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Abstract

This paper examines how we may prototype Multi-Agent Systems. We informally enu-
merate the low-level technical support needed for such systems and show how IC-Prolog I1 is
a good candidate language. IC-Prolog I is a new implementation of Prolog that is particu-
larly suited to distributed applications. It features multiple threads, high-level communication
primitives and an object-oriented extension. A fully worked example of specifying an agent
is given to illustrate use of the language. This shows that it is possible to give a high-level
description of an agent, and that this description can be executed directly, making fast proto-
typing of agents a reality. With this new tool, researchers in Multi-Agent Systems may gain
practical experience in exploring ideas on a real implementation.

Familiarity with the Prolog programming language is assumed.

1 Introduction

In recent years, interest in distributed computing has grown very rapidly since centralised systems
have proved unable to cope with the information technology explosion. For reasons of performance,
flexibility, practicality and cost, centralised mainframe computers have been replaced by networks
of workstations. Since the data on knowledge bases are now distributed among many computers,
there is a need for systems that enable these autonomous knowledge bases to cooperate. We can
view these cooperative knowledge-based systems as examples of Multi-Agent Systems, whereby
each knowledge base is an independent agent. To specify Multi-Agent Systems, we need a notation
for describing an agent.

The use of logic to represent knowledge has a long history leading back to the Ancient Greeks.
More recently, the discovery of the resolution principle [Rob65] and its application to predicate
logic [Kow74] has led to Prolog, a programming language based on Horn Clauses, a subset of
First Order Predicate Logic. Prolog enables the programmer to represent knowledge in a high-
level symbolic manner [Kow74], and uses SLDNF resolution as the inference mechanism. Prolog
has been widely used for implementing knowledge based systems, deductive databases and expert
systems [SB89]. In the rest of this paper, we assume that the reader is familiar with Prolog. For
excellent introductions to the language, see [CM84], [SS86] and [O’K90]. Though there are many
implementations of Prolog, few address the needs of distributed computing.

IC-Prolog IT (ICP for short) [CC92] is a new implementation of Prolog which addresses this need.
It contains many new features such as multiple threads, high-level communication primitives and
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an object-oriented extension which makes ICP especially suitable for implementing Multi-Agent
Systems.

The structure of the paper is as follows : in section 2, we will examine the technical requirements
for implementing Multi-Agent Systems. We then present in section 3 a fully worked (albeit very
simple) example of a Multi-Agent System using ICP. We will explain features of the language as
the need arises. We present our conclusions in section 4.

2 Technical Requirements for Multi-Agent Systems

Multi-Agent Systems covers many research topics such as agent architecture, problem decompo-
sition, task allocation, cooperation, communication, knowledge representation, conflict resolution
etc. Researchers have tended to either build systems tailor-made for their particular research
area/application domain, and thus are not generally applicable or they have been forced to explain
their ideas in theoretical discussions only, since there was no easy way for them to test their ideas
on a real implementation. This is an unfortunate situation, as valuable insights can often be gained
from carrying out experiments on prototype systems.

If we abstract away from the issues and look at the underlying support needed, we can draw up
a list of requirements for building Multi-Agent Systems. Note that this is not a list of requirements
for a Multi-Agent System since such a list would be highly subjective and would involve deciding
on 1ssues such as whether a Truth Maintenance System is required. We concentrate instead on the
technical requirements that a language should satisfy in order to program Multi-Agent Systems.

In Multi-Agent Systems, an agent needs knowledge to operate effectively. This includes knowl-
edge about its own capabilities, knowledge about other agents with which i1t can interact, knowledge
about how it can communicate with other agents and knowledge about particular application do-
mains. We use the term capability to mean a task which an agent can perform. An agent needs to
be able to manipulate this knowledge and draw conclusions from it. The knowledge needed is not
restricted to these, but it seems obvious that knowledge representation and inference are essential
components of any language for Multi-Agent Systems.

The agent is likely to be interacting with more than one agent at any given moment so an
ability to handle multiple interactions concurrently is needed. Since the agents in Multi-Agent
Systems are distributed, an ability to communicate over the network is essential. Furthermore,
this communication should be asynchronous in the sense that sending a message should not have
to wait for it to be received before proceeding. Synchronous communication forces a tight coupling
between agents that goes against the philosophy of Multi-Agent Systems.

These requirements can be summarised by saying that the implementation language should :

e be able to represent knowledge

e have some inference mechanism

e be multi-tasking

e have asynchronous communication

e be able to communicate over a network

Note that this specification makes no assumptions on how agents cooperate nor what are
the contents/protocol of the messages passed between them. The specification provides only the

infrastructure for Multi-Agent Systems. This infrastructure enables experiments on these higher
level issues to be carried out.

3 Specifying an Agent in ICP

ICP satisfies the requirements for programming Multi-Agent Systems as described in the previous
section. To illustrate this, we will give an example of how to specify an agent in a Multi-Agent
System using ICP. The example is in the domain of arithmetic and shows how a group of agents
can cooperate to solve arithmetic problems that none could solve on its own.



In our scenario, there are five basic capabilities that are distributed among three agents ai,
a2 and a3. A capability may be a task which an agent can perform or some knowledge that it is
willing to share with other agents. In this example, agent al can perform addition and subtraction,
agent a2 can multiply and divide, and lastly agent a3 is the expert on calculating square roots.

Although the agents have different capabilities, the basic architecture can be the same. For
this example, we will assume a simple agent architecture. Each agent consists of four components

1. a knowledge base which includes knowledge about the agent’s own capabilities, knowledge
about other agents’ capabilities and rules for problem decomposition,

2. a planner which decides how to solve each task,
3. a monttor which accepts new tasks and reports results,

4. a communicator which handles incoming and outgoing messages.

These components are shown in the agent architecture diagram of figure 1.

Communicator

Monitor Planner

Knowledge Base

Capability H Agent_directory H Decompose

Figure 1: Architecture of the Simple Agent used in example

The basic mechanism in this agent is a follows: external requests to perform tasks arrive through
the communicator; these are passed to the monitor which oversees the execution. Local requests
go directly to the monitor. The task is given to the planner, which has a variety of methods of
solving the problem including requesting help from other agents to solve smaller sub-problems.
These sub-requests (if any) are transmitted through the communicator. The execution of the tasks
are domain-specific. When the complete task is finished, the monitor sends back a report (again
through the communicator) to the requesting agent.

Note that this architecture is not definitive. A fully-fledged agent may require other com-
ponents though this simple design is a good first approximation. The agent designer is free to
experiment with different architectures. The important point is how easily a given specification
can be formalised as executable code, thus enabling fast prototyping of ideas.

3.1 Knowledge Base

In this section we will specify the knowledge base component as shown in the previous diagram.
Programs written in Prolog have a flat structure. There is only one name space for all the predicate
names. This is a problem if the programs are large, or if we would like to group together related



predicates for ease of maintenance. In effect, we would like a structuring mechanism for programs,
a feature which is available in ICP through Logic & Objects.

Logic & Objects (LE&O for short) is a object-oriented notation designed by McCabe [McC92]. Tt
allows Prolog programs to be written in an object-oriented style. The L&Q system is a preprocessor
written in Prolog which converts these object-oriented programs into normal Prolog code, which
is then executed on the host system. Thus, L&O can be thought of as a shorthand for the lengthy
and laborious Prolog versions of the same program.

In our example agent a1l can perform addition and subtraction as well as knowing its own name.
This may be specified using L&O as:

capability : {
nmy_name(al).
add(X, Y, Sum) :- Sum is X + Y.
subtract(X, Y, Difference) :- Difference is X - Y.

}.

Here capability is an object representing the capabilities of an agent. In L&QO syntax the
object name is followed by a colon and a list of Prolog clauses between braces. The clauses are the
methods for that object. A condition may be prefixed by an object label e.g. foo:bar means send
the message bar to the object foo. Note that constants begin with a lower-case letter following
the Prolog convention that variables begin with upper-case letters.

The capabilities of addition and subtraction are (in this case) trivially implemented by calling
upon the arithmetic primitives of Prolog. In other examples, the execution of a task may involve
queries to large databases, substantial computation or even interfacing to hardware devices.

This agent knows about two other agents a2 and a3, which have other capabilities. This can
be coded as :

agent_directory : {
capability(a2, [‘multiply/3, ‘divide/3]).
capability(a3, [‘square/2, ‘squareroot/2, ‘cube/2]).
}.

This specifies that a2 can do multiplication and division (both have 3 arguments - 2 input
arguments for the operands and 1 output argument for the result) and that a3 has three other
skills. The backquote is L&Q syntax to prevent evaluation.

The third part of the knowledge base is the rules for decomposing a problem into smaller sub-
problems. We show here two rules — one for doubling a number and another for calculating the
length of the hypotenuse given the other two sides of a right-angle triangle.

decompose : {
rule(double(X,D), [ add(X,X,D) 1).
rule(hypotenuse(X,Y,H), [ square(X,X2), square(Y,Y2),
add(X2,Y2,H2), squareroot(H2,H) ]).
}.

We can now describe the agent’s knowledge base using the object knowledge as follows:

knowledge : {
find_agent (Task, Agent) :-

functor(Task, Cap, Arity), /* get name of task */
capability(Agent, CapList), /#* get capability list */
on(‘Cap/Arity, CapList). /* check if in the list */

.

knowledge << capability.
knowledge << agent_directory.
knowledge << decompose.

Here we have made use of another facility of L&O — inheritance. This is denoted by the
inheritance operator ‘<<’. The rule



knowledge << capability.

means the object knowledge inherits all methods from object capability. This allows queries
such as

knowledge:my_name (X)

to be answered correctly even though there is no explicit method for it in the object knowledge.
The query is answered through inheriting from the capability object. Multiple inheritance is
represented by inheriting from more than one object. In our example, knowledge also inherits
methods from the agent_directory and decompose objects.

Finally, the find_agent clause of the knowledge base is used to match an agent with a given task
by searching for the name of the task (ignoring the parameters) in the inherited agent_directory
object. on/2 is the built-in primitive for testing list membership. Note that Prolog’s backtracking
enables multiple solutions to be found. This corresponds to the case when more than one agent
can perform the given task.

The other agents a2 and a3 have different local knowledge. They have different capabilities,
their own agent directories and rules for problem decomposition. The structure of the knowledge
base however, is the same, as are the other components (planner, monitor and communicator) of the
agent architecture. Using L&Q, we are able to decouple the agent-specific and agent-independent
code.

The agent-specific knowledge of agent a2 is as follows:

/* agent a2 */
capability : {
nmy_name (a2) .
multiply (X, Y, Product) :- Product is X * Y.
divide(X, Y, Quotient) :- Quotient is X / Y.
}.

agent_directory : {
capability(al, [‘add/3, ‘subtract/3, ‘hypotenuse/3]).
capability(a3, [‘square/2, ‘squareroot/2, ‘cube/2]).

decompose : {
rule(double(X,D), [ multiply(X,2,D) 1).
}.

Lastly, agent a3 has the following agent-specific knowledge.

/* agent a3 */
capability : {

ny_name (a3) .

squareroot (X, Root) :- Root is sqrt(X).
}.

agent_directory : {
capability(a2, [‘multiply/3, ‘divide/3, ‘double/2]).
capability(al, [‘add/3, ‘subtract/3, ‘double/2, ‘hypotenuse/3]).

decompose : {
rule(square(X, Sq), [ multiply(X,X,Sq) 1).
rule(cube(X,C), [ square(X,S), multiply(5,X,C) 1).
}.

An interesting point is that a3 can call upon either al or a2 to perform doubling since both
agents have offered this capability.



3.2 Planner

The next agent component is the planner. The planner receives tasks either from the monitor or
those generated internally as a result of problem decomposition. The planner first tries to complete
tasks using the agent’s own capabilities by querying its own knowledge base. If the task is not one
that it can do itself, the planner tries to find another agent who can perform it, sends a request
to that agent and waits for a reply through the communicator. A unique communication ID is
generated for each such request. If none of the agents have that capability, the planner will try to
decompose the problem and recursively plan the smaller problems. Finally, if decomposition fails,
then the whole planning process has failed. We encode this behaviour concisely as follows:

planner : {
plan(Task) :-
knowledge:Task. /* try to solve it myself */
plan(Task) :-
knowledge:find_agent (Task, Agent),
communicator:send_request (Agent, Task, Id),
communicator:wait_reply(Id, Msg),
Task = Msg. /* this fails if Msg = ‘failure’ */
plan(Task) :-
knowledge:rule(Task, Subtasks), /#* decompose problem */
execute (Subtasks) .

execute([]). /* empty set succeeds trivially =/
execute([First|Rest]) :- /* solve set of tasks by ... */
plan(First), /* planning one of the tasks ... */
execute(Rest) . /* and recursively do the rest  */

3.3 Monitor

We turn our attention now to the monitor. This component is responsible for supervising the
execution of a task and to report the results back to the originating agent who sent the request.
If the task cannot be completed, the ‘failure’ message is reported back instead. Requests initially
come from external agents through the communicator, or are generated locally. In both cases, they
are passed on to the planner component. This behaviour is repesented as follows:

monitor : {
request(Sender, Task, Id) :-
planner:plan(Task), !, /* task succeeded */
communicator:send_reply(Sender, Task, Id).

request(Sender, Task, Id) :-
/* failed to complete task, report failure */
communicator:send_reply(Sender, failure, Id).

solve(Task) :- /* local tasks */
planner:plan(Task), !.
solve(Task) :- /* problem unsolvable */

writeseqnl (user, [’cannot solve’, Task]).

3.4 Communicator

Finally, we come to the communicator component. This is responsible for sending messages to other
agents using mailbozes to handle communication, and for redirecting new requests to the monitor.
Mailboxes are high-level abstractions for inter-agent communication designed and implemented by
V. Benjumea. A mailbox is simply a repository for messages. Messages can be sent to and removed



from a mailbox. For two threads to communicate, the sender places a message in the mailbox, and
the receiver removes it from the same mailbox. In ICP, a mailbox is created using

mbx_create(-Id)

‘=" is used to denote an output argument. Input arguments are represented by ‘+’. In this

case, mbx_create/1 returns an identifier naming the newly created mailbox. Mailbox identifiers
are globally unique in the network, so the exact same identifier may be used by any agent on the
network. To send and receive messages to/from mailboxes, we use

mbx_send (+Id, +Message)
mbx_recv(+Id, -Message)

A name may be associated with a mailbox identifier using
mbx_bind(+Id, +Name)

This registers the name so that other agents may find out the identifier by querying the name
using

mbx_getid(+Name, -Id)
Finally, to destroy a mailbox, use the primitive
mbx_close(+Id)

Maiboxes are implemented very efficiently. More specifically, the creation of a new mailbox
does not require a new TCP socket to be opened.

Using mailboxes, we are able to describe the behaviour of the communicator. The communicator
handles the forwarding of requests to external agents. It does this by creating a new mailbox for
the reply, looking up the mailbox identifier for the specified agent, and sending a message to it.
The message consists of the sender agent’s name, the task and the reply mailbox ID.

The converse of sending a request is to receive one. In this case the message is passed to
the local monitor as a new thread of computation. ICP is a multi-threaded Prolog which means
that multiple computations may be executed concurrently. This is not the same as co-routining
which demands that control is passed explicitly between the threads. In ICP, the different threads
execute independently and concurrently, unaware of each other’s existence unless they wish to
communicate. This is achieved by employing a time-slice mechanism. New threads are created
using the fork/1 primitive.

Two other tasks performed by the communicator are the sending and receiving of results. This
is achieved by simple mailbox communication using the dedicated mailbox created specifically for
each reply. The mechanism for receiving replies is that a blocking read is set up on a mailbox,
which i1s unblocked when the reply is eventually received.

The implementation of the communicator is shown in figure 2. The calls to write/2 and
writeseqnl/2 are not essential as they are for the displaying of trace messages only.

3.5 Agent Initialisation

To start an agent, we need to give it a unique mailbox ID. This mailbox ID must be accessible
globally by other agents so that they can communicate with the new agent. We can register this
mailbox ID globally by binding it with the agent name. Once the mailbox is created, we fork a
process to read the incoming messages.

init_agent :-
knowledge:my_name (MyName) ,

mbx_create(Id), /* new mailbox ID */
mbx_bind(Id, MyName), /* register ID globally */
writeseqnl (user, [’initialised agent :’, MyName]),

fork(read_messages(Id)).



communicator : {

/* sending a request to another agent */

send_request (Agent, Task, Id) :-
mbx_create(Id), /* create unique Id for reply */
agent_id(Agent, Mbx),
knowledge :my_name (Name) ,
writeseqnl(user, [’sending request to’, Agent, ’:’, Task]l),
mbx_send(Mbx, request (Name, Task, Id)).

/* receiving an incoming request */
request(Sender, Task, Id) :-
fork(‘(monitor:request(Sender, Task, Id))).

/* sending results back to the requestor */
send_reply(Who, Msg, Id) :-
writeseqnl(user, [’sending reply to’, Who, ’:’, Msgl),
mbx_send(Id, Msg).

/* blocking read, waiting for reply */
wait_reply(Id, Msg) :-

write(user, ’waiting for reply ... ’), flush,
mbx_recv(Id, Msg),
writeseqnl(user, [’received reply :’, Msgl),

mbx_close(Id).

/* look up mailbox ID of agent */
agent_id(Agent, Mbx) :-

mbx_getid(Agent, Mbx), !.
agent_id(Agent, Mbx) :-

writeseqnl(user, [’unknown agent :’, Agent]).

Figure 2: Implementation of the Communicator
The read_messages/1 program is a loop that reads messages and passes them to the commu-
nicator. It is thus the mechanism by which messages are transformed into communicator tasks.

read_messages(Id) :-
mbx_recv(Id, Msg),

writeseqnl (user, [’MESSAGE RECEIVED :’, Msgl),
communicator:Msg, /* pass all incoming messages to ... */
read_messages(Id). /* the communicator and loop again  */

3.6 Sample Trace

To test our simple arithmetic agents, we started ICP on three separate machines running the agents
al, a2 and a3 respectively. The query

| 7- monitor:solve(hypotenuse(3,4,X)).

was posed to agent a2 and resulted in the trace shown in figure 3. The three columns show the
trace messages displayed by each of the agents a1, a2 and a3. The ordering of the lines indicate
the time sequence. (notes: Numbers preceded by an underscore denote variables whose values are
not yet known. The large numbers are the mailbox identifiers.)

We see that agent a2 was not able to solve the initial hypotenuse problem, so it sent a request
to al to solve it. al was able to decompose the problem into four parts (2 squares, 1 addition and
1 square root) of which it could only perform one — the addition. The other three parts were sent
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al a2 a3

sending request to al : hypotenuse(3,4,_51)
waiting for reply ...
MESSAGE RECEIVED : request(a2,hypotenuse(3,4,_205),131073)
sending request to a3 : square(3,_215)
waiting for reply ...
MESSAGE RECEIVED : request(al,square(3,_203),65537)
sending request to a2 : multiply(3,3,_63)
MESSAGE RECEIVED : request(a3,multiply(3,3,_205),196609)
sending reply to a3 : multiply(3,3,9)
received reply : multiply(3,3,9)
sending reply to al : square(3,9)
received reply : square(3,9)
sending request to a3 : square(4,_221)
waiting for reply ...
MESSAGE RECEIVED : request(al,square(4,_440),65537)
sending request to a2 : multiply(4,4,_63)
MESSAGE RECEIVED : request(a3,multiply(4,4,_445),196609)
sending reply to a3 : multiply(4,4,16)
received reply : multiply(4,4,16)
sending reply to al : square(4,16)
received reply : square(4,16)
sending request to a3 : squareroot(25,_65)
waiting for reply ...
MESSAGE RECEIVED : request(al,squareroot(25,_678),65537)
sending reply to al : squareroot(25,5)
received reply : squareroot(25,5)
sending reply to a2 : hypotenuse(3,4,5)
received reply : hypotenuse(3,4,5)

Figure 3: Trace of messages exchanged to calculate hypotenuse

to a3. Note that a3 twice needed the help of a2 to solve multiplications while it was calculating
squares. a2 was able to respond even though it was still waiting for the results of the original
hypotenuse query. This was possible because of the multi-threading capability of ICP. The answer
5 was received by a2 in the last step of the trace, indicating that the problem was successfully
solved through close collaboration between the agents.

4 Conclusion

ICP i1s a new Prolog system developed at Imperial College. ICP has many features which are
not available in standard Prolog systems. These include a multi-threading capability, high level
communication primitives and an object-oriented extension. There are many other features in
ICP which are useful for programming Multi-Agent Systems, but which we have not discussed
because they were not required for the simple example. These features include many-to-many
communication, secure communication, timeouts for receiving messages, interface to TCP/IP, for-
eign language interface and a complete Parlog sub-system [Gre87] for those applications where
fine-grained parallelism is important. L&Q is also a much richer notation than we have space to
give justice to.

We have shown that ICP satisfies our informal list of technical requirements for a Multi-Agent
Systems implementation language. Furthermore, the worked example illustrates that ICP is capable
of describing agent behaviour in a high-level manner.

For the sake of clarity, brevity and completeness, I chose to model a simple agent architecture



and a simple application domain. The reader should realise that the example can be easily mod-
ified or expanded to model more complex agent architectures, alternative cooperation strategies,
dynamic replanning and all the other issues of interest to researchers in Multi-Agent Systems.
Even with this simple architecture, we can very easily build distributed applications in domains
far more complex than arithmetic. Cooperating expert systems can be modelled in this way.

The implementation language does not impose a particular viewpoint on Multi-Agent Systems.
Instead it provides an infrastructure so that prototypes can be easily constructed and experiments
performed. We believe that as such, ICP will be a useful tool to researchers in the field.

IC-Prolog 11 is available by anonymous ftp from src.doc.ic.ac.uk (Internet: 146.169.2.1) in
the directory

computing/programming/languages/prolog/icprolog
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