
I�C� Prolog II � a Language for Implementing

Multi�Agent Systems�

Damian Chu

Department of Computing

Imperial College of Science� Technology and Medicine

��� Queen�s Gate

London SW� �BZ

email� dac�doc	ic	ac	uk

�
 March� ����

Abstract

This paper examines how we may prototype Multi�Agent Systems� We informally enu�

merate the low�level technical support needed for such systems and show how IC�Prolog II is

a good candidate language� IC�Prolog II is a new implementation of Prolog that is particu�

larly suited to distributed applications� It features multiple threads� high�level communication

primitives and an object�oriented extension� A fully worked example of specifying an agent

is given to illustrate use of the language� This shows that it is possible to give a high�level

description of an agent� and that this description can be executed directly� making fast proto�

typing of agents a reality� With this new tool� researchers in Multi�Agent Systems may gain

practical experience in exploring ideas on a real implementation�

Familiarity with the Prolog programming language is assumed�

� Introduction

In recent years� interest in distributed computing has grown very rapidly since centralised systems
have proved unable to cope with the information technology explosion� For reasons of performance�
�exibility� practicality and cost� centralised mainframe computers have been replaced by networks
of workstations� Since the data on knowledge bases are now distributed among many computers�
there is a need for systems that enable these autonomous knowledge bases to cooperate� We can
view these cooperative knowledge�based systems as examples of Multi�Agent Systems� whereby
each knowledge base is an independent agent� To specify Multi�Agent Systems� we need a notation
for describing an agent�

The use of logic to represent knowledge has a long history leading back to the Ancient Greeks�
More recently� the discovery of the resolution principle �Rob��� and its application to predicate
logic �Kow�	� has led to Prolog� a programming language based on Horn Clauses� a subset of
First Order Predicate Logic� Prolog enables the programmer to represent knowledge in a high�
level symbolic manner �Kow�	�� and uses SLDNF resolution as the inference mechanism� Prolog
has been widely used for implementing knowledge based systems� deductive databases and expert
systems �SB
��� In the rest of this paper� we assume that the reader is familiar with Prolog� For
excellent introductions to the language� see �CM
	�� �SS
�� and �O�K�
�� Though there are many
implementations of Prolog� few address the needs of distributed computing�

IC�Prolog II �ICP for short� �CC��� is a new implementationof Prolog which addresses this need�
It contains many new features such as multiple threads� high�level communication primitives and

�Published in the Proceedings of the Special Interest Group on Cooperating Knowledge Based Systems� Keele

September ����

�



an object�oriented extension which makes ICP especially suitable for implementing Multi�Agent
Systems�

The structure of the paper is as follows � in section �� we will examine the technical requirements
for implementing Multi�Agent Systems� We then present in section � a fully worked �albeit very
simple� example of a Multi�Agent System using ICP� We will explain features of the language as
the need arises� We present our conclusions in section 	�

� Technical Requirements for Multi�Agent Systems

Multi�Agent Systems covers many research topics such as agent architecture� problem decompo�
sition� task allocation� cooperation� communication� knowledge representation� con�ict resolution
etc� Researchers have tended to either build systems tailor�made for their particular research
area�application domain� and thus are not generally applicable or they have been forced to explain
their ideas in theoretical discussions only� since there was no easy way for them to test their ideas
on a real implementation� This is an unfortunate situation� as valuable insights can often be gained
from carrying out experiments on prototype systems�

If we abstract away from the issues and look at the underlying support needed� we can draw up
a list of requirements for building Multi�Agent Systems� Note that this is not a list of requirements
for a Multi�Agent System since such a list would be highly subjective and would involve deciding
on issues such as whether a Truth Maintenance System is required� We concentrate instead on the
technical requirements that a language should satisfy in order to program Multi�Agent Systems�

In Multi�Agent Systems� an agent needs knowledge to operate e�ectively� This includes knowl�
edge about its own capabilities� knowledge about other agents with which it can interact� knowledge
about how it can communicate with other agents and knowledge about particular application do�
mains� We use the term capability to mean a task which an agent can perform� An agent needs to
be able to manipulate this knowledge and draw conclusions from it� The knowledge needed is not
restricted to these� but it seems obvious that knowledge representation and inference are essential
components of any language for Multi�Agent Systems�

The agent is likely to be interacting with more than one agent at any given moment so an
ability to handle multiple interactions concurrently is needed� Since the agents in Multi�Agent
Systems are distributed� an ability to communicate over the network is essential� Furthermore�
this communication should be asynchronous in the sense that sending a message should not have
to wait for it to be received before proceeding� Synchronous communication forces a tight coupling
between agents that goes against the philosophy of Multi�Agent Systems�

These requirements can be summarised by saying that the implementation language should �

� be able to represent knowledge

� have some inference mechanism

� be multi�tasking

� have asynchronous communication

� be able to communicate over a network

Note that this speci�cation makes no assumptions on how agents cooperate nor what are
the contents�protocol of the messages passed between them� The speci�cation provides only the
infrastructure for Multi�Agent Systems� This infrastructure enables experiments on these higher
level issues to be carried out�

� Specifying an Agent in ICP

ICP satis�es the requirements for programming Multi�Agent Systems as described in the previous
section� To illustrate this� we will give an example of how to specify an agent in a Multi�Agent
System using ICP� The example is in the domain of arithmetic and shows how a group of agents
can cooperate to solve arithmetic problems that none could solve on its own�

�



In our scenario� there are �ve basic capabilities that are distributed among three agents a��
a� and a�� A capability may be a task which an agent can perform or some knowledge that it is
willing to share with other agents� In this example� agent a� can perform addition and subtraction�
agent a� can multiply and divide� and lastly agent a� is the expert on calculating square roots�

Although the agents have di�erent capabilities� the basic architecture can be the same� For
this example� we will assume a simple agent architecture� Each agent consists of four components
�

�� a knowledge base which includes knowledge about the agent�s own capabilities� knowledge
about other agents� capabilities and rules for problem decomposition�

�� a planner which decides how to solve each task�

�� a monitor which accepts new tasks and reports results�

	� a communicator which handles incoming and outgoing messages�

These components are shown in the agent architecture diagram of �gure ��

Monitor Planner

Communicator

�

�

�

�

�

�

�

Capability Agent directory Decompose

Knowledge Base

Figure �� Architecture of the Simple Agent used in example

The basic mechanism in this agent is a follows� external requests to perform tasks arrive through
the communicator� these are passed to the monitor which oversees the execution� Local requests
go directly to the monitor� The task is given to the planner� which has a variety of methods of
solving the problem including requesting help from other agents to solve smaller sub�problems�
These sub�requests �if any� are transmitted through the communicator� The execution of the tasks
are domain�speci�c� When the complete task is �nished� the monitor sends back a report �again
through the communicator� to the requesting agent�

Note that this architecture is not de�nitive� A fully��edged agent may require other com�
ponents though this simple design is a good �rst approximation� The agent designer is free to
experiment with di�erent architectures� The important point is how easily a given speci�cation
can be formalised as executable code� thus enabling fast prototyping of ideas�

��� Knowledge Base

In this section we will specify the knowledge base component as shown in the previous diagram�
Programs written in Prolog have a �at structure� There is only one name space for all the predicate
names� This is a problem if the programs are large� or if we would like to group together related

�



predicates for ease of maintenance� In e�ect� we would like a structuring mechanism for programs�
a feature which is available in ICP through Logic � Objects�

Logic � Objects �L�O for short� is a object�oriented notation designed by McCabe �McC���� It
allows Prolog programs to be written in an object�oriented style� The L�O system is a preprocessor
written in Prolog which converts these object�oriented programs into normal Prolog code� which
is then executed on the host system� Thus� L�O can be thought of as a shorthand for the lengthy
and laborious Prolog versions of the same program�

In our example agent a� can perform addition and subtraction as well as knowing its own name�
This may be speci�ed using L�O as�

capability � �

my�name�a���

add�X� Y� Sum� �� Sum is X 	 Y�

subtract�X� Y� Difference� �� Difference is X � Y�


�

Here capability is an object representing the capabilities of an agent� In L�O syntax the
object name is followed by a colon and a list of Prolog clauses between braces� The clauses are the
methods for that object� A condition may be pre�xed by an object label e�g� foo�bar means send
the message bar to the object foo� Note that constants begin with a lower�case letter following
the Prolog convention that variables begin with upper�case letters�

The capabilities of addition and subtraction are �in this case� trivially implemented by calling
upon the arithmetic primitives of Prolog� In other examples� the execution of a task may involve
queries to large databases� substantial computation or even interfacing to hardware devices�

This agent knows about two other agents a� and a�� which have other capabilities� This can
be coded as �

agent�directory � �

capability�a�� �
multiply��� 
divide�����

capability�a�� �
square��� 
squareroot��� 
cube�����


�

This speci�es that a� can do multiplication and division �both have � arguments � � input
arguments for the operands and � output argument for the result� and that a� has three other
skills� The backquote is L�O syntax to prevent evaluation�

The third part of the knowledge base is the rules for decomposing a problem into smaller sub�
problems� We show here two rules � one for doubling a number and another for calculating the
length of the hypotenuse given the other two sides of a right�angle triangle�

decompose � �

rule�double�X�D�� � add�X�X�D� ���

rule�hypotenuse�X�Y�H�� � square�X�X��� square�Y�Y���

add�X��Y��H��� squareroot�H��H� ���


�

We can now describe the agent�s knowledge base using the object knowledge as follows�

knowledge � �

find�agent�Task� Agent� ��

functor�Task� Cap� Arity�� �� get name of task ��

capability�Agent� CapList�� �� get capability list ��

on�
Cap�Arity� CapList�� �� check if in the list ��


�

knowledge �� capability�

knowledge �� agent�directory�

knowledge �� decompose�

Here we have made use of another facility of L�O � inheritance� This is denoted by the
inheritance operator ����� The rule

	



knowledge �� capability�

means the object knowledge inherits all methods from object capability� This allows queries
such as

knowledge�my�name�X�

to be answered correctly even though there is no explicit method for it in the object knowledge�
The query is answered through inheriting from the capability object� Multiple inheritance is
represented by inheriting from more than one object� In our example� knowledge also inherits
methods from the agent�directory and decompose objects�

Finally� the �nd agent clause of the knowledge base is used to match an agent with a given task
by searching for the name of the task �ignoring the parameters� in the inherited agent�directory

object� on�� is the built�in primitive for testing list membership� Note that Prolog�s backtracking
enables multiple solutions to be found� This corresponds to the case when more than one agent
can perform the given task�

The other agents a� and a� have di�erent local knowledge� They have di�erent capabilities�
their own agent directories and rules for problem decomposition� The structure of the knowledge
base however� is the same� as are the other components �planner� monitor and communicator� of the
agent architecture� Using L�O� we are able to decouple the agent�speci�c and agent�independent
code�

The agent�speci�c knowledge of agent a� is as follows�

�� agent a� ��

capability � �

my�name�a���

multiply�X� Y� Product� �� Product is X � Y�

divide�X� Y� Quotient� �� Quotient is X � Y�


�

agent�directory � �

capability�a�� �
add��� 
subtract��� 
hypotenuse�����

capability�a�� �
square��� 
squareroot��� 
cube�����


�

decompose � �

rule�double�X�D�� � multiply�X���D� ���


�

Lastly� agent a� has the following agent�speci�c knowledge�

�� agent a� ��

capability � �

my�name�a���

squareroot�X� Root� �� Root is sqrt�X��


�

agent�directory � �

capability�a�� �
multiply��� 
divide��� 
double�����

capability�a�� �
add��� 
subtract��� 
double��� 
hypotenuse�����


�

decompose � �

rule�square�X� Sq�� � multiply�X�X�Sq� ���

rule�cube�X�C�� � square�X�S�� multiply�S�X�C� ���


�

An interesting point is that a� can call upon either a� or a� to perform doubling since both
agents have o�ered this capability�

�



��� Planner

The next agent component is the planner� The planner receives tasks either from the monitor or
those generated internally as a result of problem decomposition� The planner �rst tries to complete
tasks using the agent�s own capabilities by querying its own knowledge base� If the task is not one
that it can do itself� the planner tries to �nd another agent who can perform it� sends a request
to that agent and waits for a reply through the communicator� A unique communication ID is
generated for each such request� If none of the agents have that capability� the planner will try to
decompose the problem and recursively plan the smaller problems� Finally� if decomposition fails�
then the whole planning process has failed� We encode this behaviour concisely as follows�

planner � �

plan�Task� ��

knowledge�Task� �� try to solve it myself ��

plan�Task� ��

knowledge�find�agent�Task� Agent��

communicator�send�request�Agent� Task� Id��

communicator�wait�reply�Id� Msg��

Task � Msg� �� this fails if Msg � 
failure� ��

plan�Task� ��

knowledge�rule�Task� Subtasks�� �� decompose problem ��

execute�Subtasks��

execute����� �� empty set succeeds trivially ��

execute��First�Rest�� �� �� solve set of tasks by ��� ��

plan�First�� �� planning one of the tasks ��� ��

execute�Rest�� �� and recursively do the rest ��


�

��� Monitor

We turn our attention now to the monitor� This component is responsible for supervising the
execution of a task and to report the results back to the originating agent who sent the request�
If the task cannot be completed� the �failure� message is reported back instead� Requests initially
come from external agents through the communicator� or are generated locally� In both cases� they
are passed on to the planner component� This behaviour is repesented as follows�

monitor � �

request�Sender� Task� Id� ��

planner�plan�Task�� �� �� task succeeded ��

communicator�send�reply�Sender� Task� Id��

request�Sender� Task� Id� ��

�� failed to complete task� report failure ��

communicator�send�reply�Sender� failure� Id��

solve�Task� �� �� local tasks ��

planner�plan�Task�� ��

solve�Task� �� �� problem unsolvable ��

writeseqnl�user� ��cannot solve�� Task���


�

��� Communicator

Finally� we come to the communicator component� This is responsible for sending messages to other
agents using mailboxes to handle communication� and for redirecting new requests to the monitor�
Mailboxes are high�level abstractions for inter�agent communication designed and implemented by
V� Benjumea� A mailbox is simply a repository for messages� Messages can be sent to and removed

�



from a mailbox� For two threads to communicate� the sender places a message in the mailbox� and
the receiver removes it from the same mailbox� In ICP� a mailbox is created using

mbx�create��Id�

��� is used to denote an output argument� Input arguments are represented by ���� In this
case� mbx�create�� returns an identi�er naming the newly created mailbox� Mailbox identi�ers
are globally unique in the network� so the exact same identi�er may be used by any agent on the
network� To send and receive messages to�from mailboxes� we use

mbx�send�	Id� 	Message�

mbx�recv�	Id� �Message�

A name may be associated with a mailbox identi�er using

mbx�bind�	Id� 	Name�

This registers the name so that other agents may �nd out the identi�er by querying the name
using

mbx�getid�	Name� �Id�

Finally� to destroy a mailbox� use the primitive

mbx�close�	Id�

Maiboxes are implemented very e�ciently� More speci�cally� the creation of a new mailbox
does not require a new TCP socket to be opened�

Using mailboxes� we are able to describe the behaviour of the communicator� The communicator

handles the forwarding of requests to external agents� It does this by creating a new mailbox for
the reply� looking up the mailbox identi�er for the speci�ed agent� and sending a message to it�
The message consists of the sender agent�s name� the task and the reply mailbox ID�

The converse of sending a request is to receive one� In this case the message is passed to
the local monitor as a new thread of computation� ICP is a multi�threaded Prolog which means
that multiple computations may be executed concurrently� This is not the same as co�routining
which demands that control is passed explicitly between the threads� In ICP� the di�erent threads
execute independently and concurrently� unaware of each other�s existence unless they wish to
communicate� This is achieved by employing a time�slice mechanism� New threads are created
using the fork�� primitive�

Two other tasks performed by the communicator are the sending and receiving of results� This
is achieved by simple mailbox communication using the dedicated mailbox created speci�cally for
each reply� The mechanism for receiving replies is that a blocking read is set up on a mailbox�
which is unblocked when the reply is eventually received�

The implementation of the communicator is shown in �gure �� The calls to write�� and
writeseqnl�� are not essential as they are for the displaying of trace messages only�

��� Agent Initialisation

To start an agent� we need to give it a unique mailbox ID� This mailbox ID must be accessible
globally by other agents so that they can communicate with the new agent� We can register this
mailbox ID globally by binding it with the agent name� Once the mailbox is created� we fork a
process to read the incoming messages�

init�agent ��

knowledge�my�name�MyName��

mbx�create�Id�� �� new mailbox ID ��

mbx�bind�Id� MyName�� �� register ID globally ��

writeseqnl�user� ��initialised agent ��� MyName���

fork�read�messages�Id���

�



communicator � �

�� sending a request to another agent ��

send�request�Agent� Task� Id� ��

mbx�create�Id�� �� create unique Id for reply ��

agent�id�Agent� Mbx��

knowledge�my�name�Name��

writeseqnl�user� ��sending request to�� Agent� ���� Task���

mbx�send�Mbx� request�Name� Task� Id���

�� receiving an incoming request ��

request�Sender� Task� Id� ��

fork�
�monitor�request�Sender� Task� Id����

�� sending results back to the requestor ��

send�reply�Who� Msg� Id� ��

writeseqnl�user� ��sending reply to�� Who� ���� Msg���

mbx�send�Id� Msg��

�� blocking read� waiting for reply ��

wait�reply�Id� Msg� ��

write�user� �waiting for reply ��� ��� flush�

mbx�recv�Id� Msg��

writeseqnl�user� ��received reply ��� Msg���

mbx�close�Id��

�� look up mailbox ID of agent ��

agent�id�Agent� Mbx� ��

mbx�getid�Agent� Mbx�� ��

agent�id�Agent� Mbx� ��

writeseqnl�user� ��unknown agent ��� Agent���


�

Figure �� Implementation of the Communicator

The read�messages�� program is a loop that reads messages and passes them to the commu�
nicator� It is thus the mechanism by which messages are transformed into communicator tasks�

read�messages�Id� ��

mbx�recv�Id� Msg��

writeseqnl�user� ��MESSAGE RECEIVED ��� Msg���

communicator�Msg� �� pass all incoming messages to ��� ��

read�messages�Id�� �� the communicator and loop again ��

��� Sample Trace

To test our simple arithmetic agents� we started ICP on three separate machines running the agents
a�� a� and a� respectively� The query

� �� monitor�solve�hypotenuse�����X���

was posed to agent a� and resulted in the trace shown in �gure �� The three columns show the
trace messages displayed by each of the agents a�� a� and a�� The ordering of the lines indicate
the time sequence� �notes� Numbers preceded by an underscore denote variables whose values are
not yet known� The large numbers are the mailbox identi�ers��

We see that agent a� was not able to solve the initial hypotenuse problem� so it sent a request
to a� to solve it� a� was able to decompose the problem into four parts �� squares� � addition and
� square root� of which it could only perform one � the addition� The other three parts were sent






a� a� a�

�� �� ��

sending request to a� � hypotenuse���������

waiting for reply ���

MESSAGE RECEIVED � request�a��hypotenuse������������������

sending request to a� � square��������

waiting for reply ���

MESSAGE RECEIVED � request�a��square���������������

sending request to a� � multiply���������

MESSAGE RECEIVED � request�a��multiply������������������

sending reply to a� � multiply�������

received reply � multiply�������

sending reply to a� � square�����

received reply � square�����

sending request to a� � square��������

waiting for reply ���

MESSAGE RECEIVED � request�a��square���������������

sending request to a� � multiply���������

MESSAGE RECEIVED � request�a��multiply������������������

sending reply to a� � multiply��������

received reply � multiply��������

sending reply to a� � square������

received reply � square������

sending request to a� � squareroot��������

waiting for reply ���

MESSAGE RECEIVED � request�a��squareroot����������������

sending reply to a� � squareroot������

received reply � squareroot������

sending reply to a� � hypotenuse�������

received reply � hypotenuse�������

Figure �� Trace of messages exchanged to calculate hypotenuse

to a�� Note that a� twice needed the help of a� to solve multiplications while it was calculating
squares� a� was able to respond even though it was still waiting for the results of the original
hypotenuse query� This was possible because of the multi�threading capability of ICP� The answer
� was received by a� in the last step of the trace� indicating that the problem was successfully
solved through close collaboration between the agents�

� Conclusion

ICP is a new Prolog system developed at Imperial College� ICP has many features which are
not available in standard Prolog systems� These include a multi�threading capability� high level
communication primitives and an object�oriented extension� There are many other features in
ICP which are useful for programming Multi�Agent Systems� but which we have not discussed
because they were not required for the simple example� These features include many�to�many
communication� secure communication� timeouts for receiving messages� interface to TCP�IP� for�
eign language interface and a complete Parlog sub�system �Gre
�� for those applications where
�ne�grained parallelism is important� L�O is also a much richer notation than we have space to
give justice to�

We have shown that ICP satis�es our informal list of technical requirements for a Multi�Agent
Systems implementation language� Furthermore� the worked example illustrates that ICP is capable
of describing agent behaviour in a high�level manner�

For the sake of clarity� brevity and completeness� I chose to model a simple agent architecture

�



and a simple application domain� The reader should realise that the example can be easily mod�
i�ed or expanded to model more complex agent architectures� alternative cooperation strategies�
dynamic replanning and all the other issues of interest to researchers in Multi�Agent Systems�
Even with this simple architecture� we can very easily build distributed applications in domains
far more complex than arithmetic� Cooperating expert systems can be modelled in this way�

The implementation language does not impose a particular viewpoint on Multi�Agent Systems�
Instead it provides an infrastructure so that prototypes can be easily constructed and experiments
performed� We believe that as such� ICP will be a useful tool to researchers in the �eld�

IC�Prolog II is available by anonymous ftp from src	doc	ic	ac	uk �Internet� �	���������� in
the directory

computing�programming�languages�prolog�icprolog

References

�CC��� Yannis Cosmadopoulos and Damian A� Chu� IC Prolog II version ���� Reference Manual�
London� �����

�CM
	� Wiliam F� Clocksin and Christopher S� Mellish� Programming in Prolog� �nd Edition�
Springer Verlag� New York� ��
	�

�Gre
�� Steve Gregory� Parallel Logic Programming in PARLOG� Addison�Wesley Publishers
Ltd�� ��
��

�Kow�	� Robert A� Kowalski� Predicate logic as a progamming language� In Proceedings of IFIP�

	�� pages ������	� Amsterdam� ���	� North Holland�

�McC��� Frank G� McCabe� Logic and Objects� Prentice�Hall International �UK�� �����

�O�K�
� Richard A� O�Keefe� The Craft of Prolog� MIT Press� Cambridge� Mass� ���
�

�Rob��� John A� Robinson� A machine�oriented logic based on the resolution principle� Journal
of the ACM� ������	�� �����

�SB
�� Leon Sterling and Randall D� Beer� Metainterpreters for expert system construction�
Journal of Logic Programming� �������������
� ��
��

�SS
�� Leon Sterling and Ehud Shapiro� The Art of Prolog� MIT Press� Cambridge� Mass� ��
��

�



