
The Engine-Scheduler Interface in the Aurora
Or-Parallel Prolog System*

Peter Szeredit
Department of Computer Science

University of Bristol, Bristol BS8 1 TR, U.K.

Mats Carlsson
Swedish Institute of Computer Science

P.O. Box 1263, S-16428 KISTA, Sweden

Abstract

Aurora is a prototype or-parallel implementation of the full Prolog language for
shared memory multiprocessors, based on the SRI model of execution. The two major
components of Aurora are the engine, which is responsible for the actual execution of
the Prolog code, and the scheduler, which provides the engine component with work.
This report describes the interface between the engine and scheduler components of
Aurora.

The practical purpose of the interface is to enable different engine and scheduler
implementations to be used interchangeably. The development of the interface has,
however, contributed in great extent to the clarification of basic concepts in exploiting
or-parallelism in Prolog. We believe that these issues are relevant to a wider circle of
research in the area of or-parallel implementations of logic programming.

Keywords: Or-Parallel Execution, Multiprocessors, Implementation Techniques,
Scheduling.

1 Introduction

Aurora is a prototype or-parallel implementation of the full Prolog language for shared
memory multiprocessors, currently running on Sequent and Encore machines. It has been
developed in the framework of the Gigalips project [10], a collaborative effort between
groups at the Argonne National Laboratory in Illinois, the University of Bristol (previously
at the University of Manchester) and the Swedish Institute of Computer Science (SICS) in
Stockholm.

•This report is an extended version of a paper submitted for the North American Conference on Logic
Programming 1990.

I On leave from SZKI, Donati u. 35-45, Budapest, Hungary.

1

The issue of defining a clear interface between the engine and scheduler components of
Aurora was raised in the early stages of the implementation effort. Ross Overbeek made
the first attempt to formulate such an interface and Alan Calderwood produced the version
[4] used in the first generation of Aurora (based on SICStus Prolog version 0.3).

A fundamental revision of the interface was necessitated by several factors. Performance
analysis work on Aurora [12] has shown that some unnecessary overheads are caused by
design decisions enforced by the interface. Development of new schedulers and extensions
to existing algorithms required the interface to be made more general. The Aurora engine
has also been rebuilt on the basis of SICStus Prolog version 0.6.

The new interface, described in the present report, is part of the second generation of
Aurora. The major changes with respect to the previous interface are the following:

• execution is governed by the engine, rather than the scheduler;

• the set of basic concepts has been made simpler and more uniform;

• several potential optimisations are supported;

• the interface is extended to support transfer of information related to pruning opera­
tors [8].

The report is organised as follows. Section 2 summarises the SRI model and defines the
necessary concepts. Section 3 gives a top level view of the interface. Section 4 presents the
data structures involved in the interface, while Sections 5 and 6 describe engine-scheduler
interactions in various phases of Aurora execution. Section 7 shows the extensions: handling
of pruning information and various optimisations. Section 8 discusses the major issues
involved in implementing the engine side of the interface. We end with a short concluding
section.

A complete description of the interface is included in the Appendix.

2 Preliminaries

Aurora is based on the SRI model [13]. According to this model the system consists of several
workers (processes) exploring the search tree of a Prolog program in parallel. Each node of
the tree corresponds to a Prolog choicepoint with a branch associated with each alternative
clause. A predicate can optionally be declared sequential by the user, to prohibit parallel
exploration of alternative clauses of a predicate. Corresponding nodes are also annotated
as sequential. All other nodes are parallel.

As the tree is being explored, each node can be either live, i.e. have at least one unexplored
alternative, or dead. A node is a fork node if there are two or more branches below it;
otherwise, it is a nonfork node. A fork node cannot be sequential. Live parallel nodes,
and live sequential nodes with no branches below them, correspond to tasks that can be
executed by workers. Each worker has to perform activities of two basic types:

• executing the actual Prolog code;

2

• finding work in the tree, providing other workers with work and synchronising with
other workers.

In accordance with the SRI model each worker has a separate binding array, in which it
stores its own bindings to potentially shared variables (conditional bindings). This technique
allows constant time access to the value of a shared variable, but imposes an overhead of
updating the binding arrays whenever a worker has to move within the search tree.

The or-tree is divided into an upper, public, part accessible to all workers and a lower,
private, part accessible to only one worker. A worker exploring its private region does not
have to be concerned with synchronisation or maintaining scheduling data; it can work
very much like a standard Prolog engine. The boundary between the public and private
regions changes dynamically. It is one of the critical aspects of the scheduling algorithm to
decide when to make a node public, allowing other workers to share work at it. Normally
the worker will make his sentry node, i.e. his topmost private node, public when all nodes
above it have died, i.e. have no more alternatives to explore. This means that each worker
tries to keep a piece of work on its branch available to other workers.

The exploration by a worker of its private region constitutes that worker's assignment,
which normally terminates if the worker backtracks into the public part. The assignment
terminates prematurely if the branch is suspended, or if it is pruned by some other worker.

There are three pruning operators currently supported by Aurora: the conventional Prolog
cut, which prunes all branches to its right and a symmetric version of cut called commit,
which prunes branches both to its left and right. A cut or a commit will not go ahead if
there is a chance of being pruned by a cut with a smaller scope. The third type of pruning
operator is the cavalier commit which is executed immediately, even if endangered by a
smaller cut. The cavalier commit is provided for experimental purposes only, it is expected
to be used in exceptional circumstances, for operations similar to abort in Prolog. Work
done in the scope of a pruning operator is said to be speculative.

Suspension is used to preserve the observable semantics of Prolog programs executed by
Aurora: when a built-in predicate with some side-effect is reached on a non-leftmost branch
of the search tree, or when a pruning operator is reached on a branch which could be
pruned by a cut with a smaller scope, the execution must be suspended. Furthermore the
scheduler may decide to suspend the current branch when less speculative work can be done
somewhere else in the tree.

Four separate schedulers are currently being developed for Aurora. The Argonne scheduler
[3] relies on data stored in the tree itself to implement a local strategy according to which live
nodes "attract" workers without work. When several workers are idle they will compete
to get to a given piece of work and the fastest one will win. The Manchester scheduler
[5] tries to select the nearest worker in advance, without moving over the tree. It uses
global data structures to store some of the information on available work and workers. The
wavefront scheduler [2] uses a special distributed data structure, the wavefront, to facilitate
allocation of work to workers. The Bristol scheduler [1] tries to minimise scheduler overhead
by extending the public region eagerly: sequences of nodes are made public instead of single
nodes, and work is taken from the bottommost live node of a branch.

3

3 The Top Level View of the Interface

The principal duty of the scheduler is to provide the engine with work. The thread of
control thus alternates between the two components: the engine executes a piece of Prolog
code, then the scheduler finds the next assignment, passes control back to the engine, etc.
A natural way of implementing this interaction is to put the scheduler above the engine:
the scheduler calls the engine when it finds a suitable piece of work to be executed and
the engine returns when such an assignment has been finished. In fact this scheme was the
basis of earlier interfaces in Aurora (4].

We use a different approach in the current version of Aurora. The execution is governed by
the engine: whenever it finishes an assignment, it calls an appropriate scheduler function
to provide a new piece of work. The advantage of this scheme is that the environment for
Prolog execution (e.g. the set of WAM-registers) is not destroyed when an assignment is
terminated and need not be rebuilt upon returning to work. This is of special importance for
Prolog programs with fine granularity (i.e. small assignment size), where switching between
engine and scheduler code is very frequent (12].

Figure 1 shows the top view of the current interface. This is centered around the engine
doing work. All the other boxes in the picture represent scheduler functions called by the
engine. Note the convention that the names of all scheduler functions are prefixed with
'Sched_ 1 •

The functions shown in Figure 1 are arranged in three groups:

• finding work (left side of Figure 1);

• communication with other workers during work (lower part of Figure 1), e.g. when
cuts or side effect predicates are to be executed;

• certain events during work that may be of interest to the scheduler (right side of
Figure 1), e.g. creation and destruction of nodes.

The four boxes on the left of Figure 1 represent the so called functions for finding work:

Sched...Start_Work is used to acquire work for the first time, immediately after the initial­
isation of the worker;

Sched.l>ie...Back is called when the engine backtracks to a public node;

Sched...Be_Fruned is invoked when the worker's current branch is pruned off by another
worker;

Sched...Suspend is called when the worker has to suspend its current branch.

These functions differ in their initial activities, but normally continue with a common
algorithm for "looking for work" (see Section 5). This algorithm has two possible outcomes:
either work is found, or the whole system is halted. Correspondingly each of the functions
for finding work has two exits: the normal one (shown on the right side of the function

4

Start

Sched_Start_Work M---1 Sched Node Created

Sched Die Back

Work

Sched Be Pruned

Sched_Suspend

Finding work

Schad Prune

Communication with other workers

Halt

Figure 1: THE TOP LEVEL VIEW OF THE INTERFACE

5

Sched_Node_Reused

s._Node_Destroyed

s._Clause_Entered

• • •
Events of interest
to the scheduler

boxes in Figure 1) leads back to work, while the other exit (left hand side) leads to the
termination of the whole Aurora invocation.

The next group of interface functions provided by the scheduler is depicted at the bottom
of Figure 1. These functions are called during work, when the engine may require some
assistance from the scheduler (mainly in order to communicate with other workers):

Sched_Frune - when a cut or commit is executed;

Sched..Synch - when a predicate with side effects is encountered;

Sched_Check - at every Prolog procedure call (to check for interrupts).

The above functions have three exits. The normal exit (depicted by upwards arrows in
Figure 1) leads back to work. The other two exits correspond to premature termination of
the current assignment, when the current branch has been pruned or has to suspend (left­
ward and downward arrows). In both cases the engine will do the housekeeping operations
necessary for the given type of assignment termination, and proceed to call the scheduler
to find the next assignment. See Section 6 for a more detailed description of the functions
for communication with other workers.

The third group of functions shown in Figure 1 (right hand side) corresponds to some
events during work that may be of interest to the scheduler. A common property of
this group is that the interface does not prescribe any specific activity to be done by
these functions: the scheduler is merely given an opportunity to do whatever is needed
for maintaining its data structures. As an example, Sched...Node_Created (and the cor­
responding Sched...Node..Destroyed) can be used to keep track of the presence of parallel
nodes in the private region-as a prospective source of work for other workers. Similarly
Sched_Clause...Entered can be utilised for maintaining information about the presence of
pruning operators in the current branch (see Section 7 .2).

There are further groups of scheduler functions, not shown in Figure 1. These are used in
the initialisation of the whole system, in handling keyboard interrupts (Section 7.3), and in
the implementation of certain optimisations (Section 7.1).

The engine side of the interface consists of several groups of functions that support the
scheduler algorithm:

• providing access to certain data structures (nodes and alternatives) maintained by the
engine,

• extending the public region on the current branch of execution,

• positioning the engine (i.e. the binding array) in the search tree, while looking for
work,

• notifying the engine of certain events, e.g. work being found.

The data structure aspects of the engine interface are presented in Section 4. Other interface
functions provided by the engine will be described in Sections 5 and 6.

6

4 Common Data Structures

The engine is responsible for maintaining the node stack, a principal data area of major
importance to the scheduler. The engine defines the node data type, but the scheduler is
expected to supply a number of fields to be included in this structure for its own purposes.

Among the node fields defined by the engine, some are of interest to the scheduler. Access
functions for these fields are provided in the interface:

Node.1.evel - the distance of the node from the root of the search tree,

Node_Farent - a pointer to the parent node in the tree,

Node..Al ternati ves - a pointer to the next unexplored alternative of the node.

The scheduler-specific fields of the node data structure normally include pointers describing
the topology of the tree. For example, most schedulers will have fields storing a pointer to
the first child and the next sibling of a node.

An additional common static data structure, the alternative, is introduced to allow the
schedulers to keep static data related to clauses. This data structure is used in the Aurora
engine to replace the 'try' , 'retry' and 'trust I instructions of WAM (7). Each clause
of the user program is represented by an alternative, which stores a pointer to the code of
the clause and a pointer to the successor alternative, if any. If a predicate is subject to
indexing, the compiler may create several chains of alternatives to cater for different values
in the indexing argument position. This means that several alternatives can refer to the
same clause.

The scheduler may supply a number of fields to be included in the alternative structure,
to accommodate any (static) information to be associated with clauses. The scheduler can
derive this data from the information supplied by the engine when alternatives are created
(Sched..Alternative_Created). There are two types of static data supplied by the engine:

• information about sequential predicates-this information is normally stored in each
alternative of the predicate.

• pruning information-data on the number of pruning operators (cuts, commits and
conditional expressions) contained in the clause or the predicate (see Section 7.2).

The only engine field in the alternative structure that is of interest to the scheduler is
the one pointing to the successor alternative (Alternative..Next). This field is used, for
example, when the scheduler starts a new branch from a public node and needs to advance
the next alternative pointer of the node.

5 Finding Work

Figure 2 shows the engine functions used by the scheduler while it is looking for work. The
actual algorithms of the four functions for finding work will normally differ, but they all
use the same set of engine support functions.

7

Scheel_ Start_ Work

Sched_Die_Back

Sched_Be_Pruned

Sched_Suspend

Mark Node Reclaimable - -

Al.locate_Node(SEN'l'RY)

······-··-···························· .. ···
Al.locate Foreign Node iO-····

............... - {SENTRYt.J-··

look
for
work

Found_New_Work(SENTRY) Found_Resumed_Work

Move_Engine_Up

Move_Engine_Down

Normal exit Halt

Figure 2: ENGINE FUNCTIONS IN LOOKING FOR WORK

8

Functions Move..Engine_Up and Move..Engine.J)own, shown on the right hand side of Figure 2,
instruct the engine to move the binding array up or down the current branch. Initially, the
binding array is positioned at or below the youngest public node on the branch. Before
returning, the scheduler has to position the binding array above the new sentry node.

Different schedulers employ different strategies in moving over the tree. The Argonne
scheduler moves node-by-node, when approaching the potential work node. Other sched­
ulers locate a piece of work from a distance and move the engine to the appropriate place
in a few big jumps.

There is no need to move the engine if work is taken from the parent of the old sentry node.
An additional entry point to the scheduler, Sched_GetJfork...At_Farent (see Section 7.1),
has been provided for this special case.

The left hand side of Figure 2 shows the engine functions for memory management of the
node stack. A worker may have to remove some dead nodes from the tree as it moves up­
wards. This involves deleting these nodes from the scheduler data structures (normally the
sibling chain) and invoking the Mark..Node...Reclaimable engine function. As a special case,
the old sentry node will have to be deleted from the tree at the beginning of Sched.J)ie..Back
and Sched..Be_Fruned.

When the scheduler decides to reserve a new piece of work from a live public node (work
node), it has to create a sentry node for the new branch. This involves calling the
Allocate..Node function, which first removes all the nodes that have been marked as re­
claimable from the top of the worker's stack and then allocates a new sentry node. The
related Allocate..Foreign..Node function is used if another worker allocates a node on the
stack of the worker looking for work. This is used in the Manchester scheduler to implement
handing work to an idle worker.

The new sentry node serves as a placeholder for the new assignment. The scheduler inserts
the sentry into the search tree and simultaneously reserves an alternative to be explored by
the new branch (by reading and advancing the Node...Al ternati ves field of the work node).

The bottom part of Figure 2 shows the possible exit paths from the functions for find­
ing work. The actual work found can correspond either to a new branch or to a branch
which was hitherto suspended and can be resumed now. Functions Found..New_Work and
Found-Resumed_Work are used to notify the engine about the type of the work found, and
to supply the new sentry node. The box for Found..New_Work in Figure 2 shows the SENTRY

argument to highlight the fact that this argument should be the same as the one returned
in Allocate- .. Node.

6 Communication with Other Workers

The need for communication with other workers arises when a pruning operator or a built­
in predicate with side effects is to be executed. In addition, a periodic check is needed to
examine if there are communication requests from other workers.

The Sched_Frune function is invoked when a pruning operator is encountered. At this
moment the engine has already executed the private part of the pruning. The scheduler
receives a pointer to the cut node (showing the scope of pruning) and an argument indicating

9

the type of the pruning operator (cut, commit or cavalier commit). It has to check if the
preconditions for pruning are satisfied: the current branch should not be pruned itself, and,
except for the cavalier commit, it should not be endangered by cuts with a smaller scope,
as discussed in (8]. The latter condition can be replaced by a requirement for the branch
to be leftmost in the subtree rooted at the child of the cut node, if the scheduler does not
maintain specific pruning information.

If the preconditions of pruning are not satisfied, Sched_Frune uses one of the abnormal
exits (cf. Figure 1) to indicate that the branch has been killed or that it has to suspend
(waiting to become leftmost). If the pruning operation can go ahead, the scheduler has
to locate the workers that are in the pruned subtree and interrupt them. There may be
branches in this subtree which have previously been suspended. A special engine function,
Mark...Suspended...Branch...Reclaimable, is used for cleaning up such branches.

The Sched...Synch function is invoked when a call to a built-in predicate with side-effects
is encountered. Normally such calls are executed only when their branch becomes leftmost
in the whole tree. There are, however, some special predicates (e.g. those used to assert
solutions in a bagof), for which the order of invocation is not significant: their execution can
go ahead if not endangered by a cut within a specific subtree. The Sched...Synch function
receives an argument encoding the type of the check needed, and a pointer to the root of
the subtree concerned.

The third communication function, Sched_Check, is called at every Prolog procedure call.
Frequent invocation of this function is necessary so that the scheduler can answer requests
(e.g. interrupts) from other workers without too much delay. Note, however, that a sched­
uler may choose to do the checks only after a certain number of Sched_Check invocations
(as is the case for the Manchester and Argonne schedulers).

The nature of requests to be handled by Sched_Check varies from scheduler to scheduler.
There are, however, two common sets of circumstances: the worker may be requested to kill
its assignment or to make some of its private nodes public (to make work available to other
workers). The latter activity needs assistance from the engine: the function Make_Fublic
extends the public region on the current branch down to a specified node.

7 Extensions of the Basic Interface

7 .1 Optimisations

This section describes two important optimisations supported by the interface: simplified
backtracking and bypassing.

When a worker backtracks to a live public node and is able to take a new branch from
there, several administrative activities can be avoided. The sentry node can be re-used,
rather than being marked as reclaimable and re-allocated. There is scope for a related
optimisation in the scheduler: instead of deleting the old sentry from the sibling chain and
then installing it as the last sibling, the scheduler can move the sentry node to the end of the
sibling chain (or do nothing if the old sentry was the last child). The interface supports this
important optimisation by a function Sched_Get_Work...At_Farent, called when the engine
backtracks to a live public node. If the scheduler, following the necessary synchronisation

10

operations, still finds the node to be live, it can reserve an alternative from that node. If
the scheduler cannot take work from the node in question, it returns to the engine, which
will subsequently invoke Sched...Die...Back to acquire a new piece of work.

The Sched_Get_Work..At_Farent function also supports the contraction operation of the SRI
model [13]. This operation removes a dead nonfork node after the last alternative has been
taken from it. The node in question can be physically removed only if it is on the top of the
stack of the worker executing the given branch. The engine informs the scheduler whether
this last condition applies by passing an argument to Sched_Get_Work..At_Farent. If the
scheduler decides to apply contraction, the public node from which the last alternative has
been taken becomes the new sentry node.

If the last alternative is taken from a nonfork node, but the node in question is on another
worker's stack, then the node cannot be fully reclaimed. This is because the segments
of other WAM stacks (environment, heap and trail) that correspond to the node are still
required, until the given branch of the tree finally dies back. As the memory management
of stacks relies on the node stack, such dead nonfork nodes have to remain in the search
tree, as viewed by the engine.

A similar situation arises when a worker dies back to a dead node leaving just one other
branch below. The SRI model envisages that this dead nonfork node can now be removed
from the tree (straightening). In Aurora, the effect of straightening and contraction can
be achieved by bypassing the dead node, provided the scheduler maintains its own notion
of parent, different from that of the engine. This means that a new node field, the by­
passed parent, has to be introduced by the scheduler. This field is initialised to be equal to
Node_Farent, but is subject to change if bypassing is applied.

Bypassing may be required in the private region, when remote nodes (i.e. nodes on other
workers' stacks) are cut or trusted. Such remote nodes are created when a worker resumes a
branch that has been suspended by another worker. The Sched..Node...Destroyed function,
which is called whenever a private node is exhausted, receives an additional argument to
indicate whether the engine is able to reclaim the node in question. This makes it possible
for the scheduler to perform the bypassing operation in the private region, if necessary.

Two further functions are related to bypassing in the interface. The scheduler in­
forms the engine whenever a node has been bypassed and is not needed any more
(Mark..Node...Bypassed). It also supplies a function for accessing the bypassed parent field
in nodes (Sched..Node...Bypassed_Farent), which may be of use to the engine.

An issue related to bypassing is that of the implementation of the Node_Farent field of
nodes. The engine offers two alternative representations for Node_Farent: a faster one (the
default) and a more compact one. If a scheduler does perform bypassing, it will use the
engine's Node_Farent field only to initialise its own bypassed parent field, so it will normally
select the compact representation. On the other hand, non-bypassing schedulers will use
the default, fast implementation.

7.2 Pruning Information

Information about the presence of pruning operators in a clause may be needed by the
scheduler to perform pruning more efficiently or to distinguish between speculative and

11

non-speculative work. Various algorithms related to pruning have been developed and
discussed in [8]. When designing the interface, we tried to generalise and extend the format
of pruning data as described in [8], so that other possible approaches (e.g. [11]) can be
supported as well.

If one disregards disjunctions, the information needed about pruning is quite simple. A
scheduler may wish to know whether a clause contains cuts or commits 1 • For more exact
pruning algorithms the number of occurrences of each pruning operator may be needed.
The fact that a clause must fail, may also be of interest: when such a clause is entered,
the pruning operators in the current continuation (i.e. in the previous resolvent) become
inaccessible. The simple set of pruning data would thus consist of three items for each clause:
the number of cuts, the number of commits and the Boolean value indicating whether the
clause ends in a failing call (i.e. fail, but in the future, global compile time analysis might
discover this property for other calls).

The presence of disjunctions makes the situation more complicated. The Aurora compiler
[6] replaces all disjunctions by so called internal predicates, with a clause formed from each
disjunct. This transformation has special significance from the point of view of pruning,
as any conditional expression (. .. IF -> THEN ...) is transformed to an expression con­
taining a cut to the internal predicate. Note that the THEN part may contain cut or
commit operators which prune the whole original user predicate. Thus pruning operators
with different scopes can be present in a single (internal) clause.

Another complication stems from the fact that there are several possible execution paths
through a clause containing a disjunction, making it impossible to predict the exact number
of pruning operators to be encountered in a clause. As schedulers will mainly be interested
in knowing whether a branch is endangered by cuts or commits, data on the maximal
number of cuts and commits in a clause seems to be a suitable substitute.

Several algorithms in [8] involve maintaining a counter that shows the maximal number
of outstanding pruning operators in the current resolvent. When an internal clause (i.e. a
disjunct) is entered, this counter has to be adjusted by the difference between the number
of operators _assumed for the whole internal predicate and the actual data for the given
clause. Pruning data for internal clauses will thus include the maximal number of cuts and
commits in the whole internal predicate (of which the clause in question is a member).

The set of pruning data is completed by three Boolean values which indicate whether the
clause in question is internal, whether it is a conditional expression (relevant to internal
clauses only) and whether it ends in a call to fail.

A formal definition of the pruning data is given in the Appendix.

Maintaining a counter of outstanding pruning operators is facilitated by several interface
functions. The pruning data supplied by the engine is stored by the scheduler in the alter­
native data structure (Sched...Al ternati ve_Created). A pointer to the selected alternative
is passed to Sched_Clause-Entered, allowing to adjust the counter as needed. The counter
has to be decremented when a pruning operator is executed (Sched_Frune), saved in the
node being created (Sched..Node_Created), and restored when control backtracks to a node
(Sched..Node..Reused and Sched..NodeJ)estroyed).

1 Note that data on cavalier commits is not included in the pruning information, as this operation is
expected to be used only for handling exceptional circumstances,

12

7.3 Related Interfaces within Aurora

There are some further interfaces within Aurora, loosely related to the interface between
the engine and the scheduler. There are two groups of functions, for locking and for shared
memory management. Both groups are defined by the engine in the present implementation,
and are used by both the engine and the scheduler side.

There is also a RIO (remote input/output) package [9], that allows multiple processes
(workers) to read/write the same file and handle keyboard interrupts. The RIO package
is embedded in the engine; the only issue that affects the scheduler is interrupt handling.
When a keyboard interrupt is received, the engine asks the scheduler to block the execu­
tion of all workers (Sched...Block), while the user is being asked what to do. If the user
requests an abort, the scheduler is required to kill all the workers and die back to a specified
node (Sched..Abort). If the user wants the execution to continue, the scheduler is notified
accordingly (Sched_Unblock).

8 Implementation Aspects of the Interface

The Aurora emulator [7] was produced by modifying the SICStus emulator to support the
SRI model and by converting it from a stand-alone program to an Aurora worker component
connected by an algorithmic interface to a scheduler component. The total performance
degradation resulting from these changes has been found to be around 25%. In an earlier
paper [10] we gave an overview of the changes imposed by the SRI model. In this section
we concentrate on the impacts of the interface on the engine and on changes introduced in
the new design.

8.1 Boundaries

The engine needs to maintain the boundary between the public and private regions. Within
the private region, it must distinguish between local nodes, i.e. nodes adjacent to the top
of the worker's own stack, and remote nodes. This is achieved by storing a pointer to
the respective boundary nodes in certain registers. These registers are initialised when an
assignment is started (Found ... Work). They are updated when the public region is extended
(MakeYublic) or contracted (Sched_Get_Work..AtYarent), and when backtracking in the
private region winds back to the worker's own stack. They are consulted to distinguish
different cases of backtracking and pruning operations.

The algorithm for computing the top of the environment stack has to ensure that new
environments are allocated in the current worker's stack even if the current environment is
in another worker's stack.

8. 2 Backtracking

From the engine's point of view, the main complication of or-parallel execution is its impact
on the backtracking routine. This routine has to check whether it is about to backtrack
into the public region, in which case the scheduler must be invoked to perform public

13

backtracking (SchedJ)ie..Back or Sched_Get_Work...At_Farent). Private backtracking has
to face the complication that the private region may extend to other workers' stacks, and
possibly wind back to the worker's own back again. As explained earlier, remote nodes
cannot be reclaimed when they are trusted; instead, Mark..Node-Reclaimable is invoked
when dying back over a remote node.

Shallow backtracking is optimised in the private region, but only if the current node is on
the top of the worker's own stack.

8.3 Memory Management

As stated earlier, the stack memory management relies on the node stack. While finding
work, each worker maintains a pointer to the youngest node that has to be kept for the
benefit of other workers. Such pointers are used and updated by the Allocate . .. Node
functions. When an assignment is started (Found ... Work) the top of stack pointers for the
other WAM stacks are initialised from relevant fields of the node physically preceding the
embryonic node of the new assignment, as these fields define how much of the other stacks
has to be kept.

The old Aurora engine had no provision for handling stack overflows due to the problems
of performing garbage collection and stack shifting on memory areas shared by several
processes. Sufficient stack sizes had to be supplied by the user.

In the new Aurora design, each stack consists of a doubly linked list of memory blocks.
When a stack overflow occurs, a new block is simply allocated and linked in at the end of
the list, and the relevant top of stack pointer is set to point at the base of the new block.

To avoid fragmentation problems, progressively larger blocks are created (currently, each
new block is allocated twice as big as the previous block). Although the present design
makes stack shifting unnecessary, a garbage collector is still needed in a production system,
but is yet to be designed and implemented.

8.4 Pruning Operators

Pruning operations must distinguish between (i) pruning local nodes only, (ii) pruning re­
mote nodes, and (iii) pruning public nodes. In cases (i) and (ii), the node can be pruned
right away, but the memory occupied by the pruned node can only be reclaimed in case (i).
The trail must be tidied in all three cases, as explained in [10]. In case (iii), the scheduler
is responsible for pruning the public nodes, but may decide to suspend or abort the cur­
rent assignment instead, forcing the engine to invoke Sched...Suspend or Sched..Be_Fruned,
respectively. Note that Sched_Frune is invoked in all three cases, to give the scheduler an
opportunity to keep pruning information up to date.

To support suspension of cuts and commits, the compiler provides extra information about
what temporary variables need to be saved until the suspended task is resumed. This extra
information also encodes the type of the pruning operator.

14

8.5 Premature Termination

To suspend the current assignment when the scheduler uses the "suspend" exit in
Sched_Frune, Sched....Synch, or Sched_Check, the engine creates an auxiliary node which
stores the current state of computation and calls Sched....Suspend. It is up to the scheduler
to decide when the suspended work may be resumed.

To abort the current assignment when the scheduler uses the "be_pruned" exit in the above
functions, the engine deinstalls all conditional bindings made by the current assignment,
marks all remote nodes as reclaimable except the sentry node, and calls Sched..Be_Fruned.

8.6 Movement

While executing Prolog code, the binding array is kept in phase with the trail stack: when­
ever a binding is added to or removed from the trail, the bound value is also stored or erased
in the binding array. While finding work, the engine maintains a pointer to a node in the
tree corresponding to the current contents of the binding array. When the scheduler asks the
engine to "move" the binding array up to a new position (Move..Engine_Up), bindings which
were recorded on the trail path between the current and the new position are deinstalled
from the binding array, and the current position is updated. Similarly, Move--Engine...Down
installs a number of trailed binding in the binding array and updates the current position.

When an assignment is started (Found . .. Work, the engine positions its binding array at the
tip node of the new or resumed branch in order to get ready to start executing the Prolog
code.

8. 7 Notifying Events

As explained in Section 3, the engine notifies the scheduler whenever an event of interest
occurs, for example when a choicepoint is created, backtracked to, or deleted, when a pred­
icate is called, and when a clause is entered. Notification of such events is done merely by
calling the appropriate scheduler function· and does not involve any change in the emulator
logic.

9 Conclusions and Future Work

We have described the engine-scheduler interface used in the second generation of the Aurora
or-parallel Prolog system. We have defined a simple set of functions to cover the two basic
areas of engine-scheduler interaction: finding work and communication between workers.
We have identified those events during Prolog execution that may be of potential interest
to schedulers, e.g. creation of nodes, entering clauses, etc. We have also developed a general
characterisation of pruning properties of Prolog clauses that can be used both for scheduling
speculative work and for improving the implementation of pruning operators.

The interface described in this report is fundamentally revised with respect to earlier ver­
sions. The new interface is designed to help avoid scheduling overheads, to make the set of

15

basic concepts simpler and more uniform, to give scope for potential optimisations including
better memory management, improved treatment of pruning operations, and avoidance of
speculative work.

The main purpose of the interface is to enable different engines and schedulers to be used
interchangeably. To date, four separate schedulers have been written and connected to the
Aurora engine by means of the interface. Perhaps more importantly, the evolution of the
interface has helped clarify many basic concepts in exploiting or-parallelism in Prolog, such
as straightening, contraction, bypassing, and handling of pruning information.

No detailed performance analysis work has been done for the new Aurora implementation
yet. Preliminary measurements have been performed with the Manchester scheduler, on
the benchmark suite introduced in the performance analysis of the earlier Aurora version
(12]. There is an overall improvement of up to 60% in terms of absolute speed, partly due
to the new, much faster engine. For some of the fine granularity benchmarks the relative
speedups have deteriorated; this is because the increase in engine speed implies a relative
increase in scheduler overheads. For benchmarks with coarse granularity, and especially for
the ones with frequent suspension and resumption, the relative speedups have improved,
showing the advantages of the new interface.

We also believe that the new interface plays a significant part in the good performance results
of the Bristol scheduler. The Bristol scheduler has been designed with the new interface in
mind, and, in spite of applying a very simple scheduling strategy, it outperforms the earlier
schedulers on several benchmarks (1].

Work is in progress to extend Andorra-I (15] for or-parallel execution by connecting it via
the interface to the Bristol scheduler. A successful outcome of that experiment would prove
the relevance of the interface design outside the scope of or-parallel Prolog implementation.

The main outstanding issue which has not been treated in the interface is garbage collection.
Patrick Weemeeuw [14] has addressed the problem of garbage collection of the public parts
of the tree. Since such activities involve synchronisation between workers and possibly
relocation of scheduler data, it is likely that the interface will have to be extended to
support garbage collection.

10 Acknowledgements

The work on engine-scheduler interfaces was initiated by David Warren. Earlier versions of
the interface were developed by Ross Overbeek and Alan Calderwood. The design of the
new interface benefited from several discussions with Tony Beaumont, Per Brand, Bogumil
Hausman and Ewing Lusk.

The authors are indebted to Feliks Kluzniak and Ewing Lusk for careful reading and valuable
comments on drafts of this report.

This work was supported by ESPRIT projects 2471 ("PEPMA") and 2025 ("EDS").

16

References

[1] Anthony Beaumont, S Muthu Raman, and Peter Szeredi. Scheduling or-parallelism in
Aurora with the Bristol scheduler. March 1990. Internal Report, Gigalips Project.

[2] Per Brand. Wavefront scheduling. 1988. Internal Report, Gigalips Project.

[3] Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek, and Rick Stevens.
Scheduling OR-parallelism: an Argonne perspective. In Proceedings of the Fifth In­
ternational Conference on Logic Programming, pages 1590-1605, MIT Press, August
1988.

(4] Alan Calderwood. Aurora-description of scheduler interfaces. January 1988. Internal
Report, Gigalips Project.

(5] Alan Calderwood and Peter Szeredi. Scheduling or-parallelism in Aurora - the Manch­
ester scheduler. In Proceedings of the Sixth International Conference on Logic Pro­
gramming, pages 419-435, MIT Press, June 1989.

[6] Mats Carlsson. A Prolog Compiler and its Extension for Or-Parallelism. SICS Research
Report R90006, Swedish Institute of Computer Science, 1990.

[7] Mats Carlsson and Peter Szeredi. The Aurora Abstract Machine and its Emulator.
SICS Research Report R90005, Swedish Institute of Computer Science, 1990.

[8] Bogumil Hausman. Pruning and Speculative Work in OR-Parallel PROLOG. PhD
thesis, The Royal Institute of Technology, Stockholm, 1990.

[9] Ewing Lusk. Remote I/O handling package specification. October 1989. Internal
Report, Gigalips Project.

[10] Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora or-parallel Prolog
system. New Generation Computing, 7(2,3):243-271, 1990.

[11] Raed Sindaha. Scheduling speculative work in the Aurora or-parallel Prolog system.
March 1990. Internal Report, Gigalips Project.

[12] Peter Szeredi. Performance analysis of the Aurora or-parallel Prolog system. In Pro­
ceedings of the North American Conference on Logic Programming, pages 713-732,
MIT Press, October 1989.

[13] David H. D. Warren. The SRI model for or-parallel execution of Prolog-abstract
design and implementation issues. In Proceedings of the 1987 Symposium on Logic
Programming, pages 92-102, 1987.

[14] Patrick Weemeeuw. A la recherche de la memoire perdue, or: Memory compaction for
shared memory multiprocessors. March 1990. CW-Report, K. U. Leuven, Department
of Computer Science.

[15] Rong Yang and Vitor Santos Costa. Andorra-I: a system integrating or-parallelism
with dependent and-parallelism. March 1990. Internal Report, Gigalips Project.

17

Appendix: Definition of the interface

The Appendix gives a detailed description of the interface version 2.15. In Section A.1,
the data types common to the engine and scheduler are described. In Section A.2 and
Section A.3, the set of functions defined by the scheduler and the engine, respectively, are
presented. Note that all functions are implemented as C macros, hence we will use the term
"macros" rather than "functions" in the sequel. In Section A.4, a description is given of the
data related to static properties of clauses that is supplied to the scheduler by the engine.
Sections A.5 and A.6 give further details that may be of interest for a prospective user of
the interface.

This Appendix is a slightly extended version of Chapter 3 of [7].

A.1 Common Data Types

A.1.1 Nodes

The principal data structure common to the scheduler and the engine is the node structure:

struct node

This is an extension of the WAM choice point. The fields of this data structure
are notionally split into two parts: a scheduler part and an engine part. There
are no common fields in the nodes, access by the scheduler to engine fields being
entirely via engine-provided macros and vice versa.

The actual merging of the engine specific and scheduler specific fields is implemented as
follows. The engine is responsible for declaring the struct node data type and the scheduler
supplies a file, 'sch. node. h', which contains the scheduler specific fields to be included in
nodes.

The engine provides the following principal macros for node access:

int Node..Level(struct node •NODE)

This macro returns the level of NODE. The level numbers form a sequence which
strictly increases with the distance from the root. This field is filled in by the
engine in all nodes, including embryonic nodes (cf. Allocate..Node).

struct node •Node_parent (struct node •NODE)

This macro evaluates to the parent field of NODE, holding a pointer to the parent
of NODE. This field is filled in by the engine in all nodes, including embryonic
nodes (cf. Allocate..Node).

18

struct alternative •Node...Alternatives(struct node •NODE)

This macro evaluates to the next alternative field of NODE. This field is maintained
by the engine in non-embryonic private nodes to hold a pointer to the next
unexplored alternative (or NULL, if the node is dead). The Node...Alternatives
field is not meaningful in embryonic nodes.

The scheduler should preverve the meaning of this field in public nodes, updating
Node...Alternatives when an alternative is reserved, or when a branch is pruned.
Correspondingly the macro Node...Al ternati ves (NODE) can appear on the left
hand side of an assignment, i.e. it is an /value.

A.1.2 Alternatives

An additional common static data structure, the alternative is introduced to allow the
schedulers to keep static data related to clauses.

struct alternative

This data structure replaces the 'try', 'retry I and 'trust' WAM instructions.
Each clause of the user program is represented by an alternative structure, which
stores a pointer to the code of that clause and a pointer to a successor alternative,
if any. If a predicate is subject to indexing, there may be several chains of
alternatives corresponding to different instantiations of the indexing argument
position, and so several alternatives can refer to the same clause.

The scheduler-related part of struct alternative can accommodate any (static) informa­
tion the scheduler wishes to associate with clauses. The scheduler can derive this data from
the information supplied by the engine in Sched...Alternative_Created (see Section A.4).
Currently there are two types of static data supplied by the engine:

• information about sequential predicates-a predicate can be declared sequential by
the user, to prohibit parallel exploration of branches corresponding to the predicate;
this information is normally stored in each alternative of the predicate.

• pruning information-data on the number of pruning operators (cuts, commits and
conditional expressions) contained in the clause or the predicate.

The engine is responsible for declaring the struct alternative data type and the sched­
uler supplies a (possibly empty) file, 'sch. alternative. h 1 , which contains the scheduler
specific fields to be included in alternatives.

The only engine field in the alternative structure that is of interest to the scheduler is the
following:

19

struct alternative •Alternative..Next(struct alternative •ALT)

This macro returns a pointer to the alternative following ALT in the chain of
alternatives.

A.1.3 Boolean Type

The engine defines the following macros to aid readability:

BOOL

a type defined as unsigned int

FALSE

a macro evaluating to 0

TRUE

a macro evaluating to 1

A.2 Macros Provided by the Scheduling Code

The macros in this section have the current sentry node as their first argument, whenever
this is meaningful. This means that the engine will always supply the current sentry node
to the scheduler, so that the latter does not have to keep a variable pointing to the sentry
node.

Macros marked with a dagger (t) need not necessarily be supplied by all schedulers. If such
a macro is not defined by the scheduler, it is assumed to be empty (i.e a no-operation),
unless noted otherwise.

A.2.1 Finding Work

This section presents the macros for finding work. These macros have two exits: a normal
one, when work is successfully acquired, and one for the termination of the whole Aurora
run. Rather than to use return codes, the additional exit is implemented by having an extra
argument, IF..HALTED, in each of the macros. The IF..HALTED argument contains a piece of

20

code to be executed when the scheduler detects that the system has been halted-this code
will normally be a branch instruction to transfer control to the appropriate place in the
engine code.

The engine (i.e. the binding array) is positioned at or below the parent of the sentry node be­
fore calling the macros for finding work. The scheduler should position the engine above the
new sentry, using the Move.Engine_, .. macros. The engine should also be notified about the
type of work found and the new sentry node. This is done by calling either Found...New_Work

or Found..Resumed_Work (see Section A.3.1) before returning from the macros for finding
work.

void Sched..Die..13ack(struct node •SENTRY, IF.JiALTED)

This macro is called when the engine reaches a public node in the course of
backtracking. The scheduler performs the dieback operation to the parent of
SENTRY. This should involve marking the SENTRY node as reclaimable, following
some scheduler-specific activities for the sentry node (e.g. deleting it from the
sibling chain). Finally the scheduler proceeds to acquire a new assignment.

void Sched..Suspend(struct node •SENTRY, IF.JiALTED)

This macro is invoked when a suspension request has been received from the
scheduler and the engine has performed its housekeeping activities for suspen­
sion. The scheduler performs any outstanding activities for suspension and then
proceeds to acquire a new assignment.

void Sched..13e_Fruned(struct node •SENTRY, IF.JiALTED)

This macro is invoked after the worker noticed that it has been pruned and the
engine died back to SENTRY. At this moment all the nodes up to and including
SENTRY should be regarded as destroyed (the Sched...Node . .. Destroyed macros
will not be called for these nodes). The scheduler continues dying back in the cut
region (including marking the SENTRY node as reclaimable) and then proceeds
to acquire a new assignment.

void Sched..Start_Work(IF _HALTED)

This macro is called in each engine immediately after starting the system. The
scheduler will return as soon as the worker can acquire an assignment. For one
of the workers this will happen immediately, the new work being created by
reserving the only alternative from the root node. The other workers will have
to wait in an idle loop until work is made available by this worker.

21

A.2.2 Communication with other workers

The following macros are invoked by the engine during normal Prolog work in situations
when the scheduler needs to be consulted. During the execution of these macros the sched­
uler may decide that the current branch of execution should be abandoned, either because
it has been cut, or because it must suspend. To allow the scheduler to communicate its
decision, each of the macros has the following arguments:

IF _FRUNED the code to be executed when being pruned,

IF ...SUSPENDED the code to be executed when suspended.

Both these arguments are normally branch instructions. On the IF _FRUNED branch the
engine dies back to the sentry node and invokes the Sched....Be_Fruned macro. On the
IF ...SUSPENDED branch the engine does the housekeeping operations for the suspension and
invokes Sched...Suspend.

void Sched_Check(struct node *SENTRY, IF_FRUNED, IF...SUSPENDED)

This macro is called by the engine on every Prolog procedure invocation to
allow the scheduling code to take care of any outstanding parallel business-e.g.
releasing work to idle workers, processing interrupts, etc.

void Sched_Frune(struct node *SENTRY, struct node •CUT..NODE,
int PRUNING_QP, IF_FRUNED, IF...SUSPENDED)

This macro is called when the engine has to execute a pruning operation up to
(and including) CUT ..NODE. The PRUNING..OP argument determines the type of the
pruning operator:

PRUNING_QP > 0 -+ cut;

PRUNING_QP = 0 -+ cavalier commit;

PRUNING_OP < 0 -+ commit;

The engine has already executed the private part of the pruning operation prior
to invoking this macro. The scheduler now executes the remaining, public part
of pruning. If the scheduler decides that the pruning operation cannot be fully
executed, IF _FRUNED or IF ...SUSPENDED is invoked.

This macro is called even if only private nodes are to be pruned. This is to allow
the scheduler to maintain data related to pruning operations.

Note that the above encoding of PRUNING..OP is actually done by the Aurora
compiler, and that the absolute value of this argument is used by the engine (it
indicates the number of live temporary WAM registers to be saved on suspen­
sion).

22

void Sched-5ynch(struct node •SENTRY, struct node •ROOT_OF-5UBTREE,
BOOL LEFTMOST, IF_FRUNED, IF_$USPENDED)

This macro is used to support the execution of built-in predicates with side­
effects. Normally such predicates are executed only when their branch becomes
leftmost in the whole tree. There are, however, some predicates (e.g. those
used to implement bagof), for which a weaker condition is enough: they can be
executed if not endangered by a cut within a given subtree.

The LEFTMOST argument encodes the type of the check needed before the exe­
cution of the branch can continue. If LEFTMOST is TRUE, the branch should be
leftmost in the subtree rooted at the ROOT _OF -5UBTREE node. If LEFTMOST is
FALSE, the scheduler needs to ensure that the current branch is not endangered
by a cut within the subtree rooted at the ROOT _OF -5UBTREE node. Note that a
scheduler which does not keep track of pruning operators can just ignore the
value of the LEFTMOST argument and always check that the branch is leftmost
in the given subtree.

If the appropriate condition is satisfied, and the branch itself has not been
pruned, then the scheduler returns normally (and the execution of the branch
can continue). Otherwise either IF _FRUNED (if the branch has been pruned) or
IF _$USPENDED is invoked.

The value of the LEFTMOST argument is a compile time constant.

A.2.3 Events of Interest to the Scheduler

Schedulers may require to be informed of certain events occurring during the private exe­
cution phase, such as

• predicates and clauses being entered-this can be utilised for maintaining information
about the presence of cuts endangering the branch being executed;

• nodes being created, reused and destroyed-this is used by the scheduler to keep track
of any work (i.e. live parallel node) being present in the private part of the branch
being executed, as well as for maintaining information about cuts;

• the parent field of a node being filled in or updated-this allows the engine to maintain
a child pointer in the private region, if it wishes to do so;

• alternatives being created-to calculate and store any static information the scheduler
may wish to use (see Section A.4);

• the whole system being halted.

23

A.2.3.1 Entering Predicates and Clauses

tvoid Sched.Jlondet_Fred..Entered(struct node •SENTRY)

This macro is called at the very beginning of a nondeterministic predicate. The
need for this macro arises from the fact that the shallow backtracking optimi­
sation used in the Aurora engine involves delaying, and sometimes completely
avoiding the creation of nodes. Sched.Jlondet_Fred..Entered is provided to al­
low for any scheduler activities that need to be done prior to other macros (e.g.
Sched_Clause..Entered) being invoked.

tvoid Sched_Clause..Entered(struct node •SENTRY, struct alternative •ALT,
BOOL FIRST)

This macro is invoked when the engine enters a clause. The ALT argument can
be used to access any static data (e.g. pruning information) associated with the
clause being entered. The FIRST argument is TRUE if the clause entered is the
the first element of an alternative chain, and is FALSE otherwise.

The value of the FIRST argument is a compile time constant.

A.2.3.2 Creating and Destroying Nodes

tvoid Sched.Jlode_Created(struct node •SENTRY, struct node •NODE)

This macro is called whenever a proper (non-embryonic) NODE is created by
the worker ('try' WAM instruction). Immediately prior to the invocation of
this macro, an embryonic node will have been created as a child of NODE (and
My..Embryonic.Jlode() points to that node). This means that the scheduler can
initialise fields both in NODE and its embryonic child, if it wishes to do so.

tvoid Sched.Jlode.Jteused(struct node •SENTRY, struct node •NODE)

This macro is called when the engine backtracks to NODE and is going to take a
non-last alternative from it ('retry' WAM instruction). The macro is called be­
fore the next alternative pointer of the node (Node...Al ternati ves) is advanced.

tvoid Sched.Jlode...Destroyed(struct node •SENTRY, struct node •NODE,
BOOL TO...BE-REMOVED)

This macro is called whenever a private NODE is to become dead due to the last
alternative being taken ('trust' WAM instruction). When the macro is called,
the next alternative field of the node is still pointing to the last alternative.
This may be important if the scheduler wishes to access information stored in
the alternatives.

24

The TO..BE-REMOVED argument is TRUE if the engine will remove the NODE in
question from the tree, and is FALSE if the dead node will have to remain in the
tree (the latter is normally the case for remote nodes). The scheduler may wish
to bypass the NODE if TO..BE-REMOVED is FALSE.

The value of the TO..BE-REMOVED argument is a compile time constant.

tvoid Sched..Nodes..Destroyed(struct node •SENTRY, struct node •FROM,
struct node •UP_TO, BOOL TO..BE-REMOVED)

This macro is called whenever a sequence of private nodes (from FROM up to and
including node UP_TO) is to become dead because the worker itself executed a
pruning operator. If a worker is cut by another worker, this macro will not be
invoked.

Note that this macro may be invoked with the node FROM being above the
node UP _TO, if the pruning operator is superfluous, and no nodes are actually
destroyed.

The TO..BE-REMOVED argument is TRUE if the engine will be able to remove the
node UP _TO from the tree, and is FALSE if the dead node will have to remain in
the tree.

The value of the TO..BE-REMOVED argument is a compile time constant.

The invocation order of the node creation and clause entry macros is affected by the
shallow backtracking optimisation. As creation of nodes is delayed, Sched..Node_Created
will be called after the first Sched_Clause..Entered, while Sched..Node...Reused and
Sched..Node..Destroyed will be called before the corresponding macro for clause entry.

The graph in Figure 3 gives the invocation order of the relevant macros for a specific
(nondeterministic) predicate, assuming the whole predicate is executed (no pruning takes
place). Initial and final states are marked 'by in- and outgoing arrows.

A.2.3.3 Other Events

tvoid Sched..Halt(struct node •SENTRY)

This macro is called when the halt built-in is processed.

25

where

NPE = Sched..Nondet_Fred..Entered
CE= Sched_Clause..Entered
NC= Sched..Node_Created
NR = Sched..Node..Reused
ND= Sched..Node...Destroyed

Figure 3: ORDER OF EVENTS RELATED TO NODE CREATION AND DESTRUCTION

tvoid Sched..Alternative_Created(struct alternative •ALT,
struct alternative •FIRST..ALT,
BOOL IS_FARALLEL,
int MAX_CUTS, int MAX_COMMITS,
int ASSUMED_CUTS, int ASSUMED_COMMITS,
BOOL IS_INTERNAL, BOOL CONTAINS..IF, BOOL ENDS_IN..A..FAIL)

This macro is called whenever a new alternative ALT is created by the Aurora
compiler back-end. FIRST..ALT is the first alternative of the chain to which ALT
belongs. The scheduler may use the Alternative..Next engine macro to scan
and update the whole chain, if it wants to keep some global piece of informa­
tion (relating to the whole chain) up to date. The last eight macro arguments
carry the static information for the clause corresponding to this alternative. See
Section A.4 for the description of this data.

tvoid Sched_Frivate.Parent-5tored(struct node •SENTRY,
struct node •NODE, struct node •PARENT)

This macro is called whenever the engine stores or updates the parent field of
a private NODE to point to PARENT, provided this PARENT node is itself private.
This is useful if a scheduler requires a child field to be kept up to date in private
nodes: each time Sched.Private.Parent...Stored is called, the scheduler should
update the child field of PARENT to point to NODE.

26

A.2.4 Optimisations

This section describes two macros related to specific optimisations.

A.2.4.1 Backtracking to a live public node

When a worker backtracks to a live public node and is able to take a new branch from there,
several administrative activities can be avoided. The sentry node can be re-used, instead of
being marked as reclaimable and re-allocated as the new embryonic sentry node. There is
scope for a related optimisation in the scheduler administration: rather than deleting the
old sentry from the sibling chain and then installing it as the last sibling, one can move
the sentry node to the end of the sibling chain (or do nothing if the old sentry was the last
child). To allow this optimisation to be applied, the engine calls the following macro prior
to Sched.J)ie..Back, if the parent of the sentry node is live.

tvoid Sched_Get_WorkJ.t_Farent(struct node •SENTRY, struct node •PARENT,
struct alternative •ALT, BOOL MAY_CONTRACT, IF_CONTRACTED)

This macro is called when the engine backtracks to a live public node PARENT.
If the scheduler, following the necessary synchronisation operations, still finds
PARENT to be live, it can reserve an alternative from that node. The alternative
reserved should be returned in the ALT output argument. SENTRY is the current
sentry node when this macro is called, and it is assumed to become the sentry
for the new branch (unless contraction is applied, see below). If the scheduler
cannot (or does not wish to) take work from PARENT, it should set ALT to NULL
and return. In this case Sched.J)ie..Back will be called to acquire a new piece
of work.

The MAY _CONTRACT argument shows whether the engine allows for the contraction
operation to be applied (i.e. whether PARENT and SENTRY are on the top of the
stack of the worker executing this macro). If this is TRUE, and the last alternative
is being taken from PARENT, then the scheduler may decide to use PARENT rather
than SENTRY as the new embryonic node. In this case IF _CONTRACTED should be
executed just before exiting the macro.

If this macro is not supplied by the scheduler, the ALT= NULL result is assumed.

If contraction is applied, the engine treats this as if the public node had been made private
before the last alternative was taken. This results in the macro Sched.Jfode.J)estroyed
being invoked (see Section A.2.3.2).

A.2.4.2 Bypassing

If a scheduler implements bypassing, the engine may make use of the "bypassed parent"
field maintained by the scheduler.

27

tstruct node •Sched..Node...Bypassed_Farent(NODE)

This macro returns a pointer to the bypassed parent as maintained by the sched­
uler. It should be defined only if the scheduler performs bypassing both in the
remote and the public region.

A.2.5 Initialisation

The initialisation of the system proceeds as follows. The engine evaluates the command line
arguments, sets up the data structures corresponding to the master worker, creates the root
node and calls the Sched..Init macro. Sched..Set_Up_Worker is now called for the master.
Subsequently n-1 slave processes are created, where n is the required number of workers.
Each slave process will invoke Sched..Set_Up_\forker as its first scheduler macro. Following
this, all processes will start up the normal engine routine, the next scheduler macro invoked
being Sched..Start_Work.

void Sched_Init(struct node •ROOT, int NUMBER_OF_WORKERS,
int ARGC, char •ARGV[])

Initialises all the scheduler specific data in the ROOT node and sets up the global
data structures for the scheduler. The ARGC and ARGV parameters contain the
conventional description of the command line arguments, enabling the scheduler
to check the presence of some options on the command line. Note that the engine
actually supplies the whole original command line (including the command name
and the arguments affecting the engine).

void Sched..Set_Up_Worker(struct node •STACK, int SELF_ID)

Performs worker specific initialisations for the workers. STACK is an in­
put argument which refers to the node stack of the worker (to be used in
Allocate..Foreign..Node), SELF..ID is an output argument: the schedul~r re­
turns a unique number between O and NUMBER..OF _WORKERS-1 identifying the
worker in question. The identification number for the master worker is 0. This
number has no further relevance to the interface, it may be used by the engine
as an index if it requires to set up an array of some data structures for workers.

void Sched..Deinit()

Restores everything to the state that existed before Sched..Ini t was called (e.g.
releasing allocated memory). It is used in the implementation of the built-in
predicates save and restore.

28

A.2.6 Interrupt Handling

The user of the Aurora system may interrupt the execution and request various actions to be
taken, e.g. abort, exit, continue etc. This service is implemented mostly on the engine side
of the interface, but there is some need for involvement by the scheduler. The interrupts are
processed by an additional process created by the master worker, and the following three
scheduler macros are invoked in that interrupt-handling process.

void Sched..Block()

This macro is called upon detection of an interrupt. The scheduler is requested to
stop all workers as soon as they reach their next Sched_Check macro invocation.

void Sched...Abort (struct node •CUT ..NODE)

This macro always follows a Sched..Block macro invocation. It is called when the
user requests the execution to be aborted, following an interrupt. The scheduler
should cause all workers to die back as if a pruning operation has been executed
up to and including CUT ..NODE. This pruning operation should be a completely
cavalier one, i.e. a worker should perform it without regard to its position in the
tree.

If the CUT ..NODE is private when this macro is called, the scheduler should ensure
that it is made public before causing the workers to die.

void Sched_Unblock()

This macro is called, following a Sched..Block, when the user has given a non­
abort answer at an interrupt. The execution of all workers should continue.

A.2.7 Static Switches

The following macros provide static information to the engine about the scheduler. They
should be defined to be either TRUE or FALSE.

BOOL SCHED_WILL_COMPLETE_FRUNING

should be set to TRUE if the scheduler will perform the public pruning oper­
ation upon resuming a branch suspended because of a cut or a commit (the
engine should not perform the pruning operation after receiving control from
the scheduler).

29

BOOL SCHED_WANTS_COMPACT_FARENT

should be set to TRUE if the scheduler requires the compact representation of
the Node_Farent field. This is normally the case if the scheduler implements
bypassing.

A.3 Macros Provided by the Engine

Some macros described in this section are not in the minimal set of macros needed for the
implementation of the scheduler (e.g. those supporting a particular optimisation). These
macros are marked with a double dagger (t).

A.3.1 Notification of Work Found

The following two macros should be called by the scheduler before returning from a macro
for finding work. Their task is to supply the address of the NEW...SENTRY node to the engine
and to allow for any preparations specific to the type of work found to be performed. The
engine (binding array) should be positioned above the new sentry node when these macros
are invoked.

void Found-Resumed_Work(struct node •NEW...SENTRY)

This macro notifies the engine that a suspended branch is to be resumed, as
the next assignment for the worker. NEW...SENTRY should be a sentry node cor­
responding to a suspended branch, i.e. Node...Suspended(NEW...SENTRY) must be
TRUE.

void Found.Jlew_Work(struct node •NEW...SENTRY, struct alternative •ALT)

This macro informs the engine that the next assignment corresponds to a newly
reserved alternative. NEW...SENTRY must be an embryonic sentry node allocated
using Allocate_ .. Node. ALT should be the alternative reserved from the parent
of NEW...SENTRY. Note that this macro should not be called when work is acquired
in the Sched_Get_Work__At_Farent macro.

A.3.2 Moving in the search tree

The following macros are applicable to public nodes. They should only be called from
within macros for finding work.

30

void Move..Engine...Down(struct node *DOWN_TO)

This macro updates any engine-specific data structures (normally just the bind­
ing array) for the movement from the current position down to node DOWN_TO
(and sets the current position to DOWN_TO).

void Move..Engine_Up(struct node *UP_TO)

This macro updates engine-specific data structures for the movement from the
current position up to node UP _TO (and sets the current position to UP _TO).

+void Migration_Cost(struct node *FROM, struct node *DOWN_TO,
unsigned int COST)

The returned value COST is proportional to the number of bindings in the trail
from node FROM down to node DOWN_TO.

A.3.3 Allocation of Nodes

void Allocate...Node(struct node *PARENT, struct node *EMBRYONIC)

This macro performs a reclaiming operation on the worker's own stack and
allocates an embryonic node on the top of the stack. The level and parent fields
of the node are initialised and a pointer to the node is returned in the EMBRYONIC
output argument. This macro can be invoked only from within macros for finding
work.

+void Allocate..Foreign...Node(struct node *STACK, struct node *PARENT,
struct node •EMBRYONIC)

This does the same operation as Allocate...Node, but on the supplied STACK: it
performs a reclaiming operation and allocates an embryonic node on the STACK,
initialising the parent and level fields of the node, and returning a pointer to the
node in the EMBRYONIC output argument. This macro should only be invoked
when the worker which owns the STACK is executing a macro for finding work.

31

A.3.4 Reclaiming Nodes

void Mark_Node.-Reclaimable(struct node *NODE)

This macro allows the the scheduler to inform the engine that NODE is no longer
required in the computation. It should be called during backtracking for all
public and sentry nodes.

void Mark-5uspended..Branch.-Reclaimable(struct node *SENTRY)

This macro should be used for cleaning the branch that has been suspended
and later cut. SENTRY must be a sentry node of a suspended branch. All nodes
below (but excluding) SENTRY are marked as reclaimable.

+void Mark.Jlode..Bypassed(struct node *NODE)

This macro should be called by a scheduler when NODE is bypassed and it is
certain that no further reference will be made to NODE. This makes it possible
for the engine to recover the space occupied by NODE. Note that in the current
Aurora engine this feature is not implemented.

+BOOL Node.-Reclaimable(struct node *NODE)

This macro returns TRUE if NODE has been marked as reclaimable.

A.3.5 Extending the Public Region

void Make_Fublic(struct node *NEW-5ENTRY)

This macro should be invoked when the scheduler is preparing to extend the pub­
lic region down to the parent of NEW-5ENTRY. The engine is thus given the oppor­
tunity to perform any initialisation of the nodes to be made public. NEW...SENTRY
becomes the new sentry node.

32

A.3.6 Further Node Handling

struct node •My..Embryonic..Node()

This macro returns a pointer to the current embryonic node of the worker.
My ..Embryonic..Node is to be used only during work, i.e. it should not be used be­
tween entry to a macro for finding work and the corresponding Found_, .. _Work.

The value of My ..Embryonic..Node () changes when nodes are created and de­
stroyed. More exactly, it is set to point to the child of NODE immediately before
Sched..Node_Created(. .. , NODE) is invoked. My..Embryonic..Node() will be re­
set to point to NODE after the call of Sched..Node...Destroyed (. .. , NODE, TRUE)
returns to the engine.

+BOOL Valid..Node(struct node •NODE)

This macro checks if NODE is a valid node address in the sense that accessing its
fields will not cause memory access violation.

+BOOL Node..Suspended(struct node •NODE)

This macro returns TRUE if NODE is a sentry node corresponding to a suspended
branch, otherwise it returns FALSE. After the Found....Resumed_Work (NODE) macro
has been called, the value of Node-5uspended(NODE) will become FALSE.

+char •Node-Pred..Name(struct node •NODE)

This macro returns a pointer to a string containing the predicate name corre­
sponding to NODE. It is used exclusively for debugging and graphic tracing.

tstruct node •Node..Successor(struct node •NODE)

This macro returns the successor of node NODE, provided NODE is live. For
live private nodes the successor is equivalent to the child of the given node.
This macro can be useful for traversing the private branch downwards (towards
younger nodes), if the scheduler decides not to maintain child pointers in the
private region (it will have to fill in child pointers in the dead private nodes,
though).

33

A.4 Static Information

This section describes the static data supplied by the engine to the scheduler when a new
clause (alternative) is compiled or loaded. This information is transmitted by the following
function call (see Section A.2.3.3):

Sched...Alternative_Created(struct alternative •ALT,
struct alternative •FIRST...ALT,
BOOL IS_FARALLEL,
int MAX_CUTS, int MAX_COMMITS,
int ASSUMEO_CUTS, int ASSUMED_COMMITS,
BOOL IS_INTERNAL, BOOL CONTAINS...IF, BOOL ENDS...IN...A..FAIL)

There are two types of static data supplied: data relating to predicates being sequential or
parallel, and information about the presence of pruning operators in the clause or predicate.

A.4.1 Sequential Predicates

Each predicate is either sequential or parallel, as requested by the user. Information about
this property of a predicate is supplied to the scheduler via the IS_FARALLEL argument of
the Sched...Alternative_Created macro, for each clause of the given predicate:

BOOL IS_FARALLEL -TRUE if the alternative belongs to a parallel predicate, FALSE other­
wise.

A.4.2 Pruning Information

Information about the presence of pruning operators in a clause may be needed by the
scheduler to perform a cut more efficiently or to distinguish between speculative and non­
speculative work. We tried to define a general format for data about pruning properties, so
that various scheduling algorithms can derive specific data, according to their needs.

Note that we decided to exclude data on cavalier commits from the pruning information, as
this operation is expected to be used only for handling exceptional circumstances (similar
to abort in Prolog).

The set of pruning data includes the following items for each clause:

int MALCUTS and int MAX-COMMITS -the maximal number of cuts and commits in the
clause,

int ASSUMED_CUTS and int ASSUMED_COMMITS -the maximal number of cuts and com­
mits in the whole internal predicate, of which the clause in question is a member
(relevant to internal clauses only),

BOOL IS_INTERNAL -to distinguish internal clauses from ones defined by the user,

34

B00L C0NTAINS-1F -to account for the cut operator generated from the conditional ex­
pression (relevant to internal clauses only),

B00L ENDS_IN..A..FAIL -to indicate if the clause ends in a call to fail.

To give a more formal definition of the above data, let us introduce a few auxiliary no­
tions concerning clauses and disjunctions. For each alternative in the compiled code we
must distinguish between two cases (denoting the clause corresponding to the alternative
in question by C):

1. C is a clause in the original user program.

2. C is a clause of an internal predicate, i.e. it corresponds to a disjunct.

Let the Boolean expression user_def(C) be TRUE for case 1 and FALSE for case 2 and let
orig_body(C) denote the body of the original user clause to which C corresponds (case 1), or
the disjunct in the original user disjunction to which C corresponds (case 2). Furthermore
let orig_disj(C) denote the original form of the whole disjunction of which C is a member
(case 2 only).

Given the above definitions, the pruning information for a clause C is defined as follows:

int MALCUTS =
max_cuts (orig_body (C))

int MAX_COMMITS =
max_commits(orig_body(CJ)

int ASSUMED_CUTS =
user_def(C) - O;

otherwise - max_cuts(orig_disj(C))

int ASSUMED_COMMITS=

user_def(C) - O;

otherwise - max_commits(orig_disj(C))

BOOL IS_INTERNAL

user_def(C) - FALSE;

otherwise - TRUE

B00L C0NTAINS-1F =
internal(C) I\ orig_body(C) = 'IF-> THEN - TRUE;

otherwise - FALSE

35

where

B00L ENDS..IN...A...FAIL =
orig_body(C) =' ... ,fail' -+ TRUE;

otherwise-+ FALSE

max_cuts(B) =
cut_operator(B) -+ 1;

B = 'A -> C' -+ max_cuts(C);

B = 'G1, G2' -+ max_cuts(G1) + max_cuts(G2);
B::'A 1; A2'-+ max(max_cuts(A1),max_cuts(A2));

otherwise -+ 0

max_commits(B) =
commit_operator(B) -+ 1;

B = 'A -> C' -+ max_commits(C);

B = 'G1, G2' -+ max_commits(G1) + max_commits(G2);

B = 'A1 ; A2 ' -+ max(max_commits(A1),max_commits(A2));

otherwise -+ 0

A.5 Related interfaces

This section describes two interfaces related to the engine-scheduler interface: macros for
locking and for memory management. In the current version of Aurora these macros are
defined by the engine.

A.5.1 Locking

LOCKTYPE

This macro provides a type for the declaration of locks. Locks are normally de­
clared as fields of a (shared) data structure. Field selection expressions referring
to such fields can be used in subsequent locking macros (see below).

void Init.Lock(LOCKTYPE L)

This macro initialises the lock L.

36

void Lock(LOCKTYPE L)

This macro obtains the lock L.

void Unlock(LOCKTYPE L)

This macro releases the lock L.

A.5.2 Shared Memory Management

char *Shared..Memory..Allocate(unsigned int SIZE)

This macro allocates a piece of shared memory of SIZE bytes. Returns a NULL
pointer if no memory is available.

char *Shared..Memory..Reallocate(char *PTR, unsigned int OLD-5IZE,
unsigned int NEW-5IZE)

This macro changes the size of a previously allocated block of size OLD-5IZE
to NEW-5IZE, moving the contents if necessary. Returns a NULL pointer if no
memory is available.

void Shared..Memory-Free(char *PTR, unsigned int SIZE)

This macro releases shared memory allocated by the above macros.

A.6 File Organisation

A.6.1 The Makefile

The scheduler is responsible for creating its "portion" of the makefile, in the file
'sch.makefile 1. This should define the following makefile-variables:

$(SCH_OBJECTS)

the list of object (*. o) files containing the scheduler,

37

$ (SCH...SOURCES)

the list of source (*. c *. h) files containing the scheduler,

$(SCH_INTERFACE...H)

the list of scheduler macro files upon which the engine may depend. This
list has to include 'sch.interface.h', 'sch.switches.h', 'sch.node.h',
'sch. alternative. h' and any further files referred to by these files (directly
or indirectly),

and it should make use of the following makefile-variable (defined by the engine):

$(ENG_INTERFACE...H)

the list of engine macro files upon which the scheduler may depend. This list
has to include 'eng. interface. h' and any further files referred to by this file
(directly or indirectly).

The file 'sch.makefile' should contain instructions for making each of the files listed in
$ (SCH_OBJECTS).

A.6.2 New Built-in Predicates Defined by the Scheduler

New built-in predicates can be defined by the scheduler using the standard foreign lan­
guage interface. The ObjectFile argument in foreign_file and the ObjectFiles argument
in load_foreign_files should be made equal to [] for predicates included in the scheduler
code. When booting, the engine consults file 'scheduler. pl I to allow the scheduler to
define the required new built-in predicates.

A.6.3 Files Provided by the Scheduler

sch.switches.h

contains the definition of the two static switches (Section A.2. 7) to be provided
by the scheduler.

38

sch.interface.h

contains all the remaining interface macros provided by the scheduler.

sch.node.h

fields to be included in struct node.

sch.alternative.h

fields to be included in struct alternative.

sch.makefile

the part of the makefile describing the scheduler.

scheduler.pl

a file to be consulted during the booting phase (to define scheduler specific
built-in predicates).

A.6.4 Files Provided by the Engine

eng.interface.h

basic type definitions and macros provided by the engine.

39

Index

Allocate..Foreign.Jfode 9,31
Allocate....Node 9,31
Alternative....Next 7,20

B00L 20

FALSE 20
Found....New_Work 9,30
Found-Resumed_Work 9,30

!nit.Lock 36

L0CKTYPE 36
Lock 37

MakeYublic 10,32
Mark....Node..Bypassed 11,32
Mark....Node-Reclaimable 9,32
Mark_$uspended..Branch..Reclaimable 10,32
Migration_Cost 31
Move...Engine..Down 9,31
Move...Engine_Up 9,31
My ...Embryonic....Node 33

Node..Alternatives 7,19
Node.Level 7,18
NodeYarent 7,18
NodeYred....Name 33

· Node..Reclaimable 32
Node_$uccessor 33
Node_$uspended 33

SCHED_WANTS_CQMPACLPARENT 30
SCHED_WILLC0MPLETEYRUNING 29
Sched..Abort 13,29
Sched..Al ternat i ve_Created 26,34
Sched..BeYruned 4,21
Sched..Block 13,29
Sched_Check 6,10,22
Sched_Clause...Entered 6,24
Sched..Deini t · 28
Sched..Die..Back 4,21
Sched_Get_Work..AtYarent 10,27
Sched..Hal t 25
Sched_Ini t 28
Sched....Node..Bypassed_Farent 11,28
Sched....Node_Created 6,24

40

Sched....Node..Destroyed 6,24
Sched....Node..Reused 24
Sched....Nodes..Destroyed 25
Sched....NondetYred...Entered 24
Sched_FrivateYarent_$tored 26
SchedYrune 6,9,22
Sched_$et_Up_Worker 28
Sched_$tart_Work 4,21
Sched_$uspend 4,21
Sched_$ynch 6,10,23
Sched_Unblock 13,29
Shared..Memory ..Allocate 37
Shared..Memory ..Free 37
Shared..Memory-Reallocate 37

TRUE 20

Unlock 37

Valid....Node 33

