'V) '
- preserved (X,V)
- retrace (P’,V_,Pl)
- achieve (X,U,P“TJTI)
- preserved (x,v),

holds(x,T;V) -add (X,V),
holds(x,T;V) -/

- preserved (X,V)

- holds (X,T)

-~ preserved (X;V) .
holds(x,T) -sgiven (T,X).

preserved (X,V) - mkground (x &v,0,N) —del (x,v) -/- fail.
preserved (X,V), '

preserves (U,)(8 ¢c) - preserved (xlu)—preserves (U,C) '

- preserves (|J, true).

29

retrace (P,V,P,)

- can (v,C)

- retrace 1 (P,V,C,P;)

- append (C,P,,P,).
retrace 1 (X & P,V,C.P)

- add (y,V) - equiv (X,Y)-/-retracel (P,V,C,Pl)‘
retracel(x&P,vlclpl) :

- elem (Y,C) -equiv (X,Y) -/- retracel (P,v,C,P,),
retrace 1 (X & P,V,C,X & P,) -retrace 1 (P,V,C,P,),

retrace 1 (true, V,C, true).

consistent (C,P)

- mkground (C & P,0,N)

- imposs (S)

= unless (vnless (intersect (C,S))
implied (S,C &P) -

-/~ fail.
consistent (C,P) .

plans (C;T) - unless (consistent(C , true)) ~/- output (impossible)-newline.

plans (CJT) - plan(C,true,T,T,) - output('r',\) - newline.

and (XJP} P) -elem (Y; P) -eqUiV (X;Y) -/
and (XJPJX&P)I o

append (X & C,P,X & P,) =/~ append (C,P,P,).
append (X,P,X & P).

elem (x,Y &) -elem (X,Y),
elem (X,Y &C) -/-elen(X,C),
elem (X,X),

intersect (s,,5,)-elem (X,5,) -elem(X,s,) ,

implied ($,& 'S ,,C) -/ implied (5,,¢) - implied (s,,C),
wplied (x,¢) -elem (X,C),
implied (X,C) = X.

equal (X,X),
notequal (XJy)4~uulcas(equ51(xiy))
- unless (equal (X,399WN,)7)
= uniess (equsl (Y,qqq(N,))).
equiv (X,¥Y) —uniess uonequivi{x,yY)) .
nonequiv (X,y) ~mkgeound (X & v,0,N) —equal (x,y) -/~ fail .

nonequiv (X,Y),

mkgroond (qqa (N,) sNN,) =/~ plusN,,1.N,) .
mkground (qqq(N)Ny sN,) /- -
mkgrcund(x}Nl)Nz) “ PRV (x)'(FJL))*’mkgrouadlixt(L,Nl,Nz),
mkgroundiist ('(X;L);NI)N,)

~mkground (X!NIJNz)

-mkgroundlict (LJN2)N3)I
mkgroundlist(nil,NI,Nl),

~unless (x) - ¥ ~/- fail-.
- unless ().

31

APPENDTIX II. TEST PROBLEMS

.1 First STRIPS World

1.1 Descpiption

The problem domain and its formalisation are essentially the
same as that given in the original STRIPS paper {3}. The chief
differences are that the delete lists and certain other facts are
represented procedurally and various "types' checks ave handled
automatically by the unification algorithm. The domain is of

interest for comparing the performance of WARPLAN with similar

planning systems:- .
System Implemented In Machine
WARPLAN PROLOG (interpreted IBM 360~-67
in Fortran)
STRIPS LISP (partially compiled) PDP 10
LAWALY LISP (interpreted) CDC €600

The times quoted below are total CPU times. The STRIPS times

exclude garbage collection. PROLOG does no gérbage collection
(although space is reclaimed on backtracking) as the implementation
is carefully designed to conserve storage. What weightings, if
any, to apply to the different figures seems to be largely a

subjective matter.

.1.2 Database

+ add(at(robot,P), goto].(P;R)).
+ add(nextto(robot,X), gotoiZ(X,R)).
+ add(nextto(X,Y), pushto (X,Y,R)).
+ add(nexttc(Y,X) , ,pushto(X;Y,R)).
+ édd(status(S,on), turnon (3)).
+ add(on(robot ,B), climbon(B)).
+ add(onfloor, climboff (B)).
+ add(inrcom(robot,R,), gothmJ(D;Rl,Rz)).

+ + + 4+ + o+ o+ o+ o+ o+ 4+

+ o+ + o+ 4+ 4

s

32

del (at (X;Z);U) - moved (X,U),

del (nextto(Z,robot),y) -/~ del(nextto(robot, Z))U).
del (nextto(robot,¥),pushto(X,Y,R)) -/~ fail.
del (nmextto(robot,B), climbon(p))~/- fail.
del (nextto(robot,B),climboff (B))-/- fail.
del (mextto(¥,7),u) -moved (X,U),

del (mnextto(z,X),U) - moved (X,U),

del (on(X,Z7),u) -moved (X,U),

del (onfloor,climbon (B)).

del (inroom(robot,7),gothru (D;leRz) .

del (status(S,z),turnon(S)).

moved (robét,goto 1 (P; R))-
moved (robot,goto 2(X,R))-
moved (robot,pushto (X,Y,R))-
moved (X,pushto (X,Y,R)). .
moved (robot,climbon (B)).
moved (robot,climbcff (B)).
moved (robot,gothru(D,R,,Rz))-

can (gotol (P,R),

locinroom (p,R) & inroom(robot,R) & onfloor).
can (goto2 (X,R),

inroem (X,R) & inroom(robot,R) & onfloor).
can (pushto(X,Y,R),

pushable (y) &inroom (Y;R) g inroom (X,R) &
nextto (robot,¥) & onfloor).

can (turnon(lightswitch (§)),
on(robot,box (1)) & nextto(box{l),lightswitch(s))).
can (climbon(box(R)) ,
nextto(rcbet,box(B)) % on floor).
can (climboff (box(B)),
on(robet,box(B))) -
(gothru(p,R,,R,)>

connects(D,R L Rz) L inroom(robot,Rl) L

ca

=]

nextto(robot,)) & onfloor).

33

+ always (connects (p, R R)) = connects 1(p,R ,R)
+ always (connects (D, R R,)) - connects 1 (p, P IR,)
+ always (inroom (D,R)) alwavs (connects (D;R R))
+ always (pushable (box (N))) .

+ always (locinroom (point (6) , room (4))) .

+ always (inroom (lightswitch (1), room (1))).

+ always (at (lightswitch (1), point (4))).

+ connects 1 (door (N) ,room(N) ,room (5)) - range (N,1,4).
+ rangé (M,M,N) ,

+ range (M,L,N) - notequal (L,N) -plus (L,1,L,)~ range (M,L ,N),
+ given (str.ips 1, at (box (N),point{N))) - range (;\!,1,.3),

+ given (strips 1, at (robot, point (5))) . |

+ given (strips 1, inroom (box (N) , room (1))) - range (N}1,3) \

+ given (strips1, inroom (robot,room (1))).

+ given (strips 1, onfloor).,

+ given (strips 1, status (lightswitch (1), off)).
1

room (1) room (2) 1 coom (3) room (4)

. 3 o \
strips 1: lightswitch (1)!5

lbox (1)5 M » point (6)
G

b

door (1) door (2) door (3) door (4)

room (5)

34

.1.3 Problems

(1)
(2)
(3)
(4)

_ Plan
Goal (s) length

CUP time in secs.
WARPLAN STRTPS LAWALY

status(lightswitch(1l),on)

nextto (box(1l),box(2)) & nextto(box(2),box(3)) L
at (robot,point (6)) 5
nextto (box(2),box(3)) & nextto(box(3),door (1)) &
status(lightswitch(1l),on) &

nextto (box(1),box(2)) & inroom(robot,room(2)) 15+

* :non-optimal solution

*% :to produce a similar 15-step plan.

+ :time to produce all but the last step, at which point, apparently,

an error in PROLCG eaused the system to crash.

++ :solution produced by WARPLAN is:-—

strips1;

goto 2(box(3),room(i))3

pushto (box(3),door(1),room(l));

goto 2 (box(2),room(1)) ;

pushto (box(2),box(3),room(1l)) ;

goto 2 (box(1l),room(1l));

pushto (box(1),lightswitch(l),room(1)) ;
climbon(box (1)) ;
turnon(lightswitch(1l));
climboff (box (1));

*goto 2 (box(1),room(1)) ;
pushto(box (1) ,box(2),room(1));
gotb 2 (door (1) ,roem(1)) 3
gothru(door (1) ,room(1) ,room(5));
goto 2 (door (2) ,room(5))}
gothru(door (2) ,room(5) ,room(2))

.1.4 Comments

°
21
9

65%
122
125

The times quoted are fer orderings of axioms, goals and action

preccnditione exactly as above. Apart from the goals, and pre-

conditions of 'turnon', these orderings have been carefully chosen

to produce best resuits with the present depth-first search strategy.

1.6
4.1
2.6

KX

L.
=

35

It is interesting to note that, for this problem domain, there is
a single '"natural' order for action precenditions, corresponding
to the order in which one would expect them to be achieved. Thus
the preconditions for 'turnon' are not stated in the natural order

of:~
nextto(box(1l),lightswitch (§)) & on(robot,box(1))

Nevertheless WARPLAN still manages to find the optimal solution to

'status{lightswitch(l),on)', unlike STRIPS.

In the solution for problem (4), WARPLAN genecrates the
superfluous step marked with an asterisk, owing to the flaw

mentioned in Section 5 concerning non-ground terms.

.

.2 A Version of the Keys and Boxes Problem (of D. Michie).

.2.1 Description

This is a substantially simplified version of a "benchmark test"

of Michie {11}.

[l inside] outside

jkeyll ‘keyZ!» .ESQE'
777 A 770770 R0 EeZA
table box 1 box 2 door

The world comprises two areas 'inside' and 'outside'. There are
- four distinct locations 'inside', namely 'tabie', 'box1l', 'box2',
'door'. There is a robot which is able to move about and transpert
objects. If the robot attempts to pickup an object at a location,
all that can be ascertained is that it will be holding one of the
objects, if any, at that location. In our simplified formulationm,
the robot is only allowed to pickup an object if it is the only
object at a location. There are two actions 'go' and 'take'; (for
technical reasons, explained later, there are two versions of 'take').
The robot is only allowed to 'go' or 'take' something 'outside' if

both the objects 'key 1' and 'key 2' are at the 'door'. In the

36

initial state 'keyl', 'key 2', 'red 1' are the only objects at,
respectively, 'box1l', 'box 2', 'door' and rothing is at the 'table'.

The goal is to have 'red 1' 'outside'.

Database

operator('is',righttoleft,4).

operator('set',prefix,5).

+
+
+ operator ('placed',prefix,5).
+ operator('only',prefix,5).

+

operator('at',righttoleft,6).

+ add(position is P, go (p))
+ add(X is placed Q, take(X,P,Q)).
+ add(set placed P is nothing, take(y,pP,0)).
+ add(set placed Q is only X, takel(X,P,Q))

+ add(Z,takel ()(,PJQ)) - add(z,take(x,P,Q)).

+ del(position is Z, "~ go (p)).
+ del(X is placed Z, fake ()(,P,Q)).
+ del(position is Z, take (X,P,Q)) -
+ del(set placed Q is Z, take (X,P,Q)).
+ del(set placed P is Z, take (X,P,Q)).

4+ del(Z ,takel (X,P,Q) - del(Z,take(X,P,Q)).

+ can(go(inside at L), true).

+ can(take(X,inside at L;,inside at L,),
set placed inside at L, is only X
positionis inside at L,).~

+ can(take 1 (X,inside at L,,inside at L,),
set placed inside at L, is nothing &
set placed inside at L, is only X &
position is inside at L1).

+ can(take(X,inside at L, outside),
set placed inside at L is only ¥ &
position is inside at L &
key 1 is placed inside at door §

key 2 is placed inside at door).

+ always(true).

.2.3

37

+ given(start kb, set placed inside at table is nothing).
+ given(start kb, set placed inside at box 1 is only key 1).
+ given(start kb, set placed inside at box 2 is only key 2).

+ given(start kb, set plasced inside at door is only red 1).

+ imposs(position is P & position is Q & P # Q) .

The Problem

- plans(red 1 is placed outside, startkb).

Ans: startkb; .
go(inside at door);
take 1 (red 1, inside at door, inside at table);
go(inside at box 1);
take (key 1, inside at box 1, inside at door);
go(inside at box 2);
take(key 2, inside at box 2, inside at door);
go(inside at table);
take(red 1 ,inside at table, outside)

Time: 29 secs.

Commentary

With the present depth-first search strategy, getting a solution

in an acceptable time was dependent on:-

(1) the right orderings of action preconditions etc.;
(2) omitting certain unnecessary axioms, e.g.

+ add(position is Q, take (X;l’,@)),
(3) a formulation using 'take' rather than 'pickup'

and 'letgo'.

The reason for the two versions of 'take' is that an action must have
a unique set of preccenditions, and the effects of a 'take' depend on
the set of objects at the destination. This is symptomatic of an

oversimplification in WARPLAN which can and should be rectified.

.3 Machine Code Generation

.3.1 Description

38

I invented the following example to demonstrate that the
system is general purpose. The example suggests an interesting

area for future applications.

There is a very simple computer comprising an accumulator and
There are

To

an unspecified number of general purpose registers.
just four instructions 'load', 'store', 'add', 'subtract'.
axiomatise the domain for WARPLAN, it was necessary to follow

each instruction in an assembly language program by a comment.

The comment is introduced by '!'

and states the value which
will be in the accumulator after the instruction has been executed.

Such comments are often needed by human programmers too.

.3.3 Database
+ operator ('!',righttoleft,4).
+ operator ('is',righttoleft,4).
+ operator ('+',lefttoright,5).
+ operator ('-',lefttoright,5).
+ operator ('load',prefix,5).
+ operator ('add',prefix,5).
+ operator ('subtract',prefix 5).
+ operator ('store',prefix,5).
+ operator ('reg',prefix,5).
+ add (acc is V, +V,, add R ViV,).
+ add (acc is V, -V2, subtract R ! Vl--V2).
+ add (acc is V, load R vy).
+ add (reg R is V, store R LY).
+ del (acc is 7,Uy) - add (acc is V,U) .
+ del (reg R is Z,U)- add (regRis vy,U) .
+ can (load R 'V, reg R is V).
+ can (store R 'y, acc is V);
+ can (add R 'V +V,, regRis V2 & acc is Vo).
+ can (subtract R ! Vl-VZ, reg R is Vz & acc is V1 Y.

(2)

(3)

39

+ given (init, reg 1 is ¢l).
+ given (init, reg 2 is c2).
+ given (init, reg 3 is ¢3).

+ given (init, reg 4 is c4).

Problems
- plans(acc is (cl=c2)+(c3-c4), init).
Ans: init;

load 3 1e3;

subtract 4 l!c3-c4;

store X1 tc3-ch;

load 1 ‘el

subtract 2 lcl=-c2;

add X1 '(cl-c2)+(c3=cd)
- plans(acc is (cl-c2)+(cl=c2), init).

Ans: init;
load 1 ‘el
subtract 2 lcl-c2;
store X, ‘cl-c2;
add Xi !(cl-c2)+(cl-c2)

- plans(reg 1 is cl+(c2-c3) &
reg 2 is c2-c3§

reg 3 is c4+cd, init).

Ans: init;
load 2 'c2;
subtract 3 !c2-c3;
store 2 1c2-c3;
load 1 el
add 2 'el+(c2-23);
store 1 icl4(c2-c3);
load 4 ‘ch;
add 4 'ch+ch;
store 3 lch+ch

Time: 18 secs

40

(4) - plans(reg 1 is cl+(c2-c3) &
reg 2 is c2-c3 §

acc is cl, init).

Ans: init;

load 2 'c2;
subtract 3 !c2~-c3;
store 2 'c2-c3;

load 1 el

store X1 el

add 2 'cl+(c2-c3);
store 1 tcl+(c2-c3);
load X1 el

Note. The first branch in WARPLAN's search space for this
problem is infinite. Interactive intervention to block this
branch resulted in the above solution being found without any

further assistance.

.3.4 Comments

Here WARPLAN is behaving as a simple 'compiler—compiier" from
PC to machine code using a machine definition also written in PC.
It is interesting to note that a very uniform proof procedure'with
no special domain-dependent heuristics can generate nicely

"optimised" code automatically, as first solution.

Of course, once again I have 'cheated" slightly by taking
advantage of the freedom to order clauses and the terms in a

conjunction to get the best results.

41

APPENDTIZX TIII. SUMMARY OF PROLOG.

.1 Introduction

PROLOG is an elegant and powerful programming language developed at
the University of Marseille. It bears certain similarities with PLANKER
{6}. Alternatively, one may regard the PROLOG interpreter as an efficient
PC theorem prover for problems renameable as Horn clauses. The present
system {1} is implemented partly in FORTRAN, partly in PROLOG itself,
and running on an IBM 360-67 achieves roughly 200 unifications per second.

(An earlier version of PROLOG is described in {2}.)

The features of PROLOG used in WARPLAN are summarised below. I have
modified the syntax in certain inessential respects to improve legibility
and to assist Anglo-saxon readers. The chief differences in the

implemented form are:-

(1) only upper-case is used, so variables are prefixed
by an '*' (asterisk);
(2) certain names (of evaluable predicates) are, of course,

their French equivalents (and may soon be changed anyway).

.2 Syntax ' .
The syntax is essentially the same as PC in clausal form.

Positive literals are preceded by '+', negative by '-'. The literals
of a clause are simply concatenated with no explicit sign for disjunction.

Each clause is terminated by a '.' .

An identifier is either a sequence of alpha-numeric characters or a
single non-alpha~numeric character. Identifiers for variables commence
with an upper case letter; other identifiers denote predicates, functions

or constants according to context.

Certain functions may be specified as infix or prefix operators to
improve readability. Terms containing such functions are converted to
the standard form on input and (nice point) are ccnverted back on output.

An operator must be declared before it is first used, by an axiom of the

form:-

+ operator (F,D,P),

wiiere

F 1is the name of the operator (function);

D 1s either 'prefix' or else specifies, for an infix operator,
the direction of association (default bracketing).

P is a number indicating the level of the operator in a

precedence hierarchy.

Thus using the operators specified in Appendix I and Appendix IIT.3.2, the

following terms are equivalent:-

reg 1 is cl+c2-c3 & reg 2 is c4 & acc is cl
reg 1 is (cl+c2)-c3 & (reg 2 is c4 & acc is ¢l1)

& (is(reg(l),-(+(cl,c2),c3)),8 (is(reg(2),c4), is(ace,cl)))

.3 Semantics .

The "denotational" semantics is essentially the same as PC in clausal

form.

The "operational" semantics, or proof procedure of the PROLOG inter-
preter, is as follows. The interpreter attempts to cancel (by resolution)
the literals of a clause left-to-right, depth-first with backtracking.

When attempting to cancel a literal, the candidate complementary literals
are restricted to the leftmost literals of input clauses. The candidate
input clauses are tried in the order in which they appear in the list of
~input clauses. Thus it is a linear inference system which may be described
as SL resolution {7}, withcut merging, or ancestor resclution, with leftmost
literal in a cell as selected, and with a depth-first search strategy.

There is no "occur check" in unification. (Ancestor resolution and

merging can be achieved by explicit programmer action.)

Certain predicates are defined as "evaluable", and behave as built-in

procedures (frequently with side effects):~

'/' (slash): when this predicate is cancelled, it has the effect of
prohibiting backtracking on any choices since (and including)
the time the literal complementary to the leftmost literal in
the input clause containing the '/' was cancelled. Thus it

makes the choice of the current clause deterministic.
'plus (X,Y,Z)"': adds the integers X and Y to yield result Z.

‘output (%) ': prints the term X on the user's terminal,

'newline': causes a new line to be started on the user's terminal.

'univ (x,Y) "' : takes a term X and returns a list Y of which the first
element is the name of the principal function of X (represented
as a list of characters), and the remaining elements are that
function's arguments in X, A list is constructed from the
function '.' and constant 'nil' just as LISP uses CONS and NIL.
e.gi-

univ (fun (a, X, foo(‘{)) s
. O (fy . (uy . (nynil))),
.. (a,
. (x,
. (foo (Y),nil)))))

or given that '.' is declared as a right-to-left infix operator:-

univ (fun (a, X»> foo (Y)),
(f.u.n.nil).a. X . foo (Y) .nil)

A variable may appear in place of a literal in a clause. This is
analagous to allowing procedures to be a data-type in other programming

languages. For an example of its use, see 'unless' in Appendix I.

L4

ACKNOWLEDGEMENTS

to Professor Donald Michie, my superviser, for encouraging me to

work on theorem provers and robot planning;

to Austin Tate, who is working on similar problems, for much

stimulating exchange of ideas;

to Philippe Roussel, Bob Pasero, Alain Colmerauer and other members
of the Groupe d'Intelligence Artificielle, Marseille, for

their hospitality, both personal and professional;
and especially

to Robert Kowalski, my second superviser, from whom I first learnt
the wonders of Predicate Calculus as programming language,
for his help and encouragement and for arranging for me to

visit Marseille.

I have obviously drawn heavily on the ideas of Cordell Green and

the designers of STRIPS.

The work was supperted by an SRC research studentship. My visit

to Marseille was financed under a NATO grant.

45

REFERENCES

{1} Battani, G. and Meloni, H.
'Interpreteur du langage de programmation PROLOG'.

Universitd d'Aix Marseille, 1973.

{2} Colmerauer, A., Kanoui, H., Pasero, R. and Roussel, P.
\ . . .
'PROLOG: Un systeme de communication homme-machine en
francais'.

Université d'Aix Marseille.

{3} Fikes, R.E. and Nilsson, N.J.
'STRIPS: A new approach to the application of theorem
proving to problem solving'.

Proceedings of IJCAI 2, pp. 608-620, 1971.

{4} Green, C.
'Application of theorem proving tc problem solving'.

Proceedings of IJCAI 1, pp. 219-239, 1969.

{5} Hayes, P.
'A logic of actions'.

Machine Intelligence 6, pp. 495-520, Edinburgh, 1971.

{6} Hewitt, C.
'Description and theoretical analysis of PLANNER'.

AT Memo 251, MIT, 1972.

{7} Kowalski, R. and Kuehner, D.
'"Linear resolution with selection function'.

Artificial Intelligence 2, pp. 227-260, 1971.

{8} Kowalski, R.
'Predicate Logic as programming language'.

DCL Memo 70, University of Edint rgh, 1973.

{9} Kowalski, R.
'A proof procedure using connection graphs'.

DCL Memo 74, University of Edinburgh, 1973.

46

{10} Kowalski, R.
'Logic for problem solving'.

DCL Memo 75, University of Edinburgh, 1974,

{11} Michie, D.
'On Machine Intelligence',

pp. 149-152, Edinburgh, 1974.

{12} Raphael, B.
"The frame problem in problem solving systems'.
in Artificial Intelligence and Heuristic Programming,

pPp. 159-169, Eisevier 1971,

{13} Sacerdoti, E.D.
'Planning in a hierarchy of abstraction spaces’.

Proceedings of IJCAI 3, pp. 412-422, 1973,

{14} Siklossy, L. and Dreussi, J.
'An efficient robot planner which generates its own procedures’.

Proceedings of IJCAI 3, pp. 423-430, 1973.

{15} siklossy, L. and Roach J.
'Proving the impossible is impossible is possible: disproofs
based on hereditary partitions'.

Proceedings of IJCAI 3, pp. 383-392, 1973.

{16} Sussman, G.J.
'HACKER: A computational model of skill acquisition'.
Ph.D. Thesis, MIT, 1973.

	Contents
	Abstract
	Preface
	1. Introduction
	2. The 3 Blocks Problem
	3. Specifying a Problem
	4. A 5 Blocks Problem and Its Solution
	5. Implementation of the System
	6. Deficiencies of the System
	7. Completeness and Irredundancy
	8. Conclusions
	Appendix I. Listing of the Program
	Appendix II. Test Problems
	Appendix III. Summary of Prolog
	Acknowledgements
	References

