
Ute Leibrandt and Peter Schnupp

Inte「Face Computer GmbH

Oberf6hrjnger Str. 24a

D　-　8000　‖tinchen　81

F.R. Germany

Su調鵬a「y

Some expe「ience has been gathe「ed with P「oしog fo「 specification and prototyping of

Criticaし　parts of interactjve information sγStemS. It is feしt that thjs　しanguage is

the first viabしe prototype for a reaししy BROAD-BAND formaし　specification tooし　aししowing

immediate testing of the specified system. The main 「eason for this concしusion is the

total abst「action from controし　fしow in Proしog whjch frees one from the traditionaし

P「Ogram Pa「adigms　(e.g. sTRuCTURED,　FuNCTIONAし　Or OBJECT-OR重削丁帥)　and design

St「ategies (TOP down or BOTTOM uP). Howeve「,　aしthough aしready quite usabしe for most

SPeCificatjon and prototyping probしems there is stjしI room for further deveしopment of

the　しanguage and its impしementation. ‖ost notabしy, the「e is a need fo「 bette「 tracing

and debugging features, a mOre adaptabしe coNSu」T重Ne meChanism, and a virtuaし　terminaし

modeし　supporting the definition of FORM T各RM重NALS needed in manγ business programmjng

tasks.

1. The Lanauaae Proしoa

Proしog, aしthough o「iginaししy conceived for a「tificiaしinteししigence appしications, Can

be used as a formaし　SPeCifjcation　しanguage for software sγStemS because its underしy-

ing semantics provide for a very high deg「ee of abst「action. Its computationaしmodeし

is that of a RESOLuT重ON THEOR帥PROVER [KOWAしSKI] working on a DATA BASE. This data

base consists of two parts. The first one is a set of c」AUSES, i.e.しogicaし　facts and

ruしes. It cor「esponds roughしy to the program text of a conventionaしPrOgramming　しan-

guage and may be read in (CONSu」T∈D)　from fiしes, buiしt up at runtime (ASSERTED) by

the running program, Or Created interactiveしy by the user. The second data base com-

POnent is the intermediate data maintained bγ　the Proしog interpreter trying to

resoしve a cur「ent coA」. This data obeys essentiaししy a stack　「egime　しeading to a

remarkabしy simpしe ABSTRACT STACK HACHINE [KOMOROWSKI].

425

The cur「ent ooAL is a logicaしStatement entered bγ the user during the man-SγStem-

diaしOgue. The P「oしOg interp「eter tries to prove this goaしStatement by sea「Ching for

cしauses in the data base which match the goaし　statement. If the goaしCOntains

varjables to be proven they are instantjated to constants or　しogicaし　functions that

the variabしes stand for. This process is caししed uNIFICAT重ON. If P「OしOg SuCCeeds with

this uNIF重CATION AND RESOLuTION it answers YES and prints the variabしe unifications.

if any. Othe「wise it answers NO. This does not impしy the faしSeneSS Of the　しOgicaし

Statement gOaしentered but 「ather its unprovabiしity given the facts and ruしes p「esent

in the data basa. If ProしOg is considered as a specification　しanguage fo「 COmmerCiaし

appしications′　this LOe重CA」 COmPutationaしmodeしmay be seen under another aspect: it

impしements a highしy adaptabしe query　しanguage over an essentiaししy rationaし　data base

COntaining not onしγ　facts but aしSO　しogicaしruしes to derive ne岬facts from those

aし「eady known.

2. The ProしocI Procedu「e　‖odeし

Considering P「oしog aしOe重CA」 AND RELAT重ONAしDATA BASE 」ANeuAcE, does not expしain its

remarkabしe usefuしness for specification and p「OtOtyPing of appしication p「OgramS tO be

しate「 reaしized in a conventionaしPrOCeduraし　しanguage. This is accompしished by a quite

naturaし　P「OCeduraし　COnCePt introduced into this (essentiaししy nonp「OCeduraし)　しan-

guage. A procedure is composed of clauses with the same name and AR重TY (i・e. number

of arguments). To understand the fしow of controしin Proしog, the procedu「e can be

Visuaしized as a box with four ports (cf. Fig.1).

goal

CALL
ここ

FAi」
二二三

PrOCedu「e 　SubgoaIIsubgoaI2

葛"- �PrOCedure �一〇。- �PrOCedure �-〇〇〇+- 一〇-

Fig.1: βOX MODE」 Of ProしOg PrOCedures

巨XI丁
ここ

RED〇
二三　　　　　園

426

Entering the box (PROCEOuRE) from the CAしL port implies that the ProIog interp「eter

is called to resoIve a component cしause by satisfying subgoaしs in the bodγ Of that

Cしause・ It implies nothing about the resuしt of the call. Subgoals (sub申OCedures弓

師ting the box through the EXIT port indicates a/succesful resoしution of the goal

帥ering the box through the REDO port indicates that a later goaしhas faiしed and

that the system is backtracking in an attempt to find alternatjves to previous soしu-

The procedure FA重しS′ i.e・ leaves through the FAIL port′ if no resolutjon succeeds or

afte「 aしI possibしe resoしutions have been found by backtracking.

For any invocation there is alwaγS One CALしand one FAIL aしthough there maγ be

arbit「a「時many passes th「ough EXITs and R印Os.

For example′ if the「e is the data base:

rePOrtS_tO (white,jones).

「ePO「tS_tO (mcdonald,jones).

rePOrtS_tO(nixon.smith).

the question

? reports_tO(×′ Smith).

1S 「esoしved step by step:

CAL」 : rePOrtS_tO(×′ Smith).

REDO : rePOrtS_tO(X′ Smith).

R印0 : 「ePO「tS_tO(×′ Smith).

EXIT : rePOrtS_tO(nixon′ Smith).

% compare両th fact l

% compa「e with fact 2

% compare with fact 3

% the comparison with

% fact 3 was successfuし

This p「ocedu「e box may be 「eadily interpreted as a function in a functional p「ogram-

Therefore′ it should not be too surp「ising that proしog can be used not only for

SPeCification but aしso for p「ototyping of diaしog appしications working on a data base.

The usefuしness of proしog surpasses the limits of this particu⊥ar class of appしi-

Cations. The reason is that the Proしogしanguage model and interpreter p「ovide for two

Ve「γ impo「tant and quite unique abst「actions.

ノ

　

　

一

427

The first impo「tant abstraction in a P「Oしog specification (o「, We might say a pROeRAM

PROTOTYPE. in view of the executabiしity of this specification) is its abstraction

from fしow of controし. As the aしgorithm to be used for interpretation is aしWayS COn-

fined to the Proしog interpreter onしy (the resoしution and backtracking st「ategy of the

theorem p「over) there is no p「ovision for the usuaしcont「oし　const「ucts, e.g. if-then-

eしse, Whiしe or go-tO, in the　しanguage. The onlγ meChanisms to be empしoγed for in-

fしuencing the course of computation a「e

the sequence of notation of cしauses or of the consuしtation of fiしes. essentiaししγ

determining the orde「 of aしternative choices for backtracking;

a language eしement caししed cuT,　Signifying the fixation of the unification and

「esoしution choices in the P「0しog pROCEDURE Cu「rentしy under evaしuation and. ・hence.

CuTTINe SHORT the ProしOg backtracking;

recursion as the standard　しooping mechanism.

Nonetheしess, it shouしd be noted that the Proしog backtracking st「ategγ aしIows a quite

naturaし　notation for iteration too:　backtracking a sequence of predicates　しocated

between the aしways successfuし　くpseudo-)p「edicate REPEAT and the aしWayS unSuCCeSSfuし

FA重しCauSeS a Ping-POng mOVement Of evaしuation and backtracking between them.

The second important abstraction in Proしog is that of data fしow. A Proしog procedure

is aしways a　しogicaしpredicate. As the semantics of a p「edicate knows nothing about

INPUT Or OuTPuT argumentS,　the same is true for the formaしParameterS Of a ProIog

PrOCedure. Depending on the actuaし　unification of the arguments X and Y when it is

Caししed　(resoしved) a Proしog p「edicate p(×.Y) maγ be used to test for the existence of

the　しogicaし「elation p between the constant terms X and Y. It may be a ruしe for the

COmPutation of X from Y or vice-VerSa, Or eVen a generatOr Of aししpossibしe X-Y-Pairs.

For exampしe. the below defined predicate APPEND

append([], L , L).

append([XiLl] ,し2 . [XIL3]):

append(Ll　′　L2 . L3).　e:しnctく3

may be used to coMPuTE the　しist 」x which results f「om appending　しist [a,b] and　しist

[c,d]

?一　aPPend([a,b] . [c,d] , 」x).

428

し× = [a,b,C,d]

Or APP帥D maγ be used to generate a= possibしe lists面ch maγ　have generated the

しist [a,b,C,d].

?- aPPend(Lx ′ Ly ′ [a′b′C′d]).

しX = []　　　　Ly = [a′b′C′d] ;

Lx= [a]　　　しy = [b′C′d] ;

Lx = [a′b]　　Lγ = [c′d] ;

しX = [a,b,C]　しγ= [d] i

Lx=[a,b,C,d] Lγ雪[];

If the user wants to avoid such a sometimes IRR重TATINc SOmetimes wANT帥ambiguity (as

Shown in this p「edicate APP酬D exampしe)′ he w岨define his tasks mo「e carefuししy.

This is an ext「emeしy useful p「ope「ty for p「ototyping because i=eads to a great con-

Ciseness in theしogicaしbuiしding bしocks to be defined for a given modeしing task.

4・出藍はticaしExかerien⊆皇室

Proしog was used in seve「aしspecifjcation and prototyping tasks′　mOSt nOtably for the

deveしOPment Of a personal data base system caししed L印ORE」LO and a dedicated data

management SyStem tO be used for the coNC印T MODE」重NO method introduced by Ortner and

Wedekind [ORTNER]・ The most djfficult specification p「oblem and hence the most im-

PO「tant SyStem aspects to be modeしed with a prototype was the user diaしog interface

forしEPORELLO and the basic data structures and their manipulation in the case of the

data management system・ The「efore′ there was a marked difference in the specification

and prototyping strategy′　a tOP-down app「oach for L印ORELしO versus a bottom-uP One

for the concept constructo「.

Proしog proved itseしf most suitable in both cases′　despite differences in the diト

ficuしties encounte「ed・ The bottom-uP SPeCification couしd be const「ucted in a very

SmOOth way. Especialしγ helpfuしwas the fast implementation of test frames for each

COmPOnent′　made possibしe by Proしog・ A test driver to generate′ in sequence′ the test

CaSeS COnSidered sufficient requires typicaししy′ tWenty tO thirtyしines in Proしog. It

Can be両tten routineしy in about fifteen minutes・ Futhermo「e these test cases can be

quite usabしe later on as a specification of the test drivers for the finaしimpしemen-

tation. The testing of one o「 a few procedures at a time is suppo「ted in a very con-

Venient waγ by the bujしt-in debug features・ These provjde′　eSSentiaししy′ a Selectjve

Or tOtaしtracing of the fしOW Of controしthrough the ports of the procedure box modeし

429

The top-down specification and modeしing of LEPORE」しO seemed less smooth. Pa「tしγ. this

may be ascribed to the fact that LEPORE」LO was our first attempt at using Proしog and

Suffered from a　しack of experience in the use and a　しess than optimaしexpしOitation of

aしし　its features.　On the other hand, it is feしt that the probしems encountered were

due to the top-down app「OaCh as we=.

Firstしγ,　SPeCifying and modeしing the deeper　しeveしS Of the system it got increasingしγ

more difficuしt to keep the specification crisp and consistent and avoid an ever

growing coししection of ad-hoc procedures usabしe at one and only one pしace.　This ex-

Perience certainしy shows not a fauしt of P「OしOg but 「ather a virtue. It makes evident

that an exact specification is needed even for the　しOWeSt SyStem　しeveし　to get the

PrOtOtyPe running. These p「Obしems are usuaししy gしanced over as triviaしin a conven-

tionaし　specifjcatjon. Yet they a「e encountered　しater during the det’aiし　design o「 even

the reaしization,　しeading either to a system difficuしt to moduしarize and maintain or

to expensive specification changes at a　しate time in systems deveしopment.

The second difficuしty encountered with the top-down app「oach,　however.　seems to be

しess a p「Obしem of P「OしOg and more one of its debugging faciしities as currentしγ

defined and impしemented.　For a specification const「ucted top-down typicaししy much

しarger cHUNKS Of the sγStem have to be tried in one test 「un making it difficuしt to

anaしyze and unde「stand from the trace protocoし　the fしow of controし　through the vari-

OuS PrOCedures and the unification history.　Neverthetess,　ProしOg Can be judged a

quite usefuし　prototyping tooし　fo「 top-down sγStem SPeCifications as weしし.

5. Conseauences o

The debugging package we used first made it difficuしt to　しimit the trace output

Significantしy for er「Or diagnosis. The debugger performed a singしe step waしkth「ough.

It stopped at the named port (i.e. CALL, REDO, EXIT, FAIL) but neve「theしess deしive「ed

aしし　steps of fしOW Of controし. The「e existed no practicaし　means to extract specific

information　「egarding particuしar goaしs,　Variabしes.　etc..　other than awaiting

Patientしy the arrivaし　Of the 「eしevant information.

Therefore we instaしIed a SCRE剛-ORI酬TED debugge「.　The sc「een-Oriented debugge「

divides the screen in four windows.　There is the debugge「 status　しine,　the debugger

dispしay area, the debugger command　しine and the user i/O area.

The debugger performs the foししOwing tasks [LEIBRANDT].

heしP

abo「t

Print information about aしし　avaiしabしe commands.　Ente「　く「eturn>　to

しeave this command and to 「eenter the debugger.

Return to the interpreter　しeveし　Switch off debugging.

+

　

　

′

　

　

　

　

　

　

♪

430

b「eak

COnt /くretu「n>

「epeat

Skjp

しeap

CreeP

SPyOnしy

SPyOn / SPyOff

SPy

Parent

nodebug

Cause the current execution to be suspended and a new copy of the

IF′Proしog interprete「 to be made avaiしabしe to you.　The current

database is kept.　When you exit from the N帥-COPY interp「eter by

typing the end-Oトfiしe cha「acte「,　yOur PreVious prog「am wiしし　be

resumed [CLOCKSIN].

Continue execution.

Caしし　cu「rent subgoaし.

Backtrack.

Repeat the　しast subgoaし.

Skip the next subgoaし.

DispしaγS the caししs and 「esults of the executed goaしS at the current

しeveし. Deepe「 debugging is 」EAPT OVER.

Displays every command that is executed.

Watch spγ POints onしy.

Enabしe / disabしe watching of spy points.

Caしし　the spy pojnt editor.

Show parent goaしi.e. the lst predecesso「 goaし.

Exit debugging mode and continue execution.

At the next step we provided out Proしog interp「eter with an exception handしer. The

exception handしing mechanism is used bγ aしし　buiしt-in predicates and it can be used of

by the user's p「edicates in the exactしγ Same Way.

Simiしar to a debugger who watches the ruming program and stops execution at speci-

fied spypoints to give the controし　to the user, the exception handしer watches the in-

te「Pretation of the Proしog program and causes an exception ot the specified EXCEPT重ON

coA」 tO give the execution to the exception handling program.

431

The exception handling program may be written bγ the user. If the「e is no exception

handしing program the specified EXCEPT重ON COA」 Simpしy causes faiし.

Fo「 exampしe:

The wrong use of;the buiしトin predicate ARe

?- a「g(4,date(year,mOnth.day) ,Arg).

CauSeS an eXCePtion message:

EXCEPTION: arg(4.date(year,mOnth,day)) : OuしOf_range

The message may be trapped bγ　the p「ogrammer　- and even the resuしt NO may be

trapped一両th the exceptjon handling program. e.g.:

exception(out_Of_range,arg(_._,_)) :- true.

If we consider our ProしOg SyStem aS tyPicaし(it impしements app「oximateしy theしanguage

as desc「ibed in the QUASI-STANDARD Of Cしocksin and Meししish's textbook [CLOCKSIN]) it

is a workabしe prototyping tool but not yet a perfect one. EspeciaしIy worthwhiしe for

this fieしd of appしication wouしd be a further deveしopment of　しanguage and system in

the foししOWing directions.

A sho「tcoming is the ve「y indiscriminate coNSu」T重Ne and RECONSU」TINO meChanism.

Essentiaししy,　CONSu」T重Ne a fiしe appends aしし　facts and 「uしes in it to the current data

base′　Wh=e RECONSuLT重Nc fjrst erases a= PrOCedu「es両th the same name aしreadγ in

the data base before it consuしts the new procedures. CoNSU」TIN6 in Proしog is a fea-

ture which bears strong resembしance to moduしa「ization in conventionaし　p「ogramming

languages・ This resembしance has the unfortunate side-effect of misしeading the novice

user to t「eat the consuしted fiしes as moduしes. P「OしOg, however does not maintain the

Strict moduしarity, because it treats the data base as a heap. As a consequence if

used for prototγPing, a file is often RECONSuしTED after editing to cor「ect some error

found during the debugging session. This is impossibしe if the definition cしauses of

SOme P「OCedure are dist「ibuted ove「 more than one consuしt fiしe●　RECONSU」T重Ne P「oしog

WOuしd then change aししcしauses corresponding to the one seしected, Without regard to

the MODuLE in which it appears to beしOCated・ Cしea「しy′　a meanS tOしimit the scope of

the changes wouしd be desirabしe, Particuしa「しy if one intends to adopt the object-

Oriented pa「adigm with its object and methods moduしarization.

ノ

432

しastしy, the cha「acter stream oriented i/O mOdeしOf ProしOg makes it difficuしt to modeし

Virtuaし　terminals which are mo「e sophisticated than a simple teしetγPe O「しine p「in-

ter. To modeしthe behaviou「 of the user interface of typicaしCOmme「Ciaしappしications

a virtuaし　form te「minal wouしd be a great heしp. It shouしd aししow one to bind one or

more formats to a reco「d describing its appearance on a video sc「een. The pseudo

P「edicate 「ep「esenting this fo「m terminaし　wouしd then djspしaγ the aし「eadγ unified

record terms acco「ding to the fo「mat seしected and unify its variabしe terms with the

Vaしues input bγ the user.

7. Conclusion

Despite the shortcomings discussed in theしast section Proしog is even in its present

form a ve「y satisfying tooし　for p「ototyping because it a=OWS tO eXeCute and test a

formaしspecification in the framework of a rigid semantic modeし　a RESOLuT重ON THEOR帥

PRoV各R.

The user of ProしOg Can formuしate his modeしin the same RELATIONAしmanner in which he

Pe「Ceives it′　because the underしying modeしof P「oしog aししows the problem to be ex-

PreSSed at a higher　しeveし　of abstraction′ independent of the machine o「iented′

P「OCeduraし　aspects which abound in conventionaし　しanguages.　He describes the

「eしationships of objects (P「Oしog facts) and the means of making interferences (P「oしOg

ruしes) from the given set of described reしationships. Fortunateしy′ it 「eveals to the

user virtuaししy instantしγ fundamentaし　しogic e○○o「s in the user's modeし. It tu「ns out

that in most cases there are mo「e diffe「ent kinds of erro「s than the user who tests

his specification for the fjrst time両th a computer could imagine●　Thus ProIog ap-

Pea「S tO P「OVide a bette「 aしte「native to the TRANSFO則lATIONA」 SChooし　of softwa「e de-

Veしopment which starts with untested formaしspecifications andしater on attempts to

P「OVe that the programs a「e coRRECT With respect to this formaし　くbut nevertheless

P「Obabしy fauしty) specification・ The「efore′　from our experience we concしude that

fo「maしspecification without concur「ent prototyping shouしd be considered dangerous.

References

CLOCKS重N′　W●　F●′　AND C●　S. ‖EしL重SH:

Procl「ammina in ProしOa.

Be「しin - Heideしberg - New York: Springer-Ve「しag 1981.

KoHOROWSKI, H. J.:

An Abstract PROLOG Machine.

Proc. European Conf・ On Integrated Inte「active Computing Systems (ECICS　82),

Stresa September 1982, 149 p. (1982).

KowA」SKI, R.:

Aしaorithm　=　しOaic　+　COntrOし.

C州.盤424 p. (」uしy 「9了9).

しE重BRANDT′　U.′　L●　BERNHARD′　P・ Fo」KJAER′　AND W・ GELDMACHER:

IF/ProしOa User's Manuaし.

Mdnchen: InterFace Compute「 1983.

OR丁N各R, E.:

Asかekte einer Konst「uktionss照r

Darmstadt: T6che-Mittしer 1983.

