
,
.,

WARPLAN:

A SYSTEH I'OR GEKERATING PLANS.

by

David H. D. Warren

Memo No 76

DEPARTMENT OF

COMPUTATIONAL LOGIC

UNIVERSITY OF EDINBURGH

SC HO OL o-F

U,T"1CIAL INTELLIG ENCE

WARPLAN:

A SYSTEH FOR GEKERATING PLANS.

by

Davie H. D. Warren

Memo No 76

June 1974.

C O N T E N T S

ABSTRACT

PREFACE

1. INTRODUCTION

2. THE 3 BLOCKS PROBLEM

3 . SPECIFYING A PROBLEM

4 . A 5 BLOCKS PROBLEM AND ITS SOLUTION
•

5. IMPLEMENTATION OF THE SYSTEM

6. DEFICIENCIES OF THE SYSTEM

'i

7 . COMPLE~ENESS AND IRREDUNDANCY

8. CONCLUSIONS.

APPENDIX I. - LISTING OF THE PROGRAM

APPENDIX II. - TEST PROBLEMS

APPENDIX III. - SUMMARY OF PRO LOG

ACKNOWLEDGEMENTS

REFERENCES.

Page

1

2

3

4

6

8

10

13

16

23

28

31

41

44

45

...

' ..

1

ABSTRACT

The system is inte.nded to be a general purpose plan generator for

domains described in a formalism close to that of STRIPS. The methotl

used is in many ways similar to STRIPS: but the search space is complete,

unlike STRIPS and se~eral similar systems. However the present purely

depth-first search strategy is obviously incomplete although it produces

good solutions to many problems.

The system is implemented in PROLOG, an elegant programming language

essentially identical in syntax and semantics to Predicate Calculus in

clausal form. The entire WARPLA..~ program comprises 46 clauses and aims

at conciseness and clarity rather than efficiency. Nevertheless the

present implementation solves some "standard" problems roughly 8 times

faster than STRIPS, or· roughly· 5 times slower than LAWALY (a system

designed primarily to be efficient).

WARPLAN is perhaps interesting as a system implemented in First
I

Order Logic which solves problems in First Order Logic.

'

'

2

PREFACE

This memo is an interim report on a prcgra'11 I implemented and

tested during the last two ~eeks of a visit to the University of

Marseille. I am obviously hoping to develop the program further,

but as a number of people have expressed interest in the work, it seems

worthwhile to present the basic ideas now.

The most important part of this memo is Appendix I.

\

'

3

1, INTRODUCTION

Many problem domains can naturally be formalised as a world with a

set of actions which transform that world from one state to another. A

particular problem is then specified by describing an initial state and

a desired goal state. The problem solver is required to generate a plan,

a simple sequence of actions which transforms the world from the initial

state to the goal state (strictly speaking, from any state satisfying the

initial description to some state satisfying the goal description).

Such problem domains include, but are not restricted to, applications

to robot planning. More generally the problem can be regarded as one of

compiling a high level goal description into a low level program, albdt of

an extremely simple structure, given a formal description of the target

language (ie. target machine, ie. "world").

Writing special purpose plan generators (for a particular world or

target machine) is at best tedious, and at worst near impossible, if the

specification of the world is· liable to change. A number of systems

(including STRIPSi3} LAWALYp 4} HACKER{l 6}) have been implemented which

attempt in varying degrees to be general, ie. applicable to any domain. . .

A common failing of present systems is that they require that a

conjunction of goals can be solved under the linear assumption. That is,

goals 'X e X' can be solved starting from some state 'start' by a plan
l 2

of the form '·start; T ; T ' where T is the action sequence of a minimal*
l 2 1

plan to achieve X from 'start' and T is the sequence of a minimal plan to
1 . 2

achieve X from the state resulting from the plan 'start; T' If 'X & X'
2 1 1 2

is unsolvable in that order, the goals are typically permuted to 'X g X'
2 1

and another attempt is made. There is no facility to interleave subplans.

This frequently means that an optimal solution is not even theoretically

attainable - it is not in the search space. At worst, there is no solution

in the search space even though there is a solution in the intended inter-

pretation (see the 3 Blocks Problem below). We shall call such systems l~~E.•

WARPLAN can be regarded as a simple extension to STRIPS sufficient to

attain completeness. The extension obviates the need to permute goals in a

conjunction. The extension is also irre~undant, that is the identical plan

cannot be generated in two different ways. However there is still the

underlying redundancy that re-ordering independent actions produces a

distinct plan.

*Fora definition of minimal (not to be confused with optimal) see Section 7.1.

·•

4

2. THE 3 BLOCKS PROBLEM (of Austi£ TatE:)

This is po:;sibly the simpl,.'st exc1mp1 e of a problem whi eh is not

solvable (optimally) by a. linear planning systems. It \:as first noted

h b A . T 1 h 1.. • • I h . {16} as sue y ust1.n ate, a t. oug11 1t appears 1n Sussman s t esis as an

"anomalous situation11 •

Given an initial state of J blocks as shown below, we want to achieve

a final state in which 'a' is on 'b' and 'b' is on 'c' :-

on (a,b) & on (b,c)

Typically, a STRIPS-like system would go through the following steps:-

,---, .---1 I

GM
FIRST GOAL ACHIEVED

□ '. ~f-1 : PROTECTION VIOLATION
____ ___ _______ G]....__...__..;1L-..-i'--

The system is now trying to clear the top of 'b' so that it can put 'b' on

'c'. But this would destroy an already achieved subgoal: 'on(a,b) 1 •

Typically, the system tries again with permuted subgoals:-

...

on(b,c) & on(a,b)

: ~- FIRST GOAL ACHIEVED
I I

a :
,·- ________ _,._ _ _J ---~-'--------

_/": PROTECTION VIOLATION
I I

I : a
____ __,".""""I --- • -·--···

The system is trying to clear the top of 'a' so that it can put 'a' on 'b',

and to do this it first needs to remove 'b' - another protection violation,

this time of 'on(b,c)'.

The system is now in a dilemma since all paths in its search space

lead to a protection violation. It either concludes, falsely, that the

problem is u~solvable,or else permits a protection violation which (for

this problem) allows a non-optimal solution to be obtained.

The optimal s·olution is of course:-

move c from a ~ floor;

move b from floor to C j

move a from floor to b

The reason linear planning systems get into difficulties is that the solutions

to the two main goals are interleaved in the optimal plan. ie. the first and

third steps achieve 'on(a,b)' and the second achieves 'on(b,c)'.

3. SPECIFYING A PROBLEM

Note: Refer to Appendix III for details of PRCJLOG syntax.

All data items manipulated by WARPLAN are represented as PC (Predicate

Calculus, First Order Logic) terms. The main data types are a conjunction

of facts (or goals) and a r]an. A Eonjunction is constru~ted from certain

primitive data items called facts using the binary function '&'. Similarly

a plan is constructed from primitive data items cailed initial states and

actions using the binary function

operators so that:-

I • I
' . '&' and ' . ' '

are declared is infix

T j U j V = (T j U) ; V = j (; (TJU) J V)

PROLOG treats the above identities as different external represe.ntations of

the same internal object.

Interpret: 'X & y '. as ~ X and y 1

and I T ; U' as 1 the state after doing U in T'.
Note that, for brevity of exposition, we will identify a conjunction of a

single fact with that fact and will frequently not distinguish b~tween a plan

and the state resulting from that plan.

A problem domain is specified to WARPLAN as a set of clauses, the problem

database. This contains essentially the same information as STRIPS add-lists,

delete-lists,preconditions and initial world wff. Certain information in the

problem database may be represented procedurally, ie. as non-unit clauses.

Usually, however, the clauses will be unit assertions.

are used:-

The following predicates_

+ add(XJU) fact· X is added by action u; ie. X is true in auy state

resulting from u (and U is a possible action in some

state in which X is not true).

fact X is "deleted" by action LJ; ie. it is not the

case that X is preserved by U• (X is preserved by U

if and only if X is not added by U and X is true in a

state resulting from U whenever X is true in the

preceding state.)

+ always (X)

7

the c0njunction of fa~ts C 1s the preconditions of

acti::,n LJ; ie. U is possible in any state in which

C is true.

fact X is true in any state.

+ imposs(c) the conJuncci.on ::,f facts C is impossible in any state.

fact X is true in the in:tial state T (but it 1s not

the case that X is trud in all states).

Note the following points:-

(1) Only actions which are sufficiently "primitive" can be fornalised

using the above predicates.

(2) In particular, any v::iriable 1n an.act.ion's preconditions must appear

as a parameter_ of that action"

unique preconditions.

This is so that each action has a

(3) TI1e intended interpretation of 'del' 1s rather broader than that of

STRIPS' delete-lists. Any fact may be regarded as deleted by an
•

action so long as it is not positively preserved by that action.

For efficiency, it is desirable to make 'del' assertions as poYerful

as pbssible. For example, we might assert 1 del(on(robot,z) 3

climboff (B)) ' if we knew that no fact of the form 'on(robot ,z)'
could remain true after the robot has climbed off a box B· It wo1.1ld

not be necessary to instantiate z to B, the parti,:ular box climbed off.

(4) Similarly, although it is not necessary to specify that certain

conjunctions of facts are impossible, this can yield a huge

improvement in performance for certain domains.

(5) Finally, notice that a fact cannot be b0th added and preserved by an

action, so if a fact already holds before an action which adds the

same fact, the previ0us inst~nce should be regarded as deleted.

is important to avoid redundancy - s2e Section 7.

This

A particular problem is posed to WARPLAN by a procedure call of the foll~wing

form:

.
-plans(C1 T) output any plans which achieve the conjunction of

facts C from initial state T•

8

. 4. A 5 BLOCKS PROBLEM AND I IS SOLD'110N

As an illustration ~f th0 p1e~~ding points, we will g1ve the database

for a blocks w0rld, and then ::;,urline how WARPLAN wo01d solve the. ptJblcm

of stacking up 5 blo~ks, In ..:.lt-a.im'.ng the solution~ Wl'.RPLAN also solves

the 3 blocks problem of Austin Ta:-2,

4.1 Th2 Database

+ add (on(UJW), move(LJJVJW)) 0

+ add (clear(y), move: (UJ VJ WJ) 0

+ del (on (UJZ)' mcve(LJJVJW)) .
+ del (clear (W), ffiOV8 (LJ; VJ W J) .

+ can (move(LJJV,flccr),

+ can (move (U., V., W)

cn((J.,V)& V -I floor g clear (LJ)) •

dear(W)gon (LJ.,V)&Ulv.!f.iclear(LJ) .).

+ imposs (on(XJY) &dea;:(y) .)
+ imposs (on (XJ y) & on (XJ Z) & y I z). 'f

+ imposs (on(XJX)) 0

+ given (start, on(a,£10.:ir)).

+ given (start, on(b, floor)),

+ given (start, on(~,a)) .
+ given (staJ,"t, on(d,flcor)).

tB + given (start, on(e.,d)) 0

GJ '
+ given (start, clear(b)),

+ given (start, clear(c)). floor

+ given (start, clear(e)).

4.2 The Problem

plans (on(a,b) & on(b,~) & on(c,d) & on(d,e), start).

Ffl_

The computation perf0::-med by WARPLAN in obtaining a solution can be

interpreted as generating a sequence of appr0ximations to the final solution.

The first approximation is the initial state:-

(0) Start

We now attempt to solve th8 fi~st goal 'on(a,b)'. It is not true

in 'start', so we attempt to a::hieve it using the only operator available

'move(a,y,b)', abbreviated t3 'm(a,y,b)':-

'

9

(1) start ; m(a,V,b)

(Changes t0 the pl&n ~r2 u~d~rlined.) Ws must now make sure that

the precondition& of 'mla,V,b)' are satisfied, inserting extra actions if

necessary. The first pre~ondition, 'cle&r(b)', is true in 'start', and

the second, 'on(a)V) 1 , i& Lr~e if 1V :~ floor', giving the second

approximation:-

(2) start ; m(ai_floor,b)

'a ,lb I is tru2 (fo-.cmal in2q..1c1l :i. ty of PC terms), so we have one

remaining p.reconditicn i::o satisfy : 'clear(a)'. This is not already true

in 'start', so we attempt to dchieve it using the only available operato.r:­

(3) start ; m(U,a,W) ; m(a,flo~r,b)

All the prec:Jnditi0n':> &r" sat:i sfied immediately if we choose suitable

instantiations:-

(4) start ; m(_<:,,a,fl-::c::c) m(a,fio.:n:,b)

We have new achieved the fi=st mqin goal and so far the steps have

been identical to STRIPS. Th2 se~~nd goal 1 oD(b,c) 1 is not true in the

state produced by the.plan s0°far, ·so we &ttempt to achieve it using the

only available operato1 'm(b,V~,~) 1 • As STRIPS, we first try to introduce

the new action at the end of the ::u:::-rE.nt plan, However, we notice that a
•

precondition of 'm(b,V1 ,c)' is 'clear(b)' and this is inconsistent with the

already achi8ved g~al •~n(a,b)'. Hence the action cannot be introduced at

that point, We next try tra:ing b~ck through the current plan trying to

find a suitable point to i~sert thE a2tion, taking care that the goal we

are achieving, 'on(b,c)', is net deleted by any already generated actions

to the right. We find that a possible point to insert is immediately

before the last action:~

(5) start ; m(c,a,floor) m(b,V!)c) ; m(a,floor,b)

All the pre2ondicions cf 'm(b,V1 ,c) 1 are satisfied at the point of

insertion if 'V 1 := fbc.r• :-

(6) start ; m(c,a,floor) ; lli(b,f!ocr,c) ; m(a,flocr,b)

We have now solved the first two main goals, so we have a solution to

the 3 Blocks Problem, The prin::ipal steps remaining to the final solution

of the 5 Blocks Probl2m a~e lisLed below:-

(7) start m(c,a,fL::or) ff,(,~ ,fl.::::r-,d) . m(b,fl:::or,c) m(a,floor,b)
'

(8) start . m(c,a;fl0:Jr) m(2,d,fl::::,r) ; m(c,floor,d)
'

m(b,fl.::-c.r,c) m~d,flocr,b)

(9) start m(c ,a, floor) m(e,d,fl::or) m(d,floe,.c,e)

m(c,l)fl00r, d) . m(b q--~ ·) m(a,flccr,b)
'

,- .vv,. ,!.:

10

The present implementation reaches tl1is solution in a total of 52 seconds

CPU time. The search sr:rategy used at pc~scnt is purely depth first, with

conventional back tracking. The steps described above, assume that the order

of main goals, 0perator pre~onditions, and 1 ➔ can' assertions are as present8d

in Secti:m 4.1. Notice that the above solution is obtained essentially

without backtracking, and is not quite optimal. Further solutions,

including the optimal one, could be obtained if different choices were made

at the choice points. Notice that the original goals are achieved Jn the

plan in the reverse order to that in which they are stateds but they arf.:;

solved by the plan generator in the original order.

5. IMPLEMENTATION OF THE SYSTEM

Nor:e: The r~ader is recom.rnend.E-d to examine the examples in Appendix II

before proceeding with this Section, Refer to Appendix I for a complete

listing of the program and to·Appehdix Ill for details of PROLOG. It may

well be eas~er to understand the program listing that this explanation!

The central predicate is 'plan ,(CJ p., T J T1) ', the procedure entry

point to the main recursive loop.

It has four arguments:-

C is a conjunction of goals to be solved;
.

T 1s an (already generated) partial plan;

p is a conjunction of goals already solved by T

which must be protected;

Ti is a new plan, which contains T as a subn l.;rn

and preserves the already solved goals p,

and which also solves the new goals C·

As interpreted by PROLOG, CJPJT behave as input variables and T1

I
l

output variable. The clauses defining 'plan' are:-

as a;:i

+ plan (x 91 CJ p J T J T 2) -/- solve (xJ p J T J p} .J Ti) - plan (cJ p l ~ T ! J T 2).

+ plan (xJ p .J T J T 1) - solve (x; p J T J p l J T l) 1

Essentially this states that a 'plan' can be produced by 'solve'-ing each

goal in the order given. The effect of the '-/' is to tell PROLOG no~ to

consider the second clause if it has succesbfully 1'rnarched" the ftrst literal

of the first clause. In this case it could be omitted without affecting the

semantics of the program; it i.:, needed to prevent the substantial in2£tici,::n,~i.2s

of trying to 'solve' a conjunction of goals, which is in fact impossible.

X is an atomic goal;

T is a partiai plan;

11

p is a conjunction of goals achieved by T;
T 1 is a plan, containing T as a subplan, which solves p1 ;

Pi is a conjunction comprising p and X where X is not repeated.

X.,P.,T will be input variablei.. and p 1 ,T1 output.

There are tlire.e ways in which a goal may be 'solve'-d:-

+solve(x.,·P.,TJP.,T) ··always (x).

+ solve (x., p J T., P1 ., T) - holds (x., T)

+ solve (X.,P.,T.,X & P,T1)- add(X.,U)

It may be 'always' true in the world.

- and (X I p., p 1) •

- achieve (x U P T T) J J J J } I

It raay be that it already 'holds' in

the state produced by .the current ~artial plan. Finally we may look in the

database for an action U which 'add'-s the goal X and then 'solve' X by

'achieve'-ing U.
I

There a~rc two methods to I achieve' an action, whic.h we will call

extension and insertion. If we were to omit the clause for insertion, we

would get a system almost identical to STRIPS without the ability co permute

goals. The clause for extension is:-

+ ac hi cv e (X., U., P., T., T 1 j U)
- preserves (U., P)

- can(u., c)
- consistent (c., p)

- plan (c., p., T., Ti)
- preserves (u J p) I

We first check that the action U preserves (ie. does not delete) the protected

facts p. Then we lookup the preconditions C in the database and check that C
is consistent with the protected facts. All being well, we call 'plan'

recursively to modify the current plan T to a new plan T1 which.produces a

state in which C is attained as well as p. U can then be appiied in T 1 ,

corresponding to the plan resulting from this call of 'achieve'. Finally,

we repeat the check that U preserves p. The reason for this is that U and p

may not have been instantiated to ground terms at the time of the original checL.

12

Lacking the ability to co·-routine 111 PROLCG at present, we have to be

satisfied with an incomplete first check followed by a second check ''to

make sure". Even so there is still D slight flaw in the program, as U

and p may still not be fully instantiated by the time of the second check.

The clause for the second method of 'achieve'-ing an action,

insertion, is:-

+ achieve(xJ UJ P J T jV J T1 jV)

- preserved (XJ V)

- retrace(p J VJ p 1)

- achievc(xJ u J p l J T J T l)
- preserved (xJ V) I

If the last action V in the current partial plan doesn't delete the current

goal X, we can try to insert the action U somewhere before y, provided we

'retrace' the set of protected fac~s to the point before y.

to p1 before V if

P1 = p - (addset of y) + (preconditions of y).

p is 'retrace 1 -d

As mentioned previously, in WARPLAN, plans and states of the world are

virtually synonymous. Everything that 'holds' in a state of the world can

be determined from the plan which produces that state of the world. The

system chains backwards through the sequence of actions, so long as none of

these actions deletes the sought-for fact, until the fact is found in the

'add'-set of an action or was 'given' in the initial state:-

+ holds (xJ T j V) - add (xJ V) I

+holds (X.,TjV) - /

- preserved (XJ y)
- holds (XJ T)

- preserved(X.1V).

+ holds (x., T) - given (r .1X) I

This method avoids the overhead of generating a net set of facts for each

state of the world considered, as do STRIPS, PLANNER {6}, etc. albeit in a

structure-shared form. However, to balance against this, there is more

computation involved in accessing a fact (see Section 6 for possible

improvements).

...

1".\
l,.J

To prove that a fact X is preserved by an action y, WARPLA.N essentially

tries to satisfy itself that it can't prove that V del~tes X :-

+preserved(X.,V) - mkground (X8,V.,O.,N) - del (X.,V)-/-- fail.

+ preserved (x., V)

'mkground' substitutes "arbitrary constants" for any variables in the terms

currently bound to X and V. If we can now prove that X is 'del 1-eted by V,
we call '/' to prevent any further choices being taken for 'preserved' and

then call 'fail'. This is an arbitrary predicate which can 1 t be proved true,

since we supply no definition for it. The net effect is that the original

attempt to prove 'preserved(X.,V)' fails, and subsequent backtracking of course

"undoes" the effects of 'mkground'. In the other case we can't prove that X

is 'del'-eted by V and the second clause allows the proof of 'preserved(X.,V)'

to succeed. Unlike previous uses of '/', this use actually changes the

meaning of the two clauses. As a "hack", the technique is rather powerful

and not without a certain appeal.

The remainder of the WARPLAN axioms define some fairly straightforward

auxiliary procedures.

6. DEFICIENCIES OF THE SYSTEM

Some deficiencies of the system are listed below. They range from

relatively minor details to problems which suggest that a totally new approac~

is needed.

(1) The 'holds' axioms could be made more efficient by using knowledge

of action preconditions to avoid always chaining back to the point at

which a fact was added, as is done for 'inroom(robot,rocm(l))' in the

fourth STRIPS problem (Appendix II, 1.3) for example. If a fact

occurs as a precondition of an action in a plan, we know that the

fact must hold innnediately prior to that action in the plan. So it

is only necessary to chain back as far as the last time the fact was

"used". Thus every time a fact were "used" it would become more

"accessible" for further use. However it is difficult to do this

without introducing redundancy.

(2) There is a similar possible efficiency improvement associated

with the consistency checks. When an inconsistency has been found,

the system should immedia.tely retrace as far as is necessary to

14

remove one of the already-achieved goals which "ca~tse 11 the

inconsistency.

(3) In the current PROLOG, there is only direct access to a group

(4)

of clauses with the same leftmost predicate, and not to clauses

within such a group. Thus WARPL/>JI is continually chaining through

its entire list of 'add' clauses, for example 1 to find a suitable

action to add a certain f2~t. More direct access could be

achieved with the current PROLOG at the expense of some lass of

clarity in the WARPLAN axioms. This should yield a substantial

improvement in speed,

The system needs a more intelligent search strategy. Most of

the problems which it has solved involved little or no backtracking.

Ba~ktracking frequently results in crazy alternatives being tried

next. This arises particularly because there is nothing to prevP.nt

WARPLA.i~ from constructing a plan to achieve a fact whie:h is already

true in the current state. (This facility 1s needed, in some cases

at least, for completeness.)
_.

(5) An automatic check for loops could alleviate this and other

problems~ but would probably slow the system down substantially.

(6) At the moment, goals, action preconditions and 'add' clauses

can be pre-ordered by hand to give the best results. It would be

nice if the syste~ could do the analysis necessary for this (cf. the

way LAWALY determines its hierarchies). It would of course be better

if the orderings were determined dynamically.

(7) Actions which add several facts frequently need "augmented"

preconditions for some of them, (Two versions of 'take' were used

in the Keys and Boxes Problem (Appendix II.2) to bypass this problem.)

It should not be too difficult to provide this facility.

(8) There are a number of ways in which PROLOG might be enhanced to

WARPLAN's benefit. The inability to put "restrictions" en variables

results in some flaws in the program. This is a special case of the

need ~or co-routining - more flexibl~ choice of which literal to cancel

next (ie. which goal to solve next).

...

(9)

15

ABSTRIPS (13} mc.y 02. .r:<':gsrded a:5 a tt..::hni-11.12. ta en':lb . .i.2 STRIPS

to pc.dorm -:::--.r~utir1ing 08 ::..t geae.rat2.s c. plan, dnd ;,0m2tti·:r,g

similar is 0"tr;l0..;sJy n82af_u in W:~RPLAN. For examplL, 1.:.-Jn&:de:

a world similar to Append1x II.l :-

,/

,
,'

ou0r

room 1 ro~m 2 --·------------------------------"'
with the goal:-

inroom(rcbot,ro0m 2) & nextto(robot,box3)

fc,.r which the cp::imd1 :::u 1-Jt iL,n might be:-

start ;

gotc (bc.:x 3) ;

shuntthru(box 3,doJr,rcom 1,ro~m 2) ;

goto(b0x 3, rD0m ~)

where 'shunLthYu 1 does n~t !ea✓e the robot 'nExtto' the shunted

obj e~:t. WARPLAN bas to :fir.::t produ~e a .:omplete soluticn to or,e of

the two top-1e'le: ·g-::;als ~ an:f ~ for it to subsequc:ritly f:nct the 0ptimal

solution, it is necEssa~y chat this partial s~lution be a subpian of

the 0ptimal p:i.an • s~pp~be the top lsvel goals are ordered ~s abo~e.

Then the initial 5ubplan needed for 'inrocm(rob~t, room L)' is:-

start; goto(bc~ 3); shuntthru(b0x 3, door, room 1, room 2)

a rath~r unlikely solilti0n!

operator-, and of .:our~e ther2 ace i":-eve:al boxes.) If, 0n the other

hand, 'ne-xtto(rcbot, bcK J)' is 01:·de1ed tirst, then the partial plan

need2d is the complete plan itself! The prcblem is that WARPLA.i."1 is

generating t.:,0 much dc:ta:Li i.n it.;; s::,lu::iun to 0ne subgcal before

going en t0 ccnsider a d~pendent subgoal.

(10) Like STRIPS, WA..RPLAN' gEn-: ~at:es a plan by a mi.:xtl.lre of backward

(from the goal) and forward ttrom the it1t1al state) analysis. F0r

many prcb1ems, part.ic.uldc1.y "o.itiiu:i.1 t" ;::r,es su-.:h as in (9) above ot

16

block .sta:::k~ng o.r ~.mpc.;;6ib1e tasks, it appears that a completely

backward analysis ~~lv2s the prcblem better. On~ stdrts with the

given conjun:::ti~m ..:f gcals and applies op2rat0rs "in .reverse" to

generate a new c ::,nj:in-::-.::1~n ::if. g;:;als. Eac.h new conjunction of goals

is che(:ked fc.c conds::ency ~ and pcssibly ·for u1bsumpdcn by other

conjuncti0ns of gc&ls ~hich ha~e been geneLated. A solution is

found when the c0nj .. mction 0f g0als is satisfied in the initial state.

The problem with this te~hniqoe is that m~re and more variables get

introduced into su~:essi~e gcals and these need to be restricted in

complE:x ways; th2 initial state only g~t.;; "u.sed" in th2 final step

(although it wo~ld p~e~~m&bly direct the s~arch strategy). The

advantag~ of the STRIPS-like analysis is that varic1bles get quickly

im:tantiate::l mak.i.ng the sy:,tern much more amE:nable to implementation

in the present PROLOG.

(11) WARPLAN i::. unabl".: t0 gE:nerat2 conditi.::nal plans; nor 1.s it

therefore ~ble t0 generate iteracive pl~ns.
.,

(12) Plans gen2ratcd by \vARPLAN a:e totally ordu·ed, often arbitrarily.

Besides unnt-::.sssa.cily r2stci2ti~•g the frt::edom of the plan executer,

this also mEans that there i~ potential redundancy in the search space.

7, COMPLETENESS AND 1RREDUNDA1CY-

7,1 Preliminary DEf1niticns

For definitions of dddedi p1ese.cv2d, preconditi~ns> see Section 3.

A plan of l2ngt:h N ,:o.npr i s2s an initial state TO and a sequence of

actions A1 ,A"-,,,, ,AN, It will be written 'T 0;A 1;A2;,, -;AN'. We

require that the plan ba exet~table, ie. the state resulting from

'T0 ; •• ,;A1_1 ' satisfies the prec~nditions of A1 , for I from 1 to N,

A pr0blem 1s a pc1ir < C, T > comprising a .::unj ucu:tion C of facts
0

the proble:n < C, T 0 >

and an initial state T •
0

A plar, T solves

if T is the initial st~t2 of T and C holds 1n
l)

the state resJlting f~Jrn T,

A plan is optimal f~~ a prsblem if there ls no plan of lower length

which e~lves the prcblsm,

...

li

A plan g-=n<-'rator i~:: '~-:,mpLet :::_ ii .:.t will £·-renc ... ai. .ly 6 ~,1erat:2 an

optimal plan for a~y pr~b:i~.

A plan is m~nfm:i!_ (fn a pc.:-o)em) if e.;;2ry a::dun 1"' ne2d2d, An

action in a plan is 02;;.dc.:1 it :.'..t :1dd..; a fact which is a ,nbin goal

or a pre~c~diti02 ~f 2 n~eded action.

A plan T is a rn.E_p_L~:~ or d p; an T 1 if

(i) T &nd T2 ha~2 the same i~icial &tats

and (ii) the ac~i0ns cf 1 are a s~bset cf the a=ti0ns of T .•
!

Tisa prcps1· Slibplin 0£ T, LS the actions of T arc a proper subset

of the actions of l,,

7.2 Coroilarie6 cf th2 D~fintt1~~5

Any plan whi.:h s.:.•hi'2S a p.cobl 2.m has a un1que mlni;i;al subpl an which

so.lv-es the problem., (It is uEique b2~ause we do not allow a fact

to be b~th add~d and pr2a2r~ed by an acti~n.)

An opti.m.:i 1 p: ,Hl ndst oe m::1irri::.1.

A plan gen""·ratcr whLh can generate al 1 minim:i\ plans is c:m1plete.

7.3 Example:

Given the pr.:,blem:-

~ 0n(a,c)

a far from :,ptim3.l pl.,m \.ih~•:h doe:; 1.11 iact &olve the pr0blt:.m is:-

start ; m~ve(e,d,fl~ct) mo·vc (d ,£ loor s b) mc,ve(a,floor ,·.)

The correspcnding minimdl subp:~n is:-

start; m0ve(e,d,flo:,r); mc,q;.(c,::1.,d); :nc-.rc(d,fl.Jor:,c)

~m0ve(a,flcor,c) 1 is n~6d2a sin~e ~t ~:hi~~e& 'on(a,c)'.

'mov.e(c.a,d)v .:..s ne':.'.d2d .:;.:..n.e ic a.:.h1.eves 'c.:lt.ar(c)' which 1.s a

preccnditi~n of 'mc;~(a,ilocr,c)' which is n~edcd,

' (d .• ,, mo·v e e , , 1 1. o-:> r ; l~ ne~ded ein~~ it ~Lhiev2~ •~1~ar(d) 1 which is

1 ffi,.:,V 12 (''. , ct, u.} l n

18

7.4 Outline c.f a C0mpletcness Proo±

The completeness of WARPLAN fdlows from the fact that

'plan (C, true, T J T) 1 is a valid cieducti.:,n from the WARPLAN
0

axicms and pc~blem d&tabase 1£ aLd only if Tisa minimal plan

which s.Jlv-e& the pr-:>blem <.: CJ T > • To get a complete
0

implementatbn of WARPLAN, one would need to

(1) provide a proper implementation of formal inequality

("restricti.cns" on variablE.s) in PROLOG and modify

the clauses f0r 'pr~served' etc. ta take advantage of

this;

(2) make the PROLOG s2arch sLrat.egy ccmpletz. For instance,

every time a ch.:;.ict. point 1.s encountered (more than one

input clause matches the current literal) ~et up the

different ·choice~ c1s "parallel (independent) processes".

In outlin:ng the proof, we shall only discuss the part played by

the p~imary clauseJ, tho&e labelled Pl, P2, Sl, S2, S3, Al, A2, Hl,

H2, H3 in Appendlx I. We assume that the. sec.onda-..y clauses
.,

(the remaining WARPLAN cidu&es and the problem databa&e) are a

complete and correct fo.cmulat:i.on 0± their intended interpretations.

We wish tc show that, for any problem < CJ T >, given a minimal
0

plan T, there: exists a derivation of 'plan(C, true, T ,T)' from
0

the WARPLAN axioms ~nd problem database.

A derivation of a fact X from a set of Horn clauses Sis a tree of

instances of clauses from S, such that

(1) the top (or root) clause instance has +x as its positive

literal;

(2) for each negative literal - L occurr1.ng in a clause instance,

there is exa~tly one subtree at that node which is a

derivation of L·

A clause is a Ho:n cl2use if it has at most cne positive literal.

The proof pro~eeds by indJcticn on the length of the minimal plan T·
The proposition for procf by indaction is:-

For any C ,a: G 1 & G.: & 1 1 1 & GM , TO , and minimal plan T of length N t

there Exist derivations of 's0lve(G1 , p1_1 , r 1_1 , p1 , r 1)'for I from 1

to M

whe:ce p~ - trl.'.E 1 ..,
P r_ o o f· -..... 1 j·• H, I - \J l "' I I ' (1 G . L l. 1 ~ ,,ill ~ ~ ~ J '

r1 is th~ m1n.m~l ~Jbp.a3 ~f T ~hich scl~~3 Pr·

(Fr~m th:s p::p:sir:~n a~~ ~~a~Sf6 Pi, ?2 eh~ fi~~i ~~n~lusicn follcws

trivially.)

Case N = O.
The prcp:aiLi~n holds rriv!&~ly us~ng instsnc2s ci ~lauses Sl and S2.

We must now 2as<.:ca12. tb,: pr.:..p',;, L·~ i.:.n h.:::..dci !,.:,.- N 2-nd p::;;ve 1.f for N+l •

We shail mez~:y des~~ib~ the :o~stru:ti0n neEded t0~ th~s step. A

rigorous proof w:01J :~01~~ ~h2~kirg al: the details.

Let T = (T I j U) ,

By minimality, U a:h!~~as aL leaat ~~e ~i the g:als C·
Let Gr be the first such gj~l.

Let K.&, 1 1 & K. be :ht g:~is .::,f C which appsar after G1 in the
• . J

conjuncti~n and which azs n:t a_hi~;~d by LJ • .
Let Hi. & H,..&, 1 ,& Iii b2. J:..h~ p.:·2.:-.::,n<lit:.:.ns -:i LJ.

Let C ' = G 1 & 1 , , 8, G1 • g H : Pr , , , 8: H1 ~ K : & 1 11 ~ KJ .
... -l.

'I'hen clea.1·ly 1' is "' m:.x::.m.:;.i. p::_,an fo.t th2 pr~b:i'.'e;n < c', T >.
0

By the ind~:ti~e hyp~~~islsi there ~xist$ a derlvati;n of

'plan (c', T l ; ') I
_,.. .. ✓ c. W2 shal~ ~h:w h0w to Gse this

t • •
plan t C,

lilltlOii II I~

c:.c,,..,......,. ~

..

20

A l:it'i'. en ::cs :,f WARf'LAN

We ign~re instan~es 0£ ~2~Jad~rJ clau6es.

It is cl2Qr t~at ~1a~s~2 p~ ~~i P2 serve 0niy to link t0gethe? a

occur.cE.i."t.;2 .::i :i S<tt 0t Pi :.L!.U,~cS with -::,ne P2 cla,;::,t; by 'P1 /P2 I.

reprz,H:.lit d2t iva.tL:,n;5 cf '::)(., :i.·.,c(X., , , ,) ' wher-2 X Ls th"' label

inside the t~langle. M..:st .:.:t U12 B".:.btrees 1n Lhe "o.1tput"

de:civad0·r: &re cJph.d L-:,..;;11 th2 c.:;,rresp0r.d:.n6 :.,t.;bt.: 2e ln tile "input"

derivation,

construct2d.;-

It rem~in2 t~ sh~w how the s~b~rees for G to G- a~e
1-+l -J

i~ a g~~l a~bie~ed by U then

&. is c,f the L-rm

else G has be£n givt.,1 :f~e nan1::·
-- X

fur ,;,c.::mc y ;

lf 0f t•:. .cm S1 them. {;- 1.s --- /l:lx\)f the fo:cm Sl

J

form l
1s uf the form

then &
-- 1<.

S3 then &is &- X:

the form S2

I
H2

l
of the form S3

I

l
]

That ccmplet2.s the ;_·utlir.E ci the prrJ•.:,f.

7.5 lrred~ndancy

A plan g~n~zator ~s ircedJnaant if, in ganerating plans, it never

genetdtes the sam~ pl~n mJ~s thbn once.

A set: of (Horn) .-:L.>.1se.s S is .i.r.r~::n.indan;:;, if, for any fa,:;t X, the.re

exiats at must one dexi~~~ion of X frcm S .

(1)

(2)

(3)

, "l·;;·:1y.,, (X-J 1 P ~. -.. , . d -.. - ' .. a -i 'x u1" \ ... ,. ...,.. , .• ~::. ~. J. ~ ~:,, a.· \.i \ J I V.\..

1 ad-.;(x.,-LJ) 1 ct-n.J 1 r, •• J;.:-_··,,~.--.. d(xJu', 1 ~1•,c m ·,--·1··1 .. .,..--, ... ; J \ • U I:" ~ .. , • . CL - ·,) ._ ._. :,j. i t <• _; 1 -~ !> _ .. _, ,:;'. ;

!g"-.•,:;n(T X', I .. " -s• J I

w~ t~~e t~ show that it is

0± 1p]an(c,true,T_ ,T)'
0'

1s cl~~x by ins~ecticn that,

ior gr-:,·:;:;:-1d :i.natd.:!t..1..0.t:i.:n:"J oi tr,~ fi'.st d.nd la;:;t arg-'.rr-::.n'!:s, tbt.~e is or,ly

cne claus2 whi~h ~~n be y~ed t0 d~~{v~ th&t iit~rdl, givt~ the d3sumptio~s

listsd ab.:.\e.

'solve(X,PJT;PJJT,_) ', wh-:cre X,P;l;P, . .1T 1 d::c g..:::.und term:-=', Frcm

S2, T = T 1 But .::.m;;d.c-r,;.11g S3 1 {t i.,; .:1'2-:".L thdt d de::r.ivat:ion of

the 'ach-i'.evic' lite".a.l i2 !·:niy f,.,ssib1e 1.1 the hngth ,:f T 1 is dt' led5t

one greater th~L T - d LUDL~~dl-tion.
,'

Ihe~ef0re the ir~eaunda~cy h&s b~en dEmcn~trattd,

7.6 An~th~r Example

...

To fL~:;:the·x el·,;.::id::1'.:tc· the c . .;.·mp1etcne3,.; 0t WARPLr.'.N, the diagram bel.:i,~

indi:aLcs h~w iv'ArtPl.AN w,:t.•~d drri.2 :i.t th2 opt~m:.: s.:,lut;cn tv tht' 5 Btc~k6

Probl~m (the s0luci0n des~rib~d in Secticn & is the ~ne which would be

fcund fl!St by a ct2pch-ti1~t ~eax~h ~t~a~e~y).

The di~g1am rep!e~~n~f the sita~~i0n ~al~uius prJ~i of the optimd1

plan wh:.:.:h is imr,] i.,.:: t:_y g~;i~_:::n.t.d bf lvAI<fLAN, A b'ldck 00t represents

22

& on(d,e)

f

r A~t5c:-,s ('.ncl~Vt.::·.:-:. -:-~.::i:1)

m(a.,r.,b) lli\D,1,, 1

~ Preconditic.ns
m(:,a,d) ffi(ci,e,f) m(t,d,f) start

(in ... wd::.:r O I 1'3 j 29 6 2
11-----A>------1~:-----:•------,)------ _.,. ___ ~,

given)
jil (a,b)

4
0

' ..
,; 1 e =it (,l)

29 6 5 ---,,,.•-----o-,------3

,_ _____ """'s.; 29

dea.r (.,:,.)

lJ 29 :o -------.------,, -----... -----_,)>------ 11
er;

12 !3 14 t-----0-~---""'r 29 15 ;;-•---a-.;....----16
'·

1:,n (b,2-) .)n (b 'i)

17 ~9 18 19
=G --·---~~------~--=-j----- c,,

20 29 21 '-•------·~-------0--,..,-----• .. 0.;...;;. ___ _
22

clear (c:)

23 2..:i .. 25 L}, 1-~---~-----0--~,~
0n (c ,d)

26 27 28 29 30 31 ------~M•-----o-- •---J-}-, ____ _.

on (d,e) ,Hl (d,i)

•~--·,3?.._t
i..h.a: (d)

3J 34 ---~-~-----•·
cleaT(e)

In crder to f.ir1d this i:,r.:;ol, WitR.'F'l.AN h-:ts ~_;: c16ct t::, •~12:tr(a)' by a

li: iatic:r 11disc0vers"

th ~t 'm-••~(· d, ~)I h·TJP -~•
';I. .J-. -, iJ 1~d.J: t. .. ;.;,, Thus,

a ra~her uunatur~l p1·0c~ss.

23

8. CONCLUS:!.ONS

WARPLAN :::.s a prog:am .::.mr,1-2n1tn<:.2d in Predicate Gal•::Jlus. I believe

impl2m2nt, with litt1£ (.::.f any) sacrifice of efil~Len~y. I dvubt whether

a sh.nter pr.:-,g.r.·c_;_m c.:,ulci be. pc:d..iced by rewriting the algc,rithm in another

programmin6 lan6-1:1g2,

More generally, I s~pp~rt Kcwalbki's {8},(10} ccntsntion that PC is

a supEri::r.r high-·level pn,g·{amm~ng la::guage suitab:i.e for wicle use, particu·-

lady in A-r.." Expe:i2n~e wiLh ?R0L0G sJggssts ttat ctny program that can

be fonn-.!latsci in LJSP ::a.r.. be icrmL,L,L£:d at l::a3t~ c:s e:lbily .in PRCL0G.

Frequ.2.ntly the natt~ra.Jne:,E _1f FC can suggest o. m::rc elegant: fcrmulation.

S? far this is only ciSs~ming an interpr2ter such a~ PR0L0G with an

unscph_i_stie:atc:i (b.1t t.:Lstj vrccf prv::eoure, which gives PC pr.:,grams a

I f. .
n ~~cn~e 6yscems

Kowals~.i 's Cc,nP.=<tl.Jn Graph~ (9} sug5est h:;w, in principle, cc,ntrJl

stn.1:t-c.rts might be. lib1=:ra:iec.d tc g.teat p~tentia.1 ad..:2r.t.age, bu.t n1<1ch

remains t•.) be done r:o make thit, a practicol ::·eality,

Whe.rE:.in lies the ad·ri:>ntagt:: .Jf FC over otrwr lan5udg2s? One might

attribate it to the fsacures which PC doesn't provicis. High-h.vel

langJages have pr0g~es~~d by £u~cefsively cr~nsfe:ring responsibilities

frcm the user t0 eh~ softwa::~ ~ngineer. 1he user is relieved of certain

machir11:::-,_,ri2ntsd t::,oks whi.c.h w:,u:id ms.ke his pr:cgram ~lum::;y to formulatE: and

diffi·:'.llt t.:, d<?bJg, Je.aving hiru i::1:e to concentrate on the problem-.::,riented

aspe.c.ts. On6 ~f the firsL ~~2h ca~ks to come und~r software control was

the mapping ~f d~ta into actJal machine addresses. La~er advances made

the early mdchic;.2-:nient~d c~n:ept -::f a goto 11::dun<lant (though still

widely used to Lhs d2trim:::.nt of c.le::.r prcgramming),

I b~lieve z .similar .oiL1:1tlJr, exists with ;.:ega.;~d t0 assignment (the

ability to ".ce-uf><.:: 11 3. varJ_ab}1:: ·.:o dencte more tha.n one vo:ue during the

coutse. 0i a c;;mp-;:;tati,.:m), Exp2~ience with ALGOL 68 ~~n~in2ed me that

true asslgnm2nt is rarely ~eeded, a.nd its av~idanc~ re&Glts in programs

which ar~ eaEier ta unde:s:and.

and it's ali th~ better tc; ic!

There ls of c:;ur:;2 no asaignment in PC,

' ..

24

Among the nic:: fe;:,t-ctc'S of PC which might be ,111.:nti::-r:co a..:f,:-

(1) one l~ng~sg2 tor p:~gram dnd data;

(2) the usJai tree dar&-6Lru~tures, but with a

beautifully na:~Lal waj t~ manipul~te them

via tha gener~liLy ot unification;

(3) no explicit distinction between input and outp~t

variables, ss rh_;;_':. a sin6 ~e predicate may tur.cti0n

oS se .. ;eral dif fe:eHt pr ,,,cedures.

As an illustration s-f th~ e"legdnce of PC programmingr ::.onsider the definition

of 'intersect' from App2ndix I :-

This simply makes p::·ec1-&1:: the nat·..:ral language statement tha:. ;'twJ 1-,ets

intersect if they h&;;e cin ·c•lf'me.:-;t ln comrn0n"" Th-2 d2t i:1i ti;.:.n is con-2e i.ved

before .;or,s~dt2tat:c,n is gi:en t0 it:s procedural a.,p2,.t.s ~cc- r,:)W it will be

used by the PRC~OC 5nr2rp=~tt~.

S1 and S:c, PROLOG will pr .:cEfd lo g2.ne:'.'&t:e nc.n-determl ::ii: d .. ~c:1-~ ly the sl2.ment.,

of S1 and then check t~ s2e whither th~y are ele~ents ~t S .. (ie. ,_
I -. I ' e Lcrr, 1 s

functioning as t~o dlEcinct pro~ed~res).

closeness cf PC tc natural language.

This E..xarnr,le: d~m.:n~t:ar.es the

quite natural wh:::;n PC ls gi.·,2n a p:;:-c.:edural in-.:·s,rpr.et2t.1.0r1u

An interesting &sp~ct of PC is the way cne set cf ~1~use3 really

represents an equi~al~nce ~ldss of different alg01ithms. For t:Xamp,e, i.n

Appendix I, if we interchd£g~ th2 two clauses for 1 dchi~~er, PROLCG gives

a diffe-.c2nt "·~ers1un" vf WARPLAN in whi.:h action$ are (f .i.rst) ins1:rtd. &s

far left as pc•ssible in tht .~u..:rent plan, ra.th,:·r cr1an tir st trying t.) tag

the new acti-:;;~ on tu the end .A a plan, Similarly, chan~ing the o~der of

literals in a. cle1t:se can prodJ.:.e ditferent but. .'.ea&onab.1e &lg.:,rithmso

A factor hindering the progn-:s.:; of AI set:1!13 tc, b2 thctt AJ p; -:.•grams are

not prod1.i::..ed in a ±urm suit::i.blt::: f,:,r ea::;y cump:rehen:o ion by h..:m""ns. Th.:

essential ideas ur,d2r1ying the pr~gram become obs'2ur2d when it is "~~)ded" "·

C0nseq~ently the progtam& thEru,elv~s are rarely p~b1:~hsd, but ar2 on~y

desc:-ibed~ leading i.-;e••·:;'..c,bly t,:, ,:agu2ness and amb::.gui·sy, A cast in point

is the lit~:.:·at-:.i'.!:'.e on STRIPS, which by ccmr,s.rison wi eh J,~.st: r,aper.:1 1.s a

model •)f clarity, ar,d yer.. th~ numbec of hour& I kn·::,w l ,rn3. c•·c:he:::-,:-; he.Vi! spc:11L

in arguing about "wh<Jt STRIPS ~:~ix do""s"

Pr:grams E.~:.:.i to be p,ib i.1shcd. F~r this cne 1~qairEs a 1angcage

with the simplicity and universality of PC. The 2Ln e:f prognrr:mi,1g

should be towards an idr,ai c.-f h 1 ;,;uty and c1:11 i t:y, A p[0grdm should not

have to be "explained" by fle,wcha~-ts or .in!:E:YSp(:rf.ed c-c,mmt:nls.

8. 2 Lc,gi c ir, Lo~i'::.

The WARPLAN ptcgn:m u::02.s FC terms t,_1 rE.pre~.snt conjen.::tionR of facts

(or godls). Thu3 the 0bj~cts of dis:ours2 iacludE. s2nc~nce6 uf logic.

In addition, rh>::.rs 1.s a one-t0-one c.::-r~·~sp:..nacr1ce bE::twe.2n plans &n::1 the
* p:roofs that thcs2 plan:.i &::h:i.-::'\e lhc desired g-:;..11.s • (Th2 "pr00C' of a

plan is, as in S~ction 7.6, a tree c~nstrucred frcm instances of 'acid'

axioms> 'can' ~xiou,s nnd irr:p:'..L:it ire-me a:..doms derived frL,m the 1 dE:i 1

Thus cbe terms representing plans can equally w2ll be said to

represent pror1t~ uf these pLms; the cbjt::ccs of dit.:ou:n,e ir..d ud2. proofs

of sentences ot lcgi~.

Accord.ir,g1y, WARPLAN ,T1::ly· be du;cr i..bca as a theor2m-pnJ,:f:c .:.mpleme;1t.cd

in a theorem-pro~er, (cf. f0r exdmple, an ALGOL c-:)mp:tler \n1tten 111 ALGOL.)

I believe this techniq~e may have c0nsider2bl2 potential and answers to som~

extent the criticism chat Higher Order Logic 1s need2d to express certa1n

problems.

8.3 The Utility 0f lnconsis~ency Tests 1n Planning

WARPLAN can m;;;ke effective ue:;e of negativE:: stc1tements about the worlcL

Typically tbese ata.tcm2c:t.;; oi ill,p•)ssib:'..lity reflct:'i: the "phy,:;;cs 11 ot the

w:•rld whereas the actions represen~ "engineering" in aC'.cordan,.:e: with this

physics. In pc,!'tJ.c.u}a:: the "delE.te li;,t" of an a.::tilm ought to be

comp•Jtable from a kn0wledg€ .:if the physics of the wocld, rather_ rban being

spelled out gxplicitly. (cf t~e 'del' facts ior the Machine Cud~

Generation pr:::blem in Appendix lI,3"2,)

The: positive and ne~ative dSPE:<:ts of problem stateme;:it and p".'oblem

solving merit further investigaticn. The &ystem DISPROVER of Siklo&sy and

Roach {15} t.rias tu sh:::w that a goal 1s an c~gineering impossibility wherea6.

WARPLAN can only look. fur physi,~J.1 impc:ssibilities. (A man c,n the Hoon

was an engineering i~possibility last century hut n0t a physical

*This requi~e~ent is the r0ct reascn why certdin a,:t1ona need parJmLters
wh-i-::h appedr "urme.:.cssa.1·y 11 ir0m th" STRlPS stancipoint" (SE.€ .:>(sCtLen 3)

26

impossibility, like perpetual m0tion; it only needed a few more operators

to be added to ~he world~)

8.4 The Frame Problem

The frame probl2m [12} {5} h~s frequently been cited as an arg~ment

against the use ~f "1.mi.form pro,.)f procedures", Since it 1s hard to

imagine a prcof procedure m•~n, "un~form" than PROLOG, :Lt is interesting

to consider whether ur nc,t the frame pr.:,blern arises when the WARPLAN

clauses are interpreted.

As Kowalski has poinced cu.:. {IO}, there are two aspe.:-:ts to the frame

problem as it -sppl iu, to the U 2d it ion::11 s:: t·..:ation c&lcuh s formulation,

The first {s the inc:onvsnie.:1c2 of having to explicitly ,;tate all the frame

axioms.

axicms.

The second is the pr-2blcm of inefficiency arising from the frame

The a:rproai::h to the fir;,t p::0blem in WARPLAN is much the same as 1.n

STRIPS. One specifie2 0nly ¾hich f~cts are deleted by an action and

assumes that all other facts ci:::e presE:Yved. Moreov2r, 1n WARPLAN, the

specification dcesn't ha~e to be ~xplicit - delete information may be

represented p~ocedurally. N:::tice h::,wever that frame axic•ms are still

used implicitly in WARPLAN' s deductic.ms. For example, the se-:ond 'holds'

clause in Appendix I is c.lea:cly a universal frame axicm which can become

instantiatEd to differen~ f{ame axioms for varicus actions.

The efficiency problem ls ta~kleJ by:-

(1) only using the fr&mE c1x1,0ms "top-·d.::,wn", and

(2) the ability t~ (impli~itly) insert frame axioms into

the proof of the cur1En~ partial plan.

The "top-down" use of a fra;ne axicm c~ntrasts with a "bottom-up" use 1n

which it is used to gener~te fa~ts about a new state. In WARPLAN a fact

about a state is only d~d~cej when needed from ths history of the state.

To see how WARPLAN inserts f·!a.m2 c:JXicms into a proof, consider say SL

resolution {7} operating with the goal state claus~ 0f a situation calculus

problem as top c!aus2. In c~n~elling,the selected literal, it has to ~hoose

between an "add" axiom .::,.c a frame a.l(iom, and the chcL:e is irrevocable

(without backtracking). ln the analagous situation in WARPLAN, only an

"add" axiom ccu1d be ::h,)Stn. later, and witho 1Jt backt'ra.cking, any number

27

of frame axicms could be insut2d between the negative goal literal and

the positive literal of the "add" axi0m.

There are still, however, difficulties which migi1.t be ascribed to the

frame probl~m, in particula~ the redundan2ies and inefficiencies in solving

a conjunction of goals relating to "independent st;b-worlds". I think it

is important to note that the frame pr·oblem is not peculiar to PC

formulations" There are analogues of frame axioms in all systems which

maintain a record of more than ~ne state or context with information

structure-shared between them.

28

APPENDIX I. LISTINc; OF THE PROGRAM.

NOTE: the labels "Pl:" etc. are referenced in Section 7 and are not

part of the program.

+ operator ('&', right to left, 1).

+ operator (';', left to right, 3).

P1: + plan (x & C,P,T,T 2) -/- solve(X,P.1T.1PuT 1)-plan(C,P1.1TuT 2),

pz: + plan (X.1P.1T.1T 1) -solve (X,P.,T.1P1.1T 1),

+ solve(X,P.1T.1P.1T) -always(x),

+ solve(X,P,T,P ,T) -holds(X.1T)-and (X,P.1P),
1 ' 1

+ solve(x...,P.,T,X&P.1T 1) -add(X.1U) -achieve(X.,U 1 P,T.1T 1),

- preserves (u,p)

- can (U.1 c)
- consistent (c, p)

- plan (c,P,T.1T 1)

- preserves (u.J p) I

A2: + achieve(X,U,P,T;Y.1T 1 ;V)

- preserved (X.1 y)

- retrace (P.1Y.1P 1)

- achieve (X,U.1P1.1T.1T1)

- preserved (X, V) ,

Hl: + holds(X.1T;V) -add (X,V),

H2: + holds(X,T;V) - /

- preserved (X.1 V)

- holds (X.1 T)

- preserved (x, v) I

H3: + holds(x.1T) -given (r,x),

+ preserved Cx.1 V) - mkground (x 81 V Jo.JN) - del (x, V) -!- fail.

+ preserved (x.1 V) I

+ preserves (u,x & c) - preserved (x,u)-preserves Cu1c) 1

+ preserves (u, true).

...

29

+ rE:trace (PJVJP 2)

- can (v Jc)

- retrace 1 (rJVJCJPl)

- append (cJ P, J P2)'
+ retrace 1 (x & p, V., c; p 1)

- add (y.,y)-equiv (xJy)~/-retracel (P.,V.,C.,P 1),

+ retrace 1 (x 8i PJVJc.,p 1)

- elem (YJc) - equiv (x.,Y) -/- retrace 1 (PJY.iCJPl),

+ retrace 1 (x & PJVJC.,X & p 1) -retrace 1 (PJVJC.,P 1),

+ retrace l (true, V., CJ true).

+ consistent (CJ P)

- mkground (C g P J O., N)

- imposs (s)

- unless (unless (intersect (c., s)))
- implied (SJC 8, p)

- I - fail.

+ CQfiSiStent (cJ p) I

+ plans (CJ T) - unless (c..onsistent (C, true))-!- output (impossible)-112wl ine,

+ plans (CJT)-plan(C,true,T.,T 1) -output(T 1) -newline.

+ and (xJpJp)-elem (yJp) -equiv (xJy)-/.
+ and (x.,PJX & p) I

+ append (x & CJ p J X & p l) -/- append (CJ p J p l) 1

+ append (xJ p J X & p) I

+ e 1 em (X J y & C) - e 1 cm (X J Y) ,

+ e 1 em (X J y & C) - / - e 1 em (X J C) ,

+ elem (xJ x) I

+ intersect (s1JS2)-elem (xJs1) -elem(x.,s2) 1

+ implied (s1& S uC) -/- implied <s1.,c) - implied <s21c) 1

+ implied (xJc) - clem (xJc) I

+ implied (x.,c) - X,

....

.rn

➔ E•qual (xJ x) I

+ ne,Lcqu&l (xJy) -culcb3 (eq0sl(XJY))

- ur.lles.,; (cq:rni ()(,qqq(N))))

- un1cu (1::quc:;l (y,qqq(N))).

+ e.quiv (XJY) -,un;_r.:::s~ (,.10ncquiv(X.,Y)).

·• ncinequiv (XJY) -mkg"t2und (X & yJOJN) ·- cqu:;.l (XJY) -/- tail

+ n:incqub (xJ y) I

+ mkgrcund(X.1N1JN) .. rr.~v (xJ' (F.1iJ) - mkgr~jU'i:'tdli.~-t(LJN),JN) 1

+ mkground1.ist (•(X1 L) 1 N11 NJ

-mkg-round (XJN 1 JN)

-mkgro'...indl i st (LJNvN),

+ mkgroundlist (nil ,N::.JN 1),

t unles,s (x) - X ·-/-fail•.

+ unles8 (X)o

31

A P P E N D I X II. TEST PROBLEMS

.1 First STRIPS World

.1.1 Description

.1. 2

The problem domain and its formalisation are essentially the

same as that given in the 0riginal STRIPS paper {3}. The chief

differences are that the delete lists and certain other facts are

represented procedurally and various "types" checks axe handled

automatically by the unification algorithm, The domain is of

interest for comparing the performance of WARPLAN witb similar

planning systems:-

System Implemented In Machine ------

WARPLAN PROLOG (interpreted IBM 360-67
in Fortran)

STRIPS LISP (partially compiled) PDP 10

' LAWALY LISP (interp:ceted) CDC 6600

The times quoted below are total CPU times. The STRIPS times

exclude garbage collection, PROLOG does no garbage collectio~

(although space is re~laimed on backtracking) as the implementation

is carefully designed to conserve storage. What weightings, if

any, to apply to the different figures seems to be largely a

subjective matter,

Database

+ add(at(robot,P), goto 1 (P J R)) .
+ add (nextto(robot,X), goto2(XJR)) .
+ add (next to (XJ Y) , pushto (XJ Y J R)) .
+ add(nextt.c (Y J X) , push to (XJ Y J R)) .
+ add(status(S,0n), turnon (s)) .
+ add (on (robot ,B), clirabon(B)) .
+ add (onfloor, c li1ab off (B)) .
+ add(inrcom(robot,R2), gothrn (D; R 1 J R 2)) .

32

+ del (at (xJz)Ju) -moved (xJu) I

+ del (nextt.o(z,robot) ,U) -/- del (next to (robot, z) JU).

+ del (next to (robot ,X) ,pushto(XJ y J R)) -/- fail.

+ del (nextto(robot,B), climbon(B))-/- fail.

+ del (nextto(robot,B) ,climboff (B))-/~ fail.

+ del (next to (xJ z) J LJ) - moved (x, u) I

+ del (nextto(zJX)Ju)-moved(X,U),

+ del (on (xJ z) J LJ) - moved (x, u) I

+ del (onfloor,climbon (B)).

+ del (inroom(robot,Z)tgothru (D,RlJR 2),

+ del (status(sJz),turnon(S)).

+ moved (robot,goto 1 (~, R)),

+ moved (robot, goto 2 (X, R)).

+ moved (robot,pushto(XJYJR)).

+ moved (X,pushto (XJ Y, R)) •.

+ moved (robot,climbon (B)).

+ moved (robot,climboff (B)).
+ moved (robot,gothru(D,R 1 ,R 2)) 0

+ can (goto 1 (p, R) J

locinroom (p, R) & inroom(robot ,R) & onfloor).

+ can (goto 2 (x, R),

inrocm (X, R) & inroom(robot ,R) g onfloor) •

+ can (pushto(XJY,R),

pushable (x) P-iinroom (y ,R) g inroom (X,R) &
next to (robot ,X) g onfloor).

+ can (turnon(lightsw1tch (s)),

on(robot:,box(l)) &nextto(box(l) ,U.ghtswitch(S))).

+ can (climbon(box(B)),

nextto(rc;bot,box(B)) ~1 on floor).

+ can (cl imboff (box (B)) ,

on(robot,box(B))) ,

+ can (gothru(D,R 1 ,R 2),

connects(DJRi,R.J? inroom(r,)bot,R 1) ~!

next to (1 obot ,D) & onfloor).

33

+ always (connects(D.,R.,R))-connectsl(D.,R ,R),
l 2 l 7.

+ always (connects (D,R JH)) -connects 1 (D,R ,R) ,
2 l l 2

+ always (inroom (D.1 R)) - always (connects (D, RJ R)) •
1

+ always (pushable (box (N))) •

+ always (loe:inroom (point (6) , room (4))) •

+ always (inroom (lightswitch (1), room (1))) •

+ always (at (lightswitch (1), point (4))) •

+ connects 1 (door(N) ,room(N) ,room (5)) - range (N,1,4).

+ range (M,M,N) I

+ range (M.,L,N) -notequal(L,N) -plus (L,l,L 1)-range (MJL 1 .,N)

+ given (strips 1 ,

+ given (strips 1,

+ given (strips 1,

+ given (strips 1 ,

+ given (strips 1,

+ given (strips 1,

room (1)

at (box (N),point(N))) -range (NJl,3),
a·t (robot, point (5))) ,

inroom (box (N), room (l)))-range (N,1,3),

inroom (robot,roorn (1))) •

onfloor).

status (lightswite:h (l), off)).

t oom (2) .room (3)
,,
room (4)

....
strips 1: lightswitch (1)

[~ox (12J lhiiW ,. point (6)

~ I box (~J]

---~-~
door (1) door (2) door (3) door (4)

i
..

room (5)

--------------------="""'"'--------J

34

• 1. 3 Problems

(1) status(lightswitch(l),on)

(2) nextto(box(l) ,box(2)) & nextto(box(2) ,box(3))

(3) at(robot,point(6))

Plan
length

4

4

5

(4) nextto(box(2) ,box(3)) & nextto(box(3) ,door(l)) &

status(lightswitch(l),on) &

next to (box (l), box (2)) & inroom(robot, room(2))

* :non-optimal solution

** :to produce a similar 15-step plan.

CUP time in sees.
WARPLA.'J STRIPS LAWALY -~-·•--,4--

9 65* 1.6

21 122 4.1

9 125 2.6

·+ : time to produce all but the last step, at which point, apparently,

an error in PROLOG caused the system to crash.

++ :solution produced by WAH.PLAN is:-

.LI¼ Coi:mnents

strips 1 ;

goto 2 (box(3) ,room(l)) ;

push to (box(3), door (1), room(l)) ;

goto 2 (box(2) ,room(l)) ;

push to (box(2), box(3), rootil(l))

goto 2 (box (1), room(l)) ;

pushto(box(l),lightswitch(l),room(l))

climb on (box (1)) ;

turnon(lightswitch(l));

climboff (box(l)) ;

*goto 2 (box(l) ,room(l))

pushto(box(l) ,box(2) ,room(l));

goto 2 (door (1) , room (1)) ;

gothru(door(l),room(l),room(S));

goto 2 (door(2) ,room(S)) ;

gothru(door(2) ,room(S) ,room(2))

The times quoted are for orderings of axioms, goals and action

preconditions exactly as above. Apart from the goals, and pre-

conditions of 'turnon', these orderings have been carefully chosen

to produce best results with the present depth-first search strategy.

35

It is interesting to note that, for this problem domain, there is

a single "natcral" order for action preconditions, ccrresponding

to the order in which one would expect them to be achieved. Thus

the preconditions for 'turnon' are not stated in the natural order

of:-

nextto(box(l) ,lightswitch (s)) ?, on(robot,box(l))

Nevertheless WARPLAN still manages to find the optimal solution to

'status(lightswitch(l),on)', unlike STRIPS.

In the solution for problem (4), WARPLAN generates the

superfluous step marked with an asterisk, owing to the flaw

mentioned in Section 5 concerning non-grO'..md terms •

• 2 A Version of the Keys and Boxes Problem (of D. Michie) .

. 2.1 Description

This is a substantially simplified version of a "benchmark test 11

of Michie { 11}.

inside outside

table box 1 box 2 door

The world comprises two areas 'inside' and 'outside'. There are

four distinct locations 'inside', namely 'table', 'box 1 1 , 'box 2 1 ,

'door'. There is a robot which is able to move about and transport

objects. If the robot attempts to pickup an object at a location,

all that can be ascertained is that it will be holding one of the

obj"ects, if any, at that location. In our simplified formulation,

the robot is only allowed to pickup an object if it is the only

object at a location. There are two actions 'go' and 'take'; (for

technical reasons, explained later, there are two versions of 'take').

The robot is only allowed to 'go' or 'take' something 'outside' if

both the objects 'key l' and 'key 2 1 are at the 'door'. In the

'

36

initial state 'key l', 'key 2', 'red l' are the only objects at,

respectively, 'box l', 'box 2', 'door' and nothing is at the 'table'.

The goal is to have 'red l' 'outside'.

,2.2 Database

+ operator('is',righttoleft,4).

+ operator('set' ,prefix,5).

+ operator('placed' ,prefix,5).

+ operator('only',prefix,5).

+ operator('at',righttoleft,6).

+ add(position l.S P,

+ add(X is placed Q,

+ add(set placed p 1. s nothing,

+ add(set placed Q is only X,

+ del(position is Z,
+ del(X is placed Z,
+ del (position is z,
+ del(set placed Q is z,
+ del (set placed p is z,

go (p)) .
take(XJ p J Q)) .
take(XJ p J 0)) .
takel(XJPJQ)) .

go (p)) .
take (XJ p J Q)) .
take(xJPJQ) 1) .
take (XJ p J Q)) .
take (XJ p J Q)) .

+ del(Z ,takel(XJPJQ)- del(Z,take(XJPJQ)).

+ can(

+ can(

+ can(

+ can(

go(inside at L)' true).

take (X, inside at L1 ,inside at L2),

set placed inside at Ll 1.S onlv X R, ., -·

position is inside at L1) . '
take 1 (X, inside at L1 , inside at L2),

set placed inside at L2 1.S nothing

set placed inside at Ll is only X
position is inside at Ll) .

take (X, inside at T outside)., ,LI,
set placed inside at L 1.S only X
position is inside at L 0

,)!

key 1 is placed inside at door g
key 2 1.s placed inside at door) •

+ a1vays (true).

~

g

~

...

37

+ given(start kb, set placed inside at table is nothing

+ given(start kb, set placed inside at box 1 l.S only key

+ given (start kb, set placed inside at box 2 l. s only key

+ given(start kb, set pl&ced inside at door is only re<l

+ irnposs(position is P & position is Q g p 1' Q) •

. 2.3 The Problem

- plans (red 1 is placed outside, startkh).

Ans: startkb;

Time:

. 2.4 Connnentary

go(inside at door);

take 1 (red 1, inside at door, inside at table);

go (inside at box 1);

take (key 1, inside at box 1, inside at door);

go (inside at box 2);

take (key 2, inside at box 2, inside at door);

go(inside at table);

take (red 1 , inside at table, outside)

29 sees •

) .
1) .
2) .

1) .

With the present depth-first search strategy, getting a solution

in an a~ceptable time was dependent on:-

(1) the right orderings of action preconditions etc.;

(2) omitting certain unnecessary axioms, e.g.

+ add (position is 0, take (X, P, Q)).

(3) a formulation using 'take' rather than 'pickup'

and 'letgo 1 •

The reason for the two versions of 'take' is that an action must have

a unique set of preconditions, and t.he effects of a 'take' depend on

the set of objects at the destination. This is symptomatic of an

oversimplification 1.11 \vARPLAi.~ which can and should be rectified.

38

.3 Machine Code Generation

.3.1 Description

.3.3

I invented the following example to demonstrate that the

system is general pu~pose.

area for future applications.

The example suggests an interesting

There is a very simple computer comprising an accumulator and

an unspecified number of general purpose registers. Th2re are

just four instructions 'load', 'store', 'add', 'subtract'. To

axiomatise the domain for WARPLAN, it was necessary to follow

each instruction in an assembly language program by a cor:1TI1ent.

The comment is introduced by '!' and states the value which

will be in the accumulator after the instruction has been executed.

Such comments are often needed by human programmers too!

Database

+ operator ('! ',righttoleft,4).

+ operator ('is' ,righttoleft,4).

+ operator ('+',lefttoright,S).

+ operator ('-' ,lefttoright,S).

+ operator ('load',prefix,5).

+ operator ('add' ,prefix,S).

+ operator ('subtract',prefix 5) •

+ operator ('store' ,prefix,5).

+ operator ('reg' ,prefix,5).

+ add (ace is V1+V2, add R v1 + V2) .
+ add (ace is V1 -V2, subtract R v1 -v2) .
+ add (ace 1.S V, load R V) .
+ add (reg R is V, store R V) .

+ del (ace 1. s z, u) - add (ace 1.S V, U) .
+ del (reg R is Z,U)- add (reg R is V, U) .

+ can (load R V, reg R is V) .
+ can (store R V, ace is V) .
+ can (add R Vl+V2, rez R is V s>, ace is Vl) .

2

+ can (subtract. R V1 -V2 , reg R is V g ac.c 1.S Vl ' 2
) .

39

+ given (init,

+ given (init,

+ given (init,

+ given (init,

reg 1 1.s cl) .

reg 2 1.s c2) •

reg 3 1.s c3).

reg 4 is cl+) •

.3.3 Problems

(1) - plans(ace 1.s (cl-c2)+(c3-c4), init).

Ans: init;

load 3 !c3;

subtract 4 !c3-c4;

store X1 !c3-c4;

load 1 !cl;

subtract 2 lcl-c2;

add X !(cl-c2)+(c3-c4)
l

(2) - plans(ace is (cl-c2)+(cl-c2), init).

Ans: init;

load 1 !cl;

subtract 2 !cl-c2;

store X1

add X ·
l

!cl-c2;

!(cl-c2)+(cl-c2)

(3) - plans(reg 1 1.s cl+(c2-c3) &
reg 2 is c2-c3 &
reg 3 is c4+c4, init).

Ans: init;

load 2 !c2;

subtract 3 !c2-c3;

store 2 !c2-c3;

load 1 !cl;

add 2 !cl+(c2-c3); ·

store 1 !cl+(c2-c3);

load 4 !c4;

add 4 !c4+c4;

store 3 !c4+c4

Time: 18 sec.s

...

40

(4) - plans(reg 1. is cl+(c2-c3) &
reg 2 is c2-c3 &
ace is cl, init).

Ans: init;

load 2 !c2;

subtract 3 !c2-c3;

store 2 !c2-c3;

load 1 !cl;

store Xl !cl;

add 2 !cl+(c2-c3);

store 1 !cl+(c2-c3);

load X1 !cl

Note. The first bran~h in WARPLAi~'s search space for this

problem is infinite. Interactive intervention to block this

branch resulted in the above solution being found without any

further assistance •

• 3. 4 Connnent s

Here WARPLAN is behaving as a simple "cornpiler-cornpiier" from

PC to machine code using a machine definition also written in PC.

It is interesting to note that a very uniform proof procedure·with

no special dornain-depend~nt heuristics can generate nicely

"optimised" code automatically, as first solution.

Of course, once again I have "cheated" slightly by taking

advantage of the freedom to order clauses and the terms in a

conjunction to get the best results.

41

A P P E N D I X III. SUMMARY OF PROLOG.

.1 Introduction

PROLOG is an elegant and powerful programming language developed at

the University of Marseille. It bears certain similarities with PLAN;'i;Q.

{6}. Alternatively, one may regard the PROLOG interpreter as an efficicct

PC theorem prover for problems renameable as Horn clauses. The present

system {l} is implemented partly in FORTR"i.N, partly in PROLOG itself,

and running on an IBM 360-67 achieves roughly 200 unifications per second.

(An earlier version of PROLOG is described in {2}.)

The features of PROLOG used in WARPLAN are summarised below. I have

modified the syntax in certain inessential respects to improve legibility

and to assist Anglo-saxon readers.

implemented foim are:-

The chief differences in the

(1) only upper-case is used, so variables are prefixed

by an '*' (asterisk);

(2) certain names (of evaluable predicates) are, of course,

their French equivalents (and may soon be changed any,vay).

.2 Syntax

The syntax is essentially the same as PC in clausal form.

Positive literals are preceded by'+', negative by '-'. The literals

of a clause are simply concatenated with no explicit sign for disjunction.

Each clause is terminated by a ' ' .
An identifier is either a sequence of alpha-numeric characters or a

single non-alpha-numeric character. Identifiers for variables commence

with an upper case letter; other identifiers denote predicates, functions

or constants according to context.

Certain functions may be specified as infix or prefix operators to

improve readability. Terms containing such functions are converted ta

the standard form on input and (nice point) are converted back on output.

An operator must be declared before it is first used, by an axiom of th2

form:-

,,

42

F is the name of the operator (function);

D is either 'prefix' or else specifies, for an infix operator,

the direction of association (default bracketing).

p is a number indicating the level of tI-ie operator in a

precedence hierarchy.

Thus using the operators specified in Appendix I and Appendix III.3.2, the

following terms are equivalent:-

reg 1 is cl+c2-c3 g reg 2 is c4 & ace is cl

reg 1 is (cl+c2)-c3 & (reg 2 is c4 g ace is cl)

& (is(reg(l) ,-(+(cl,c2) ,c3)) ,ei (is(rcg(2) ,et+), is(acc,cl)))

.3 Semantics

The "denotational" semantics is essentially the same as PC in clausal

form.

The "operational" semantics, or proof procedure of the PROLOG inter­

preter, is as follows. The interpreter attempts to cancel (by resolution)

the literals of a clause left-to-right, depth-first with backtracking.

When attempting to cancel a literal, the candidate complementary literals

are restricted to the leftmost literals of input clauses. The candidate

input clauses are tried in the order in which they appear in the list of

input clauses. Thus it is a linear inference system which may be described

as SL resolution {7}, without merging, or ancestor resolution, with leftmost

literal in a cell as selected, and with a depth-first search strategy.

There is no "occur check" in unification. (Ancestor resolution and

merging can be achieved by explicit prograilli"ner action.)

Certain predicates are defined as "evaluable", and behave as built-in

procedures (frequently with side effects):-

'/' (slash): when this predicate is cancelled, it ha!'; the effect of

prohibiting backtracking on any choices since (and incleding)

the time the literal complementary to the leftmost literal in

the input clause containing the '/' was cancelled. Thus it

makes the choice of the current clause deterministic.

'plus (XJ y J z) ' • adds the integers X and Y to yield result Z.

I output (x) I. prints the term X on the user Is term:i.::al I

43

'newline': causes a new line to be started on the user's terminal.

'univ (XJ y)' takes a term X and returns a list Y of which the first

element is the name of the principal function of X (represented

as a list of characters), and the rei:1aini11g elements are that

function's arguments in X. A list is constructed from the

function I I and constant 'nil' just as LISP uses CONS and NIL.

e.g:-

univ (fun (a, X, foo(Y)) ,

. (. (f, . (u, • (n,nil))),

.. (a'

(x,

(foo (y).,nil)))))

or given that '.' is declared as a right-to-left infix operator:­

univ (fun (a, X, foo (y))?

(f.u.n.nil) .a. X • foo (y) .nil)

A variable may appear in place of a literal in a clause. This is

analagous to allowing procedures to be a data-type in other programming

languages. For an example of its use, see 'unless' in Appendix I.
•,

44

ACKNOWLEDGENENTS

to Professor Donald Michie, my superviser, for encouraging me to

work on theorem provers and robot planning;

to Austin Tate, who is working on sitr.ilar problems, for much

stimulating exchange of ideas;

to Philippe Roussel, Bob Pasero, Alain Colmerauer and other rt1embers

of the Groupe d'Intelligence Artificielle, Marseille, for

their hospitality~ both personal and professional;

and especiallr

to Robert Kowalski, my second superviser, from whom I first learnt

the wonders of Predicate Calculus as progra111.ming language,

for his help and encouragement and for arranging for me to

visit Marseille.

I have obviously drawn heavily on the ideas of Cordell Green and

the designers of STRIPS.

The work was supported by an SRC research studentship.

to Marseille was financed under a NATO grant.

My visit

45

REFERENCES

· {1} Battani, G. and Melani, H.

'Interpreteur du langage de prograrnmation PROLOG'.

Universitl d'Aix Marseille, 1973.

· {2} Colmerauer, A., Kanoui, H., Pasero, R. and Roussel, P.

'PRO OG ' d . . h h. L : Un systeme e commun1.cat1.on .ornme-mac 1.ne en

francais'.
!>

Universitt d'Aix Marseille.

{3} Fikes, R.E. and Nilsson, N.J.

'STRIPS: A new approach to the application of theorem

proving to problem solving'.

Proceedings of IJCAI 2, pp. 608-620, 1971.

· {4} Green, C.

'Application of theorem proving to problem solving'.

Proceedings of IJCAI 1 , pp. 219-239, 1969.

· {S} Hayes, P.

'A logic of actions'.

Machine Intelligence 6, pp. 495-520, Edinburgh, 1971.

· {6} Hewitt, C.

'Description and theoretical analysis of PLANNER'.

AI Memo 251, MIT, 1972.

· {7} Kowalski, R. and Kuehner, D.

'Linear resolution with selection function'.

Artificial Intelligence 2, pp. 227-260, 1971.

{8} Kowalski, R.

'Predicate Logic as programming language'.

DCL Memo 70, University of Edinr rgh, 1973.

· {g} Kowalski, R.

'A proof procedure using connection graphs'.

DCL Memo 74, University bf Edinburgh, 1973.

•,

46

· {lo} Kowalski, R.

'Logic for problem solving'.

DCL Memo 75, University of Edinburgh) 1974 •

. {11} Michie, D.

'On Machine. Intelligence',

pp. 149-152, Edinburgh, 1974 .

. {12} Raphael, B.

'The frame problem in problem solving systems'.

in Artifidal Intelligence and Heuristic Programming,

pp. 159-169, Elsevier 1971,

· {13} Sacerdoti, E.D.

'Planning in. a hierarchy of abstraction spaces'.

Proceedings of IJCAI 3, pp. 412-422, 1973.

· {14} Siklossy, L. and Dreussi, J.

'An efficient robot planner which generates its own procedures'.

Proceedings of IJCAI 3, pp. 423-430, 1973 •

. {IS} Siklossy, L. and Roach J.

'Proving the impossible is impossible is possible: disproofs

based on hereditary partitions'.

Proceedings of IJCAI 3, pp. 383-392, 1973.

· {16} Sussman, G.J.

'HACKER: A computational model of skill acquisition'.

Ph.D. Thesis, MIT, 1973.

..

	Contents
	Abstract
	Preface
	1. Introduction
	2. The 3 Blocks Problem
	3. Specifying a Problem
	4. A 5 Blocks Problem and Its Solution
	5. Implementation of the System
	6. Deficiencies of the System
	7. Completeness and Irredundancy
	8. Conclusions
	Appendix I. Listing of the Program
	Appendix II. Test Problems
	Appendix III. Summary of Prolog
	Acknowledgements
	References

