
COMMENTS ON "THE ADA/ED SYSTEM; A LARGE-SCALE EXPERIMENT IN SOFTWARE PROTOTYPING 
USING SETL" BY P, KRUCHTEN AND E, SCHONBERG 

EVERYTHING YOU CAN DO I CAN PO BETTER? 
A tentative assessment of Prolog features 

for language processor prototyping 

Peter Schnupp 

InterFace Computer GmbH 

0berfohringer Str. 24a 

D - 8000 Munchen 81 

F.R. Germany 

In a profound and thought-provoking paper [KRUCHTEN] Kruchten and Schonberg discuss 

their approach to prototype the NYUADA compiler system using SETL as a very high 

level specification language. Their experience is invaluable for the following 

reasons: 

(1) They show the feasibility of building a full, functional prototype of a very sub

stantial software product, viz. a major language processor. 

(2) They demonstrate the advantages of gradually transforming the prototype into a 

production version, using it as a specification, a documentation, an arbiter 

between different semantical interpretations and - possibly - a source of already 

running software for program parts not demanding for high efficiency. 

(3) They point out the value of a very high level, but executable specification in an 

environment of uncertain and rapidly changing environment as usually encountered 

during the definition phase of a new language as well as of most commercial ap

plication products (against every current software engineering lore). 

(4) They advance the state of the art by presenting some ingenious and certainly 

powerful modelling techniques, e.g. the "on the fly" code generation as a clever 

way to make an interpreter "behave as a compiler" down to its exception handling 

characteristics. 



L_ 

419 

Consequently, this author cannot but support whole-heartedly their general approach 

as well as their observations that "there is no question of formalizing the require

ments being that there is in general nothing to formalize yet" and "a technique is 

needed to produce WORKING SKETCHES of the system ••• that are flexible enough to 

respond to rapid changes in requirements by rapid changes in design". 

However, the specification language used, SETL, is not widely known, nor is it 

available in most installations. Considering the undeniable advantages of the 

authors' methodology, it is not a moot question whether another language could have 

been an equal or possibly even better choice. 

z. variatjon 

This author's practical experience with prototyping is confined to two languages, the 

unix shell and Prolog. Because the shell for various reasons certainly is not a plau

sible candidate for this kind of modelling task, we shall limit ourselves to explore 

if and how Prolog could be used for similar purposes. Prolog currently is not a very 

widely used language either, but there exist a steady growth if its user community as 

well as commercially available implementations (e.g. the Prolog system under unix 

marketed by Springer Verlag, Heidelberg). Hence, at least it cannot be considered an 

"exote•, which SETL for the majority of DP users even in academic or systems soft

ware development circles still is and probably will remain. 

The first item discussed by Kruchten and Schonberg is the modelling of the "static 

semantics" of ADA, viz. the NAME RESOLUTION mechanism. Its task is a scope dependent 

mapping of source identifiers into one or more UNIQUE NAMES of object entities. Here 

the following complications are discussed and must be modelled: 

(1) Generally, a stack of open scopes and a set of used packages must be held as part 

of the state of comilation/execution. Identifiers must be mapped into unique 

names by observing inheritance from ancestor scopes in the stack and import from 

used packages. 

CZ) Due to overloading an identifier may be mapped into more than one unique name, 

"overloaded" in the current scope, ancestor scopes, or a used package. 

It seems to us that Prolog unification could model this name resolution in an even 

more transparent and natural way than possible in SETL according to the example shown 

in the appendix of [KRUCHTENJ. 

In Prolog, we would store each identifier-name-relation as a fact using the scopename 

(constructed in an arbitrary way guaranteeing its uniqueness as functor). E.g. the 
binding of the identifier "x" with the unique name "un112" in the scope "s17" would 



420 

be represented by the fact 

s17Cx,un112). 

Attributes of unique names, Like types and values, could be represented by appro

priate relations, e.g. 

typeCun112,integer) 

or 

valueCun112,4711), 

variable attributes Like VALUE being updated by ASSERT and RETRACT in the course of 

computation. 

Now, the ENVIRONMENT STACK, as the representation of currently open scopes is called 

in [KRUCHTEN], in Prolog is readily maintained as a List of scopes 

[TopScopelAncestorsJ, 

allowing for a recursive formulation of the name resolution function 

find_simple_nameCid,ScopeStack,Namelist) 

instead of the "search and set-union"-algorithm in SETL which seems to us less 

elegant. Here, the terms needed to look for the necessary facts would be constructed 

from the scope names in the environment using the Prolog UNIV operator as sketched in 

Exhibit 1. 

find_simple_name(Id,[ScopelAncestorsJ,Namelist) 

Declared= •• [Scope,Id,UNameJ, Declared, !, 

can_overloadCUName) 

-> all_overloadsCUName,Id,Ancestors,Namelist) 

; Namelist = [UNameJ. 

find_simple_name(Id,[_IAncestorsJ,Namelist) 

find_simple_name(Id,Ancestors,Namelist). 

find_simple_name(Id,[J,[J) :

cause_exeption('undefined name',Id). 

Exhibit 1 Name resolution in Prolog 

The cuT in the first clause of the name resolution procedure guarantees that only the 

highest declaration in the scope stack will be honored. 



421 

The second item discussed in the paper is the construction of the interpreter, 

employing the clever "on the fly" code generation method already mentioned. 

This kind of interpreting algorithm may be written down in a straightforward manner 

using Prolog as shown in Exhibit 2. Every clause corresponds to one interpretation 

step. Its first (input) argument describes the current code pattern to be inter

preted, the second (output) one the new code pattern after successful evaluation of 

the step. One should note the elegant way the Prolog unification mechanism lends it

self to realize the generation of new code text by operations like GOTO or IF as 

described in [KRUCHTEN]. 

Exhibit 2 assumes that the current environment is held in the Prolog data base and 

updated using RETRACT and ASSERT by each operation wishing to change the environment. 

interprete([J,[J) 

display('End of Program'). 

interprete<Program,EndState) 

ip(Program,NextState), !, 

interprete(NextState,EndState). 

ip([[goto(Label) IBlockRestJIRestJ,[TextlRestJ) 

findlabel(Label,BlockRest,Text), !. 

ip([[goto(Label) I_JIRestJ,Text) :

findlabel(Label,Rest,Text), !. 

ip([if(LogExpr,Then,Else) IRestJ,[ThenlRest)J 

is_true(LogExpr), !. 

ip([if(_,_,Else) IRestJ,[ElselRestJ>. 

ip([[OpJIRestJ,NewRest) :

ip([OplRest],NewRest), !. 

ip([[OplBlockRest]IRestJ,[NewBlocklNewRestJ) 

ip([OplBlockRestJ,NewBlock>, !, 

ip(Rest,NewRest). 

ip([PlainCommandlRestJ,Rest) 

PlainCommand, !. 

Exibit 2: The interpreter in Prolog 



422 

This of course is not too good a Prolog style. It would be preferable to supply each 

interpretation clause with two more arguments, the (input) old environment and the 
(output) new one. 

Then we would arrive at 

interprete(OldText,NewText,OldEnv,NewEnv) 

as the general form of the head of each interpreter clause. 

Exhibit 2 uses end recursion to implement the interpretation cycle. This of course 

assumes that the Prolog system used supports end recursion resolution. To inform the 

system that no backtracking ever will be asked for, the interpreter code should be 

liberally sprinkled with CUTS as shown in Exhibit z. 

If the Prolog available does not provide for automatic end recursion resolution, the 

interpretation cycle must be implemented using a REPEAT-FAIL loop, keeping and 

updating the current code text and environment in the data base. This clearly is not 

only less elegant and transparent but also less efficient and, hence, should be con

sidered as a preliminary solution at most. 

The ease of modelling the exception handler depends entirely on the exception 

handling mechanism of the Prolog system available. If it provides a good exception 

handler allowing for user traps bound at will to any functor (e.g. as implemented in 

IF-Prolog [LEIBRANDTJ) the exception handling of the prototype should be straightfor

ward and easy to model, to change, and to experiment with. On the other hand, without 

it its implementation should be nontrivial and clutter the interpreter with a lot of 

extraneous and difficult code. 

3. ~ 

For the prototyping tasks discussed in [KRUCHTEN] Prolog provides very appropriate 

linguistic means and mechanisms. Hence, to this author it seems even preferable to 

SETL, judging from the examples given. However, whether its theoretical advantages 

can be realized in a practical, major prototyping task as accomplished by Kruchten 

and Schonberg remains to be shown. That certainly depends on the properties of the 

Prolog system employed; some possible shortcomings of actual implementations were 

already discussed above, and others undoubtedly will be discovered when undertaking a 

similar project using Prolog. However, a try at it seems exceedingly worthwhile. 

Hopefully, we soon will hear of similar experiences using Prolog. 



Literature 

LEIBRANDT, U., L. BERNHARD, P. FOLKJAER, AND W. GELDMACHER: 

If/Proloa user's Manual. 
MOnchen: InterFace Computer 1983. 

KRUCHTEN, PH., AND E. ScHONBERa: 

The APA/Ed svstem: A Larae-scale Experiment in software Prototvoina Usina SEJL. 
(In this volume.) 

423 




